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Abstract

Adaptive quantum mechanical (QM) / molecular mechanical (MM) methods enable

efficient molecular simulations of chemistry in solution by describing reactive subregions

with an accurate many-body potential energy expression (QM) while the rest of the

system is described in a more approximate manner (MM). As solvent molecules dif-

fuse in and out of the reactive region, they are gradually included into (and excluded

from) the many-body QM potential. It would be desirable to model such system
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using an adaptive Hamiltonian, but so far it has resulted in distorted structures at

the boundary between the two regions. Here, we propose a Hamiltonian scheme to

describe adaptively solvent diffusion across a multi-scale boundary separating configu-

rational potentials that cannot be expressed by a multi-body expansion. The adaptive

expressions are entirely general, and complimentary to all standard (non-adaptive)

QM/MM embedding schemes available. We demonstrate the validity of our approach

on a system described by two different MM potentials (MM/MM’), in which long-range

interactions are treated by many-body Ewald summation. Our Hamiltonian approach

provides both energy conservation and the correct solvent structure everywhere in the

system, thus enabling microcanonical adaptive QM/MM simulations that can be used

to obtain vibrational spectra and dynamical properties.

1 Introduction

Molecular dynamics (MD) simulations of chemical processes in a complex environment can

be significantly accelerated with a dual-resolution approach, modeling the region of interest

(active or A-region, Figure 1) at high resolution (HR), while the environment (E-region,

Figure 1) is modeled at lower resolution (LR).1–3 Conventional dual-resolution approaches4,5

define the active region as a preselected set of atoms. This strategy works well if the molecular

system is rigid, but in a solute-solvent system HR solvent molecules readily diffuse away from

the active region, to be replaced by LR solvent molecules. Adaptive resolution methods

address this issue by dynamically assigning molecules HR or LR character based on their

proximity to the active site.6–13 Generally, this procedure involves a transition region that

connects smoothly the active and environment regions (T-region, Figure 1). The solvent

molecules in the T-region have partial HR and partial LR character, and the description of

each solvent molecule s smoothly changes from HR to LR (or vice versa) as it moves across

the region. The HR character fraction changes with the distance rs from a predefined HR

center (Figure 1, blue water molecule).
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Adaptive resolution methods fall into two categories. The first category combines complex

many-body potential energy expressions, of which the combination of quantum mechanics

(QM) and molecular mechanics (MM) is the most common example (QM/MM). Other exam-

ples include QM/QM, but also MM/MM, since some MM descriptions employ many-body

expressions like Ewald summations to describe interactions across periodic boundaries.20

The second category combines potential energy expressions that can be reduced to a simple

sum over particle pairs, such as most MM and coarse grained (CG) particle descriptions

(MM/CG).14–17 While the two problems are similar, MM/CG developments cannot always

straightforwardly be extended to QM/MM, because the use of a QM potential in the HR

region involves further layers of complexity, stemming from its many-body configurational

nature. (DD: among the other problems that we do not consider here, we could

also mention that the number of electrons may not be conserved and that we

remove electronic degrees of freedom)

Figure 1: (color online). Schematic representation of an adaptive dual-resolution descrip-
tion of water in water, partitioned into an A-region [dark grey (orange)], a T-region [light
grey (yellow)], and an E-region [white], around a central dark grey (blue) water molecule.
Ball&Stick water molecules are HR, and LR molecules are depicted with thick lines. The
HR character of a solvent molecule s is determined by its distance rs from the HR center.

Currently, there are only few examples of adaptive QM/MM simulations based on a

Hamiltonian formalism (energy conserving).6,8 In all practical situations, the proposed meth-

ods failed to provide reliable solvent structures, while alternative non-Hamiltonian schemes
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performed much better in this respect.8,18 Similar findings also directed MM/CG develop-

ments19, until very recently, when a Hamiltonian approach was introduced (H-AdResS) that

conserves both energy and solvent structure.17 This approach relies on the MM/CG energy

expression being written as a sum over pair-wise interactions. In this paper we reformulate

the energy and force expressions for the state-of-the-art Hamiltonian adaptive QM/MM ap-

proaches (DD: references here?) in terms that match the simpler MM/CG expressions.

From such expressions we derive a novel Hamiltonian scheme that connects different many-

body potentials (e.g. QM/MM, QM/QM, or many-body MM/MM) and provides accurate

geometries whilst conserving the total energy. The novel approach is an extension of current

adaptive QM/MM formulations, and is very general in that it can be combined with many

of the available flavors.6,8,9

This paper is organized as follows. In Section 2 we introduce the theory behind adaptive

dual-resolution simulations. We first compare the latest adaptive MM/CG and QM/MM

expressions, and we discuss the H-AdRes MM/CG correction to the Hamiltonian. We then

rewrite the adaptive QM/MM (many-body) expressions so that we can define the criteria for

a ’per particle’ correction analogue to MM/CG. Finally, we discuss a simple correction that

has been applied in previous works,7,8,22 and introduce our novel HadQMMM correction.

(DD: don’t like HadQMMM, as I think that it is misleading. How about calling

it Hamiltonian adaptive many-body correction HAMBC?) In Section 3, we illustrate

a test case that we use to prove our our adaptive simulation scheme, and we provide the

computational details. In Section 4, we present the results of two possible ’per particle’

corrections to the Hamiltonian, and show that the HadQMMM correction results in accurate

solvent structures, whilst conserving the total energy.
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2 Theory

The Hamiltonian of any system consists of a global kinetic energy function T (p) (of momen-

tum vector p), and a potential energy function V (r) (of coordinate vector r) describing all

interactions in the system. In this section we first compare the potential energy expressions

V (r) currently used in adaptive MM/CG and QM/MM simulations. Then we explain why

these uncorrected expressions produce inaccurate forces on the particles, and we describe

the ’per particle’ H-AdRes correction to the MM/CG Hamiltonian. We then deduce the

criteria for an analogue ’per-particle’ correction to the many-body QM/MM Hamiltonian,

and discuss a simple correction that has been previously applied. In the final subsection we

derive our novel HadQMMM correction from the criteria presented before.

2.1 Adaptive Dual-Resolution Potential Energy Expressions

The H-AdResS approach combines an MM and a CG potential (V MM(r) and V CG(r)) into a

global V MM/CG(r). Since V MM(r) and V CG(r) can both be expressed as a sum of pair-wise

interaction terms, the combined potential energy can also be written as a sum over particle

pairs,

V MM/CG(r) =
∑
α<β

(λα + λβ
2

V MM
αβ + (1− λα + λβ

2
)V CG

αβ

)
, (1)

with Vαβ = V (rα−rβ) an interaction potential for the particle pair αβ, and λα/β = λ(rα/β) a

simple continuous function of the distance rα/β of particle α/β to the center of the A-region.

The function λα/β constitutes the contribution (or weight) of the MM potential V MM
αβ , and

expresses the MM (HR) character of the particle.17 It has a value 1 if particle α/β is in the

A-region, a value 0 in the E-region, and a fractional number between 1 and 0 in the T-region.

In contrast, a many-body interaction potential cannot be decomposed into pair contribu-

tions, and the dual-resolution potential must be expressed in global terms (DD: what do

you mean by ”global”?). Conventional QM/MM methods partition the molecular system
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into a set of fully QM solvent molecules and a set of fully MM solvent molecules. Labeling a

specific choice of QM/MM partitioning p, with the set of QM molecules named Sp and the

complementary set of MM molecules S ′p, the QM/MM potential energy becomes,

Ep(r) = V QM
Sp + V MM

S′p + Vint(r). (2)

Here V QM
Sp = V QM(rSp) is the QM potential energy for the subsystem of molecules belonging

to the set Sp, and Vint(r) is an interaction energy between the two types of molecules,

which can be defined in several different ways.21 Mechanical embedding and electrostatic

embedding are the most common choices for this interaction energy, although many other

options are available. The expression in Eq. 2 is completely general, covering all types of

QM/MM embedding.

An adaptive QM/MM simulation must account for the fact that all solvent molecules

in the T-region have different partial QM characters. This can be achieved by including

contributions from different partitions into the global potential energy expression.6

V QM/MM(r) =
∑
p∈P

σp(r)Ep(r). (3)

Here P is the set of all possible partitions p (2n partitions in case of n solvent molecules).

The function σp(r) denotes the contribution (or weight) of partition p, and the sum over all

weights equals 1 (
∑

p∈P σp(r) = 1). Each weight σp(r) is a function of the coordinates of

all atoms. The fractional QM character ωs(r) of a solvent molecule with label s is then the

sum of weights of the contributing partitions that describe this solvent molecule QM. It is

the QM/MM analogue of λα in MM/CG, and can be written as,

ωs(r) =
∑
p∈P

δs(Sp)σp(r), (4)

with δs(Sp) the Dirac measure (DD: this is not a Dirac distribution, it is a step
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function - Heaviside - or if you want a Kronecker δ), which is 1 if s ∈ Sp and 0 if

s ∈ S ′p. The concept of combinatorial partitions is schematically visualized in Figure 2 for

the simple case of only two solvent molecules in the T-region. Partitions P1−P4 describe all

solvent molecules in the A-region as QM and all molecules in the E-region as MM, and should

therefore provide all important contributions to V QM/MM(r). Partitions P5 and P6 describe a

molecule in the E-region as QM, or a molecule in the A-region as MM, and should therefore

not contribute. The general form of the energy expression in Eq. (3) is used in many of the

current adaptive QM/MM methods.6,8,9 The expressions only differ in the functional form

of the weights σp(r).

The adaptive QM/MM methods that use the general expression in Eq. (3) are Per-

muted Adaptive Partitioning (PAP),6 Sorted Adaptive Partitioning (SAP),6 Difference-

based Adaptive Solvation (DAS),8 and Size-Consistent Multi-Partitioning (SCMP).9 The

PAP method defines non-zero weight functions for all QM/MM permutations of T-region

molecules (P1 − P4, Figure 2), which comes down to exponential scaling of the computa-

tional cost with the number of molecules in the T-region (M). The DAS method reduces

the computational cost by assigning zero weight to a (much) larger number of partitions. In

principle only contributions from ’ordered’ partitions (P1-P3 Figure 2) are non-zero, but to

ensure continuity of the forces extra partitions are included if two solvent molecules are at

similar distance from the QM center. As a result, DAS scales approximately linear with M

provided that the solvent structure in the T-region does not contain regions of extremely

high density. Like DAS, the SAP weight-functions are only non-zero for ’ordered’ partitions.

The SAP computational costs scale linear with M in all cases, but this is achieved at the

cost of the simplicity of the weight-functions. The SAP potential energy surface is very steep

in places, and simulations require a small time-step for proper integration of the equations

of motion. Finally, the SCMP weight functions are constructed in such a way that the num-

ber of contributing partitions is conserved throughout the simulation, and all contributing

partitions always have the same number of QM (HR) molecules. As a result, an SCMP
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simulation on a parallel platform can exhibit nearly perfect linear scaling behavior.
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Figure 2: Six possible QM/MM partitions, with QM molecules depicted as Ball&Stick and
MM molecules as thick lines. Partitions P1−P4 may all contribute to the adaptive QM/MM
energy expression, while by construction P5 and P6 do not.

2.2 Transition forces

The forces derived from the adaptive QM/MM potential energy in Eq. 3 have the form,

F
Q/M
i (r) = −

∑
p∈P

σp(r)
∂Ep(r)

∂xi
−
∑
p∈P

∂σp(r)

∂xi
Ep(r)

= F ad
i (r) + F tr

i (r), (5)

where xi is a component of the vector r. This negative gradient of the potential energy is a

sum of two terms: a so called adaptive force F ad
i (r) and a transition force F tr

i (r). The former

term is a linear combination of force terms derived from a conventional QM/MM potential

energy (Eq. (2)), but the second term (the transition force) contains the gradients of the

weights, and causes anomalies in the structure of the solvent.8,18

A pragmatic solution to the problem of the distorted structures is to discard the Hamil-

tonian formalism, and simply neglect the offending term (e.g. use only F ad
i (r) in Eq. (5) for

propagation). It has been demonstrated repeatedly that, while such non-Hamiltonian simu-

lations do not conserve energy (the applied forces do not integrate to a consistent potential

energy19), they do provide reliable structures.8,18,22,23 Nonetheless, giving up a Hamiltonian

formalism has fundamental and practical consequences.17 Without a well-defined energy a
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partition function cannot be defined, and it is difficult to interpret the meaning of average

values obtained from a simulation. In practice, the MD simulations require local thermostats

with strong coupling to prevent heating, and the reliability of dynamical quantities (diffusion

coefficients, time correlation functions) is compromised.22

A more rigorous solution is to adjust the Hamiltonian with an extra term in the potential

energy expression of Eq. (3). The gradient of this term should then effectively cancel F tr
i (r).

The H-AdResS approach pursues the MM/CG equivalent of this strategy. The MM/CG

forces derived from Eq. (1) have the form,

F
MM/CG
αi (r) = −

∑
β

(
λα + λβ

2

∂V MM
αβ

∂xiα
+ (1− λα + λβ

2
)
∂V CG

αβ

∂xiα

)
− 1

2

∂λα
∂xiα

∑
β

[V MM
αβ − V CG

αβ ], (6)

where the last term, containing the gradient of the MM/CG weight function λα, is the

equivalent of F tr
i (r) in Eq. (5), and has similar catastrophic effects on the structure of

the system. Unlike the QM/MM force expression in Eq. (5), the simpler MM/CG force

expression in Eq. (6) clearly shows that the transition force scales linearly with the difference

between the two types of interaction energy (MM and CG) of particle α with the rest of the

system. In a thermodynamic perspective this energy difference determines the free energy

released or absorbed when particle α is converted from CG to MM.17 At fixed conformation

of the system this energy difference is the vertical difference between two potential energy

surfaces at a specific position r. For each particle α the H-AdResS approach applies a

correction term to the potential energy expression in Eq. (1). This term is constructed such

that its gradient effectively cancels the vertical energy release for particle α.

2.3 ’Per Molecule’ Correction to a Many-Body Hamiltonian

In this work we show that we can arrive at a similar ’per particle’ correction for the QM/MM

potential energy expression in Eq. (3). The first step is to rewrite Eq. (5) into a form
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comparable to Eq. (6). We define an empty set of QM molecules S0 associated to the

QM/MM potential energy E0(r) that describes the system fully MM. In Eq. (3) the sum

of the weights σp(r) equals 1 (
∑

p∈P σp(r) = 1), so that σ0(r) = 1 −
∑

p∈P
p 6=0

σp(r). We can

therefore rewrite Eq. (3) as,

V QM/MM(r) =
∑
p∈P
p6=0

σp(r)Ep(r) +
(

1−
∑
p∈P
p 6=0

σp(r)
)
E0(r), (7)

and the transition force defined in Eq. (5) as,

F tr
i (r) = −

∑
p∈P
p6=0

∂σp(r)

∂xi
(Ep(r)− E0(r)) . (8)

Eq. (8) shows that the transition force F tr
i (r) is linearly dependent on the difference be-

tween the partition energies Ep(r) and the fully MM potential energy E0(r). This can be

seen as the energy release when all the QM solvent molecules in a set Sp are converted

to MM. Analogously to the MM/CG expressions we can simply divide this term into ’per

molecule’ contributions, representing the energy released when the specific solvent molecule

is converted from QM to MM,

∆Ep(r) = Ep(r)− E0(r) =
∑
s∈Sp

∆εps(r). (9)

Note that ∆Ep(r) is different for each global geometry r and for each partition p, and that

Eq. (9) assumes nothing about the definition of ∆εps(r). In fact, there is no unique way to

subdivide ∆Ep(r) into molecular contributions, since they depend on the order in which the

molecules are converted to MM.

The intuitive solution is to assume equal contributions from all molecules s in Eq. (9).

Earlier attempts at a Hamiltonian expression went one step further,6,8 and also assumed

similar contributions for each partition p and geometry r, attempting to cancel each ∆εps(r)
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with the same constant C. An appealingly simple choice for C is the difference in QM and

MM energies for a single (gas phase) molecule at the geometries rQM
s and rMM

s optimized

with the respective methods (C = V QM(rQM
s ) − V MM(rMM

s )). A corrected potential energy

expression of the form,

Ṽ QM/MM(r) = V QM/MM(r)−
∑
p∈P

σp(r)
∑
s∈Sp

C, (10)

has the desired corrected gradient,

F̃
QM/MM
i (r) = F ad

i (r)−
∑
p∈P

∂σp(r)

∂xi

(
Ep(r)−

∑
s∈Sp

C
)

(11)

= F ad
i (r)−

∑
p∈P
p 6=0

∂σp(r)

∂xi

(
Ep(r)−

∑
s∈Sp

C − E0(r)
)
. (12)

The sum in Eq. (12) equals the sum in Eq. (11) because for partition p = 0 no correction

term applies as S0 is an empty set. If C is indeed a good representation of ∆εps(r) for each

geometry r, QM/MM partition p, and solvent molecule s, then each Ep(r) is corrected to

be similar to E0(r), and the transition force (Eq. (8)) is approximately canceled. However,

it has previously been shown that such a simple correction results in equilibrium solvent

structures with an extreme depletion of solvent molecules across the T-region.7,8,22

The depletion in the transition region can be explained using insights presented in the H-

AdResS paper.17 The authors suggested that the energy release upon conversion of a particle

α from MM to CG (
∑

β[V MM
αβ −V CG

αβ ] depends strongly on the fractional MM (HR) character

of α (λα) as reflected in its geometry. In our QM/MM simulations the analogue of λα is ωs(r).

For a molecule in the A-region with ωs(r) = 1 and energy Ex, the geometry will resemble

the equilibrium QM geometry. Therefore the MM potential energy of the molecule in this

configuration will be higher than Ex and the energy increase upon converting molecule s from

QM to MM will be negative (〈∆εps(r)〉ωs=1 < 0: Figure 3, black versus red line). The reverse

argument holds for the energy of a molecule in the E-region, for which 〈∆εps(r)〉ωs=0 > 0
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(Figure 3, black versus blue line). This already explains why a simple correction using a

constant C cannot be sufficient. In the T-region, the molecule neither has the equilibrium

QM geometry, nor the equilibrium MM geometry. Due to these non-equilibrium geometries

both the QM and the MM energies will have a value higher than Ex. Any combination of

a QM and an MM description will therefore raise the energy above Ex, which is reflected in

the higher energies of particles in the T-region (Figure 3), leading to a local depletion of the

water density in this region.

Figure 3: Schematic representation of QM, MM, and adaptive QM/MM potential energies
after correction according to Eq. (10).

2.4 The HadQMMM Correction

The above argumentation implies a trend in the error of the water densities that depends

on the distance of the water molecules to the QM center. This distance is directly related to

the QM-character of the water molecules (1 at short distances, 0 at large distances). Such

a trend complies with insights put forward in Ref.17 stating that the energy release upon

conversion of a particle α from MM to CG (
∑

β[V MM
αβ −V CG

αβ ], Eq. (6)) depends strongly on its

fractional MM character as reflected in its geometry. Similar to Ref.17 the final step towards

a working Hamiltonian approach is to approximate
∑

s∈Sp ∆εps(r) with an expression that

depends on the QM character ωs(r) of each molecule s. The chosen ’per molecule’ correction

term is an (ensemble) average over all coordinates r, partitions p, and solvent molecules s at

a specified value for ωs: 〈∆εps(r)〉ωs . In the following, we will show that correcting the ’per

molecule’ energy release ∆εps(r) with this average is equivalent to correcting the potential

12



energy expression V QM/MM(r) with a function Hc(ωs) for each molecule s, as long as dHc(ωs)
dωs

equals 〈∆εps(r)〉ωs . For a system of n solvent molecules,

V̂ QM/MM(r) = V QM/MM(r)−
n∑
s=1

Hc (ωs) . (13)

The forces derived from this expression have the form,

F̂
QM/MM
i (r) = F ad

i (r)−
∑
p∈P

∂σp(r)

∂xi
Ep(r)

+
n∑
s=1

dHc (ωs)

dωs

∂ωs(r)

∂xi
. (14)

Since ωs(r) is a sum over σp(r) values for those partitions that describe molecule s QM

(Eq. (4)), we can express its gradient to xi as follows,

n∑
s=1

∂ωs(r)

∂xi
=

n∑
s=1

∑
p∈P

δs(Sp)
∂σp(r)

∂xi
=
∑
p∈P

∂σp(r)

∂xi

∑
s∈Sp

1 (15)

Inserting Eq. (15) into Eq. (14) we obtain,

F̂
QM/MM
i (r) = F ad

i (r)−
∑
p∈P

∂σp(r)

∂xi

(
Ep(r)−

∑
s∈Sp

dHc(ωs)

dωs

)
(16)

= F ad
i (r)−

∑
p∈P
p 6=0

∂σp(r)

∂xi

(
Ep(r)−

∑
s∈Sp

dHc(ωs)

dωs
− E0(r)

)
.

If dHc(ωs)
dωs

is a good estimate for the ∆εps(r) value of a solvent molecule s with QM character

ωs(r) at any geometry r accessed during the simulation, then Ep(r) is corrected towards

the MM potential energy E0(r), and the transition force F tr
i (r) in Eq. (8) is approximately

canceled.

Since we know that the NVT ensemble of structures is well-reproduced by a non-Hamiltonian

simulation using the force expression F ad
i (r) in Eq. (5),23 the ensemble average dHc(ωs)

dωs
=

13



〈∆εps(r)〉ωs can be extracted from such a non-Hamiltonian simulation. The energy differences

(∆εps(r)) that are obtained from the non-Hamiltonian simulation are the differences in energy

between two QM/MM partitions that differ only in the description of one solvent molecule.

For example, in Figure 2 the value of ∆εP1
3 (r) for solvent molecule 3 and partition P1 is

defined as the difference between EP1(r) and EP2(r). The correction term in the energy

Hc (ωs) (Eq. (15)) can be obtained by thermodynamic integration33 of this average over ωs,

Hc (ωs) =

∫ ωs

0

〈∆εps(r)〉ω′
s
dω′s. (17)

The above integral is by definition zero for solvent molecules that are purely MM (ωs = 0).

3 Computational Details

We demonstrate the performance of our approach on a test system of water in water, using

the adaptive QM/MM weight-functions σp(r) as formulated in the SAP method.6 The SAP

method has been selected in this work for a practical reason. The number of contributing

partitions to the SAP expression always equals M + 1, while the DAS method,8 due to the

construction of the weight functions, includes more partitions when the solvent structures

exhibit extreme distortions in the T-region (e.g. Hamiltonian simulations with a simple

correction). Please note that for simulations with homogeneous solvent structures the SAP

and DAS methods compute an equal number of partition terms. All simulations were per-

formed with FlexMD, a python library that serves as a wrapper around several molecular

program packages, each providing the required QM or MM energies and forces. FlexMD

itself is distributed with the ADF program package,27,28 and uses the atomistic simulation

environment (ASE)29 for MD propagation. Our model system is a 30.025 Å periodic simu-

lation box containing 915 water molecules. The active region (A-region) is a 5.5 Å sphere

around a central water molecule, while the transition region (T-region) is a 0.9 Å thick layer

around the A-region. The two selected potentials for our test simulations are both MM
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potentials, and we chose the SPC-Fw force-field to describe the central ’QM’ region,25 while

the environment region is described with the TIP3P-fs force-field.25,26 SCP-Fw and TIP3P-fs

energies and forces are both computed with the NAMD program,30 and the many-body char-

acter of both descriptions is introduced by the long-range electrostatics, for which Particle

Mesh Ewald (PME) is used.24 For the QM/MM interaction Vint(r) Eq. (2) we used simple

mechanical embedding.31,32 (DD: what do you mean here? Aren’t they interacting

via electrostatics as well?)

All simulations were first equilibrated for 10 ps at a water density of 1.01 g/mL in the

canonical ensemble (NVT), using a Langevin thermostat with a friction of 82.7 ps−1. The

equilibrated structures were used as starting geometries for 5 ps NVE simulations (DD:

still so short?) (0.1 fs time-step) using the Hamiltonian expressions Ṽ QM/MM(r) Eq. (10)

and V̂ QM/MM(r) Eq. (13). Additionally, five non-Hamiltonian simulations, using the forces

F ad
i (r) Eq. (5) for propagation, of 10 ps each were performed. The results from these five

simulations were combined to obtain the average structures of the solution, and used as

reference for all other results. These simulations also use a Langevin thermostat with a

friction of 82.7 ps−1. Each simulation has the same starting structure but varying starting

velocities, which were randomly generated. Finally, five 10 ps Hamiltonian NVT simulations

were performed with the simple correction term (Eq. (10)), using random starting velocities

and a 0.5 fs time-step. The same procedure was repeated with the HadQMMM correction

of Eq. (13). For all thermostatted simulations a time-step of 0.5 fs was used, and it was

verified that this yielded the same equilibrated structures as the NVE simulations with a

smaller time-step.

4 Results

As demonstrated previously,8,18,22,23 the non-Hamiltonian simulations using only F ad
i (r) to

propagate the trajectory result in a radial distribution (g(r)) of water-oxygens around the
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central oxygen atom O∗ that is very similar to the O-O radial distribution of SCP-Fw and

TIP3P-fs.25,26 The first sharp peak is located at 2.8 Å from the central oxygen atom, and

the second and third much shallower peaks lie at 4.4 Å and 6.7 Å respectively (Figure 4, red

line). We use this result as a reference for the performance of the Hamiltonian simulations.
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Figure 4: (color online). Radial distribution of oxygen around the central ‘QM’ water oxygen
atom O* for three different simulations: Non-Hamiltonian [dark grey (red)], Hamiltonian
using a simple constant correction [light grey (green) dotted], and HadQMMM [black dotted].

The corrected Hamiltonian approach using Ṽ QM/MM(r) (Eq. (10)) results in an O∗-O

radial distribution (Figure 4, green line) that deviates strongly from the reference. The

main difference is a depletion of the water density in the T-region, which is balanced by an

increased density at the edges of the A- and E-regions. The water densities on either side of

the T-region are similar, indicating that there is no significant chemical potential difference

between a ‘QM’ water molecule in the A-region and an MM water molecule in the E-region.

The correct density balance between the A- and E-regions is the result of the correction C,

which proves to be a good approximation for the chemical potential difference between a

QM and an MM water molecule at their respective equilibrium geometries.

Figure 4 also depicts the O∗-O g(r) resulting from a simulation using the potential energy

expression V̂ QM/MM(r) of Eq. (13) (HadQMMM). The approach clearly compensates for the

transition forces F tr
i (r) such that the correct solvent structure is obtained everywhere in the

solution. In the Supplemental Material the tabulated function Hc(ωs) is given in Table SI.

The merit of our novel Hamiltonian approach is further confirmed with micro-canonical
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(NVE) simulations that reveal no significant drift in total energy (no more than 0.005 kcal

mol−1 ps−1), which can be seen in Figure 5. This is in stark contrast to the total energy

drift in the non-Hamiltonian simulations of 10 kcal mol−1 ps−1.
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Figure 5: (color online). Total energy of the non-Hamiltonian [dark grey (red)], Hamil-
tonian with simple constant correction [light grey (green)], and HadQMMM [black (blue)]
simulations against simulation time.

5 Conclusions

In summary, we propose a new Hamiltonian adaptive dual-resolution approach that com-

bines two many-body potentials, and is able to correctly describe the structure of a molecular

solution while simultaneously conserving the total energy. The forces in a straightforward

Hamiltonian simulation (DD: unclear, what is a straightforward Hamiltonian sim-

ulation) consist of two terms, F ad
i (r) and F tr

i (r). The former term by itself provides the

correct equilibrium solvent structures, but the latter term causes artifacts. A crucial step

in our derivation is the separation of the transition force F tr
i (r) into characteristic contri-

butions from each solvent molecule. We then introduce a ’per molecule’ correction term

that is a function of the QM character of the molecule and that cancels the undesirable

transition force. When we extract the correction term from a non-Hamiltonian adaptive

QM/MM simulation, the resulting Hamiltonian can be used in simulations that conserve en-

ergy and preserve the solvent structure throughout the molecular system. The new approach

(HadQMMM) thus enables microcanonical simulations that provide meaningful fluctuations
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and response functions, and can be used to obtain vibrational spectra and other dynamical

properties.
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