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Abstract
Fluorescencemicroscopy can provide valuable information about cell interior dynamics. Particularly,
mean squared displacement (MSD) analysis is widely used to characterize proteins and sub-cellular
structures’mobility providing the laws ofmolecular diffusion. TheMSD curve is traditionally
extracted from individual trajectories recorded by single-particle tracking-based techniques.More
recently, image correlationmethods like iMSDhave been shown capable of providing averaged
dynamic information directly from images, without the need for isolation and localization of
individual particles. iMSD is a powerful technique that has been successfully applied tomany different
biological problems, over awide spatial and temporal scales. The aimof this work is to review and
compare these twowell-establishedmethodologies and their performance in different situations, to
give an insight on how tomake themost out of their unique characteristics.We show the analysis of
the same datasets by the twomethods. Regardless of the experimental differences in the input data for
MSDor iMSD analysis, our results show that the two approaches can address equivalent questions for
free diffusing systems.We focused on studying a range of diffusion coefficients betweenD= 0.001
μm2 s−1 andD= 0.1μm2 s−1, wherewe verified that the equivalence ismaintained even for the case of
isolated particles. This opens new opportunities for studying intracellular dynamics using equipment
commonly available in any biophysical laboratory.

1. Introduction

Fluorescence microscopy has long been an essential
tool in biological research. Due to its high sensitivity
and specificity, along with the possibility of applying it
to living cells in a minimally invasive way, it is widely
used to visualize and analyze complex intracellular
dynamic events as they occur [1–3]. In particular,
studying quantitatively the mobility of proteins and
subcellular structures can yield valuable information
about their functions [4–6].

In this context, single-particle tracking (SPT) is a
powerful approach to evaluating the diffusive motion
of biomolecules. In contrast with more traditional
bulk methods like fluorescence recovery after photo-
bleaching (FRAP) [7], which averages over hundreds
of diffusing molecules, SPT measures individual

trajectories, providing high specificity [8]. By comput-
ing themean-square displacement (MSD) from trajec-
tories, SPT can resolve the modes of motion of
individual molecules. However, one of themain draw-
backs of this technique is the need for a large number
of trajectories to be recorded to improve the statistical
significance of the results.

An attractive alternative that overcomes some of
the SPT limitations can be found in spatiotemporal
image correlation spectroscopy (STICS) [9] and
image-derived mean squared displacement (iMSD)
[10]. These methods can evaluate modes of motion by
analyzing the time dependence of the fluorescence
intensity correlation in a stack of images, without the
need for localization. These properties make iMSD a
powerful technique for studying relevant biological
problems, such as the diverse intracellular dynamic
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processes and the viscosity of the cell interior
[6, 10–17]. As with any other fluctuation-based analy-
sis method, iMSD provides average information about
all the diffusing elements in the image stack, allowing
good statistics in a limited amount of time [10].

iMSD also provides a conclusive analysis of the
nature of the translational motion in the cell interior,
by measuring protein mobility at the spatial and tem-
poral nanoscale with no a priori assumptions on their
diffusion properties [11]. iMSD has been successfully
used to probe the molecular diffusion of an inert,
fluorescent protein probe (GFP) in the intracellular
environment in a variable timescale, from 1μs to
100 μs [11]. This approach unveiled unobstructed
Brownian motion from 25 to 100 nm and partially
suppressed diffusion above 100 nm, which has been
attributed to the presence of immobile and spatially-
organized intracellular structures, rather than to dif-
fusing crowding agents [11].

In this article, we apply the two approaches to the
same synthetic datasets, to compare the results and dis-
cuss the advantages and limitations of bothmethods.

1.1. Theory
1.1.1. Mean squared displacement analysis from
trajectories
Mean squared displacement (MSD) analysis is a robust
tool widely used to characterize single-particle trajec-
tories and quantitatively determine several dynamic
parameters [18–20]. For a single-particle trajectory
composed of a series of n particle positions observed at
specific times t, the MSD can be computed for time
lags τ= nt according to
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N n
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defined here for a trajectory r(t) of total length N,
recorded at sampling time-intervals t. For a
2-dimensional diffusion process, the MSD generally
scales with a power law according to

MSD D4 , 2( ) ( )t t= a

where D is the diffusion coefficient and α is the
anomalous parameter. In the case of Brownianmotion
α= 1 and the analytical expression is reduced to

MSD D4 , 3( ) ( )t t=

For α≠ 1, the power law describes a process gen-
erally called anomalous diffusion, which can be cate-
gorized as superdiffusive (α> 1), as in the case of
active transport, or subdiffusive (α< 1), as the case of
diffusion in a crowded environment [8].

The free diffusion model is characteristic of
unrestricted stochastic particle motion, active trans-
port may result from molecular motor-driven pro-
cesses and subdiffusive behavior can be the product of
interaction with local obstacles and barriers, abundant
in complex highly crowded environments like the cell
interior. In reality, more than one process often occurs
together, yielding more complex motion models
described by linear combinations of the above
expressions.

The main individual processes undergoing pure
diffusion mechanisms are schematically shown in
figure 1. By plotting the MSD curve and fitting it with
these models, an MSD analysis can extract the law of
diffusion that best describes the particle 2Dmotion.

Figure 1.MSDcurves for normal diffusion (red), superdiffusion (blue), and subdiffusion (green), as described by equation (2). Some
biologically relevant examples of these situations are Brownianmotion, directedmotion and diffusion in a highly crowded
environment, respectively.
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1.1.2. Imaging derived mean squared displacement
analysis
Recent works have shown thatmean squared displace-
ment can also be obtained directly from imaging
without resolving the specific single-particle trajec-
tories [6, 10, 12–17]. iMSD computes the spatiotem-
poral correlation function for increasing lag times τ in
an image series, using the same mathematical basis of
the STICSmethod [9]. The spatiotemporal correlation
function can be defined as:

g

I x y t I x y t
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where I represents fluorescence intensity, ξ and η are
the distance between correlated pixels in x and y
directions, and ...á ñ indicates the average over x, y and t
variables.

If particles are diffusing, the width of the correla-
tion central peak increases with τ. This increment is
intrinsically connected to the average rate andmode of
diffusion. Correlation peaks are then fitted by the
Gaussian function:
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where γ is a factor associated with observation volume
shape, N is the average number of particles in the
observation volume and the variance σ2 represents the
MSD. Thanks to the σ2 versus τ plot, that we will refer
to as the iMSD curve, diffusion modes can be directly
identified by using the already describedmathematical
framework forMSD [10].

In addition, iMSD analysis provides an estimation
of the average diffusing particle size, through the offset
of the iMSD curve ( 0

2s ). The difference between 0
2s

and the independently measured instrumental waist
yields the particle size [10].

2.Materials andmethods

2.1. Simulations and synthetic images generation
To evaluate the performance of the MSD and iMSD
analysis in a controlled setting, we applied them to
synthetic images of point-like particles undergoing
Brownian motion in a 2D plane. Simulating 2D
systems allowed us to ensure a direct comparison by
using the same set of data images to apply iMSD and
also to track single-particles during the same time
interval (as particles can not leave the focal plane).
Since the iMSD method is always applied to image
series, where the acquisition is restricted to the focal
plane components of movement, conclusions derived
from this analysis can be extrapolated to 3D systems.
The simulations were performed using a commercial
closed-source software SimFCS (LFD, University of
California, Irvine, available at https://lfd.uci.edu/
globals/).

In the simulations, particles are randomly seeded
in a 2D square grid with periodic boundaries. One unit
of the grid is equal to 50 nm, and the total size is
256× 256 units. Particles move in the grid according
to given rules of diffusion. To achieve this, at each step
of the simulation the routine calculates the probability
to move a particle in each possible direction, depend-
ing on the diffusion coefficient of the particle. Then,
the position of each particle and the given point spread
function (PSF) are used to calculate the total intensity
of the particle, and the Poisson statistics are applied to
simulate the statistics of photons. Brightness was set as
106 counts per second per particle. Additionally, a
background noise of 100 counts per second with a
Poisson distribution was added in the simulated ima-
ges. All synthetic datasets were 256× 256 at a resolu-
tion of 50 nm/pixels, and 1000 frames long with a
time step of 10 ms/frame. The simulation frame rate
was chosen to be similar to those obtained in commer-
cial cameras typically used in biophysics laboratories.
The PSF was set in a 3DGaussian shape with a 300 nm
waist in the radial direction.

2.2. Tracking andMSDanalysis software
Particle trajectories were captured from synthetic
image datasets using the SpotTracker add-on with
ImageJ [21]. This software can extract the optimal
space-time trajectory (x, y, t) of a given particle by
applying a dynamic programming optimization pro-
cedure.We chose this tracker as this is a free add-on to
ImageJ, a public domain image processing software,
widely used for biophysics applications.

Then theMSDs for each trajectory were calculated
using a custom-made Python script. The script uses
equation (1) to compute an MSD curve, which is then
fit to different diffusionmodels and the R2 value is cal-
culated. This allows the script to determine which of
the models is a better fit for the system and then calcu-
late the correspondingmovement parameters.

iMSD processing and the subsequent data analysis
were performed with an iMSD script working in
MATLAB (MathWorks Inc., Natick, MA.) described
in [16].

3. Results

3.1.MSD from trajectories
To test and compare the accuracy of MSD analysis
when it is computed from tracked trajectories and
when it is extracted directly from images, in this
section we will perform both analysis on the same
dataset to compare the obtained results. First, we will
show an example of tracking and MSD analysis by
studying the motion of single-particles in a synthetic
image dataset. The dataset corresponds to a free
diffusion simulated system of 30 particles, with a
diffusion coefficient of 0.01 μm2 s−1. We chose a
particle that remained far enough from the rest to be
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able to identify it at all times. This is important to
ensure that we are always tracking the same particle,
and not hopping between close particles. An example
frame of this dataset is shown in figure 2(a). Then we
used the ImageJ plugin to record its trajectory, which
is displayed in figure 2(b). The trajectory is conformed
by 500 data points and corresponds to an elapsed time
of 5 s which is indicated by the described color code,
where blue corresponds to the start of the trajectory
and yellow to its end. From these data, we calculated
the mean squared displacements using our Python
script and obtained the MSD curve shown in
figure 2(c). The obtained MSD curve exhibits a linear
trend, consistent with the simulated diffusive motion.
We then fitted the MSD curve with the Brownian
model (equation (3)) and estimated a diffusion coeffi-
cient of (9.57± 0.06) 10−3μm2 s−1, different from the
simulated value in less than 5%.

If we are interested in the average dynamics of the
system, it is necessary to record and analyze several
trajectories to increase the statistical significance of the
estimated mean diffusion coefficient. In figure 3(a) we
show the result of tracking 10 different particles in the
same dataset and independently analyze these trajec-
tories by MSD. As a result, we have 10 different MSD

curves that exhibit a similar linear trend, where each of
them represents the dynamics of a single-particle.
Then, we averaged these curves for each lag time τ,
obtaining a mean MSD curve. This curve provides
information on the average motion of the system, and
the fit by the Brownian model yields a mean diffusion
coefficient of (9.42± 0.04) 10−3 μm2 s−1. Even when
there is a dispersion in the estimated diffusion coeffi-
cients for single-particles, each of them can differ up to
30% from the simulated value, and themean diffusion
coefficient well agrees with the performed simulation.
It is important to note that this deviation from the
simulated value for individual particles does not imply
a lack of accuracy in the analysis. Due to the inherent
randomness of the diffusion process, each simulated
particle follows a distinct trajectory, and individual
diffusion coefficients measured over finite time peri-
odsmay exhibit variability.

3.2.MSD from imaging
The MSD curve can also be directly extracted from
imaging, with no need to extract and analyze indivi-
dual single-particle traces, by analyzing the spatiotem-
poral correlation with STICS [10]. To compare both
methods, we re-analyzed the same dataset by iMSD.

Figure 2.Tracking andMSD analysis results for computer-generated simulations. (a) Image from the synthetic dataset generated from
the simulation of a systemof 30 free diffusing particles withD = 10 × 10−3μm2 s−1. The square shows the representative particle that
was selected to be tracked and the recorded trajectory. (b)Detail of the recorded trajectory. (c)MSDanalysis from the trajectory and
the fit with a Brownianmodel, which yields a diffusion coefficient of (9.57 ± 0.06) 10−3μm2 s−1 is also shown (solid red line).

Figure 3.Mean squared displacement as a function of lag time τ. Analysis of average dynamics byMSD from tracking (Section 3.1) and
iMSD (section 3.2). (a) 10 single-particles trajectories were tracked and analyzed byMSD (blue), these curves were averaged for each
time lag τ (black) andfitted by the Brownianmodel (red), which yielded amean diffusion coefficient of (9.42 ± 0.04) 10−3μm2 s−1.
(b)An equivalent analysis was performed using iMSD in the same dataset. The iMSD curve (black)was fitted by the Brownianmodel
(red), giving amean diffusion coefficient of (9.57 ± 0.01) 10−3μm2 s−1. For ease of comparison between both curves, the iMSD
intercept valuewas subtracted.
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This provided the iMSD curve displayed in figure 3(b),
which exhibits an expected linear trend. By fitting this
curve with the Brownian model, we calculated a
diffusion coefficient of (9.57± 0.01) 10−3μm2 s−1.

iMSD results reflect all information present in the
image series and therefore provide a characterization
of the average motion of the whole particle system. It
is, therefore, reasonable to compare this result to the
mean MSD curve in figure 3(a). The diffusion coeffi-
cients estimated by the fitting of both curves are
equally precise and differ by less than 2%. Proving that
regardless of the experimental differences in the input
data for both approaches (trajectories in one case, ima-
ges in the other), they can provide completely equiva-
lent information on the averaged dynamics of the
system. This agreement in the results was verified for a
series of simulations of free diffusing particles in a
range between D= 0.001 μm2 s−1 and D= 0.1
μm2 s−1, maintaining the same simulation and analy-
sis parameters (Supplementary figure 1).

In this sense, iMSD has the advantage of affording
good statistics from only one measurement and analy-
sis. By avoiding localizing single-particles, we can
obtain robust results in a faster and more practical
way. Additionally, iMSD provides quantitative infor-
mation about the size of the particles under study. In
this case particles are point-like, and therefore the
intercept value on the Brownian fit 0

2s represents the
squared instrumental waist. The recovered value from

the fit was (305.98± 0.06) nm, which is consistent
with the simulated 300 nm.

3.2.1. iMSD analysis and particle concentration
We have shown that iMSD analysis takes advantage of
all information contained in the image series, provid-
ing a robust and fast characterization of the average
motion. In this section, we interrogate the validity of
this approach in two contrasting scenarios: one where
the system under study has a very low concentration,
and other where the concentration is too high for
single particle tracking.

First we analyze the low concentration case. Speci-
fically, we show results on the iMSD analysis of a single
isolated particle. Even though the application of this
method to this kind of system is in principle possible
[16], it has not been experimentally validated. To eval-
uate these results, we study the same particle in two
independent ways: by MSD from tracking and
by iMSD from the image series. We chose a new parti-
cle in the same synthetic dataset, tracked it, and ana-
lyzed the trajectory by MSD. This is depicted in
figures 4(a)–(c). The results show diffusive motion
with D= (6.72± 0.05) 10−3 μm2 s−1, 30% lower than
the simulated value. This is a particle with a slower
motion than the system average.

We want to study the motion of this particle by
iMSD, in a way that ensures that the analysis condi-
tions remain the same. Since iMSD results describe the
average motion of all particles in the image series, we

Figure 4.Analysis of a single-particle dynamics by twomethods:MSD from tracking and iMSD. (a) Image from the synthetic dataset.
The square shows the particle that was selected to be tracked and the recorded trajectory. (b)Detail of the recorded trajectory. (c)MSD
analysis from the trajectory andBrownian fit, that yields a diffusion coefficient ofD = (6.72 ± 0.05) 10−3μm2 s−1. (d)To study the
same particle by iMSDwe subtracted the rest of them from all the images of the series. (e) Spatiotemporal correlation function
computed by themethod. (f) iMSD curve andBrownian fit, which gives a diffusion coefficient ofD = (6.51 ± 0.03) 10−3μm2 s−1.
The consistency in both results validates the application of iMSD to low-concentration systems.
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subtracted all unwanted particles in every frame of the
series (by replacing them with dark pixels) before
applying iMSD (See figure 4(d)). The method com-
puted the spatiotemporal correlation function and the
iMSD curve, shown in figures 4(e), (f). This yielded a
diffusion coefficient for the particle of D= (6.51±
0.03) 10−3 μm2 s−1, 30% lower than the simulated
10× 10−3 μm2 s−1. Again, we see a deviation from the
average diffusion coefficient of the system. Both
results differ by less than 4% and are equally precise,
confirming that the equivalence between MSD from
tracking and iMSD persists even for the case of single-
particle motion, validating the application of iMSD in
diluted samples.

On the other hand, we study a case of higher parti-
cle concentration. We maintained simulation and
analysis parameters as described before, while increas-
ing the number of simulated particles to test the
potential impact in iMSD accuracy. Infigure 5, we pre-
sent a simulation of 4000 particles (corresponding to
24.41 particles/μm2) exhibiting normal diffusion with
D= 0.01 μm2 s−1. This is an example of a system that
would not be possible to be analyzed by SPT andMSD,
due to the high proximity between particles. The
iMSD analysis yielded a D value of (9.73± 0.05) 10−3

μm2 s−1 , which is consistent with the discrepancies
observed for lower concentrations. This finding
affirms that iMSD can be used in a broader range of
concentration than SPT.

3.2.2. iMSD on two-population systems
We have seen that iMSD is a convenient approach to
studying a set of isotropically diffusing particles, as it
provides a precise quantitative description of the
average motion. However, real biological applications
usually involve much more complex systems, com-
posed of more than one population with different
dynamic properties. In this section we evaluate
whether iMSD is capable of detecting the presence of
multiple species with different dynamic behavior, and
we examine what kind of information it can offer in
such scenarios. The possibility of using fluctuation
analysis approaches such as iMSD to provide

complementary results to single-particle tracking
methods in this situation has not yet been explored
deeply.

If these populations are localized in separate
regions, an independent iMSD analysis of each of
them can be achieved simply by choosing a smaller
region of interest. We will focus on the case in which
populations coexist in the same region in a random
spatial distribution. We generated a new series of
synthetic datasets from the simulation of the simplest
scenario, in which two populations of 15 free diffusing
particles with different diffusion coefficients are ran-
domly seeded across the images. The rest of the simu-
lation parameters were kept the same as in the
previous sections.

In figure 6(a) we present the iMSD analysis of one
of these datasets, in which half of the particles move
with D1= 0.1 μm2 s−1 and the other half with
D2= 0.002 μm2 s−1. The iMSD curve does not show
the linear tendency expected for diffusive motion. It
differs from the straight lines predicted for D1 and D2

by the Brownian model, but also from the averaged
(D1+D2)/2. Instead, it exhibits the typical curvature
that characterizes the sub-diffusive regimen, and as
such, it can be fitted by the anomalous diffusionmodel
(equation (2)). This fit gives an anomalous diffusion
parameter ofα= 0.54± 0.02.

This shows that even if iMSD provides averaged
information about the motion of the whole system,
the analysis isn’t blind to the presence of more than
one population with different dynamics. The iMSD
curve withα< 1 indicates the existence of a difference
in the system’s average behavior at two spatiotemporal
scales. At short time lags, the slower population has
barely moved, and so the average motion pre-
dominately represents the faster population and the
iMSD curve slope is higher. On the other hand, at long
time lags, both populations are represented in the
averagemotion, and the slope decreases.

This disparity increases with the ratio R=D1/D2.
To study the effect of R in the parameter α, we varied
the diffusion coefficients D1 and D2 generating a series
of datasets with different ratios. Each of them was

Figure 5. iMSD analysis of a simulation of 4000 particles (24.41 particles/μm2)normally diffusingwithD = 0.01μm2 s−1. (a)An
illustrative frame extracted from the generated synthetic image series. (b) Fitting the iMSD curvewith the Brownianmodel yielded aD
value of (9.73 ± 0.05) 10−3μm2 s−1. This discrepancy is in agreement with results obtained for lower particle concentrations.
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independently analyzed by iMSD and a value forαwas
estimated from the fitting of the curve by the anom-
alous diffusion model. Results are displayed in
figure 6(b), where each point represents a different
dataset and the color code shows the estimated α. We
can see that while the α value for points in the same R
line is similar, higher R ratios can be associated with a
lowerα. This result suggests that the anomalous diffu-
sion parameter, could serve as a qualitative indicator
of the disparity of the populations’motion.

The proposed methodology is useful to detect the
presence ofmore than one population of normally dif-
fusing particles, and qualitatively characterize it. How-
ever, it should be noted that it fails to determine if the
low anomalous parameter is the result of a mixture of
this kind or if it is the product of true subdiffusion. To
obtain a complete characterization of the different
behaviors at the individual particle level, techniques
like SPT should be used. However, iMSD can still be
valuable as a highly accessible and fastmethod to com-
plement SPT. For example, if iMSD yields α < 1,
tracking a small number of particles would differ-
entiate subdiffusion from normal diffusion. In other
cases, after tracking a small sample, iMSD provides
fast average information that could support or dis-
prove the generalization of the results to bigger sys-
tems. Also, prior information about the biological
system such as expected level of interaction or varia-
bility in behavior can anticipate these results.

3.2.3. iMSD analysis and signal noise
In previous sections, iMSD analysis was applied to
simulations of particles with a brightness of 106 counts
per second per particle and a non-correlated back-
ground noise of 100 counts per second. In the case
where on average only one particle is present in the
observation volume at a time, this corresponds to a
ratio between background and particle brightness of
RB= 10−4. To test the performance of iMSD in less
favorable conditions we repeated the analysis for
different noise-to-particle brightness ratios, by
increasing RB.

We generated eight series of images using a Pois-
son distribution with a given brightness, ranging from
500 cps to 1Mcps, and overlaid it onto a simulation of
free-diffusing particles with a diffusion coefficient of
10× 10−3μm2 s−1, as analyzed in sections 3.1 and 3.2.
We then applied the iMSD method to each overlap
and compared the results for the obtained diffusion
coefficient, ensuring that the analysis conditions
remained constant thus any variation in the results
could then be attributed to the presence of noise.

We found that by increasing background noise up
to a ratio of RB= 0.2 (i. e. particles five times brighter
than background noise), we obtained a diffusion coeffi-
cient D= (9.64± 0.01) 10−3 μm2 s−1 (figure 7). This
result differs by less than 1% from analyses with smaller
RB values. However, for simulations with higher back-
grounds (RB � 0.3), no correlation was detected, and a
diffusion coefficient value could not be extracted from
the analysis, even when the contrast in the image was
high enough to distinguish particles from the back-
ground (figure 7(c)). Based on these tests, we can iden-
tify a critical ratio of RB= 0.3, that represents the lowest
noise-to-particle brightness ratio at which iMSD analy-
sis fails to produce reliable results. We replicated this
analysis for four additional equivalent simulations, in
which we corroborated the consistency of these find-
ings. Simulations with RB= 0.2 were accurately ana-
lyzed, obtaining the expected linear iMSD curves and
diffusion coefficient values that always differed in less
than 3% from those obtained in absence of significant
noise. In contrast, no reliable analysis could be con-
ducted for any of the simulations with RB= 0.3
(Supplementary figure 2). We also analyzed the impact
of a noise-to-particle brightness ratio of RB= 0.2 on
iMSD results for different particle brightness, obtaining
consistent results (Supplementaryfigure 3).

We repeated this analysis for an isolated particle
simulation presented in section 3.2.1. In this case, we
were able to obtain D values that differ by less than 1%
for ratios within RB � 0.05, while satisfactory results
cannot be achieved for RB� 0.1.We can thusdetermine
a critical ratio of RB= 0.1. As expected, the loss of

Figure 6. iMSD analysis of systems conformed by two species of free diffusing particles with differentD coexisting in the same space.
(a) iMSD curve for the case ofD1 = 0.1μm2 s−1 andD2 = 0.002μm2 s−1 (R = D1/D2 = 50). The curve is inconsistent with the
straight lines predicted forD1,D2, or (D1+D2)/2 by the Brownianmodel (red and green). Instead, it exhibits the typical curvature of a
subdiffusivemotion, and anomalous fitting (equation (2)) yields a value ofα = 0.54 ± 0.02. (b)Estimatedα values for a set of systems
consisting of two populationswith differentD1 andD2. Black straight lines highlight the points corresponding to the same ratio
R = D1/D2.Higher diffusion coefficient ratios, R, consistently result in a lower range of obtainedα values, providing qualitative
insights about the disparity of both populations’motion.
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correlation occurs at a smaller ratio than in the previous
case, indicating that iMSD results are more sensitive to
the presence of noise on diluted samples, where infor-
mation available for computation is limited.

4.Discussion

Mean square displacement analysis is a powerful tool for
the determination of dynamic parameters. It can be
implemented in two different experimental ways: by
computing it from trajectory data, recorded by single-
particle tracking techniques, but also directly from
images (iMSD), by studyingfluorescence spatiotemporal
correlation. By simulating image datasets, we studied
systems of particles isotropically diffusing, concluding
that both approaches are useful to study the particle’s
averagemotion, providing equivalent results (figure 3).

When computing MSD from tracking, it is neces-
sary to record several trajectories, individually analyze
each of them, and then average the outcomes to
increase the statistical significance of the results. This
can be experimentally challenging since it is time-con-
suming and it requires access to a large number of parti-
cles in appropriate conditions for tracking.On the other
hand, iMSD provides equivalent averaged information
from a single analysis of an image series. For many
microscopes available in biophysics laboratories, ima-
ging the region of interest can be more accessible than
tracking single-particles. Additionally, this method
ensures that every particle that contributes to the final
results is measured in identical experimental

conditions, which could be difficult to accomplish if
multiple experiments are required to record enough
trajectories. In regards to noise, iMSD can provide con-
sistent results even in presence of Poissonian back-
groundnoise of up to 20%of theparticles’brightness.

We demonstrated that the equivalence between
both approaches persists when the concentration is
low, even if the system under study consists of one iso-
lated particle (figure 4). This shows that iMSD can be
used in a broader range of concentration scenarios
than tracking and MSD since it is also applicable in
systems where concentration would be too high to
localize and track individual particles for long periods
of time (figure 5).

In systems conformed by more than one species,
single-particle tracking and MSD provides high speci-
ficity revealing individual aspects of motion that are
hidden in the inherent averaging of fluctuation-based
methods. However, we showed that iMSD can differ-
entiate one and two-species situations, while provid-
ing complementary valuable information about them.
We studied the case of two populations of free diffus-
ing particles and showed that the anomalous para-
meter α can be associated with the ratio between the
two different diffusion coefficients (figure 6).

5. Conclusions

In this work, we have presented a comprehensive
discussion on the use of themean square displacement
(MSD) analysis computed from single-particle

Figure 7. iMSD analysis of simulated free diffusing particles withD = 10 × 10−3μm2 s−1 for different brightness of the background
Poissonian noise. (a) Simulationwith a background-particle brightness ratio of RB = 0.2. (b) iMSD analysis provided a result of
D = (9.64 ± 0.01) 10−3μm2 s−1. This value differs by less than 1% for every RB� 0.2. (c) Simulationwith a background-particle
brightness ratio of RB = 0.3. (d) For this and bigger ratios, the noise causes correlation to be lost and a value of D can not be extracted
from the iMSDanalysis.
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trajectories compared to those computed from optical
images as a powerful tool to determine the laws of
diffusion ofmoving particles.

In one-specie systems,we showed that both approa-
ches provide equivalent averaged information. The
iMSD analysis is also suitable for ultra-diluted samples
even if the analysis is applied to isolated particles. In
two-species systems, iMSD provides complementary
information to that obtained by single-particle tracking
techniques, characterizing the disparity between short
and long-spatiotemporal scale behaviors.

These unique properties position iMSD as a fast
and robust method, and an easy-to-apply alternative
to tracking, opening new opportunities for studying
intra-cellular dynamics using equipment commonly
available in any biophysical laboratory.
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