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ABSTRACT OF THE DISSERTATION

Automated Extraction of Glacial Features using Deep Learning

By

Daniel Cheng

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Associate Professor Wayne Hayes, Chair

Sea level contributions from the Greenland Ice Sheet are influenced by the rapid changes in

glacial terminus positions. Also known as calving front positions this information is captured

in satellite imagery, but determining the position of the actual front usually involves labori-

ous human labor, causing a major bottleneck in processing the thousands of existing images.

From Landsat satellite imagery, we face the task of generating 22,678 calving fronts across

66 Greenlandic glaciers. Automated methods face challenges that include the handling of

clouds, illumination differences, sea ice mélange, and Landsat-7 Scanline Corrector Errors.

To address these needs, we develop the Calving Front Machine (CALFIN), an automated

method for extracting calving fronts from satellite images of marine-terminating glaciers,

using neural networks. CALFIN builds upon existing neural network architectures, and spe-

cializes in the segmentation of line-like features, while simultaneously handling large amounts

of noise in the source data. Novel post-processing algorithms are used to perform the feature

extraction and vectorization. The results are often indistinguishable from manually-curated

fronts, deviating by on average 2.25 ± 0.03 pixels (86.76 ± 1.43 meters) from the measured

front. This improves on the state of the art in terms of the spatio-temporal coverage and

accuracy of its outputs, and is validated through a comprehensive intercomparison with ex-

isting studies. The current implementation offers a new opportunity to explore sub-seasonal

and regional trends on the extent of Greenland’s margins, and supplies new constraints for
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simulations of the evolution of the mass balance of the Greenland Ice Sheet and its contri-

butions to future sea level rise.
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Chapter 1

Introduction

Derived from: Cheng, D., Hayes, W., Larour, E., Mohajerani, Y., Wood, M.,

Velicogna, I., & Rignot, E. (2021). Calving Front Machine (CALFIN): Glacial

termini dataset and automated deep learning extraction method for Greenland,

1972–2019. The Cryosphere, 15(3), 1663–1675. https://doi.org/10.5194/tc-15-

1663-2021

1.1 Background

Sea level contributions from the ice sheets are influenced by the ice-ocean interactions along

their rapidly changing margins. The understanding of these processes, the changing mar-

gins, and their effects on ice sheets as a whole is therefore important [Nick et al., 2013].

In particular, contributions from the Greenland’s glaciers are needed to assess the overall

impact of the Greenland Ice Sheet (GrIS) on global mean sea level rise (GMSLR) over the

next century [Andersen et al., 2015; Fürst et al., 2015; van den Broeke et al., 2016]. Al-

ready in the past 25 years, the sea level has risen approximately 3mm/yr [Group, 2018].
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Figure 1.1: Antarctica Ice Sheet, Larsen B Ice Shelf Collapse. Larsen B experi-
enced significant retreat even before its collapse in 2002. Studying its evolution in the years
preceding and proceeding its collapse will be important for understanding the contributing
processes. Figure derived from [Scambos et al., 2004].

Concerningly, GMSLR contributions from the melting of the GrIS has increased from less

than 5% of the total change during 1993 to more than 25% during 2014 [Chen et al., 2017].

Critically, the physical processes responsible for the evolution of the ice sheets are not yet

fully understood. In Antarctica, ice shelves such as Larsen B and C have been identified as

to be susceptible to among the most vulnerable ice shelves accounting for future surface melt

and runoff scenarios [Gilbert and Kittel, 2021]. And while recent studies have established

that the collapse of Larsen B (see Figure 1.1) was the result of surface processes [Rebesco

et al., 2014], the topic of which processes - and to what degree each contributes - is still not

definitively known. A better understanding of the processes underlying the vulnerability of

ice sheets and shelves can therefore benefit modeling efforts by informing the areas where

they are being actively developed [Larour et al., 2021]. These processes include the interac-

tions between rifts/fractures, ice mélange, grounding lines, melt pond induced hydrofracture,

ocean/atmospheric temperatures, and in particular, calving fronts.
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While there are publicly accessible time series records of rift/fracture [Marsh et al., 2021],

melt pond [Stokes et al., 2019], and calving front Cheng et al. [2021]; Baumhoer et al. [2019]

positions, there are no consolidated approaches that examine the inter-annual and seasonal

variations in such time series records. Consequently, these variations and their effects on the

stability of ice sheets are not well constrained.

It follows that if accurate representations of the physical features in ice sheets such as the GrIS

can be obtained, climate modeling and analysis can be carried out on the parameterizations

of such features with other ice sheet inputs, and their dominant contributions to glacial and

ice shelf evolution - and therefore the GMSLR - can be constrained.

1.2 Relevance to existing work

Recent studies of physical ice shelf controls propose competing explanations for the dominant

processes affecting ice shelf vulnerability [Lai et al., 2020; Larour et al., 2021]. In melt-pond

induced hydrofracture, meltwater from radiative and atmospheric conditions collects in ponds

distributed across surface of the ice shelf, and seeps into fractures or crevasses within the shelf.

This results in stress applied by hydrostatic pressure to fracture tips, and can be exacerbated

by repeated cycles of melting/refreezing, resulting in fracture propagation throughout the

ice shelf. This process is proposed to be dominant across the AIS in [Lai et al., 2020].

In another process, thick ice mélange within rifts can transmit compressive/shear stresses,

slowing rift propagation significantly. However, ocean and atmospheric temperatures can

thin ice mélange within rifts and trigger a loss in mechanical integrity within the ice mélange,

resulting in rift propagation and calving. These examples highlight the general need for more

extensive analyses of ice shelf processes as they relate to ice sheet vulnerability [Khazendar

et al., 2007], in order to better constrain their contributions to future changes in the GMSLR.
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In the GrIS, a significant form of ice mass loss and GMSLR contributions is due to changes

in marine terminating glaciers, and calving front evolution in particular. While satellite

imagery allows for the extensive capturing of this evolving constraint, most calving front

delineation is still done with time-consuming manual labor [Carr et al., 2017; Bunce et al.,

2018; Catania et al., 2018]. This results in the under-utilization of available satellite imagery,

and causes gaps in seasonal records that introduce uncertainty when modeling past and

projected climate change [Catania et al., 2020]. Significant efforts have been made to improve

this situation, which include the ESA-CCI dataset of 26 Greenlandic glaciers from 1990-2016,

the PROMICE dataset of 47 glaciers from 1990-2018, and the MEaSUREs dataset of 200+

glaciers from 2000-2017 [ENVEO, 2017; Andersen et al., 2019; Joughin et al., 2015]. Yet the

increasing availability of new datasets through missions like Landsat 8 and the release of old

datasets through improved reprocessing call for new automated ways of detecting the glacial

features such as calving fronts.

Climate modeling presents a strong need for automated glacial feature extraction methods,

which requires these methods to be robust against cloud cover, ice mélange, shadows, and

issues like Landsat 7 Scanline Corrector Errors. Traditional automated techniques such as

the edge detection utilized by Seale et al. [2011] and Paravolidakis et al. [2016] have significant

challenges with respect to these issues. Modern machine learning techniques and deep neural

networks provide a robust, scalable, and accurate solution to these processing challenges.

Existing work by Mohajerani et al. [2019] pioneers the usage of these techniques by applying

the Ronneberger et al. [2015] UNet deep neural network for Jakobshavn, Helheim, Sverdrup,

and Kangerlussuaq Glaciers. It achieves a mean distance error of 96.3 m, but is restricted by

the preprocessing requirement of aligning the flow direction to be vertical, and inability to

handle branching/non-linear calving fronts. Zhang et al. [2019] evaluates a modified UNet

applied to TerraSAR-X data over Jakobshavn Glacier, and achieves a mean distance error of

104 m, but is limited in scope. Baumhoer et al. [2019] expands the application of the UNet

to Sentinel 1 imagery of Antarctica, extracting full coastline delineations and achieving a
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mean distance error of 108 m. Ultimately, these case studies provide the groundwork for the

automatic, accurate, large scale, long time-series, high temporal resolution, and potentially

multi-sensor extraction of glacial terminus positions.

Figure 1.2: Labeling Issues and Conditions. An example of the various non-trivial issues
and conditions associated with the available source data, which an automatic glacial feature
extraction method must handle in order to accurately and effectively produce outputs.

1.3 Data Source and Scope

In order to study these changes, and produce the relevant calving front data products, a

variety of existing satellite source data (as seen in Table 1.1) are evaluated and prepared for

further processing.
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Source Start End Spatial Temporal Sensor
Name Date Date Res. (m) Res. (days) Type

ASTER 01-2000 11-2020 15-19 16 Multispectral
Landsat 1 07-1972 01-1978 80 18 Multispectral
Landsat 2 01-1975 08-1983 80 18 Multispectral
Landsat 3 03-1978 09-1983 80 18 Multispectral
Landsat 4 07-1982 12-1993 30 16 Multispectral
Landsat 5 03-1984 01-2013 30 16 Multispectral
Landsat 7 04-1999 Ongoing 30 16 Multispectral
Landsat 8 02-2013 Ongoing 30 16 Multispectral
Sentinel 1 04-2014 Ongoing 20 6-12 SAR
Sentinel 2 06-2015 Ongoing 10 12 Multispectral
SPOT-1 02-1986 12-1990 20 26 Multispectral
ALOS-PALSAR 01-2006 04-2011 10-20 14 SAR
ENVISAT 03-2002 04-2012 30 35 SAR
ERS-1 07-1991 03-2000 30 3, 35, and 168 SAR
ERS-2 04-1995 09-2011 30 3, 35, and 168 SAR
JERS-1/ Fuyo-1 02-1992 10-1998 18 44 SAR
TerraSAR-X 01-2008 12-2020 40 11 SAR
RADARSAT 1 11-1995 03-2013 100 11 SAR

Table 1.1: Publicly Available Satellite Imagery Sources. Sensor type denotes whether
or not Multispectral (visual/optical) or SAR (Synthetic Aperture Radar) instruments were
used to generate imagery, where SAR imagery has the benefit of penetrating cloud cover and
ignores shadows/illumination differences, but is only available at later start dates. Derived
from Goliber et al. [2021].
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The primary source data we selected is the Landsat series of optical images, which are

used for their long time-series availability and reasonable spatial distribution/resolution.

The area of interest for the dataset production is restricted to Greenland, in particular the

calving fronts for 66 Greenlandic basins shown in Fig. 1.3, spanning the 1972 to 2019 time

period shown in Fig. 1.4. The basins are selected for their high discharge volumes, wide

spatial distribution, and diverse morphological features. The product used is the 60/30 meter

resolution Near Infrared band. The 15 meter resolution panchromatic band was not used,

due to computational and logistical limitations. A unique characteristic of this data source

is the presence of Landsat 7 Scanline Corrector Errors from 2003-2013, which manifests as

black stripes that interfere with automated calving front extraction methods.

For the training and validation of the methodology (covered in the following Chapter 2), we

added TerraSAR-X and Sentinel 1A/B SAR images to enforce the applicability of the method

across different sensors and domains. The area of interest for the training and validation of

the methodology thus includes Antarctic SAR data in addition to the Greenlandic Landsat

optical data (see Sect. 2.2 and Fig. S4). The TerraSAR-X product used is the StripMap

3 meter resolution HH polarization band. The Sentinel 1A/B product used is the Extra

Wide Swath, Ground Range Multi-Look Detected, 40 meter resolution HH polarization

band. The other data products and polarization bands are not used since the backscatter

intensity provides sufficient information for the data processing methodology to succeed.

A characteristic of SAR data is the presence of speckle noise, which is addressed by the

methodology described in the following section.
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Figure 1.3: Spatial Coverage Map: Spatial distribution of 66 selected Greenlandic glaciers.
The velocity map is taken from Nagler et al. [2015].
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Figure 1.4: Temporal Coverage Map: Number of fronts per year from 1972-2019 for 10
high discharge volume basins. For the full temporal coverage map, see Appendix Fig. A1.
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1.4 Outline of the Thesis

It is this groundwork on which the following chapters describe the CALFIN approach to

address this problem. Each of the confounding non-trivial issues mentioned previously (and

shown in Figure 1.2) is dealt with in order to effectively process the full breadth of avail-

able source data from satellite imagery. The processed outputs take the form Shapefiles

that encode the spatial and temporal evolution of Greenland’s glacial calving fronts. Each

of these Shapefile outputs can encode the geographic coordinates that describe the glacial

calving front positions, along with metadata statistics such as the time, quality, the lati-

tudinal/longitudinal centers, source ID, and associated glacial IDs/names. These Shapefile

outputs can then be used by glacial monitoring studies, cryospheric modeling programs such

as the Ice-sheet and Sea Level Model [Larour et al., 2012], and contribute useful information

in continuing efforts to address climate change.

Overall, the science goal of this work is to understand the interactions between the Greenland

Ice Sheet (GrIS) and the ocean around it, and how it might affect the evolution of the ice

and how much it will contribute to the Global Mean Sea Level Rise. In pursuit of this

goal, the specific objective is to assess the feasibility of achieving robust automatic glacial

calving front extraction for a selection of glaciers within the GrIS glaciers, and to provide

the resulting dataset for use by the wider community. Additionally, this work contributes

improvements to the neural network design for glacial feature extraction and post-processing

methods.

The following Chapter 2 examines the CALFIN algorithm and method for processing the

data. Chapter 3 validates the algorithm through error analysis. Chapter 4 shows the results

- the calving front dataset and algorithm. Chapter 5 concludes with potential future work

and research directions.
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Chapter 2

Methododolgy

Our automated data processing methodology uses innovative techniques and state-of-the-art

neural networks to process raw Landsat and Sentinel 1A/B data into useful calving front

Shapefiles. The following section explores this methodology, as outlined by the flowchart

below (Fig. 2.1).

2.1 Preprocessing

The first stage involves preprocessing the input data for use with the neural network, as

illustrated in Fig. 2.2. The proceeding steps cover the details of handling Landsat data, but

can be applied to Sentinel 1 data for validation purposes. To begin, raster images are selected

from areas centered around one of 9 primary glacial basins. These basins include Kong Oscar,

Hayes, Rink Isbrae, Upernavik, Jakobshavn, Kangiata Nunaata, Helheim, Kangerlussuaq,

and Petermann. Next, all L1TP (precision and terrain corrected) rasters from Landsats 1-8

with low cloud coverage (<20%) are collected. A few L1GS/L1GT (non-corrected) products

are also selected, which are manually georeferenced, and used to fill in Landsat 1-2 time

11



Figure 2.1: Methodology Flowchart: The CALFIN workflow, which processes single
band raster imagery into calving front and ocean mask Shapefiles. Note that Sentinel 1A/B
imagery is only used for validation, as it is not corrected and thus not qualified for geoloca-
tion/extraction.

series gaps (1972-1985). This results in a total of 4956 Landsat rasters. Next, predefined

basin domain Shapefiles that enclose the terminus are used to clip the Landsat raster subsets.

Additional filtering removes subsets that still contain ≥30% NODATA pixels or ≥20% cloud

pixels detected in the Landsat QA band, as subsets that exceed these thresholds are not

likely to contain detectable fronts. At this stage, 20188 GeoTIFF subsets are accumulated.

Each subset is then resized to 256x256 px, and lastly enhanced using Pseudo-HDR Toning

(HDR) and Shadows/Highlights (S/H) through Adobe Photoshop. The raw, HDR, and S/H

enhanced subsets are then stacked into a single RGB image. At this point, the images are

ready for processing into calving front masks.
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Figure 2.2: Preprocessing Pipeline: (a) First, input the raw Landsat GeoTIFF rasters
with <20% clouds. (b) Next, subset using QGIS/GDAL and the domain Shapefile to clip
each raster. (c) Then, filter the clouded/NODATA subsets. (d) Now, resize the subsets to
256x256 px. (e) Finally, enhance contrast and stack with the raw subset.

2.2 Neural Network Processing

Images are processed using the Calving Front Machine Neural Network (CALFIN-NN), as

illustrated in Fig. 2.3. Neural networks like CALFIN-NN work by learning patterns in train-

ing data, and finding them in new data. CALFIN-NN is trained using manually delineated

calving front masks. Once trained, CALFIN-NN outputs a probability mask that shows

each pixel’s likelihood of lying on the coastline/calving front. CALFIN-NN also generates

a ice/ocean probability mask as a secondary output. Following this, the calving front is

extracted during post-processing, discussed in Sect. 2.3.

Neural networks are the foundation of several automated delineation methods, including

Mohajerani et al. [2019], Zhang et al. [2019], and Baumhoer et al. [2019]. This method

builds upon this work, and uses a modification of the DeepLabV3+ Xception neural network

from Chen et al. [2018], as shown in Fig. 2.3. The first half, the encoder, uses the Xception-65

network to extract image features [Chollet, 2017]. It does this by assembling basic features,

like edges and corners, into more abstract features, such as glacier/land textures. The second

half of the network, the decoder, takes the output of the encoder and up-samples the features

to predict the final probability mask outputs.

Several architectural modifications are made to the original DeepLabV3+ Xception model
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Figure 2.3: The CALFIN-NN Processing Architecture: Each orange ”Xception” block
consists of convolution kernels that detect features in the previous block. Blocks are reduced
in size periodically to pool increasingly complex and numerous feature maps. ”U” shaped
connections help refine the probability masks during up-sampling. Note that the 7 repeated
”Xception” blocks in the middle section are omitted for brevity.

to enhance its performance. To accurately recognize line-like features such as calving fronts,

additional Atrous Spatial Pyramidal Pooling (ASPP) blocks are added in between the en-

coder and decoder, with the dilation scales 0, 1, 2, 3, 4, and 5. The number of Middle Blocks

(MB in Fig. 2.3) is reduced from 16 to 8, as the extra discriminative power from those blocks

is not needed. The input size is reduced from 512 px to 224 px to facilitate better compu-

tational performance, allowing for additional training and thus higher accuracy. Since the

input resolution is reduced, the encoder is also modified to remove several down-sampling

”max-pool” layers. The last contribution adds a 2-channel output to the decoder, allow-

ing for both calving front masking and ice/ocean masking. Together, these changes reduce

number of model parameters from 40M to 29M, while also increasing the overall accuracy.

Several techniques are used during the training of CALFIN-NN to improve its performance.

First, a large set of training data is manually delineated (see Fig. S4), totalling 1541 Land-

sat and 232 Antarctic Sentinel 1A/B image/mask pairs, with the Antarctic data taken from

the same training scenes used by Baumhoer et al. [2019]. Data augmentation is used to
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increase the accuracy of the network by expanding the training set, which entails adding

random amounts of flips, Gaussian noise, sharpening filters, rotations of up to 12°, crops,

and scaling to the pre-processed training images. Through empirical testing, it is determined

that excessive image padding, rotation, warping, and cropping of calving fronts to close to

the image bounds result in sub-optimal performance. Another helpful technique is the use

of test-time augmentations, wherein each image subset is cut into 9 overlapping 224x224

image windows and processed individually, before being reassembled into the final 256x256

output mask. This allows for multiple independent classifications of the central pixels, en-

suring agreement and confidence in detected calving fronts. To increase accuracy, a custom

loss function optimizes the binary cross entropy and Intersection-over-Union (see Eq. 2.1,

Sect. 3.1) [Mannor et al., 2005]. This penalizes mismatches between calving front pixels in

the predicted (Icf ) and measured (̂Icf ) image masks. Mismatched ice/ocean pixels in the

predicted (Iio) and measured (̂Iio) image masks are less heavily weighted by an empirically

chosen factor of α = 1/25, as seen in the final loss function L in Eq. 2.2.

LBI(I, Î) = −I log(̂I)− (1− I) log(1− Î)− log

(
I ∩ Î

I ∪ Î

)
(2.1)

L(Icf , Îcf , Iio, Îio) = αLBI(Iio, Iio) + (1− α)LBI(Icf , Îcf ) (2.2)

After integrating these improvements, CALFIN-NN is trained for a total of 80 epochs, with

4000 batches per epoch, and 8 images per batch. Training is carried out on a K40 Nvidia

Tesla GPU with 12GB of VRAM, with each epoch taking about 126 minutes to complete,

and almost 1 week in total to obtain the optimal weights at epoch 65. Once trained, an

NVIDIA GTX1060 with 6GB VRAM is used for the off-line data processing of the 20188

GeoTIFF subsets. The CALFIN algorithm takes about 3.5 days to process all of the subsets

into calving fronts, excluding preprocessing, but including post-processing, as discussed in
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the following section.

2.3 Post-Processing

At this stage, the 2-channel pixel mask output of CALFIN-NN is post-processed to extract

the Shapefile data products (Fig. 2.4).

Figure 2.4: Postprocessing Pipeline: (a) First, get the processed image from CALFIN-
NN. (b) Then, isolate and re-process each front. (c) Next, filter unconfident predictions. (d)
Now, fit line and mask static coastline (see also Fig. 2.5). (e) Lastly, export and validate
the Shapefile.

The first task in retrieving the correct coastline boundary is to transform the 2-channel pixel

mask into a polyline data structure. At this point, the raw pixel mask may contain incorrect

detections (false positives, Type I errors) and gaps (false negatives, Type II errors) due to

the limitations of CALFIN-NN and its training regimen. In the absence of these errors,

a polyline could be extracted from the pixel mask by finding the shortest path between all

positively detected edge pixels in the pixel mask. However, the removal of such errors through

standard computer vision techniques (such as such as through the successive applications of

the dilation and erosion morphological operators) is not sufficient, introduces uncertainties in

the output data, and fails to remove errors consistently in the general case. In light of this, the

following approach is used to account for such errors during the polyline extraction process.

This approach involves treating this problem as a subset of the path finding Orienteering

Problem, or more specifically as a variant of the Tourist Trip Design Problem. This involves

determining a path through a subset of given points with associated values that optimizes

some cost function [Vansteenwegen and Oudheusden, 2007]. Within the context of this task,
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the given set of points is the set of detected edge pixels, the subset of the given points is the

path that corresponds to the correct coastline boundary, and the cost function is based on

the distance between each pixel and its nearest neighbors.

First, each pixel in the pixel mask’s 2nd channel (edge mask) to nodes in a graph. connecting

the nearest neighboring nodes, then finding the single longest path in the graph’s minimum

spanning tree (MST) [Kruskal, 1956]. This path not only corresponds with the coastline

edge, but also out-performs outputs from other contour finding algorithms by eliminating

noise, errors, and gaps inherited from previous steps. Such gaps are given weights based on

the negative exponential distances between nodes, which allows for connections if the joined

paths are significantly longer than the gap itself. A visual example is given in Fig. 2.5a-d.

Figure 2.5: Mask to Polyline Algorithm: (a) First, extract the coastline mask
(red/yellow) from the CALFIN-NN output. (b) Then create a graph, connecting each pixel
(red) to 15% of its nearest neighbors with an edge (black). (c) Next, create an MST from
the graph. (d) Now, extract the longest path from the MST. (e) Finally, mask the static
coastline using the fjord boundaries (cyan) to extract the calving front.

Next, the calving front is isolated from the coastline polyline. Static masks of the average

fjord boundaries are manually created for each basin using the image subsets and BedMachine

v3 for reference [Morlighem et al., 2017]. By calculating the distance from each point in the

coastline to the nearest fjord boundary pixel, then selecting the contiguous pixels which are

the farthest from the fjord boundaries, the calving front can be isolated. The result of this

is shown in Fig 2.5e.

Once each front is located, its bounding box is used to extract a higher resolution subset

from the original image, and reprocessed. This innovation allows for increased spatial ac-
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curacy when processing multiple fronts in large basins. After reprocessing, the nature of

CALFIN-NN’s 2-channel output as a confidence measure is exploited to filter out uncertain

detections. Since the neural network assigns each pixel a value between 0 and 1 based on its

perceived class, any deviation from these two values can used as a measure of uncertainty.

The filtering method averages the deviation of the ice/ocean classification mask in a 5 pixel

wide buffer around the calving front, and discards any fronts whose mean deviation exceeds

an empirically chosen threshold of 0.125.

The last step is to export the polylines and the corresponding polygon as geo-referenced

Shapefiles. First, the polylines are smoothed to eliminate noise artifacts inherited from

previous steps, deviating no more than 1 pixel from the raw extracted coastline (see Appendix

Fig. A2). Next, the smoothed polylines, fjord boundary mask, and land-ice/ocean masks

are combined to create a polygonal ocean mask.

This is performed by overlaying the smooth polylines onto the fjord boundary mask, seg-

menting regions delineated by the polyline and fjord boundaries, setting all pixels within

each region to the dominant class within said region, and finally vectoring the resulting

binary land-ice/ocean masks into a polygonal Shapefile.

Optionally, manual verification of each output with the original GeoTIFF subset can be

performed. This was done for all cases in this work to ensure the validity of the automated

pipeline. This constrains the mean distance error to be <100 m, as covered in the following

Chapter.
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Chapter 3

Validation

Two methods are used to evaluate CALFIN. For the primary method, the error is estimated

by calculating the Mean/Median Distance between predicted and manually delineated fronts

(see Fig. 3.1a and Sect. 3.1). For the secondary method, the classification accuracy is cal-

culated with the Intersection over Union metric (see Fig. 3.1b and Sect. 3.2). Additionally,

the detection accuracy is evaluated, and the associated confusion matrix is provided (see

Table 3.1 and Sect. 3.4). These metrics are evaluated on several validation sets, taken from

existing studies as discussed in Sect. 1. These validation sets contain data that are excluded

during model training. This prevents the models from memorizing data and skewing the

accuracy assessment.

3.1 Error Estimation

The primary quality assessment method is the Mean Distance Error [Mohajerani et al.,

2019; Zhang et al., 2019; Baumhoer et al., 2019]. Conceptually, this method resembles the

numerical integration of the area between two curves, normalized by the average length of
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Figure 3.1: Error Measures: (a) A visual outline of Mean/Median Distance Error Estima-
tion and (b) Classification Accuracy using Intersection over Union (IoU) for (i) the primary
calving front, and (ii) the secondary ice/ocean mask, respectively.

the curves (see Fig. 3.1a). Also referred to as the Area over Front (A/F) in literature, this

method can also be seen as a generalization of the method of transects along arbitrarily

oriented fronts [Mohajerani et al., 2019; Baumhoer et al., 2019]. This metric is implemented

by taking the mean/median of the distances between closest pixels in the predicted and

manually delineated fronts. Note that pixel distance is biased to be inversely proportional

to a network’s input size, so the error in meters is also provided in the following analysis.

3.2 Classification Accuracy

The secondary quality assessment method calculates the Intersection over Union (IoU)

[Baumhoer et al., 2019]. This metric evaluates the degree of overlap between the predicted

and manually delineated masks of the calving front. It is calculated by dividing the number

of pixels in the intersection of two masks over the number of pixels in the union of the two

masks (see Fig. 3.1b). When calculating the IoU of 3 pixel wide edges, this measure is very

strict: 1 pixel of difference results in a score of 0.5, and scores at or above that range are

indicative of human levels of accuracy. When calculating the IoU of land-ice/ocean masks,

this measure is less strict, and scores at or above 0.9 indicate human levels of accuracy.
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3.3 Validation Results

The following subsections show tables with the above metrics for the associated validation

sets, the values from the original studies, and a subset of the outputs of CALFIN-NN on each.

The primary validation set, the CALFIN validation set (CALFIN-VS), consists of 162 images

with clouds, illumination differences, ice mélange, and Landsat 7 Scanline Corrector Errors

(L7SCEs). The CALFIN-VS contains data from 62 Greenlandic basins, including Helheim,

which was specifically excluded from CALFIN’s training set for validation purposes - as done

by Mohajerani et al. [2019]. The CALFIN-VS ensures CALFIN-NN produces consistent

results on new data, addressing concerns raised by Zhang et al. [2019] Sect. 7.3. To evaluate

performance on Landsat 7 Scanline Corrector Errors, the validation subset CALFIN-VS-

L7-only isolates images with L7SCEs, and the CALFIN-VS-L7-none excludes images with

L7SCEs. To allow for comparisons between studies, CALFIN-NN’s performance metrics on

previous studies’ validation sets are also shown, where appropriate. The sets include the

10 Landsat Helheim subsets used in Mohajerani et al. [2019] (M-VS), the 6 TerraSAR-X

Jakobshavn subsets used in Zhang et al. [2019] (Z-VS), and 62 Sentinel-1 Antarctic basins

taken from the 11 validation scenes used in Baumhoer et al. [2019] (B-VS). Note that the

error metrics are still sensitive to how each study implements them, which are nevertheless

reproduced and documented for comparison’s sake. These concerns are also addressed in the

comprehensive inter-model comparison, discussed in Sect. 4.2.2.

CALFIN-NN performs well on the CALFIN-VS (Fig. 3.2). The true mean distance error of

the CALFIN dataset is calculated to be 86.76 ± 1.43 m with 95% confidence. When including

only images with L7SCEs (CALFIN-VS-L7-only), the error is 91.93 m, showcasing CALFIN-

NN’s unique robustness to L7SCEs. Intuitively, excluding ”difficult” images with L7SCEs

in the validation set (CALFIN-VS-L7-none) decreases the error to 81.65 m. The median

distance error is only 44.59 m, showing that only a few outliers contribute considerably to

the mean. For full outputs, see Appendix Figs. A5-A8.
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Validation Set Model Mean
Distance

Median
Distance

IoU Calving
Front

IoU
Ice/Ocean

CALFIN-VS CALFIN-NN 2.25 px,
86.76 m

1.21 px,
44.59 m

0.4884 0.9793

CALFIN-VS-L7-none CALFIN-NN 2.27 px,
81.65 m

1.16 px,
44.01 m

0.4880 0.9819

CALFIN-VS-L7-only CALFIN-NN 2.22 px,
91.93 m

1.33 px,
49.24 m

0.4888 0.9766

Figure 3.2: CALFIN-VS Validation Output Results: Yellow represents human (green)
and machine (red) agreement on the front location. Note that the drop in mean pixel distance
despite the increase in mean meter distance (and vice versa) comes from L7SCE images being
reprocessed at lower sizes due to detection failures (see Fig. 2.4c), and pixel error bias being
inversely related to input size (see Sect. 3.1).

Validation Set Model Mean
Distance

Median
Distance

IoU Calving
Front

IoU
Ice/Ocean

M-VS CALFIN-NN 2.56 px,
97.72 m

2.55 px,
97.44 m

0.3332 N/A

M-VS M-NN 1.97 px,
96.31 m

N/A N/A N/A

Figure 3.3: M-VS Validation Output Results: Note that CALFIN-NN has never trained
on Helheim, but can still predict the front under different conditions and preprocessing
methods. See Fig. S9. for full outputs.

CALFIN-NN performs well on the M-VS (Fig. 3.3). This demonstrates CALFIN-NN’s ability

to accurately process new data, which builds upon the Mohajerani et al. [2019] neural network
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Validation Set Model Mean
Distance

Median
Distance

IoU Calving
Front

IoU
Ice/Ocean

Z-VS CALFIN-NN 2.11 px,
115.24 m

1.65 px,
77.29 m

0.3832 0.9761

Z-VS Z-NN 17.3 px,
104 m

N/A N/A N/A

Figure 3.4: Z-VS Validation Output Results: CALFIN-NN works well on SAR data in
addition to optical data. See Fig. S10. for full outputs.

Validation Set Model Mean
Distance

Median
Distance

IoU Calving
Front

IoU
Ice/Ocean

B-VS CALFIN-NN 2.35 px,
330.63 m

0.74 px,
112.75 m

0.6451 0.9879

B-VS B-NN 2.69 px,
108 m

N/A N/A 0.905

Figure 3.5: B-VS Validation Output Results: Similar to Z-NN, B-NN uses a high
resolution input (768×768) relative to CALFIN-NN (224x224), which skews the mean pixel
distance comparison in CALFIN-NN’s favor. See Fig. S11-S12 for full outputs.

(M-NN). Note that M-NN implements distances errors differently, and omits ice/ocean masks

from the evaluation. This differences are further explored in the Sect. 4.2.2 model inter-

comparison.

CALFIN-NN performs competitively on the Z-VS (Fig. 3.4). It achieves a similar mean

meter distance (115.24 m vs. 104 m) despite being constrained to using lower resolution
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TerraSAR-X data. Note though that the Zhang et al. [2019] neural network (Z-NN) uses

higher resolution input data (960×720) compared to CALFIN-NN (224x224), which skews

the mean pixel distance comparison, where CALFIN-NN performs better (2.11 px vs. 17.3

px). Another source of skew comes from CALFIN-NN confidence filtering, as only 8 of 12

fronts in the set are confidently detected (see Sect. 3.4). Increasing CALFIN-NN’s input

resolution and training on higher resolution SAR data may enable CALFIN-NN to detect

more fronts with greater accuracy.

CALFIN-NN performs sub-par on the B-VS (Fig. 3.5). When comparing the mean distance

error with the Baumhoer et al. [2019] equivalent Area over Front (A/F) error, the Baumhoer

et al. [2019] neural network (B-NN) outperforms CALFIN-NN (330.63 m vs 108 m). Note

that the easily detected static coastlines are masked out, raising the relative error, and

negatively impacting CALFIN-NN’s performance on this metric. When comparing metrics

that isolate the calving front, the absolute median distance error is calculated (achieving

112.75 m) whereas Baumhoer et al. [2019] uses signed median distance error (achieving 0

m), which is not directly comparable in this context, and thus omitted. Currently, the error

is affected by kilometer-range deviations in very large domains like Voyeykov Ice Shelf, and

differences in sea-ice mélange as seen along the Gillet and Wordie Ice Shelves, which would

be consistent with findings in Baumhoer et al. [2019] Sect. 5.2. After excluding such outliers,

fronts are detected in 55 out of 62 domains (88.71%), achieving median distance errors of

0.95 px (127.87 m). Intensive retraining on ice shelves may be required for CALFIN-NN to

improve.

3.4 Detection Accuracy

Lastly, CALFIN-NN is shown to automatically filter images that do not have detectable

calving fronts. To verify this, 13 images are included in the CALFIN-VS which do not contain
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calving fronts discernible to the human eye. The true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) rates are computed for the entire 162 image CALFIN-

VS, and the associated confusion matrix is shown in Table 3.1. Note that CALFIN-NN does

not output any false positives on the CALFIN-VS. While this ensures accurate fronts are

output rather than incorrect fronts, this filtering behavior removes potentially large errors,

and must be accounted for when comparing errors across other sets.

Table 3.1: Confusion Matrix: CALFIN-NN misses fronts in 8 of 149 valid CALFIN-VS
images, but this trade-off is acceptable.

Front Detected?

Yes No

Front
Detectable?

Yes TP = 141/149
(94.63%)

FN = 8/149 (5.76%)

No FP = 0/13 (0.00%) TN = 13/13
(100.00%)
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Chapter 4

Results and Discussion

The code implementation of the CALFIN method is released, along with its associated calv-

ing front data products as described in the following section, for use within the scientific

community. The CALFIN dataset spans 66 Greenlandic basins, over the period Sept. 1972

- June 2019. It consists of over 1500 manual delineations and 22,678 total calving fronts.

Two levels of CALFIN data products are provided. The Level 0 products include the Shape-

file domains used for subsetting, the neural network training image/mask pairs, the fjord

boundary masks, the full Landsat scene ID list, and the quality assurance images for vali-

dation purposes. The use cases of Level 0 products may include studies of reproducibility,

validation, or training new neural networks. The Level 1 products include the calving front

polyline and polygon Shapefiles. The polyline product consists of the isolated, refined, geo-

referenced, and verified calving fronts for each domain. The polygon product consists of an

ocean mask bounded by the domain subset, the fjord boundaries, and the calving front(s),

for each domain. Both of the Shapefiles share a common metadata feature schema (see Table

A2 and the following Sect. 4.1) derived from the MEaSUREs Glacial Termini Dataset [Moon

and Joughin, 2008; Joughin et al., 2015] and TermPicks [Goliber et al., 2021], and names

are derived from [Bjørk et al., 2015]. These products can be found via these links to Github
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and DataDryad [Cheng et al., 2020].

4.1 Information Available From Our Method

Each glacial feature generated by the CALFIN methodology shares a common metadata

feature schema that provides useful information for end-users of the CALFIN Level 1 data

products. These data products use the NSIDC Sea Ice Polar Stereographic North projection

system (EPSG:3413), and the information associated with each feature allows for the verifi-

cation of the CALFIN results (by providing the original source ImageIDs, the author, and

quality flags, among other parameters). The full schema is as follows.

Glacier ID: The GlacierID provides a unique numerical id to identify glaciers with mul-

tiple or disputed common names. The IDs are assigned to major glaciers beginning with

Jakobshavn Isbrae in Central West Greenland, beginning at 1 and increasing to 238 in a

counter-clockwise order around Greenland’s coast, as detailed in [Moon and Joughin, 2008;

Joughin et al., 2015]. Minor glaciers not designated in [Moon and Joughin, 2008; Joughin

et al., 2015] are given new ids beginning at 238 and increasing to 246 in an unordered fashion

consistent with the TermPicks glacier ID scheme [Goliber et al., 2021]. In addition to resolv-

ing the identification of glaciers with multiple or disputed common names, unique GlacierIDs

help track the converging and diverging evolution of multiple branches within a single glacial

basin, allowing for easier and more consistent long term studies of complex glacial systems.

Center X, Center Y, Latitude and Longitude: The CenterX and CenterY parameters

provide the X/Y coordinates for the centroid point of each polyline or polygonal feature.

Similarly, the Latitude and Longitude parameters corresponding to the centroid point is also

provided. The CenterX/CenterY parameters are given in the NSIDC Sea Ice Polar Stereo-
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graphic North projection system (EPSG:3413), and the Latitude/Longitude parameters are

given in the WGS84 (World Geodetic System 1984) coordinate system (EPSG:4326). These

centroid point parameters are provided for applications where only a rough approximation

of the glacial feature positions are required.

Quality Flag: The Quality Flag parameter, or QualFlag, identifies the method and po-

tential sources of error associated with individual data features. The flag consists of a 2

digit bit mask, the first digit specifying the method of feature extraction, and the second

digit specifying which type of potential error that is present in the feature source data. As

with other parameters in this dataset, this schema is chosen to be compatible with existing

metadata standards [Moon and Joughin, 2008; Goliber et al., 2021], and anticipates future

developments by leaving room for other flag values. Flags values beginning with 0 are man-

ually digitized, which is the case for all features extracted from the training and validation

images re-purposed from the development of the CALFIN-NN. Flag values beginning with 1

are automatically digitized, as is the case with all other features in the dataset. Flag values

ending in 3 specify features that were derived from source images containing Landsat 7 Scan-

line Corrector Errors (L7SCEs). Flag values ending in 0 specify features that were derived

from source images no L7SCEs. Flag values ending in other values (1, 2, 4-9) are not defined

within the context of this dataset, but are reserved for use in existing and future glacial

feature datasets. Thus the flags themselves take on 4 discrete values, where 00 identifies a

feature that was manually digitized, 03 identifies a feature that was manually digitized from

source images with L7SCEs, 10 identifies a features that was automatically digitized, and 13

identifies a feature that automatically digitized from source images with L7SCEs.

Satellite: The Satellite parameter provides the original sensor or satellite that produced

the image from which the glacial feature was extracted. This parameter is automatically
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taken from the associated ImageID parameter, and is useful for identifying potential sys-

temic issues associated with certain image sensors or satellites. This parameter may take on

a variety of values that conform the format ”LXSS” where L represents Landsat, X, repre-

sents the sensor, and SS represents the two-digit number assigned to the satellite. Within

this metadata schema, 07 represents the Landsat 7 ETM+ sensor, and other possible values

for ”X”, the sensor are: ”C”=OLI/TIRS combined (Operational Land Imager/Thermal In-

fraRed Sensor), ”O”=OLI-only, ”T”=TIRS-only, ”E”=ETM+ (Extended Thermal Mapper

Plus), ”T”=”TM” (Thermal Mapper), and “M”=”MSS” (MultiSpectral Scanner).

Date: The Date parameter represents the acquisition time for the image from which the

feature is extracted. This parameter is also automatically taken from the associated ImageID

parameter. The Date format is ”YYYY-MM-DD”, where YYYY (Year), MM (month), and

DD (day) are integers, and Dates ranging from 1972-09-06 to 2019-06-25.

Image ID: The ImageID parameter refers to the original source image identifier from which

the feature is extracted. Since the original images are not provided as part of the data

products, this parameter provides the necessary information for future studies to verify and

validate the extracted glacial features.

Greenlandic Name, Official Name, Alternative Name, Reference Name: These

common name parameters provide the associated with. Not all features or glacier have

The Greenlandic Name, abbreviated ”GrnlndcN”, is the The Official Name, abbreviated

”OfficialN”, Greenlandic and Official Names are derived from [Bjørk et al., 2015]. The

Alternative Name, abbreviated ”AltName”, The Reference Name, abbreviated ”RefName”,

is
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Author: Lastly, the author name is provided in conformance to metadata standards. In this

case, the author name takes the format of LastName FirstInitial, and the only associated

value within the context of this dataset is ”Cheng D”. This parameter enables the tracking

of features from multiple potential sources by end users of this dataset.

4.2 Comparison with Existing Works

4.2.1 CALFIN vs. Calving Front Datasets ESA-CCI, PROMICE,

and MEaSUREs

With the new data available to use in the CALFIN dataset, it is possible to explore seasonal

trends across the Greenland Ice Sheet, and validate a subset of 10 high discharge basins

of interest against existing ESA-CCI, MEaSUREs, and PROMICE data products [ENVEO,

2017; Joughin et al., 2015; Andersen et al., 2019]. Fig 4.1 shows the high temporal resolution

and spatial accuracy of the CALFIN data product alongside corresponding available data

products from 1972-2019. For Joughin et al. [2015], if a date range is given, the same relative

change at both start and end dates [Moon and Joughin, 2008] is plotted. For Andersen et al.

[2019], August 15th is used as the ”end-of-melt-season” date of delineation, as the date is

otherwise not specified in the provided data. The advance and retreat of the calving front

along the basin centerlines is relative to their earliest positions. Note the large improvement

in temporal/seasonal coverage and the general agreement of CALFIN with existing data

products. Note also that the discrepancies such as that during 2005-2009 in Jakobshavn

(Fig. 4.1e) mostly stem from a lack of winter coverage during Landsat’s optical blackout

period. Additional outliers in Kong Oscar (Fig. 4.1g) stem from the somewhat arbitrary

delineation of the ice tongue front position. Kangiata Nunaata (Fig. 4.1j) suffers from both
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Figure 4.1: Terminus Advance and Retreat Over Time. (a-j) Basin setup (left) and
graph (right) for 10 high discharge basins. Positive length change represents retreat relative
to the earliest position along the centerlines in red. Note the seasonal variations captured
by CALFIN, in blue. Time series for other studies span 1990-2016 (ESA-CCI), 2000-2017
(MEaSUREs), and 1999-2019 (PROMICE). Note the seasonal variations shown by the solid
lines, and the dotted lines from 1972-1985 that indicate a lack of such seasonal observations.
Also note that the vertical axis scaling is applied differently for each graph to highlight
seasonal trends.

of the aforementioned effects, but otherwise shows the same general agreement with existing

datasets from 2000 onwards.

Additionally, Fig. 4.2 shows the regional mean advance and retreat change, alongside the

mean for the entirety of Greenland covered by the CALFIN dataset. Supplementary to the

above, Fig. 4.2 shows similar the relationship between the 320-390 Gigatons of water/ice

mass discharged per year, versus the calving front changes, as seen in King et al. [2020].
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Figure 4.2: Regional Terminus Advance and Retreat Over Time. (a) Regional delin-
eations (left) and terminus position graphs (right) for Greenland (b), as well as the north-
western (c), central western (d), central eastern (e), southeastern (f), and southwestern (g)
regions. Note that the total Greenland mean advance and retreat is unadjusted, and domi-
nated by the trend lines of numerous smaller glaciers in CW and NW Greenland. Note that
branches in the 66 studied basins are independently counted, for a total of 87 glaciers.

Contributions from NW Greenland influence the overall trend the most, due to the presence

of many small glaciers/branches in the region. Note that the mean for Greenland in Fig.

4.2 also includes contributions from Petermann, which is visible in the summers of 2010 and

2012. Across both figures, shared regional trends are visible across NW and CW Greenland,

which both show relative stability before 2000, followed by steady retreat up until 2017-

2018. CE and SE Greenland also share a similar but less pronounced retreat, showing an

accelerating retreat beginning around 1995. These regional trends are less visible in SW

Greenland, which is dominated by Narsap Sermia’s retreat from 2010-2013. Overall, these

regional trends generally agree with studies such as Wood et al. [2021] and King et al. [2020],

contributing additional support for the CALFIN method and data.
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Figure 4.3: Relations between Regional Discharge Volume and Terminus Advance
and Retreat Over Time. Regional graphs of water discharged mass (in Gigatons/year)
versus calving front change, with a line of best fit plotted showing the clear relationship
between the two metrics. Each data point represents the average annual values of all glaciers
in each region, weighted by size. Derived from King et al. [2020].

4.2.2 Neural Network Architectural Comparison

To reinforce the validity of the methodology, and address the shortcomings of different error

metric comparisons (as discussed in Sect. 3), a comprehensive inter-model comparison is

conducted between CALFIN-NN and the model developed by Mohajerani et al. [2019] (M-

NN). This experiment seeks to understand how both models perform, holding all other

variables constant. In particular, this experiment seeks to determine if the M-NN model,

33



and by extension other UNet models, perform on par with the CALFIN-NN model, given

the same training data. This task involves retraining the M-NN on CALFIN training data,

and comparing its performance against CALFIN-NN using a shared validation set. For the

fairest results, only images without L7SCEs are evaluated in this validation set - CALFIN-

VS-L7-none - which is within the known capabilities of the M-NN. Furthermore, the same

pre- and post-processing is applied to both models.

Table 4.1: Model Inter-comparison Error Table: Metrics for the CALFIN-NN and
M-NN models on all non-Landsat 7 test images in the CALFIN validation set.

Validation Set Training
Set

Model Mean
Distance

Median
Distance

IoU
Front

IoU
Ice/Ocean

CALFIN-VS-L7-none CALFIN CALFIN-
NN

2.27 px,
81.65 m

1.16 px,
44.01 m

0.4880 0.9819

CALFIN-VS-L7-none CALFIN M-NN 4.45 px,
201.35 m

1.25 px,
50.52 m

0.4935 0.9699

Across all non-Landsat 7 test images in the CALFIN validation set, CALFIN-NN attains a

2.27 pixel (81.65 meter) mean distance between the predicted and the manually delineated

fronts. This exceeds the level of accuracy achieved by the model from Mohajerani et al.

[2019], which after retraining on CALFIN training data, is 4.45 pixels (201.35 meters). Note

again that Landsat 7 images were excluded during reevaluation for the M-NN. This supports

the findings that the CALFIN-NN architecture is an improvement over existing UNet models.

With this added context, the validation table is reproduced from Ch. 3, Fig. 3.3, and the

error analysis is continued below. To reemphasize the differences in mean distance error cal-

culation between different studies, Mohajerani et al. [2019] begins by breaking each predicted

front to 1000 smaller segments within a small buffer from the fjord walls and calculating the

mean deviation between the segments of the predicted and manually delineated fronts. The

method begins by averaging the mean distance between each pixel of the predicted front

and the closest pixel of the manually delineated front as detailed in Ch. 3.1. While the

line-segment methodology of Mohajerani et al. [2019] provides a stricter estimate by enforc-
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ing close agreement between corresponding front segments, the CALFIN method allows for

non-aligned evaluation of the mean distance error. Although both implementations quantify

the differences between the lines, the differences in implementation should still be considered

when evaluating the comparison below.

Table 4.2: M-VS Validation Output Results: Accuracy and error metrics for the
CALFIN-NN and the M-NN models on the M-VS. Again, some metrics are not provided
by Mohajerani et al. [2019], so they are omitted from this table.

Validation
Set

Training Set Model Mean
Distance

Median
Distance

IoU
Front

IoU
Ice/Ocean

M-VS CALFIN CALFIN-
NN

2.56 px,
97.72 m

2.55 px,
97.44 m

0.3332 N/A

M-VS Mohajerani M-NN 1.97 px,
96.31 m

N/A N/A N/A

Across all 10 test images in the M-VS, CALFIN-NN attains a 2.56 pixel (97.72 meter) mean

distance between the predicted and the manually delineated fronts. This approaches the

level of accuracy achieved in our work, which is 1.97 pixels (96.31 meters). This supports

the findings that the CALFIN-NN architecture generalizes to new data well. Note that

CALFIN-NN’s larger network size requires additional training data to avoid over-fitting,

or memorizing, the training data, which could explain the slightly lesser accuracy when

compared to the M-NN. In summary, this comprehensive model inter-comparison supports

the hypothesis that the CALFIN-NN model improves on existing studies and is generalizing

well.
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4.2.3 Inter-author Data Comparison

Dervied from: Goliber, S., Black, T., Catania, G., Lea, J. M., Olsen, H., Cheng,

D., Bevan, S., Bjørk, A., Bunce, C., Brough, S., Carr, J. R., Cowton, T., Gard-

ner, A., Fahrner, D., Hill, E., Joughin, I., Korsgaard, N., Luckman, A., Moon,

T., Murray, T., Sole, A., Wood, M., and Zhang, E.: TermPicks: A century of

Greenland glacier terminus data for use in machine learning applications, The

Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-311, in review,

2021.

To further validate this work, an inter-author comparison is performed between CALFIN

and all publicly available manually picked glacial calving front positional data, as listed in

Table 4.3. This error analysis is carried out by comparing the maximum distances between

co-temporal data for each permutation of dataset author pairs. Quantitatively, CALFIN

contributes 22,678 out of 39,060, or 58%, of publicly available glacial calving front delin-

eations, which means that it provides more data than all known existing datasets of calving

fronts combined. Qualitatively, CALFIN contributes data within reasonable error margins,

in particular when considering the large inter-author variance between existing calving front

delineations as seen in Fig. 4.4. Large inter-author discrepancies, particularly between

CALFIN and Hill et al. [2017, 2018], is primarily explained by the latter’s focus on Northern

Greenlandic glaciers with large ice tongues and crevasses (see Figure 1.2b/c) that make the

determination of a calving front difficult. Notably, the overall median error between all inter-

author pairs is 107 meters, which is comparable to the mean error obtained by CALFIN on

evaluated validation sets. Since the average error of CALFIN with respect to other human

generated datasets, it follows that CALFIN is a viable source of glacial calving front data

for use within the scientific community.
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Published Source Spatial Coverage Date
Range

Resolu-
tion

Author
Key

Andersen et al. [2019] GrIS wide; n =47 1999-2018 Annual PROMICE
Bevan et al. [2012] GrIS wide; n = 14 1985-2011 Sub-annual Bevan
Bevan et al. [2019] Kangerlussuaq; n = 1 1985-2018 Sub-annual Bevan
Bjørk et al. [2012] SE GrIS, n =132 1931-2010 Sub-

decadal
Bjork

Black and Joughin
[2021]

NW GrIS; n = 87 1972-2021 Annual Black

Brough et al. [2019] Kangerlussuaq, n = 1 2013-2018 Sub-annual Brough
Bunce et al. [2018] NW and SE; n = 276 2000-2015 Annual Bunce
Carr et al. [2013] NW GrIS; n = 10 1976-2012 Decadal to

monthly
Carr

Carr et al. [2017] GrIS Wide; n = 273 1992-2010 Decadal Carr
Carr et al. [2015] Humboldt ; n = 1 1975-2012 Sub-

decadal
Carr

Catania et al. [2018] CW GrIS; n = 15 1965-2018 Sub-annual Catania
Cheng et al. [2021] GrIS wide; n = 65 1972-2019 Sub-annual Cheng

(CALFIN)
Cowton et al. [2018] E GrIS; n = 10 1993–2012 Sub-annual Sole
Fahrner et al. [2021] GrIS wide; n = 224 1984–2017 Annual Fahrner

Hill et al. [2017] N GrIS; n = 21 1916-2015 Annual Hill
Hill et al. [2018] N GrIS; n = 18 1948-2015 Annual Hill
Korsgaard [2021] GrIS Wide; n = 452 1978–1987 Annual Korsgaard

Moon and Joughin
[2008]

GrIS wide; n = 203 1992-2007 Sub-
decadal

Moon

Murray et al. [2015] GrIS wide; n = 199 2000-2010 Sub-annual Murray
Raup et al. [2007] GrIS wide; n = 28 1990-2016 Sub-annual ESA

Goliber et al. [2021] E and W GrIS; n = 13 1985-2019 Sub-annual TermPicks
Wood et al. [2021] GrIS wide, n = 226 1992-2017 Annual Wood
Zhang et al. [2019] Helheim, Jakob., 2009-2015 Sub-annual Zhang

and Kanger.; n = 3

Table 4.3: Existing Sources for Calving Fronts. Spatial coverage describes the number of
glaciers and name/region(s) of the traces. Date range are the years covered by the data set.
Resolution is the temporal resolution; Annual is approximately one delineation per year,
sub-annual is more than one trace per year, decadal is approximately one trace every ten
years, sub-decadal is more than one trace every 10 years, but not each year. Method is the
tracing method used by the author to digitize the terminus. The Author key is the label
given to that data set in the inter-author error table.
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Figure 4.4: Median Inter-author Error. The greatest median error (7,350 m) is between
Cheng (CALFIN) and Hill. The average median error (107 m) is comparable to CALFIN’s
performance on evaluated validation sets.
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Chapter 5

Future Directions and Conclusion

Overall, the goal of automatically delineating calving fronts from satellite imagery is accom-

plished. The CALFIN method uses the cutting-edge in deep learning architectures, allowing

for robustness to minor cloud cover, Landsat 7 Scanline Corrector Errors, and illumination

changes. The method is validated through a comprehensive data intercomparison with ex-

isting studies, and the results deviate by on average 86.76 ± 1.43 meters from the measured

fronts. Regional trends show larger than average absolute retreat in SE Greenland, and new

sub-seasonal trends are available for further investigation with the release of the 22,678 calv-

ing front lines generated across 66 Greenlandic glaciers. Future work may entail accuracy

improvements, expansion of included domains, usage of SAR data sources, and near-real time

data products. Within the community, the benefits of standardized training, validation sets,

and outputs/metadata are anticipated. The community’s development of new automated

extraction studies, such as grounding line delineation, iceberg tracking, and sea ice mélange

measurements, is also anticipated. A key takeaway is the maturation of neural networks

for automated calving front detection. Specifically, a well trained network now approaches

human levels of accuracy in picking arbitrary glacial calving fronts. This reinforces existing

studies on the viability of the methodology, and paves the way for applications on other data
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processing tasks. Ultimately, this work showcases the state-of-the-art in automated calving

front detection, and provides a new database of glacial termini positions for the cryosphere

community.
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Supplementary Material
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A.1 Temporal Availability

Figure A1: Temporal Availability Chart. Listed are the number of fronts per year, for all 66 glaciers in the CALFIN dataset.
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A.2 Inter-model Comparison Table

Table A1: Consolidated validation set and inter-model error metrics.

Validation Set Model Mean Distance Median Distance IoU Coastline IoU Ice/Ocean

CALFIN-VS CALFIN-NN 2.25 px, 86.76 m 1.21 px, 44.59 m 0.4884 0.9793
CALFIN-VS-L7-none CALFIN-NN 2.27 px, 81.65 m 1.16 px, 44.01 m 0.4880 0.9819
CALFIN-VS-L7-only CALFIN-NN 2.22 px, 91.93 m 1.33 px, 49.24 m 0.4888 0.9766

M-VS CALFIN-NN 2.56 px, 97.72 m 2.55 px, 97.44 m 0.3332 N/A
M-VS M-NN 1.97 px, 96.31 m N/A N/A N/A
Z-VS CALFIN-NN 2.11 px, 115.24 m 1.65 px, 77.29 m 0.3832 0.9761
Z-VS Z-NN 17.3 px, 104 m N/A N/A N/A
B-VS CALFIN-NN 2.35 px, 330.63 m 0.74 px, 112.75 m 0.6451 0.9879
B-VS B-NN 2.69 px, 108 m N/A N/A 0.905

A.3 Dataset Metadata

Level 0 products consist of fjord boundary GeoTiff masks, the domain Shapefiles used for subsetting, and the Landsat scene

name list text files. Level 1 product consists of a LineString Shapefile with 22678 features, and a Polygon Shapefile with

17771 features, grouped by glacial basin. Both Shapefiles share a feature schema derived from the MEaSUREs glacial terminus

positions dataset (NSIDC-0642), as detailed in Table A2.

• Temporal resolution: sub-seasonal

• Spatial resolution: ˜30 meters
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• Spatial accuracy: <90 meters

• Projection: EPSG:3413 (WGS 84 / NSIDC Sea Ice Polar Stereographic North)
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Table A2: Shapefile Feature Schema Attribute Table

Data Field Description Format (Values)

GlacierID
Numerical ID assigned to each
glacier (as derived from MEa-
SUREs NSIDC-0642)

# ([1, 246])

Center X
Mean X coordinate in
EPSG:3413.

# ([-463626, 682313])

Center Y
Mean Y coordinate in
EPSG:3413.

# ([-2821269, -906747])

Latitude Latitude of center. # ([64.29, 81.24])
Longitude Longitude of center. # ([-63.17, -28.21])

QualFlag
Quality flag to indicate digitiza-
tion conditions

# (0 – Manually digitized, 3 – Manually digitized, w/ L7
SCE, 10 - Automatically digitized, 13 – Automatically digi-
tized, w/ L7 SCE. See MEaSUREs NSIDC-0642)

Sattellite
Satellite/sensor of the digitized
source image

LXSS ([LM01, LC08]) See
https://www.usgs.gov/faqs/what-naming-convention-
landsat-collections-level-1-scenes

Date
Date of the digitized source im-
age

YYYY-MM-DD ([1972-09-06, 2019-06-25])

ImageID Source image file name.
LXSS LLLL PPPRRR YYYYMMDD yyyymmdd CC TX
(LC08 L1TP 026006 20170702 20170715 01 T1, etc.)

GrnlndcN Greenlandic glacier name
NAME (New Greenl names from Bjørk et al., 2015 database
of Greenland glacier names)

OfficialN
Officially recognized glacier
name

NAME (Official n names from Bjørk et al., 2015 database
of Greenland glacier names)

AltName
Alternative, Foreign, Old Green-
landic, or other glacier names

NAME (Foreign na, Old Greenl, Alternative names (Bjørk
et al., 2015), or other names)

RefName

Reference glacier name,
non-authoritative names
used in CALFIN to denote
grouped/unnamed glaciers

NAME (New Greenl, Official n, Foreign na, Old Greenl, Al-
ternative names (Bjørk et al., 2015), or other names)

Author Digitization author’s name LastName FirstInitial (Cheng D)
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A.4 Error Estimation

Figure A2: Smoothed versus Raw Polyline The post-processing line smoothing operation turns the raw coastline (blue)
into a smoothed data product polyline (orange), deviating by no more than 1 pixel from the raw coastline. Since the variations
are on the sub-pixel scale, the error introduced is no more than the uncertainty of the base resolution, and well within the
neural network uncertainty.
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Figure A3: True mean distance error estimates per basin, in pixels. We estimate the true mean distance error per basin
to lie between the above intervals with 95% confidence.

A.5 Training Data

52



Figure A4: CALFIN-NN training data. Shown above is a subset of the 1872 CALFIN-NN training image/mask pairs. Not
shown are the coastline masks, which are dynamically generated after performing data augmentation on the above masks, using
Canny edge filters and dilation to a 3 pixel wide edge. Note blurred mask in uncertain areas, as in Sermeq Avannarleq 70
2000-07-02. Images are masked at a minimum resolution of 1024 pixels.
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A.6 Validation Data

A.6.1 CALFIN Validation Set
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Figure A5: CALFIN validation outputs, part 1.
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Figure A6: CALFIN validation outputs, part 2.
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Figure A7: CALFIN validation outputs, part 3.
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Figure A8: CALFIN validation outputs, part 4.

A.6.2 Mohajerani et al. Validation Set
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Figure A9: Mohajerani et al. validation outputs.

A.6.3 Zhang et al. Validation Set

Figure A10: Zhang et al. validation outputs. Note that there are missing subsets where CALFIN did not detect any fronts,
despite them being visible.

A.6.4 Baumhoer et al. Validation Set
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Figure A11: Baumhoer et al. validation outputs, part 1. Large errors originate from Ekstrom-1, Gillet, Land, and other
similar domains.
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Figure A12: Baumhoer et al. validation outputs, part 2. Note that Wordie and Voyeykov, among others, have not been
fully nor confidently detected.
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A.7 CALFIN Validation Set Scene ID List

Table A3: CALFIN Validation Set Scene ID List. A list of all 162 images used in the CALFIN-VS.

Domain Scene ID Domain Scene ID

Akullikassaap LE07 L1TP 014009 20000317 20170212 01 T1 Akullikassaap LE07 L1TP 017008 20090619 20161221 01 T1

Alangorssup LC08 L1TP 016008 20150418 20170409 01 T1 Alangorssup LE07 L1TP 017008 20090619 20161221 01 T1

Alanngorliup LE07 L1TP 009011 20010707 20170204 01 T1 Alanngorliup LE07 L1TP 010011 20130715 20161123 01 T1

Brückner LT05 L1TP 231014 19930610 20180228 01 T2 Cornell LC08 L1TP 019007 20130722 20170503 01 T1

Cornell LE07 L1TP 019007 20020411 20170131 01 T1 Cornell LT05 L1TP 019007 19900418 20170130 01 T1

Courtauld LE07 L1TP 231012 20060724 20170109 01 T1 Courtauld LT05 L1TP 231012 19870813 20170211 01 T1

Dietrichson LC08 L1TP 023006 20160811 20170322 01 T1 Dietrichson LE07 L1TP 023006 20080423 20161229 01 T1

Docker-Smith LC08 L1TP 025006 20170422 20170501 01 T1 Eqip LC08 L1TP 010011 20180907 20180912 01 T1

Eqip LE07 L1TP 009011 20100529 20161215 01 T1 Fenris LE07 L1TP 232013 20120901 20161128 01 T1

Frederiksborg LE07 L1TP 229012 20040906 20170119 01 T1 Frederiksborg LT05 L1TP 230012 19860819 20170216 01 T1

Gade LE07 L1TP 025006 20090611 20161219 01 T1 Hayes LC08 L1TP 018007 20150416 20170409 01 T1

Hayes LC08 L1TP 080237 20160607 20170324 01 T1 Hayes LE07 L1TP 019007 20060406 20170110 01 T1

Hayes LE07 L1TP 018007 20080810 20161225 01 T1 Heim LC08 L1TP 232014 20190625 20190625 01 RT

Helheim LC08 L1TP 233013 20130412 20170505 01 T1 Helheim LC08 L1TP 232014 20140729 20170420 01 T1

Helheim LC08 L1TP 233013 20151011 20170403 01 T1 Helheim LC08 L1TP 233013 20160911 20170321 01 T1

Helheim LC08 L1TP 232013 20180606 20180615 01 T1 Helheim LE07 L1TP 232014 20000527 20170211 01 T1

Continued on next page
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Table A3 – Continued from previous page

Domain Scene ID Domain Scene ID

Helheim LE07 L1TP 232013 20020517 20170130 01 T1 Helheim LE07 L1TP 232013 20030808 20170124 01 T1

Helheim LE07 L1TP 232013 20060512 20170109 01 T2 Helheim LE07 L1TP 232013 20100405 20161215 01 T2

Helheim LE07 L1TP 232013 20110627 20161208 01 T1 Helheim LE07 L1TP 232013 20130803 20161123 01 T1

Helheim LT05 L1TP 232014 19860817 20170216 01 T1 Helheim LT05 L1TP 232013 19880907 20170206 01 T1

Helheim LT05 L1TP 233013 19910603 20180228 01 T2 Helheim LT05 L1TP 232013 19910714 20180228 01 T1

Helheim LT05 L1TP 232013 19920529 20180228 01 T2 Helheim LT05 L1TP 232013 19920614 20180228 01 T2

Helheim LT05 L1TP 232013 19920902 20180228 01 T1 Helheim LT05 L1TP 232014 19930430 20180228 01 T2

Helheim LT05 L1TP 233013 19930608 20180228 01 T2 Helheim LT05 L1TP 233013 19940830 20170113 01 T2

Helheim LT05 L1TP 232013 19950420 20180228 01 T2 Helheim LT05 L1TP 232014 19950420 20180228 01 T2

Helheim LT05 L1TP 232014 19950826 20180228 01 T1 Helheim LT05 L1TP 233013 19960702 20180228 01 T1

Helheim LT05 L1TP 232013 19970511 20180228 01 T2 Helheim LT05 L1TP 232013 19970628 20180228 01 T1

Helheim LT05 L1TP 232013 19980530 20161224 01 T1 Helheim LT05 L1TP 232013 19980903 20161222 01 T1

Hutchinson LE07 L1TP 230012 20050831 20170114 01 T1 Hutchinson LE07 L1TP 230012 20130501 20161124 01 T2

Illullip LE07 L1TP 021007 20010422 20170206 01 T1 Illullip LE07 L1TP 019007 20130527 20161124 01 T1

Inngia LC08 L1TP 014009 20180615 20180703 01 T1 Inngia LE07 L1TP 013009 20050425 20170115 01 T1

Inngia LE07 L1TP 014009 20070406 20170104 01 T1 Inngia LT05 L1TP 013009 19850917 20170218 01 T1

Inngia LT05 L1TP 013009 19930416 20180220 01 T1 Issuusarsuit LE07 L1TP 024006 20050812 20170113 01 T1

Jakobshavn LC08 L1TP 008012 20131029 20170429 01 T1 Jakobshavn LC08 L1TP 008012 20170602 20170615 01 T1

Continued on next page
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Table A3 – Continued from previous page

Domain Scene ID Domain Scene ID

Jakobshavn LE07 L1TP 010011 20010324 20170206 01 T1 Jakobshavn LT05 L1TP 008011 19860512 20170218 01 T1

Jakobshavn LT05 L1TP 008011 19950505 20180220 01 T1 Kakiffaat LE07 L1TP 017008 20050827 20170114 01 T1

Kangerdluarssup LC08 L1TP 013009 20170723 20170809 01 T1 Kangerdluarssup LE07 L1TP 011010 20130519 20161124 01 T1

Kangerlussuaq LE07 L1TP 231012 20030427 20170125 01 T2 Kangerlussuaq LE07 L1TP 231012 20120419 20161202 01 T2

Kangerlussuaq LT05 L1TP 229012 19970607 20180227 01 T1 Kangerlussuup LE07 L1TP 012010 20030920 20170124 01 T1

Kangerlussuup LE07 L1TP 014009 20090902 20161220 01 T1 Kangerlussuup LT05 L1TP 011010 20090617 20161025 01 T1

Kangiata-Nunaata LC08 L1TP 005015 20170613 20170628 01 T1 Kangiata-Nunaata LE07 L1TP 005015 20020815 20170128 01 T1

Kangiata-Nunaata LT05 L1TP 006015 19950405 20170109 01 T1 Kangilleq LE07 L1TP 011010 20060703 20170109 01 T1

Kjer LC08 L1TP 019007 20150914 20170404 01 T1 Kjer LE07 L1TP 019007 20020411 20170131 01 T1

Kjer LT05 L1TP 019007 19870613 20170212 01 T1 Kong-Oscar LC08 L1TP 024006 20150731 20170406 01 T1

Kong-Oscar LC08 L1TP 023006 20160608 20170324 01 T1 Kong-Oscar LE07 L1TP 022006 20060918 20170107 01 T1

Kong-Oscar LT05 L1TP 024006 19980326 20161225 01 T1 Kælvegletscher LC08 L1TP 229012 20140809 20170420 01 T1

Kælvegletscher LE07 L1TP 231012 20050603 20170114 01 T2 Kælvegletscher LE07 L1TP 231012 20120825 20161129 01 T1

Kælvegletscher LT05 L1TP 230012 19970614 20180227 01 T1 Lille LE07 L1TP 009011 20020405 20170131 01 T1

Lille LE07 L1TP 009011 20110921 20161206 01 T1 Midg̊ard LT05 L1TP 232013 19950927 20180228 01 T1

Nansen LC08 L1TP 023006 20150318 20170412 01 T1 Nansen LE07 L1TP 022006 20080705 20161228 01 T1

Narsap LE07 L1TP 006015 20020518 20170130 01 T1 Narsap LT05 L1TP 005015 19870915 20170211 01 T1

Nordenskiold LE07 L1TP 022006 20010718 20170204 01 T1 Nordenskiold LT05 L1TP 022006 19850815 20170219 01 T1

Continued on next page
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Table A3 – Continued from previous page

Domain Scene ID Domain Scene ID

Nordfjord LE07 L1TP 231012 20030427 20170125 01 T2 Nordfjord LE07 L1TP 231012 20120606 20161202 01 T1

Nordfjord LT05 L1TP 229012 19960722 20180227 01 T1 Nordre-Parallelgletsjer LE07 L1TP 230012 20040625 20170120 01 T1

Nordre-Parallelgletsjer LE07 L1TP 229012 20120624 20161130 01 T1 Nordre-Parallelgletsjer LT05 L1TP 229012 19970522 20180227 01 T2

Nunatakassaap LE07 L1TP 021007 20020831 20170128 01 T1 Nunatakassaap LE07 L1TP 020007 20110427 20161209 01 T1

Nunatakavsaup LC08 L1TP 015008 20150630 20170407 01 T1 Nunatakavsaup LE07 L1TP 016008 20070522 20170103 01 T1

Perlerfiup LC08 L1TP 011010 20170709 20170717 01 T1 Perlerfiup LT05 L1TP 011010 19890407 20170204 01 T1

Polaric LE07 L1TP 230012 20120412 20161202 01 T2 Polaric LT05 L1TP 229012 19960722 20180227 01 T1

Qeqertarsuup LE07 L1TP 017008 20090806 20161218 01 T1 Rink-Gletsjer LE07 L1TP 025006 20000415 20170212 01 T1

Rink-Isbrae LC08 L1TP 011010 20140412 20170423 01 T1 Rink-Isbrae LE07 L1TP 012010 20050808 20170114 01 T1

Rink-Isbrae LT05 L1TP 013009 19860616 20170217 01 T1 Rink-Isbrae LT05 L1TP 012010 19900519 20170130 01 T1

Rosenborg LT05 L1TP 229012 19970420 20180227 01 T2 Saqqarliup LE07 L1TP 009011 20060721 20170109 01 T1

Sermeq-Avannarleq-69 LC08 L1TP 008012 20181011 20181030 01 T1 Sermeq-Avannarleq-69 LE07 L1TP 008011 20090823 20161218 01 T1

Sermeq-Avannarleq-70 LC08 L1TP 011010 20140428 20170423 01 T1 Sermeq-Avannarleq-70 LE07 L1TP 009011 20080811 20161225 01 T1

Sermeq-Avannarleq-70 LT05 L1TP 010011 19940516 20170115 01 T1 Sermeq-Avannarleq-73 LE07 L1TP 016008 20010505 20170205 01 T1

Sermeq-Avannarleq-73 LT05 L1TP 019007 19910507 20180221 01 T2 Sermeq-Kujalleq-70 LE07 L1TP 010011 20040908 20170119 01 T1

Sermeq-Kujalleq-70 LE07 L1TP 011010 20130706 20161123 01 T1 Sermeq-Kujalleq-73 LC08 L1TP 018008 20180510 20180517 01 T1

Sermeq-Kujalleq-73 LT05 L1TP 017008 19870412 20170213 01 T1 Sermeq-Silarleq LE07 L1TP 012010 20090429 20161220 01 T1

Sermilik LE07 L1TP 011010 20040510 20170120 01 T1 Sermilik LE07 L1TP 012010 20130323 20161124 01 T1

Continued on next page
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Table A3 – Continued from previous page

Domain Scene ID Domain Scene ID

Sorgenfri LE07 L1TP 229012 20000319 20170212 01 T2 Sorgenfri LE07 L1TP 229012 20120726 20161130 01 T1

Steenstrup LC08 L1TP 020007 20160416 20170326 01 T1 Steenstrup LE07 L1TP 021007 20010828 20170203 01 T1

Steenstrup LT05 L1TP 019007 19910523 20180221 01 T1 Styrtegletsjer LE07 L1TP 229012 20000420 20170212 01 T2

Styrtegletsjer LE07 L1TP 229012 20100416 20161214 01 T1 Styrtegletsjer LT05 L1TP 230012 19910529 20180227 01 T1

Sverdrup LC08 L1TP 024006 20170821 20170911 01 T1 Sverdrup LE07 L1TP 022006 20100508 20161214 01 T1

Søndre-Parallelgletsjer LE07 L1TP 231012 20010405 20170205 01 T2 Søndre-Parallelgletsjer LE07 L1TP 231012 20120708 20161130 01 T1

Umiammakku LC08 L1TP 015009 20170331 20170414 01 T1 Umiammakku LE07 L1TP 013009 20050409 20170115 01 T1

Umiammakku LE07 L1TP 014009 20110620 20161209 01 T1 Upernavik-NE LC08 L1TP 015008 20130928 20170502 01 T1

Upernavik-NE LC08 L1TP 082235 20160708 20170323 01 T1 Upernavik-NE LC08 L1TP 082236 20190514 20190521 01 T1

Upernavik-NE LE07 L1TP 014009 20040616 20170120 01 T1 Upernavik-NE LT05 L1TP 017008 19950909 20180220 01 T1

Upernavik-SE LC08 L1TP 016008 20160506 20170326 01 T1 Upernavik-SE LE07 L1TP 014009 20090427 20161222 01 T1

66



A.8 Selected Relative Advance and Retreat Graphs

Figure A13: Terminus Advance and Retreat Over Time for Hayes Gletsjer. Dotted lines from 1972-1985 that indicate
a lack of seasonal observations.
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Figure A14: Terminus Advance and Retreat Over Time for Upernavik Isstrom N-C. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.

Figure A15: Terminus Advance and Retreat Over Time for Upernavik Isstrom S. Dotted lines from 1972-1985 that
indicate a lack of seasonal observations.
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Figure A16: Terminus Advance and Retreat Over Time for Rink Isbrae. Dotted lines from 1972-1985 that indicate a
lack of seasonal observations.

Figure A17: Terminus Advance and Retreat Over Time for Jakobshavn Isbrae. Dotted lines from 1972-1985 that
indicate a lack of seasonal observations.
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Figure A18: Terminus Advance and Retreat Over Time for Petermann Gletsjer. Dotted lines from 1972-1985 that
indicate a lack of seasonal observations.

Figure A19: Terminus Advance and Retreat Over Time for Kong Oscar Gletsjer. Dotted lines from 1972-1985 that
indicate a lack of seasonal observations.

70



Figure A20: Terminus Advance and Retreat Over Time for Kangerlussuaq Gletsjer. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.

Figure A21: Terminus Advance and Retreat Over Time for Helheim Gletsjer. Dotted lines from 1972-1985 that
indicate a lack of seasonal observations.

71



Figure A22: Terminus Advance and Retreat Over Time for Kangiata Nunaata Sermia. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.
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A.9 Regional Relative Advance and Retreat Graphs

Figure A23: Regional Terminus Advance and Retreat Over Time for Greenland. Dotted lines from 1972-1985 that
indicate a lack of seasonal observations.
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Figure A24: Regional Terminus Advance and Retreat Over Time for NW Greenland. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.
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Figure A25: Regional Terminus Advance and Retreat Over Time for CW Greenland. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.
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Figure A26: Regional Terminus Advance and Retreat Over Time for CE Greenland. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.
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Figure A27: Regional Terminus Advance and Retreat Over Time for SE Greenland. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.
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Figure A28: Regional Terminus Advance and Retreat Over Time for SW Greenland. Dotted lines from 1972-1985
that indicate a lack of seasonal observations.
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