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ARTICLE

Association of imputed prostate cancer
transcriptome with disease risk reveals
novel mechanisms
Nima C. Emami1,2, Linda Kachuri2, Travis J. Meyers2, Rajdeep Das3,4, Joshua D. Hoffman2,

Thomas J. Hoffmann 2,5, Donglei Hu 5,6,7, Jun Shan8, Felix Y. Feng3,4,7, Elad Ziv5,6,7,

Stephen K. Van Den Eeden 3,8 & John S. Witte1,2,3,5,7

Here we train cis-regulatory models of prostate tissue gene expression and impute expression

transcriptome-wide for 233,955 European ancestry men (14,616 prostate cancer (PrCa)

cases, 219,339 controls) from two large cohorts. Among 12,014 genes evaluated in the UK

Biobank, we identify 38 associated with PrCa, many replicating in the Kaiser Permanente

RPGEH. We report the association of elevated TMPRSS2 expression with increased PrCa risk

(independent of a previously-reported risk variant) and with increased tumoral expression of

the TMPRSS2:ERG fusion-oncogene in The Cancer Genome Atlas, suggesting a novel

germline-somatic interaction mechanism. Three novel genes, HOXA4, KLK1, and TIMM23,

additionally replicate in the RPGEH cohort. Furthermore, 4 genes, MSMB, NCOA4, PCAT1, and

PPP1R14A, are associated with PrCa in a trans-ethnic meta-analysis (N= 9117). Many genes

exhibit evidence for allele-specific transcriptional activation by PrCa master-regulators

(including androgen receptor) in Position Weight Matrix, Chip-Seq, and Hi-C experimental

data, suggesting common regulatory mechanisms for the associated genes.
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Prostate cancer remains a leading cause of cancer incidence
and mortality worldwide, with 1.6 million new cases and
366,000 deaths annually1. Although prostate-specific anti-

gen (PSA) screening was associated with a 51% reduction in PrCa
mortality in the United States between 1993 and 20142, the 5-year
survival for patients with metastatic PrCa is 29%3. Identifying
novel genetic predictors of PrCa may facilitate improvements to
early detection and elucidate the mechanisms influencing carci-
nogenesis. While previous studies have used enhancer assays4 and
expression quantitative trait locus (eQTL) associations5 to pro-
pose gene targets for PrCa risk loci, these approaches neither
consider the complex genetic architecture of gene expression6 nor
validate findings in large external cohorts. In pursuit of a com-
prehensive, systematic characterization of the genes regulated by
germline PrCa risk variants, we performed a transcriptome-wide
association study (TWAS) of PrCa risk. Our study sought to
model prostatic gene expression in the large number of normal
prostate tissue samples, in contrast to a recently published PrCa
TWAS that modeled prostatic expression using other tissues and
fewer normal prostate samples7. Here we present our analyses,
leveraging data from hundreds of thousands of subjects from the
UK Biobank and Kaiser Permanente (Supplementary Tables 1–2),
as well as ChIP-Seq, DNAse-Seq, Hi-C, Transcription Factor
Binding Matrices, and tumoral expression to identify and inter-
pret the transcriptional and disease risk mechanisms for putative
PrCa risk genes.

Results
Training and validation of novel prostatic expression models.
To estimate genetically regulated expression among the study
subjects, we developed novel models using a large number of
samples (N= 471 subjects; Fig. 1a) with paired prostate tissue
gene expression measurements and germline genotypes5. These
models improve upon the commonly used Genotype-Tissue
Expression (GTEx, v6p) dataset6, which includes many fewer
prostate samples (N= 87). Specifically, in comparison to GTEx
(Supplementary Fig. 1, Supplementary Table 3), our expression
models successfully fit substantially more genes (13,258 vs. 2491
genes), and had a significant increase in the average cross-
validated prediction r2 (mean 0.214 vs. 0.143, p= 6.59 × 10–89;
Fig. 1b, for 1884 overlapping genes) while maintaining a similar
number of eQTL predictors (mean 31.1 vs. 32.7, t-test p= 0.05;
Supplementary Fig. 2). We also compared our models to GTEx in
a third independent dataset of normal prostatic expression and
germline genotypes from The Cancer Genome Atlas (TCGA;
N= 45; Fig. 1c). Here, our models exhibited a significant decrease
in the out-of-sample mean squared error (mean 0.915 vs. 0.925,
t-test p= 1.19 × 10–12; Spearman’s rho [Bootstrap 95% CI]: 0.452
[0.409, 0.492], p= 3.51 × 10–89) and increase in the Spearman’s
correlation between predicted and observed expression (mean
0.136 vs. 0.101, t-test p= 2.36 × 10–15; Spearman’s rho [Bootstrap
95% CI]: 0.518 [0.479, 0.556], p= 1.86 × 10–121). Finally, our
restriction of modeled genotypes to variants within 500 kb of gene
boundaries rather than 1Mb, as implemented by PredictDB6,
gave a similar out-of-sample predictive accuracy of TCGA normal
expression (mean Spearman’s rho= 0.077 vs. 0.074, t-test p=
0.22; Supplementary Fig. 3).

TWAS testing and validation reveals novel associations. We
applied our expression models to male subjects from the UK
Biobank cohort (7963 PrCa cases, 189,218 controls; Supplemen-
tary Table 1) and undertook a TWAS, which found a total of 29
genes with Bonferroni-significant associations (Logistic Regres-
sion p < 4.16 × 10–6), 9 genes with suggestive associations (p <
4.16 × 10–5), and λGC= 1.1468 (λ1000= 1.019) (Fig. 2 and

Supplementary Fig. 4; Table 1 and Supplementary Table 4). These
associations were insensitive to the exclusion of rare variants
imputed into the UK Biobank data using the UK10K and 1000
Genomes reference panels (Spearman’s rho= 1.0 for the 38 genes
upon exclusion of 160/867 (18.5%) variants modeled, p= 4.27 ×
10–78) in the July 2017 UK Biobank release. Among these 38
genes, 13 replicated at a Bonferroni significance level (Logistic
Regression p < 0.0013) with directions of effect consistent with the
discovery findings in a cohort of unrelated, non-Hispanic white
Kaiser Permanente health plan members (6653 PrCa cases, 30,121
controls), and an additional six were nominally significant (p <
0.05; Table 1). No difference in model r2 (t-test p= 0.91) or the
number of modeled variants (t-test p= 0.24) was observed for
these 19 genes, which include previously known and novel
findings.

Three of the most strongly associated genes—MSMB (βDiscovery=
−1.63), which encodes the PSP94 tumor suppressor and PrCa
biomarker10, NCOA4 (βDiscovery= 0.75), an androgen receptor co-
activator, and AGAP7 (βDiscovery= 1.21)—are known targets for the
10q11.22 GWAS variant rs1099399411,12 (Table 1). Other previously
known PrCa genes that replicated here are: C19orf48 (βDiscovery=
2.95) and KLK15 (βDiscovery= 1.65), which are upregulated in PrCa
in response to androgen levels4,13,14, and POU5F1B (βDiscovery=
3.64) and PCAT1 (βDiscovery=−1.28), which are known targets of
an enhancer at 8q24 in PrCa cell lines15 (Table 1).

Furthermore, the following genes exhibited significant associations
with PrCa in the discovery and have been reported as targets of
PrCa risk loci or microRNAs: HNF1B (βDiscovery= 2.03), FAM57A
(βDiscovery=−0.50), PPP1R14A (βDiscovery= 1.80), GEMIN4
(βDiscovery=−2.16), BHLHA15 (βDiscovery= 1.80), ZFP36L2
(βDiscovery=−4.06)4,5,16–18. Moreover, STK25 (βDiscovery= 4.97),
which is differentially expressed in PrCa in comparison to benign
prostatic hyperplasia (BPH)19, was significantly associated and
replicated, while VPS53 (βDiscovery=−2.30), known to be regulated
by the 17p13 PrCa risk locus5, had a suggestive p-value in the
discovery and was nominally associated in the replication cohort.

The most noteworthy of those associations for which expression
in normal prostate tissue has not previously been implicated in
prostate tumorigenesis was TMPRSS2 (βDiscovery= 0.50; pMeta=
3.84 × 10–10). Somatically, TMPRSS2 is part of the most recurrent
aberration known in prostate tumors, the TMPRSS2:ERG (T2E)
gene fusion20; however, the association of its heritable cis-regulatory
elements with prostate cancer development is novel. The T2E
chromosome 21 structural fusion variant places the ERG oncogene
under the transcriptional control of the TMPRSS2 promoter, which
is primarily active in prostate tissue.

Several additional genes not previously linked to PrCa
susceptibility were identified, including KLK1 (βDiscovery= 0.36),
TIMM23 (βDiscovery= 3.31), and HOXA4 (βDiscovery=−5.71).
KLK1 (pMeta= 2.27 × 10–10), located at 19q13.33 close to the
PSA encoding gene KLK3, was significantly associated, while
TIMM23 (pMeta= 2.01 × 10–8), located at 10q11.22, and HOXA4
(pMeta= 3.13 × 10–5) had suggestive p-values in the discovery
cohort and were nominally associated in the replication analysis.
TIMM23 was not previously shown to have significant differential
PrCa expression or eQTL activity11,12, and HOXA4 has been
implicated in ovarian cancer21 and leukemia22.

Conditional and trans-ethnic meta analyses of associations. To
account for the influence of proximally located PrCa susceptibility
loci, conditional analyses were carried out in the UK Biobank
cohort with adjustment for independent (linkage disequilibrium
(LD) r2 < 0.2 in 1000 Genomes Phase III EUR) PrCa risk variants
within 5Mb of the genes tested. Models for KLK1 and KLK15
were also adjusted for rs17632542, a missense variant in KLK3
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representing the lead PSA signal in this region23. Conditional
associations were substantially attenuated for most genes; how-
ever, TMPRSS2 remained Bonferroni-significant (Fig. 3a and
Supplementary Table 5). Furthermore, as expression of neigh-
boring genes may be correlated, we fit mutually adjusted models
that included all genes within the same cytogenetic locus (Sup-
plementary Table 6). For most regions, adjustment for nearby
genes attenuated the associations with PrCa risk. For KLK1 in
particular, a substantial proportion (52.5%, 95% CI: [31.7, 91.0])
of the observed susceptibility signal was mediated by KLK15.

We further applied our models to impute expression and
evaluate associations for the 19 genes of interest among African
American, East Asian, and Latino subjects from Kaiser Perma-
nente (1485 cases, 7632 controls; Supplementary Table 2). In a

trans-ethnic meta-analysis of the results, MSMB and NCOA4
were Bonferroni significant (p < 0.0013), while PPP1R14A (p=
0.0046) and PCAT1 (p= 0.0057) were both suggestive (Supple-
mentary Table 7). These genes comprised 4 of the 5 with a
direction of effect consistent across each ethnic group and
concordant with the discovery and replication cohorts. Addi-
tionally, for 16 of the 19 genes, the meta-direction of effect was
concordant with the discovery and replication analyses.

Association of TMPRSS2 expression suggests novel mechan-
ism. In order to better interpret the biological mechanisms by
which these genes and others interact to modulate prostate cancer
risk, we sought to analyze the relationships between their imputed
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Fig. 1 TWAS experimental design and comparison of reference panel model performance. a Experimental design for TWAS study of prostate cancer risk.
b Scatter plot comparison of the cross-validated performance r2 for 1884 gene expression models derived from GTEx prostate data (N= 87 subjects) vs.
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curves are included for both the x-axis (training data model performance) and y-axis (GTEx model performance), with the minimum and mean r2 values
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expression and previously characterized tumor molecular phe-
notypes using a published catalog of somatic gene fusion events24

in subjects with prostate cancer from The Cancer Genome Atlas
(TCGA)25. Although imputed expression levels of the 19 genes of
interest were not significantly associated with previously reported
TCGA molecular subtypes of prostate cancer (Supplementary
Table 8), one gene in particular, given its involvement with

roughly 50% of prostate cancer tumors20, merited further inves-
tigation in this regard: TMPRSS2.

Although the established 21q22.3 PrCa risk variant rs1041449
is only 20 kb away from TMPRSS2, previous work found that this
variant was not correlated with TMPRSS2 expression in prostate
tumors or normal prostate tissue26. More recent work found that
rs1041449 was weakly correlated with an eQTL for TMPRSS2
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Table 1 Discovery and replication analysis summary statistics for significant and suggestive genes

Gene Discovery (UK Biobank) Beta (SE); p-value Replication (KP) Beta (SE); p-value Model r2 Locus Meta p-value

MSMB −1.63 (0.12); 2.97 × 10−41 −1.48 (0.14); 1.68 × 10−25 0.124 10q11.22 7.00 × 10−65

NCOA4 0.75 (0.06); 1.34 × 10−38 0.66 (0.06); 6.50 × 10−25 0.402 10q11.22 1.53 × 10−61

HNF1B 2.03 (0.16); 5.89 × 10−36 1.76 (0.19); 1.50 × 10−20 0.145 17q12 1.50 × 10−54

AGAP7 1.21 (0.12); 2.05 × 10−24 0.60 (0.10); 7.88 × 10−9 0.204 10q11.22 1.90 × 10−28

POU5F1B 3.64 (0.44); 8.40 × 10−17 3.42 (0.53); 1.11 × 10−10 0.033 8q24.21 6.44 × 10−26

C19orf48 2.95 (0.39); 2.46 × 10−14 2.04 (0.40); 2.50 × 10−7 0.150 19q13.33 1.34 × 10−19

KLK15 1.65 (0.23); 1.26 × 10−12 1.22 (0.27); 4.57 × 10−6 0.056 19q13.33 6.05 × 10−17

PCAT1 −1.28 (0.18); 5.01 × 10−12 −1.41 (0.21); 1.85 × 10−11 0.072 8q24.21 6.47 × 10−22

TMPRSS2 0.50 (0.08); 2.42 × 10−9 0.24 (0.08); 3.33 × 10−3 0.154 21q22.3 3.84 × 10−10

FAM57A −0.50 (0.08); 4.23 × 10−9 −0.26 (0.10); 7.49 × 10−3 0.376 17p13.3 5.69 × 10−10

PPP1R14A 1.80 (0.31); 9.99 × 10−9 1.48 (0.37); 6.07 × 10−5 0.206 19q13.2 3.31 × 10−12

ZFP36L2 −4.06 (0.74); 4.26 × 10−8 −3.39 (0.87); 9.71 × 10−5 0.035 2p21 2.10 × 10−11

BHLHA15 1.80 (0.33); 5.18 × 10−8 0.79 (0.28); 4.24 × 10−3 0.067 7q21.3 1.34 × 10−8

GEMIN4 −2.16 (0.41); 1.39 × 10−7 −1.45 (0.48); 2.65 × 10−3 0.080 17p13.3 2.52 × 10−9

STK25 4.97 (1.02); 9.85 × 10−7 3.80 (1.01); 1.76 × 10−4 0.100 2q37.3 9.82 × 10−10

KLK1 0.36 (0.08); 7.71 × 10−6 0.31 (0.07); 6.24 × 10−6 0.143 19q13.33 2.27 × 10−10

HOXA4 −5.71 (1.31); 1.43 × 10−5 −1.89 (0.94); 0.04 0.067 7p15.2 3.13 × 10−5

VPS53 −2.30 (0.53); 1.68 × 10−5 −1.40 (0.51); 5.79 × 10−3 0.259 17p13.3 6.90 × 10−7

TIMM23 3.31 (0.79); 2.77 × 10−5 3.46 (0.93); 1.89 × 10−4 0.080 10q11.22 2.01 × 10−8
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(LD r2 < 0.2)5. Similarly, adjusting for rs1041449 in our condi-
tional analysis did not materially weaken the TMPRSS2 associa-
tion. Hence, our findings indicate the presence of a novel
independent susceptibility mechanism in the 21q22.3 PrCa risk
locus mediated by regulation of TMPRSS2 expression.

To investigate the relationship between the germline variants
involved in regulating TMPRSS2 expression levels and the
TMPRSS2:ERG fusion oncogene, we applied our model of
TMPRSS2 expression to the germline genotypes of TCGA
prostate cancer cases to impute TMPRSS2 gene expression. We
found that, when considering 101 T2E-positive specimens
carrying the gene fusion, predicted levels of TMPRSS2 expression
in normal prostate tissue were positively correlated with observed
ERG expression levels as measured by RNA-Seq, a proxy for the
expression levels of the T2E fusion (Pearson’s r [95% CI]= 0.208
[0.013, 0.387], Linear Regression p= 0.037; residual Shapiro-
Wilks p= 0.138, Fig. 3b). In contrast, among 161 T2E-negative
TCGA specimens, predicted TMPRSS2 expression levels were not
significantly correlated with observed levels of ERG expression
(Pearson’s r [95% CI]= 0.075 [−0.081, 0.227], p= 0.347; residual
Shapiro-Wilks p= 0.771). Moreover, imputed TMPRSS2 expres-
sion was uncorrelated with observed ERG expression in tumor-
adjacent normal prostate tissue in both the training dataset (N=
471; Pearson’s r [95% CI]: 0.031 [−0.060, 0.121], Linear
Regression p= 0.508; residual Shapiro-Wilks p= 0.112) as well
as normal prostatic expression data from T2E-positive (N= 17;
Spearman’s rho [Bootstrap 95% CI]: 0.047 [−0.484, 0.481], p=
0.859) and T2E-negative subjects (N= 28; Spearman’s rho
[Bootstrap 95% CI]: −0.183 [−0.373, 0.382], p= 0.351) from
TCGA. Further testing of the association of predicted TMPRSS2
levels with T2E fusion status (positive vs. negative) across all
262 samples did not reveal an association (Logistic Regression
p= 0.448), and tumoral AR expression was uncorrelated with
T2E fusion status (Logistic Regression p= 0.882). These findings
suggest a germline-somatic interaction mechanism whereby

germline variation may mediate cancer risk through its effect
on the burden of a somatic driver: the TMPRSS2:ERG fusion
oncogene (Supplementary Fig. 5).

Common androgen-driven mechanisms regulate TWAS asso-
ciations. To clarify the transcriptional mechanisms of PrCa risk
eQTLs, we examined the transcription factor (TF) occupancy of
our modeled eQTL variants. Among the 19 genes with nominal
replication, 13 showed evidence for transcriptional regulation by
master regulators of PrCa gene expression in ChIP-Seq data for
the prostate cell line VCaP (Table 2)27. Seven genes had at least
one eQTL in a transcription factor binding site (TFBS) for
androgen receptor (AR), a sentinel of prostatic expression, while
one gene (PCAT1) had an eQTL in a TFBS for SPDEF, a prog-
nostic marker for PrCa survival involved in AR regulation28, and
the remaining five had eQTLs highly correlated with variants in
an AR TFBS (LD r2 ≥ 0.8). In contrast, only 30 of 100 genes
selected at random showed any evidence of a VCaP ChIP-Seq
TFBS for AR, SPDEF, or ERG (Supplementary Table 9), despite
the 100 genes being significantly larger on average (81.7 kb) than
the 19 genes of interest (25.1 kb; t-test p= 0.0065). Hence, we
observed a significant enrichment of prostate-specific regulation
at, or in proximity to, eQTL variants for these 19 associated genes
(Fisher’s Exact p= 0.0031; Bootstrap OREnrichment [95% CI]=
5.16 [1.82, 20.17]).

Similar to a previous report of disrupted AR binding at LD
proxies for PrCa GWAS peaks29, inclusion of variants in high LD
with the modeled eQTLs revealed additional AR and SPDEF
binding sites, including at a known androgen-responsive
enhancer variant for TMPRSS2 rs813437830. Among the 31
variants in AR and SPDEF TFBS, 3 variants (rs8134378,
rs11084033, and rs2659051) were annotated in the NCBI
LitVar database31 with published reports corroborating their
AR occupancy30,32,33. When cross-referenced with H3K27ac
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Analysis: Conditional analysis of TWAS associations

Bonferroni: 4.16E–06 (significant), 4.16E–05 (suggestive)
Gene associations:       Replication p < 0.05
Subjects: UK Biobank (7963 cases, 189,218 controls)

Unreplicated Adjusted p -value

Fig. 3 TWAS analysis conditional upon prostate cancer risk GWAS variants and correlation between imputed TMPRSS2 expression and observed ERG
expression in TCGA prostate tumors. a Comparison of the associations in the UK Biobank discovery cohort before (red or pink) and after (blue) adjusting a
gene’s association (y-axis, −log10(p-value)) for the genotypes at the previously reported lead variant for an adjacent prostate cancer risk GWAS locus.
When the lead variant was not present in the imputed UK Biobank genotype dataset, a suitable proxy (r2 > 0.8 in 1000 Genomes Phase III EUR) was used if
available. The p-value threshold for Bonferroni-corrected significance (Logistic Regression p < 4.16 × 10−6) is illustrated by a dashed black line, and the
suggestive p-value threshold by a dashed grey line. Genes nominally significant (p < 0.05) or unreplicated in the Kaiser Permanente RPGEH replication
cohort are illustrated as red triangles and pink circles, respectively. b Scatter plot illustrating the relationship between imputed expression of TMPRSS2 in
normal prostate tissue as predicted by germline cis-eQTL genotypes (x-axis) and observed tumoral expression of ERG (y-axis) in prostate cancer cases
from The Cancer Genome Atlas (TCGA). Data are colored by TMPRSS2:ERG (T2E) fusion status for T2E-positive (orange, N= 101) and T2E-negative
(green, N= 161) subjects, as inferred from paired-end RNA-Seq data. Linear regression lines and 95% confidence intervals illustrate the respective means
and trends for T2E-positive and T2E-negative subjects
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active-enhancer marks from 19 primary prostate tumors29, these
31 TFBS variants were significantly enriched at H3K27ac ChIP-
Seq peaks (mean [SD]: 8.35 peaks [7.86]) in comparison to
variants selected at random (N= 10,000) from the Haplotype
Reference Consortium r1.1 site list (mean [SD]: 0.59 peaks [2.71];
t-test p= 9.35 × 10–45). Additionally, for 17 of the 21 variants in
VCaP AR ChIP-Seq peaks, the allele predicted to increase AR
binding affinity34 was the same allele, or in high LD (r2 ≥ 0.8)
with the eQTL allele, predicted to increase target gene expression
(Binomial p= 0.0072; Supplementary Table 10), including the
rs8134378 TMPRSS2 enhancer variant and rs9979885, an AR
TFBS variant in high LD with an AGAP7 eQTL (Fig. 4).
Collectively, this evidence illustrates an androgen-responsive
mechanism of allele-specific enhancer activity for the variants and
genes implicated.

Multi-omics pathway-based TWAS enrichment and inter-
pretation. Furthermore, DNAse-seq footprinting from the PrCa
cell line LNCaP35 revealed recurrent motifs for E2F, INSM1,
MEF-2, VDR, and ZFX (Supplementary Table 11), several of
which have known involvement in PrCa development or pro-
gression36–38, at the eQTL variants for the 19 genes of interest. In
addition, ChIP-Seq annotations from non-prostate cell lines
included motifs for 150 TF’s, including recurrent CTCF, HNF4A,
MYC, POLR2A, and SIN3A motifs. A Reactome pathway
enrichment analysis39,40 of all 150 TF’s yielded numerous sig-
nificant associations (FDR-adjusted p-value < 5.00 × 10–7) in
several pathway hierarchies relevant to transcription, epigenetics,
and oncogenesis (Supplementary Table 12). Furthermore, TFBS
inferred from DNAse-seq footprinting in non-prostate cell lines
or Position Weight Matrices (PWM) included recurrent motifs
for SRF, ZFP105, ELF3, FOXP1, and TCFAP2E, some with
known roles in PrCa regulation or prognosis41–43.

Chromatin conformation capture data (Hi-C) from LNCaP44

supported promoter-enhancer interactions between our modeled
eQTLs and their respective target genes. In particular, virtual 4C
interactions covered the positions of the modeled cis-eQTLs
furthest upstream and downstream of 17 of the 19 genes of
interest (Supplementary Fig. 6). The two exceptions, AGAP7 and
NCOA4, had tighter distributions of Hi-C read values in
proximity to the GWAS variant rs10993994, which attenuated
both associations substantially in our conditional analysis, further

supporting previous evidence for the regulation of AGAP7 and
NCOA4 by the 10q11.22 GWAS locus11,12.

Discussion
The TWAS framework6 leveraged here offers a simple yet elegant
method to explore the effects of gene expression on disease risk.
Although it has been suggested that TWAS are prone to inflation
and bias of test statistics45, our sample size-adjusted inflation
factor did not indicate inflation (λ1000= 1.01). Furthermore,
while field effects may modulate the molecular characteristics of
tumor-adjacent normal prostate tissue46, our integration of
paired genotype and expression data in a large number of training
samples supports the robustness of our models against such
molecular perturbations, in particular for a heterogeneous disease
like prostate cancer47. Moreover, in order to guard against bias or
inflation and support the validity of our findings, we performed a
formal replication analysis in a large cohort. While the penalized
regression models used here may improve the model interpret-
ability and parsimony through regularization, these models still
face the challenge of selecting causal predictors among many
highly correlated or collinear variables. Our analyses of experi-
mental and patient data illustrate how surveying the epigenomic
landscape in proximity to TWAS model predictors may elucidate
causal regulatory mechanisms that evade feature selection.

It is noteworthy that the consideration of tissue that appears
histopathologically normal and yet harbors somatic aberrations
due to field effects, although a more conservative control in the
context of germline-somatic comparisons, may impinge upon the
detection of significant germline-somatic mechanisms. Stringent
quality control that restricts normal samples to those with limited
tumor cellularity may increase statistical power in this context.
Yet, innovative biological systems modeling to experimentally
validate the interactions between germline risk polymorphisms
and the earliest somatic drivers of carcinogenesis (such as the
TMPRSS2:ERG fusion oncogene) are necessary to further the lines
of inquiry advanced by this study and others26,48. In particular,
reports have suggested that the presence of the TMPRSS2:ERG
gene fusion in high-grade prostatic intraepithelial neoplasia (HG-
PIN) may be a harbinger of T2E fusion-positive prostate cancer49;
hence, HG-PIN may represent a suitable model system for this
mode of discovery. Finally, our results demonstrate the utility of
generating larger TWAS reference panels to produce better

Table 2 Replicated genes with eQTLs in or tagging VCaP ChIP-Seq transcription factor binding sites

Gene VCaP ChIP-Seq TFBS Variant(s) (hg19 position)

AGAP7 AR rs58186870 (chr10:51812898), rs58677292 (chr10:51812896), rs56106241 (chr10:51812825)
BHLHA15 AR rs6975156 (chr7:97925533), rs7789380 (chr7:97956179), rs10953245 (chr7:97855461)
C19orf48 AR rs11665748a (chr19:51354396), rs78177998a (chr19:51345263), rs2659051a (chr19:51345567), rs11665698

(chr19:51354410)
FAM57A AR rs461251a (chr17:619161), rs684232a (chr17:618964)
GEMIN4 AR rs461251a (chr17:619161), rs684232a (chr17:618964)
KLK1 AR rs11084033a (chr19:51353954)
KLK15 AR rs78177998a (chr19:51345263)
NCOA4 AR rs12571566 (chr10:51813068), rs61848292 (chr10:51813024), rs12569965 (chr10:51813070)
PCAT1 SPDEF rs1516942 (chr8:128019902), rs28615829 (chr8:128018204), rs7844107a (chr8:128023385), rs73351621

(chr8:128014414), rs9693379 (chr8:128022940), rs78316206a (chr8:128019308), rs2035637a

(chr8:128023058), rs17830059 (chr8:128016372), rs73351629 (chr8:128018465), rs16901898 (chr8:128015091)
PPP1R14A AR rs73034946 (chr19:38460492)
STK25 AR rs56390510a (chr2:242274488)
TMPRSS2 AR rs56095453a (chr21:42893807), rs8134378 (chr21:42893757), rs8134657 (chr21:42893907)
VPS53 AR rs461251a (chr17:619161), rs684232a (chr17:618964)

aDirectly modeled eQTL variants in VCaP ChIP-Seq TFBS. Remaining variants in LD (r2≥ 0.8 in 1000 Genomes Phase III EUR) with a modeled eQTL variant
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performing models of gene expression and facilitate the discovery
of disease associated genes.

In summary, we present results from a large-scale TWAS of
PrCa that detected multiple novel mechanisms of gene expression
and disease risk modulation. In addition to in silico experimental
support for our findings, certain genes implicated in our study
replicate prior TWAS findings (BHLHA15, AGAP7, NCOA4,
VPS53, FAM57A, GEMIN4, PPP1R14A)7 or prostate cancer lit-
erature, and the directions of effect in our study for previously
reported cancer genes are largely concordant with the prior lit-
erature. The protective genes reported here have generally been
measured or predicted to be downregulated in PrCa (FAM57A,
GEMIN4, VPS53)5 or are suspected tumor-suppressors (MSMB,
HOXA4)10,33. Notably, both tumor-promoting and tumor-
suppressive effects have been observed for HNF1B50,51 and the
protein product TIS11D of ZFP36L217,52. However, the estimated
protective direction of effect observed for PCAT1 contradicts
previous characterization53 of this RNA oncogene. Although

discordance between eQTL risk effects and disease-specific dif-
ferential expression has been previously reported54, the
mechanisms underlying these inconsistencies remain to be elu-
cidated. Collectively, our findings integrate data from diverse
multi-omic assays to elucidate a network of genes, many
androgen-regulated including TMPRSS2, and transcription fac-
tors active in PrCa. Joint consideration of the respective nodes
and edge-relationships that comprise this network may provide a
more comprehensive interpretation of the genetic and molecular
etiology of PrCa and clarify directions for future modeling and
investigation.

Methods
Statistical tests. All statistical tests conducted were two-sided.

Study populations. Subject data used for discovery and replication analyses are
summarized in Supplementary Table 1.
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Fig. 4 Comparison of variant effect on androgen receptor (AR) TFBS affinity and modeled eQTL effect on gene expression levels. a Illustration of the
relationship between the effect of variant rs9979885 (orange) on prostatic TMPRSS2 expression levels (βeQTL), estimated from elastic net regression, and
the effect of rs8134378 (teal) on AR binding (pBinding). In determining predictors of TMPRSS2 levels in normal prostate tissue, the penalized regression
model selects rs9979885, a perfect LD proxy for rs8134378. As depicted by binding motif allele frequencies in the AR TFBS motif sequence logo and
previously validated experimentally, the rs8134378-G allele significantly improves the affinity of AR binding in comparison to the rs8134378-A allele,
substantially improving the probability of AR occupancy (pBinding= 0.006 vs. 0.187, using TRANSFAC vertebrate matrix V$AR_01, in comparison to human
promoter background) according to sTRAP transcription factor affinity prediction modeling. Likewise, the rs9979885-C allele, in total linkage disequilibrium
(LD r2= 1.0 in 1000 Genomes Phase III EUR) with rs8134378-G, is predicted to increase expression of TMPRSS2 (located on the reverse-strand of
chromosome 21), in comparison to the rs9979885-T allele. The correlation between the alleles estimated to increase transcription factor binding and gene
expression reflects the model’s biologically relevant and mechanistic ascertainment of the effect of AR binding on TMPRSS2 expression. b Illustration of the
relationship between the effect of variant rs142470094 (orange) on prostatic AGAP7 expression (βeQTL) and the effect of rs58677292 (teal) on AR binding
(pBinding). As depicted by the AR TFBS motif sequence logo, the rs58677292-T allele significantly improves the affinity of AR binding in comparison to the
rs58677292-C allele, increasing the probability of AR occupancy (pBinding= 0.009, vs. 0.225, using TRANSFAC Vertebrate Matrix V$AR_01) according to
sTRAP Modeling. Likewise, the rs142470094-A allele, in high linkage disequilibrium (LD r2= 0.801 in 1000 Genomes Phase III EUR) with rs58677292-T, is
predicted to increase expression of AGAP7 (located on the reverse-strand of chromosome 10) in comparison to the rs142470094-ATG indel, suggesting
that AGAP7 may be regulated in part by genetic effects on androgen receptor binding
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Prediction of gene expression. Samples used to develop our regularized models of
prostate tissue gene expression were drawn from the National Center for Bio-
technology Information (NCBI) publicly available database of Genotypes and
Phenotypes (dbGaP phs000985.v1.p1). These data derive from a previous study
that extracted DNA and RNA from histologically normal prostate tissue from
consenting subjects (471 men; mean age [SD]: 60.1 [7.15] for the 249 men with age
available) having undergone radical prostatectomy treatment for prostate cancer
(N= 453; 63.6% Gleason 6, 36.4% Gleason 7) or cystoprostatectomy treatment for
bladder cancer (N= 18)5. Inclusion criteria were based on a rigorous histopatho-
logical evaluation5, which included the requirement of Gleason grade less than or
equal to 7 in the presenting tumor and the absence of HG-PIN and benign pro-
static hyperplasia in the examined fresh frozen normal prostate tissue, among other
criteria. Furthermore, the dataset was limited to unrelated subjects of European
genomic ancestry. Expression quality control was previously described5 and
included evaluation of the effect of flowcell, lane, sample groups/plates, gene size,
and GC content on sample mRNA abundance and expression level. Furthermore,
data were previously5 evaluated for quality and normalization bias using graphical
methods and residual MA plots, mRNA transcripts with low median gene count
(less than 14) were filtered, and the remaining gene counts were quantile
normalized7.

The first step in our experimental design process (Fig. 1a) was to impute
unobserved genotypes for these training data, which included over 1.5 million
genotyped variants, limited to common variants (minor allele frequency >1%) in
Hardy-Weinberg equilibrium (p > 1.00 × 10–5) and with a call rate >95%5. Prior to
imputing these data to the 1000 Genomes Project Phase III reference panel, which
performs comparably to larger reference panels for common variants55, we used a
pre-phasing QC workflow to match the strand and reference allele recorded in the
data with those observed in the reference panel, while excluding ambiguous
variants and indel mutations. Next, these samples were phased and imputed using
Eagle v2.356 (cohort-based) and Beagle v4.157, respectively.

Gene boundaries (hg38) for the 17,233 transcripts measured in the training
dataset were downloaded from the NCBI Gene database using the Biopython
Entrez eutils REST API58. Genomic coordinates were converted from hg38 to
hg19 (GRCh37) via UCSC liftOver59. For each of these transcripts, well-imputed
(r2INFO > 0.8) training data genetic variants located (a) in the 500 kb region
upstream of the start position, (b) between the start and end positions, inclusive, or
(c) in the 500 kb region downstream of the end position, were extracted. Next,
following the approach of PrediXcan6, a regularized regression model was fit using
the R (v3.2.2) package GLMNet60 with the genetic cis-variants as the design matrix
and the RNA-Seq transcript levels as the response variable. Additional individual-
level covariates such as age were unavailable from dbGaP, but unlikely to bias
model-training in light of their independence from germline genotype. Models
with at least one non-intercept explanatory variable retained were successfully fit
for 13,258 genes, and leave-one-out cross validation (LOOCV) was used (loss
function: R cv.glmnet type.measure=“mse”) to select model coefficients that
minimize mean cross-validated error (regularization parameter: R predict
s=“lambda.min”) and evaluate model performance r2 (R predict s=“lambda.min”).

LOOCV models performed similarly to those generated by 10-fold cross-
validation in application to a third, independent dataset of paired genotypes and
normal prostatic expression data (RNA-seq; N= 45 total subjects available) from
TCGA (Supplementary Fig. 7), while providing a reproducible estimate of r2

insensitive to fold sampling variation. As previously reported, TCGA normal
prostate samples were subjected to pathology review to confirm their prostatic
origin and limit the presence of tumor and HG-PIN25. Furthermore, a comparison
of cross-validated r2 for elastic net (α= 0.5) and LASSO (α= 1.0) models showed
that the elastic net models were moderately more predictive on average (mean r2=
0.138 vs. 0.135; t-test p= 0.08). Hence, we used the elastic net models for
transcriptome imputation.

For each gene, the number of modeled variants and model r2 in our database
were compared to the corresponding entry in the “TW_Prostate_0.5.db” database
of GTEx models made available on the PredictDB website’s “GTEx-V6p-HapMap-
2016–09–08” repository. To compare the out-of-sample performance of our
models against analogous models from GTEx, we again imputed expression in the
TCGA normal prostate tissue dataset (N= 45) for the 1753 genes present in both
our models and GTEx that had expression quantitative trait locus (eQTL) SNPs
observed/imputed in TCGA genotypes with r2INFO > 0.5. We then standardized the
distribution of observed expression FPKM’s for each gene, and also standardized
the distributions of expression that were imputed using our models and GTEx.
Finally, we measured both the mean squared error (MSE) of the standardized
imputed distributions of expression in comparison to the true standardized
FPKM’s, and additionally measured the correlation (Spearman’s rho) of the
standardized, imputed expression values with the true standardized normal
prostate expression FPKM’s. We performed the same comparison between our
models and a set of models developed from the same input dataset that modeled
variants within 1Mb of gene boundaries. In particular, the correlation/MSE with
TCGA expression was compared for 9717 genes present in both sets of models and
with eQTL SNPs imputed with r2INFO > 0.5 in TCGA. Based on the positive
performance metrics of the overlapping models in relation to GTEx and TCGA, we
carried the full set of our models forward into the TWAS in order to evaluate the
significance of any case-control differences and the extent to which such differences
were replicated across datasets. Model composition was compared between our

models and GTEx, for a set of 10 genes associated in our discovery analysis and
present in both databases, by computing and visualizing the proportion of pairwise
coverage (LD r2 > 0.3 in 1000 Genomes Phase III EUR) of the variants in one
model by any of the variants in its corresponding model. Heatmaps were generated
using the R superheat library61.

Transcriptome wide association testing. We undertook our discovery TWAS
using data from the publicly available UK Biobank, a cohort of nearly 500,000 adult
subjects recruited across the United Kingdom between 2006 and 2010 and
receiving healthcare from the UK National Health Service (NHS). Consenting
participants contributed blood and urine samples to provide material for high-
throughput genotyping and additional bioanalytical assays. Furthermore, the col-
lected information and specimens were linked to lifetime NHS electronic health
records, including ICD codes for diagnoses and procedures.

The UK Biobank data includes autosomal genotype data for 488,377 subjects,
223,513 male and 264,864 female. We limited these subjects to individuals with
both a self-reported and genetically inferred gender of male. Using KING v2.062,
we excluded first-degree relatives while prioritizing the inclusion of cases. To
control for the potential confounding effects of ancestry and population structure
in this largely ethnically white cohort63, subjects were also excluded if they were
beyond 5 standard deviations of the means for the first two genetic principal
components (Supplementary Fig. 8), leaving 197,181 total subjects for the discovery
analysis (mean [SD] age: 57.4 [8.1], BMI: 27.9 [4.2]). Prostate cancer case control
status was determined using ICD codes (ICD-9: “185”, ICD-10: “C61”, or “D07.5”)
in the UK Biobank cancer registry data, yielding 7963 cases and 189,218 controls.

Imputed genotypes were included with our download of the UK Biobank data.
These data were imputed at 33,619,058 variants using the Haplotype Reference
Consortium (HRC) reference panel of 64,976 haplotypes64, covering the majority
of known common variation, using SHAPEIT3 and IMPUTE4 for phasing and
imputation, respectively61. Additional rare variants not present on the HRC panel
(mean (SD) minor allele frequency: 0.008 (0.05), versus 0.04 (0.10) for HRC
imputed variants) were imputed using UK10K and 1000 Genomes Project
reference panels, bringing the total to 92,693,895 variants imputed. We found that
the exclusion of these variants from our discovery analysis had a negligible impact
on our results.

Transcript levels were imputed using individual-level data using a modified
version of the PrediXcan program6. The modifications implemented included allele
matching (flipping and/or reverse complement) with direction-of-effect flipping for
non-ambiguous variants, as well as parallelized segregation of genes by
chromosome. Although modeled variants absent from the imputed discovery
genotypes were treated as missing data and omitted from transcriptome
imputation, we noted a 92.9% overlap between variants imputed in the training
data with r2INFO > 0.8 and those imputed with r2INFO > 0.8 in the discovery and
replication datasets. Of the 13,258 gene prediction models developed in the training
data, 1244 were excluded from further analysis due to the absence of sex
chromosome data in the discovery cohort (415 genes) or due to missing genotype
data (829 genes). Prediction models for the remaining 12,014 genes were applied to
197,181 discovery subjects, and resulting predictions of gene expression levels were
tested for association with prostate cancer risk.

Logistic regression models were used to assess the association between imputed
transcript levels and prostate cancer status. To control for confounding, the models
were adjusted for several covariates associated with prostate cancer risk, including
age, body mass index, and 15 principal components of ancestry and population
structure. For prostate cancer cases, age at diagnosis was used, whereas age at
assessment was used for controls. Bonferroni correction for the number of genes
tested (12,014) was applied to control for multiple hypothesis testing. Hence, genes
with a p-value less than 4.16 × 10−6 were considered to be significantly associated
in the discovery analysis, while the threshold for suggestive associations was set at
one order of magnitude higher (p < 4.16 × 10−5). In addition to computing the
genomic control inflation factor (λGC)8, which is known to scale with sample size,
we also generated a sample-size adjusted inflation factor (λ1000) for the discovery
p-values9.

Replication testing and trans-ethnic meta-analysis. We performed replication
analyses in a sample of male Kaiser Permanente health plan members65. These data
derive from three studies: the Kaiser Permanente Research Program on Genes,
Environment, and Health (RPGEH), the ProHealth Study, and the California
Men’s Health Study (CMHS). Samples were genotyped on custom, ethnic specific
arrays based on self-reported ethnicity and segregated into African American
(AFR), East Asian (EAS), European (EUR), and Latino (LAT) analysis groups66.
Imputation of the replication data to the 1000 Genomes Project reference panel
was previously performed using SHAPEIT v2.5 and IMPUTE2 v2.3.165,67,68. Sin-
gleton variants were removed from the reference panel due to poor imputation
quality, and each array (AFR, EAS, EUR, LAT) was phased separately due to only
partial overlap of the SNPs on the different arrays. As noted earlier, while 92.9% of
the imputed genetic variants with r2INFO > 0.8 in the training dataset were also
imputed with r2INFO > 0.8 in the discovery and replication data, those variants
absent in the replication genotype data were omitted from transcriptome
imputation.
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For association analysis, as before, first-degree relatives were excluded while
prioritizing the retention of cases. Non-Hispanic White (EUR) subjects (6653 cases,
30,121 controls) were used for replication of the discovery findings (mean [SD] age:
66.3 [11.8], BMI: 27.2 [4.6]). Only the significant and suggestive genes from the
discovery analysis were tested for association with prostate cancer case-control
status by logistic regression, controlling for age (age at diagnosis for cases, age at
assessment for controls), body mass index, and 20 ethnic-specific (i.e., estimated
within the ethnic analysis group of interest) principal components of ancestry and
population structure. Genes with a replication p-value less than 0.05 and a
direction-of-effect consistent with the discovery findings were considered
nominally replicated, while genes with a replication p-value less than 0.0013 were
considered to be replicated at a Bonferroni-significance level.

For the genes that replicated nominally, we imputed their expression levels in
the AFR, EAS, and LAT subjects (Supplementary Table 2) and evaluated their
association with prostate cancer case control status, again using logistic regression
adjusted for age, body mass index, and 20 ethnic-specific principal components.
These results were aggregated in a fixed-effects meta-analysis using MetaSoft
v2.0.069 to produce the trans-ethnic meta-effects and associations for each gene.

Analysis of TMPRSS2 expression and TCGA prostate TMPRSS2:ERG. Germline
genotype and molecular phenotype data for prostate cancer subjects from The
Cancer Genome Atlas was used to measure the relationship between TMPRSS2:
ERG expression in prostate tumors and imputed TMPRSS2 expression in the
corresponding normal prostate tissue. Tumoral ERG expression data from RNA-
Seq was downloaded from the UCSC Xena Browser70 and TMPRSS2:ERG (T2E)
fusion status was downloaded from a database of TCGA gene fusion events24.
Genotype data from The Cancer Genome Atlas were downloaded from the NCI
Genomic Data Commons71 and submitted to the Michigan Imputation Server72

(Minimac3 v2.0.1, Eagle v2.3.5) for imputation using the Haplotype Reference
Consortium reference panel (HRC r1.1 2016)64. Variants with an imputation
r2INFO < 0.5 were excluded from further analysis. In addition to the models for the
other 18 genes of interest (Table 1), the TMPRSS2 prediction model inferred from
our training data was applied to the imputed TCGA genotypes. If a modeled eQTL
variant was not available, a proxy variant in high LD (r2 > 0.8 in 1000 Genomes
Phase III EUR) was used. Subjects whose RNA samples showed evidence of
degradation were excluded25. The association between imputed gene expression
and TCGA subtype (ERG fusion, ETV1 fusion, ETV4 fusion, FOXA1 mutant, IDH1
mutant, SPOP mutant) was evaluated by logistic regression (Supplementary
Table 8) using labels derived from the TCGA gene fusion database24 and UCSC
Xena Browser70. Furthermore, a logistic regression model between predicted
TMPRSS2:ERG fusion status and tumoral ERG expression was fit to draw the
decision boundary between fusion positive and negative samples. Samples beyond
the decision boundary (T2E-positive with ERG RPKM < 10.65, or T2E-negative
with ERG RPKM > 10.65) were excluded to control for fusion status mis-
classification and reflect the correlation between ERG overexpression and T2E
fusion status73. The correlation between imputed normal and observed tumoral
expression was measured via Pearson’s r, with the normality of model residuals
evaluated by the Shapiro-Wilks test, or Spearman’s rho for limited sample sizes,
with 95% confidence interval derived via bootstrap resampling with 10,000
iterations.

Annotation of eQTL transcription factor occupancy. For each of the genes that
were associated and replicated nominally, transcription factor binding site (TFBS)
occupancy of their respective eQTL variants was annotated using RegulomeDB
v1.135. The dbSNP variant rsid for modeled variants, as well as variants in high LD
(r2 > 0.8 in 1000 Genomes Phase III EUR)74, was submitted to the RegulomeDB
web portal and results were automatically downloaded and parsed using Selenium
webdriver automation. Results were segregated into four descending categories
according to their level of evidence and relevance to prostate cancer cell lines VCaP
and LNCaP: (1) ChIP-Seq Protein Binding evidence in prostate cancer cell lines, (2)
Motif inferred using DNAse-Seq footprinting in prostate cancer cell lines, (3)
ChIP-Seq Protein Binding evidence in non-prostate cancer cell lines, and (4) Motif
inferred from DNAse-Seq footprinting non-prostate cancer cell lines or predicted
using a position weight matrix (PWM). The enrichment of associated genes with
evidence in category (1) was evaluated by a Fisher’s exact test in comparison to 100
genes selected at random from our prostate tissue eQTL database, with 10,000
bootstrap resampling iterations to evaluate the median and empirical distribution
of the odds ratio. For categories (2) to (4), results were aggregated and tabulated
across the genes queried to identify the most recurrent transcription factor binding
sites and motifs. While motifs in categories (2) and (4) included the names of many
protein families and complexes, category (3) was comprised of HGNC gene names
for transcription factors, and served as a suitable input for a pathway analysis.
Using PANTHER39, we conducted a pathway analysis of Reactome pathway
hierarchies40, with parameters “organism”= “Homo sapiens”, “Analysis”= “Sta-
tistical overrepresentation test” (default settings), “Annotation Data Set”= “Reac-
tome pathways”, and “Test Type”= “Fisher’s Exact with FDR multiple test
correction”.

Evaluation of epigenomic enrichment at eQTL variants. To evaluate the
enrichment of eQTL TFBS variants at prostate tissue epigenomic elements,
H3K27ac active-enhancer marks were downloaded from 19 primary prostate
tumors from the Gene Expression Omnibus (GEO, Accession: GSE96652)29. The
colocalization of query variant positions with H3K27ac ChIP-Seq BED file intervals
was tallied using an SQLite database, and compared to a null distribution of tallies
for 10,000 randomly selected variants from the Haplotype Reference Consortium
r1.1 site list by a Mann–Whitney–Wilcoxon test.

Concordance of allele-specific binding with eQTL effects. The correlation
between the allele-specific directions of effect on binding affinity and expression
levels was examined for variants directly modeled to affect target gene expression,
or in high linkage disequilibrium (LD) with a modeled eQTL, for the genes that
were associated and nominally replicated. In particular, 25 base pair 3′ and 5′
flanking sequences were extracted from the UCSC table browser75 using Selenium
webdriver automation for variants present in ChIP-Seq peaks for AR in the VCaP
prostate cancer cell line. Next, two FASTA sequences containing the major and
minor variant alleles were automatically submitted to the sTRAP Transcription
Factor Affinity Prediction webserver34, with parameters “matrix file”= “trans-
fac_2010.1 vertebrates”, “background model”= “human_promoters”, and “Multi-
ple test correction”= “Benjamini-Hochberg.” The result, a list of 904 transcription
factor binding matrices ranked by the differential effect of the two alleles on
binding affinity (as measured by the difference in log10(p-value) of observing an
affinity of a given magnitude or greater under a certain background sequence
model), was downloaded and processed. The direction of effect of a particular
variant allele A1 on AR binding affinity was estimated using the rank-weighted
(“BindingRank”) average over 6 AR binding matrices m of the difference in log10(p-
value) in comparison with the opposite allele A2:

X6 AR matrices

m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Binding RankðmÞp log10 pm;A1

� �
� log10 pm;A2

� �� �
ð1Þ

Finally, for each of the variants examined, the allele predicted to increase AR
binding affinity was cross-referenced with the estimated effect of that allele, or its
proxy allele, on gene expression levels. The concordance of the directions of effect
on binding and expression was evaluated via binomial test with probability= 0.5
for the direction of effect.

Hi-C interaction landscape at eQTL loci for replicated genes. Putative
promoter-enhancer interactions between the modeled eQTLs and their respective
target genes was analyzed using Hi-C chromatin conformation capture data for the
prostate cancer cell line LNCaP from the 3D Genome Browser44. A dataset of
normalized LNCaP Hi-C read data (“iced-rep-1”) was queried to perform a virtual
4C for each of the genes of interest and generate a Hi-C read density histogram
illustrating the physical interactions between a particular region (with the mini-
mum available resolution of 40 kb bins) and its neighboring genomic positions. For
each of the genes of interest, the gene name was used as the query and anchoring
point, with the exception of one gene (TIMM23) where the transcription start site
was required to return non-null results. In order to investigate the physical
interactions most pertinent to our gene expression models, the genomic positions
(hg19/GRCh37) of the modeled eQTL variants (Supplementary Table 13) for each
query gene were compared to the virtual 4C boundary of Hi-C read density in the
extended region around the anchoring position.
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78% of GERA participants that consented to submit their data to dbGaP (Study
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