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Abstract

Importance—Cerebral white matter hyperintensities (WMHs) are involved in the evolution of 

impaired mobility and executive functions. Executive functions and mobility are also associated. 

Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, 

by disrupting circuits responsible for executive functions. Understanding the mechanisms 

underlying impaired mobility in late life will increase our capacity to develop effective 

interventions.

Objective—To identify regional WMHs most related to slower gait and to examine whether 

these regional WMHs directly impact mobility, or indirectly by executive functions.

Design—Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and 

WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 

3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) 

were assessed. An L1–L2 regularized regression (i.e., Elastic Net model) identified the WMH 
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variables most related to slower gait. Multivariable linear regression models quantified the 

association between these WMH variables and gait speed. Formal tests of mediation were also 

conducted.

Setting—Community-based sample.

Participants—Two hundred fifty-three adults (mean age: 83 years, 58% women, 41% black).

Main Outcome Measure—Gait speed.

Results—In older adults with an average gait speed of 0.91 m/sec, total WMH volume, WMHs 

located in the right anterior thalamic radiation (ATRR) and frontal corpus callosum (CCF) were 

most associated with slower gait. There was a >10% slower gait for each standard deviation of 

WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: −0.11 [p = 0.046], 

−0.15 [p = 0.007] and −0.14 [p = 0.010], respectively). These associations were substantially and 

significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF 

than for ATRR or total WMH (standardized beta in m/sec [p value]: −0.07 [p = 0.190], −0.12 [p = 

0.024] and −0.10 [p = 0.049], respectively). Adjustment for 3MS did not change these 

associations. The mediation analyses also found that DSST significantly mediated the associations 

between WMHs and gait speed. Our models were adjusted for age, sex, BMI, quadriceps strength, 

years of education, standing height, and prevalent hypertension.

Conclusion—The impact, direct or indirect, of WMHs on gait speed depended on their location 

and was mediated by executive function. Thus, multi-faceted interventions targeting executive 

control functions as well as motor functions, such as balance and strength training, are candidates 

to the maintenance of mobility across the lifespan.

Keywords

White matter hyperintensities; Mobility; Cognitive function; Executive function; Gait speed; 
Mediation

Introduction

Impaired mobility in older adults is a significant public health concern. The prevalence of 

impaired mobility is 35% for community-dwelling older adults aged 70 years and older 

(Odenheimer et al., 1994). Reducing both the incidence and progression of impaired 

mobility could preserve functional independence, reduce health-care resource utilization, 

and sustain health-related quality of life in older adults. However, we must first gain a better 

understanding of the mechanisms underlying physical disability in late life to increase our 

capacity to develop valid screening strategies and effective interventions.

Neuroepidemiological studies highlight white matter hyperintensities (WMHs) in the 

evolution of impaired mobility in older adults (Annweiler and Montero-Odasso, 2012; 

Rosano et al., 2010; Wakefield et al., 2010; Zheng et al., 2011). White matter 

hyperintensities are common magnetic resonance imaging (MRI) findings among otherwise 

healthy older adults (Bolandzadeh et al., 2012; Breteler et al., 1994; Gunning-Dixon and 

Raz, 2000; Lindgren et al., 1994). These abnormalities are due to damage to the brain 

parenchyma (Kuo and Lipsitz, 2004), ranging from demyelination to complete axonal 
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disruptions (Frisoni et al., 2007; Galluzzi et al., 2008). Both regional and total WMH 

volume are independently associated with impaired mobility, specifically, gait speed 

(Rosano et al., 2010; Wakefield et al., 2010).

White matter hyperintensities are also associated with impaired cognitive function, in 

particular, executive functions. Specifically, the prefrontal subcortical networks contain 

neural circuits responsible for executive functions. These circuits are located in the 

watershed areas and are vulnerable to lower perfusion, and are thus at high risk for WMH 

formation. Therefore, WMHs in prefrontal subcortical regions may further affect the tracts 

important for executive functions. Executive functions include the ability to concentrate, to 

attend selectively, and to plan and to strategize.

Of particular relevance to our current study, lower executive functions are associated with 

impaired mobility. It is now widely recognized that gait depends on both higher-level 

cognitive function (i.e., executive functions) as well as sensorimotor processes (Malouin et 

al., 2003; Woollacott and Shumway-Cook, 2002; Yogev-Seligmann et al., 2008). For 

example, Rosano et al. (2005a) demonstrated that both global cognitive function, as 

measured by the Modified Mini-Mental State Examination (3MS), and executive functions 

and information processing speed, as measured by Digit Symbol Substitution Test (DSST), 

are associated with impaired gait in otherwise healthy older adults.

Given the established association between WMHs, mobility, and executive functions, we 

hypothesize that WMHs negatively impact mobility through two central pathways: 1) 

directly, by disrupting mobility-related circuits (Filley, 1998; Whitman et al., 2001; Zheng et 

al., 2012) (i.e., direct pathway; Fig. 1); and 2) indirectly, by disrupting circuits responsible 

for executive functions (Guttmann et al., 2000; Starr et al., 2003) (i.e., indirect pathway; Fig. 

1). It is also possible that WMH in the sensorimotor cortex is related to the executive 

functions performance. Therefore, we are exploring the mediating effects of cognition on 

both pathways.

If we demonstrate that the negative impact of WMHs in EF circuits on gait speed is 

mediated by cognitive function, then interventions targeting these networks, such as 

cognitive and aerobic and resistance training, should be key components in the management 

of older adults with impaired mobility. Both cognitive and aerobic and resistance training 

have been shown to be effective in promoting executive functions among older adults (Ball 

et al., 2002; Colcombe and Kramer, 2003; Liu-Ambrose et al., 2010; Nagamatsu et al., 2012; 

Verghese et al., 2010; Willis et al., 2006).

Thus, in this cross-sectional study, we examined whether WMHs directly impact mobility, 

or indirectly by executive functions (Fig. 1). Specifically, we seek to extend our current 

understanding of the relationship between WMHs and mobility by: a) identifying specific 

tracts in which WMH volumes are most strongly associated with gait speed, using an 

automated state of the art statistical method (Zou, 2005); and b) examining whether the 

association between WMHs and gait speed in the selected tracts is mediated by DSST or 

3MS. Moreover, due to a possible effect of age, sex, body mass index (BMI), quadriceps 

strength, chronic pain, and hypertension on the association between WMH, cognitive 
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function and gait speed, we are adjusting our models for these covariates. Identifying 

mechanisms underlying the association between WMHs and mobility will refine the focus in 

future research. This, in turn, will increase our capacity to identify and develop effective 

interventions to combat impaired mobility in older adults.

Methods

The Healthy Brain Project and participants

Our study participants were enrolled in the Healthy Brain Project (HBP). The HBP is an 

ancillary study on Health Aging and Body Composition (Health ABC) cohort to examine the 

association of structural white matter and gray matter abnormalities with age-related 

mobility impairment.

Among the 803 Health ABC participants alive in 2006 to 2008, 339 were eligible for 

inclusion in the HBP study: they walked without an assistive device, had completed the 6-

meter walking test, and were eligible for MRI scanning. Three hundred nineteen Health 

ABC participants were ineligible for inclusion in the HBP and 145 refused to participate. 

Among the 339 eligible for the HBP study, 13 changed their mind after consent, 1 person 

died prior to scanning, and 10 were not eligible for 3 Tesla (T) scanning (i.e., 315 were 

included and assessed). After removal of missing data across all variables of interest, the 

final sample size was 253.

Independent variables: total and focal WMH volume

Brain MRIs were acquired at the MRI Research Center, University of Pittsburgh Medical 

Center, with a 3 T scanner. Two sequences of T1-MPRAGE and T2-FLAIR were captured. 

An Automated Labeling Pathway (ALP) (Wu et al., 2006) was used to quantify volumes and 

localization of focal WMHs. The ALP method adapts a fuzzy connected algorithm to 

automatically segment the WMHs. Using Johns Hopkins University White Matter Atlas that 

includes 20 white matter tracts (Hua et al., 2008; Wakana et al., 2007), ALP then employs a 

demons-based image registration technique to automate the anatomical localization of the 

hyperintensities. The 21 anatomical WMH variables for this study are presented in 

Appendix 1. The total and focal WMHs are adjusted for total brain volumes.

Dependent variable: gait speed

Gait speed is a reliable biomarker of overall health and functional status in older adults 

(Abellan van Kan et al., 2009). Slower gait in older adults is a significant predictor of 

disability and mortality (Abellan van Kan et al., 2009; Studenski et al., 2011).

The GaitMat II velocity (EQ Inc., Chalfonte, PA) measured baseline gait speed. The 

GaitMat II is a 4-meter long walkway with embedded pressure sensors that facilitate gait 

analysis. In case of missing data from GaitMat II, gait speed was obtained from walking 

over 3, 4 or 6 meters.
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Mediators: cognitive function

We assessed global cognitive function, executive functions, and information processing 

speed. Global cognitive function was assessed using the 3MS (Teng and Chui, 1987). This 

test comprehensively evaluates cognitive domains of orientation, attention, calculation, 

language and short-term memory. Scores for the 3MS range from 0 to 100. Compared with 

the Mini-Mental State Examination, the 3MS assesses a broader range of cognitive 

processes.

Executive functions and information processing speed were indexed using the Digit Symbol 

Substitution Test (DSST) (Lezak, 1995). For this task, participants were first presented with 

a series of numbers (1 to 9) and their corresponding symbols. They were then asked to draw 

the correct symbol for any digit – placed randomly in pre-defined series – in 90 seconds. A 

higher number of correct answers in this time period indicated a better executive functions 

and processing speed.

Covariates: age, body mass index, quadriceps strength, years of education, standing 
height, prevalent hypertension, chronic pain

Age measured in years, sex, BMI calculated as kg/m2, years of education, and standing 

height in mm were added to our models. Quadriceps strength modifies the association 

between WMHs and gait speed (Rosano et al., 2005b, 2010). Thus, quadriceps strength was 

measured by the Kin-Com isometric dynamometer (Kin-Com Chattanooga, TN). We 

evaluated the average torque generated by the quadriceps (i.e., knee extensors) at 60 degrees 

per second. The mean of three trials and was used in our analysis.

Moreover, Rosano and colleagues (Buckalew et al., 2013) have shown that chronic pain 

might be a contributor in the association between white matter hyperintensities and 

disability. Therefore, chronic pain in knee, back, or leg was documented as a binary variable 

and added to the models as a covariate.

Prevalent hypertension for participants with average sitting systolic blood pressure ≥140 mm 

Hg or diastolic blood pressure ≥90 mm Hg concurrently or before the year of MRI, was also 

documented as a binary variable, and was added to the models as a covariate. This variable 

has been shown to be associated with both WMHs and gait speed in older adults (Rosano et 

al., 2011).

Statistical analysis

Our statistical analyses consisted of three phases: 1) data reduction to identify WMH tracts 

most associated with gait speed; 2) multivariable regression models to quantify the 

association between the variables of interests; and 3) formal tests of mediation analysis. The 

multivariable regressions as well as the mediation models were adjusted for age, BMI, and 

quadriceps strength.

For data reduction, we used Elastic Net (Zou, 2005) to identify which of the 21 WMH 

variables were most associated (i.e., minimal regularized regression error using cross-

validation) with gait speed. Elastic Net is an automated shrinkage and penalized statistical 

method. It is a preferred alternative to conventional variable selection methods, such as 

Bolandzadeh et al. Page 5

Neuroimage. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stepwise regression, that have been criticized for their bias, over-fitting, and exaggerated p 

values (Walter and Tiemeier, 2009). In Elastic Net, both L1 (i.e., the positive weighting 

parameter which promotes shrinkage in the regularized regression coefficients) and L2 (i.e., 

the weighting parameter which promotes stability on regularization) regularizations are 

introduced into the standard multiple linear regression model to shrink the coefficients to 

zero. For a given lambda (i.e., the L1 parameter) and an alpha between 0 and 1 (i.e., the L2 

parameter), Elastic Net minimizes the error as presented below.

Here, Y represents gait speed for our 253 participants, and X is a 253*21 matrix of WMH 

volumes for 21 WMH variables. λ was set to the default value of 100, and α was set to 0.5. 

This analysis was performed in Matlab (R2011b, Natick, Massachusetts, The Mathworks 

Inc.). The process of variable selection using the Elastic Net method is illustrated in Fig. 2a 

and explained in greater detail in Appendix 2.

For the second phase, multivariable linear regression models adjusted for age, sex, BMI, 

quadriceps strength, chronic pain, and prevalent hypertension were built with gait speed as 

the dependent variable and WMHs from specific tracts identified in phase one as 

independent variables. Each WMH tract was entered in a separate linear regression model, 

with and without adjustment for the putative mediators (e.g., DSST and MMSE).

For the third phase, mediation analyses were performed using PROCESS (Hayes, 2012), a 

computational macro developed for SPSS. For each WMH variable selected in phase one 

(i.e., data reduction) we constructed two mediation models—one for each cognitive 

mediating variable (i.e., 3MS and DSST). Each selected WMH variable was entered as the 

independent variable and gait speed as the dependent variable, while adjusting for age, BMI, 

and quadriceps strength. The general mediation model is illustrated in Fig. 2b.

We calculated the direct effect, indirect effect and total effect for each mediation model. The 

direct effect refers to the change in gait speed when WMH variable changes while the 

cognitive function mediators are maintained fixed (Fig. 2b: path coefficient A; the 

association between WMHs and gait speed adjusted for covariates and all cognitive function 

variables). The indirect effect refers to the change in gait speed when the independent WMH 

variable is maintained fixed and the cognitive mediator changes to the level it would have 

attained if the independent gait speed variable increased by one unit (Fig. 2b: product of 

path coefficients B and C). We used bootstrapping (n = 10,000) to obtain a 95% confidence 

interval for the indirect effect. The total effect in our linear system is the sum of direct and 

indirect effects of WMH volume on gait speed (i.e., the association of WMHs and gait speed 

adjusted for covariates; A + BC).

For each standardized model, we reported percentages of direct and indirect effect out of the 

total effect (i.e., direct effect * 100/total effect and indirect effect * 100/total effect), to 

compare the size of direct and indirect effects in each mediation model. A larger percentage 
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for the direct or the indirect effect indicates a greater effect of the independent or the 

mediator variable on gait speed, respectively.

Results

Data reduction

Elastic Net selected three WMH variables that were most associated with gait speed. In 

addition to total WMH volume, WMHs located in right anterior thalamic radiation (ATRR) 

and frontal corpus callosum (CCF) were selected. Table 1 provides the descriptive statistics 

for all the variables of interest.

Multivariable regression analyses

The effects of total, ATRR and CCF WMHs on gait speed were −0.146, −0.152, and 0.114 

in models adjusted for age, sex, BMI, quadriceps strength, education, and standing height 

(Table 2, Model 1). Since prevalent hypertension and chronic pain were also associated with 

slower gait (−0.240 and −0.244, p < 0.001 respectively) models were further adjusted for 

these variables (Table 2, Model 2). The association between WMHs and gait speed remained 

similar, and did not significantly modify previous results (change < 10%).

By contrast, the association between WMHs and gait speed substantially decreased when 

3MS or DSST were added to the models (Table 2, Model 3 and 4; 15% and 25% for Total 

WMHs, 6% and 19% for ATR WMHs, and 21% and 35% for CCF WMHs). Results 

remained similar in men compared to women.

Mediation analyses

We constructed six mediation models in total; two per selected WMH variable. Overall, 

executive functions and information processing speed, as measured by DSST, mediated the 

association between WMH volume and gait speed, after adjusting for age, sex, BMI, 

quadriceps strength, years of education, standing height, and prevalent hypertension. Global 

cognitive function, as measured by 3MS, was not a significant mediator (Table 3).

Table 3 provides the total, direct and indirect (both unstandardized and standardized beta) 

effects for each of the three WMH variables on gait speed, adjusted for age, sex, BMI, 

quadriceps strength, education, height, and prevalent hypertension. The total effect of WMH 

volume on gait speed was significant and negative for all three WMH variables of total 

brain, ATRR and CCF (standardized beta in m/sec [p value]: −0.15, −0.16, −0.11 [p < 0.05], 

respectively). The direct effect of WMH volume on gait speed was significant and negative 

for total brain and ATRR (standardized beta in m/sec [p value]: −0.10 and −0.12 [p < 0.05], 

respectively), but not significant for CCF (standardized beta in m/sec [p value]: −0.06 [p = 

0.16]). The indirect effect of WMH volume on gait speed through executive functions and 

information processing speed was significant and negative for all the three WMH variables 

of total brain, ATRR and CCF (standardized beta in m/sec [significant based on 95% CI]: 

−0.02, −0.02, −0.03, respectively). Moreover, for total WMH volume, the direct effect was 

72% of its total effect and the indirect effect was 19% of its total effect. For ATRR, the 
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direct effect was 78% of its total effect and the indirect effect was 14% of its total effect. For 

CCF, the direct effect was not significant and the indirect effect was 27% of its total effect.

Discussion

In this cohort of community-dwelling old adults free from overt neurological conditions, 

total WMHs, as well as WMHs in CCF and ATRR, were most strongly associated with 

slower gait speed. While previous studies have consistently found an association between 

total WMH volume and slower gait, few studies to date have looked at focal WMHs in 

selected tracts. These associations were robust and independent of age, sex, body mass 

index, quadriceps strength, education, height, prevalent hypertension, and chronic pain.

Compared to previous studies examining the effect of focal WMHs on physical function, our 

current study had several new aspects; our subjects had higher average age (de Laat et al., 

2011; Srikanth et al., 2010; Zheng et al., 2012), and our statistical analysis were adjusted for 

relevant covariates (Srikanth et al., 2010). Our study applied imaging with a high level of 

spatial resolution to quantify WMHs in individual white matter tracts. Other studies applied 

lower resolution methods and limited their analyses to overall volumes of lobar WMHs 

(Zheng et al., 2012) or distributed in deep versus periventricular WMHs (de Laat et al., 

2011; Soumare et al., 2009; Srikanth et al., 2010). Importantly, our study provides novel 

insight into potential mechanistic pathways by which WMHs impact gait speed in older 

adults. Our results concur with previous studies that suggest WMHs in cortical regions 

containing projection fibers (e.g. anterior thalamic radiation) (Buckalew et al., 2013; 

Guttmann et al., 2000), commissural fibers (e.g. corpus callosum) (de Laat et al., 2011; 

Srikanth et al., 2010; Zheng et al., 2012) and association fibers (e.g. superior longitudinal 

fasciculus) (Zheng et al., 2012) play an important role in mobility.

Lower DSST performance, an indicator of executive dysfunction and impaired processing 

speed, but not global cognitive function, was a significant mediator of associations between 

WMH volumes and gait speed, after accounting for age, BMI, and quadriceps strength, 

education, and height. However, the degree by which DSST mediated the association 

between WMHs and gait speed depended on WMH location. Specifically, it was strongest 

for CCF than for ATRR or total brain WMH.

The corpus callosum is the largest white matter tract and plays a primary role in cognitive 

function. The CCF, or corpus callosum genu and rostrum, connects the prefrontal cortex 

between the two hemispheres of the brain and hence, plays a role in executive functions 

(Jokinen et al., 2012). Of particular relevance to DSST performance, Jokinen et al. (2007) 

demonstrated that overall corpus callosum atrophy was associated with impaired processing 

speed, and that anterior corpus callosum (genu and rostrum) atrophy was associated with 

impaired attention and executive functions in community-dwelling older adults with WMHs. 

Therefore, WMHs localized in this portion of the corpus callosum may impair mobility 

indirectly, because they impair executive control function.

While the association between CCF WMHs and gait was not significant after adjustment for 

DSST (i.e., the direct effect was not significant), the association between WMHs in the 
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ATRR and slower gait was significant and independent of DSST (i.e., the direct effect was 

significant). In fact, it had a large significant direct effect (i.e., 78%) on gait speed. This 

finding concurs with the neuroanatomy of the ATRR. The ATRR contains fibers from 

superior fronto-occipital fasciculus that connects pre-motor areas with the parietal lobe 

(Srikanth et al., 2010). Thus, any disruption of these fibers may impair the somatosensory 

feedback required for gait (Srikanth et al., 2010) and thus, directly impair gait. We also 

found a significant indirect effect (i.e., 14%) of ATRR WMHs on gait speed through DSST 

performance. Duering et al. (2011) previously found that WMHs in the ATR were 

independently associated with executive functions and processing speed. Therefore, WMHs 

in ATRR may negatively impact mobility through two central pathways: 1) directly, by 

disrupting mobility-related circuits (Filley, 1998; Whitman et al., 2001; Zheng et al., 2012); 

and 2) indirectly, by impairing circuits responsible for executive functions and subsequently 

impairing motor control (Guttmann et al., 2000; Starr et al., 2003).

Overall, our findings highlight the importance of a multisystem assessment of slowing gait, 

which should include both executive functions and processing speed as well as motor 

pathways (Rosano et al., 2005a, 2010; Yogev-Seligmann et al., 2008) and the negative 

impact of WMHs on these processes. Interventions targeting these networks, for example 

cognitive interventions and aerobic and resistance training, may be particularly effective in 

promoting mobility among older adults (Ball et al., 2002; Colcombe and Kramer, 2003; 

Verghese et al., 2010; Willis et al., 2006). Future studies should also examine whether 

interventions aimed at reducing vascular risk factors (e.g., hypertension, diabetes type II, 

hypercholesterolemia, etc.) also improve mobility and the underlying CNS mechanisms. 

Although we found an association between cardiovascular factors and gait, this association 

did not seem to modify the relationship between WMHs and gait speed. It is possible that 

cardiovascular factors may impact mobility through pathways that do not include WMHs.

We highlight two key strengths of our study. First, we applied automated WMH 

segmentation and volume quantification method in order to localize WMHs; majority of 

studies only examine total WMH volume. Specifically, our WMH localization method 

enabled us to identify WMHs located in different white matter tracts and hence, allowed us 

to investigate the impact of WMH location on gait speed. Second, we applied state-of-the-art 

reliable statistical methods for both data reduction and mediation analysis to extend our 

current understanding of how WMHs impact gait speed in older adults.

We recognize the limitations of our study. The cross-sectional design limits our 

understanding of the temporal relationship between WMHs and slowing gait. Our study 

sample consisted exclusively of independent community-dwelling older adults who were 

without significant physical and cognitive impairments. Thus, the results of our study may 

not generalize beyond this population and we may have underestimated both the direct and 

indirect effects of WMHs on gait speed. Furthermore, we did not use diffusion tensor 

imaging which is more sensitive to white matter abnormalities than T2-FLAIR MRI (Zheng 

et al., 2012). However, we did apply a DTI-based white matter atlas to register on our MRI 

data and segment the WMHs in different tracts. Finally, we used a very limited 

neuropsychological testing battery and thus, did not have a comprehensive assessment of 

cognitive function. Therefore, future studies should include a broader battery to advance our 
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understanding of which cognitive processes are most impacted by WMHs and are most 

relevant to mobility impairments in older adults.

Conclusion

Our current study suggests that executive functions and processing speed significantly 

mediate the impact of WMHs on gait speed. Current evidence suggests that both aerobic and 

resistance training has specific benefits for executive functions in older adults. Thus, our 

findings lend further support that exercise is an essential component in the maintenance of 

mobility across the lifespan – by improving physical function, such as balance and strength 

– but also cognitive function. Exercise may also have the potential to minimize the 

progression of WMHs and there are ongoing research exploring this possibility (Cyarto et 

al., 2012). Our results also suggest that mobility screening in older adults should have far 

greater attention to the assessment of cognitive processes of executive functions and 

processing speed.
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Appendix 1. The 21 anatomical WMH variables for this study

1. Total volume of WMHs

2. Anterior thalamic radiation, left
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3. Anterior thalamic radiation, right

4. Corpus callosum, frontal

5. Corpus callosum, occipital

6. Corticospinal tract, left

7. Corticospinal tract, right

8. Cingulate, lower part left

9. Cingulate, lower part right

10. Cingulate, upper part left

11. Cingulate, upper part right

12. Inferior fronto-occipital fasciculus, left

13. Inferior fronto-occipital fasciculus, right

14. Inferior longitudinal fasciculus, left

15. Inferior longitudinal fasciculus, right

16. Entire superior longitudinal fasciculus, left

17. Entire superior longitudinal fasciculus, right

18. Superior longitudinal fasciculus, the branch to the temporal lobe, left

19. Superior longitudinal fasciculus, the branch to the temporal lobe, right

20. Uncinate fasciculus, left

21. Uncinate fasciculus, right

Appendix 2. Data reduction procedure

With Jackknifing resampling technique (Steps 2 to 4; Fig. 2a), the complete process was 

repeated for each participant in the X matrix separately (i.e., 253 times). On each run, one 

participant was assigned to the testing set, and the rest was assigned to the training set (Step 

2; Fig. 2a). Then a Leave-One-Out Cross-Validation (LOOCV) Elastic Net was performed 

within the training set to minimize the mean squared error (Step 3; Fig. 2.a). The resulting 

optimal coefficients on training sets were tested on their independent test sets (Step 4; Fig. 

2a).
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Fig. 1. 
Two hypothesized pathways for the negative impact of WMHs on mobility: 1. Direct 

pathway—WMHs impair mobility by directly disrupting mobility-related circuits; 2. 

Indirect pathway—WMHs disrupt circuits responsible for cognitive function leading to 

impaired mobility.
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Fig. 2. 
A) Variable selection using Elastic Net: Step 1 shows the n * p data where n is the sample 

size and p is the size of the independent variables. Step 2 employs jackknifing technique to 

assign one participant to the test set and the rest to the training set. This loop is required to 

prevent from overfitting. In Step 3, the optimized model (i.e., minimal error using cross 

validation) is estimated for the training set using Elastic Net. The whole process is repeated 

over for all the participants to avoid any bias. B) The mediation model of cognitive function 

for the impact of WMH volume on gait speed. The path coefficient A represents the direct 

effect of WMH volume on gait speed, adjusted for age, BMI, and quadriceps strength. The 

product of path coefficients B and C represents the indirect effect of WMH volume on gait 

speed through cognitive function. The total effect is the sum of the direct effect and the 

indirect effect (A + B * C).
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Table 2

The results of multivariable regression analysis for the effect of three selected WMH measures on gait speed.

WMH 
variables of 
interest:

Standardized beta [Model 
1]

Standardized beta [Model 
2]

Standardized beta [Model 
3]

Standardized beta 
[Model 4]

Total WMHs −0.146* [−0.257, −0.035] −0.135* [−0.249, −0.023] −0.1244* [−0.233, −0.015] −0.109 [−0.218, 0.000]

ATRR WMHs −0.152** [−0.262, −0.042] −0.159*** [−0.273, −0.048] −0.130* [−0.238, −0.021] −0.123* [−0.230, −0.016]

CCF WMHs −0.114* [−0.225, −0.002] −0.115* [−0.227, −0.003] −0.090 [−0.200, 0.020] −0.073 [−0.183, 0.037]

Model 1: Linear regression model for the effect of WMHs on gait speed, controlling for age, sex, BMI, quadriceps strength, education, and height.

Model 2: Linear regression model for the effect of WMHs on gait speed, controlling for age, sex, BMI, quadriceps strength, education, height, 
chronic pain, and prevalent hypertension.

Model 3: 3MS added to Linear regression Model 1 with the addition of 3MS as an independent variable.

Model 4: DSST added to Linear regression Model 1 with the addition of DSST as an independent variable.

Abbreviations: 3MS: Modified Mini-Mental State Examination, DSST: Digit-Symbol Substitution Test, WMHs: white matter hyperintensities, 
ATRR: anterior thalamic radiation right, CCF: corpus callosum frontal.

*
p < 0.05.

**
p < 0.01.

***
p < 0.005.
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