UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Knowledge Structures Involved in Comprehending Computer Documentation

Permalink
https://escholarship.org/uc/item/2xt0041§

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 6(0)

Author
Clement, Darlene

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2xt00418
https://escholarship.org
http://www.cdlib.org/

128

Knowledge Structures Involved in

Comprehending Computer Documentation

Darlene Clement

Institute of Human Learning
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

A model of computer-manual comprehension
18 proposed in which four processes operate simul-
taneously: task-mapping of the structure of regular
procedures onto the siructure of computer com-
mands, construcling a menial model of the com-
puter esystem, inducing the command language
grammar, and learning the struclure of computer

procedures. Findinge from a study of five novices’

comprehension problems with UNIX documenta-
tion are analyzed in terms of these four proceszes.
Two of the four processes—task-mapping and pro-
cedure learning—are described in this paper. The
analysis focuses on the knowledge structures
involved in comprehending a technical text.

The solution to the problem of computer
manual comprehension has been narrowly viewed
as simply a matter of eliminating jargon, using
‘“‘good'’ sentence structure, and so on. That is,
the emphasis has been on low-level linguistic
aspects instead of the fundamental cognitive ones
involving the knowledge structures tapped by a
technical text. The comprehension problem may
be considered from the perspective of each of the
three factors that give rise to it, viz., the system,
the reader, and the writer.

First, a computer manual gives directions
for operating a device that is unlike any other
machine. Computer systems are difficult to learn
both because they are operated symbolically, and
because they “operate on invisible objects with
consequences that are not readily apparent”
(Nakatani and Robrlich, 1983). In particular, the
reader must understand both the system’s con-
ceptual model and interface.

Second, the reader's knowledge base must
be taken into account. If the reader is a non-
programmer there are only two things that he or
she can bring to the text: a model of how con-
ventional editing is done, and some expectations
about text structure. Beyond this, non-
programmers are at a loss. They have no under-
standing of computer programming which some
have argued is the basis for a generative model of
the system (e.g., Sheil, 1981).

Third, the technical writer's ability to con-
vey the new information must be analyzed. The
writer's role is one in which he or she must com-
pensate for both the movice's naiveté, and any
unnaturalness in the system's design. To date,
writers have only been given very general sugges-
tions for accomplishing this feat (e.g., ‘‘write
clearly””). The gap between the suggestions and
their implementation must be filled entirely by
intuition. Cognitive psychology, and in particu-
lar text comprehension research, can provide a
means of bridging this gap by elucidating the
specific schemata tapped by a technical text.

In order to investigate users’ problems
learning a system with a manual, an in-depth
qualitative study was carried out in which 5
novices attempted to learn UNIX! with only a
manual to guide them. The subjects were asked
to read a section of two locally produced tutorials
in advance of meeting with the researcher. The
tutorials covered file manipulation and text edit-
ing with a line-oriented editor called “Edit.”
During the meetings subjects used the computer
to follow the instructions in the tutorial. The 5

I UNIX is a trademark of Bell Laboratories

sessions lasted two hours on average and were
tape recorded, yielding approximately 10 hours of
tape from each subject.

The model derived from the analysis of the
data partitions the information contained in com-
puter manuals into four classes, each with a
corresponding comprehension task. Functional
information describes the purpose of each com-
mand and triggers a task-mapping comprehen-
sion process. In this process, users map the new
functional information given in the manual onto
their tacit models of regular text-editing and gen-
eral office procedures. Examples of such pre-
existing models are the familiar procedures of
cutting and pasting text in documents, creating
new files, and typewriter editing. Structural
information describes the underlying structures
and processes of the computer system itself. A
description of a device triggers a model
bullding process in which the reader attempts to
construct a mental model of how the device func-
tions, for example, how the editor buffer and disk
(important entities which the user never sees) are
related. Command information describes the
way in which commands are issued. It triggers
the command learnlng process in which users
attempt to learn the syntax and semantics of the
command language. Procedural information
provides directions for navigating through the
system, i.e., knowing which command to issue in
which context. The corresponding procedure
learning process entails recognizing these
different program contexts, and learning the
order in which commands must be issued.

Though each of these processes taps radi-
cally different knowledge structures, they are fun-
damentally the same: in each case it is necessary
for the new information to connect with the
reader's knowledge base. It is apparent from the
problems novices had that the documentation
they used had serious shortcomings in each of
these areas. Because of space limitations, only
two of the four comprehension processes will be
described here—the task-mapping process and
the procedure-learning process.

TASK-MAPPING

The task-mapping process was initially
described in Clement (1983) as a global process of
mapping the structure of the regular editing task
onto the corresponding computer version of the
task. So, for example, the regular editing pro-
cedure of changing a word by crossing it out and

129

writing another word above it, gets mapped to
the text editor’s substitute command. Recently,
this same process has been described in more
detail by Moran (1983). Moran states that the
user's knowledge of editing procedures consists of
at least eight editing functions (add, remove,
change, transpose, move, copy, split, join) which
operate on five text entities (character, word,
sentence, line, paragraph). The 37 tasks that
result from the combination of editing functions
and text entities constitute the core knowledge
the user possesses. This knowledge comprises the
“external task space.” The computer system
also has entities and operations defined within it,
but these may be very different from the ones the
user knows. The entities and operations internal
to the computer constitute the “internal task
gpace.”” Moran gives the example of a system
that defines only one entity (a character string),
and only three editing operations. With this sys-
tem users must learn to conflate the five separate
text entities they are familiar with onto this one
system entity, and the eight editing functions
they are used to must be collapsed onto three:
cut, paste, and insert. In other words, the task-
mapping process requires that the user learn to
carry out familiar tasks by means of unfamiliar
functions which operate on unfamiliar entities.

The operation of this process was especially
evident when subjects attempted to learn the
UNIX read command. This command allows a
file to be inserted into the file currently being
revised, that is, it allows the user to cut and
paste. How is it similar to conventional cutting
and pasting? In both the computer version and
the regular version of the cutting and pasting
procedure the point at which the new informa-
tion is to be inserted must be located. Then the
pasting action can be carried out. In the com-
puter procedure the ‘‘read’’ command is issued;
in the regular procedure the material is actually
pasted in. There are two ways in which the pro-
cedures differ. First, in regular cutting and past-
ing the material pasted in typically no longer
exists in its original location. In contrast, in the
computer version of the task, the file pasted in
still exists as a separate file. Second, in regular
cutting and pasting usually only parf of a remote
document is spliced into the document wunder
revision. In contrast, in computer cutting and
pasting the enfire remote file is pasted in, not
just a section of it.

The manual described the command as fol-
lows.

Reading additional files (r)

The read (r) command allows you to add the
contents of a file to the buffer at a specified loca-
tion, essentially copying new lines between two
existing lines. To use it, specify the line after
which the new text will be placed, the read (r)
command, and then the name of the file. If you
have a file named ‘‘example”, the command

1$r example
“‘example’ 18 lines, 473 characters

reads the file “‘example” and adds it to the buffer
after the last line. The current filename is not
changed by the read command. (Edit: A Tutorial
p. 22)

In general, the subjects had difficulty understand-
ing this paragraph. After they were told that it
referred to cutting and pasting further discussion
revealed their attempts to map the structure of
the regular procedure onto the computer pro-
cedure. Two subjects thought that the file
pasted in disappears from its original location.
Notice that this is what would be predicted from
a model of regular editing. Another subject won-
dered if only part of the remote file is pasted in,
or the whole file.

From a text comprehension standpoint this
paragraph from the manual is reminiscent of pas-
sages used in text comprehension studies in the
early 70's (e.g., Dooling and Lachman, 1972)
where subjects were presented with texts that
were incomprehensible without a title. Once a
title was provided the texts were easily
comprehended because the (itle triggered the
schema that the tezt was about. Similarly, this
text would have been easier for the subjects to
assimilate had the cutting and pasting schema
been activated at the outset, say, in the heading.
This is a point that can be of use to document
developers. Once the appropriate regular-editing
schema is activated then the task-mapping pro-
cess can be carried out more easily. The docu-
ment developer can further facilitate the task-
mapping process by explicitly comparing the
similarities and differences between the regular
editing procedure and the computer procedure.
This would reduce the amount of inferencing the
reader would have to engage in, and would simul-
taneously answer the reader’s questions.

130

PROCEDURE LEARNING

According to the Card, Moran, and Newell
(1980) model of the manuscript editing task, an
expert's knowledge siructure consists of goals,
operators, methods, and selection rules, That is,
experts have pre-stored information about the
sequence of operations and alternative methods
available for performing an editing task. It is
this knowledge that the novice must acquire from
the manual and from interactions with the sys-
tem.

It is clear from the data that novices come
to the procedure learning task with a rudimen-
tary procedure schema containing slots for goals,
steps, and methods. However, the process of
filling these slots is not easy to do if the role of
each piece of information is not clearly marked in
the text. For example, one section of the
tutorial described how to correct typographical
errors with a line-oriented editor. To carry out
this task the user must understand three things:
1) how the editor functions (the need to position
it on the relevant line); 2) the sequence of steps
necessary for carrying out the task; and 3) the
various methods that can be used to carry out
the task. The structure of the task is as follows:

Goal: Correct typographical error in text.

Step 1: Position editor on relevant
line.

Method 1: Search for pattern on
relevant line.

Method 2: Type number of
relevant line.

Step 2: Issue substitute command.

After performing only the first step in the pro-
cedure, two subjects assumed that the task had
been completed, i.e., that the correction had been
made. This indicates that the manual did not
make clear the two-step nature of the task. One
subject read about the two methods for carrying
out a step and assumed that each method was a
necessary part of the sequence. This indicates
that the various methods were not clearly
marked in the manual as alternatives. After
reading the two pages describing the procedure,
one subject, after much thought, managed to
induce the two-step structure of the task.
Together these examples show how much
inferencing the subjects were forced to do, and

how diflicult it was for them.

This analysis describes novices' attempts to
induce the structure of a particular editing task.
Yet we know from the research previously
described that the expert's knowledge is a fine'y
articulated goal structure in which the steps and
methods are clearly differentiated. The writer
could facilitate the construction of this structure
by simply making it explicit. If the goals, steps,
and methods of the procedure were explicitly
marked in the text, them the novice would be
able to assimilate each piece of information, as it
i8 read, to the appropriate slot in the schema.
Like the suggestion put forth in the task-
mapping section, this suggestion also reduces the
amount of inferencing the reader would have to
do.

Research on the schemata novices bring to
the text, as well as the schemata ultimately con-
structed by the expert can lend more precision to
the task of packaging information in a technical
text. In particular, this kind of analysis gives
rise to psychologically-based heuristics for docu-
ment development which address the important
conceptual aspects of comprehending computer
documentation.

REFERENCES

Card, S. K., Moran, T. P., & Newell, A. Com-
puter text-editing: An information-
processing analysis of a routine cognitive
skill. Cognitive Psychology, 1980 12, 32-74.

Clement, D. Comprehending Computer Docu-
mentation, unpublished manuscript,
(March, 1983).

Dooling, D. J., & Lachman, R. Effects of
comprehension on retention of prose. Jour-
nal of Erperimental Psychology, 1971, 88,
216-222.

Edit: A Tutorial. Documentation produced by
the U.C. Berkeley Computer Center.

Moran, T. P. Getting into a System: External-
Internal Task Mapping Analysis. Proceed-
ings of the Conference on Human-Computer
Interaction. Boston, MA., 1983.

Nakatani L. H., & Rohrlich, J. A. Soft Machines:
A Philosophy of User-Computer Interface
Design. Proceedings of the Conference on
Human-Computer Interaction. Boston,
MA., 1983.

131

Sheil, B. A. Coping with complexity, (Tech.
Rep. CIS-15). Xerox Palo Alto Research
Center, 1981.

	cogsci_1984_128-131

