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2
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3
 

University of California, Davis, CA, 95616 

This paper describes the GPU accelerated MBFLO2 multi-block turbulent flow solver 

completely in double precision using CUDA and the latest generation of GPU processors.  

On a cluster of 8 Tesla C2050 “Fermi” GPUs and Intel Xeon X5550 “Nehalem” quad-core 

CPUs, we achieve 9x speedup over the parallel CPU solver or 70x speedup over the serial 

solver.  High performance is obtained by optimizing the data layout on the GPU, optimizing 

data transfers and using asynchronous memory copies to overlap GPU execution with 

communications.  We test the solver on a turbulent flat plate and an unsteady turbulent 

cylinder with 3.2 million grid points.  We confirm the GPU results are in agreement with 

turbulent flow theory.  We discuss the GPU optimization techniques used to reach this level 

of performance. 

 

Nomenclature 

E = total energy 

g = acceleration due to gravity 

H = total enthalpy 

h = static enthalpy 

I = rothalpy 

k = turbulent kinetic energy
 

p = pressure 

Pr = Prandtl number 

Prt =  turbulent Prandtl number 

R = radius from specified axis of rotation 

Sij =  mean strain-rate tensor 

u =  axial velocity component 

û  = internal energy 

v = tangential velocity component 

V = velocity magnitude 

z = elevation 

= coefficient of viscosity 

= turbulent coefficient of viscosity 

 = turbulent dissipation rate divided by turbulent kinetic energy 

 = rotational velocity about specified axis of rotation (rads/s) 

ij = shear stress tensor 

 =  density 
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I. Introduction 

IGH-PERFORMANCE automated design optimization procedures require increasing accuracy of aerodynamic 

performance predictions via state-of-the-art turbulence modeling techniques and quick turn-around times in 

order to be viable for next generation designs and differentiate between configurations
1
.  The computing resource 

required for such tools are prohibitively expensive.  We investigate the use of Graphics Processing Units (GPUs) to 

accelerate turbulent flow simulations and achieve order-of-magnitude speedups which have the potential to change 

the way CFD is used in the design process. 

 In the current work we build on our previous work
2
 in which we demonstrated GPU cluster acceleration of the 

viscous flow capability in the MBFLO2 solver using single precision computations on both G92 and GT200 class 

GPUs, with speedups of up to 8x over the parallel CPU solver on Core2Quad architecture CPUs .  In the current 

effort we extend this work to include turbulent flows using double precision on GF100 “Fermi” class GPUs. After 

applying several optimization techniques to maximize the performance of the code, we reach 9x speedup over the 

latest generation “Nehalem” based CPUs. 

 It’s important to note that since our previous work
2
 uses older model GPUs and CPUs and single precision 

computations, our current results cannot be directly compared to those previously obtained.  The fact that we can 

reach similar levels of performance is due to additional GPU optimizations and our use of the latest “Fermi” Tesla 

C2050 GPUs, which are designed for double precision performance 

A. Previous Work 

The use of programmable graphics processors to accelerate non-graphics tasks
3
 has grown tremendously over the 

last five years. Many of these researchers implement fluid simulations, however, most are limited to the 2D 

incompressible Navier-Stokes equations using pressure projection methods
5-9

, which are interesting from a 

performance and simulation point of view, but use simplified numerics which lack the proper accuracy required for 

engineering design applications. Furthermore, negelecting the effects of compressibility leads to much simpler 

formulations which are not applicable to transonic and supersonic flows of interest. Our work, in contrast, utilizes 

complex state-of-the-art compressible flow numerical techniques designed for efficient and accurate aerodynamic 

performance prediction.  

Later works by Hagen et al.
10

  began to incorporate more advanced numerical methods such as high-resolution 

finite volume with Runga-Kutta time integrations, and study compressible flows with both 2D and 3D Euler 

equations accelerated by the G70 GPU. They use Cartesian meshes which unfortunately limits the application to 

simple geometries. Increases in geometric complexity came about in the work of Brandvik and Pullan
11

 who solve 

both 2D and 3D Euler equations on single block structured grids. Using a single G80 or R500 series GPU, they 

accelerate their computation by up to 29x over a 2.4 GHz Core2Duo CPU. 

The most complex work thus far is that of Elsen et al.
12

 who accelerate the 3D Euler portions of a multi-block 

structured grid solver NSSUS with a G80 GPU. Similar to our method, they employ a generalized multi-block grid 

which can conform to arbitrary complex geometry. They also use multi-grid acceleration, and achieve an impressive 

15x-20x speedup on complex engineering meshes with up to 1.5 million grid points using single precision. 

In contranst, our work supports distributed cluster level computing on multiple GPUs with more complex 

viscous and turbulent flow capabilities. We must note that although our latest solver is for 2D and axi-symmetric 

configurations, widely used in the design process, the same methods could be easily applied to the 3D case as well.  

II. Governing Equations 

The unsteady, Favre-averaged governing flow-field equations for an ideal, compressible gas in the right-handed, 

Cartesian coordinate system using relative-frame primary variables can be written as: 

 

 

Conservation of Mass:                    (1) 

 

Conservation of Momentum:                   (2) 

 

Conservation of Energy:                   (3) 

 

H 
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Total Energy:                          (4) 

 

Rothalpy:                          (5) 

 

Enthalpy:                            (6) 

 

Shear Stress:                          (7) 

 

Mean Strain Rate Tensor:                  (8) 

 

 

The body-force vector, Smi, in the momentum equation, Eq. (2), represents any body forces per unit volume such 

as those due to rotation (coriolis and centripetal).  Additional governing equations as developed by Wilcox
13-15

 for 

the transport of turbulent kinetic energy and turbulence dissipation rate in regions of the flow where the 

computational grid or global time-step size cannot resolve the turbulent eddies can be written as: 

 

 

Turbulent Kinetic Energy Transport:  

                               (9) 

                             

 

Turbulent Frequency Transport:   

                               (10) 

                        

 

Sub-Grid Coefficient of Turbulent Viscosity:                  (11) 

 

III. GPU Computing 

The latest generation of GPU processors are very 

attractive for scientific and high performance computing 

applications: they offer high floating point performance 

and memory bandwidth.  With the growing maturity of 

GPU programming languages such as CUDA
4
 and 

OpenCL, as well as the availability of programming tools 

such as debuggers, profilers, and standard libraries, 

GPUs are now first class computing platforms. 

B. Fermi GF100 GPUs 

In this work we use the Tesla C2050 GPUs from 

NVIDIA.  The recently released Telsa 20-series GPUs 

have added many features specifically for scientific 

computing, such as increased double precision 

performance, addition of L1 and L2 caches, and ECC 

memory to name a few.  Table 1 shows a comparison of 

the performance and features of the first three 

generations of Tesla GPUs for reference.   

Table 1. Comparison of Tesla GPU Computing 

Cards GPU Performance and feature comparison. 

 

Model 8xx 10xx 20xx 

Year 2007 2008 2010 

Cores (fp units) 128 240 448 

Memory Size (GB) 1.5 4 3.0/6.0 

Bandwidth (GB/s) 77 102 144 

Single (GFLOPS) 345 622 1030 

Double (GFLOPS) - 78 515 

Shared Memory (KB) 16 16 48/16  

L1 Cache (KB) - - 48/16  

L2 Cache (KB) - - 768 

ECC - - Yes 
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C. CUDA-Fortran 

The MBFLO solver
16

 is written in Fortran, however in the timeframe of our previous work
2
, in which we 

accelerated the laminar flow routines, CUDA was only available with a C interface, so we had to mix C with Fortran 

in order to add GPU acceleration.  This made for a less than ideal software development situation.  Since then, PGI 

has released CUDA support in their Fortran compiler, allowing the GPU to be programmed directly in Fortran 

syntax.  In addition to making it easier to integrate GPU acceleration into existing Fortran codes, the Fortran 

interface is in some ways actually easier to use.  Since arrays are strongly typed with qualifiers that tell the compiler 

which arrays are in GPU memory, the allocations and deallocations are done in the same way as any other variables, 

and data transfers between GPU and CPU memory can be done with simple assignment statements (gpu_array = 

cpu_array) as opposed to cudamemcpy() function calls.  The latest version of the PGI compiler (10.5) has also added 

support for the GF100 “Fermi” GPUs and also adds asynchronous data transfer functions which can be used to 

overlap data transfer with CPU and GPU computations.  Thus, we chose to continue the development of MBFLO 

using the new CUDA-Fortran interface.   

IV. MBFLO Solver 

A. Solution Processes Overview 

The conservation equations given in Eqs. (1)-(3), (9), and (10) are solved using a Lax-Wendroff control-volume, 

time-marching scheme as developed by Ni
17

, Dannenhoffer
18

, and Davis
19,20

.  Numerical solution of unsteady flows 

is performed with a dual time-step procedure
21

, allowing for use of multiple-grid and local time-stepping 

convergence acceleration.  These techniques are second-order accurate in time and space.   The flow domain is 

decomposed into a multi-block grid with MPI parallelization between blocks.  

 

For turbulent flow cases, the evolution of the flow field involves the following procedures in the main time-step 

loop: 

 Local timestep 

 Laminar viscosity coefficient 

 Laminar stress 

 Turbulent viscosity coefficient 

o Turbulent stress 

o Turbulent flux integration 

o Turbulent block boundary communication (MPI) 

o Turbulent dual time source term 

o Turbulent numerical dissipation 

 Flux integration 

 Block boundary communication (MPI) 

 Dual time source term 

 Numerical dissipation 

 Update flow variables 

 

 All of these routines have been parallelized on the GPU except for the routines that pass information between the 

blocks of the multi-block domain.  These block boundary communication routines make use of MPI to pass and 

receive information at the block boundaries to accumulate the total time-rate changes at the shared nodes. 

B. GPU Approach 

 In the GPU accelerated version, we map each process to a single GPU.  The pre-processing and initialization is 

still handled by the CPU.  However, in the beginning of the time-step procedure, the grid and flow data is transferred 

to the GPU memory.  Then each of the routines that was previously performed on the CPU by looping over each of 

the grid points or grid cells, is replaced by CUDA routines that processes all grid points or cells in parallel.   During 

the block boundary communication steps, the boundary data is transferred to the CPU, which then calls MPI to 

exchange data with other processes.  
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C. Minimizing Data transfers 

The GPU and CPU have separate 

memory spaces requiring data to be copied 

into the GPU or CPU memory before the 

processing can take place.  Data transfers of 

this type occur over the PCI-express bus at a 

relatively slow 3-6 GB/s (compared with 

GPU memory bandwidth of 144 GB/s).  We 

attempt to minimize the data transfers by 

moving as many routines as possible onto 

the GPU.  Since the GPU has much higher 

bandwidth we gather all the boundary data 

into a single buffer to reduce the number 

and size of the memory copy to the CPU.  . 

D. Data Layout 

The original MBFLO solver stores the 

primary and secondary flow variables as 

well as turbulence variables for each grid 

location contiguously in memory.  This 

facilitates the temporal locality and caching 

of the data when using a serial CPU 

processor.  However, the GPU processes 

data in parallel with several threads 

accessing the same variable at a different grid location simultaneously.  For best GPU memory performance, each 

warp or group of 32 threads should access data that is contiguous in memory.  Thus, it is best to arrange the data 

such that each of the flow variables is stored in a separate array, with consecutive elements corresponding to the 

same flow variable at consecutive grid locations.    In addition to contiguous data access, if the warp of threads 

 
 

Figure 1 – GPU grid of thread-blocks to data mapping. The 

array shown in blue is padded to a multiple of 32 elements shown 

in orange.  The GPU processes data with a 2D hierarchy of thread 

blocks with each thread mapping to a grid point.  This fine grained 

decomposition is done automatically when calling a GPU function 

called a Kernel.  Two examples of data access patterns by the 

thread blocks are shown in green and yellow.  The green shows the 

data needed for a thread block to compute the flux integrations, 

while the yellow shows data needed for a thread block to compute 

the smoothing or numerical dissipation.   

 

 
Figure 2 – Overlapping data transfers with GPU computations.  This figure shows half of an 8 GPU cylinder 

domain divided into blue and yellow sub-domains with arrows denoting data transfers which involve GPU-CPU 

transfers as well as MPI transfers over the network.  The yellow domains can be computed simultaneously with 

communications denoted with yellow arrows, and computations in the blue regions can be overlapped with 

communications denoted with blue arrows.  This is possible using CUDA streams with asynchronous memory 

transfer functions.  Factoring the computations in this way resulted in up to 40% increased performance.  
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accesses a segment of memory with alignment to a 128KB boundary, the data accesses are handled more efficiently 

and termed “coalesced”.  Thus, we pad the leading dimension of each array to a multiple of 32 elements, as shown 

in Fig. 1. 

E. Shared Memory 

Each of the processors in the GPU has an L1 cache that is partitioned by default into a 16KB hardware managed 

cache, and a 48KB programmer managed cache called shared memory.  These caches are very close to the 

processing elements and have several orders of magnitude higher throughput and lower latency than the GPU 

memory.  For example on the C2050, the theoretical peak memory bandwidth is 144GB/s with a latency of 400-800 

clock cycles.  However, the aggregate shared memory bandwidth is over 2,000 GB/s with latency of 13-16 clock 

cycles.  Thus, in cases where threads access neighbor data as in the flux integration, stress computation, or 

numerical dissipation routines, we first load data into shared memory, and then processes and write results back to 

global memory.  This reduces redundant access to global memory and can be more effective than relying on the L1 

cache since we can control which data are kept in the cache. 

F. Asynchronous Data Transfers 

Since the block boundary communications are handled by the CPU, the data for boundaries and ghost cells must 

be transferred between the GPU and CPU during each time step, before and after the boundary communications 

routines.  In our initial implementation, the GPU was idle during this time.  However, by using asynchronous 

transfers with CUDA streams, we factor the computation of each block into multiple parts such that we can overlap 

the communications of one part with the computation of the other.  This method is shown in Fig. 2 for a 1D domain 

decomposition of a cylinder flow case.  This allows for greater performance and increased scalability as we can hide 

the communication costs.  It must be noted that MBFLO does support more complex unstructured block 

connectivity which would require a more complex solution, such as computing only boundary points in one section, 

and interior points in another section.   

 

V. Results 

A. Cluster Setup 

We test the solver on a cluster with 4 nodes, 

each equipped with 2 Tesla C2050 448-core 

GPUs with 3GB video memory, and 2 Intel Xeon 

X5550 quad-core CPUs.  Thus, totally there are 8 

GPUs and 8 CPUs.  We use CentOS 5.3 operating 

system, CUDA 3.0 toolkit and R195 driver, and 

the PGI 10.5 Fortran Compiler. 

B. Turbulent Flat Plate 

The first test case is the classic flow over a flat 

plate at an upstream Reynolds number 1,000,000, 

a Mach number of 0.10, and a freestream 

turbulence intensity of 2%.  The flow is computed 

on a baseline 200x400 stretched grid and run to 

steady state for 200,000 time steps.  We use the 

analytical turbulent boundary layer profile to 

verify the computed results against theory.  Figure 

3 shows the agreement between the computational 

results and theoretical laminar-law and turbulent 

log-law velocity profiles. 

 
 

Figure 3 – MBFLO Turbulent flat plate velocity profile 

comparison with theory. A validation of the MBFLO solver 

using a flat plate with a 200x400 grid point mesh simulating 

RANS turbulent flow over a flat plate at Reynolds number 1 

Million and Mach number 0.1.  MBFLO results are in 

agreement with the theoretical predictions of the laminar and 

turbulent profiles. 
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C. Turbulent Unsteady Cylinder 

The second test case is the fully turbulent 

flow over a cylinder at a Reynolds number 

140,000, a Mach number of 0.10, and a 

freestream turbulence intensity of 0.6%.  We 

use an O-Grid with 3.2 million grid points 

and up to 8-blocks.  The instantaneous Mach 

contours are shown in Fig. 4. 

We benchmark the performance using 1 

to 8 MPI processes on the original CPU 

code, the initial GPU code, and the 

overlapping-communications  GPU code that 

incorporates asynchronous data transfers.  

The test cases are run for a fixed number of 

iterations and then timing and solutions are 

compared against the serial code.  Figures 5 

and 6 shows the speedup of the parallel CPU 

and GPU results over the serial case. 

On 8 GPUs the performance is increased 

by up to 70x over the serial CPU solver, with 

the naïve non-overlapping GPU code 

reaching 45x speedup and the parallel CPU 

solver reaching 7.78x speedup.  Thus, if we 

compare the performance of parallel CPUs to 

GPUs the overall speedup is 9x.  

 

 

 
 

Figure 5 – Solver routine acceleration on Tesla C2050.  The solver is profiled on the turbulent cylinder flow case 

with a 2049x1537 grid. The CPU used is an Intel Xeon X5550 at 2.66 GHz and the GPU is the Tesla C2050 @ 1.15 

GHz with ECC off.  After accelerating the main computational routines the blkbnd routines, which are the only 

routines involving inter-block communications, become the bottleneck, accounting for approximately 40% of the 

execution time.  After adding CUDA streams and asynchronous data transfers the blkbnd routine is overlapped with 

other routines and the speedup is improved from 6.3x to 10.5x. 

0 200 400 600 800 1000 1200 1400

GPU+ASYNC

GPU

CPU

Time (ms)

MBFLO solver routine acceleration on Tesla C2050

flux+fluxtrb

smth+smthtrb

stress+stresstrb

dtsrc+dtsrctrb

deltat

blkbnd+blkbndtrb

lamvis

updt+updttrb

bcond+bcondtrb

6.3x

10.5x

 
 

Figure 4 – MBFLO Turbulent cylinder Mach Contours. 

Snapshot of the mach contours of the fully turbulent cylinder flow 

at Reynolds number 140,000 and Mach number 0.1 
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VI. Discussion 

In our experience, the Telsa C2050 GPUs were much more flexible than the GPUs we have used in our previous 

work.   We noticed the performance “out-of-the-box” was much better than in previous GPUs, likely due to the 

sharing of data through the L2 cache.  However, for best results a few simple optimizations lead to even higher 

performance. 

In order to reach optimal performance, we move as much work as possible onto the GPU to avoid costly data 

transfers.  Even a few routines left on the CPU can cause significant slow-downs due to Amdahl’s law effects.  We 

also arrange the data layout on the GPU for optimal parallel access by warps of threads (group of 32 threads 

executed in SIMD).  We place each variable in a separate array and pad array rows to a multiple of 32 elements.  We 

also choose a thread-block size with a multiple of 32 in the first dimension (for example 32x4 blocks) so that warps 

of threads will access contiguous elements that lie in 128 KB segments of global memory, and have optimal access 

to shared memory which is divided into 32 banks.  We make extensive use of the fast on-chip shared memory cache 

for stencil type computations where threads use neighbor points.  Finally, we use asynchronous data transfers with 

CUDA streams to hide communication costs and avoid idle time. 

We must also point out that the GPU requires a substantial amount of parallelism to keep all of the GPU 

processors occupied at all times.  The GPU is designed to run tens-of-thousands of threads concurrently, thus for 

smaller problem sizes (less than 10,000 grid points), the cost of sending the work to the GPU and the low amount of 

parallelism can leave the GPU processors underutilized.  However, for current and future 2D and 3D CFD 

applications grid densities are continually increasing and provide ample amounts of parallelism for GPU processors.   

One aspect of the new Tesla C2050 processor that we did not have a chance to experiment with yet is the ability 

to run concurrent kernels, which brings both data-level parallelism and task-level parallelism to the GPU.  This 

could allow for better performance on smaller problem sizes or applications that lack enough data parallelism to fill 

the entire GPU with a single function, but have several independent functions that can be run in parallel. 

 
 

Figure 6 – MBFLO parallel performance comparison. Performance of the solver on a 3.2M point grid for 1 to 8 

nodes using CPU, GPU, and asynchronous GPU versions. Adding asynchronous data transfers allows overlapping 

both communications and CPU boundary treatments with GPU computations improving performance and 

scalability, with 8 nodes achieving 70x speedup, compared to 45x for the non-overlapped case, and 7.76x for the 

CPU only case.  

 

0

10

20

30

40

50

60

70

80

90

1 2 4 8

S
p

ee
d

u
p

MPI Processes

Unsteady Turbulent Cylinder Performance

CPU

GPU

GPU-overlap

ideal



 

American Institute of Aeronautics and Astronautics 
 

 

9 

VII. Conclusion 

We have demonstrated the use of the GPU cluster for compressible turbulent flow computations in double 

precision and show order-of-magnitude speedups in performance over traditional CPU processors.  With the 

continued trend in performance and programmability and addition of more HPC centric features, the GPU has the 

power to transform the design process. 

In the future, we plan to extend the GPU solver to fully 3D configurations with state-of-the-art turbulence 

modeling techniques and applications to automated design optimization. 
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