
UC Irvine
ICS Technical Reports

Title
Analysis and design of algorithms : double hashing and parallel graph searching

Permalink
https://escholarship.org/uc/item/2xv9k1jp

Author
Molodowitch, Mariko

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xv9k1jp
https://escholarship.org
http://www.cdlib.org/

families
^ z
W (o^Cj

)\o.

Analysis and Design of Algorithms:

Double Hashing and Parallel Graph Searching

Mariko Molodowitc^

Department of Information and Computer Science

University of California, Irvine

Technical Report 90-43

Dissertation

" submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy in Information and Computer Science

Dissertation Commmittee

Professor George S. Lueker, Chair

Professor Daniel S. Hirschberg

Professor Dennis J. Volper

1990

Notice: This iVIaterial
may be protected
by Copyright Law
(Title 17 U.S.G.)

Dedication

This thesis is dedicated to my husband Dennis, without whose support it
would never have been written.

M

Contents

List of Figures vi

Acknowledgements ix

Curriculum Vitae x

Abstract xi

Introduction 1

Distributional Analysis of Algorithms 1

Parallel Algorithms 3

PART I: More Analysis of Double Hashing 4

Chapter 1: Scope of present work 4

Chapter 2: The distribution of |(x) in the uniform case 7

Chapter 3: Proof of the Theorem 12

Chapter 4: Conclusions and Related Work 17

PART II: Parallel Depth First Search of Planar Directed Graphs 18

Chapter 1: Background Information 18

1.1. Definitions and terminology 19

1.1.1. PRAM: model of parallel computation 19

1.1.2. Graph terminology 20

1.2. Basic Techniques 24

1.2.1. List ranking 25

1.2.2. Prefix sum 25

1.2.3. Operations on trees and circular lists 25

1.2.4. Graph algorithms for planar graphs 26

Chapter 2: Planar Euler tour depth first search 27

2.1. Euler tour for a rooted tree 27

2.2. Planar Euler tours and depth first search 28

lit

2.3. RHOP and RHIP structures and the incidence graph of G 29

2.4. LHOP and LHIP structures ' 32

Chapter 3: Depth first search for single source planar dags 33

3.1. ET dfs of a planar st-graph 33

3.2. ET dfs of a single-source single-sink planar dag 35

3.3. ET dfs of a single-source multiple-sink planar dag 35

Chapter 4: ET dfs for planar dags with multiple sources and sinks

4.1. Informal description of the partitioning algorithm

4.2. Separating out a source and its attendant vertices

4.2.1. Classifying cycles formed by RHOP and RHIP paths. . .

4.2.2. Classifying leaf orientations of an RHIP c-tree

40

40

42

42

46

4.2.3. Separating forward twists and arcs from back twists and arcs 48

4.2.4. Finding the leaf and cycle orientations

4.2.5. Procedure for finding boundary cycles

4.3. Single source reachability and partitioning a planar dag

4.3.1. Finding supersources

4.3.2. Single source reachability for a planar 'multisource dag. .

4.3.3. Partitioning vertices in a multisource planar dag

4.4. Assigning vertices inside supersource boundary cycles

4.4.1. Cutting the supersource graph

4.4.2. More properties of RHOP and RHIP structure

4.4.3. Finding the hole structure ;

4.4.4. Assigning sources for type.l vertices . '

4.4.5. Range tree data structures for hole structures

4.4.6. Assigning sources to type_2 vertices .

4.4.7. Assigning sources to type_3 vertices

4.4.8. Assigning vertices inside a supersource boundary cycle. .

IV

50

54

57

58

58

59

. 71

72

74

89

92

95

101

103

105

V

4.5. Algorithm for depth first search of a planar dag 106

Chapter 5: Conclusions 107

5.1. Summary 107

5.2. Open questions 107

Chapter 6: References 109

, /

List of Figures

Figure Page

Introduction

1. A sequential depth first algorithm for directed graphs 3

PART I

1. Procedure GreedyPartition 9

2. Procedure UsuallyDoubleHash 13

3. A plot of ^{x), for the m —f empty table positions 14

4. Procedure UsuallyDoubleHash' 16

PART II

1. Right and left orientation 21

2. Cycle orientation 22

3. Vertex expansion of a complex vertex 22

4. Vertex contraction along an edge 23

5. A graph G and its dual G* 24

6. Planar Euler tour depth first search 29

7. RHIP and RHOP for G' 30

8. An dag G and the RHIP and RHOP structures of of its dual G* . . 31

9. Illustration for lemma 3.1 34

10. Illustration for Theorem 3.2 34

11. Illustration for lemma 3.3 36

12. Illustration for Theorem 3.6 38

13. Illustration for Property 4.2 43

14. Classification of intersections of RHOP and RHIP paths 44

15. Forward and back arcs 45

16. Classification of RHIP leaf orientations 47

VI

17. Illustration for Theorem 4.1 48 '

18. Orientation of the RHIP paths in proof of Theorem 4.1 50

19. Illustration for Procedure CycleOrientation 51

20. Proof of property 3 of the boundary cycle 56

21. A nesting tree 61

22. A nesting tree at step 4 of Algorithm 5 65

23. Cutting a graph with a supersource as the only source 73

24. Illustration of Property 4.12 ! 76

25. Illustration of Property 4.13 76

26. Illustration of Property 4.14 77

27. Illustration of Property 4.15 ' . 77

28. Types of edges on P' 78

29. Illustration 1 for Theorem 4.9 81

30. Illustration 2 for Theorem 4.9 1 82

31. Illustration 3 for Theorem 4.9 82

32. Illustration 4 for Theorem 4.9 83

33. Illustration 5 for Theorem 4.9 84

34. Illustration for Theorem 4.10 85

35. Illustration for Corollary 4.11 86

36. Illustration for Theorem 4.12 ' 87

37. Illustration for Corollary 4.13 88

38. Illustration for Corollary 4.14 : 89

39. Illustration for Lemma 4.15 90

40. Illustration for Lemma 4.17 91

41. Illustration of Lemma 4.18 93 ,

42. Illustration of Property 4.17 94

43. Sources with paths to a; 95

Vll

44. Range tree for holes 96

45. Range tree for sources 97

46. RHOPhole tree 99

47. Type_2 vertex 102

48. Illustration for Lemma 4.20 104

vm

Acknowledgements

g
I would like to thank the members of my committee, George Lueker, Daniel

Hirschberg, and Dennis Volper, for all their help and guidance throughout my
graduate career. Without their encouragement and support, this thesis would
never have come to fruition. To my advisor, George Lueker, in particular, I am
grateful for all his patience and wise counsel. I feel privileged to have worked with
him.

The work on double hashing was joint work with George Lueker. It was
presented at the 20th Annual ACM Symposium on Theory of Computing, Chicago,
IL, May, 1988. It will appear in substantially the same form in a future issue
of Combinatorica. I am grateful to Nicholas Pippenger for a number of very
helpful suggestions on the double hashing work, especially for suggesting the proof
approach used in Chapter 2.

I thank the University of California for their fellowship support through the
Faculty Mentor Program and the Graduate Opportunity Dissertation Fellowship
Program, and to the National Science Foundation for support through Grant
CCR 8912063.

IX

Curriculum Vitae

Mariko Molodowitch

1969 B.A. in Physics, RadclifFe College, Harvard University

1988 M.S. in Information and Computer Science, University of
California, Irvine

1990 Ph.D. in Information and Computer Science, University of
California, Irvine

Dissertation: Analysis and Design of Algorithms
Double Hashing and Parallel Graph Searching

Committee Chair: Professor George S. Lueker

Publications

D.S. Hirschberg, L.L. Larmore, M. Molodowitch, "Subtree Weight Ratios for
Optimal Binary Search Trees," University of California, Irvine Technical Report
No. 86-02, 1986.

G. Lueker and M. Molodowitch, "More Analysis of Double Hashing," Proceedings
of the Twentieth Annual ACM Symposium on Theory Of Computing, pp. 354-359.
May, 1988. To appear in Comhinatorica.

Fields of Study

Major Field: Information and Computer Science

Studies in Algorithms and Parallel Computation

Abstract of the Dissertation

Analysis and Design of Algorithms:

Double Hashing and Parallel Graph Searching

by

Mariko Molodowitch

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1990

George S. Lueker, Chair

The following is in two parts, corresponding to the two separate topics in the
dissertation.

Probabilistic Analysis of Double Hashing

In [CS78], a deep and elegant analysis shows that double hashing is asymp
totically equivalent to the ideal uniform hashing up to a load factor of about 0.319.
In this paper we show how a resampling technique can be used to develop a sur
prisingly simple proof of the result that this equivalence holds for load factors
arbitrarily close to 1.

Parallel Depth First Search of Planar Directed Acyclic Graphs

In 1988, Kao [Kao88] presented the first NC algorithm for the depth first
se^ch of a directed planar graph. Recently, Kao and Klein [KK90] reduced
the number of processors required from O(n^) to linear, but the time bound is
0(log® n).

We present an algorithm for the depth first search of a planar directed acyclic
graph with k sources using 0{n) processors and 0(log k log n) time on a CRCW
PRAM model. For planar dags with a single source and a single sink, we present
a simple optimal algorithm which gives the depth first search in O(logn) time
with O(n/logn) processors on an EREW PRAM. For a single-source multiple-
sink planar dag, we have an O(log n) time 0{n) processor EREW algorithm. The
EREW algorithms assume that the embedding is given. A simplified variant of
the depth first search of a multisource planar dag can be used to solve the single
source reachability problem for a planar directed acyclic graph in O(log^ n) time

xt

and 0(n) processors on an CRCW PRAM. Since an O(log^ n) algorithm for this
problem is used as a subroutine by Kao and Klein in their depth first search for
the general planar directed graph, this will lower their time bound by a factor of -J
log^ n. Our work uses the concept of a planar Euler tour depth first search, a depth
first search in which the Euler tour around the tree is planar and crosses no tree
edge. This concept may prove to be of use in other parallel algorithms for planar
graphs.

xti

Introduction

Since the introduction of computers, the quest for fast solutions to problems using
this tool has been pursued in the two complementary areas of hardware and software.
In software, a major thrust has been the search for algorithms guaranteed to produce
solutions quickly to a specific problem for a wide range of instances. Sometimes, an
algorithm which takes a long time on certain instances of input can be guaranteed to
run faster on average, assuming a reasonable distribution of inputs. Another way to get
a fast algorithm is to take advantage of new techniques made possible by advances in
hardware. The use of parallel processors sometimes makes it possible to solve a problem
more quickly than with a single processor.

This dissertation is in the two areas of distributional analysis of algorithms and
design ofparallel algorithms. In the area of analysis, we focus on the well-known technique
of double hashing for record management. In the area of parallel algorithm design, we
look at the problem of depth first search of directed planar graphs with no cycles. The
following is a description of the two areas and the specific problems addressed in this
work.

Distributional analysis of algorithms
Given an algorithm, one possible measure of its efficiency is the amount of time it

takes to run the algorithm as a function of the size of the input. For example, suppose
the input consisted of n items. If the algorithm spent a constant amount of time for each
item, the functional dependence would be linear in n. During the early days of computer
science, researchers found that there were many problems for which they could not find
any algorithm guaranteed to run in time polynomial in the size of the input; in order to
produce a correct answer in all cases, the algorithms would spend time exponential in the
size of the input. In the early 1970's, the idea of NP-completeness was developed. The
class of problems for which polynomial time algorithms exist became known as P. The
class of problems for which, if the answer were somehow guessed or given, its correctness
could be checked using a polynomial time algorithm, became known as NP. The work
of Cook and Karp, followed by others, showed that there was another class of problems,
named the NP-complete problems, such that the problems were all in NP and if any
NP-complete problem could be shown to be in P, the class P and the class NP could be
shown to be the same. [Coo71, Kar72].

Although finding a polynomial time solution to these problems has proven to
be extremely hard, if not impossible, many NP-complete problems have algorithms
which work quite well in practical cases. For such algorithms, we can use probabilistic
distributional analysis: instead of assuming that the input is the worst case possible
for the algorithm, we assume that the inputs are drawn at random from a specified
probability distribution [Kar86]. If the specified probability distribution is close to that

found in real-life, or if the analysis is valid for a broad class of distributions, the results of
the analysis can be useful. !

t

This type of analysis can be used with problems other than NP-complete ones to
find the behavior of a given algorithm under the assumption of certain input probability
distributions. For example, suppose Algorithm A ran in time in the worst case, and
Algorithm B ran in time in the worst case. However, suppose probabilistic analysis
of the two algorithms showed that Algorithm A ran in time even in the average case,
but that Algorithm B ran in linear time on the average. Then Algorithm B may be more
useful than Algorithm A. i

The algorithm we analyze in this way is double hashing, one of a class of techniques
called hashing, used for managing a table of records. Given a key such as a name or ID
number, a hash function gives the location of the record in a table. This can result in
faster storage and retrieval times than for sequential tables where the records are stored
in order of their keys. However, two keys can hash to the same location, resulting in a
collision. Among the techniques used to solve this are linear pfobing, uniform hashing,
and double hashing. Linear probing is simple to implement, but a probabilistic analysis
shows that the extra time needed due to the collisions grows rapidly as the table becomes
more and more full [Knu73]. Uniform hashing is a theoretical method, impractical for
actual use, but analysis shows that the extra time needed does not grow as fast as for
linear probing. Double hashing can be implemented, and has been shown empirically
to behave like uniform hashing. A paper by Guibas and Szemeredi [GS78] gave a very
difficult distributional analysis to explain this behavior of double hashing algorithms for
tables up to about one-third full. The work presented in this thesis, done jointly with
George Lueker, gives a simple proof for this behavior for tables arbitrarily close to being
full. An earlier version of this work was presented at the 20th Annual ACM Symposium
on Theory of Computing, Chicago, IL, May 1988 [LM88]. It will appear in substantially
the same form in a future issue of Combinatorica. |

Parallel algorithms and depth first search
With the advent of new technology, computers with multiple processors have become

more realistic, and interest has grown in algorithms which use' processors operating in
parallel. Parallel algorithms have been found which significantly reduce the time to solve
a problem when compared to sequential algorithms using a single processor. With such
parallel algorithms, not only the time to run the algorithm as ia function of the size of
the input, but also the number of processors used, becomes important. In particular, JVC
(Nick's Class, named after Nicholas Pippenger for an early significant paper in this area
[Pip79]) is the class of problems which have parallel algorithms to solve them with specific
bounds on both time and processor count. For an input of size n, the algorithm must have
a polylog time bound: the time is bounded by /(log n) where / is a polynomial function.
The algorithm also must use no more than g(n) processors where gf is a polynomial
function. Much work in the area of parallel computation has been in showing that a
problem is in NC, and in reducing the time and processor count once it is known to be in
NC. I

Depth first search of a directed graph G
(* This is a sequential algorithm for depth first search of a graph G with a set of vertices V and set of

edges E. *)

Mark every vertex in the graph as unvisited\
While there exists a vertex which is marked unvisited do

begin
pick a vertex v which is marked unvisited;

run procedure dfs(v);
end

procedure dfs(v)
Visit and mark v as visited;

For all vertices m on u's adjacency list do

if w is marked unvisited

then run procedure dfs(w)

Figure 1
A sequential depth first algorithm for directed graphs

Sequential depth first search of directed and undirected graphs is a technique used
as a basis for other sequential graph algorithms [AHU74, Eve79, BB88]. A sequential
algorithm for depth first search of a directed graph is given in Figure 1. If parallel depth
first search algorithms can be found with low time and processor count, they may be used
as subroutines in other parallel graph algorithms just as in the sequential case. We review
some of the work done in this area in Chapter 1 in Part II.

Kao and Klein [KK90] have recently presented a parallel algorithm for depth first
search ofplanar directed graphs using a linear number ofprocessors but with an O(log® n)
time bound. In this dissertation we present new parallel algorithms with reduced time
bounds for depth first search of planar directed graphs with no cycles. We also present
a new paredlel algorithm for the problem of finding all vertices reachable from a single
vertex in a planar directed acyclic graph. Since Kao and Klein uses the solution to this
problem as a subroutine in their depth first search, we cut their time bound by a factor
oflog^ n.

PART I
More Analysis of Double Hashing

CHAPTER 1
Scope of present work

In [GS78] a deep and elegant analysis showed that double hashing was equivalent
to the ideal uniform hashing up to a load factor of about 0.319. In this dissertation, we
give an analysis which extends this to load factors arbitrarily close to 1. We understand
from [Kom86, Gui87] that Ajtai, Guibas, Komlos, and Szemeredi obtained this result in
the first part of 1986; our analysis is of interest nonetheless because we demonstrate how
a resampling technique can be used to obtain a remarkably simple proof.

A hash table will consist of an array of m slots, indexed from 0 to m —1, each
of which can contain a key. The hash table conBguration is the set of indices of the
filled slots. The load factor of a table is the fraction of the slots which have been filled.
Assuming we are using double hashing (see [Knu73] for definitions), let C'̂ (m) be the
average probe length during an unsuccessful search of a table of size m filled to load factor
a. As in [GS78], this will include the probe that found an empty table slot.

It has long been known that for a theoretical model called uniform hashing, the
average probe length is (1 - a)~^ + see [Knu73] for definitions and a history of
research on this problem. A number of papers [U1172, AKS78, Yao85] have shown that
uniform hashing is optimal among open addressing schemes in certain senses. UUman
[U1172] showed that no hash function could consistently outperform uniform hashing, for
average insertion cost. In [AKS78], it was shown that for a class of functions called
single-hashing functions, uniform hashing was optimal in retrieval costs. Yao [Yao85]
generalized the proof to all open addressing hashing algorithms, but left open the question
of lower bounds for insertion costs.

The term hash pair will refer to a pair (hi(K), h2(K)) where K is the key to be
inserted, hi is the primary hash function, and /12 is the secondary hash fimction which is
used as a probe decrement. As in [GS78], we assume that

Pr{(A,(jr),A2(Ji:)) =(<,;•)}= ^
m(m —1)

for all (i,j) with 0 < i < m —1 and 1 < j < m —1. Let Pa,m{^) probability that
the probe length during an unsuccessful search of a table, which has been filled to a load
factor a using algorithm A, is at least k. UH will stand for uniform hashing and DH
for double hashing. So that Pa,m{^) defined when am is not an integer, extend it by

m

CUm) = Y. <-n '̂')- (1-1)
k=\

To minimize the amount of notation in the paper, we will adopt the following
convention (though we will avoid the use ofthis terminology in thestatement oftheorems).
The constant c will refer to a constant whose value will be left free. We will say that
a function f{m,c) is c-polysmall if for all positive p, for large enough c the function is
0{m~^). Note that

the sum of polynomially many functions which are c-polysmall is again c-polysmall,

if we can assert that /(m,c) is c-polysmall except for small m, the phrase "except
for small m" may be dropped, and

if /(m,2c) is c-polysmall, then so is f{m,c).

Also, throughout the paper we will let a be some arbitrary but fixed constant in the range
0 < a < 1, and let m range only over prime values.

Our goal is to prove that double hashing is asymptotically equivalent to uniform
hashing for load factors arbitrarily close to 1. In fact, we can show that the distribution
of the number of probes in an unsuccessful search is close to that obtained with uniform
hashing.*

Theorem 1. For each fixed a G (0,1) and each p > 1, we can choose a constant c
so that if 6 -- cm'-l/2log5/2 m, then

< P°^(k) < + Oim-"),

where the hidden constants in the 0-notation are independent of k and m, and m is
restricted to assume only prime values.

By equation (1.1) this yields

Corollary 1. For each fixed o: with 0 < a < 1,

Ca('Ti) = m— h0(m log®/^ m).
1 — a

Proof Sketch. Let p > 2 in Theorem 1. Then by equation (1.1)

C(S'5).('") +0(m-') < +0(m-').
Since = (1 —a)~^ + 0(m~^), we can use the following two inequalities to complete
the proof.

I >A ^
1 —(1 —S)a 1 —Q! (1 —

' We thank [SS90] for pointing out that this was implicit in an ecirlier version of this paper.

1
< ; +1 - (1 + (5)a - 1 - a (1 - a)2

The second inequality will hold when m is sufficiently large so that 6 < (1 - 01)^0"h

I

The implied lower bound of this corollary is of course not very surprising, especially
in view of [U1172, AKS78, Yao85].

For any table configuration, for every empty slot x, let (f(x) be the number of hash
pairs which would cause x to be the next slot filled. As in [GS78], we can readily use this
to express the probability ({x) that x is the next position filled using double hashing:

(1.2)
m{m —1) ^ ^

A key technique in our paper is the modification of the distribution of table
configurations in a way which a) dominates the distribution that would be obtained by the
original algorithm except with very small probability (in a sense made more precise later),
b) forces the table to be equivalent to one obtained by uniform hashing, and c) causes
only a very small change in table performance. The technique is similar in principle to a
resampling technique used in [KK82]. There, a distribution which was nearly uniform was
converted into a truly uniform distribution by a sampling procedure which rejected a few
points. In our case, we will produce a table equivalent to uniform hashing by carefully
adding a few extra items to the hash table. These extra points will be colored red, while
the original items will be colored green. Our addition of red points is in some ways similar
to the randomization proof strategy used in [AKS78, Yao85].

A useful fact is given by

Lemma 1 [Hoe63]. Let X be the binomially distributed random variable giving
the number of successes in n Bernoulli trials each having success probability po. Then for
/3>0,

Pr{Ar > (po + yS)n} < exp(—2n/3^),
and

Pr{X < (po — < exp(—2n/3^).

In section 2 we observe that if a table is partially filled according to uniform hashing,
but then we insert one more key according to double hashing, the distribution of the
location into which the key will be inserted is, with high probability, nearly uniform.
In section 3 we show how to use resampling to obtain a remarkably simple proof of
Theorem 1.

CHAPTER 2
The distribution of i(x) in the uniform case

In this section we note that if we have a table which has been partially filled by
uniform hashing, placing the next point by double hashing is' very nearly the same as
placing it by uniform hashing, except with small probability. This sort of result is implicit
in [GS78], and we make considerable use in this section of the, insights and machinery of
that paper. Using an elegant approach suggested to us by [Pip88], we give a rather simple
proof of the precise form (Lemma 3) we will want. i

Lemma 2. Let 0 < p < (2 + q:)/3. Suppose we construct a hsLsh table conEguration
of size m by letting each slot, independently, be Elled with probability p. Then there
exists a constant c such that for every empty slot x, I

1-(clogI
1 -p ,

except with probability which is c-polysmall. I

Proof. We will use the notion of progressions similar to those used in [GS78].
Call the set of slots {x Id, x + {I - l)d, x + (/ - 2)d,x ft d], where the numbers
are mod m and indicate slot indices, the potential progression of length I generated by
stride d coming to x. If all slots in this potential progression are filled, we can omit
the word potential and say it is a progression of length I generated by stride d coming
to X. Thus for fixed I and x, each stride generates just one potential progression, and
actually generates a progression with probability p' under the; probability distribution of
this lemma. (Note that a progression of length I coming to x| contains progressions of
length / —1, / —2,..., 3,2, and 1 coming to x.) If we adopt the convenient fiction that the
m —1 progressions of length 0 coming to x generated by the strides {0,1,..., m —1} are
distinct, we can set up a correspondence between progressions of length I > 0 generated
by strides d and hash pairs (x + Id, d) which would cause x to be probed. Since we defined
(^(x) as the total number of hash pairs which would cause x tp be probed, i^(x) will be
equal to the total number of progressions coming to x. |

Now fix a table slot x, and let ^

k = clogm. 1 (2-1)
i

For 0 < / < m —1 let M/ be the number of progressions of length I coming to x. Note
that by our above convention Mq = m —1, and that M/ is a non-increasing function of
I. Much as in [GS78, p. 254] we note that if the niimber of progressions coming to x of
length k is at most Mf., then there are no progressions of length (Mjt + l)fc coming to x;
this is because even one progression of length (Mk -I- 1)A; (with stride d) would contain
Mk -b 1 progressions of length k coming to x (with strides d, 2(i, •• •, {Mk -b l)d). Because
Ml is nonincreasing, M/ for fc < / < {Mk -b 1)^ —1 is bormded by Mk. Hence, the total

number of progressions of length greater than k coming to x is bounded by M^k. From
this it follows that we can bound the total number of progressions coming to x as follows:

k

i{x) <kMl + ^Mi. (2.2)
;=o

We now fix x and /, where I < k, and seek to estimate M/, which is the number of
strides d which generate a progression of length I coming to x. For the present assume
that

I > 2. (2.3)

Note that there are m —1 possible strides, and that by the probability distribution in this
lemma it is clear that each gives a progression of length I coming to x with probability pK
Thus we might hope to use Lemma 1 to control the value of Mi, but there is of course a
problem: while each slot is filled independently, the slots used by various strides are not
disjoint. An elegant solution to this problem, from [Pip88], involves the use of a simple
greedy method to partition the strides into subsets of which no two generate common
slots.

First let us say that two strides d and d' interact if the two potential progressions of
length I which they generate intersect, i.e., if

[x + ld,x + {l —l)d, X+ (I —2)d,... ,x + d}
n {i + Id', X+ (l —l)(f, X+ (I - 2)d'.,... ,x + d'} 0. (2.4)

If they do not interact we will say they are independent. Note that the events specifying
the presence of these two progressions are independent in the probabilistic sense if and
only if the strides are independent in the sense just defined. One readily establishes that
for any d,

\{d' : d and d' interact}| < (2-5)
To see this, note that if one fixes d, chooses one element from each of the two sets in
equation (2.4), and equates these elements, then there is a unique solution for d'—but
there are exactly ways to choose one element from each set.

Let GreedySelect(S, r) be a procedure which extracts a set of r independent strides
from a set S of strides according to the natural greedy method: It starts with an empty
set and iteratively adds any stride which does not interact with those added so far. Since
by equation (2.5) we know that no stride eliminates more than strides, we see that this
process will succeed in constructing the desired set if r < \S\/P. We now decompose the
initial set of strides according to the procedure GreedyPartition given in Figure 1.

A simple induction establishes that all of the GreedySelect calls succeed. Note that
we are assured that the procedure will halt (for large m) since one establishes without
much difficulty that

^ =m-. . /2 V- /2-
1=0

procedure GreedyPaxtition-,
begin

5 := {1, 2, . . m - 1}; i := 0;
while |5| > log''m do

begin

assert |5| > (m - l)(l -

Di := GreedySelect(^S,
S :=S-Di]

i ;= i + 1;

end;

N ;= z- 1;

D' := 5;

end;

Figure 1
Procedure GreedyPartition

and log m = o(log^ m). Also note that

{D',Dq,Di, ..., Dn} is a partition of {1,2,..., m —1},

IA-| = P P'i' (2.6)
All elements of D,- axe independent, and

\D'\ < log^ m

We now use the independence of the Di to produce the desired bounds. For
convenience let

so

T= \P-p' (2.7)

|A|=L^7''J. (2.8)
Let Po) -Pi, P2) •••5Pn , P' (respectively) be the number of strides in Pq , -^i, £>2, •••, -Djy, -D'
(respectively) which actually generate progressions, so that

N

Mi = P'+^P,-. (2.9)
1=0

Now we know that each of the P,- is binomially distributed, and we can use Lemma 1 to
assert that for each i, if we choose

= v^clogm/\/\Di\,

10

then

Pr{P. >(p'+A)|A-|}
is c-polysmall. (Note that this argument does not apply to D', because the necessary
independence is lacking, but D' is small enough that this will not cause a problem.) Hence
by equation (2.9) we can assert that, except with c-polysmall probability,

N

Ml = P' +J2
t=0

N N

«=0 1=0

N N

< \D'\ |Ai + ^ V(cIogm)]Ai
«=0 1=0

N

< log^ m+p'm + ^2 y/cm log rwy^/1
i=0

(by equation (2.6) and equation (2.8))

^ , 4 I yJcm logm 1< log m + p m + -
I 1 —7

< log'̂ m+ p'm + 2/\/cmlog7n, (2.10)

where the last step uses the fact that from equation (2.7) we have l/(/(l —7)) < 21.
We can now drop the assumption equation (2.3) since if / = 0 then M; = m —1 so
equation (2.10) is trivial, and if / = 1 then Mi is just the number of filled slots so
equation (2.10) holds except with c-polysmall probability directly from Lemma 1.

Because is squared in equation (2.2), we will need a stronger bound on it than is
provided by equation (2.10), but that is readily obtained. For each stride d, the probability
that it yields a progression oflength k is p^, which is c-polysmall since p<(2-l-a)/3<l
and k = clogm. Hence, the probability that M}. exceeds 0 is c-polysmall.

By equation (2.2) we now conclude that, except with c-polysmall probability, for all
X

k

iix)<kMl + J2Mi
1=0

k

<0-f- ^ (log^ +p^m +2l{cm log
1=0

< log® m-|- —h (clogm)®/^m '̂'̂
1 p

(where we have used equation (2.1))

11

< h{2c\ogmyl'̂ m^/'̂
I —p

where the last step holds for large m. I
Lemma 3. let 0 < p < (I + a)/2. Suppose we construct a hash table conhguration

of size m by adding pm points according to uniform hashing. Then

1 —p \

except with probability which is c-polysmall.

Proof sketch. If we pick p = r;(l + cm~'̂ /'̂ logm), then the distribution of Lemma 2
will include at least pm points except with probability which is c-polysmall. |

CHAPTER 3
Proof of the Theorem

We now show how the Lemma 3 of the previous section combined with a sampling
technique can be used to give a simple proof of Theorem 1.

The following definition and observation will be crucial. We say that configuration
Ci dominates configuration C2 if Ci D C2- Then as observed in [GS78, p. 255], double
hashing has the following monotonicity property. If Ci dominates C2, and we insert a
key into Ci (respectively C2) to obtain C[(respectively Cg), then C[dominates C^. In
particular, this means that if we occasionally add a fictitious extra point to the table, this
will never cause some slot to remain empty that would otherwise have been filled.

Proof of Theorem 1. Let

(3.1)
m

To obtain the right inequality in the theorem, we will show that

+ (terms which are c-polysmall) (3.2)

(By the properties observed above of the c-polysmall notation, the factor of 2 on is
unimportant.)

Consider the procedure UsuallyDoubleHash given in Figure 2, for inserting points
into the table. Let Ki,K2,. •. ,Kn, where n = [amj, be the keys to be inserted. (We will
call these the original keys to avoid possible confusion with extra points to be added.)
Usually an inserted point will be one of the original keys (these will be colored green), but
with small probability it will be an extra point (colored red) which we add to facilitate
the analysis. We henceforth let UDH stand for UsuallyDoubleHash.

In order to mcike the structure of the randomized resampling argument clear, we
now describe the probability spaces which will be used. Fix n and m. The sequence of
originalkeys defines a sequence of hash pairs ((ii,ii), (i2,i2), •••,{in,jn)) with = hi{Ki)
and ji = h2{Ki). Let "H denote the set of all possible such sequences, of length n, of hash
pairs. Once we have placed the n keys we wish to determine the expected probe length for
an unsuccessful search; let U be the set of m(m —1) possible hash pairs for this new key.
We have \7i xU\ = (m(m —1))""'"^, and each of these elements is equally likely. On the
probability space TixU vfe define the random variable for (/i, u) eHxU, u)
is the integer computed as follows: fill a table according to double hashing using the hash
pairs specified by h, and then return the number of probes double hashing would use to
search unsuccessfully for a key with hash pair u in the resulting configuration. Then the
quantity appearing in the Theorem is simply

= Prises > !=]•

12

procedure UsuallyDoubIeHash{n)
begin

k ;= 0; /* Number of original keys inserted so far */
/ := 0; /* Number of table positions filled so far */
while k < n and / < [(1 + 26)n\ do

begin

if there exists an empty slot x for which ^(x) >
then VeryUnlikely: exit this while-loop;
else UsualCase: if flip(l/(l-t-(5))

then begin
k •.= k+\-, i

/* Note that the probability that slot x is filled by the statement
below is ^(z) */

insert Kfe into the table according to double hashing, and color it
green; '

end

else begin
choose an empty table location x to be!filled according to the

probability distribution

and color it red;
end;

/ := / + 1;
end; /* ofwhile-loop */ |

while / < [(1 + 2(5)nJ do j
insert an extra red point into the table according to uniform^hashing;

end;/* ofprocedure */ |

Figure 2
Procedure UsuallyDoubleHash !

Let T be a probability space used to determine the valueb returned by flip, and the
choices of locations for red points, in UDH. (The symbol T is intended as a mnemonic for
the tossingof coins.) The probability space used in the analysis will be the product space
S = H XU XT. The random variable can easily be extended to be defined on this
space by simply ignoring the component from T. The variable maps an element
{h,u,t) E S = H XU xT to a value computed in the following way: fill a table according
to h and t by the algorithm UDH, and then return the number of probes that double
hashing would use to search for a key with hash pair u in the resulting configuration. We
define

Figure 3 depicts a simpUfied possible plot of ^(x) whenTor all empty slots x,
^(x) < (1 + ^)l{rn —f) (the "UsualCase" in the algorithm). The scales on the axes in

1+li
m-J

13

l + <^

m- f
Figure 3m: ui c %J

A plot of ^(x), for the m —f empty table positions

14

that figure are not equal: For convenience we have scaled the horizontal axis so that each
of the vertical bars has width 1. Note that the shaded region in that figure has area 1,
and the white region (between ^(x) and (1 + <5)/(m —/)) has area 6. The probability
distribution g{x) used in the algorithm is just the white region, normalized to have area 1.

Note that the block labelled "UsualCase:" can be viewed as drawing a point
uniformly from the rectangle shown in Figure 3, coloring it green if it is drawn from the
shaded portion of that rectangle and red otherwise. (The procedure flip decides first
which color to use, and then is used to select a slot for a green point, or g is used to
select a slot for a red point.) Hence it is not hard to see that the distribution of table
configurations (and slot colors) is unaffected if we replace the block with the following:

UsualCaseVariant: Choose the next table location x to be filled according to uniform
hashing. Choose whether x is filled with a red point or a green point by letting

Pr{x is green} =
(1 + (5)/(m -/) •

We can now begin to mahe comparisons between the distributions of the number of probes
for UsuadlyDoubleHash (UDH), double hashing (DH), and uniform hashing (UH).

I 15

Lemma 4. i
pUDH/T X_ pUH (-LN !

!

Proof. By the UsualCaseVariant described above, if we ignore the colors of inserted
points, UDH is simply performing uniform hashing, and inserts precisely [_(1 + 26)m\
points. (Note that regardless of why we exit the first while-loop, the second loop pads
the table to contain [(1 i- 26)m\ points.) Thus the length of aiprobe sequence for a new
hash pair chosen independently is just the same as that for uiiiform hashing in a table
filled to this size. I

In order to complete the proof we compare the distributions of the number of probes
for DH and UDH. Usually we have though this can fail if we did not insert
all n of the original keys. Let be this event, i.e., that k aX the end of UDH.

Lemma 5. Huj e S - Ef^i, then y°®(u;) < y„™(w). |
Proof. If all n keys were placed by UDH, then DH and UDH insert the same keys

(with the same hash sequences), except that UDH occasionally jadds an extra point. Then
by the monotonicity of double hashing, the configuration produced by UDH dominates
that which would have been produced by DH. ; |

Fortunately, event Ef^n is quite unlikely. !

Lemma 6. Pr{flfaii} is c-polysmall.

Proof. First consider the case that the exit statement labelled "VeryUnlikely:"
was ever executed. By Lemma 3, equation (1.2), and equation (3.1), for each insertion
the probability that the next point will be placed by the block labelled "VeryUnlikely:"
is c-polysmall. Since the number of insertions is 0{m), the probability that this block is
ever invoked is c-polysmall.

Next suppose that VeryUnlikely is never invoked. Then it must be that there were
(1 +26)n calls to flip but fewer than n true's among the results. Hence we can bound the
probability of this case by the probability that there are fewer than n successes in (l-|-2(5)n
Bernoulli trials with success probability 1/(1 + S). By LemmaT and equation (3.1) this
be shown to be c-polysmall in n, and hence also in m, for any fixed 0 < a < 1. |

Proof of Theorem 1, concluded. Combining Lemmas 4, 5, and 6, we immediately
obtain the upper bound given in equation (3.2).

We now give a brief sketch of the proof of the lower bound for PP^(A:), which
uses the procedure UsuallyDoubleHash' shown in Figure 4. The sampling procedure
required now does not need to insert additional points, but rather makes the distribution
probability for filled slots uniform by occasionally rejecting a pdint; this is quite similar to
the resampling used in another context in [KK82]. The result is a table with configurations
which are distributed as if filled by uniform hashing and which are dominated by those
that would have been obtained if we had used double hashing; moreover, they axe very
likely to contain at least (1 —S)n points. We omit the details. | I

procedure UsuallyDoubleHash'{n)
begin

k := 0; /* Number of original keys inserted so far */
f := 0; /* Number of table positions filled so far */
while k < n do

begin
if there exists an empty slot x for which

then Very Unlikely: report failure and return;

else UsualCase:

begin
for each empty slot x do

RejectProbability{x) := 1 —

insert Kt into the table according to double hashing, and let x denote
the slot which is filled;

if &vp{RejectProbabiIity{x))
then make slot x empty again (discarding key Kk)',
else /;=/+!;

k := i + 1;

end /* of UsualCase */
end /* of while-loop */

end; /* of procedure */

Figure 4
Procedure UsuallyDoubleHash'

16

CHAPTER 4
Conclusions and Related Work

In [BBS90] the probability distribution of the insertion costs for a type of hashing
algorithm known as random probing with k-ary clustering is analyzed. In this type of
hashing algorithm, we assume that the key distributions and |hash functions are such
that the first k positions in the probe sequences for successive heys axe independent. The
remaining positions in probe sequences are a function of the first k] this function is chosen
randomly but fixed at the beginning of the run of the algorithm. For k = 1, the closed
form of the probability distribution is given, and for k>2, they show that the probability
distributions are asymptotically identical to that of uniform hashing, enabling them to
conclude that all moments are asymptotically equal to those of uniform hashing.

The results discussed here were originally presented in [LM88]. There we only
presented bounds on the expectation of rather than on its distribution. However,
[SS90] noted that bounds on the distribution of were implicit in the results; using
this observation, we have, as [BBS90] did for algorithms with fci-ary clustering, written the
present paper in a way which explicitly addresses this distribution. In particular, in view
of the bound in Theorem 1, we have the following, which answers a question mentioned
in [BBS90].

Corollary 2. For any fixed a and q > 0 as m ^ oo over the primes,

E[(r™)'l ~ EKr™)']. I ,
There are several ways in which these results might be strengthened. One of the

most interesting, recently addressed in [SS90], is the question pf how one might analyze
open addressing schemes if we weaken the assumption that all, of the keys to be inserted
are independently distributed. For example, by using universal hashing schemes, one
might be able to eliminate any assumptions about the distribution of keys and still
enforce the condition that any set of logn hash pairs are independent. This complicates
the problem considerably, but Schmidt and Siegel were able to obtain results under such
assumptions [SS90]. ;

17

PART II
Parallel Depth First Search of Planar Directed Graphs

CHAPTER 1
Background Information

Since depth first search has proven to be a very important technique in sequential
algorithms for graph problems, it seemed natural to look for a parallel depth first search
algorithm. When Reif [Rei85] showed that the problem of finding, for a general graph,
the unique depth first search ordering of the vertices specified by a given set of adjacency
lists for vertices was P-complete, it may have appeared unlikely that an NC algorithm
for depth first search existed. Since then, however. Smith [Smi86] has shown that finding
a depth first search ordering of planar undirected graphs was in NC, and Aggarwal and
Anderson [AA87] have found a randomized NC algorithm to give a depth first search
ordering for the general undirected graph. Later papers brought the processor coimt used
in the planar undirected case to linear [HY88, JK88, Sha88].

For directed graphs, Kao [Kao88] first placed the problem for planar graphs in NC,
and Aggarwal, Anderson, and Kao [AAK89] have shown a randomized NC algorithm for
the case of general directed graphs. Kao and Klein [KK90] have recently given a depth
first search ordering for planar directed graphs using a linear number of processors, but
the time bound is 0(log n).

We present an algorithm for the depth first search of a planar directed acyclic graph
with k sources using 0(n) processors and 0(log k logn) time on a CRCW PRAM model.
(We will use often use the common abbreviation dag for directed acyclic graph.) For
the case of planar st-graphs, which are dags with a single source and a single sink on
the same face, we present a simple optimal algorithm which gives the depth first search
in C)(logn) time with 0(n/log n) processors on an EREW PRAM, assuming that the
embedding is given. We then use the st-graph algorithm to construct an algorithm with
the same time and processor bounds for the case in which the single source and single
sink are not necessarily on the same face. For the case of a single-source multiple-sink
planar dag, we have an O(log n) time 0{n) processor EREW algorithm, again assuming
the embedding is given. We also give a simplified variant of the depth first search of a
multisource planar dag which can be used to solve the single source reachability problem
for a planar directed acyclic graph in (9(log^ n) time and 0{n) processors on an CRCW
PRAM. Since an O(log'̂ n) algorithm for this problem is used as a subroutine by Kao and
Klein in their depth first search for the general planar directed graph, this will lower their
time bound by a factor of log^ n.

The algorithm relies heavily on the Euler tour technique [TV85]. We introduce the
idea of specifying a particular depth first search tree for a planar graph, one in which

18

: 19

the Euler tour which accompanies the depth first search defining the tree is also planar
and crosses no tree edges. Given a root and an orientation about the tree (clockwise or
counterclockwise), this gives a unique depth first search tree. We exploit the properties
of this depth first search which we will call the Euler tour depth first search or ET dfs
to make the correct local decisions. (ET steinds for Euler tour and dfs is a common
abbreviation for depth first search.) Using this, we get a simple optimal algorithm for the
depth first search of a planar directed acyclic graph with one source and one sink, which
may be on separate faces.

For the case of single-source multiple-sink planar dags, we look at the dual of the
graph, which will be strongly connected. We find a particular spanning tree of the dual,
and find the Euler tour numberings of the dual edges. This in turn will help determine
which in-edge is chosen by an ET dfs of the original graph. For the general case of the
planar dag, the problem was to find and separate out the vertices reachable from different
sources. Again we look at the dual of the graph. In the dual', sources and sinks will
appear as cyclic faces. To remove multiple sources, we iteratively find and combine sets
of vertices reachable only by a source or set of sources, none of which is the designated
root source, and process them out until only the root source is left. Using the information
gained from the dual, we are then able to cut the original dag into multiple components,
each of which is a single-source multi-sink dag. The simpler algorithm can be run on each
of them, and the results are recombined to form an ET dfs forest.

In the remainder of this chapter we will give some of the terminology and basic
techniques for planar digraphs that we use in the work. Chapter 2 will discuss the
Euler tour depth first search and define Right Hand In-Path and Right Hand Out-Path
structures of a planar graph. The properties of these structures are used extensively
in finding the depth first search of the graph. In Chapter 3 we give the algorithms for
finding the Euler tour depth first search of single sourcedags. There are three algorithms,
increasing in complexity, for the very specialized case of a planar st-graph, for the slightly
more general case of a planar single-source single-sink dag, and finally for the case of a
planar single-source dag. In Chapter 4 we deal with the ca.se of the planar multiple-source
dag. Chapter 5 gives a summary and discusses possible future work in this area.

1.1. Definitions and terminology
1.1.1. PRAM: model of parallel computation

In this dissertation, we will be using the Parallel Random Access Machine or PRAM
model of parallel computation. A PRAM consists of independent processors, which
communicate with each other through a shared global memory. Each processor may also
have some private memory. In one time step, each processor can execute a single RAM
operation, or read or write into a single memory location.

The PRAM model is subdivided into models depending on whether more than one
processor can access a specific memory location in the same time step. In the most
restrictive model, the Exclusive Read Exclusive Write or EREW PRAM, no concurrent
access to a memory location is allowed. In the Concurrent Read Exclusive Write or
CREW PRAM, more than one processor can read from a single memory location, but
only one processor can write in a given location during one time step. In the Concurrent

20

Read Concurrent Write or CRCW PRAM, more than one processor have access to a
memory location for both reading and writing.

In the case of the CRCW PRAM, the ways of resolving write conflicts lead to three
commonly used CRCW PRAM models. In a COMMON CRCW, concurrent writes are
allowed only when all processors writing to a given location are writing the same value.
If any one processor among those attempting to write can succeed, where the choice of
processor is arbitrary, the model is called the ARBITRARY CRCW. If there is a priority
ordering among the processors and the highest priority processor among those attempting
to write always succeeds, it is a PRIORITY CRCW PRAM.

Although there are many PRAM models, the most restrictive EREW PRAM can
simulate one step of the most powerful n processor PRIORITY CRCW PRAM model in
0(log n) steps using the same number n of processors. (For a survey of these and other
results relating to the PRAM model, see [KR88].)

1.1.2. Graph terminology
We use the standard terminology for directed graphs [AHU74]. A graph G consists

of a set V of vertices {uj, U2, •••fn} and a set E of directed edges {ei, 62,... em}- An edge
e = {u,v) is an edge directed from vertex u to vertex v. The vertex u is called the tail
of edge e and v is called the head of e. The edge e is an in-edge for the vertex v, and
an out-edge for the vertex u. A vertex with no in-edges is called a source, and a vertex
with no out-edges is called a sink. A directed path from vertex u to vertex u is a set of
edges {/i, /2, •••/it} such that the tail of /i is u, the head of fk is y, and the head of /,•
is the tail of fi+i for i = 1 to A: —1. Any vertex which is a head or a tail of an edge in a
directed path will be said to be a vertex on the path. In a simple directed path, a vertex
on the path can be the head of only one edge and the tail of only one edge in the path. A
directed path from vertex u back to u is called a cycle; a simple cycle is a simple directed
path from a vertex u back to u. A directed graph with no cycles is called acyclic.

In this dissertation we assume that we are given a directed acyclic planar graph G
with a source vertex and one of its out-edges designated to be the start of the depth first
search of G. The designated source will be called the root source. We will assume that
the combinatorial embedding of the planar graph G is given. The embedding is specified
by giving all the edges incident on a vertex in the graph in cyclic order around the vertex.
For convenience we will define the cyclic ordering to be clockwise about the vertex. If
the embedding is not given, it can be obtained using Ramachandran and Reif's planarity
algorithm using O(log n) time and at most 0{n) processors in the CRCW PRAM model
[RR89]. We note that this specification gives the embedding of G on the surface of a
sphere.

We will also assume that the graph is connected. If necessary, an optimal CRCW
algorithm for finding connected components for undirected planar graphs can be run
[Hag88]. Without loss of generality, we assume no multi-edges or self-loops in G; a depth
first search of a graph with multi-edges and self-loops removed will give a valid depth first
search of the original graph with multi-edges and self-loops.

In this work, we make use of the constraints that an embedding of a planar graph
provides. In order to specify the relationship between parts of a graph given by the

edge

: \ /
R L / R . L y R

path

Figure 1
Right and left orientation

A
vertex

21

embedding, we give the following definitions for use in this dissertation. We will define the
right side of an edge to be the side to the right when we travel in the direction the edge is
pointing. The left side is the opposite side of the edge. The definitions can be expanded
for the right and left sides ofa directed path, as well as for a grjoup of consecutive in-edges
or a group of consecutive out-edges at a vertex which is neither a source nor a sink. Thus
the rightmost in-edge of a group of in-edges is the first in-edge; in the group encountered
while going clockwise about the vertex. The rightmost out-edge of a group of out-edges
will be the last out-edge in the group encountered while going clockwise. At a source or a
sink, we cannot distinguish any rightmost or leftmost edge. However, for a source, we axe
usually given as part of the problem definition, the first out-edge on the adjacency list
of the source. This distinguished out-edge can serve the same function as the rightmost
out-edge does for non-source non-sink vertices. (Figure 1) j

i

We will make use of the concept of a simply-connected region from differential
geometry [BB78, p. 503]. For a plane or for the surface of a sphere, a simply-connected
region will have no holes in it, so that its boundary will be a'single simple cycle. To
prevent confusion since we will be using "connected" in terms:of graphs, we will call a
simply-connected region a hole-free region.

In some sections we will specify that a certain face be the outside face. This is done
to aid in description and in proving correctness, and is not an integral part of the problem
definition or the depth first search algorithms. j

Once an outside face has been specified, we can define two directions for a simple
cycle in the embedded graph. One hole-free region of the sphere lies to right of the path
creating the cycle, and one region to the left. If the outside face is in the region to the
left, the simple cycle will be called clockwise-, if the outside face is in the region to the
right, the cycle is counterclockwise. In both cases, the region of the sphere which does
not contain the outside face will be said to be the inside of the: cycle. (Figure 2)

Once an embedding is given, we can define the crossing of two paths. We will say
that Q crosses P from the right, or equivalently, that P crosses Q from the left, if there
exists a vertex v which is on both paths and is not an end vertex of either path and if the
in-edge to v on path Q is to the right of path P and the out-edge from v on path Q is to
the left of P. Two paths P and Q cross if path P crosses path; Q from either the right or
the left. '

o
outside face

clockwise cycle counterclockwise cycle

Figure 2
Cycle orientation

complex vertex cw expansion

Figure 3
Vertex expansion of a complex vertex

ccw expansion

22

A face will also be associated with a list of edges in cyclic order which make up the
boundary of each face; these lists can be constructed from the edge lists for the vertices.
If the edges about the face are all oriented in the same direction, we will call the face a
cycle face. If the cycle is clockwise, it is called a positive face; if it is counterclockwise, it
is a negative face. These definitions of positive and negative faces, as well as the following
definitions of vertex expansion and contraction, are either the same or similar to those
used by Kao and Shannon [KS90].

A vertex will be called simple if all the in-edges are in one consecutive group in
the cyclic order of edges about the vertex. This includes the cases when there exist no
in-edges and when all edges axe in-edges. Otherwise, the vertex will be called complex.
Given a complex vertex v with groups of in-edges Ai, A2,... Ajt and groups of out-edges
Bi,B2, ... Bk alternating clockwise Ai, j3i, A2, B2,... A^, 5jt about v, we will call the
following operation cw vertex expansion: we create 2k copies of vertex v connected by a
clockwise cycle of edges. If we traverse along the cycle, the groups of edges A,'s and B,'s
will be connected in the same clockwise order as they were to v, with Ai and Bi connected
to vertex copies V2i and U2«-i-l- If the vertex copies axe linked by a counterclockwise cycle,
we will call it a ccw vertex expansion. The resvdt of either vertex expansion is to take a
complex vertex and replace it with 2k simple vertices. (Figure 3)

Figure 4
Vertex contraction along an edge

23

Besides expanding a vertex, we can contract two vertices into one by contracting
an edge between them. In a graph with the combinatorial embedding given, if u and v
are the vertices to be contracted into one along the edge {u,v), the embedding may be
retained by cutting the cyclic ordered lists of edges about u and about v at the edge (u, u)
and splicing them together so that the relative cyclic ordering is preserved. Thus if edge e
was just before (u,v) in the cyclic list for u, it would now be jiist before /, where / would
be the edge just after (u,v) in the cyclic list for v. We note that such contractions may
produce multi-edges and self-loops; in the context in which we use vertex contraction,
these will not prove to be a problem. We can also expand this idea of contraction for the
case of two vertices which are on the same face. Suppose we create a new edge between
two such vertices bisecting the face. This would not violate planarity. We then contract
along the just created edge in the way just described. I

In Chapter 4, we will present algorithms in which all vertices lying in a simply-
connected or hole-free region are replaced by a single vertex. This is equivalent to
contracting all vertices within the hole-free region and removing all self-loops. We will
say that the new vertex inherits the edges of the removed vertices and their embedding
to indicate that the list of all edges crossing the boundary of the hole-free region ordered
clockwise along the boundary will be the clockwise list of edges for the new vertex.

We also make extensive use of the properties of the dual of a graph. The following
is some standard terminology for dual graphs, except that we have fixed the relative
directions of the edge and dual edge. We define the dual of an embedded graph G as a
graph G* such that the vertices of G* correspond to the faces of G, and there exists an
edge from vertex r* to vertex y* in G* if the corresponding faces Fx and Fy in G share
an edge which is going in a counterclockwise direction around the boundary of Fx- The
cyclic ordering of the edges for a vertex in the dual G* will be the same as the cyclic
ordering of the edges on the boundary of the corresponding face in the graph G. This
specification for the embedding of the dual allows us to consider both G and G* to be
embedded on the same sphere with the vertex of the dual placed inside the associated
face of G, so that G* is the geometric dual of G. (Figure 5)

We will for convenience say that the dual edge e* in G* crosses the edge e in G from
the left. This is not the same as the definition of crossing paths, given previously. Then
the two paths were part of the same graph; here the two edges belong to a graph and its
dual respectively. We are making use of the joint embedding of the two graphs, as noted
above. In that joint embedding, we see that a positive face of G* encloses a source (a

G:

O
G'-.

Figure 5
A graph G and its dual G*

24

vertex with only out-edges) in G, and a negative face of G* encloses a sink (a vertex with
only in-edges) in G. A cw expansion on a vertex x* in G*, corresponds to the creation
of a new source in G in face Fx. A ccw expansion of a vertex in G* corresponds to the
creation of a new sink in G. A vertex contraction in G* along an edge e* corresponds to
the removal of edge e in G.

We note that a planar graph with n vertices and no multi-edges or self-loops has
0{n) faces and 0(n) edges. Thus the size of its dual graph will also be 0{n). Given
a graph G with its embedding, we can find its geometric dual graph G* using 0{n)
processors in 0(log n) time in the EREW PRAM model. We conclude by listing the
following useful properties of the dual of a planar graph.

Property 1.1 [Har72, p. 113] The geometric dual of an embedded planar graph is an
embedded planar graph with self-loops and multi-edges possible.

Property 1.2 [KS90] The dual of a planar directed acyclic graph is a planar strongly
connected graph.

1.2. Basic Techniques
We list some techniques which we use as basic tools in the depth first search

algorithms given in this dissertation. A good review of these and some of the other

; 25
i

parallel algorithms mentioned is in [KR88]. One paxticular technique, the Euler tour
technique, is very important to this work and will be treated in the next chapter.

1.2.1. List ranking
The problem of list ranking is as follows: given a linked list, find for each element

in the list the number of its predecessors on the list. Represented in terms of a graph,
we have a directed graph of n vertices connected in a line with all edges directed away
from the head vertex. We wish to label each vertex by its distance from the head vertex.
Given n processors, one for each vertex, there is a standard pointer doubling algorithm
which will find the list ranking in O(logn) time on an EREW PRAM [Wyl81]. Solving it
optimally with nf log n processors and O(logn) time is more difficult, but has been done
using deterministic coin tossing technique as an aid in assigning the n/logn processors
among the n vertices. [CV88, AM88]. Using this technique, we; can optimally convert any
linked list into an array. |

1.2.2. Prefix sum '

Given an array A of n elements, the prefix sum problem!is that of finding all the
partial sums: ;

i

S, = '£Alk]
k=l

Again there is a simple sequential algorithm which runs in linear time. Using pointer
doubling techniques as in list ranking, we can get a parallel algorithm using n processors
in O(log n) time. To convert this to an optimal parallel algorithm using 0(log n) time
and 0{n/ logn) processors on an EREW PRAM, we can assign each processor to sum up
a block of log n elements in O(log n) time. Now the smaller prefix sum problem can be
solved using the n/logn processors, and each processor again processes its block of logn
elements to solve the full problem. [LF80] i

The same algorithm can be used to find the maximums or minimums instead of
sums. By using 0(n/ log n) processors and O(logn) time we can find the maximum A[A:]
in the range A: = 1 to i for all i from 1 to n. In this work, we will call this the prefix
maximum problem.

1.2.3. Operations on trees and circular lists :
Suppose we axe given a tree with n nodes, in which a node points to its parent. By

using pointer doubling, we can calculate Si = -M.^] where A[&] is a value stored at node
k and where the summation is over all the nodes on the path; in the tree from node i
to the root of the tree. This would require n processors and P(log n) time on a CREW
PRAM, since concurrent reads are required. Again, the same technique can be used to
find maximums and minimmns instead of sums.

Pointer doubling can also be used on circular lists with n elements to find the
maximum number A[A;] in the list. This can be done with n processors in O(log n) time
in an EREW model. I

26

1.2.4. Graph algorithms for planar graphs
Optimal CRCW algorith.ms are known for finding the connected components and for

finding a spanning tree for undirected graphs [Hag88]. The algorithms run in 0(n/log rz)
time using 0{n) processors. We make use of these algorithms, treating the directed graph
as undirected by ignoring the edge direction.

CHAPTER 2
Planar Euler tour depth first search

2.1. Euler tour for a rooted tree
Introduced by Taxjan and Vishkin [TV85], the Euler tour technique for processing

trees in parallel is used as a basis for other paxallel algorithms. Assume we axe given a
rooted tree in the form of adjacency lists of edges to children,for interior vertices. For
each edge (p, c) between a parent node p and a child node c, we create two directed edges,
a downedge{p,c) pointing from the parent to the child and an'upedge{c,p) pointing from
the child to the parent. We obtain an Euler tour traversing these edges by specifying
as follows for every edge ei, which edge 62 comes next in the traversal. After every
downedge{p,c), we traverse do'wnedge{c,g), where (c,p) is the|first edge on the adjacency
list for c. If c has no children, downtdge{p,c) is followed by upedge{c,p). After every
upedge{c,p), we traverse downedge(p,c'), where (p, c') is next after (p, c) in the adjacency
list for p. If (p,c) was the last edge on p's adjacency list, upedge{c,p) is followed by
upedge(p,q), where q is the parent of p. In this Euler tour traversal, the down-edges are
visited in the same relative order as depth first search visits the associated tree edges.
The path taken by this traversal, which we will call the Euler path, can be represented
by an ordered list of edges. Since every edge can find the next edge on the list using the
above rules in 0(1) time, the algorithm for creating this Euler path runs in 0(1) time
using 0(n) processors. I

Given the Euler path, we can use a variation of the parallel list ranking algorithm
and the prefix sum algorithm to assign preorder, inorder, or postorder numbers to all
vertices in the tree. These numbers in turn may be used in many algorithms, for example,
determining if two vertices are in an ancestor-descendent relationship in the tree. If the
vertices axe assigned weights, by using the prefix sum algorithm and the Euler path, we
can calculate the weight for all subtrees where the weight of a subtree is the sum of all
the weights of the vertices in the subtree [TV85]. |

In our procedures and algorithms, we repeatedly do two tree trimming operations.
Suppose we are given a tree T with some of its edges maxked'. In an exclusive trimming
of the tree, we find the largest subtree with the same root as T such that all its edges
are marked. This can be easily done using the Euler tour technique by splicing out any
unmarked edges from the tour. In an inclusive trimming, we; find the smallest subtree
with the same root as T which includes all maxked edges. After an inclusive trim, the
last edge to any leaf of the trimmed tree will be maxked. This can again be implemented
using the Euler tour technique. Suppose we assign a weight to the maxked edges. Then
by using a variation of the subtree weights algorithm mentioned above, we can find the
subtrees which contain no maxked edges and splice them out pf the tree. Thus both these
operations have O(log n) time 0(n/ log n) processor EREW PRAM algorithms by using
the Euler tour technique.

27 :

I

i

28

2.2. Planar Euler tours and depth first search
We now extend the same idea of Euler tour traversal to directed graphs in which

every vertex is reachable from a specified root vertex. Suppose we replace each directed
edge {u,v) by two directed edges connecting vertices u and v, downedge(u,v) pointing
in the same direction as {u,v) and upedge{v,u) pointing in the opposite direction. We
tie the Euler tour traversal of these downedges and upedges to a sequential depth first
search of the original graph G as follows. Let T be the depth first search tree of G
with the root vertex as the root of T. If {u,v) is an edge in T, then downedge{u.v) is
followed by downedge{v,w) where (v,w) is the first out-edge from u examined by the
sequential depth first search to see if w has been visited previously. If (u,v) is not an edge
in T, then downedge(u,v) is followed by upedge(v,u). After upedge(v,u), we traverse
downedge(u,v') where (u,v') is the out-edge from u next examined by the sequential
depth first search after out-edge (u, v). If (u,v) was the last out-edge from u examined by
the sequential depth first search, upedge(v, u) is followed by upedge(u, x) where (x,u) is
an edge in T.

This Euler tour traversal will visit downedges in the same relative order that the
sequential depth first search examines the associated graph edges. If not all vertices in
the graph are reachable from a given root vertex, the edge traversal as defined above
associated with a sequential depth first search will produce one path for each depth first
search tree in the forest, each path forming an Euler tour traversal of the edges associated
with those examined by the depth first search tree.

We now further specify this Euler tour traversal for the case of planar graphs. We
first specify the embedding of the downedges and upedges as follows: if in the clockwise
ordering of the edges incident on vertex u, each edge (u,v) is replaced by upedge{u,v)
and downedge{v,u) in clockwise order, it will be called a right-hand Euler tour. If (u,v)
is replaced by downedge(u,v) and upedge(v,u) in clockwise order, it will be called a
left-hand Euler tour. An Euler tour traversal will be called planar if its path never crosses
itself.

If the sequential depth first, search of a planar embedded directed graph always
examines the out-edges of a vertex in counterclockwise order starting at the in-edge by
which the vertex is first visited, the associated right-hand Euler tour traversals as specified
above, will be planar. We define such a sequential depth first search to be an right-hand
Euler tour depth first search or just Euler tour depth first search. We call a parallel
algorithm an Euler tour depth £rst search (or ET dfs, as noted previously) if it finds the
same depth first search forest as that found by a sequential Euler tour depth first search.
In this dissertation we present parallel Euler tour depth first search algorithms.

If the out-edges of a vertex are examined in clockwise order by a depth first search,
the associated left-hand Euler tour traversals will again be planar. Such a search will be
called a left-hand Euler tour depth Erst search. The depth first search forest for this case
could also be computed by slight modifications to the parallel ET dfs algorithms given.
(Figure 6)

right-hand ET dfs

Figure 6
Planar Euler tour depth first search'

leftrhand ET dfs

29

2.3. RHOP and RHIP structures and the incidence graph of G
Suppose we are given a planar directed graph G, not necessarily acyclic, and its

combinatorial embedding. The incidence graph G' of G is defined as follows;

• for every vertex v in G, there is a vertex v* in G', '

• for every edge e in G, there is a vertex e' in G', and !

• for every edge e = (u, v) in G, there are two edges (u\ e'); and (e',i;') in G'.
I

The combinatorial embedding ofG' is the same as for G: the cyclic order ofedges e/s for
a vertex u in Ggives the cyclic order for the corresponding edges (u',ey)'s and (ey,u*)'s.
Suppose wedefine the time a depth first searchfirst visits an edge to be the time the depth
first search algorithm examines the edge when it is on the adjacency list of out-edges for
a given vertex to see whether or not the head of the edge has;already been visited and
marked by the search algorithm. Then given an ET dfs of G, ^ ET dfa of G' starting at
the vertex and edge corresponding to the starting vertex and edge in G, will visit vertices
u' and e' in the same relative order that the ET dfs of G visits corresponding vertices v
and edges e.

Suppose G, and hence G', have only simple vertices. We can then define on G' a
subgraph called a Right Hand In-Path structure (RHIP) which has all the vertices v* and
e' of G', all edges of the form (e',u'), and those edges (u', e') in which the corresponding
edge e = (•u,u) is the rightmost out-edge for u in G. In addition, if s is a source in G and
h = {s,v) is the designated first out-edge from s, the edge {s\ h*) is chosen to be in the
RHIP. I

Simil^ly w;e define Right Hand Out-Path structure (RHOP) in which all vertices of
the type v* in G' retain their out-edges, but have only one in-edge, the rightmost in-edge
for V*. The corresponding in-edge for v will, of course, be the|rightmost in-edge for v.

vertex v in G'

leaves

RHIP

vertex e in G'

Figure 7
RHIP and RHOP for G'

30

RHOP

The vertices which are sinks (no out-edges) choose no in-edge. This provides a slight
asymmetry between the RHOP and the RHIP structures; in the RHOP structure, there
exist vertices, the sinks, which are not connected to any other vertices. (Figure 7)

We now give the fundamental property of the RHOP and RHIP structures.

Property 2.1 On a directed path in an RHOP structure, there are no in-edges incident
on the path from the right. On an RHIP path, there are no out-edges incident on the
path to the right.

Since all vertices have out-degree one, the RHIP defines a tree-like structure. If the
original graph G (and hence G*) was acyclic, the RHIP does define in-trees with sinks as
roots. If there are multiple sinks, the graph will give an RHIP structure which is a forest
with every sink a root of an in-tree. (This is known as a pseudo-forest in [GPS87].) If the
original graph was strongly connected, the paths end in positive faces instead of sinks, and
we will call each connected component of the RHIP structure a c-tree to emphasize its
tree-like nature. A positive face will be called a root cycle, and the separate components
which result if all edges in the root cycle were removed are special trees which we will call
the c-subtrees of the c-tree. The root of a c-subtree will be called the c-root. All c-roots

are vertices on the root cycle by definition.

For the RHOP case, if the original graph was acyclic, we get a forest of out-trees
with sources as the roots of the out-trees. If the original graph was strongly connected,
the paths all originate in positive faces, and again we will call each connected component
a c-tree, and the positive face a root cycle. (Figure 8)

Although we have defined the RHOP and RHIP structures on the incidence graph of
G, it is clear that we coiild define it on G itself, by having every vertex except the source
and sink choosing either the rightmost in-edge or the rightmost out-edge. In the case of

graph G and its dual G*

RHOP c-tree

^ leaf

Figure 8 i
An dag G and the RHIP and RHOP structures of of its duztl G*

RHIP c-tree

graph edges

graph vertices

dual edges

dual vertices

31

the RHIP, the source can choose the designated first out-edgeJ In the case of graphs with
no vertices with degree greater than three (implying all verticiss axe simple), the RHOP
and RHIP structures axe almost identical to the and Fc fotests of Kao and Sh^non
[KS90]. :

32

In what follows, unless stated specifically otherwise, when we refer to the RHOP and
RHIP structures of G we will be referring to the structures defined on G itself, but when
we refer to the RHOP and RHIP structures on the dual graph G*, we will be technically
manipulating the incidence graph of G*. Because of the close relationship between any
graph and its incidence graph, the results of operating on the incidence graph translate
in an obvious way to the graph. We note that the size of the incidence graph of a planar
graph of size 0{n) is 0(n), and that given 0(n/logn) processors and O(logn) time,
we can create the incidence graph, mark the edges belonging to the RHIP (or RHOP)
structure and, using the Euler tour technique, separate out each tree or c-tree component
and find its root vertex or root cycle.

2.4. LHOP and LHIP structures
We can also define Left Hand In-Path (LHIP) and Left Hand Out-Path (LHOP)

structures by replacing rightmost by leftmost in the definitions of RHOP and RHIP.
By symmetry any properties which we find for the RHOP and RHIP structures can be
appropriately altered and attributed to the LHOP and LHIP structures.

We will for the most part only use the RHOP and RHIP structures. However, there
is one useful property of the LHOP (and LHIP) structure which we will use.

Property 2.2 Let a subgraph G be a subgraph induced by the edges of a set of clockwise
cycles. Let R be the union of all regions inside the cycles. Then the root cycles of the
LHOP c-trees of G will be the boundaries of the region R.

CHAPTER 3
Depth first search for single source planar dags

3.1. ET dfs of a planar st-graph
A planar st-graph is a planar acyclic directed graph with|one source and one sink,

both on the same face. We first present an algorithm for the depth first search of this
special graph and later show that it can be readily generalized to the case in which the
source and the sink are not on the same face.

We first need the following lemma.

Lemma 3.1 Given an embedded planar dag with a single source and a single sink, all
vertices are simple.

Proof. (Figure 9) Suppose for a contradiction that we had a complex vertex v.
Then there must exist two in-edges of v, which are separated fmni each other by two sets
of out-edges in the cyclic list of edges around v. The two such iin-edges must have paths
to them from the single source. If we follow the two paths backward from v toward the
source, they must meet at some vertex u, which may be the source. If we look at the
simple cycle formed by following one of the paths backward from u to u and then forward
along the other path from u to v, it will separate the graph into two regions, one inside
and one outside the cycle. The two sets of out-edges at v lie iniseparate regions, implying
either the presence of at least two sinks, one in each region, orjthe presence of a directed
path from v which crosses one of the paths from u to u, creating a cycle in the graph from
V back to V. Either case contradicts our assumptions; hence there cannot be a complex
vertex v. \ I

The following is the basis for Algorithm 1 for the ET dfs of a planar st-graph.

Theorem 3.2 An ET dfs of an embedded planar st-graph will always choose the
rightmost in-edge to a non-sink vertex.

Proof. (Figure 10) Suppose an in-edge to vertex v was chosen which was not
the rightmost in-edge. Then the vertex w from which the rightmost in-edge is coming
must be visited after v is visited. Moreover, since this an acyclic graph, w cannot be a
descendent of v, and the dfs must visit w after visiting all the|descendents of v. There
exists a path from v to the sink, all the vertices of which must have been visited before
the ET dfs traversal returns to v. Since all vertices on the path from the source to v
must also have been visited, this creates a path from the source to the sink, all vertices
of which have been visited at the time the ET dfs traversal finishes with v. At this point
the Euler tour must be on the left side of the path while w is;on the right side of the
path. In order to visit w, the Euler tour must either cross over; itself, or follow some path
which will enclose either the source or the sink but not both. The first case contradicts

the planarity condition, while the second is impossible if both source and sink are on the
same face. Thus there cannot have been such a vertex w. j I

33

Figure 9
Illustration for lemma 3.1

boundary of outside face

Figure 10
Illustration for Theorem 3.2

34

Because of Theorem 3.2, the RHOP structure of G gives the ET dfs tree of an
st-graph. The only complication is that the sink is not connected in an RHOP structure;
however, the in-edge for the sink can be easily found after the rest of the ET dfs tree has
been found.

Algorithm 1. ET depth first search for a planar st-graph
1. Find the RHOP structure of the graph. This is possible since all vertices are

simple.
2. Using the Euler tour technique, find the preorder numbering for all vertices in

the tree defined in step 1.
3. Among all vertices with edges to the sink, find the vertex with the lowest

preorder number. Add the sink and the edge from the chosen vertex to the sink,
to the tree defined in step 1.

4. Redo the Euler tour technique to find the preorder numbering of the ET depth
first search tree including the sink.

35

The first step can be done in constant time by 0(n) processors, or in O(logn) time
by 0{n/logn) processors in the EREW model. All other steps' can be done in O(log n)
time with 0(n/ logn) processors, so Algorithm 1 is optimal.

3.2. ET dfs of a single-source single-sink planar dagl
For a single-source single-sink planar dag whose source and sink are not on the same

face, we use the following technique to convert it into a st-grapjh without modifying the
depth first search tree.

We note that for any vertex, the path defined by RHIP gives the direction that the
ET dfs would take from that vertex for as long as it meets no previously visited vertex.
For the case of single source and single sink graph G, the RHIPjon G defines a single tree
with the source as one of its leaves. The path on this tree froih the source to the sink
must therefore be the first set of edges followed by the dfs. Usinig this we get the following
algorithm. All steps can be accomplished using (9(n/logn) prbcessors in O(logn) time
on an EREW PRAM. i

!

Algorithm 2. ET dfs for single-source single-sink planar dag

1. Find the RHIP structure of the graph.

2. Find the path P from the source to the sink on the RHIPitree.

3. For all vertices on the path P, take all in-edges which are incident on the path from
the right and make them point to the sink. Now the source and the sink are both
on the same face. Note that by Property 2.1 there are nobut-edges incident on the
path on the right.

4. Run the algorithm for ET dfs for a planar st-graph. j

We note that since the path found in step 2 is the first path taken by the dfs, the
edges shifted in step 3 could not have been in the dfs tree. Thus they can be shifted to
point to the sink at the end of the path without changing the dfs tree of G.

3.3. ET dfs of a single-source mult!pie-sink planar dag
For the case of a single-source multiple-sink planar dag G, we can find the ET dfs

by using the RHOP structure of the dual graph G*. Algorithm 3 is a brief summary of
the procedure.

Algorithm 3. Depth first search of a single-source multiple-sink planar dag
G

1. Find the dual graph G*. I
2. Do a ccw expansion of the complex vertices of G*. This is equivalent to adding

new sinks to G. They can be easily removed at the end.

3. Find the RHOP structure of G*. This wiU be a c-tree whose root cycle will form
the boundary of the positive dual face associated with the source of G.

4. Let h be the first edge followed out of the source by the dfs in G. Let h* be the
corresponding edge in G*. Then h* will be an edge on the positive root cycle.

graph edges dual edges

O dual vertex

Figure 11
Illustration for lemma 3.3

36

Cut oif h* from the dual vertex t* to which it points, thus cutting the cycle and
creating an actual tree out of the RHOP c-tree structure.

5. By the previous step, t" is the root of the RHOP tree. Do an ET dfs of the
out-tree starting at t* and following as the first path, the edges which formed the
root cycle until it reaches h*. For every edge in the RHOP tree, including the
cut-off leaf edges, find the postorder nximbering using the ET dfs.

6. For every vertex in G, choose as its in-edge for the ET dfs tree the edge whose
corresponding dual edge has the lowest postorder number.

7. Use the ET technique to find the preorder numbering of the ET dfs tree found
in the previous step.

In order to prove that the algorithm finds the correct in-edge for every vertex of G,
we first prove the following lemma and a corollary, which states a useful property of an
RHOP path.

Lemma 3.3 Let P* be a path of an RHOP structure of a dual graph G*. Let x*, y*, and
z* be three adjacent vertices on P* such that e* goes from x* to y*, and f* goes from y*
to z*. Let e and / be edges of graph G which cross e* and f* respectively from the right
to the left. Let Fy be the face in G corresponding to y* in G* so that e and f are both
on the boundary of Fy. Then if there exist any edges on the boundary of Fy between the
tails of e and f on the right side of P*, they are all oriented counterclockwise around Fy.

Proof. (Figure 11) Suppose for a contradiction that there were some edge g
oriented clockwise on the boundary of Fy between e and /. Then there would exist a dual
in-edge g* to y* which the RHOP path woiild choose before e*. Since the RHOP path
chose e*, we have a contradiction. I

Corollary 3.4 Jf an edge e of G crosses an RHOP path P* of the dual of G, then there
exists a directed path P (possibly degenerate) in G which starts at the source which is
enclosed by the root cycle of the RHOP c-tree and ends at the tail of e. Moreover, the
path P will parallel the RHOP path and lie directly to the right of P*. (More speciGcally,

37

P is composed of the boundary edges for the faces of G whosd associated dual vertices
are on P*. They lie to the right of P* and have a counterclockwise direction about their
respective faces.) All edges in G incident on the path P on the^Jeft side will be out-edges
crossing the RHOP path. I

A very similar lemma and corollary can be proven for the RHIP path structures.
We state the corollary. i

i

Corollary 3.5 If an edge e of G crosses an RHIP path P* of the dual of G, then there
exists a directed path P (possibly degenerate) in G to the tail of e from the source which
is enclosed by the root cycle of the RHIP path. Moreover, the'path P will parallel the
RHIP path going in the opposite direction, and lie directly to: the left of P*. (More
specifically, P is composed of the boundary edges for the faces of G whose associated dual
vertices are on P*. They lie to the left of P* and have a clockwise direction about their
respective faces.) All edges in G incident on the path P on the right side will be out-edges
crossing the RHIP path. I

We now show that Algorithm 3 does find the ET dfs of a planar single source dag.

Theorem 3.6 Let e and f be two in-edges to a vertex v in a single source planar dag
G. Assume e and f axe adjacent in-edges in the cyclic order ofin-edges around v. (They
may have out-edges between them.) Suppose e*, the dual edge crossing e, has a lower
postorder number as found by Algorithm 3 than f*, the dual edge crossing f. Then the
ET depth first search of G starting from the source with the designated first edge will
visit edge e before edge f.

t*

Ccise 1 Case 2a

Figure 12
Illustration for Theorem 3.6

38

Case 2b

Proof. (Figure 12) There are two possible cases, depending on the relationship
between e* and /* on the RHOP tree.

1. Both dual edges are on the same RHOP path from the root.

In this case, f* must be the edge closer to the root in order for the postorder number
of e* to be less that that of /*. Let e be the edge from vertex x to v, and / be the edge
from y to V. By corollary 3.4 there is a path P in G from the source to y and then to x
lying to the right of the RHOP path. If x is visited before y by the ET dfs tour of G,
edge e will be visited before edge /. Consider the case where y is visited by the ET dfs
tour before x. Again because the ET dfs tour visits all out-edges in a counterclockwise
order, the edge along the path from y to x and all vertices and edges reachable from it,
including edge e, will be visited before edge /.

: 39

2. The dual edges are on different branches of the RHOP tree.

Again, let e be the edge from x to v, and / be the edge from y to t; in G. If there
are out-edges from v between edges e and /, let K* be the RHOP path segment which
crosses them all. If the clockwise cyclic order of edges incident on v has in-edge e followed
immediately by the out-edges crossed by K* followed immediately by in-edge /, then K*
will start at the tail of e* and end at the head of f*. We will cdl this case 2a. If we
switch the ordering of e and /, K* will point from the tail of f to the head of e. This will
be case 2b. If there exist no out-edges between e and /, we have the degenerate cases of
2a and 2b. In the degenerate case 2a, having no out-edges between e and / means that
the tail of e* is the head of /*. In the degenerate case 2b, the tail of /* is the head of e*.

Let P* and Q* be the RHOP paths to the tails of e* and /* respectively from their
lowest common ancestor z* on the RHOP tree. Then in case 2a, P*, Q*, K* if it exists,
and /* together form a closed boundary B. In case 2b, P*, Q*, K* if it exists, and e*
form a closed boundary B. If we define the region inside the jroot cycle as the outside
face, so that it is outside the closed boundary B, then both the source and the RHOP
tree path from the root cycle to z* are outside B. Since e* has a lower postorder number
than /*, the path P* to e* will be to the right of the path Q* to /* at vertex z*. This
implies that the region to the right of P* is outside B and the region to the right of Q*
and f* is inside B. Since by definition of the dual edges, the tail of any edge g is to the
right of its associated dual edge g*, x is outside and y is inside the closed boundary B.

Because of the definition of an RHOP path, all paths in G from the source to y
must cross the boundary formed by the RHOP tree path P* to e*. (They cannot cross
K* since that would create a cycle in G.) Since by corollary 3l4, the RHOP path to e* is
paralleled on the right by a path P in G from the source to x,; the dfs tree path from the
source to y in G must include on it some vertex u on P. We can now argue as in part 1
that edge e must be visited by the ET dfs tour before the edge out of u which crosses the
RHOP boundary B. Thus e is visited before edge /. I

Theorem 3.6 thus shows that Algorithm 3 chooses the correct in-edge for an ET
dfs tree in step 6. Each step in the algorithm CEin be done in ,0(log n) time using 0(n)
processors in a EREW PRAM model, and thus Algorithna 3 can be done with the same
time and processor bounds. I

CHAPTER 4
ET dfs for planar dags with multiple sources and sinks

The ET depth first search of a planar dag with multiple sources and multiple sinks
can be done if the dag can be partitioned into an ordered set of subgraphs, each subgraph
containing a single source and vertices which are reachable from that source and possibly
also from sources contained in subgraphs after it in order. Given such a partition, we
can run the algorithm in the previous chapter for planar dags with a single source on
each subgraph separately to find the depth first forest of the original graph. This chapter
gives an algorithm for such a partitioning which runs in (9(log A:logn) time for a graph
with k sources in a CROW model using a linear number of processors. We also give a
simpler algorithm which will find all vertices reachable by a single source. If we are given
a specific source, which we will call the root source, it will be the source for the first
partition set and hence the root for the lowest numbered tree in the forest.

4.1. Informal description of the partitioning algorithm
The partitioning algorithm divides the vertices of a graph G into ordered family

of partition sets, one partition set for each source in G. For every vertex u in a given
partition set, there exists a path to v from the source for that partition set. The order
among the partition sets is such that if vertex v is in partition set z, there can exist paths
to Vfrom sources for partition sets j, where j > i, but there exist no paths to v from
sources for partition sets k, where k < i.

The algorithm works in a manner very similar to Knuth's topological sort [Knu73],
with the modification that instead of removing a vertex at a time, we remove sets of
vertices. Suppose in a given step, we remove in parallel all sources (vertices with no
in-edge) present at that time with the exception of the root source. For each non-root
source we also remove in the same step, all vertices which can be reached only from that
source and from no other source. (We will refer to these as attendant vertices for that
source.) Two different situations can then occur. In one case, we can remove a source
and its attendant vertices without helping to create any new sources: all vertices to which
they were adjacent still have in-edges in the modified graph. In such a case, the source
will be considered inactive; no new vertices will be added to its partition set.

In the second case, the removal of a source and its attendant vertices contributes to
the creation of a new source. First we note that the removal of more than one source and
its attendant vertices must have contributed to the creation of a new source x. Suppose
that X originally had in-edges from old sources in a set {y,-} or from their attendant
vertices. We pick one old source yj out of the set by some priority rule and assign the
new source x to yj. The new source x will inherit the identity of yj, including its priority
ordering. We will call such new sources fake sources. If any old source has a new fake
source assigned to it, we will call it active. We then replace the active old source yj and

40

i 41

its attendant vertices by a new vertex which also inherits the identity of the old source
yj, including its priority label. The new source y'- will inherit ^1 the out-edges of the old
yj and of its attendant vertices which point to vertices still present in the modified graph
with the exception of the out-edges pointing to any new fake sources including x. We will
call new sources such as y'- new simple sources.

If any old source contributed to the creation of new fake sources, but was never
picked, it will be considered inactive. No source in the new modified graph will have the
identity of an old inactive source. The depth first ordering of fhe trees in the dfs forest
can be obtained by taking the sources in reverse order from which they, and all new
sources inheriting their identity, became inactive. i

At the end of a given step as described above, there is no guarantee that the number
of sources in the modified graph will have been reduced. In falct, the number of sources
may have increased. We define two sources to be contiguous if they are on the boundary
of one face. This means that in the dual graph, the positive faces surrounding the sources
intersect at one dual vertex. A cluster of contiguous sources is; defined as a set of sources
whose positive faces form a connected component in the dual.' We modify the algorithm
further by considering each cluster of contiguous sources to be one new supersource for
the succeeding step. (These are the positive clusters in [KS90]1)

I

When an old source and its attendant vertices are contracted into one new simple
source vertex y'j in a given step, the new simple source will be contiguous with all new
fake sources x to which the old source and its attendant vertices had out-edges. Similarly
every new fake source x will be contiguous with all new simple sources yj|, corresponding
to old sources yk and their attendant vertices which had out-edges to x. Thus, one old
source will be part of no more than one new supersource, but each new supersource must
have had at least two old sources contributing to its existencel We note that if any new
source inherits the identity of an old source, it will be part of a supersource. Thus if
we count a supersource as one source, the number of sources at a given step must be at
most half the number of sources at the preceding step, giving a bound of O(log k) for the
number of steps. i

I

The modification adds a complication. A given supersource s is actually a set of
sources from the previous step, and the out-edges of the supersource s could be from
different sources. The set of vertices which are reachable only! from s must therefore be
further partitioned into the partition sets for the sources making up s. We therefore
need another partitioning procedure (procedure AssignSupersdurceVertices) specifically
for the vertices reachable from a supersource. If the boundary cycle for s becomes part
of a new active source for the succeeding step, we can treat the new active source as a
supersource s'. We will then need to use procedure AssignSupersourceVertices on the
vertices reachable from s', using the information gained in the previous application of
the procedure to assign each out-edge of s' to one of the original sources. Since the
supersources axe active at most O(log k) iterations, this process will be repeated at most
O(log n) times in order to assign every vertex reachable from a supersource to one of the
original sources of the graph. i

42

4.2. Separating out a source and its attendant vertices
Instead of finding the boundary of the exact subgraph consisting of a given source

and its attendant vertices, we find a clockwise dual cycle which serves the same purpose.
The designated root source and the first edge out from it will determine the outside face;
the outside face for G lies to the right of the first out-edge, and for the dual graph G*,
the outside face will be that associated with the designated root source in G.

Definition. Suppose we are given a graph G with multiple sources. Let one source be
the designated root source, all other sources be non-root sources, and the outside faces
for G and for G* be defined as above. Then if we find a set of clockwise cycles in the
dual graph G*, one clockwise cycle C for each non-root source 5, and the cycles have the
following properties, then each C in the set is called a boundary cycle for its associated
source 5 in G.

1. The associated source 5 is inside C.

2. Every vertex of G with an out-edge which crosses C can be reached from 5 by a
path in G which lies entirely inside C.

3. No vertex which is reachable only from the sources inside C lies outside C (this
implies all attendant vertices of S are inside C).

4. If 5i and S2 are two different sources in the same graph, the cycle Ci for 5i and the
cycle C2 for S2 have no vertices (and hence no edges) in common. I
The boundary cycles for all non-root sources in a graph are found using the RHOP

and RHIP structures of the dual G*. We use them to identify simple clockwise cycles
enclosing a given source. If there is ^ edge in the dual which belongs to both the RHOP
and RHIP c-trees for the same source S, that edge can identify a cycle C formed by
the RHOP path from the root cycle to the edge, the RHIP path from the edge to the
root cycle, and the path on the root cycle connecting the two. Unfortunately, the cycle
may not be a simple one: the RHOP and RHIP paths may intersect. In the following
subsections, we show how to exclude non-simple cycles and counterclockwise cycles.

4.2.1. Classifying cycles formed by RHOP and RHIP paths
We will use the following properties of the RHOP and RHIP paths to classify the

types of intersections of an RHOP path and an RHIP path.
Property 4.1 An RHOP path cannot cross an RHIP path from the left. Equivalently,
an RHIP path cannot cross an RHOP path from the right.

This follows immediately from Property 2.1.

Property 4.2 (Figure 13) Suppose edge e is on an RHOP c-tree T and on an RHIP
c-tree U, where the two c-trees may or may not share the sameroot cycle. If we follow
the RHIP path Q in U toward its root cycle, we will be following an RHOP path P in T
until it ends in a leaf. The same is true if we follow the RHOP path P in T backwards
toward the root cycle,' we will be following an RHIP path Q in U backwards until it ends
in a leaf. In other words, once an RHIP path shares an edge with an RHOP subtree, it
will not leave that RHOP subtree until it follows some branch to its leaf; similarly if an
RHOP path shares an edge in an RHIP subtree. I

Again this is a consequence of Property 2.1.

RHOP path

RHIP path

Impossible Cases

RHOP leaf |0 root cycle

RHIP leaf

Figure 13

Illustration for F|roperty 4.2

43

We now classify different types of intersections. We define an edge which is on both
the RHOP c-tree and the RHIP c-tree of the same source S as ian overlap edge for S.

I i
Property 4.3 (Figure 14) Let the RHOP path to an overlap edge e from the root cycle
be P, and the RHIP path from e to the root cycle be Q. Let v be a vertex at which P
and Q intersect. Note that by Property 4.1, P
can state the following:

must cross Q from right to left. Then we

1. H V is the intersection vertex closest to e on Q, it is the lintersection closest to e
on P and vice versa. (We axe assuming that the paths only share vertices and not
edges. If the paths share edges, then we can let v represent a path segment with
little change in the arguments below.)

2. At Vthe in-edge on P and the out-edge on Q axe both overlap edges. (If v represents
a path segment as noted in item 1, this holds for all vertices on the segment, in
particular the end points.) i

3. If the intersection vertices (or intersection path segments) of P and Q axe ordered
ui,U2,.. .Ufi on Q from the one closest to e to the one furthest from e and closest to
the root cycle, they would be ordered in the same way on! P.

4. Consider the simple cycle C created by the path from e to v on Q and then back to
e on P, where v is the intersection vertex closest to e as in item 1. Then the root
cycle must be to the right of the path of the cycle C. Depending on the relative

/
•"I

I

back twist

RHOP path

RHIP path

r

/

/ ^ s
/ / ^

' I i
k

\ V
\

\ V

N

/

U2

U3

, U4

i > :

/'

.U6s

') 1
J I I

V

r

O-

forward twist

Figure 14
Classification of intersections of RHOP and RHIP paths

44

•N

location of the outside face, C may he counterclockwise with the root cycle and
source outside, or it may be clockwise with the root cycle inside. We will call the
clockwise cycle a forward twist, and the counterclockwise cycle a back twist.

5. On an ordered list of intersection vertices as in item 3, we can apply the classification
of item 4 to the simple cycle formed by the path segments of P and Q which lie
between the overlap edges incident at Ui and the next intersection vertex u,+i. Note
that if such a cycle defined by the pair (ui, tij+i) is a forward twist, all cycles defined
by pairs closer to the root cycle must also be forward twists. |

Proof Sketch.

1.

2.

/ f
/ .

^,0'/
forward arc

RHOP path RHIP path

Figure 15
Forward and back arcs

45

back arc

cycle C

This is due to Property 4.1: once we have a simple cycle from e to u on Q and from
Vback to F on P, the part of the path Q from v to the root cycle cannot cross back
into the simple cycle. Similarly, the part of P from the root cycle to v cannot have
previously crossed out from the simple cycle.

This is from the definitions of RHOP and RHIP.

3. This follows from the previous two items. !

4. By Property 4.1, P must cross Q from the right to the left. Hence the root cycle
must be to the right of the simple cycle C. !

5. This is due again to Property 4.1 and to fact that two RHOP paths cannot cross;
nor can two RHIP paths cross. I

We now consider the case when the paths P and Q do nqt intersect.

Property 4.4 (Figure 15) Suppose the RHOP path P and the RHIP path Q that
go to and from the overlap edge to the root cycle do not intersect. We will say that
the pair of paths P and Q forms a forward arc if the simple cycle C formed by Q, the
edges on the root cycle connecting the endpoints of Q and P, and P is clockwise. If C is
counterclockwise, we will call the pair of paths a back arc. Note that since the root cycle
is always clockwise, the simple cycle associated with a forward arc encloses the source
associated with the root cycle. The cycle associated with the back arc does not.

We finish the task of classifying the relationship of P and Q of overlap edges with
the following: i

Property 4.5 If we have an ordered list of intersection points on P and Q as in items 3
and 5 in Property 4.3, and the pair closest to the root cycle ddhnes a forward twist, then

46

the arc de£ned by the intersection point closest to the root cycle must be forward. If the
pair closest to the root cycle dehnes a backward twist, the arc may be forward or back.

Proof Sketch. Again by by Property 4.1, once a positive twist defines a clockwise
cycle with the root cycle inside, the RHIP path cannot cross the cycle to get outside. A
back twist presents no such obstacle. I

4.2.2. Classifying leaf orientations of an RHIP c-tree
In order to classify the different P and Q orientations defined by an overlap edge,

we will find it useful to consider the relative orientation of a leafof an RHIP c-tree, when
the leaf has been cut off from a vertex on the same c-tree. Suppose that a leaf edge (u,u)
and the vertex u are both on the same RHIP c-tree. We first note that the edge (u,u)
must have been incident on the left side of the RHIP path that u is on by Property 2.1.
The following classifies the relative orientations.

Property 4.6 Let leal edge e = (u, v) and vertex u be on the same RHIP c-tree.
Consider the edges on the c-tree to be undirected. Then there exists a path M from e
to u consisting only of edges from the undirected c-tree. This path will be unique if we
stipulate that the path from e to u will always go clockwise around the root cycle if the
path touches the root cycle. Since e = {u,v) and u are connected in the incidence graph
of the dual by edge (u\ e'), we can define a directed cycle C using the undirected edges
of the dual incidence graph going from e to u along the tree edge path M and then back
to e along (u', e'). We will define the relative orientation of e and u to be positive if C is
a clockwise cycle and negative if C is a counterclockwise cycle. We will call C the leaf
orientation cycle or lo cycle for the edge-vertex pair. I

In order to make certain that our procedure for finding leaf orientations is correct
for all cases, we will enumerate all possible ways that e and u can be related on the RHIP
c-tree.

Property 4.7 (Figure 16) Let Q be the RHIP path from edge e = {u,v) to the root
cycle and R be the RHIP path from u to the root cycle. If Q and R intersect, let x be
the lowest common ancestor of e and u in a c-subtree of the RHIP c-tree. There are three
cases, one with subcases.

1. Q and R intersect, and x is distinct from u. The lo cycle C will in this case go
forward along Q from e to x and backward along R from x to u.

a. If the root cycle is outside C, we will call this case lA. Depending on whether
C is clockwise or counterclockwise, we will call it positive lA or negative lA.
Since the root cycle is outside C, the RHIP path from x to the root cycle
must he to the left of C if C is clockwise and to the right of C if C is counter
clockwise. This means that at x, the in-edge on R is to the right of the in-edge
on Q in the relative orientation of in-edges for the positive lA case. For the
negative lA case, the in-edge on R is to the left of the in-edge on Q.

b. If the root cycle is inside C, it will be called case IB. Again, we will
have positive IB and negative IB depending on whether C is clockwise or
counterclockwise. Since the root cycle is now inside, the relative orientation of
R and Q at x will be reversed for the two cases: for positive IB, R is to the
left of Q and for negative IB, R is to the right of Q.

(C__
lecif

R Q

positive lA

R

\ 6

\ Q
\

/

positive IB

positive 2

positive 3

O root cycle

Q

V

negative lA

Q

Q.'

R

\ I

V i y
negative IB

i
negative 2

negative 3

All paths shown are RHIP.

Figure 16
Classification of RHIP leaf orientations

47

%f=
0--

/ = (w, y)

m'

^ RHIP path

•3 RHIP leaf

RHOP path

Figure 17
Illustration for Theorem 4.1

" OX J =

w \\

9 = {x,z)

root cycle

48

2. Q and R intersect in such a way that x, the common ancestor of e and u, is the
vertex u. Then the Jo cycle C will be the cycle formed by the part of the RHIP path
Q from e to u. Since edge e must come from the left side of Q by Property 2.1, the
path to the root cycle from u must always lie to the right of C. Again C can be
clockwise or counterclockwise, giving cases positive 2 and negative 2.

3. Q and R do not intersect. The lo cycle C is then formed by following Q forward
to the root cycle, following the root cycle edges to the vertex at the end of R, and
following R backward to u. We will include in this the case that u is on the root
cycle; this is just the degenerate case when R has been reduced to a vertex. We
note that the source associated with the root cycle will always lie to the right of C.
Again, we have positive 3 and negative 3, depending on whether C is clockwise or
counterclockwise.

4.2.3. Separating forward twists and arcs from back twists and arcs
The following theorem shows how finding the relative orientations for RHIP leaves

will help distinguish forward twists and arcs from back twists and arcs. Theorem 4.1
Suppose we are given the counterclockwise cycle associated with a back twist or arc. It
will be composed of a section P of an RHOP path, a section Q of an RHIP path, and
possiblypart of the root cycle. Assume that the entire RHOP section P is composed of
overlap edges. Then among these edges will be at least one edge, which in the RHIP
c-tree will be a leaf orientedin one of the negative cases (negative lA, IB, 2, or 3).

I 49

Proof. (Figure 17) Consider the case of P and Q intersecting in a back twist. If the
intersection is only at one vertex, let x be that vertex at which P intersects Q. If P and
Q intersect in a path segment, let x be the end of the segment closest to the overlap edge,
i.e., the vertex at which P and Q diverge again after intersecting. Now consider the case
where P and Q form a back arc. In this case, let x be P's end vertex on the root cycle.

Suppose we start at the overlap edge and go backward on P toward x. By Property
4.2, we will be following an RHIP path backward until we corrie to a leaf. Let the leaf be
edge / = {w,y). Then w is the vertex on P which is on some new RHIP path. Since we
are assuming that all edges on P are overlap edges, this new RHIP path belongs to the
same RHIP c-tree as the RHIP leaf /. Thus we can classify the orientation of / according
to Property 4.7. We can again follow the new RHIP path backward along P, and repeat
for the next RHIP leaf that we come to. This is continued unfil we reach x on P. Since
the edge g = (x,z) (the edge on P out of x) will be a leaf edge for the RHIP c-tree, we are
guaranteed that there will be at least one such leaf between the overlap edge and x on P.

We now show that at least one of the RHIP leaves found :above will have a negative
orientation. If there is only one leaf edge along P at x, the same RHIP path goes from
g = (x, z) to the overlap edge and back to x, forming a cycle. Since this is a back twist or
arc, it is the negative 2 case or the degenerate negative 3 case.' If there is more than one
RHIP leaf edge along P, we give a proof by construction. Suppose for each leaf-vertex
pair along P, we define a cycle C to be that formed by following the RHIP path Q from
the leaf to where it first joins the RHIP path R from the verteix. (This is the lo cycle C
defined in Property 4.6.) For the purpose of this argument, we jcan consider the root cycle
to be a single vertex, so that if we have case 3 of RHIP leaf orientation, Q and R will be
assumed to meet.

If we look at the edges of the RHIP c-tree which lie on the C cycles, we get a
subgraph of the c-tree which itself forms a tree or a c-tree, where the root, if it is not the
root cycle, is the lowest common ancestor of all the leaves. Topologically speaking, this
is equivalent to having a counterclockwise cycle, a point p outside the cycle, and paths
which go from the the cycle to p. (Figure 18) We note that the regions lying to the
right of the C cycles are disjoint, since the RHIP paths cannot;cross each other, and that
together they cover the entire plane (or surface of the sphere) except for the region inside
the counterclockwise cycle defined by the back twist or arc (and possibly the inside of
the collapsed root cycle). Since the back twist cannot contain the outside face inside, by
defi.nition of back twist, the outside face must be in a region lying to the right of one of
the C cycles. By definition of counterclockwise, that C cycle inust be counterclockwise,
giving rise to a negative leaf orientation. | I

The following lemma is then an immediate consequence of Theorem 4.1.

Lemma 4.2 Suppose we are given a path P on an RHOP c-tree with its starting
endpoint on the root cycle. Let all edges on P be overlap edgesl Then if none of the edges
on P have a negative RHIP leaf orientation, then all overlap edges on P de&ne either
positive arcs or positive twists.

negative leaf
orientation

-5 RHIP leaf

\

: C- -

r
-

y
'

r
1

r '

s /

V /
-

L-#*' /

/

/' t==3
y

Figure 18
Orientation of the RHIP paths in proof of Theorem 4.1

•50

o
outside face

inside region of

one C cycle

4.2.4. Finding the leaf and cycle orientations
In this section we present the procedure for classifying the orientation of a given

leaf edge e = {u,v) in an RHIP c-tree according to Property 4.7. For this and for the
procedure for finding cycle orientation given in this section, we need to check if a given
node u is an ancestor of another node u in a tree. We can easily do this in constant time
if the preorder and postorder numbers of the the nodes in the tree are available by using
the following well known lemma [BBSS, p. 20S].

Lemma. 4.3 Given two nodes u and v in a tree, u is an proper ancestor of v if and only
if both conditions below are met.

preorder{u) < preorder(v)

postorder{u) > postorder(v)

Determining for a pair of paths in a c-tree if one path is incident on another from the
left or the right is also easy if we have assigned the preordernumbers using a right-hand
Euler tour of the c-tree.

Lemma 4.4 Let Q be the path from a vertex u to the root cycle in an RHIP c-tree.
Let R be the path from a vertex v to the root cycle, where u and v axe in the same
c-subtree of the RHIP c-tree. Let x be the lowest common ancestor of u and v in the
RHIP c-subtree. At x, let the in-edge on R be to the right of the in-edge on Q. Then a
right-hand Euler tour of the RHIP c-subtree will visit u before v. I

The proof is a straightforwaxd application of the definition of a right-hand Euler
tour, remembering that since the c-subtree is an in-tree, all tree edges and paths are
pointing toward the root.

51

root source root source

clockwise cycle: /'

crosses C from the left.

T edges

C edges

counterclockwise cycle:

/' crosses C from the right.

Figure 19
Illustration for Procedure CycleOrientation

I

Given these twolemmas, separating out the cases 1A, IB, '2, and 3 is straightforward.
To separate the cases into positive and negative, we need to find the orientations of the lo
cycle C as defined in Property 4.7. We will first give a general procedure for finding if a
cycle is clockwise or counterclockwise. The procedure for classifying the leaf orientation
will use an adaptation of the general procedure.

The idea behind the procedure to find the cycle orientation is to find some path M
starting from the outside face and crossing the cycle for the first time at an edge f* on
the cycle. By checking if M crosses the cycle from the left or from the right, we can tell
whether the outside face is to the left or the right of the cycle', and hence if the cycle is
clockwise or counterclockwise. We find such a path M by loolang at the tree paths for a
spanning tree of the undirected graph, with the root source enclosed by the outside face
as the root of the spanning tree. We can ensure that the tree path M has not previously
crossed the cycle by finding the edge crossing the cycle which is closest to the root source.

procedure CycleOrientation
(*Given a simple cycle C in a dual graph G*, this procedure will determine if the

cycle is clockwise or counterclockwise. The outside face in G* will be the one
corresponding to the root source in G. *) (Figure 19)

1. Consider the imdirected version G'̂ of the original graph G. Find a spanning tree
T of G" and orient it as an out-tree with the root source of G as the root of T.

Note that the direction of an edge e' in T has no relationship to the direction of the
same edge e as considered as an edge of G.

2. Find for every edge in T its level order, i.e. its distance;firom the root of T.

3. For every dual edge on C, check to see if it is crossed by an edge in T. (More
formally, we see if it is a dual edge e* in G* corresponding to an edge e in G such
that its undirected version e" was chosen to be in T and oriented to be eh) If so,
find the level order of the edge in T. There must exist at least one such edge since
there must be at least one vertex of G inside C.

4. By pointer doubling, find the edge /* on C crossed by an edge in T with the
lowest level order of all tree edges crossing C. If there exists more than one such
edge, pick the one by some rule such as the lowest edge number. We now know
there exists some path on T from the root source to the cycle C crossing at /*
which has not previously crossed C.

5. Find the relative orientation of the / and /h If they are going in the same
direction, is crossing the edge f* of C from the right to the left. Then the
outside face as determined by the root source will be to the right of C, and the
cycle C is counterclockwise. If / and /' are going in opposite directions, the cycle
C is clockwise.

For step 1, there exists an optimal CRCW algorithm using C>(n/log n) processors
and 0{n) time for finding and orienting a spanning tree for a planar undirected graph
[Hag88]. All other steps can be done in O(logn) time with 0{n) processors in the EREW
model. The same bounds will hold for finding many cycle orientations in parallel as long
as the cycles are disjoint.

We cannot use this procedure without modification to find many leaf orientations in
parallel, since the lo cycles defined by leaf-vertex pairs will, in general, share edges. We
will instead, preprocess a c-tree as a whole, finding for every c-tree path from a c-tree
edge to the root cycle, the edge first crossed by a path M starting from the root source.
We again use a spanning tree of the undirected graph to find such a path M. By looking
at the possible cases of how such a M can cross the RHIP c-tree paths, we can classify
the leaf orientation.

procedure CheckLealOrientation

(*Given an RHIP c-tree, find the leaf orientation for all leaf-vertex pairs, where leaf
t = {u,v) and vertex u are both in the RHIP c-tree. Let Q be the RHIP path from
e to the root cycle and R be the RHIP path from u to the root cycle.*)

1. Find and preprocess T as in steps 1 and 2 of Procedure CycleOrientation.
2. For every edge on the RHIP c-tree, check to see if it is crossed by an edge in T. If

it is, record the level order of the crossing T edge.
3. Find for every vertex w or edge g on the c-tree, the edge on the RHIP path from w

or g to the root cycle that is crossed by the lowest level order T edge. If no edge on
the RHIP path is crossed by a T edge, indicate this for w or g. The level order of
such a non-existent T edge can be defined to be n -H 1. Also find the T edge root'
crossing into the root cycle.

4. Using the ET technique, find for all vertices and edges in the RHIP c-tree, the
preorder and postorder numbering. For this step, the root cycle may be regarded
as one root vertex.

; 53

5. By pointer doubling, find for every vertex w and edge g in the RHIP c-subtrees,
the vertex c-root{w) or c-root{g) on the root cycle which is the root of the c-subtree
that w OT g is in. j

6. For every leaf e = (u,v) and vertex u in the RHIP c-tree, do the following.
a. Find the tree edge with lowest level order associated with e, and hence with

path Q, using the precomputed data from step 3. Similarly, find /i', the tree edge
with lowest level order associated with u, and hence with path R.

b. If (c-root(e) 7^c-root(u)) and {levelorder(root^) is less;than either levelorder{f*)
or levelorder{h^))

(* Must be case 3 since e and u are in different c-subtreies. The lowest level order
T edge crosses into the root cycle. When we have case 3, but the lowest level
order T edge crosses either Q or R, it is handled in case (ii) and (iii) below.*)
then if root^ crosses the root cycle somewhere on the directed path from

c-root(e) to c-root(u)
then the orientation is positive i
else the orientation is negative. :

else

Case i. p = i
(* The lowest level order tree edge crosses the RHIP path to the root cycle

from the lowest common ancestor of e and u; this implies case lA or
negative 2.*)
if preorder{u) < preorder(e)

then the orientation is negative |
else the orientation is positive

Case ii. levelorder(f*) < levelorder(h^) |
(* The lowest level order tree edge crosses Q. This'and the next case are the

standard cases in which the lowest level order T edge crosses into the lo
cycle C defined for leaf-vertex pairs by Property 4.6. This can happen in all
cases 1, 2, and 3.*) |
if /' crosses Q from the right !

then the orientation is negative i
else the orientation is positive j

Case iii. levelorder(f*) > levelorder(h^) |
(* The lowest level order tree edge crosses R. Again, this is the standard case

which can occur in all cases 1, 2, and 3. *) ;
if h* crosses R from the left

then the orientation is negative
else the orientation is positive i

We note that since the lo cycle C must contain at least one vertex of G inside, at
least one of f* or h* must exist for cases lA, IB, and 2. For c^e 3, if neither /* nor
exists, then we know that root* must always exist and have level order less than n -|- 1.

54

The preprocessing steps 1 through 5 in Procedure CheckLealOrientation can ail be
done using 0(n) processors and O(logn) time on a CRCW PRAM. For a given leaf-vertex
pair, step 6 can be done in constant time by a single processor, so that the procedure can
run in the same time bounds as procedure CycleOrientation for 0{n) such pairs on the
RHIP c-tree.

4.2.5. Procedure for finding boundary cycles

The algorithm for finding the boundaxy cycle follows. It proceeds by finding forward
arcs and twists for each root cycle, where all edges on the axes and twists are overlap edges.
Since these define clockwise cycles, by Property 2.2, we can use the LHOP structure to
find the cycles bounding the regions inside the clockwise cycles. The outermost clockwise
cycles out of these will be the boundary cycles. Each step taJces at most 0(log n) time
using 0(n) processors on a CRCW PRAM, so we get the same bounds for the entire
algorithm. We assume that all vertices in G* axe simple.

procedure FindBoundaryCycle

1. Find the RHIP and RHOP structures for the dual graph G* and identify for all
edges which c-trees they belong to for each structure.

2. Mark all edges as overlap if they belong to the RHOP c-tree and the RHIP c-tree
for the same source.

3. Exclusive trim the RHOP and RHIP c-trees so that they consist only of overlap
edges. This can be done using the Euler tour technique as explained in Chapter 2.

4. For every leaf of the trimmed RHIP c-tree which is also an edge in the
trimmed RHOP c-tree, find the orientation of the RHIP leaf using Procedure
CheckLealOrientation.

5. If the orientation of the leaf is negative, maxk the edge in the RHOP c-tree as bad.
If the orientation of the leaf is positive, mark the edge in the RHOP c-tree as good.
(Note that there may be unmarked edges on the trimmed RHOP c-trees. They,may
not be RHIP leaves at all, or they may be RHIP leaves but not on the trimmed
RHIP c-tree. This can occur if some edge along the RHIP c-tree path from the
RHIP leaf to the root cycle was not an overlap edge.)

6. Exclusive trim the RHOP c-trees again so that they contain no bad edges, i.e.,
they contain only non-bad edges. (By Lemma 4.2, the trimmed RHOP c-trees
contain no overlap edges defining back axes or back twists.)

7. Inclusive trim the RHOP c-trees for the last time, this time discarding any
branch ends which contain no good edges. Again this can be done using the Euler
technique. (This means that all edges on the trimmed RHOP c-trees axe along some
forward arc or forward twist, where all edges on such axes and twists axe overlap.)

8. Mark all good leaves in the trimmed RHIP c-trees which axe also edges on the final
RHOP c-trees. Inclusive trim the RHIP c-trees by discarding any edge which does
not lie on a path between a marked leaf and the root cycle. (This ensures that all
edges on the trimmed RHIP c-trees axe also along some forward arc or twist, where
all edges on such axes and twists are overlap.)

00

9. Take the subgraph induced by the edges of the final RHOP c-trees and the RHIP
c-trees and use the LHOP structure to find the outer cycles. (By Property 2.2, the
cycles found bound the regions inside the forward arcs and twists.)

10. Use Procedure CycleOrientation to find the clockwise outer cycle for each RHIP
and RHOP c-tree pair with the same source out of the cycles found in the previous
step. (* We show in the theorem below that such a clockwise cycle exists. *) Mark
it as the boundary cycle for the source.

I

We use the following theorem to show that the procedure: finds boundary cycles for
the sources.

Theorem 4.5 A cycle C in G* is found for each RHIP and RHOP c-tree pair by the
procedure FindBoundaryCycIe and satisfies the dehnition of a ', boundary cycle for the
source S in G associated with the root cycle shared by the c-tree pair.

Proof.
I

1. We first show that at the end of step 10 a clockwise cycle C. will always be found for
every source 5, and that source S will be inside C. We thus show that the procedure will
produce a cycle which has property 1 of a boundary cycle: it is clockwise and it contains
5 inside.

Consider the edges marked at the end of step 8. Every edge is an overlap edge by
step 3. It is also part of a trimmed RHIP c-tree or part of a trimmed RHOP c-tree. By
the inclusive trimming of the RHOP c-trees in step 7 and of the RHIP c-trees in step 8,
all leaf edges ofboth trimmed c-trees are good. Thus every edge on the trimmed c-trees
is on a forward arc or twist defined by paths on the trimmed c-trees. By definition of
forward arcs and twists, the edges composing a forward arc or twist defines a clockwise
cycle.

Consider the region R composed ofthe umon ofall regions inside the clockwise cycles
defined by the edges of a particular pair of trimmed RHOP and RHIP c-trees sharing
the same root cycle. Note that R is never empty, since the root cycle edges will always
be part of the trimmed RHOP and RHIP c-trees at the end of step 8. (Inclusive and
exclusive trimming never trim the root cycle edges.) Since all the clockwise cycles defined
by forward twists and arcs contain the region inside the root cycle, R is a connected
region. (We will later see that R will generally be a simply connected or hole-free region,
but at this time we will see that the proofwill follow even if there exist holes in R.) When
we find cycles on the marked edges using LHOP in step 9, we me finding the boundaries
of R with R lying to the right of the cycles. Since by definition, none of the clockwise
cycles contains the outside face inside it, R does not contain the outside face. Then one
and only one of the cycles which form the boundary for R found in step 9 must contain
the outside face in the region to the left of the cycle path. This will then be the clockwise
cycle C of step 10. Thus C exists, is clockwise, and contains the source S inside since R
is inside C and contains the region inside the root cycle. ;

2. We will show that C satisfies Property 2 of a boundary cycle: there exists a directed
path lying entirely inside C from the source S to any vertex with an out-edge crossing C.

outside face

C

Figure 20
Proof of property 3 of the boundary cycle

56

As noted in 1 above, the cycle C encloses the regions inside the clockwise cycles
defined by forward arcs or twists. Every edge on C is an overlap edge and by the
corollaries 3.4 and 3.5, there must exist a directed path which lies completely inside the
clockwise cycle defined by the associated forward arc or twist for the overlap edge and
which starts at the source and crosses the overlap edge on C. Thus there is a directed
path in G from the sotirce to any edge crossing C, which lies entirely inside C.

3. We will now show that C satisfies Property 3 of a boundary cycle: no vertex which is
reachable only from sources inside C lies outside C. (Figure 20)

This will be a proof by contradiction. We assume that there exists a vertex outside
the cycle C which is reachable only from sources inside C. In particular, this means that
there must be at least one vertex all of whose in-edges must be edges crossing C. Call
this vertex v. Consider the outside face that would be formed if we were to remove all
vertices except v and the vertices inside C. Let e\ and 62 be the two in-edges to v crossing
C from vertices inside C which would be on the boundary of such an outside face. (What
follows can also apply to the case when there is only one in-edge to v crossing C with
minor modifications.)

We first assume that v has no out-edges between ei and 62 in its clockwise ordering
of edges. Let ei = {w,v) where w is inside C, and 62 = {x,v) where x is also inside C.
If V has no out-edge between e\ and 62, then w, v and x are all on the same face F in
G. The vertex in the dual G* which corresponds to F will then have a dual out-edge e*
crossing 61 and a dual in-edge crossing 62. By assumption both e\ and 62 cross C so
that both 6j and 62 are on the simple clockwise cycle C. This is inconsistent with the two
dual edges meeting in F. Thus v must have out-edges between 61 and 62.

Let fi, f2, ••• ft be the set of out-edges from v which lie between e\ and 62 in
clockwise order. Then let Fa be the face in G bordered by edges 61 and /i, and let a* be
the corresponding dual vertex. Similarly, let Fj be the face bordered by edges /,• and 62,
with h* the corresponding dual vertex. The dual edges crossing f\, f2•,••• fi form a dual

;

path M* from a* to b*. By definition of RHOP, M* is on thejsame RHOP c-tree as e*
and connects to it at a*. Similarly, M* is on the same RHIP c-tree as and connects to
it at b*. Since by assumption both e* and are edges of cycle C found by the procedure
FindBoundaryCycle and hence are overlap edges, all edges on M* are overlap edges.
Moreover, we know that since the edges of C were chosen from edges on the final trimmed
RHOP and RHIP c-trees, all edges on the RHOP path from a* to the root cycle must
have been on the final trimmed RHOP c-tree. Similarly, the RHIP path from b* to the
root cycle must have been on the final trimmed RHIP c-tree. |Thus if the orientation of
the RHIP leaf edge f* at a* is positive, must have been marked as good in step 5 and
been included as a leaf in the final trimmed RHOP c-tree. Then in step 8, f* must have
been marked as a leaf of the trimmed RHIP c-tree which is a good leaf on the final RHOP
c-tree. Thus the edges of M* must be part of the final trimmed RHOP and RHIP c-trees.

We now show that the RHIP leaf orientation of f* at a* is positive. Look at the lo
cycle C defined by going forward along M* and the RHIP path from b* to either a lowest
common ancestor of a* and b* in the c-tree or the root cycle, and then coming backwards
on the RHIP path to a*. By construction, the outside face is to the left of M*, so that
C' must be a clockwise cycle. Then by Property 4.6, the RHIP leaf orientation must be
positive. I

Hence, M* must be a part of the subgraph considered in step 9 of the procedure,
and M* must either lie inside C or be a part of C. This means that v must be inside C,
a contradiction to our original assumption. !

4. We will now show that the set of cycles C found in the procedure FindBoundaryCycles
obey the property that no boundary cycles of different sources share vertices.

The cycles found cannot intersect in an edge, since all edges in the cycles are overlap
edges for the particular RHOP and RHIP c-trees belonging to the source. Suppose they
intersected at a vertex. Then at that vertex there must be two in-edges belonging to
different c-trees, and two out-edges belonging to different c-tree. However, by definition
of RHIP and RHOP, all in-edges at a vertex must belong to the same RHIP c-tree and
all out-edges must belong to the same RHOP c-tree. Hence the cycles found cannot cross
at a vertex. I i

4.3. Single source reachability and partitioning a planar dag
As we noted in the informal description, we need to consider each largest possible

cluster of contiguous sources as one supersource in order to get the 0(log k) bound for
the number of iterations. In this section we will first give a procedure for finding the
supersources. Once we find all supersources, we can then find boundary cycles for them
and for the simple sources. These are in turn used to partition vertices according to which
source or supersource can reach them. If we are only interested in finding all vertices
reachable from a single source in a multiple-source dag, the problem of single source
reachability, the two procedures, FindSupersources and FindBoundaryCycles, combine
to give a simple algorithm. Partitioning out the vertices among all the multiple sources
in a way consistent with depth first search requires more record keeping, although the
basic step ofusing the boundary cycles to get smaller and smaller subproblems remains
essentially the same. |

58

4.3.1. Finding supersources
To find the supersources, we note that what we want is the outside boundary of the

union of clockwise cycles which make up the positive faces. By Property 2.2, we can do
this by finding the LHOP structure on the union of all the root cycles of the c-trees. Since
in general, the union will not define a hole-free region, we need to check the orientations
of the cycles to find the outside boundary.

procedure FindSupersourcea

(*Given the dual G* of a planar dag with multiple sources, find the clockwise cycles
enclosing the connected components of positive faces. We may exclude specified
positive faces. Find, for each connected component of non-excluded positive faces,
the sources which belong to the supersource. *)

1. Mark all edges of every positive face in G*. If specified positive faces are to be
excluded, the edges for such faces are not marked.

2. Look at the subgraph in the dual induced by the marked edges. Find the connected
components of the subgraph, and label each component with edges from more
than one positive face as a supersource. For every source in G whose associated
dual positive face was not excluded, find to which supersource, if any, it belongs
by finding to which connected component the edges of the associated dual positive
face belongs.

3. Again look at the subgraph in the dual induced by the marked edges. Do cw
vertex expansion at the complex dual vertices. These will be the vertices at which
the cycles of the positive faces intersect.

4. Find the LHOP structure of the subgraph. Mark all the root cycles for the LHOP
c-trees.

5. Run CycleOrientation to find the clockwise cycles out of the marked root cycles
found in step 3. Mark these as the outer supersource cycles. Remove all edges
and vertices introduced by the cw vertex expansion which are not actually on the
marked LHOP root cycles.

Again all steps can be done in O(logn) time using 0{n) processors.

4.3.2. Single source reachability for a planar multisource dag
Algorithm 4. Single source reachability for a planar multisource dag
(* Given a planar dag G with multiple sources and a particular source r, find all

vertices in G reachable from r. *)
While there exists a source besides r in the present G do

1. Run procedure FindSupersources to find all outer supersource cycles. Exclude
the positive face surrounding r, so that r is not part of any supersource.

2. For every outer supersource cycle found in the previous step, replace all vertices
inside the cycle by a new vertex which inherits all edges crossing the cycle and
their embeddings. The new vertices will represent supersources in the enclosing
graph. (As noted in Chapter 1, this is equivalent to contracting all vertices inside
the cycle, and removing all self-loops.)

; 59

3. Run procedure FindBoundaryCycle to find all boundaxy cycles of all sources
except for r. i

4. Remove all edges of G which are crossed by the boundary cycles found in the
previous step. (This is equivalent to replacing the boundary cycle in the dual
graph by a single vertex.)

5. Run the algorithm for finding connected components of a planar undirected
graph on G", the undirected version of G, and identify the component G"
containing r. \

6. Identify the directed version of G" as the new graph G.
Return the set of the vertices still remaining in G.

We note that since the graph at the end has only r as the source, all vertices in it
must be reachable from r. Any vertex not in the graph at the end must have been inside
some clockwise dual cycle with r outside, and hence could not! have been reachable from
r.

The number of processors needed in each step is linear iii the size of G at that step
so that the algorithm can be run using 0{n) processors. The time bound is O(logjfclogn)
since each step in the while loop can be done in O(logn) time and the number of
iterations is O(log k) by the following theorem. |

Theorem 4.6 The algorithm for single source reachability will iterate at most [log k]
times where k is the number of sources in G besides r. \

Proof. We will show that the total number of sources and supersources at the
end of step 2 will be at least halved at each iteration. Since the boundary cycle for a
source contains all the attendant vertices for that source, any new source created by the
removal of edges crossing the boundary cycles must have had in-edges from at least two
different boundary cycles. Since a boundary cycle is a simple clockwise cycle, the removal
of the vertices inside a boundary cycle in step 4 must create a' new face in G, and every
new source which had an in-edge crossing that boundary cycle must be on the new face
boundary. Thus all sources which a given boundary cycle contraction helped create must
be contiguous. Thus one old source is part of at most one new supersource, and each
new source or supersource must have been created by at least ;two old sources. Thus the
number of sources and supersources is at least halved. ' I

4.3.3. Partitioning vertices in a multisource planar dag
In the algorithm for partitioning the vertices of a multisource planar dag among

its sources, we cannot throw away parts of the graph as in the previous algorithm for
single.source reachability. At each iteration, we inherit a set of graphs, which are, with
some modifications, the original graph partitioned into subgraphs. Each subgraph is then
partitioned further into smaller subgraphs imtil every subgraph contains only one source.
Every subgraph will be represented by the smallest boundary cycle which enclosed it.

In a given iteration, suppose we have a subgraph G,- containing sources other than
its root source. We proceed as in SingleSourceReachability to find the boundaxy cycles for
all sources and supersources in Gi except for the root soxirce. Suppose we cut all edges
of G, crossing boundary cycles. We would then get one subgraph G'j which is the same

60

as we would get if we ran one iteration step of the single source reachability algorithm
on G,-, plus other subgraphs which are induced by vertices inside a boundary cycle. The
subgraph G'̂ is modified further by adding new sources formed by contracting vertices
inside certain chosen boundary cycles. We note that if the source for a given boundary
cycle is a supersource, the subgraph associated with the boundary cycle may contain
vertices inside one of the marked counterclockwise LHOP root cycles found in procedure
FindSwpersourcea. This presents no problems since we will define all vertices belonging to
a subgraph as those which are inside the associated boundary cycle and which are not
inside any boundary cycle nested inside.

In order to keep track of the information needed for depth first search, we need to
know which cycle is inside which cycle. Given a set of simple cycles, we will say cycle Ci
is nested in cycle C2 if Ci is inside C2, and C2 is inside every other cycle that Ci is inside.
We will use a nesting tree to keep a record of the nesting structure. This tree will have
two types of nodes: source nodes and boundary cycle nodes. Both types of nodes may be
active or inactive. Every boundary cycle node represents a boundary cycle and has as its
children, one inactive source node, any number, including none, of active source nodes,
and any number, including none, of boundary cycles nodes. The inactive child source
node will represent the source of the boundary cycle, and the active children source nodes
and boundary cycle nodes will be represent the sources and the bovmdary cycles which
are nested in the parent boundary cycle. As noted above, each subgraph is represented
by the smallest boundary cycle which enclosed it, so that each boundary cycle node is
associated with a subgraph.

A source node wiU be one of four types; an atom source node which represents one
of the original sources in the graph and is a leaf in the tree; a false source node which
is also a leaf and represents a new source which would be created if all edges crossing
boundary cycles are removed; a simple source node, which has only one child, a boundary
cycle node, and represents the contraction of vertices inside the boundary cycle; and a
supersource node, which has two or more fake, simple, or atom source nodes as children
and represents a supersource made from the children sources. (Figure 21)

In what follows, we will occasionally be lax about differentiating between a source
or boundary cycle and the node in the nesting tree representing it. Thus we may talk
about a source in the tree or a boundary cycle in the tree and mean the node in the
tree corresponding to the given source or boundary cycle. We will also sometime use the
notation node(s) and node(BC) to refer to the node representing source s and the node
representing boundary cycle BC.

Whenever we have a boundary cycle node in the nesting tree with active source
nodes as children, in the corresponding subgraph there wiU be more than one source.
There will always be the root source for the subgraph, (which was the source for the
boundary cycle which enclosed the subgraph) represented by the inactive source node
child of the boundary cycle node; any active sovurce nodes represent extra sources which
must be removed by contracting out their boundary cycles. The algorithm ends its
iteration when every subgraph has only one source; in the nesting tree, this means no
boundary cycle node ha.s active source children.

R
o

B -

Graph G with some boundary

cycles at time t

° original sources

new fake sources

o

o

atom source node

simple source node

fake source node

supersource node

a

boundary cycle node

active source nodes

nesting tree T ifor G

at time t

•

a"'inactive boundary cycle node

Figure 21
A nesting tree

61

62

When there axe no more active children, if we then look at the path in the nesting
tree up from an atom source leaf toward the root, we will in general find a path, consisting
ofalternating inactive source nodes and boundary cycle nodes until we have one boundary
cycle node as the parent of another. Since each subgraph associated with the boundary
cycle nodes along the path has only one source, all vertices in the subgraphcan be reached
from that source. In turn, all edges crossing out of the boundary cycle form the edges of
the only source for the subgraph in which it is nested. Thus as we go up the tree path
of alternating source and boundary cycle nodes, all vertices in the subgraphs associated
with the boundary cycles can be reached from the atom source which was the start of the
path. If a boundary cycle node BC\ is the parent of a boundary cycle node BC2 on the
tree path, then in the subgraph Gi associated with the parent boundary cycle node BCi,
the subgraph G2 associated BC2 has been removed, and none of the vertices in G\ will
be assigned to the atom source at the start of the path. Thus if we cut the nesting tree
at the edges between two boundary cycles, and each cut piece has only one atom source
leaf in it, we can assign vertices belonging to subgraphs associated with boundary cycles
in each piece to the atom source leaf.

This procedure needs modification when there are supersource nodes in the nesting
tree, since this case can produce cut pieces with more than one atom source leaf. For
example, suppose several atom sources created a supersource. Then all vertices in the
subgraph associated with the boundary cycle for the supersource are reachable from the
supersource, but a given vertex in the subgraph is not necessarily reachable from all atom
sources making up the supersource. We will call a source node in the tree processed if
all out-edges of the corresponding source have been assigned to atom sources. We will
call a boundary cycle node processed if all vertices belonging to its associated subgraph
has been assigned to atom sources. We will in the next section give a procedure which,
given a source s with all its out-edges assigned to atom sources, will assign to atom
sources all vertices in the subgraph with s as its only source. Using this procedure, we
will process the cut pieces with more than one atom leaf, level by level, until all vertices
in the subgraphs associated with the nodes in the cut pieces have been assigned.

Algorithm 5. Partitioning vertices among multisources
(*Assume we are given a planar dag G, its embedding, and a root source r. Consider

as the outside face, the face bordering the root source r with the first edge out of r
being a counterclockwise edge about it. We find a partition of the vertices and an
ordering for the partition sets such that vertices in a lower numbered partition set
have no out-edges to vertices in a higher numbered partition set.*)

1. Initialize:

a. Find the dual G*, do ccw vertex expansion for all complex vertices, and find the
RHOP and RHIP structures of G*.

b. Build the nesting tree T consisting of the root boundary cycle node and all
atom source nodes as children of the root boundary cycle node. Label the atom
source node for r as inactive; label all other atom source nodes as active. (We
can extend the definition of boundary cycles, and consider the boundary cycle
for r to be the dual cycle created by doing a ccw vertex expansion of the dual

63

vertex associated with the outside face of G. If we designate the negative face
formed in the dual the outside face, then the entire graph G will be enclosed
within this boundary cycle of r which is the boundary of the negative face.)

c. Place G in a set S of subgraphs. Label it Go(r) fof consistency, where 0
represents the iteration step and r identifies the source for the boundary cycle
which encloses the graph. Initialize /, the iteration step number, to 1.

2. (This is the main iterative step.) Given a set S of subgraphs {Gii'(f)}'s for
K = 0... / - 1, their dual graphs, and the nesting tree' T, while there exists a
boundary cycle node in T which still has at least one active source child, then do
for each Gjcii) whose corresponding boundary cycle node in T has at least one'
active source child the following steps (a) through (g); |
a. Run procedure Findsupersources excluding all the positive faces belonging to

the source for the boundary cycle enclosing the subgraph. If the source for
the boundary cycle was a supersource, we exclude alf associated positive faces
making up the connected component. Label every new supersource by the
highest atom source number p from the sources it is composed of, and by the
iteration number / as SS{p,I). (This labelling scheme is fairly arbitrary; we just
need some consistent way of naming the supersources created.) For every new
supersource, update the nesting tree by putting in the supersource node as a new
active child for the appropriate boundary cycle node with the sources composing
it as its inactive children. ;

b. Do ccw expansion of any complex vertices in the dual.
c. Run FindBoundaryCycle, and find for each active source s its boundary cycle

BC(s) and label it. For this purpose only, temporarily contract all vertices
inside an outer supersource cycle found in FindSuperspurces into a single vertex
inheriting all edges crossing the cycle and their embeddings. Once the boundary
cycle has been found, undo the temporary contraction. In T, make the new node
for BC(s) the new parent of s, which now becomes inactive. Mark all graph
edges whose associated dual edge is part of a boundary cycle. (At this point the
new nodes for the boundary cycles have no parents iniT.)

d. Run procedure CutGraph given below to separate odt subgraphs {G/+i(j)}
at the boundary cycles from their parent graph Gi(i), find their nesting
relationships, and update the parent graph to produce G/+i(z).

e. Update the nesting tree to reflect the nesting relationships of the boundary
cycles as follows. For every boundary cycle for which a new simple source in one
of the Gi^i(j) was created by CutGraph^ make the corresponding boundary cycle
node a child of a new active simple source node, which in turn will be a child of
the boundary cycle node representing For every vertex which became
a new fake source in G/+i(j) because all its in-edges crossed boundary cycles,
create an active falce source node as a leaf and make it a child of the boimdary
cycle node representing Gj+i(j). For every boundary cycle nested inside G/+i(j)
for which CutGraph did not create a new simple source, label the corresponding
boundary cycle node as inactive, and malce it the child of the boundary cycle

64

node representing G/+i(j). Label such inactive boundary cycle nodes in T with
I, the iteration step at which they became inactive.

f. For every subgraph which has no active source, label all vertices in it as belonging
to the source of the boundary cycle which represents it (i.e. the source of the
smallest boundary cycle that enclosed the subgraph).

g. Increment / by 1.
3. In the nesting tree T, order the adjacency list for the links between a parent

boundary cycle node and its children as follows;

a. The source for the boundary cycle will always be first.
b. All other children will be inactive boundary cycles. They will be ordered in the

reverse order of the iteration step I at which they became inactive. Thus those
which remained active longest will be put first after the source. If more than one
boundary cycle child became inactive in the same iteration, any relative ordering
can be adopted.

4. Find the preorder number of the inactive boundary cycle nodes in the nesting
tree T, using the adjacency list ordering from the previous step. Note that simple
source nodes have only one child, and the ordering among children of a supersource
node is immaterial. Now cut T at each edge which connects an inactive boundary
cycle node to its parent. This creates multiple trees from T. For every atom source
leaf, find the inactive boundary cycle node which is the root of its tree. Let this
boundary cycle node be the rootBC(s) of source s. Give a partial order to the
family of partition sets by the preorder numbering for rootBC's found above: if a
partition set for atom source s is the set of all vertices which will be in a tree with
root s in an ET dfs forest, then the partial order number for the partition set for
atom source s is the preorder number for rootBC{s). Note that this is a partial
order since all atom sources which have the same rootBC will have the same partial
order number. (Since every atom source has an associated partition set, we will
sometimes refer to the ordering for the atom sources when rigorously we mean the
ordering in the family of partition sets.) (Figure 22. Note that this is not the
nesting tree in Figure 21 at a later stage.)

5. For every tree T' created from T in the previous step such that T' has only one
atom source among its leaves, assign to the partition set for that atom source, all
vertices labelled in step 2f as belonging to sources within T'. Also assign to the
partition set for that atom source, any vertex which becomes a fake source in T'.

6. For each tree created in step 4 which contains more than one atom source, do the
following:
a. Process each atom node node(s) by assigning all out-edges for the corresponding

atom source s to that atom source s. (* This is a trivial initializing step.*)
b. While the root boundary cycle node of the tree has not been processed, do the

following steps (i) through (iv):
i. For any fake soiurce node,* check if all in-edges to its corresponding fake source

has been assigned, and if so, find the highest priority atom source s' out of
all atom sources to which the in-edges have been assigned, and assign the
out-edges of the fake source to s'.

atom source node

o simple source node

CD fake source node

supersource node

I I boundary cycle node

• inactive boundary cycle node

edge cut in step 4

Relative partition order of the atom sources

R < {T,U} < S < {P,Q} < W < V

Figure 22
A nesting tree at step 4 of Algorithm '5

65

ii. Process every supersource node for which all its children source nodes have
been processed. (This step is also trivial since any put-edge of a supersource
is also an out-edge for one of the sources which make up the supersource.)

66

iii. Process every boundary cycle node whose one source node child node{s") has
been processed as follows: if all out-edges for s" have been assigned to a single
atom source s, assign to s ail vertices labelled in step 2f as belonging to the
source s". Otherwise, run the procedure AssignSuperaourceVertices given in
the next section on the subgraph associated with the boundary cycle node.

iv. Process every simple source node whose boundary cycle node child has been
processed. (Again, this is trivial since all out-edges of a simple source are
out-edges from vertices which were assigned to atom sources when the child
boundary cycle node was processed.)

c. Refine the partial order on the atom sources given by step 4 by ordering the
atom sources in the same tree (i.e., the atom sources with the same rootBC)
according to the priority system used by AssignSupersourceVeTtices.

The actual cutting of the graphs is done in the procedure below. Each step can be
done in C>(log n) time using 0{n) processors on a CRCW PRAM where n is the number
of vertices in the graph.

procedure Cut Graph
(* Given a graph G in which every edge whose dual is part of a boundary cycle for an

active source is marked, we produce a set of subgraphs which partition the original
graph G. *)

1. Cut G by removing all the edges marked as having an associated dual edge
belonging to a boundary cycle. We will say these marked edges cross boundary
cycles. For all vertices on either side of a cut edge, record the identity of the cut
edge, which boundary cycle the cut edge crossed, and whether the vertices are
inside or outside that boundary cycle.

2. Find all the connected components, using the algorithm for undirected graphs.
3. For each component, make a list of boundary cycles which were nested inside. For

this step we maJce use of the information from steps 1 and 2, by which each vertex
on either side of the cut edge knows to which connected component it belongs.

4. For every component which had a nested boundary cycle, do the following:
a. Find all new sources. For each new source, find the highest priority boundary

cycle which had been adjacent to it, and label the cut edge coming from it as
chosen. Label the new sources as fake sources.

b. For every boundary cycle, check to see if any cut out-edge which used to cross it
was labelled chosen by a new fahe source. If for any boundary cycle, there exist
no such chosen out-edges, label the boundary cycle as inactive.

c. If a botmdary cycle has at least one chosen out-edge crossing it, create a new
vertex v in the graph component in which it is nested. The new vertex v inherits
all cut out-edges belonging to the boimdary cycle, except for those out-edges
that pointed to the new fake sources. Label these new vertices as simple sources.

d. For each new simple source vertex v created in the previous step, remove all
multi-edges and self-loops.

5. Return the set of subgraphs which are the modified connected components.

^ 67

1

In the remainder of this section, we show that the partitioning algorithm produces
the correct depth first ordering of sources and satisfies the tirne and processor bounds
assuming that procedure AssignSupersourceVeriices can be done on a graph with n
vertices in C>(logn) time using 0(n) processors. The assignment of vertices inside a
boundary cycle for a supersource to sources composing the supersource will be covered in
the next section. I

Theorem 4.7 A vertex w in G which has been assigned to an atom source sj in step
5 of Algorithm 5 will be reachable from si. Let u be in a tree created in step 4 with
a root rootBC(si), and v be in a tree with root rootBC{s2) where the two roots and
hence the two trees are different. Then if rootBC{si) has a lower preorder number than
rootBC(s2), u will have no directed path to v. \

Proof. Consider T in step 4 in Algorithm 5 after the preorder numbers have
been found (Figure 22). Every simple source node has just one child, a boundary cycle.
Supersource nodes have two or more simple, faJce, or atom sources as children. Fake and
atom source nodes have no children. A boundary cycle node always has one source node
and can have one or more inactive boundary cycle nodes as children. Note that by step
2e, any boundary cycle node which was a child of another boundary cycle node becomes
inactive or becomes the child of an active source. At the end of the iterations of step 2, no
boundary cycle node has active sources as children. Thus wheii T is cut in step 4, every
tree which is created has an inactive boundary cycle node as th'e root and will either be a
linked list of alternating boundary cycle and simple source nodes with an atom source at
the leaf end, or a tree whose only branching comes from the supersource nodes. We note
that a supersource node can never have only fake source nodes ias children, because when
fake source nodes are created in step 2e of the partitioning algorithm, at least one simple
source node must have been created as a sibling, representing the contracted neighboring
boundary cycle crossed by the marked cut edge as found in step 4 of CutOraph.

We first show that a vertex w which was assigned to an atom source si in step 5 of
the partitioning algorithm will be reachable from si. Let T' bd a tree created from T in
step 4 which has the node node{s\) representing si as the only 'atom source leaf. Suppose
T' has supersource nodes with branchings. A supersource node in T' can only have one
simple source node as a child, since the presence of more thanj one simple source node
would imply more than one atom source leaf. i

By step 2f of the partitioning algorithm, a vertex w assigned to a source s is in a dag
with just one source s and hence is reachable from it, since all other sources have been
contracted out inside their bovmdary cycles. There are three possibilities for s: it may be
the atom source si, it may be a simple source, or it may be a supersource. We note that
it cannot be a fake source since all fahe sources will become part of a supersource in the
next iterative step, and thus no boimdary cycle can have a fake source as its source.

Suppose s is not si, but is represented by some simple source node node{s) in T'.
Then every out-edge of s is actually an out-edge crossing a boimdary cycle BC, where
node(BC) is the boundary cycle node child of node(s) in T'. Since every out-edge crossing
BC is reachable from the the source s', where node(3') is the inactive source node child
of node{BC), w is reachable from s'. We have gone two levels down in T', and if a' is still
not the atom source si, we can rectirse.

68

If s was a supersource instead of a simple source, we can still use the same reasoning,
since every supersource node has only one simple node as its child. Thus if supersource
node node{s) has node{BC) as its grandchild, then every out-edge of s is either an
out-edge crossing the boimdaxy cycle BC or is an out-edge of a vertex represented by
a fahe source node which in turn is reachable by an out-edge crossing BC. Thus every
vertex reachable from s is again reachable from the source of BC, now three levels down
in T', and we can recurse until we reach the atom source node node(s\).

We will now prove the second assertion in the theorem. Look at the relationship of
u and V. We note that if for any subgraph, we find that there exists a clockwise cycle in
the dual such that u is outside and v is inside, this means that there is no path from u to
V, since all edges of the subgraph crossing the cycle point out.

Let bc{u) denote the boundary cycle node whose associated subgraph is the one in
which u is found at the end of the procedure, and similarly for bc{v). Thus bc{u) is in the
tree for si with rootBC{si) as root; the same relationship holds for bc{v) and rootBC(s2).
If the preorder number of rootBC{si) is less than for rootBC{s2), then rootBC{s\) is
either an ancestor of rootBC(^S2) in the nesting tree, or the two have a lowest common
ancestor and rootBC{^s\^ is visited before that of rootBC(^S2^ in the dfs of the nesting
tree.

Suppose the ancestor relationship holds. Both bc{u) and bc{v) are then in the
subtree of T (before the cutting ofT in step 4) which has rootBC{si) as the root, and
bc{u) will be on the tree path from si to rootBC(si), which alternates source node and
boundary cycle node as noted above. Find the lowest common ancestor X of bc{u) and
bc(v). Xwill also be on the tree path from si to rootBC{si). In the subgraph associated
with this boundary cycle node X, the boundary cycle represented by bc{u) will either be
the source or nested inside the source, while hc{v) will be either an inactive boundary
cycle node in the graph or nested inside one of the inactive boundary cycles. There will
thus be a clockwise cycle enclosing v but not u, and there can be no path from u to v.

A similar analysis holds for the case when rootBC{s\) and rootBC{s2) are not in
ancestor-descendant relationship. Find the lowest common ancestor of the two nodes in
T. Let this be the boundary cycle node Y; Y will also be the lowest common ancestor
of bc{u) and 6c(u). The paths to bc(u) and bc(v) start with different children of Y. If
the path to bc(u) starts by going to a source child, the case is the same as above. If the
two start by going to inactive boimdary cycle nodes, the adjacency list ordering of step
3 indicates that either the one which is an ancestor to bc(v) was inactivated earlier or
in the same iteration as that for the ancestor to bc('u). If it was in the same iteration,
this means there was then two non-nested boundary cycles one containing u inside and
the other v. In the other possibility, at the time the boundary cycle node which is the
ancestor of bc(v) became inactive, the subgraph had a boundary cycle containing v, while
u was outside and may still have been unassociated with any boundary cycle. In either
case, there exists a clockwise cycle enclosing v, but not u, and hence there cannot be a
path from u to v. '

Theorem 4.8 Algorithm 5 for partitioning a multi-source planar dag will run
in O(logfclogn + T(n) log fc) time and use 0(n + P(n)) processors on a CROW

69

PRAM, where T(n) and P{n) axe the time and processor bounds for the procedure
AssianSupersource Vertices and where k is the number of sources in the dag.
Proof.

1. We show that the size.of the problem never grows to be mor^ than 0(n). First, we see
that due to an argument similar to one used in finding the time bound for Single Source
Reachability, the total number of active sources at the end of step 2a will always be at
most half that in the previous iteration. Every active source at the end of step 2a will
be represented by a boundary cycle at the end of 2b. All new fake sources which had an
in-edge crossing a given boundary cycle will be in the same cluster of contiguous sources,
since either the boundary cycle became inactive, in which case ^1 the fake sources would
be on the same face, or a new simple source was created, in wkich case all fake sources
will be contiguous to the new simple source. As before, every fiake source, and hence
every supersource must have at least two boundary cycles, contributing to it. We note
that in this algorithm, all new active sources at the end of step 2e will become part of
a supersource at the end of step 2a in the next iteration, Thus, every boundary cycle
contributes to only supersource, and every supersource must have at least two boundary
cycles contributing to it. Since a boundary cycle represents an active source from the
previous iteration, the number of active sources is at least halved. Thus the total number
of boundary cycle nodes will be 0(k), where k is the number of sources originally present
in G (i.e. k is the number of atom sources). The total number of simple source nodes
will never be more than the total number of boundary cycles found and will by the above
argument be 0(/i). The total number of fake source nodes can never be more than n,
the number of the original vertices in G. Thus the total number of nodes in T at the
beginning of step 3 wiU be 0{n + k), and hence 0{n). |

For all steps dealing with the set of subgraphs, the number of processors is dependent
on the total number ofvertices in the subgraphs. (Note that since these graphs are planar,
and G and all subgraphs created from it have no multi-edges or self-loops, the number of
edges and faces are linear in the number of vertices in the graph.) We will therefore show
that the number of vertices for all subgraphs at the start of each iteration will never be
more than 0{n + k), i.e. 0{n).

Look at. the steps where new vertices are added to G orjto one of the subgraphs
later created. In the initialization step, ccw vertex expansions are done in the dual G*;
this means that sinks are added to certain faces ofG. There can never be more that 0(n)
such new sink vertices added, so at the start of step 2, the number of vertices in the graph
is still 0(n). Inside the iterative step, step 2b again adds sinks to the subgraphs when it
does vertex expansion. The number is bounded by the number of new faces which were
created in CutGraph in the previous iteration. There are three!ways new faces are created
in CutGraph. First, when vertices inside an inactive boundary cycle are removed, they
will leave a new face in the subgraph in which the boundary cycle was nested. Second, in
step 4c, when a new active simple source is created all out-edges are kept except those
going to new fake sources which did not restore and mark them. These edges are removed,
creating new faces. However, these faces will be those in which at least two active sources
are on the boundary by construction. Thus in step 2a in the partitioning algorithm, these
faces will be destroyed in the creation of the supersources, before the vertex expansion

"0

step. The third type of new faces are the outside faces for the subgraphs which were
created by cutting all out-edges crossing the boundary cycles in step 1 of CutGraph. Thus
the total number of faces which could be involved in the vertex expansion of the duals is
linear in the number of boundary cycles. Since this is 0{k^, the total number of vertices
added by step 2a in the partitioning algorithm is also 0{k).

Vertices are also created in the procedure CutGTaph. The fake sources are not
additions, since they are vertices which were originally in the subgraph which became
sources when all their in-edges were removed. The simple sources are created in step 4c,
but their total number cannot exceed the number of boundary cycles found, and hence is
0{k).

Thus the total number ofvertices in the set ofsubgraphs is 0(n + k). Since each step
in the algorithm with the exception of step 6, can be done with a number of processors
linear in the number of vertices in the set of subgraphs involved, the entire algorithm can
be run with 0{n + P(n)) processors, where the procedure AssignSupersourceVertices uses
P(n) processors.

2. We now show that the algorithm runs in 0(log A:logn -f T{n)\ogk) time on a CRCW
PRAM, where fhe procedure AssignSupersourceVertices runs in T(n) time. Step 1, the
substeps of step 2, and steps 3 through 5 can all be done in (9(log n) time on a CRCW
PRAM. The number of iterations of step 2 is O(log k), by the argument given above in
part 1 that the number of active sources must be at least halved at each step.

We now show that the height ofany tree created from T in step 4 ofthe partitioning
algorithm with more than one atom source leaf is 0(lbgA:). As noted in the proof of
Theorem 4.7, such a tree consists of alternating levels of boundary cycle nodes and either
simple source nodes or simple source nodes linked to a parent supersource node. The
boundary cycle nodes in such a tree which are in ancestor-descendant relationship cannot
have been created at the same iterative step. We show this by contradiction.

Assume BCi and BC2 are two boundary cycle nodes in the same subtree, such that
BC2 is a descendant of BCi and both were found in the same iteration at step 2c. Then
the nodes representing their sources must have been active at the beginning of that step
2c, and have become the inactive child of the new boundary cycle nodes at the end of
step 2c. If these sources were children of different boundary cycle nodes in T, they will
never be nested one inside the other, so we assume they were both children of a common
boundary cycle node. We then conclude that BC2 was found to be a descendent of BCi
in the nesting relationship found in step 2d; else the two will never be in the proper
ancestor-descendent relationship in T at the end. However, at the end of step 2c, BCi
already has as its child its inactive source node, and any boundary cycle node found
nested inside BCi in step 2d will eventually be a descendant of an inactive boundary
cycle node of BCi. Thus when the nesting tree is cut in step 4, BCi and BC2 will end
up in different trees. This contradicts our assumption.

Since there are at most O(logk) iterations, the height of any tree created from T in
step 4 must be 0(log k). Thus the time for step 6 must be (T(n)logk), and the entire
algorithm has time boimd 0(log log n -|- T(n) log k). I

: "1

4.4. Assigning vertices inside supersource boundary cycles
Suppose we are given a planar dag in which all the sources are part ofone cluster of

contiguous sources. We will show in this section how to assign' a vertex in the graph to a
specific source. (In this section only, a vertex will mean a non-source vertex in the graph.)
We will assume that the sources areordered by some priority system; we will explain how
the priority numbers are assigned more fully below. We will call this number priority(s)
for the source s. The procedure AssignSupersouTceVertices will|assign a vertex to a source
with the highest priority number which has a path to the vertex.

We will first explain the procedure to cut the graph into components and to reduce
the problem to assigning vertices to sources in a graph which has all the sources in a
line bordering the outside face. We then once more discuss properties of the RHOP and
RHIP structures, and how they can aid in finding the set ofsources which have paths to a
vertex. The main idea is that there will always be a path from;a source to a vertex in the
graph unless a back arc encloses the source but not the vertex; or a forward arc encloses
the vertex but not the source. :

Suppose we call the set of sources which have a path tb a vertex v the set
Possiblesource{v). We need to assign v to the source in Pos'siblesource{v) with the
highest priority. To find the sources in Possiblesource{v), we look at the endpoints of
the smallest forward arc which encloses a vertex. We can eliniinate all sources lying to
the right of the right endpoint or lying to the left of the left enldpoint from the possibility
of being in Possihlesource{v). If we can then find all the largest back arcs which do not
enclose u, but are inside the smallest forward arc, we can elirninate the sources lying
inside the back arcs from the possibility of being in Possiblesdurce{v). The sources left
are the sources of Possiblesourceiy). i

By preprocessing the graph, we create a type of range treb such that, given a vertex
Vand the smallest forward and back arcs enclosing it, one processor in O(logn) time can
find the highest priority source in Possiblesource{v). We do this by cutting edges in G
which cross the back arcs. Each separate component will be c^led a hole. We will show
that the holes can be organized into a nesting tree, such that ifia vertex belongs to a hole,
it will be enclosed by the back arcs associated with the holes which axe its ancestors in
the tree, and by no other back axes. Further preprocessing using the tree will give the
data structure needed. i

j

Once the graph is cut into subgraphs as explained below, the problem is basically
the same as assigning vertices to different out-edges of a single'source, and it might seem
that we can simply use the single source dfs algorithm from Chapter 3, and adjust the
priority ordering to correspond. Unfortunately, this will not work since the ET dfs gives
a right to left or left to right priority ordering of the out-edges. In the cyclic ordering
of the out-edges of a supersource along one of the cycles marked by FindSupersources,
all the out-edges of a given atom source will in general not be in one consecutive group.
Thus we need an algorithm which will assign vertices according to a global priorityorder,
regardless of the ordering of the out-edges.

Although steps 1 through 4 of the partitioning algorithm! fix a partial order among
the partition sets for the atom sources, they impose no constraint on the relative ordering
of partition sets for atom sources which have the same rootBC in the nesting tree. We

72

should perhaps note at this point that although in the procedure CutGraph, a new fake
source chooses the highest priority boundary cycle adjacent to it and an out-edge crossing
it, the procedure AssignSupeTsourceVertices may end up assigning the vertex which
becomes the fake source to an atom source which may not even be inside the highest
priority boundary cycle. As long as a boundary cycle which has an edge crossing it
incident on the new fake source does not become inactive, it will become a sibling simple
source along with the highest priority boundary cycle with the edge marked by the fake
source. Basically, the reason for having a fake source choose is to make some non-higher
priority boundary cycles inactive. If the boundary cycles become new simple sources,
there is is no future distinction among them with respect to the fake source; the new
simple sources all become part of a supersource along with the fake source.

We are therefore free to impose any priority order we wish within the set of the
atom sources which have the same rootBC. As we process a tree with more than one
atom source leaf in step 6 of the partitioning algorithm, at a given time, one of the
sources composing the supersource may have out-edges assigned to more than one atom
source. The procedure CutSupersource given below deals with this by creating a set of
duplicate atom sources, one for each consecutive set of out-edges assigned to the same
atom source crossing an LHOP root cycle. A duplicate of an atom source s will have
the same priority{s) number; the presence of several sources in the supersource with the
same priority number will not create any problems.

4.4.1. Cutting the supersource graph
The procedure FindSuptrsourcea given in the previous section finds aU LHOP root

cycles which, by Property 2.2, are the cycles in the dual graph enclosing the sources in
G making up the supersource. In general the region composed of the positive faces of a
cluster of contiguous sources will not be hole-free, and there will exist counterclockwise
cycles among the LHOP root cycles which define inner regions with vertices which must
be assigned. The procedure CutSupersource will cut the graph into separate subgraphs
using these cycles, one subgraph for each cycle, creating copies of the sources for each
subgraph as needed. We will then use the single source ET dfs algorithm from Chapter
3 to find the vertices reachable from the source with highest priority in each subgraph.
By removing this source and its vertices, we cut open the cycle; we then define as an
outside region, the face created by the removal. This creates an embedded planar graph
in which all the sources are on the outside face. By defining the sources to be at the
bottom, we give a left to right ordering to all the sources remaining. This will simplify
the descriptions of procedures on the graph.

procedure CutSupersource
(* Given a planar dag G all of whose sources are part of one cluster of contiguous

sources, this procedure produces a set of subgraphs, which partition the graph
in such a way that for each subgraph, all sources are in one outside face. Given
assignments to atom sources for all out-edges of the sources, the sources in each
subgraph will be duplicates of atom sources with all out-edges for a given duplicate
atom source in one consecutive group in the ordering of out-edges crossing the one
outside face. *)

(Figure 23)

CS graph

graph edges

LHOP root cycles

subgraphs

m
o. b c

highest priority source d

and vertices reachable

from d removed

6 a

Figure 23
Cutting a graph with a supersource as the only source

73

1. Run procedure FindSupervertices, keeping all LHOP root cycles found in step 3,
not only the clockwise one.

2. For every LHOP root cycle found, make a clockwise ordered list of all out-edges of
sources crossing the cycle. !

3. For each list of out-edges from step 2, find the groups of consecutive out-edges
belonging to the same atom source. Remove all the old sources in the graph
and replace them with new sources, one for each group of consecutive out-edges
just found. Give each new source as its only out-edges the associated group of
consecutive out-edges, and set the priority of the new source to be the same as
that of the atom source to which its out-edges were assigned. Note that the new
sources will have out-edges crossing only one particular LHOP root cycle. Since
the LHOP root cycles partitioned the non-source vertices into separate components
connected only through the old sources, this effectively separates the original graph
into subgraphs cut apart at the sources. For each subgraph the original LHOP root
cycle will define a region to the right of the cycle which has only sources in it.

4. Find the highest priority source in each subgraph. If there is more than one,
choose one arbitrarily. Starting at the rightmost out-edge of that source (i.e., the
last edge in the group in a clockwise ordering about the LHOP root cycle), run
Algorithm 3 and do a right-handed planar Euler tour ddpth first search for each

74

subgraph, considering all out-edges from the sources to be coming from one source.
This will find all vertices reachable by the highest priority source.

5. Remove the highest priority sources and the vertices reachable from them found in
the previous step. This leaves subgraphs whose sources are all on the face created
by the removal of the source and its vertices. Label as LeftSource the source
immediately after the removed source in the clockwise cycle, and label the source
before it as RightSource. We will now orient the graph so that the out-edges of
the sources point up and their left and right orientations are consistent with the
LeftSource and RightSource designation.

We note that the number of new sources cannot exceed the number of out-edges for
the supersource. Hence the total number of vertices in all subgraphs considered together
will still be 0{n). Each step of the procedure can thus be done in O(log n) time with 0{n)
procedures on a CRCW PRAM, and the entire procedure thus has the same bounds.

4.4.2. More properties of RHOP and RHIP structure
For the remainder of this section on assigning vertices within a graph whose only

source is a supersource, we will always assume that we are given a subgraph which is the
output of procedure CutSupersouTce. We will call such a subgraph a CS graph. Although
technically the dual of a graph has a set of connected positive faces, all connected
together at a single dual vertex, we will for the dual structure only, assume that all
sources in a CS" graph are contracted into one source. Then the root cycle will correspond
to the LHOP root cycle used to cut up the original graph into the given CS subgraph.
Thus a. CS graph is a special graph in which all sources axe in the outside face of the
dual and inside the same root cycle, with the sources ordered from left to right. In this
restricted ca^e, we can find further properties of the RHOP and RHIP structures to help
us. We further assume that all dual vertices are simple; this will be the case for all CS
graphs produced when running the partition algorithm.

We note first that all dual edges can now be considered overlap edges, since there
is only one root cycle in each subgraph. We can thus employ the classification given in
Property 4.3 to classify the pair of RHOP and RHIP paths associated with every dual
edge.

Property 4.8 Every dual edge e* in a CS graph must be associated with a pair of
RHOP and RHIP paths in one of the following classes: a forward arc, a back arc, one or
more back twists followed by a forward axe, or one or more back twists followed by a back
arc.

Proof Sketch. The RHOP path from the root cycle to edge e* and the RHIP
path from e* back to the root cycle can intersect only in a back twist in the subgraphs
produced by procedure CutSupersource. A forward twist is impossible since the sources
are in the outside face, and there cannot exist a cycle to separate the root cycle and the
outside face. I

In the remaining discussion, we will call edges which define forward arcs as forward
edges, edges which define back arcs as back edges, and edges which define back twists
ending in back or forward arcs as bt edges.

I 0

Property 4.9 In a CS graph we can distinguish whether a pair of RHOP and RHIP
paths associated with a dual edge ends in a back arc or a forward arc by the following: if
the endpoint of the RHOP path is to the left of the RHIP path, it is a forward arc; if it is
the the right, it is a back arc. ;

Similarly, in the classification of the RHIP leaf orientations, the cases in which a
cycle separates the root cycle from the outside face are not possible, thus making the
following properties true. ,

Property 4.10 Only cases lA and 3, and negative case 2 axe possible cases of RHIP
leaf orientations in a CS graph.

Property 4.11 In a CS graph, if we assign preorder numbers to all vertices and edges
in the RHIP c-tree by using a righthand Euler tour starting at the RightSource on the
root cycle, then for all negative leaf orientations, :

preorder{u) < preorder{e).
!

For all positive leaf orientations, i

preorder{e) < preorder{u). j

Let P' be a RHOP path in a C5 graph from the root cycle to a leaf in the RHOP
c-tree. The following properties will help classify the RHOP-RHIP path pairs for the
edges on P'. In the following, we will let ex be an edge on P', and Pi and Qi be the
RHOP path and the RHIP path respectively from ei to the ropt cycle. Let 63 be an edge
on P' between ei and the root cycle (i.e., it will be on Pi), with P2 and Q2 the RHOP
and RHIP paths from 63 to the root cycle. Let RHOProot\ be the endpoint of Pi on
the root cycle, and RHIProoti be the endpoint of Q\ on the'root cycle. RH0Proot2
and RHIProot2 are defined similarly. Note that RHOProati ,and RH0Proot2 and the
endpoint of P' are all the same. !

Property 4.12 If Pi and Qi form a forward arc, P3 and Qi will also form a forward
arc. RHIProot2 either is the same as RHIProctx or lies to it's left. (Figure 24)

Proof Sketch. By definition of the RHOP and RHIP structures, a RHIP path can
leave a RHOP path only on the right. Thus Q2 must lie on or in the cycle formed by
the forward arc of Pi and Qx and the root cycle between their endpoints. It cannot get
outside because it cannot cross a RHOP path from the right or;cross any RHIP path. |

Property 4.13 If both pairs of RHOP-RHIP paths form bdck arcs, the RHIProctx
either is the same as RHIProot2 or lies to its right. (Figure 25)

Proof Sketch. Again, because an RHIP path can diverge from an RHOP path only
to the right of the RHOP path, and an RHIP path cannot cross an RHOP path from the
right to the left, the section of P' from 63 to the leaf is inside the cycle created by P3, Q2,
and the section of the root cycle between their endpoints. Specifically, ei will be inside,
and Qx will not be able to cross Q2, so that its endpoint must be on the endpoint of Q2
or to its right. (Note if Qx crossed P2, ei would no longer define a back arc.) |

RHIPvoot2

RHOProoti

RHOProot2

endpoint of P'

RHIProot2 RHIProoti

Figure 24
Illustration of Property 4.12

RHIProoti

Figure 25
Illustration of Property 4.13

<5-

RHOProoti

RHOProot2

RHOP path

RHIP path

root cycle

RHOP path

RHIP path

root cycle

76

Property 4.14 If P2 and Q2 intersect in a back twist, so must Pi and Qi. (Figure 26)

62 I

/ / P' '
/

! I
I

N \

)Qi)
I

J Q2

i> fil/

^ ^ \/
62

Figure 26
Illustration of Property 4.14

-

forward-forward case back-back case •

Figure 27
Illustration of Property 4.15

RHOP path

RHIP path

root cycle

RHOP

RHIP

root cycle

77

Proof Sketch. The only way that Qi can exit the back, twist cycle formed by the
intersection of P2 and Q2 is to cross P2. This means that it will intersect Pi since P2 is
part of Pi. I

Property 4.15 If ei and 62 satisfy the further requirement that ei = (u,v) is a leaf in
the RHIP c-tree and u is a vertex on the RHIP path Q2, and if both ei and 62 axe forward
edges, then the leaf orientation of ei is positive. If both ei and 62 axe back edges, the leaf
orientation of ei is again positive. (Figure 27)

/"

/ r bt

back/^

' forward /

Figure 28
Types of edges on P'

I

} I

/ J

J

RHOP path

RHIP path

root cycle

Proof Sketch. By the above properties 4.12 and 4.13, RHIProot\ must be the
same as RHIProot2 or lie to its right. If the two path endpoints are the same, the
branches of the c-subtree containing ei and 62 must have relative orientations so that
preorder(ei) < preorder{u). I

The above properties allow us to quickly distinguish between the three types of
edges on a RHOP c-subtree. Assuming that all three types of edges are present on P',
starting at the root cycle, they must be ordered as follows: the forward edges are followed
by back edges, which in turn are followed by bt edges. P' may have no edges of a given
type, but if it has a bt edge whose associated RHOP-RHIP paths end in a back arc, there
must be at least one back edge on P'. Similarly, if there exists a bt edge on P' whose
associated RHOP-RHIP paths end in a forward arc, there must exist at least one forward
edge on P'. (Figure 28)

If P' has any back edges, the back edge closest to the root cycle is easily found by
looking at the endpoints of the associated RHOP and RHIP paths and using Property
4.9. We will call this back edge a RHOPfirstback edge.

Property 4.16 Tet the dual edge g* be the hrst bt edge on a RHOP p8,th P from the
root cycle to a leaf. Then if all edges before g* on P were forward edges (this immediately
implies that g* deGnes back twists ending in a forward arc), g* has a negative leaf
orientation in the RHIP c-tree. Moreover, it will be the Erst negative leaf orientation
when looking at all RHIP leaf orientations for dual edges from the root cycle to g* along
P. Ifg* is a bt edge deGning back twists ending in a back arc (this immediately implies
that there are back edges on P before g*), then g* will have the Grst negative RHIP leaf
orientation found when looking at RHIP leaforientations for dual edges on P after the
RHOPfirstback edge.

i 79

I

Proof Sketch. By Theorem 4.1, we know there must exist one negative leaf
orientation for a dual edge along P between g* and the dual vertex where the RHIP path
crosses P to give a back twist. By Property 4.15, we know this: must be at g*. |

By using the previous properties, we can give a procedure for labelling all edges in
a RHOP c-subtree by their types. Each step in the following procedure can be done in
O(logn) time using 0(n) processors on a CRCW PRAM. :

procedure LabelForwardBack

(* This procedure takes a planar subgraph G and its dual G* with their embeddings,
which are the results of procedure CutSupersource, and labels dual edges as forward
if they define forward arcs and back if they define back aircs. The back edge which
has no other back edge on the path between it and the c-root of its RHOP or RHIP
c-subtree gets a special label RHOPfirstback or RHIPfirstback. *)

1. Find the RHOP and RHIP structures of the dual G*. iFor each edge in each
c-subtree, find the c-root of the c-subtree it is in. (Remeihber that there is only one
root cycle enclosing all sources.) i

2. Using LeftSource and RightSource orientation of the sources from procedure
CutSupersource, determine the left to right ordering of all c-roots on the root cycle.

3. Do a righthand Euler tour of the RHIP c-tree, starting^at the rightmost RHIP
c-subtree, and assign preorder numbers to all edges and vertices in the RHIP c-tree.

4. For every dual edge, label it maybeforward if its RHIP c-root is the the right
of its RHOP c-root. Otherwise, label it maybeback. (Both maybeforward and
maybeback edges may include bt edges.)

5. For every RHOP c-subtree, by pointer doubling, find the maybeback edges which
have no other maybeback edges as their ancestors. Label |these RHOPfirstback.

6. Cut the RHOP c-subtree branches at the RHOPfirstback edges, so that the
exclusively trimmed RHOP c-subtrees consist only of maybeforward edges.

7. For every edge in the exclusively trimmed RHOP c-subtrees which is also a leaf
in the RHIP c-tree, find the RHIP leaf orientation by using the preorder numbers
found in step 3. j

8. Exclusively trim every RHOP c-subtree further so that it contains no edge which
is a negatively oriented leaf in the RHIP c-tree. (This removes any bt edges by
Property 4.16.) ,

9. Relabel every edge in the final trimmed RHOP c-subtrees as forward.
10. Consider the set of all edges which were cut off from i!he RHOP c-subtrees in

step 6. They form subtrees of the RHOP c-subtrees with RHOPfirstback edges as
roots. (Remember we are formally dealing with the incidence graph, in which dual
edges of G* axe vertices.) Exclusively trim each such subtree so that it contains
only maybeback edges. (This removes any bt edges defining back twists ending in a
forward arc.) i

11. For every exclusively trimmed RHOP subtree with RHQPfirstback edge as root
given by the previous step, find those edges which are also leaves in the RHIP c-tree
and find their leaf orientations.

80

12. Exclusively trim every RHOP subtree from the previous step further so that it
contains no negatively oriented RHIP leaf. (This removes any bt edges by Property
4.16.) Label every remaining edge in the trimmed RHOP subtrees as back. Every
RHOPfirsthack edge will also be a back edge.

13. In every RHIP c-subtree, by pointer doubling, find the back edges which have
no other back edges as their ancestors in the RHIP c-subtree. Label these edges
RHIPfirst back. It is possible for a given back edge to be both RHOPfirsthack
and RHIPfirsthack.

Although we found the forward and back edges using the RHOP c-subtrees, we
could also have used the RHIP c-subtrees. Instead of looking at two edges on P', an
RHOP path from the root cycle to a leaf, we could have considered two edges on Q', an
RHIP path from a leaf to the root cycle. Properties analogous to Properties 4.12, 4.13,
4.14, and 4.15 hold, and we again have the relative ordering of the three types of edges
on the c-subtree path from the root cycle to the leaf: if all three types are present, they
are arranged forward edges closest to the root cycle, then back edges, then bt edges.
A back edge which has no other back edge as ancestor in the RHIP c-tree will be a
RHIPfirsthack edge.

Knowing the sets of forward arcs and back arcs will enable us to find the set of
sources with paths to a given non-source vertex in the graph G. We will say that an arc
encloses a source, if the source has out-edges crossing the root cycle between the left and
right endpoints of the RHOP and RHIP paths. If an arc encloses every source in a set of
sources, we will say that the arc encloses the set of sources. We will also say that an arc
encloses a vertex if the vertex lies in the region bounded by the RHOP and RHIP paths
of the arc and the section of the root cycle from the left endpoint to the right. We will
sometimes refer to an arc by the pair of dual vertices (a, 6), where a an. h are the left and
right endpoints of the RHOP and RHIP paths on the root cycle.

The next theorem shows how the forward and back arcs can be used to determine

which set of sources have paths to a non-source vertex in G. It forms the basis on which
we will construct our procedures to assign vertices to sources m a CS graph.

Theorem 4.9 Given a non-source vertex x and a source s in a CS graph, x is not
reachable from s if and only if there exists a back arc which encloses s, but not x, or a
forward arc which encloses x, but not s.

Proof. (Figure 29) If there exists a back arc enclosing s but not x or a forward arc
enclosing x but not s, there can be no directed path from s to x since all graph edges
crossing either such arc point away from the region with x in it. The following is the
proof that if x is not reachable from s, there exists a forward arc enclosing x but not s or
a back arc enclosing s but not x.

Mark all vertices reachable from s. The subgraph G' induced by this set of marked
vertices is weakly connected (i.e., connected when viewed as an undirected graph), and all
edges between this subgraph G' and the remaining unmarked vertices must point toward
G'. Thus the dual of these edges between G' and the unmarked vertices must form a
directed path R starting at a dual vertex on the root cycle at some point to the right
of the rightmost out-edge of s and ending on the root cycle to the left of the leftmost

Figure 29
Illustration 1 for Theorem 4.9

graph edges

dual edges

and paths «

root cycle

81

out-edge of s. Note that since the unmarked vertices must allibe reachable from sources
which are not s and we are assuming that all out-edges for a source are in one consecutive
group, the marked vertices lie in one hole-free region, and there exists only one such path
R. We note that since x cannot be reached from s, it is not enclosed by R.

We now show by contradiction that a dual edge e* on R cannot be a bt edge.
Assume that it is a bt edge and defines a back twist. By defmition the sources cannot
be inside the twist cycle. By construction, the graph edge e !points from a vertex u
which cannot be reached from s to a vertex v which can be reached from s. However, by
Corollaries 3.4 and 3.5, the RHOP and RHIP paths defining the twist imply two directed
paths in G which together surround the twist and meet at u.l Hence any path from a
source to v inside the twist must imply the existence of a path to u, which contradicts our
construction. (Figure 30)

This means that every edge on R defines is either a forward edge or a back edge.
We will now show that the regions inside all such forward axcs; defined by edges on R and
the regions outside all such back arcs defined by edges on R linioned together cover the
entire graph G except for the sources and the region enclosed1by R. Thus x must lie in
one of the regions which is either inside a forward arc or outside a back arc. In either
case, an arc separates x from s. |

We first note that the RHIP paths and the RHOP paths of the arcs defined by the
edges of R may coincide with R, but cannot lie inside the region enclosed by R. This is
due to the definition of the RHOP and and RHIP structures;! any in-edge or out-edge
incident on both a vertex on R and a vertex enclosed by R will lie to the left of the edge
on R, and will not be chosen by the RHOP or RHIP path that an edge on R is on. In
particular, the endpoints of the RHOP and RHIP paths forming the forward or back arcs
are on the part of the root cycle not inside R. (Figure 31) |

back twist

Figure 30
Illustration 2 for Theorem 4.9

J c
R

possible RHIProot

Figure 31
Illustration 3 for Theorem 4.9

82

dual RHOP path

dual RHIP path

graph edges

and paths

root cycle

RHOP path

RHIP path

dual path

root cycle
R RHOProot possible RHIProot

Let ej and be two adjacent dual edges on R. Let x* be the dual vertex which is
the head of ej and the tail of e^. Let RHOProoti and RHIProot\ be the endpoints of
the RHOP and RHIP paths respectively which form the axe, forward or back, defined by
Cj. Define RHOProot2 and RHIProot2 similarly for e^. Let R.1 be the region inside the
arc for e* if it is a forward axe and the region outside the axe if it is a back arc. Define
R-2 similarly for e^. (Figure 32)

RHIProot2

one possible orientation of

R-1 and RS

62* ei*

Figure 32
Illustration 4 for Theorem 4.9

RHOP path

RHIP path

dual path

root cycle
R^ '

RHOProoti ') RHIProoti
RHOProot2

83

We will first show that at least one edge on iZ is a back edge. Suppose for
contradiction that there axe no back edges on R. Since all forward arcs must have their
RHIP endpoint to the right of their RHOP endpoint, both endpoints must lie either on
or to the right of the right endpoint of R or on or to the left of the left endpoint of R.
Since the first edge of R containing the starting dual vertex of R must define a forward
arc to the right of R, and the the last edge of R must define a forward arc to the left of R
(assuming all arcs are forward), there must exist two adjacent iedges on R such that one
defines a forward arc to the right ofR and the other a forward ;arc to the left ofR. Let
and 62 be those two adjacent edges on R. This implies that there is an in-edge f* to x*
on the RHOP path from RHOProot^ to the left of R. There must also be an out-edge
g* from x* on the RHIP path to RHIProot\ to the right of R. The relative ordering of
edges around x* must have e^, /*, g*, and e\ in clockwise order since the RHOP path
from RHOProot2 cannot cross the RHIP path to RHIProot\. This implies that x* is a
complex vertex, and we are assuming all dual vertices in the graph are simple. This gives
the contradiction, and there must exist at least one back arc oh R. (Figure 33)

Since the endpoints of the arc must lie outside the region enclosed by R, we see that
if any edge of R defines a back arc, the RHOP endpoint must he on or to the right of the
right endpoint of R on the root cycle, and the RHIP endpoint |must lie on or to the left
endpoint of R on the root cycle. If we now show that for any two adjacent edges ej and
62, the union of the two regions R-1 and R-2 defined as above lis a hole-free region, then

RHOProot2

\

^

R RHIProoti

Figure 33
Illustration 5 for Theorem 4.9

RHOP path

RHIP path

dual path

root cycle

84

the union of all regions inside the forward arcs and outside the back arcs for edges on R
must cover the entire graph except the region inside R.

If either the two RHOProots are the same or the two RHI Proofs axe the same for

el and e^, then the two regions must union to a hole-free region. We therefore look at the
case where the two edges have different RHOProots and RHI Proofs. This implies that
at I*, there must be an in-edge /* on the RHOP path from RHOProof2 and an out-edge
g* on the RHIP path from RHIProofi. As discussed before, the RHOP path from
RHOProof^ cannot cross the RHIP path to RHIProofi. Since x* is a simple vertex, the
relative clockwise order of edges around x* must be e^, g*, /*, and e*. This implies that
the RHIP path to RHIProofi must be inside region R-2. It cannot cross out because it
cannot cross a RHOP path from the right. This means in turn that the two regions R-1
and R-2 must form a hole-free region.

Thus the entire region except for the inside of R and the root cycle, must be inside
a forward arc or outside a back arc defined by an edge on R. Hence x must be in one of
these regions separated from s by that forward or back arc. I

We now separate the non-source vertices in a CS graph G into three types. A type.l
vertex is a vertex in G such that one of its out-edges has as its dual a forward edge. A
type-2 vertex is a vertex which is not type_l and which has an out-edge whose dual is
a back edge. A type.3 vertex is a vertex in G which is neither type_l nor type_2. The
following two theorems are applications of Theorem 4.9 to the cases of x being a type.l
vertex and a type_2 vertex.

Theorem 4.10 Given a CS graph, if a type-1 vertex x has an out-edge whose dual
counterpart defines a forward arc A, then if there exists a source s which is enclosed by
A such that there exists no path from s to x, there exists a back arc B nested inside the
forward arc A which encloses s, but not x. A has no edge in common with B.

Figure 34
Illustration for Theorem 4.10

RHOP path

RHIP path

graph edges,

paths

root cycle

85

Proof. By the previous theorem, we need only show that there exists no forward
arc which encloses x, but not s, and that the back arc B enclosing s, but not x, is nested
inside A and does not intersect A.

I

We first show that there exists no forward axe which encloses x, but not s. By
Corollaries 3.4 and 3.5, we know there exist directed paths to x from the leftmost source
a and the rightmost source b enclosed by the forward arc A. Since any forward arc which
encloses x must enclose all sources with a directed path to x,iit must enclose a and b.
Since s is enclosed by A, it must lie between a and b so that it must also be enclosed by
any forward arc enclosing x. Thus no forward arc encloses x, but not s.

We now show that a back arc B which encloses 5, but not x, must lie completely
inside A. Again let a be the leftmost source and b the rightmost source enclosed by A.
Since a and b both have paths to x, and sources inside B cannot have a path to x, a and
b must not be enclosed by B. B does, however, enclose a source s which lies between a
and b. Thus the endpoints of B must be strictly inside A. Suppose B intersected with
A. Since two RHOP paths cannot cross each other, two RHIP paths cannot cross each
other, and an RHIP path can cross an RHOP path only from| the left to the right, the
only way B can cross A is if the RHOP path of B crossed the; RHIP path of A and the
RHIP path of B crossed the RHOP path of A. This means that x must be inside B,
which contradicts our given condition that B encloses s, but not x. Thus A encloses H,
and the two axes do not intersect. (Figure 34) I

We can further characterize the back arc B sepaxating x and s by the following
corollary. |

Corollary 4.11 If a typeA vertex x associated with a forward arc A cannot be reached
from a source s enclosed by A as in Theorem 4.10, then there exists a back arc B' where

N

RHOPfirstback edge

Figure 35
Illustration for Corollary 4.11

RHOP path

RHIP path

graph edges,

paths

root cycle

86

B' is associated with a RHOPfirstback edge such that B' encloses s but not x. B' is
inside A and does not intersect A. Similarly, x is separated from s by a back arc B"
where B" is associated with a RHIPfirstback edge.

Proof. (Figure 35) From Theorem 4.10 we know that there exists a back arc
B which encloses s, but not x, and B is nested inside A. If B is associated with a
RHOPfirstback edge, we are done proving the first part of the corollary. If not, let e*
be the back edge defining B, and let P and Q be the RHOP and RHIP paths forming B.
Then there must be a RHOPfirstback edge on P between the root cycle and e*, and by
Property 4.13, the associated back arc B' must have its RHIP path Q' end on the root
cycle to the to the left of the endpoint of Q. Q' cannot cross A, because one RHIP path
cannot cross another and a RHIP path cannot cross a RHOP path from the right. Hence
B' is inside A and does not intersect it. It encloses B and hence s, but not x. We can
use similar arguments for the back arc B" associated with the RHIPfirstback edge on
Q- I

Theorem 4.12 In a CS graph, let vtop be a typeA vertex associated with a forward arc
A. Let X be a type-2 vertex enclosed by A such that there exists no forward arc which
encloses x but not vtop- Let B be the back arc associated with x. If there exists a source s
not enclosed by B but enclosed by A which has no path to x, then s is enclosed by some
back arc B' which is enclosed by A and intersects neither A nor B.

Proof. (Figure 36) Let a and b be respectively the leftmost source and the
rightmost source enclosed by A. Let c be the source whose out-edge crosses the root
cycle immediately to the left of the RHIP endpoint of B. Let d be the source whose
out-edge crosses the root cycle immediately to the right of the RHOP endpoint of B. By

Figure 36
Illustration for Theorem 4.12

RHOP path

RHIP path

graph path

root cycle

Corollaries 3.4 and 3.5, there exist paths to vtop from a and b aind paths to x from c and
d. Since s is enclosed by A but not by B, there are two possible ca.ses: s can lie to the
left of c or to the right of d. Since s has no path to x, it cannot be either c or d.

Let the case when s lies to the left of c be case 1. By Theorem 4.9, there must exist
a forward arc A' which encloses x but not s or a back arc B' which encloses s but not x.
We will first show by contradiction that no such A' exists.

Suppose A' exists. Since it encloses x, it must enclose all sources with paths to x so
that it must enclose c and d. Since A' does not enclose s, its left RHOP endpoint must lie
on the root cycle between the edges crossed by the out-edges of s and c. Thus it cannot
enclose a. A' then cannot enclose vtop, since if it did, it must also enclose a. Then A' is
a forward arc which encloses x but not vtop, but one of the conditions of the theorem is
that such a forward arc does not exist. Thus A' does not exist.

Thus there exists a back arc B' which encloses s but not x. First we show that B'
cannot intersect B. Since B' cannot enclose c, its endpoints must be separate from those
of B and lie to their left. The only way the two back arcs can then intersect would be if
the RHOP path of B' crossed the RHIP path of B from the right, and if the RHIP path
of B' crossed the RHOP path of B from the left. However, this would mean that x is
inside B', so that the two back arcs cannot intersect.

Suppose B' intersected A. Since the right RHOP endpoint of B' must be inside
A, the only way B' co\ild intersect A is if the RHOP path of B' crossed the RHIP path
of A from the right. However, this would create a forweird arc separating vtop and x,
which cannot exist. Hence B' does not intersect A, but lies inside A. We note that the
left endpoint of B' and the let endpoint of A cannot coincide since this would create a
complex vertex at the endpoints, and in a C5 graph all dual vertices are assumed simple.

Figure 37
Illustration for Corollary 4.13

88

RHOP path

RHIP path

graph path

root cycle

When s lies to the right of d, we will call it case 2. The same argument can be made
as in case 1 above, by switching (left) and (right), (RHOP) and (RHIP), (c)and (d), and
(a) and (b). I

Corollary 4.13 Suppose we had the same conditions as in Theorem 4.12 case 1, where s
lies to the left of B. Then there exists a back arc C associated with a RHOPfirstback
edge which encloses s but not x. Again C is inside A but outside B, and intersects neither
A nor B.

Proof. (Figure 37) By Theorem 4.12, there exists a back arc B' which encloses s
but not X, and is inside A and outside B. Let P and Q be respectively the RHOP and
RHIP paths of B'. There must exist a RHOPfirstback edge e* on P. Let C be the
back arc associated with e*, and let P' and Q' be the RHOP and RHIP paths of C. By
Property 4.13, the endpoint of Q' lies to the left of the endpoint of Q. Thus B' is inside
C, and C encloses s.

Q' cannot intersect B because two RHIP paths cannot cross and an RHIP path
cannot cross an RHOP path from the right. Thus x cannot be enclosed in C. C cannot
intersect A for the same reasons given in the proof of Theorem 4.12 that B' cannot
intersect A. I

Corollary 4.14 Suppose we had the same conditions as in Theorem 4.12 case 2, where s
lies to the right of B. Then there exists a back arc D associated with a RHIPfirstback
edge which encloses s but not x. Again D is inside A but outside B, and intersects neither
A nor B.

Proof Sketch. (Figure 38) Again the proof is the same as for the previous
Corollary 4.13, with the following switches: (left) and (right), (RHOP) and (RHIP), (P)
and (Q), and (C) and (D). I

Figure 38
Illustration for Corollary 4.14

RHOP path

RHIP path

graph path

root cycle

89

4.4.3. Finding the hole structure •
Because of Theorem 4.9, if we find for any vertex x the set S of largest back arcs

which do not enclose x and the smallest forward arc A which does enclose x, we know that
all sources outside the back arcs of S and inside A have paths!to x. This section shows
how the back arcs can be organized so that we can quickly find, for a given vertex, which
back arcs enclose it and which do not, and which source out of a set of sources enclosed
by a back arc has the highest priority. For this we find the hole structure of the graph.

We wish to partition the graph into subgraphs such that all vertices in a given
subgraph are enclosed by one back arc B, but not enclosed by any back arc which is
inside B. This will give a nesting structure to the paxtitions. A subgraph defined in this
way will be called a hole defined by the axe B. A back arc Bf' will be inside a back arc
B2 if all vertices enclosed by Bi are also enclosed by B2. A vertex v belongs to a hole H
if u is a vertex in the subgraph H. We will say a source s heldngs to hole H i£ s has an
out-edge to a vertex belonging to H. We note that a given source may belong to more
than one hole by this definition, but the number of holes it belongs to will never exceed
the number of out-edges for the source. :

There is a potential problem with trying to partition the graph this way. Two back
arcs can cross so as to create an intersection region, and neither arc can be said to be
inside the other. Fortunately, because of Corollaries 4.11, 4.13j and 4.14 we do not need
consider all possible back axes. We will make two separate hole structures: one using
the set of back arcs associated with RHOPfirstback edges (abbreviated RHOPhole
structure) and one using the set of back arcs associated with. RHIPfirstback edges
(abbreviated RHIPhole structure). The following lemma shows that in each of the two
hole structures, the back arcs do not cross, so that we can de^e a nesting relationship
among the holes.

1+

Figure 39
Illustration for Lemma 4.15

90

RHOP path

RHIP path

root cycle

Lemma 4.15 Let Bi and B2 be two back arcs cLSSociated with RHOPfirstbach edges.
Then the path of B\ and the path of B2 never cross. Similarly, if Bi and B2 are both
back arcs associated with RHIPfirstback edges, they do not cross each other.

Proof. (Figure 39) When two back arcs cross, they must cross where the RHOP
path of one is crossed from the left by the RHIP path of the other. Without loss of
generality, let the RHOP path of Bi be crossed from the left by the RHIP path of B2 at
vertex x*. Then there exists a back arc forme^l by tlie RHJr' path of to x aixd
the RHIP path of B2 from x*. Thus Bi cannot have been defined by a RHOPfirstback
edge, and B2 cannot have been defined by a RHIPfirstback edge. I

We can further simplify the set of back arcs in each structure by considering only
the smallest back arc from a set of back arcs which have the same two endpoints. The
following lemma follows directly from the definitions of the terms used.

Lemma 4.16 Let back arc B\ and back axe B2 have the same endpoints, and B2 be
inside B\. Suppose there exist a vertex x and a source s such that Bi encloses s, but not
X. Then B2 encloses s, but not x.

We will need to determine the nesting structure for the holes quickly. Because of
the following lemma, we know that if a dual edge e* defines a back arc. which we use to
define a hole G, so that the head of the graph edge e belongs to hole G and the tail of e
belongs to a different hole H, then H is the parent of G in the nesting order. The lemma
eliminates the possibility that there exists another hole I which is the proper ancestor of
G and a proper descendant of H in the nesting order.

Lemma 4.17 Let Bi be a back arc de£ned by a dual edge e*. Let x be the vertex which
is the tail of the graph edge e crossing e*. If Bi is inside a back arc B2, then x is enclosed
by B2.

Figure 40
Illustration for Lemma 4.17

RHOP path

RHIP path

graph path

root cycle

91

Proof. (Figure 40) We will give a proof by contradiction. Suppose B2 does not
enclose x. Since B\ is inside B2, B2 must enclose the head of e. Thus e* must be an edge
on the back arc ^2. Then either the RHOP path of B2 is a continuation of the RHOP
path of Bi, or the RHIP path of B2 is a backward continuation of the RHIP path of
B\. However, we know in both cases the continuations must be inside B\ by Property
4.13 and an equivalent property for RHIP paths. Hence B2 must be inside Bi, giving a
contradiction. Hence, x must be enclosed by B2. I

Let G' be the subgraph of a CS" graph G induced by all vertices which are not
enclosed by any of the back arcs in a hole structure. We will define this subgraph to be a
hole, assuring that there will be a single root hole in the nesting tree.

By using all the above we get procedures for finding holes and creating a nesting
tree for them. We give the procedure for finding the RHOPhple structure of a CS graph
G. Finding the RHIPhole structure for G is done by switching; the roles of the RHOP and
RHIP c-trees in the procedure. ;

procedure FindRHOPHoles \
(* Given a. CS graph G with dual edges labelled by procedure LabelForwardBack,

find and identify the holes in the RHOPhole structure, and create a nesting tree for
them.*) i

1. Inclusive trim each RHOP c-subtree so that all edges labelled RHOPfirstback
by LabelForwardBack are leaves in the trimmed RHOP c-subtrees and they are the
only leaves for the trimmed RHOP c-subtrees. |

2. Inclusive trim each RHIP c-subtree, discarding any branch ends which do not
contain any edges labelled RHOPfirstback by LabelForwardBack.

3. On every trimmed RHOP c-subtree, partition all RHOP c-subtree leaves according
to the RHIP c-subtrees to which they also belong. Each ipartition set contains back

92

edges whose arc endpoints are all the same. Remove the RHOPfirstback label
from all such RHOP c-subtree leaves except the one defining the smallest back arc
(the last such RHOP c-subtree leEif in each partition set in a right hand Euler tour
of a RHOP c-subtree).

4. Inclusive trim both RHOP and RHIP c-subtrees again, discarding any branch ends
which no longer have contain RHOPfirstback edges as leaves.

5. In G, cut all edges crossing the edges of either a trimmed RHOP c-subtree or a
trimmed RHIP c-subtree. Cut all edges crossing the root cycle.

6. Run the algorithm for finding connected components on the undirected version of
the modified G. For every RHOPfirstback edge e*, label the connected component
which includes the head of the edge e crossing the dued e* as a hole defined by e*.

7. Label all non-source vertices of G which are not part of holes found in the previous
step as vertices belonging to the root hole.

8. For every hole, identify its parent in the nesting tree by finding to which hole the
tail of the edge e crossing the RHOPfirstback edge e* belongs.

9. For every hole, find the sources belonging to it by identifying the sources which
have an out-edge crossing the root cycle and incident on the connected component.

All steps in the procedure can be done in 0(log n) time with 0{n) processors in the
CRCW PRAM model where n is the number of vertices in the graph.

Note that because no two back axes have the same endpoints, every hole must have
at least one source belonging to it. The importance of the nesting tree is that if a vertex
belongs to a hole, all sources belonging to holes which are not its ancestors cannot have
paths to the vertex, by Theorem 4.9. If a source belongs to an ancestor hole, it may or
may not have a path to the vertex, depending on whether or not there exists a forward
arc enclosing the vertex but not the source.

4.4.4. Assigning sources for type_l vertices
In this subsection we will show how to create a data structure on the hole structure

and use it to assign sources for the type_l vertices. By Corollary 4.11, we can use either
the RHOPhole structure or the RHIPhole structure. We will choose for concreteness the
RHOPhole structure; all lemmas and properties which we give below for the RHOPhole
structure will have its counterpart in the RHIPhole structure. Suppose we look at a
type.l vertex x which belongs to a hole H in the RHOPhole structure. Let A be the
forward arc associated with x, and let (a, b) be the pair of vertices on the root cycle,
where a is the left RHOP endpoint of A and b is the right RHIP endpoint of A. Then by
Corollary 4.11, the sources belonging to ancestor holes of H in the nesting tree (including
non-proper ancestors, i.e., H) which have out-edges crossing the root cycle between a and
b, will have paths to x.

Let every back arc defining a hole in the RHOPhole structure be identified by the
pair of its endpoints (c, d). Note that this identification is unique since we kept only the
smallest back arc out of all those with the same endpoints. Then the following lemma will
let us identify the highest ancestor in the nesting tree with sources which have paths to x.

Figure 41
Illustration of Lemma 4.18

RHOP path

RHIP path

graph path

root cycle

93

Lemma 4.18 In a CS graph, let x be a type.l vertex in hole H with a forward arc A
with endpoints (a, h) as in the discussion above. Let the back arc (c,d) in the RHOPhole
structure be the smallest back arc in the hole structure in which c is to the left of a and
d is to the right of b. (More formally, (c, d) has this property and is inside all other back
arcs with this property.) Then the hole H' defined by (c,d) is kn ancestor of H and there
exist no paths to x from a source belonging only to proper ancestors of H' in the nesting
tree. j

Proof. (Figure 41) Suppose H' were not an ancestor of H. Then there can be no
paths to X from sources enclosed by (c, d). However, we knowithat there exists at least
one source s enclosed by A with a path to x, and since c is to the left of a and d is to the
right of b, (c,d) must also enclose s, giving a contradiction. i

Suppose source s belonged only to proper ancestors of H'\. Then the forward arc A
would enclose x by definition of a type.l vertex, but not s since the arc endpoints of A lie
inside H'. Thus there can be no paths to x from s. \ |

I

The following property which characterizes the intersection of a forward arc and a
back arc will allow us to find the hole H' of Lemma 4.18 for a given forward arc.

Property 4.17 Let us say that the left RHOP endpoint a of a forward arc A lies in hole
I if the back arc (c, d) which defines I is the smallest back arc in the RHOPhole structure
for which a = c or a lies between c and d. Similarly the right RHIP endpoint b of A lies
in J if the back arc (c', d') which dehnes J is the smallest back arc in the RHOPhole
structure for which b = df or b lies between c' and d'. Then the typeA vertex x which
defines A will be enclosed by both (c,d) and (c', d').

Proof Sketch. (Figure 42) This follows since a RHOP, path cannot cross out of
(c,d); nor can a RHIP path cross into (c',d'). I

^ t ^ root cycle

c a d b

Figure 42
Illustration of Property 4.17

RHOP path

RHIP path

graph path

94

Since both (c, d) and {c',d') enclose x, I and J will be the same or in a descendant-
ancestor relationship to each other. The one which is the ancestor will therefore be the hole
H' in Lemma 4.18. We will call I the LeftAncestorHole of x, J the RightAncestorHole
of X, and H' the HighestAncestorHole of x.

Let a type.l vertex x belong to hole H, and let the holes in the nesting tree
path from HighestAncestor Hole to H be those defined by the series of back arcs,
(cjt, dk), (ck-i,dk-i),... (ci, di). For concreteness, let us assume that RightAncestorHole
is the same as HighestAncestorHole, and is defined by (cjt,djt), LeftAncestorHole is
defined by {cj,dj) where 1 < j < A;, and H is defined by (ci,di). We can then divide the
sources with paths to x into four sets. (Figure 43)

The first set A is composed of the sources belonging to H and hence lying between
ci and di. (We will say a source lies between a and b if the source has an out-edge
crossing the root cycle between vertices a and b on the root cycle.) The second set 5
consists of sources lying between d,- and d,-+i for i = 1 to A; - 2. The third set C consists
of sources lying between c,- and c,+i for i = 1 to j —2. The last set D has the sources in
RightAncestorHole lying between d;t_i and djt and in LeftAncestorHole lying between
Cj—2 and Cj.

We note that all sources in a given hole in set B lie in a range whose right boundary
is the right boundary of the hole. Similarly, all sources in a given hole in set C lie in
a range whose left boimdary is the left boundary of the hole. If we preprocess using
the prefix maximum algorithm to find the highest priority source lying in a range whose
boundary is either the left or right boundary of a hole, one processor can find in constant
time the highest priority source lying between c,- and c,+i or between d,- and d^+i. We will
call this the BestLeftSource or BestRightSource associated with the edge in the hole
nesting tree connecting the hole defined by (c,-, d,) and (ci+i,d,+i). Further preprocessing
as will enable us to determine the highest priority source among all the BestLeftSources
in C and the highest priority source among the BestRightSources in B. We will thus be

J: RightAncestorHole [Hj

I: LeftAncestorHole

H, to which type.l vertex x belongs

Figure 43
Sources with paths to x

able to determine the highest priority source in each of the four sets of sources in 0(log n)
time using a single processor. i

One minor subcase occurs when one of the two ancestor holes, say the
RightAncestorHole^ is the same as hole H that vertex x is;in. In this case we
will say that both sets A and B are empty, and include all sources in H with paths to x
in set D. If both endpoints of the forward arc lie in the same hole H that x belongs to, all
sets except D are empty.

4.4.5. Range tree data structures for hole structures
The previous subsection gives the basic plan used to assign to a type.l vertex x the

highest priority source s with a path to x. Starting with the nesting tree of holes, we
build a data structure around it so that we can find the highest priority source among the
BestLeftSources and the BestRightSources associated with a path segment of the tree.
In order to build this data structure, which we will call RHOPhole tree, we need to use

Hj

96

(i,d) (dJ) ij.h) U.»•)
^ \ ^ / \

(b,c) (c,d) {d,e) (e,/) {f,g) i9,h) (/».»•) (t>i) (i. (fc,r)
He H2 Hi H2 Hz H^ Hz H^ H7 Hs

Figure 44
Range tree for holes

two range trees, one for holes and the other for sources within a hole. These range trees
will also enable us to find the highest priority sources for sets A and B. They will be built
using the following two procedures.

procedure BuildRange TreeForHoles
(* This procedure taies the set of back arcs and holes found by the procedure

FindRHOPHoles and builds a range tree such that given any endpoint a of an arc
on the root cycle, we can find which hole it lies in. *) (Figure 44)

1. Take all endpoints of the back arcs and sort them in left to right order. Add a
special vertex to be the leftmost vertex and another to be the rightmost. Define
each pair of adjacent vertices in the sorted list to be a basic interval.

2. For each basic interval, identify the hole it belongs to; i.e., if a source has an
out-edge which crosses the root cycle between vertices a and b where a and b define
a basic interval, then the hole to which the head of the out-edge belongs is the hole
to which the basic interval (a, b) belongs.

3. Build an ordered essentially complete binary tree with the basic intervals in sorted
order as the leaves. (See [BB88, p. 25] for the definition of essentially complete

O

St Ss

Priority ordering

Sa > S5 > Si > 5i5 > S2 > Sis > S4 > St

{b,c) {f,g) ig,h)
S2 Ss

Figure 45
Range tree for sources

(!•, S)
'S'ls Sis

97

binary tree.) Each interior node in the tree defines an interval which is the union of
the two contiguous intervals which are its children.

procedure BuildRangeTreeForSources
(* This procedure takes a hole found by procedure FindRHOPSoles and builds a

range tree such that, given any pair of vertices on the root cycle, we can find the
highest priority source, if any, which belongs to the hole and which lies between the
two vertices given.*) (Figure 45) ^

1. Mark the root cycle edges crossed by an out-edge from a source to a vertex
belonging to the hole.

2. Let the endpoints of the marked edges from step 1 define the leaf intervals for
the somce range tree. (Each leaf interval is one edge on;the root cycle.) Associate
with every leaf node the source whose out-edge crossed the defining root cycle edge.
Order the leaf intervals in the same left to right order as on the root cycle.

98

3. Build an ordered essentially complete binary tree on the leaves, such that the
parent node defines the union of the two intervals of the children and the associated
source is the higher priority source of the two sources associated with the children.
If the two intervals of the children are not contiguous, use the interval with the
left endpoint of the left child's interval and the right endpoint of the right child's
interval.

All steps for both procedures can be done in O(log m) time using 0{m) processors
where m is the number of edges in the subgraph involved. Note that the total number of
holes is never more than the number of out-edges of type_l vertices.

The range trees are used in the standard way to answer queries of the type, "Given
a forward arc with endpoints (a, 6), in what holes do the endpoints lie?" and "Given an
interval (a, 6), what is the highest priority source belonging to a given hole which lies
between a and 6?". All such queries can be.answered by a single processor in O(logm)
tirne where m is the number of edges in the subgraph involved.

We now give the procedure for building the RHOPhole tree.

procedure BuildRHOPHoleTree
(* Given the holes and their nesting trees resulting from procedure FindRHOPHoles,

and the range trees for the holes and for sources for every hole, we build a
RHOPhole tree.*) (Figure 46)

1. For every hole, using the range tree for sources, build two tables which contain the
results for the prefix maximum problems defined as follows. The value A[fc] in the
prefix maximum problem will be the source associated with the interval k where
the intervals are those which were the leaves in the range tree for sources. In the
left-rajige table, the intervals axe considered ordered from left to right, and in the
right-range table, the intervals are ordered right to left. The value Si stored in the
left-range table is the highest priority source for all intervals from the leftmost to
the from the left. Similarly for the right-range-table, the value Si is the highest
priority source for all intervals from the rightmost to the from the right. The
highest priority source belonging to the hole can be found from either table.

2. For every edge in the nesting tree connecting a child hole {i,j) with a parent hole
(k, I), find two sources, a BestLeftSource and a BestRightSource. The BestLeftSource
is the highest priority source belonging to the parent hole {k,l) which lies in the
interval {k,i). The BestRightSource is the highest priority source belonging to the
parent hole (k,I) which lies in the interval (j, I). Both can be found from the tables
created in step 1.

3. Find for each hole in the nesting tree, the distance of the hole from the root of the
nesting tree. Record this as the level{H) of the hole H.

4. By pointer doubling, find for every hole H in the tree, a pointer to the hole which
is 2^ levels above it in the path to the root of the tree for all j from 0 to [level(H)\.
Find at the same time for each path from hole H to the hole 2^ levels above it,
the highest priority source encoimtered among the BestLeftSources for the edges
along the path. Also find the highest priority source among the BestRightSources
encotmtered along each path. We thus create a table for each hole H in the tree.

#t / j rt - i
•^1 ^2 ^3 Si Ss Se S7 Ss <S9 5io 5ii 5

Priority ordering; > ^7 > 5i > 54 > ^3 > 5u > Ss > S12 > S2 > 5io > S9 > S5

12

Left-range table for Hi

(b,c) (6,/t) AhJL
highest
priority
source

52 57 57

[Hs
BLS . bRS
null \ Q,«

\'^12

BLS BRS
I null

BLS

52/'BRS gj^g
^7 S7

BLS BRS
null Ss

BLS: BestLeftSource

BRS: BestRightSource

Right-range table for Hi

(9J)

highest
priority

source

59 57

RHOPhole tree

Table for Hi

S7

path

length hole BLS BRS

2° ; H2 S3 Ss

2^ ;
i

1

Hs S3 Ss

22 i

1

Hs Si Ss

Highest priority source in Hi: Si

Figure 46
RHOPhole tree

99

100

The table has \level(^H)\ entries, and each entry consists of a pointer, and two
sources. The RHOPhole tree consists of the nesting tree supplemented by these
tables created for each hole in the tree. For each hole node in the tree, also record
the highest priority source belonging to that hole.

Every step in the above procedure can be done in (9(logm) time using 0(m)
processors where m is the number of edges in the graph. Note that the nesting tree has
as its nodes the holes defined by back arcs in an RHOPhole structure. The total number
of all intervals in all tables for holes in step 1 is the number of edges on the root cycle.

We are now ready to assign a source to each type_l vertex.

procedure AssignTypel Vertex
(* This procedure takes a. CS graph G and assigns for each type_lvertex x in G the

highest priority source with a path to x.*)
1. Run procedure LabelForwardBack.
2. Run procedure FindRHOPHoles. Let h be the height of the nesting tree.
3. Run procedure BuildRangeTreeForHoles.
4. Run procedure BuildRangeTreeForSources for each hole.

5. Run procedure BuildRHOPHoleTree.

6. Mark every edge in G which is crossed by a dual edge marked forward in procedure
LabelForwardBack.

7. For every vertex u with one or more marked out-edges, choose one such out-edge
and its associated forward arc (cu, &«). Vertex u is thus a type.l vertex.

8. For every type.l vertex u, find the hole hole{u) to which it belongs from
FindRHOPHoles.

9. Using the hole range tree, for every type.l vertex u, find the LeftAncestorH ale
and RightAncestorHole that the left and right endpoints and lie in. If neither
ancestor hole is hole{u), find the highest priority source belonging to holeiu). This
will be the highest priority source in set ^4 for u.

10. For every type.l vertex u, use the source range trees for the LeftAncestorH ole
and RightAncestorHole found in the previous step to find the highest priority
source belonging to each hole which lies in the interval (au,bu). Of the two
sources found, keep the higher priority source as the highest priority source in set
D for u. Also find at the same time which child of the ancestor hole is on the

path from hole{u) to the ancestor hole. Let these be left.ancestor.child{u) and
right.ancestor.child(u), abbreviated lac{u) and rac(u).

11. Calculate for each u the difference in level numbers for hole{u) and lac{u). The
difference expressed in binary will give the set of 0(log h) path segments, each of
appropriate length 2^, which are followed in going up the nesting tree from hole{u)
to rac{u). Using the tables found for each hole in the nesting tree in procedure
BuildRHOPHoleTree, follow the appropriate size pointers for eeich path segment,
and in O(log h) steps, find the highest priority source along the BestRightSources

I 101

in the path from hole{u) to rac[u) in the nesting tree. This is the highest priority '
source in set B for u. '

I

12. Repeat the previous step for the path from hole{u) to lac{u). This gives the
highest priority source in set C for u. !

13. Find for each u the highest priority source among the: sources found in steps 9,
10, 11, and 12. Assign this source to u. :

Again every step in the procedure can be run in either 0(logm) or O(logn) time
using 0{m) or 0{n) processors. Since for a planar graph G with no multi-edges or
self-loops, the number of edges is 0{n), the whole procedure rims in (9(logn) time with
0{n) processors on a CRCW PRAM. i

I
I

4.4.6. Assigning sources to type_2 vertices
Once all type.l vertices have been assigned sources, we c^ use Corollaries 4.13 and

4.14 to assign sources to type_2 vertices. If in a CS graph G, ^ cut all edges which are
crossed by forward arcs, any connected component which results will be shown to have
only one type_l vertex in it. Suppose a type_2 vertex x belongs'to a connected component
with a type_l vertex vtop- Then there exists no forward arc which encloses x but not utop
so that we can apply Corollaries 4.13 and 4.14. !

Let Xbe associated with a back arc B with endpoints (c, d). Let the forward arc
associated with vtop have endpoints (a, 6). We will use both RHOPhole and RHIPhole
structures. Let x belong to hole Hi and c lie in hole Gi in the RHOPhole structure.
Then by Corollary 4.13, any source si which belongs to an ancestor (not necessarily
proper) ofHi in the RHOPhole nesting tree and lies between a and c will have a path to
X. Similarly, let x belong to hole H2 and d lie in hole G2 in this RHIPhole structure. By
Corollary 4.14, any source S2 which belongs to an ancestor (not necessarily proper) of H2
in the RHIPhole nesting tree and lies between d and b will have a path to x. Moreover
such sources and S2 will be the only sources with paths to xl (Figure 47)

Thus to find the highest priority source with a path to xj we repeat the procedure
AssignTypelVertex twice: once as applied to the RHOPhole structure using x as a type_l
vertex and (a, c) as its associated forward axe and once as applied to the RHIPhole
structure using x as a type.l vertex with (d, b) as its associated forward arc. Of the two
sources found, the higher priority source is assigned to x. Only minor modifications to
AssignTypelVertex are needed; we remove steps 5 and 6 whicfi find the type.l vertices
and their associated forward arcs, and replace all mention of type.l vertex u and its
forward arc (a^, 6«) with type.2 vertex x and the interval (ox, Cx) or (dx, bx).

We now state the lemma that assures us that there will be only one type.l vertex in
each of the connected components we get when we cut a C5 graph along aU the forward
axes. I

Lemma 4.19 Let u and v be two different type.l vertices. Then there will always exist
a forward arc which encloses one but not the other. '

Proof. This is a proof by contradiction. Suppose there ejdsts no forward axe which
encloses one but not the other. Let u be associated with the forward axe Ai and v with
the forward arc A2. Then Ai must enclose v and hence all sources with paths to v, and

i rIL.L.

range of possible source for x on the left

RHOP path

RHIP path

graph edge

RHOPhole structure

root cycle

RHIPhole structure

102

root cycle

range of possible sources for x on the right

Figure 47
Type_2 vertex

A2 must enclose u and hence all sources with paths to u. The only way this can occur is
if both arcs share the same endpoints.

When two forward arcs share the same endpoints, either the paths of the two arcs
cross or they do not. If they do not, one arc is inside the other, and the inside arc encloses
one type.l vertex, but not the other. If the paths cross, it can only be the RHOP path
of one crossing the RHIP path of the other from the right. In this case A\ encloses u but
not u, and A2 encloses v but not u. I

; 103

The following procedure will assign sources to typeJZ vertices,

procedure AssignType2Vertex !
(* This procedure takes a CS graph G and assigns for each type_2 vertex x in G the

highest priority source with a path to x. *) i
1. Run procedure LabelForwardBack.

2. Mark every type.l vertex using information from LabelForwardBack.
3. Mark every type_2 vertex. Let the back arc associated !with a type_2 vertex x be

(cx, dx). ^
4. In a copy of G, cut all edges crossed by a forward edge. Find all connected

components. For every type_2 vertex x, find the type_l .vertex Vx which is in the
same connected component and the forward arc (ui, bx) associated with the Vx.

5. Run procedures FindRHOPHoles, BuildRangeTreeForHoles,
BuildRangeTreesForSources, and BuildRHOPHoleTree using the RHOPhole
structure. i

6. Repeat steps 8 through 13 of procedure AssignTypelVertex, using x for the type.l
vertex and the endpoints Ux and Cx for the left and right endpoints of (au,6„).
Label the sources found as the LeftSource{x).

7. Repeat step 5 for the RHIPhole structure.

8. Repeat step 6 using the RHIPhole structure instead ofjthe RHOPhole structure,
and using for every type_2 vertex x, the endpoints dx arid bx as the left "and right
endpoints of the interval respectively. Label the sources found as RightSource(x).

9. Assign the higher priority source of the LeftSource(x) and the RightSource(x) to
the type_2 vertex x. !

I
Again every step in the procedure and hence the entire procedure itself can be done

in O(logn) time using 0{n) processors. !
1

4.4.7. Assigning sources to type_3 vertices [
The task of assigning sources to the remaining type_3 vertices is now a simple one.

Again we apply Theorem 4.9. If we look at the connected components in the subgraph
induced by the type_3 vertices, all in-edges to any one such connected component must
be from type.l or type.2 vertices. By the following lemma, we;see that if a source s has a
path to a type.l or type.2 vertex bordering the connected coniponent of type.3 vertices,
it has a path to all type_3 vertices in the component. Thus if:we find know the source
assignments for all type.l and type.2 vertices bordering the component, we select the
highest priority source among them and assign it to all type_3 vertices in the component.

Lemma 4.20 Let Comp be a connected component in the subgraph of a CS graph
G induced by type.3 vertices. Let v be a type.l or type.2 vertex with an out-edge to
a vertex in Comp, and let s be a source with a path to v. Then if x is a type.3 vertex
belonging to Comp, then there exists a path from s to x. \

j

Proof. (Figure 48) We will prove that there exists no forward arc enclosing x but
not s or back arc enclosing s but not x. Then by Theorem 4.9, there exists a path from s
to x.

r

N

\

\

Figure 48
Illustration for Lemma 4.20

RHOP path

RHIP path

graph path

root cycle

104

Let y be the type_3 vertex belonging to Comp to which v has an out-edge. Since x
and y belong to Comp, there must exist an undirected path P" between x and y such
that all vertices on P" axe type_3 vertices belonging to Comp.

Assume for a proof by contradiction that there exists a forward arc A which encloses
Xbut not s. Then A cannot enclose y\ if it did, there can be no path from s to y since .s
is outside A, but we know there is a path from s to y composed of the path from s to u
and the out-edge from v to y. Since A encloses s but not y, some dual edge e* of A must
cross a graph edge e on P".

By Property 4.12 and its analogous property for RHIP structure, we know that all
edges on an RHOP path from the root to a forward edge are forward edges, and that
all edges on an RHIP path from a forward edge to the root are forward edges. Hence
all edges on A must be forward edges, including e*. This implies that some vertex on P"
between x and y is a type.l vertex, giving a contradiction.

We give a similar proof by contradiction to show that there exists no back arc B
enclosing s but not x. Again B must enclose y: if it did not, there can exist no path from
s to y. Since B would then enclose y but not x, it must cross P" at some edge e.

By Property 4.14 and its analogous property for the RHIP structure, all edges on a
back arc must be either back edges or forward edges (i.e., none can be bt edges). Thus
some vertex on P^ between x and y must be either a type.l or type_2 vertex, giving the
contradiction. I

The following procedure assigns sources to type_3 vertices,

procedure AasignTypeSVertex

105

(* This procedure taJces a C5 graph G in which all type_r and type_2 vertices have
been assigned the highest priority sources which have paths to the vertices and
assigns to every type_3 vertex x the highest priority source s with a path to x. *)

1. Find the connected components in the subgraph of G induced by type_3 vertices.
2. For every connected component Comp found in the previous step, find type.l and

type_2 vertices with out-edges to Comp.
3. For every Comp, find the sources assigned to the type.i and type_2 vertices found

in the previous step. Include in this set of sources any source which has an out-edge
to Comp. Find the highest priority source in each set ofjsources and assign it to all
vertices in the associated Comp. \

All steps can be done in O(logn) time using 0{n) procebors in a CRCW PRAM
model. ;

4.4.8. Assigning vertices inside a supersource boundary cycle
We now can write the algorithm which will assign sources to all vertices inside a

supersource boundary cycle. ;

procedure AsaignSupersourceVeTtices '
(* Given a planar dag C all ofwhose sources are contiguous, so that the positive faces

in the dual graph form a connected component, this procedure assigns each vertex
to the highest priority source which has a path to the vertex.*)

1. Run procedure CutSupersource.
2. For each separate subgraph produced in step 1, do i

a. Hun pvocednxe AssignTypel Vertex. i
b. Kun pToceduve AssignTypeBVertex. j
c. Hun procedure AssignTypeS Vertex. [

Since the total number of all edges and all vertices is Oi(n) for the planar graph
C, the procedure runs in 0(log n) time using 0(n) processors. Thus by Theorem 4.8,
Algorithm 5 for partitioning a multisource planar dag will run. in O(log klog n) time using
0(n) processors in the CRCW PRAM model. |

106

4.5. Algorithm for depth first search of a planar dag
Given the algorithm for partitioning a multisource planar dag, the algorithm for

depth first search is a simple one.

Algorithm 6. Depth first search of a planar dag
If the graph has only one source

then run the Algorithm 3 for the ET dfs of a single source planar dag
else

run Algorithm 5 for partitioning vertices among multisources,
run Algorithm 3 for the ET dfs of a single source planar dag on each subgraph.

Since Algorithm 5 requires O(log^ n) time and 0(n) processors in a CRCW model,
and Algorithm 3 requires O(log n) time and 0(n) processors in a EREW model, this
algorithm has the same time and processor requirement as Algorithm 5.

CHAPTER 5
Conclusions

5.1. Summary
We have given several parallel depth first algorithms for;planar directed acyclic

graphs. For the case of a planar dag with a single source and a single sink, the source and
sink not necessarily on the same face, we showed an optimal O(logn) time 0(n/log n)
algorithm in the EREW PRAM model. For the case of a planar dag with a single source,
we gave a O(logn) time 0(n) processor EREW algorithm. In both these cases, the
embedding is assumed to be given. For the general case of a planar dag with multiple
sources, we gave a (9(log^ n) time 0(n) processor CRCW algorithm.

As part of the depth first search algorithm for planar dags, we found an algorithm
for partitioning vertices in a multisource planar dag to the different sources and producing
an ordering of the sources consistent with a depth first search ordering. A simpler
variation ofthis partition algorithm gave a C>(log^) time 0(n) processor CRCW algorithm
for the single source reachability problem. As a consequence, the linear processor depth
first search algorithm of Kao and Klein for the directed planar graph will have its time
requirement cut by a log^ n factor to 0(log® n). Given a single source planar dag, we
also presented a O(log n) time 0{n) CRCW procedure to assign vertices to the highest
priority out-edge of the source such that the vertex is reachable from the source by a path
using that out-edge. The assignment of the priorities can be arbitrary.

This work introduces the concept of a planar Euler tour depth first search,
a particular depth first search with properties which can be exploited in a parallel
algorithm. Extensive use was made of two related structures which we called the Right
Hand Out-Path structure and the Right Hand In-Path structure. Their properties may
make them useful for other parallel algorithms for planar graphs.

5.2. Open questions
There are still many problems in the area of parallel search algorithms for directed

graphs. ;

1. Although the time requirement for the depth first search of a planar graph has
been brought down to O(log®n), it is still quite high. Can the time requirement be
lowered to O(log^ n) or lower, keeping the linear processor bound?

2. The breadth first search for planar graphs can be done in 0(log^ n) time using
processorsif a randomization is used [PR87, GM87]. Without randomization,

the best results are for the general graphs using 0{M{n)) processors and O(log^n)
time, where M{n) is the number of processors needed for matrix multiplication
[GM88]. Is there a deterministic linear-processor NC algprithm for planar breadth
first search? |

107

108

3. Is there a deterministic NC algorithm for depth first search for the general undirected
or directed case?

References

[AA87] Alok Aggarwal and Richard J. Anderson. A random! NC algorithm for depth
first search. In Proc. 19th Annual Symposium on Theory of Computing, pages
325-334, 1987.

[AAK89] A. Aggarwai, R.J. Anderson, and M.Y. Kaxs. Parallel depth-first search in
general directed graphs. In 21st Symposium on Theory of Computing, pages
297-308, 1989.

I

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and
analysis of computer algorithms. Addison-Wesley Pub. Co., Reading, Mass.,
1974. ;

[AKS78] Miklos Ajtai, Janos Komlos, and Endre Szemerededi! There is no fast single
hashing algorithm. Information Processing Letters, 7(,6):270-273, October 1978.

[AM88] Richard J. Anderson and Gary L. Miller. Deterministic parallel list ranking.
In J. H. Reif, editor, VLSI Algorithms and Architectures, pages 81-90, Corfu,
Greece, Jime/July 1988. Springer-Verlag. i

[BB78] R. Creighton Buck and Ellen F. Buck. Advanced Calculus. International Series
in Pure and Applied Mathematics. McGraw-Hill, New York, third edition, 1978.

[BB88] Gilles Brassard and Paul Bratley. Algorithmics: Theory and Practice.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[BBS90] Bela Bollabas, Andrei Z. Broder, and Istvan Simon. The cost distribution of
clustering in random probing. Journal of the ACM, 37:224-237, 1990.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proc. Third
Annual ACM Symposium on Theory of Computing, pages 151-158, 1971.

[CV88] Richaxd Cole and Uzi Vishkin. Optimal parallel algorithms for expression tree
evaluation and list ranking, pages 91-100, New York, 1988. Springer-Verlag.
Lecture Notes in Computer Science, No. 319. i

[Eve79] Shimon Even. Graph Algorithms. Computer Science Press, Inc., Potomac,
Maryland, 1979.

[GM87] Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator
in planar graphs. In 28th Annual Symposium on Foundations of Computer
Science, pages 238-248, 1987.

[GM88] Hillel Ga.zit and Gary L. Miller. An improved parallel algorithm for bfs of a
directed graph. Information Processing Letters, 28(2):61-65, 1988.

109

110

[GPS87] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel
symmetry-breaking in sparse graphs. In 19th Annual ACM Sympoaium on
TheoTy of Computing^ pages 315-324, New York, NY, May 1987. ACM, ACM.

[GS78] L. J. Guibas and E. Szemeredi. The analysis of double hashing. Journal of
Computer and System Sciences, 16:226-274, 1978.

[Gui87] Leo J. Guibas. private communications. Fall 1987.

[Hag88] Torben Hagerup. Optimal parallel algorithms on planar graphs. In J. H.
Reif, editor, VLSI Algorithms and Architectures, pages 24-32. Springer-Verlag,
June/July 1988.

[Haj72] Frank Harary. Graph Theory. Addison-Wesley, 1972.

[Hoe63] W. HoefFding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13-30, 1963.

[HY88] Xin He and Yaacov Yesha. A nearly optimal parallel algorithm for constructing
depth first spanning trees in planar graphs. SIAM Journal on Computing,
17(3):486-491, June 1988.

[JK88] J. Ja'Ja and S. Kosaraju. Parallel algorithms for planar graph isomorphism and
related problems. IEEE Transactions on Circuits and Systems, 35(3):3Q4-311,
March 1988.

[Kao88] Ming-Yang Kao. All graphs have cycle separators and planar directed depth-first
search is in DNC. In J. H. Reif, editor, VLSI Algorithms and Architectures,
pages 53-63. Springer-Verlag, June/July 1988.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors. Complexity of Computer Computations,
pages 85-103. Plenum Press, New York, 1972. The IBM Research Symposia
Series.

[Kar86] Richard M. Karp. Combinatorics, complexity, and randomness. Communications
of the ACM, 29(2):98-109, February 1986.

[KK82] Narendra Karmarkar and Richard M. Karp. The differencing method of set.
partitioning. Technical Report UCB/CSD 82/113, Computer Science Division
(EECS), University of California, Berkeley, December 1982.

[KK90] M.Y. Kao and P.N. Klein. Toward overcoming the transitive closure bottleneck:
Efiicient parallel algorithms for planar digraphs. In 21st Annual ACM
Symposium on Theory of Computing, pages 181-192, 1990.

[Knu73] Donald E. Knuth. Sorting and Searching, volume III of The Art of Computer
Programming. Addison-Wesley, Reading, MA, 1973.

[Kom86] Janos Komlos. private communications, 1986.

, 111

[KR88] Richard M. Karp and Vijaya Ramachandran. A survey of parallel algorithms
for shared-memory machines. Technical Report UCB/CSD 88/408, Computer
Science Division, University of California, Berkeley, GA 94720, March 1988. To
appear in the Handbook of Theoretical Computer Science by North-Holland.

[KS90] Ming-Yang Kan and Gregory E. Shannon. Linear-processor NC algorithms
for planar directed graphs II: Directed spanning tree's. Technical Report 306,
Computer Science Department, Indiana University, March 1990.

[LF80] R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of the
ACM, 27:831-838, 1980. i

[LM88] George S. Lueker and Maxiko Molodowitch. More analysis of double hashing.
In Proceedings of the 20th Annual ACM Symposium ion Theory of Computing,
pages 354-359, Chicago, IL, May 1988. -

[Pip79] Nicholas Pippenger. On simultaneous resource bounds. In 20th Symposium on
Foundations of Computer Science, pages 307-311, 1979.

[Pip88] Nicholas Pippenger. private communications, January 1988.

[PR87] Victor Pan and John Reif. Fast and efficient solution of the path algebra
problems. Technical Report 3, Computer Science Department, State University
of New York at Albany, 1987. (Cited in Kao and Shannon's tech rep).

[Rei85] John H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20:229-234, 12 June 1985.

[RR89] V. Ramachandran and J. Reif. An optimal parallel algorithm for graph
planarity. In 30th Annual Symposium on Foundations of Computer Science,
pages 282-287. IEEE Computer Society Press, October 1989.

[Sha88] Gregory E. Shannon. A linear-processor algorithm for depth-first search in
planar graphs. Information Processing Letters, 29:119-123, October 1988.

[Smi86] J. R. Smith. Parallel algorithms for depth-first searches: I. planar graphs. SIAM
Journal on Computing, 15(3):814-830, August 1986. i

[SS90] Jeanette P. Schmidt and Alan Siegel. On aspects 0|f the universality and
performance for closed hashing. In 21st Annual ACM Symposium on Theory of
Computing, pages 355-366, 1990.

[TV85] Robert E. Tarjan and Uzi Vishkin. Finding biconnected components and
computing tree functions in logarithmic parallel time. SIAM Journal on
Computing, 14(4):862-874, November 1985.

[U1172] Jeffrey D. UUman. A note on the efficiency of hash functions. Journal of the
ACM, 19:569-575, 1972. :

[Wyl81] J. C. Wyllie. The Complexity of Parallel Computation. PhD thesis, Cornell
University, Ithaca, NY, 1981. j

112

[Yao85] Andrew C. Yao. Uniform hashing is optimal. Journal of the ACM, 32(3):687-
693, July 1985.

3 1970 00832 1934

