
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Improving User Query Results Through Diversification

Permalink
https://escholarship.org/uc/item/2xw72064

Author
HASAN, MD MAHBUB

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xw72064
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Improving User Query Results Through Diversification

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Md. Mahbub Hasan

March 2014

Dissertation Committee:

Dr. Vassilis Tsotras, Chairperson
Dr. Vagelis Hristidis
Dr. Eamonn Keogh
Dr. Harsha V. Madhyastha

Copyright by
Md. Mahbub Hasan

2014

The Dissertation of Md. Mahbub Hasan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Vassilis Tsotras, for his excellent help

and support throughout my PhD study. Special thanks to my committee members, Dr. Vagelis

Hristidis, Dr. Eamonn keogh and Dr. Harsha V. Madhyastha for their valuable feedback. Finally,

I wish to thank my parents and my wife, Nurjahan Begum. Without them this would not have

been possible.

iv

ABSTRACT OF THE DISSERTATION

Improving User Query Results Through Diversification

by

Md. Mahbub Hasan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2014

Dr. Vassilis Tsotras, Chairperson

Due to the large size of many structured and semi-structured databases, queries often

return a large number of relevant results. Result diversification has recently been proposed as

an approach to increase user satisfaction in search engines and recommendation systems. The

top-k returned results are not only relevant to the query but also as diverse as possible from each

other.

In this dissertation, we address three diversification related problems and propose

efficient solutions for them. We firstly consider diversification on semi-structured data. We show

that diversity can occur not only in the document content but also (and more importantly) in the

document structure. We present a novel algorithm for diversification that considers both the

structure and the content of the matched results. We propose a distance measure that is an order

of magnitude faster than the standard tree-edit distance. The second problem considers how

to balance relevance and diversity in the final top-k returned results. Previous works balance

relevance and diversity mostly in a predefined fixed way. We propose a principled method

for adaptive diversification of query results that minimizes the user effort to find the desired

results by dynamically balancing the relevance and diversity. Finally, we consider the distributed

diversification problem on large result-sets dispersed over many nodes. Using the MapReduce

v

framework, we consider two distinct approaches, one that focuses on optimizing disk I/O and

one that optimizes for network I/O. Our methods are iterative in nature, allowing the user to

continue refining the result if more time is available. Moreover, we prove that this iteration

process converges while producing a 2-approximate diversified result when compared to the

optimal solution.

Furthermore, in the last part of the thesis, we investigate the problem of answering

top-k queries satisfying spatial constraints. We propose a novel index structure that uses R-tree

to tackle the spatial constraints, and pre-computed inverted lists to answer the top-k queries

efficiently using the well known threshold algorithm. We present a model than can estimate the

expected size of the inverted lists for the threshold algorithm using the data properties and query

parameters. With the proposed model, we could reduce the index size significantly without

sacrificing the performance of the threshold algorithm.

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Diversification of Query Results . 1

1.1.1 Diversification on Semi-Structured Data 3
1.1.2 Adaptive Diversification of Query Results 5
1.1.3 Distributed Diversification of Large Datasets 9

1.2 Spatial Top-k Queries . 10
1.3 Thesis Overview . 10

2 Semi-Structured Diversification 11
2.1 Problem Formulation . 11
2.2 Distance Measure for Diversification . 13

2.2.1 Context Aware Diversity . 15
2.2.2 Content Based Diversity . 24
2.2.3 Algorithm for STED . 26
2.2.4 Properties of the Distance Measure 29

2.2.4.1 Triangular Inequality . 29
2.2.4.2 Lower Bounds . 29
2.2.4.3 Upper Bounds . 30

2.3 Diversification . 30
2.3.1 Novel Heuristic for Seed Selection . 32
2.3.2 Pruning while Maintaining Diversity 33
2.3.3 The Algorithm for Pruning Based Diversification 34

2.4 Evaluation . 35
2.4.1 Speedup of STED . 36
2.4.2 Evaluation of Diversification Algorithms 37

2.4.2.1 Qualitative Analysis . 37
2.4.2.2 Scalability Analysis . 37

2.5 Related Work . 40

3 Adaptive Diversification 42
3.1 Problem Definition . 42

3.1.1 Preliminaries . 43

vii

3.1.2 Navigation Cost Model . 44
3.1.3 Problem Statement . 47

3.2 Navigation Cost Estimation . 47
3.2.1 Computing Probabilities . 49

3.3 Complexity Avalysis . 51
3.4 Adaptive Diversification . 52
3.5 Evaluation . 58

3.5.1 Setup . 58
3.5.2 Qualitative Analysis . 61
3.5.3 Performance Analysis . 65
3.5.4 Scalability Analysis . 66

3.6 User Study . 68
3.7 Related Work . 71

4 Distributed Diversification 73
4.1 Problem Definition . 73
4.2 Diversification Framework . 74

4.2.1 Diversification Approaches . 75
4.2.1.1 Divide and Merge (DM) . 76
4.2.1.2 Sample and Refine (SR) . 77

4.2.2 Cost Model . 80
4.2.3 Iterative Refinement . 83

4.3 Evaluation . 86
4.3.1 Setup . 86
4.3.2 Evaluation of Diversification Approaches 88

4.3.2.1 Qualitative Analysis . 88
4.3.2.2 Performance Analysis . 90

4.3.3 Evaluation of Cost Model . 92
4.3.4 Evaluation of Iterative Refinement . 92

4.4 Related Work . 93

5 Spatial Top-k Queries 96
5.1 Problem Definition . 96
5.2 Index Structure . 97
5.3 Estimation of Expected STL Size . 102
5.4 Experimental Evaluation . 109

5.4.1 Setup . 109
5.4.2 Evaluation of M and l . 111
5.4.3 Index Size . 112
5.4.4 Scalability Analysis . 113

6 Conclusions and Future Work 115
6.1 Diversification of Query Results . 115
6.2 Spatial Top-k Queries . 117

Bibliography 118

viii

List of Figures

1.1 A set of different types of butterflies match with a sample query image and 3
images selected satisfying different criteria: relevance only and relevance with
diversity . 2

1.2 Bib document containing three records, (a) PhDThesis of Michalis Faloutsos,
(b) PhDThesis of Christos Faloutsos and (c) a Paper of Michalis Faloutsos. . . 4

1.3 (a) An example query for the document in figure 1.2. (b) The XPath expression
for the same query. 4

1.4 A subset of results of the query Camera and associated ranked list of results . . 7
1.5 Navigation Cost vs. λ for Query Camera . 8

2.1 For the query shown on the left there are three matches found. The distance
values for the tree edit distance and our proposed variant are shown on the right. 15

2.2 An example query (Q) on the left with two matches S and T . The induced
minimal mapping between S and T is shown by the dashed lines. 16

2.3 Tree edit distance matrix of S and T . 17
2.4 Mapped chunks of S, T and corresponding STED 18
2.5 Contradiction of Lemma 1 . 19
2.6 Compressed trees of first mapped pair chunks in Figure 2.4 and corresponding

leaf and stem sequence . 20
2.7 Contradiction of Lemma 2 . 21
2.8 The tree T . (a-c) Three possible scenarios for case 1. (d) An impossible scenario

which cannot occur as described in case 3 of lemma 3. 23
2.9 Iterations performed by the algorithm 1 for the first pair of chunks in Figure 2.4. 30
2.10 Comparison of running times of different diversification algorithms with a sam-

ple query processor, LCS-Trim. 32
2.11 Average time taken to compute (a) the distance (structure and content) (b) only

the content distances between two results . 36
2.12 (a) Average Precision vs k (b) Average Distance Gap vs k. 37
2.13 Running time vs |(T)| (k = 25) . 39
2.14 Total Pair-wise Distance vs |(T)| (k = 25) . 39
2.15 Running time vs k (|(T)| = 5000) . 39
2.16 Total Pair-wise Distance vs k (|(T)| = 11500) 39

3.1 Elimination of Recursion Using Relaxations 1&2 55
3.2 Query Set . 59

ix

3.3 (a) Avg. Navigation Cost (b) Avg. Number of Refine and Next Page actions
incurred for Electronics Dataset using α = 1, β = 1. (c), (d) show the same
figures respectively for UsedCars Dataset . 62

3.4 Average Navigation Cost for Electronics and UsedCars Datasets 63
3.5 Average Navigation Cost vs. Tradeoff (λ) values for (a) Electronics Dataset (b)

UsedCars Dataset (α = 1, β = 1) . 64
3.6 Average Navigation Cost vs. β for (a) Electronics Dataset (b) UsedCars Dataset

(α = 1) . 65
3.7 Average CPU, User Navigation Time for Electronics and UsedCars Datasets . . 66
3.8 For Electronics Dataset, (a) Average Navigation Cost, Average number of RE-

FINE and NEXT PAGE actions (numbers on top of bars), vs. Size of RQ (b)
Average CPU Time vs. Size of RQ (for α = 1, β = 1) 67

3.9 For Electronics Dataset, Average Navigation Cost vs. k 68
3.10 Query Set for User Study . 69
3.11 (a) Avg. User Navigation Time, (b) Avg. number of Refine and Next Page

Actions incurred by the users for 10 different queries using UsedCars dataset
(for α = 1, β = 1) . 70

3.12 Estimated Cost vs. Actual Time . 70

4.1 The Diversification Framework Architecture 75
4.2 Overview of (a)DM and (b)SR Diversification Approaches 76
4.3 Effect of α on F . 78
4.4 2-approximation of DivF . 85
4.5 For TwitterCrawl dataset, (a) Avg. F vs. r, (b) Avg. F vs. λ, (c) Avg. F vs. k.

(d),(e),(f) show the same figures for Image dataset 89
4.6 Avg. wall clock time needed by Uniprocessor MMR, DM and SR algorithms for

k = 10 and |D|= 10 millions . 90
4.7 For TwitterCrawl dataset, (a) Avg. wall clock time vs. r, (b) Avg. wall clock

time vs. |D|. (c),(d) show the same figures for Image dataset 91
4.8 For TwitterCrawl dataset, (a) the ability of the cost model to select the best

strategy (red curve) from DM and SR (b) actual and predicted times for DM, (c)
actual and predicted times for SR. (d),(e),(f) show the same figures for Image
dataset . 91

4.9 For TwitterCrawl dataset, (a) Avg. F vs. Number of Iterations, (b) Probability
to Converge vs. Number of Iterations . 92

5.1 Sample dataset containing 10 objects, (a) shows the locations and (b) shows the
terms of the objects. 97

5.2 Spatial R-Tree for the sample dataset in Figure 5.1 and leaf level STLs 98
5.3 Inner level STLs for the R-tree in Figure 5.2(a) 100
5.4 Level vs. avg. number of term entries per STL. The numbers on the top of the

bars show the avg. sizes of STLs in MB . 101
5.5 Case analysis of si and q . 106
5.6 Avg. number of STLs involved in TA for different selectivity of query regions . 111
5.7 zipf parameters for different levels of R-tree 111
5.8 Avg. stopping index of TA for different selectivity of query regions 113
5.9 Disk sizes required for different index structures 113
5.10 Avg. processing time of TA for different selectivity of query regions 114

x

List of Tables

2.1 Query Set . 36

4.1 Cost Model Parameters . 81

5.1 Model Parameters . 106

xi

Chapter 1

Introduction

1.1 Diversification of Query Results

Due to the large size of many structured and semi-structured databases, queries often return a

large number of relevant results. Recently, several works [33][71][39][81][83][12][48] have ad-

vocated diversification in ranking results as a way of improving the user satisfaction. The idea

is to return to the user a set of results (top-k) that are as relevant as possible to the query and

at the same time, as diverse as possible from each other. This is in contrast to the traditional

approach of retrieving and ranking results of a query solely based on relevance. One reason for

this paradigm shift is due to the inherent ambiguity in the user queries; especially the keyword

queries which are often ambiguous and consequently, have multiple interpretations. As an ex-

ample, consider the query memory which might refer to computer memory (RAM, ROM, Flash

etc.) or the song Memory from the acclaimed musical Cats. For such ambiguous queries, a

ranking that considers only relevance (e.g., [29]) might return a large number of similar results

from just one interpretation of the query, e.g., DDR3 RAM, and a user with different search

intent (say music) might not find any relevant result in the final top-k results.

1

Diversification helps to address this concern. In particular, a diversified ranking in-

cludes not only relevant (as judged by the underlying ranking function) results, but also results

that may be less relevant and are diverse with respect to other results in the ranked list. A di-

versified ranking covers results from multiple interpretations of a query, thereby increasing the

probability of the user finding desired results based on her query intent [33].

Another reason of diversification is to help the user to explore the result space. For

example consider a dataset with images crawled from the web [9]. A user is interested in

butterflies so she provides a query image of a butterfly as shown in Figure 1.1. Assuming that

relevance is based on shape similarity, millions of images match this query (for simplicity, the

result space shown in the figure contains only ten images) and the top-3 based on relevance-only

are depicted. However, the user could have better explored the result space by using other image

features such as texture, color, etc. to capture diversity among the returned results. The second

top-3 results depict a lower-relevance higher-diversity set of butterflies.

Low Relevance and High Diversity

Cabbage Butterfly Brush Footed

Lycaenid Danaid Sulphur Peacock Hairstreak

Query image

Relevance only

Figure 1.1: A set of different types of butterflies match with a sample query image and 3 images
selected satisfying different criteria: relevance only and relevance with diversity

In this thesis, we address three diversification related problems and propose efficient

solutions for them. We explain the problems in the next three sections (Sections 1.1.1−1.1.3).

2

The first two sections (Sections 1.1.1,1.1.2) consider diversification in a uniprocessor environ-

ment on a smaller result set (e.g. thousands of results). However, Section 1.1.3 considers

diversification in a distributed environment on large datasets (e.g. millions of results).

1.1.1 Diversification on Semi-Structured Data

Vast repositories of semi-structured databases are accessed by user queries typically using an

XML query language (such as XPath [32] and XQuery [28]). It is typical for such queries to

return a large answer set, making it quite a challenge for the user to capture/view the whole

result space. As stated earlier in this chapter, result diversification has been recently introduced

as an approach to allow a user to explore the result space. Algorithms for XML result diversi-

fication have also been proposed recently [39][65] but, they only consider the data content (i.e.

keywords) of the query.

What makes the problem challenging is that diversity can occur not only in the content

of the documents but also (and more importantly) in the structure of the documents. Since the

XML-based query can contain ancestor-descendent(//) or wildcard(*) relationships, there maybe

significant structural differences (e.g., additional nodes in a matched path) among the returned

results. Such diversity will not be explored by the content-only based diversification; instead

we need an approach that takes into account differences both in the structure and content of the

results.

To elaborate, let us consider an example document of bibliographic records shown in

Figure 1.2. The document has three records: two PhD theses and a paper written by two dif-

ferent authors. An example XPath query (Figure 1.3) with one ancestor-descendent relationship

describing “Find all bibliographic entries of Faloutsos”, has three exact matches shown by the

thick lines in figure 1.2. Assume instead that we want to present the user with the two most

diverse results. We should then provide the pair of matches (among the three possible pairs)

3

that exhibits the highest diversity. Among the three matches, the one on the right (match 3) is

structurally different from the other two because it is a record of a paper whereas the others are

records for PhD theses. The matches on the left (match 1) and in the middle (match 2) are differ-

ent because of the contents of the “PhDThesis” records (match 1 is a record for “Michalis” while

match 2 is a record for “Christos”). Ideally, we would like to return to the user matches 2 and

3, since they are different both in content and in structure. Therefore, we need a diversification

method that combines both the structural and content-based differences of the results.

1

2

School

UToronto

PhDThesis

First
Name

Author

Last
Name

Michalis Faloutsos

Paper

First
Name

Author

Last
Name

Michalis Faloutsos

Title

Netwo
rking

Bib

3

4

5

6

7

17

18

19

20

21

22

23

248
PhDThesis

First
Name

Author

Last
Name

Christos Faloutsos

School

UToronto

9

10

11

12

13

14

15

25

16

Figure 1.2: Bib document containing three records, (a) PhDThesis of Michalis Faloutsos, (b)
PhDThesis of Christos Faloutsos and (c) a Paper of Michalis Faloutsos.

PhDThesis

Faloutsos

1

2

(a) Tree Structure

//PhDThesis//Faloutsos

(b) XPath Expression

Figure 1.3: (a) An example query for the document in figure 1.2. (b) The XPath expression for
the same query.

A naive way to find the most diverse k-subset from a set of N returned results, is

to take the maximum of the total pair-wise distance as a measure of diversity for all of the
(
N
k

)
subsets. TypicallyN and k are thousands and tens, respectively. Such an instance of the problem

requires 1002 distance computations. The distance measure, therefore, must be very efficient to

4

keep the computation time tolerable. In addition to that, the number of times distances are

computed must be reduced.

For structural query processing, a popular choice [18] of distance measure is the tree

edit distance [87]. We focus on extending the tree edit distance in two ways. First, we consider

the contents of the nodes and also the structural context of the query to perform well in presence

of both types of differences and thus, provide meaningful diversification. Second, we leverage

off the known skeleton (i.e. the query) of the results to compute the distance measure faster. We

present a novel algorithm to achieve both of them. Our distance measure is comprehensive and

our algorithm is at least an order of magnitude faster than the generalized tree edit distance with

O(n2) worst case time complexity, where n is the number of nodes in the comparing trees.

Diversification is in general an NP-complete [83] problem. Therefore, enumerating

all of the subsets to measure their goodness is necessary for exactness but prohibitive even if we

have the best distance measure. For efficiency, we need an approximate algorithm that checks

only a tiny fraction of the number of subsets the naive algorithm checks. In reality, the approx-

imate algorithms still require orders of magnitude more time to do the diversification than it is

required to produce the answer set. Therefore, the total latency for a user since the query is

given becomes intolerable as the size of the result set increases. We present a novel pruning

based speedup technique to mitigate such imbalance between the query processor and the diver-

sification algorithm. Our technique speeds up the heuristic based approximate algorithms upto

2× faster.

1.1.2 Adaptive Diversification of Query Results

At the beginning of this chapter, we mention that a diversified top-k results covers results from

multiple interpretations of a query, thereby increasing the probability of the users’ finding de-

sired results from different interpretations. However, just focusing on diversity and displaying

5

the set of most diverse results is ineffective since some of these results may have low relevance.

In its most general form, the problem of query result diversification is modeled as a bi-criteria

optimization problem [33][83][48], which uses a trade-off parameter(λ) to tune the relative ef-

fect of relevance and diversity factors during ranking. Using λ, the impact of the diversity factor

can be increased for highly ambiguous queries so as to include more diverse elements in the

result set; whereas for very specific (non-ambiguous) queries, this factor can be decreased to

prevent inclusion of results of lesser relevance.

As an example, consider Figure 1.4(a) which depicts the result set returned for the

query Camera (on a structured dataset like Amazon.com). As seen in the figure, the result set

includes products from several categories including DSLR, Compact cameras and Accessories.

Each result has a set of features (e.g. Brand, Megapixel, Zoom etc.). Note that the Lenses of

DSLR cameras are considered in the Accessory category, therefore DSLR cameras do not have

a Zoom feature. Figures 1.4(b)-1.4(d) show the Top-3 results selected by varying the trade-off

parameter between diversity and relevance. Note that the relevance ranking [29] in this example

assigns a higher score to DSLRs. For a user shopping for DSLR cameras, the ranking shown

in Figure 1.4(b), which prefers relevance over diversity, might be sufficient. However, a user

looking for a camera Lens would prefer the highly diversified ranking shown in Figure 1.4(d),

where she could click on the Lens attribute value for attribute Type in the Accessory category

to see more camera lenses.

Note that, for a given query, the user navigation cost (the user effort or actions required

to find the desired results) varies for different choices of the trade-off parameter (see Figure

1.5, for the query Camera using the MMR algorithm [26] to implement diversified ranking).

Moreover, in Chapter 3, we show experimentally, that the best value of the trade-off parameter

λ varies for different queries. However, no previous work addresses the problem of computing a

6

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

3 Camera DSLR Brand: Canon Megapixel: 14.0 0.7

4 Camera DSLR Brand: Nikon Megapixel: 12.0 0.6

5 Camera DSLR Brand: Sony Megapixel: 12.0 0.6

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

7 Camera Compact
Brand: Panasonic Zoom: 5x

0.6
Megapixel: 16.0

8 Camera Compact
Brand: Fujifilm Zoom: 5x

0.4
Megapixel: 12.2

9 Camera Compact
Brand: Kodak Zoom: 3x

0.2
Megapixel: 10.0

10 Camera Accessory Type: Lens
Focal Length:
18 – 55 mm

0.3

11 Camera Accessory Type: Lens
Focal Length:
55 – 300 mm

0.2

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

3 Camera DSLR Brand: Canon Megapixel: 14.0 0.7

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

10 Camera Accessory Type: Lens Focal Length:
18 – 55 mm 0.3

(b) High Relevance and Low Diversity

(c) Moderate Relevance and Moderate Diversity

(d) Low Relevance and High Diversity(a) Result Set

Figure 1.4: A subset of results of the query Camera and associated ranked list of results

trade-off parameter that will minimize the user effort. Instead, many hard-code it to a reasonable

value (fixing the relative weight between relevance and diversity). Recently, several learning

methods have been proposed [75][85] to learn the trade-off parameter λ. Unfortunately, these

methods depend on training data provided by the experts which are expensive to collect and

might not be available. Further, they compute a single trade-off parameter for a query, whereas

we show how this trade-off changes as the query refinement or results viewing progress.

Because of the display interface, finding the desired result to a particular query might

involve several steps. If the user does not find her desired result on the first page, then she

might take additional actions to find the result, such as: (a) scan additional pages looking for

the results of interest, or, (b) refine the query by clicking on a displayed attribute value to focus

on a subset of the original results. Therefore, we want to compute at each step a set of k

results (corresponding to a page in the users interface) that dynamically balances diversity and

relevance (i.e., not fixed trade-off), such that the expected user navigation cost is minimized.

What makes the problem difficult is that when the query is posed, neither the target

result nor the sequence of actions the user will execute to find it, are known. Therefore, to

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
320

330

340

350

360

370

380

390

400

410

Trade-off Parameter (λ)
N

av
ig

at
io

n
C

os
t

Figure 1.5: Navigation Cost vs. λ for Query Camera

compute the best set of results to display at each step, we must probabilistically consider all

the unknown future user actions, which is a key challenge of our solution. For example, if the

user poses the (highly ambiguous) query Camera while her target object is Lens, she will need

further actions if we provide the results in Figure 1.4(b) (high relevance) in the first page. A

higher diversified result set (like the one in Figure 1.4(d)) would have been more appropriate.

If instead, a more specific query is posed, like DSLR Camera, then higher relevance and lower

diversity is preferable, because the user may (with high probability) satisfy her search with just

one page. Note that this dynamic balancing of relevance versus diversity can also occur, within

the subsequent navigation steps of the same query, as it is progressively refined by the user (e.g.

after posing the Camera query and getting the results in Figure 1.4(d), a user interested in lens

might refine by selecting the condition Type: Lens).

To this end, we propose a user navigation model that considers factors such as the

characteristics of the query result, the users familiarity with various refine conditions, the num-

ber of pages the user would have to navigate and the expected number of navigation steps re-

quired to reach a result of interest. The resulting model is adaptive to user actions and constructs

a diversified result that minimizes the expected user effort. This is in contrast to the fixed di-

versity vs. relevance trade-off achieved by previous techniques, which leads to a much higher

navigation cost, as shown in our experiments.

8

1.1.3 Distributed Diversification of Large Datasets

Our last contribution on diversification considers diversifying query results on large datasets.

Since diversification is in general an NP-complete problem [83], many uniprocessor approxi-

mation algorithms have been proposed in the literature [81][83][36][84][26]. For large datasets,

even the approximate algorithms are lethargic and therefore, parallelization becomes the method

of choice for faster response time. MapReduce[38] has become extremely popular over the last

few years for processing large volume of data in a distributed setting. Several database problems

(e.g. clustering[35], join[21]) have been solved successfully using MapReduce. Unfortunately,

none of the previous uniprocessor diversification algorithms can be easily extended to a MapRe-

duce distributed environment. For example, parallelizing the computation of the method in [26]

requires one read of the entire file (result dataset) to produce one diversified result in the output.

Therefore, computing the top-k diverse result set, requires at least k file reads which becomes

infeasible (in disk I/O [72]) for large result datasets. Another challenge is to minimize the com-

munication cost between the distributed nodes (network I/O [35]). This motivates the need to

develop distributed algorithms that can diversify large result datasets (e.g. millions of results)

fast while preserving the quality of the diversification, as well as achieving linear speedup for

increasing number of nodes.

In this thesis, we propose two distinct approaches for result diversification using the

mapreduce framework (Chapter 4). We show that different approaches perform better in differ-

ent scenarios (e.g. disk rate, network speed, number of cluster nodes, data size). We present

a cost model that can dynamically choose the most suitable approach for a given computation

environment.

9

1.2 Spatial Top-k Queries

We also investigate the problem of answering top-k queries satisfying spatial constraints. This

kind of problem is important in several applications. For example, in online social networks (say

Twitter[10]) the users express their thoughts in short messages (tweets). Each tweet is associated

with a geolocation which denotes the originating location of the tweet. An interesting problem

would be to summarize the tweets’ content from a spatial region (say, Los Angeles) in a few

keywords (top-k terms) to investigate the current trending topics in the region.

In Chapter 5, we propose a novel index structure for fast answering of such spatial

queries. Our index structure uses R-tree [50] to tackle the spatial constraints, and pre-computed

inverted (sorted term) lists to answer the top-k queries efficiently using the well known threshold

algorithm [46]. Furthermore, we propose a model than can estimate the expected size of the

sorted term lists for the threshold algorithm using the data properties and query parameters.

With the proposed model, we could reduce the index size significantly without sacrificing the

performance of the threshold algorithm.

1.3 Thesis Overview

The rest of the thesis is organized as follow, In Chapter 2, we explain our novel distance measure

and diversification algorithms for semi-structured data. We present our adaptive diversification

algorithm in Chapter 3. Chapter 4 describes our distributed diversification approaches and the

proposed cost model. Chapter 5 explains our index structure for spatial top-k queries. Finally,

we conclude and present future work in Chapter 6.

10

Chapter 2

Semi-Structured Diversification

This chapter explains our solutions for diversification on semi-structured data [55].

Section 2.1 provides necessary background and formulates our problem. We discuss our dis-

tance measure in Section 2.2 and the diversification algorithm in Section 2.3. Section 2.4 eval-

uates the performance of our algorithms. Finally, Section 2.5 presents related work.

2.1 Problem Formulation

An XML document is an ordered labeled tree T . T is a graph with vertices V (T) and edges

E(T). An edge (u,v)∈ E(T) represents a parent child relationship where u is the parent of v.

Only the root has no parent. A node u can have zero or more children in a strict left to right

order. Nodes with zero child are leaves. anc(u) defines the set of ancestors of node u. Every

node has a label denoted by label(u). A postorder traversal of a tree visits the children of a

node from left to right before visiting the node. For example, the postorder traversal of the tree

in Figure 1.2 is shown by the numbers beside each node. We denote the nodes of a tree by

the postorder sequence t1, t2, . . . , tn, where n = |T | is the number of nodes in T . The subtree

rooted at node ti is denoted by Ti. The postorder sequence of Ti is a subsequence of T ending

at ti and starting at l(ti). l(ti) is the leftmost node of the tree Ti. For example, l(7) = l(4) = 3

11

and l(25) = 1 in Figure 1.2. We are given a queryQ which is also an ordered labeled tree where

edges represent XPath axes. We are also given a set of XML documents D, in which we find

matches for the query.

A map between a node si in a tree S and a node tj in a tree T is an ordered pair

(si, tj). We define a relation M : V (S) → V (T) or simply a mapping M : S → T such that

M maps some nodes of S to some nodes of T with the following conditions.

1. 1 ≤ i ≤ |S| and 1 ≤ j ≤ |T |

2. For any two pairs (si, tj) and (su, tv) in M

(a) i = u if and only if j = v (One-to-one).

(b) si is to the left of su if and only if tj is to the left of tv (Sibling-order).

(c) si is an ancestor of su if and only if tj is an ancestor of tv (Ancestor-order).

Note that M is not a function and, therefore, is not defined for all nodes in S and T .

Nodes mapped by M capture similar structure in both S and T . M ′ : T → S is the inverse

mapping of M such that for all (s, t) ∈ M , (t, s) ∈ M ′. If M is defined for every node s ∈ S,

then M is a complete mapping. If M is complete, M ′ is not guaranteed to be complete. If both

M and M ′ are complete, they are called maximal mappings.

M is called an outer mapping if (i) for every leaf s in S, M(s) is a leaf in T and (ii)

root(T) = M(root(S)). If both M and M ′ are outer then they are called minimal mapping.

Figure 2.2(b) shows an example of minimal mapping between S and T .

An exact match of a query Q is another ordered labeled tree T , such that there is a

complete and minimal mapping M : Q → T and for all (q, t) ∈ M , label(q) = label(t).

There has been many algorithms proposed for finding all of the exact matches of query Q in

D [14][23][59][78][30]. There is also algorithm [18] that finds approximate matches where

query Q may not have complete mappings. Each approximate match of the query Q is an

12

exact match of query Q′, where Q′ is a relaxed version of the original query Q [16]. We

consider the matching algorithm A as given and A(D,Q) is the set of matches denoted by T

= {T1, T2, . . . , Tn}. We denote a distance measure by d(., .), which computes the dissimilarity

between two matches Ti and Tj .

A setR ⊂ T of size k is the most diverse if the total pair-wise distance
∑

Ti,Tj∈R d(Ti, Tj)

is the maximum. The matches in R are said to be the top-k diverse matches for the query Q in

the document set D.

[TOP-k DIVERSE MATCHES]. For a given Q and D, find the k-subset R of the set of

matches T such that the total pair-wise distance of R (i.e.
∑

Ti,Tj∈R d(Ti, Tj)) is the maximum

over all such subsets.

The optimal algorithm to find the top-k diverse matches requires enumerating all the

k-subsets of the set T and selecting the one with maximum pair-wise distance. This algorithm

has O(|T |k) time complexity and therefore, too slow for interactive queries. To solve the prob-

lem efficiently there are two lines of attack; speeding up the distance measure and considering

only a fraction of the subsets heuristically. In Section 2.2, we describe our approach of com-

puting distance very fast by taking both the structure and content of the query into account. In

Section 2.3, we describe our heuristic approach to find the diverse subset efficiently.

2.2 Distance Measure for Diversification

To diversify a set of matches for an XML query, we need a distance measure that can compare

two trees. The tree edit distance [87] is the most widely used distance measure for tree structures.

The idea is to transform one tree to the other such that the total cost of the sequence of edit

operations performed for the transformation is minimum and hence the distance between the

two trees.

13

There are three types of edit operations. The delete operation removes a node n from

the tree and connects the children of n as the children of the n’s parent preserving the sibling

order of the children. The insertion operation on a node n adds an edge from some node p to n

and makes a subsequence of children of p the children of n. The rename operation changes the

label of a node.

For every operation, an associated cost is defined. The cost can depend on the oper-

ation, the label of the node(s) being operated on as well as the context at which the operation

is being performed. The simplest cost model assumes equal cost for all of the three operations:

insertion, deletion and rename. Such cost model makes tree editing distance symmetric i.e.

transforming any of the trees to the other yields the same distance.

Any valid mapping M : S → T can be translated to a sequence of edit operations to

convert one tree to another. The sequence of operations is (i) delete all non-mapped node in S,

(ii) rename all mapped nodes that do not have the same label and, (iii) insert all non-mapped

nodes in T . Since, M preserves the structural similarity by the three conditions described in

the definition of mapping, at any intermediate stage of the sequence of operations M remains

valid. The converse is also true. If we are given a sequence of edit operations, there exists a

mapping M : S → T that has cost no higher than that of the sequence of edit operations[87].

Therefore finding the least costly sequence of edit operations is the same as to finding the least

costly mapping as defined below.

Definition 1 Given a mapping M : S → T and a equal cost for the operations, we define the

cost(M) as

cost(M) = (|S| − |M |) + (|T | − |M |) + |Mm|

where Mm = {(s, t) ∈M |label(s) 6= label(t)}.

14

The term |S| − |M | denotes the number of non-mapped nodes in the tree S and this

is the number of deletions we need to perform. Similarly, |T | − |M | is the number of insertions

and |Mm| is the number of rename operations.

Definition 2 Tree edit distance between S and T , TED(S, T), is the smallest cost over all

mappings M : S → T .

Tree edit distance finds the best possible mapping preserving the structural similarity.

But while computing the distance between two matches, TED does not utilize the information

that both the matches have complete-minimal mapping from the query. In the next two subsec-

tions, we present a new algorithm that uses these two mappings for computing distances. We

start with adding the structural context sensitivity in the distance measure and, add the content

sensitivity in the later subsection.

2.2.1 Context Aware Diversity

We first provide a simple example showing that TED fails to capture the desired dissimilarity

because of ignoring the structural context of the query.

Match1 Match2 Match3

Match1 0 2 2

Match2 - 0 2

Match3 - - 0

Match1 Match2 Match3

Match1 0 4 2

Match2 - 0 2

Match3 - - 0

Tree Edit Distance

Tree Edit Distance preserving Query
Mapping

Query Match 1 Match 2 Match 3

A

B

C

A

B

C

X

Y

A

B

C

X

Y

A

B

C

X

Y

X

Y

Figure 2.1: For the query shown on the left there are three matches found. The distance values
for the tree edit distance and our proposed variant are shown on the right.

Consider the example in Figure 2.1 where we have three matches for the query shown

on the left. Based on the structure of the query, the two most diverse matches should be match

15

1 and 2. The reason is the XY segment is located in different parts of matches 1 and 2 while

match 3 has some parts common with both match 1 and 2, separately. But according to the tree

edit distance, all of the pairwise distances are 2. Therefore, TED cannot distinguish the two

most diverse matches (i.e. 1 and 2) in this example. More precisely, while converting match 1

to match 2, TED needs only two operations: delete B from match 1 and insert B as in match

2. Recall both of the B nodes in match 1 and 2 are mapped from the node B in the query. This

implicitly maps the two B nodes of match 1 and 2 together. Therefore, B must not be deleted

or inserted while the editing distance between match 1 and 2 is computed in the context of

the query. However, as in the above example, the generalized algorithm for tree edit distance

does not always preserve this query mapping. If we consider an implied mapping between the

matches using the mappings from the query, the distance between match 1 and 2 becomes 4,

and thus, makes them the most diverse pair.

In this section we describe our algorithm to compute the modified tree edit distance

that considers the query mappings as contextual information. We denote the modified distance

measure as Seeded Tree Edit Distance (STED).

Consider the set of matches T of a given query Q. Let S, T ∈ T be any two matches

for the query Q as shown in Figure 2.2 and MS and MT are the complete minimal mappings

from Q to S and T .

A

B C D

E

Q

A A

B B
C

C
D

D

E
E

F

F

F
G

G

G

H
H

1 2

4

3 8

9

5

7

6

1

2

3

10

9

G
8

7

6

5

4

S T

2

4

(a) (b)

Figure 2.2: An example query (Q) on the left with two matches S and T . The induced minimal
mapping between S and T is shown by the dashed lines.

16

We define a new mapping M : S → T where (si, tj) ∈ M for all (q, si) ∈ MS and

(q, tj) ∈ MT . Note that, M may not be complete but always minimal. We call M a seed map.

From now, M always refers to a minimal mapping and, therefore, the direction of the map is

not important at any point.

Note that, if M̂ : S → T is a super mapping such that M̂ ⊇ M then cost(M̂) ≤

cost(M) under equal costs of edit operations. Because we want to preserve the seed mapping

M as the context, we modify the tree edit distance to find a super mapping of M that minimizes

the total cost instead of any mapping.

Definition 3 The seeded tree edit distance, STED(S, T,M), between S and T given a minimal

mapping M : S → T , is the smallest cost over mappings M̂ ⊇M .

To compute STED using existing algorithms for computing tree edit distance, we can

just change the cost model trivially. More precisely, if (s, t) ∈ M then cost of deleting s,

inserting t and mapping s (or t) to a different node x 6= t (or s) is raised to infinity. This change

in cost model guarantees that (s, t) would be in the optimal mapping.

0 1 2 α α α α α α α

1 1 1 α α α α α α α

α α α 0 α α α α α α

α α α α α α α α α α

α α α α α α α α α α

α α α α 0 1 α α α α

α α α α 1 1 α α α α

α α α α α α 1 α α α

α α α α α α α α α 6

T1

S1

S2

S3

S4

S5

S6

S7

S8

S9

T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 2.3: Tree edit distance matrix of S and T

The classic algorithm for tree edit distance is a dynamic programming algorithm

which computes a matrix of size |S| × |T | where a cell (i, j) denotes the tree edit distance

between Si and Tj . For example, Figure 2.3 shows the matrix for trees in Figure 2.2 when the

change in the cost model is adopted. Clearly most of the entries are invalid and contribute noth-

17

ing to the final distance value. This motivates us to develop an efficient algorithm for finding

STED for two trees when the seed map is given. The algorithm is described sequentially and

is justified with necessary definitions and lemmas as we go along.

Let UT = {x|x ∈ V (T) and ∃y[(x, y) ∈ M or (y, x) ∈ M]} be the set of mapped

nodes in a tree T . Note that all of the leaves and the root of T are in UT . If the tree is divided

at every node in UT by keeping two copies in the two halves, we will get |UT | chunks from T .

Let C(T,M) or CT in short denote the set of chunks found in tree T and CTu denote the chunk

rooted at a node u ∈ UT . For example, Figure 2.4 shows the chunks of S and T from Figure

2.21.

Chunks
of S

Chunks
of T

STED 5 0 0 1 0

A

B C D

F

G

H

A

B C D

F

G

H

B

B C

C

D

E

G

D

E

F

E

EG

Figure 2.4: Mapped chunks of S, T and corresponding STED

Since M : S → T is a one-to-one mapping, every chunk CSu from tree S has a

mapped chunk CTM(u) in the tree T . The submapping Mu : CSu → CTM(u) induced from M is

minimal by definition. Note that no internal node in CSu is mapped byM . Moreover, no internal

node in CSu will be mapped by the optimal mapping M̂ to a node in CTM(v) where u 6= v. The

following lemma describes the fact more formally.

Lemma 1 Optimal mapping M̂ for STED(S, T,M) will not map any node from one chunk

CSu to another chunk CTM(v) such that there are u, v ∈ US and u 6= v.

1The reader may wonder why defining the leaves as tiny chunks. In reality, they have inconsequential effect on
the performance but, helps to simplify the description by far.

18

Proof 1 Let n ∈ CSu andm ∈ CTM(v) are two nodes in S and T (see Figure 2.5). For contradic-

tion, lets assume (n,m) ∈ M̂ . Therefore, u is anc(n) in S and M(v) is anc(m) in T . Since v

and M(v) are matched so v is anc(n) in S. Now, by construction, v can not be in the path from

u to n. Therefore, v is also anc(u). Since u and M(u) are matched, M(u) has to be anc(m)

and desc(M(v)). Because no internal node in the path from M(v) to m can be a mapped node

by M , this is a contradiction.

u

v

n m

M(v)

Figure 2.5: Contradiction of Lemma 1

Using the above lemma, we can now say that finding optimal mappings for every

pair of mapped chunks is sufficient. If we only find the mappings for the mapped pairs of

chunks, compute the editing distance for these mappings and then, sum these distances for all

of the mapped pairs of chunks; it is the same as the optimal editing distance between S and T .

Mathematically,

cost(M̂) =
∑
u∈US

cost(Mu : CSu → CTM(u)) (2.1)

To find the mapping between CSu and CTM(u), we now present an O(n2) algorithm

where n is the number of nodes in CSu and CTM(u). Since there is a one to one mapping be-

tween chunks, from now on we denote CSu and CTM(u) by S and T for simplicity of description.

Similarly, we denote Mu as M .

Definition 4 The leaf-sequence L(u) of a node u in a tree T consists of the leaves of T rooted

at u in the left to right order.

19

For example, in the left tree of Figure 2.6 L(5) =< 1, 2, 4 >. We extend the definition

of mapping for a leaf-sequence by taking the sequence of the matched nodes in the other tree

i.e. M(L(5)) =M(< 1, 2, 4 >) =< M(1),M(2),M(4) >.

A

B C D
F

G
H

A

B C D

(F)
H

(G)

A

B C D

F

G

H

G

A

B C D

(H)(GF)
G

Compress

1

3

2 4

5

1 2 3

4

5

Post
Order

Number

Leaf
Sequence

Stem
Sequence

Leaf
Sequence

Stem
Sequence

1 B BF B BGF

2 C C C C

3 BC HG D D

4 D D CD GH

5 BCD A BCD A

Figure 2.6: Compressed trees of first mapped pair chunks in Figure 2.4 and corresponding leaf
and stem sequence

Recall that in a chunk, only root and leaves are mapped by M . No other internal

nodes in a chunk will be in M . Our goal is to find the mappings for these internal nodes in M̂ .

The following lemma states the key of our algorithm classifying the internal nodes that will not

be mapped by M̂ at all. In other words, two internal nodes can be mapped only if their leaf

sequences are also mapped by M .

Lemma 2 For a node u in S, if there is no node in T with the leaf-sequence M(L(u)), then u

is not mapped by M̂ .

Proof 2 For contradiction let u is matched with v in T (see Figure 2.7). Since v has a different

leaf-set from M(L(u)), there is at least one map (w,M(w)) such that either w ∈ L(u) and

M(w) /∈ L(v) or the vice versa. Without losing generality, assume w ∈ L(u). Since u is an

anc(w), v has to be an anc(M(w)) according to the definition of mapping. Since M(w) /∈

20

L(v), by construction, there is a x ∈ L(v) which is also anc(M(w)). Since x is a leaf node

of a chunk, there has to be (y, x) ∈ M such that y is a anc(w) and a desc(u). This leads to

contradiction since no chunk has an internal node mapped by M .

v

x

M(w)

w

u

Figure 2.7: Contradiction of Lemma 2

There can be multiple nodes in the same tree having the same leaf-sequence and nodes

with the same leaf-sequence form a path in a tree. Based on this observation, we can compress

S and T by collapsing paths to single nodes. Figure 2.6 shows the compressed trees of the first

pair of chunks in Figure 2.4, where nodes in a single path with the same leaf sequence are shown

as the label of the corresponding edge. We call a collapsed path a stem.

Definition 5 A stem is a subsequence P of the nodes in the postorder sequence of a tree such

that ∀iL(Pi) = L(P1) where Pi is the ith node in P . L(P) is defined to equal L(Pi).

The table in Figure 2.6 shows the stem and leaf sequence of all the nodes of the two

compressed trees. We are now required to find the pairs of stems from the two trees having

leaf sequences mapped from one to the other. We need to do it efficiently without checking

all possible pairs of stems. We argue that, one parallel scan through S and T in post-order is

sufficient.

Our algorithm parallely scans the nodes in trees S and T in post-order. Assume the

algorithm is currently looking at two nodes u and v from S and T , respectively. If their leaf-

sequences are mapped by M , we compute the mapping between their stems in a way described

later. If their leaf-sequences are not mapped by M then, we can skip either u or v and advance

21

the scan with the confidence that the skipped node will never be mapped by an M̂ . The lemma

3 justifies this decision. Note that the parallel scan requires at most |S| + |T | − 1 checks for

pairs of stems.

Lemma 3 Let u be a node in S. Let pl and pr be the leftmost and the rightmost nodes in

M(L(u)) in the tree T , respectively. Also let v be a node in T and, ql and qr are the leftmost

and rightmost nodes in L(v) in the tree T . If M(L(u)) 6= L(v) then

1. if pr > qr or (pr = qr and pl < ql), then for no node x > u, M(L(x)) = L(v).

2. If qr > pr or (qr = pr and ql < pl), then for no node x > v, M(L(u)) = L(x).

3. no other case occur.

Proof 3 If x and y are any two nodes and x > y (i.e. x is to the right of y) then only one of the

following is true2.

? x is an ancestor of y and, therefore, L(y) is a subsequence of L(x). L(y) ⊆ L(x)

? At their least common ancestor, x is in a right subtree to y and, therefore, they have no

common subsequence. L(x) ∩ L(y) = ∅.

1. Note that M(L(u)) 6= L(v). The given condition essentially describes three possible

scenarios as shown in Figure 2.8(a-c). For any node x > u, there can be two cases.

? If L(x) = L(u) then trivially M(L(x)) 6= L(v).

? If L(u) ⊂ L(x) or L(u) ∩ L(x) = ∅ then there is a leaf t ∈ L(x) where M(t) /∈

M(L(u)). Now M(t) can be in two possible places.

•M(t) < pl: Definitely pr ∈ M(L(x)). Since M(t) /∈ L(v) (in Figure 2.8(b-c)) and

pr /∈ L(v) (in Figure 2.8(a)), therefore M(L(x)) 6= L(v).

•M(t) > pr: Trivially M(t) /∈ L(v), therefore M(L(x)) 6= L(v).

2We are abusing the set operations for sequences. We believe the context clarifies the intended meaning.

22

2. Since M is minimal, using the inverse mapping M ′ and similar arguments as above we

can prove that for no node x > v, M(L(u)) = L(x).

3. For any two nodes in a tree it is not possible to have both L(x) ∩ L(y) 6= ∅ and L(y) *

L(x). Therefore, the remaining cases as shown in the Figure 2.8(d) cannot occur.

v

ql prplqr

v

ql prpl qr

v

qr ,prpl ql

v

ql prpl qr

(a) (b) (c) (d)

Figure 2.8: The tree T . (a-c) Three possible scenarios for case 1. (d) An impossible scenario
which cannot occur as described in case 3 of lemma 3.

The remaining piece of the puzzle is to find the optimal mapping between the stems

having leaf-sequences mapped from one to the other. The following lemma describes how we

compute the optimal mapping and the distance as well. Here, SED stands for string edit dis-

tance [62]; The proof of this lemma is skipped for brevity as it is a straight forward specialization

of the tree edit distance for paths (see [87] for details).

Lemma 4 If PS and P T are two stems of S and T , respectively, such that M(L(PS1)) =

L(P T1), then TED(PS , P T) = SED(PS , P T).

Using the above lemmas 1 to 4 we have designed our algorithm 1 for computing

STED. STED(S, T,M) takes in two trees S and T and divides them into chunks. For each

mapped pair of chunks, the algorithm parallelly scans to see if there is any pair of stems with

mapped leaf sequence. For mapped stems, the algorithm computes the string edit distance of

the stems and add the value to the total cost. For non-mapped pair of stems, the algorithm adds

23

the length of one of the stems that is guaranteed to remain unmapped in M̂ . Note that, adding

length of the stem is equivalent to insertion/deletion of all of the nodes in the stem.

The running time of the proposed algorithm is O(n2) with the requirement of a mini-

mal seed mapping M . In the worst case, when both of the trees are simple paths the algorithm

costs exactly O(n2) time to compute the string edit distance where n is the number of nodes

in the trees. Note that, the standard tree edit distance is at least O(n3) [18] and, therefore, our

algorithm is faster than the generalized tree edit distance by at least an order of magnitude (i.e.

a factor of n) while being more meaningful as well.

2.2.2 Content Based Diversity

In the previous section, we have described how the mapping induced by the query can be used

to compute accurate and efficient distances for diversification. If we use STED for the matches

in Figure 1.2, both (1, 3) and (2, 3) produce distance values of 1 and, consequently, result in a

tie. Because (1,3) involves the same person (i.e. “Michalis”) while (2,3) does not, the obvious

choice for the diverse pair is (2,3). Now the question is, how we can modify STED to capture

true diversity by breaking such tied situation.

The answer is, by taking the contents (i.e. nodes in the document that are structurally

unrelated to the query) into consideration. Contents can create different levels of differences

between matches even if the matches are structurally similar to each other. For example, in

Figure 1.2 the first two matches are PhDThesis records linked to Faloutsos, but their authors are

different.

When two nodes of a map (si, tj) have the same label (i.e. label(si) = label(tj)),

under the equal cost model no cost is added to the total. There can be differentiating features in

the branches of the subtrees Si and Tj that are not matched to the query and, hence are ignored

by STED. For example, First Name/Michalis is a branch of Author in match 1 which is not

24

matched to any part of the query. Let SRi and TRj are the two trees rooted at si and tj that

contain the remaining branches unmatched to the query. We add a correction cost c ∈ [0, 1] as

a cost of the map (si, tj) to capture the amount of mismatch present in SRi and TRj .

The correction cost c can trivially be computed by simply taking the TED(SRi , T
R
j)

and normalizing by the maximum possible distance between a pair of matches. However, TED

is too costly to use for computing the fractional contributions from the contents just to break the

ties. We develop a novel approach to obtain the correction cost c efficiently.

At first, we classify nodes of an XML document in one of the four categories: value,

attribute, entity and connector.

? All leaf nodes are Value nodes.

? A parent of a value is an Attribute

? A parent of an attribute is an Entity if it is not an attribute itself.

? A node other than the above three is a Connector.

Similar classification has been proposed in [64] when the Document Tree Descriptor

(DTD) is not available. We scan the documents once to identify the type of every node. For

example in Figure 1.2, there are four attributes; School, First Name and Last Name, Title and,

three entities; PhDThesis, Author and Paper.

The four classes of nodes are defined keeping the usual structure of an XML document

in mind. In general, an attribute (similar to a “variable” in programming languages) has exactly

one value and no other child. Therefore, attributes do not require the above mentioned correction

cost as their values are always compared. In contrast, entities generally have multiple attributes

and may need some correction cost. Since connectors have no attribute/value, having correction

cost for them is not meaningful.

To compute the correction cost for entities, we only consider the number of mis-

matched attributes. Two attributes are mismatched if they have the same label but different

25

values. For example, in Figure 1.2 the entity Author in all the documents has two attributes

First Name and Last Name. While comparing the two Author nodes in 1 and 2, the number of

mismatched attributes is 1 because of the different first names. If an attribute is present in only

one entity and absent in the other, it does not confirm any difference between the entities and,

therefore, these attributes are not counted as mismatch [65]. For example, had there be a Middle

Name attribute for the Author entity in match 1, the number of mismatched attributes would still

be 1.

We define the correction cost for entities as below.

ce =
Number of mismatched attributes
Total number of distinct attributes

(2.2)

Here, the total number of attributes is a normalization constant. Examples of correc-

tion costs for entities: cAuthor = 0.5 for the match pairs (1, 2) and (2, 3). Let us revisit the

problem of breaking ties for the matches in Figure 1.2. (1, 3) has a distance of 1 and (2, 3) has

a distance of 1.5 when the correction costs are used with the equal cost model. Thus, adding

content awareness breaks the tie meaningfully in favor of the true diverse set of matches.

2.2.3 Algorithm for STED

Algorithm 1 shows the pseudocode for finding STED between two matches S and T when the

minimal mapping M is given. Consider two matches S and T of Figure 2.2 as the inputs of

algorithm 1. The algorithm creates all the chunks as shown in Figure 2.4 at lines 1 and 2 using

the algorithm 3 . For each pair of mapped chunks, we initiate two pointers n and m (lines

5-6) that iterate through the chunks in their respective postorder sequence. The algorithm also

computes (using the algorithm 5 at line 7-8) two sequences (i.e. arrays), B and E, that store the

beginning and ending leaves of the leaf-sequences. For example, Bi and Ei are the beginning

26

Algorithm 1 SeededTreeEditDistance(S, T,M)

Require: S and T are two trees, M : S → T is a minimal mapping
Ensure: Return the seeded tree edit distance

1: CS ← Chunks(S,M)//algorithm 3
2: CT ← Chunks(T,M)
3: sum← 0
4: for each pair (CS

u , C
T
M(u)) do

5: n← first node of CS
u in post-order

6: m← first node of CT
M(u) in post-order

7: BS , ES ← LeafSequences(CS
u)

8: BT , ET ← LeafSequences(CT
M(u))

9: while n and m are not nil do
10: i← n, j ← m
11: PS , n← FindStem(n,CS

u)
12: PT ,m← FindStem(m,CT

M(u))

13: if BT
j =M(BS

i), E
T
j =M(ES

i) and i,j are not leaves then
14: sum← sum+ SED(PS , PT)
15: else if BT

j =M(BS
i), E

T
j =M(ES

i) and i,j are leaves then
16: sum← sum+ SED(PS − i, PT − j) + cost(i, j)
17: else if M(ES

i) > ET
j or (M(ES

i) = ET
j and M(BS

i) < BT
j) then

18: sum← sum+ |PT |, n← i
19: else
20: sum← sum+ |PS |, m← j

Algorithm 2 FindStem(n,C)

Require: A chunk C and a node n in C
Ensure: Return the stem P and the next n after the stem

1: i← n, P ← ε
2: while L(i) = L(n) and n is not nil do
3: P ← Concatenate(P, n)
4: n← next node of C in post-order

and ending leaves of L(i).

At every iteration, the stems of the of nodes n and m are found (lines 11-12) by the

algorithm 2. Algorithm 2 creates and returns the stem of node n by concatenating nodes with

the same leaf-sequence as L(n) in the post-order of C. The algorithm also returns the first node

after n with different leaf-sequence.

When the stems are ready, the algorithm 1 checks to see if the stems have mapped

leaf-sequences (i.e. the beginning and ending leaves are same). The algorithm handles the pair

of stems with mapped leaf-sequences in two different ways (lines 13 and 15) based on the first

node of the stem. If the first nodes (i and j) are leaves, by the definition of chunks they are

27

Algorithm 3 Chunks(S,M)

Require: A tree S and a minimal M mapping to or from S
Ensure: Return C, a set of chunks of S

1: C ← ∅, Q = {x|x ∈ V (S) and ∃y[(y, x)or(x, y) ∈M]}
2: for each u in Q do
3: Cu ← FindChunk(u, ε,Q)
4: add Cu to C

Algorithm 4 FindChunk(n,Cu, Q)

Require: A node n, the list of mapped nodes Q and the current chunk Cu to add in
Ensure: Return the modified current chunk Cu

1: add n to Cu

2: if Cu = ε or n /∈ Q then
3: for each child v of n in left to right order do
4: Cu ← FindChunk(v, Cu, Q)

matched to the query nodes by the query processor and we want to preserve their mapping.

Note that, if i is a leaf, so is j and vice versa. To preserve the mapping between the leaves,

the algorithm computes string edit distance for the rests of the stems and add the cost for the

mapping of the leaves (line 16). When i and j are not leaves, the algorithm simply takes the

string edit distance between the stems.

When the leaf-sequences are not mapped, there can be two cases as described in the

lemma 3. In the first case, the node i remains active for the next iteration but stem the P T of the

node j is inserted/deleted (line 18). In the remaining case, the node j remains active and PS is

inserted/deleted (line 20).

Figure 2.9 shows the iterations of the loop at line 4 for the first pair of chunks in Figure

2.4. The final STED(S, T,M) is 6 which is equal to the last entry of the tree matrix in Figure

2.3.

Algorithm 5 LeafSequences(S)
Require: A tree S
Ensure: Return two arrays B and E containing the start and end nodes of the leaf sequences of every

node in S
1: B ← ε, E ← ε
2: FindLeafSequence(Root(S), B,E)

28

Algorithm 6 FindLeafSequence(u,B,E)

Require: A node u and two arrays B and E to store the start and end of L(u)
1: if u is a leaf then
2: Bu ← u,Eu ← u
3: else
4: for each child v of u do
5: FindLeafSequence(v,B,E)
6: i← leftmost child of u
7: j ← rightmost child of u
8: Bu ← Bi, Eu ← Ej

2.2.4 Properties of the Distance Measure

The seeded tree edit distance (STED) has some elegant properties: triangular inequality, fast

lower bound and upper bound.

2.2.4.1 Triangular Inequality

The original tree edit distance holds the triangular inequality. STED also holds the triangular

inequality as long as the seed mapping is same.

Theorem 1 STED(T1, T2,M) + STED(T2, T3,M) ≥ STED(T1, T3,M)

Proof 4 The STED can be obtained by creating a cost model from M . Since, M is fixed, and

TED holds triangular inequality, STED also holds triangular inequality.

When we add content awareness in STED, it becomes a bit complicated. If we choose to use the

described definition for “mismatch” in the previous section, the triangular inequality does not

hold. But there is a way around for performance critical applications where triangular inequality

is the key for performance. If we consider absent attributes as mismatched attributes, triangular

inequality holds with the given definition of correction cost.

2.2.4.2 Lower Bounds

Another desirable property of a distance measure is the availability of low cost lower bounds

for fast similarity search. There is a simple lower bound for STED that requires O(n) time for

computation while STED itself requires O(n2).

29

Figure 2.9: Iterations performed by the algorithm 1 for the first pair of chunks in Figure 2.4.

STED requires computing the string edit distance for stems with mapped leaf-sequences.

A trivial lower bound for String edit distance is the absolute difference between the lengths of

the strings being compared. If we use such trivial bounds whenever STED needs a string edit

distance, the resulting distance value is a lower bound to the original STED.

2.2.4.3 Upper Bounds

Similar to lower bound, an upper bound of STED can be computed by taking the sum of the

lengths of the two stems used in string edit distance computations. Such an upper bound also

requires O(n) time for computation.

2.3 Diversification

Result diversification is in general an NP-complete [83] problem. Many heuristics [40] have

been proposed to find approximate diverse result set (greedy heuristic, interchange heuristic,

30

clustering heuristic, etc.). In this chapter we utilize the greedy heuristic algorithm [41] (see

algorithm 7) which selects a seed of one or two matches (line 1). Once the seed is selected, the

algorithm finds the next object to add in the final result set (line 4-5). To do that, the algorithm

compares each of the remaining matches to the already added matches in the result set and add

the one that has the maximum total distance to the current result set. The algorithm stops once

k matches are added to the result set (line 3). The algorithm computes linear number of editing

distances on the number of matches (|(T)|) as k << |T |. We consider three methods Diameter

Seed [41], Lower Bound Seed and Random Seed for selecting the seeds.

• Diameter Seed: Select the farthest pair of points (diameter) in the set of matches (i.e.

T) as the seed. Finding the diameter is inherently quadratic in time complexity for high

dimensional data.

• Lower Bound Seed: Select the farthest pair of points by using the lower bound (as de-

scribed in Section 2.2.4) instead of the true tree edit distance. This approach is also

quadratic but promises to be faster.

• Random Seed: Select one match as the seed at random. This approach is efficient but

suffers degradation in quality (see Section 2.4).

Algorithm 7 Greedy −Diversification(T ,K,Algo)
Require: A set of matches T , the final result set size k
Ensure: Return the set R of top-k diverse matches from T

1: R← initial seed(s)
2: T ← T -R
3: while |R| < k do
4: find Ti in T such that the total pair-wise distance of

R ∪ Ti is maximum for all Ti ∈ T
5: R← R ∪ Ti, T ← T - Ti

In Figure 2.10, we demonstrate the trends of the seed selection algorithms as the

number of matches increases. We compare the running time of the algorithms with that of a

standard query processor (LCS-Trim [78]). As the figure suggests, the curves are diverging and

31

therefore, the motivation of having a diverse result set no longer worth the waiting time after

the matches are available from the query processor. Clearly we need an efficient diversification

algorithm taking sublinear time with the increasing number of matches.

0.5 1 1.5 2 2.5 3
x 104

10-1

100

101

102

103

104

105

106

Number of Results

R
un

ni
ng

 T
im

e
(s

)
Diameter-Seed
Lower Bound-Seed
Random-Seed
LCS-Trim

Figure 2.10: Comparison of running times of different diversification algorithms with a sample
query processor, LCS-Trim.

2.3.1 Novel Heuristic for Seed Selection

As we have discussed random-seed linear time diversification algorithm improves the running

time but degrades the quality, which motivates to propose a new and fast heuristic for seed

selection, so to have similar time complexity as random-seed while improve the overall quality

of diverse result set.

We propose a new scoring technique for selecting the initial seed. Instead of a random

seed, we want to start from one of the matches which have an extreme value for a relevant but

low cost feature. One such feature is the count of nodes in a match. Counting nodes for every

match and selecting the one with the maximum count takes one linear scan over the matches.

Note that, this process does not require any distance computation. We name this selection

method as QMax.

However, there is still a significant gap between the query matching algorithm and the

fastest diversification algorithms (Figure 2.10) indicating a large latency for the users posing the

32

query. As an effort to reduce the gap further, we develop pruning strategies based on triangular

inequality property of STED.

2.3.2 Pruning while Maintaining Diversity

In the greedy diversification process, all of the remaining matches are compared against the

current result set (say Rc) to find the one having the maximum total distance. More precisely,

one needs |Rc|(N − |Rc|) comparisons to add the next match to the result set and a total of kN

distance computations to complete the whole process where k is the size of the final result set

and N is the size of the initial result set. To reduce such a large number of STED computations,

we use our novel pruning technique for diversification.

For efficient pruning, we need a very tight upper bound of the original total distance

for a very low cost. The reason is once we know that an upper bound is smaller than the current

maximum we can safely ignore the candidate match. Triangular inequality can be used to get a

very low cost upper bound of any original distance by using the following formulae.

UB(A,B) = UB(A,C) + UB(B,C) ≥ UB(A,C) + d(B,C)

≥ d(A,C) + d(B,C) ≥ d(A,B) (2.3)

Note that, computation of an upper bound requires either two true distances or two

upper bounds or one upper bound and one true distance.

How should we compute and use these upper bounds to achieve maximum pruning?

We propose algorithm 8 for this purpose, which computes the true distances between every

successive pair in the output of query matching algorithm. Let us assume at any instance, C is

a candidate match for which we want to compute the total distance to the current result set Rc.

Let us also assume that the upper bound or the true value of the total distance from C−1 (i.e.

33

previous match of C in the output of query matcher) is UB(Rc, C−1). The upper bound of the

total distance from C is then:

UB(Rc, C) = d(C,C−1) ∗ |Rc|+ UB(Rc, C−1) (2.4)

Note the recursive nature of the above equation which enables sequential computation

of the upper bound of the total distance from the candidates. If the upper bound is larger than

the current maximum total distance, the algorithm just makes the upper bound equal to the true

total distance.

Although the bounds can be computed elegantly in the above way, the bounds do

not posses enough tightness because of the repeated use of triangular inequality. In the case

when the successive pairs of candidates are very similar to each other, the first term of the right

hand side of equation 2.4 remains very small and, thus making the bounds more tight. Fortu-

nately, the query matching algorithms typically outputs the matches with strong local similarity.

Consequently, concatenated bounds achieve significant speedup over the linear diversification

algorithms.

2.3.3 The Algorithm for Pruning Based Diversification

The above pruning technique is implemented within the diversification algorithm described in

the algorithm 8. The algorithm takes as input the set of matches T and the desired size of the

output k. The algorithm selects the result with the maximum number of nodes as the seed for

the diversification process (line 1). Then it iterates for the rest of the positions in the output set.

SumofDistances(R, Ti) denotes the sum of distances from the result Ti to all results in R.

In each iteration the algorithm 8 scans the result set T to find the furthest result (i.e. bestT)

from the current output set R. While checking a candidate result Tj , the algorithm computes

the upper bound U in line 7 and test to see if the candidate is larger than the currentBest. If

34

the test succeeds, the algorithm computes the sum of the distances from Tj to R (line 9) and

updates appropriate histories (lines 11-12) if the true sum is larger than the currentBest.

Once the scan is complete in an iteration, the bestT is removed from the T and added

to the output set R. Note that the number of distance computations at line 7 and line 9 of the

algorithm 8 depends on the amount of previously computed distance values we store in memory

for reuse. Pessimistically, we assume there is no extra memory here.

Algorithm 8 DiversificationByPruning(T ,K)

Require: A set of matches T and the size of the final result set k
Ensure: Return the set R of top-k diverse matches from T

1: R← {Tx such that |Tx| is maximum}
2: T ← T -Tx
3: for i← 2 to k do
4: U−1 ← SumofDistances(R, T1)
5: currentBest← U−1

6: for j ← 2 to |T |-|R| do
7: U ← (i− 1) ∗ d(Tj , Tj−1) + U−1

8: if U > CurrentBest then
9: U ← SumofDistances(R, Tj)

10: if U > CurrentBest then
11: currentBest← U
12: bestT ← Tj
13: U−1 ← U
14: R← R ∪ {bestT}
15: T ← T -{bestT}

2.4 Evaluation

To experimentally demonstrate the utility of our algorithms, we have used the Treebank dataset3

because of its rich structural variations. We have selected seven queries (Table 2.1). The queries

are structurally different from each other to cover several extreme cases. The experiments are

performed in a standard unix system on a 2.10 GHz processor and 4GB of RAM.
3http://www.cs.washington.edu/research/xmldatasets/

35

Query XPath Expression Matches
Q1 //S[/V P/NP][/V P] 11752
Q2 //EMPTY//X/V P/PP//NP 1412
Q3 //S[//NNS][//JJ][//V P//NNP] 30349
Q4 //EMPTY//S/V P/ ∗ /SBAR//PP//NN 28463
Q5 //S[//DT][/V P//PRP DOLLAR] 4559
Q6 //S[/NP][/V P/ ∗ /PP//NNP] 35326
Q7 //S[//NP/NNP][//CC][/ ∗ /V P [/V BZ] 906

[//NP/ NONE]]

Table 2.1: Query Set

2.4.1 Speedup of STED

Our first experiment is to evaluate the performance of STED in comparison with the generalized

tree edit distance that uses a modified cost model to preserve the seed map. We also use an

intermediate algorithm which divides the trees into chunks as STED but, computes regular tree

edit distances (with the modified cost model) for every pair of chunks. Figure 2.11(a) shows the

average time taken to compute the distance between two results for the queries in Table 2.1 by

all of the three methods. STED performs at least two orders of magnitude faster than the tree

edit distance while the chunk-only version achieved notable amount of speedup demonstrating

the importance of the our chunking approach. In Figure 2.11(b), we show the average time

required to compute just the correction costs for content aware distance. By comparing the bars

to those of Figure 2.11(a), we conclude that adding correction costs for content awareness does

not increase the computation time significantly.

Q1 Q2 Q3 Q4 Q5 Q6 Q710
0

10
1

10
2

10
3

10
4

Query

Av
g.

 D
is

ta
nc

e
C

om
pu

ta
tio

n
tim

e
(µ

s)

TED Chunk-Only STED

Q1 Q2 Q3 Q4 Q5 Q6 Q710
0

10
1

10
2

10
3

Query

Av
g.

 D
is

ta
nc

e
C

om
pu

ta
tio

n
tim

e
(c

on
te

nt
 o

nl
y)

 (µ
s)

TED Chunk-Only STED

Figure 2.11: Average time taken to compute (a) the distance (structure and content) (b) only the
content distances between two results

36

2.4.2 Evaluation of Diversification Algorithms

We compare the seed selection algorithms, Diameter Seed (Dia), Lower Bound Seed (LB) and

Random Seed (Rand), against our proposed heuristic, QMax. Note that, Dia and LB require

quadratic number of distance computations for seed selection, while theRand andQMax need

no distance computation for seed selection.

2.4.2.1 Qualitative Analysis

For qualitative analysis, we compare the final result sets returned by different algorithms with

the result set generated by the optimal (brute force) algorithm for the same query and input pa-

rameters. We use two criteria to measure the quality, precision and percentage gap. Precision of

an algorithm is the fraction of the optimal top-k matches that the algorithm returns. Percentage

gap is the percentage of the deviation of the total pair-wise distances of an algorithm from that of

the optimal algorithm. For the efficiency of the brute force algorithm, the number of candidate

results (N) is fixed to be 100 (Figure 2.12). In both the measures QMax performs better than

LB and Rand, and very close to Dia.

5 6 7 8 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

Av
er

ag
e

Pr
ec

is
io

n

Dia QMax LB Rand

5 6 7 8 910-1

100

101

102

k

Av
er

ag
e

Pe
rc

en
ta

ge
 G

ap

Dia QMax LB Rand

Figure 2.12: (a) Average Precision vs k (b) Average Distance Gap vs k.

2.4.2.2 Scalability Analysis

Our next experiment is to evaluate the scalability of the diversification algorithms as the number

of candidate results and k increase. We have shown the experiments for three different queries

37

(Q1,Q3,Q4). Q1 allows no structural variation and, therefore, result into diversification for

contents only. Q4 is a path query, while Q3 more complicated and can generate a wide range of

structurally diverse results. (Note that, for Q1, as there is no structural variation, Dia and LB

show same performance. We skip the curve for LB for visual clarity)

In Figure 2.13, we show the running times of the algorithms to produce top-25 diverse

results from different result sets. Clearly QMax outperforms the quadratic algorithms Dia and

LB (Figure 2.13). When the pruning is added to QMax, the running time is further improved

up to a factor of 2. Note that our pruning technique speeds up greedy methods without changing

the accuracy. The curve for Rand is skipped for visual clarity as it overlaps the curve forQMax.

In Figure 2.14, the total pair-wise distances of the top-25 diverse matches are shown

for different algorithms. In both Figures 2.12(b) and 2.14, QMax achieves insignificantly less

accurate results compared to Dia. Reader may interpret this little loss on accuracy as the price

paid for the huge speedup shown in Figure 2.13. In practice, the small difference in the total

distance does not add subjectively noticeable changes in the reported output.

We have also studied the running time and the total pair-wise distance of the algo-

rithms for different values of k for a fixed result set size (Figures 2.15 and 2.16). Quadratic seed

selection methods (Dia and LB), need so large an amount of time for selecting the seed that the

rests of the algorithms (with complexity O(k|(T)|)) negligibly increase the total time (Figure

2.15). In contrast, QMax selects the seed very fast and therefore, the running time for QMax

(with or without pruning) linearly increases with k. This ensures a possible adaptation of our

algorithm as an anytime algorithm, where the user can preemptively stop the computation at any

time with the best answers she could get in the elapsed amount of time.

38

2000 4000 6000 8000 1000010
-1

10
0

10
1

10
2

10
3

10
4

Number of Results

R
un

ni
ng

 T
im

e
(s

)

Dia QMax
QMax with Prunning

(a) Q1

2000 4000 6000 8000 10000 12000 1400010
-1

100

10
1

10
2

10
3

10
4

10
5

Number of Results

R
un

ni
ng

 T
im

e
(s

)

Dia LB QMax
QMax with Prunning

(b) Q3

2000 4000 6000 8000 10000 12000 1400010
-1

10
0

10
1

10
2

10
3

10
4

10
5

Number of Results

R
un

ni
ng

 T
im

e
(s

)

Dia LB QMax
QMax with Prunning

(c) Q4

Figure 2.13: Running time vs |(T)| (k = 25)

2000 4000 6000 8000 100001000

1200

1400

1600

1800

2000

2200

2400

Number of Results

To
ta

l P
ai

r-
w

is
e

D
is

ta
nc

e

Dia
QMax
Rand

(a) Q1

2000 4000 6000 8000 10000 12000 14000
7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

Number of Results

To
ta

l P
ai

r-
w

is
e

D
is

ta
nc

e

Dia
QMax
LB
Rand

(b) Q3

2000 4000 6000 8000 10000 12000 140005000

5500

6000

6500

7000

7500

8000

8500

9000

Number of Results

To
ta

l P
ai

r-
w

is
e

D
is

ta
nc

e

Dia
QMax
LB
Rand

(c) Q4

Figure 2.14: Total Pair-wise Distance vs |(T)| (k = 25)

5 10 15 20 2510
-1

10
0

10
1

10
2

10
3

k

R
un

ni
ng

 T
im

e
(s

)

Dia
QMax
QMax with prunning

(a) Q1

5 10 15 20 2510
0

10
1

10
2

10
3

k

R
un

ni
ng

 T
im

e
(s

)

Dia
LB
QMax
QMax with prunning

(b) Q3

5 10 15 20 2510
0

10
1

10
2

10
3

k

R
un

ni
ng

 T
im

e
(s

)

Dia
LB
QMax
QMax with prunning

(c) Q4

Figure 2.15: Running time vs k (|(T)| = 5000)

5 10 15 20 250

500

1000

1500

2000

2500

k

To
ta

l P
ai

r-
w

is
e

D
is

ta
nc

e

Dia QMax Rand

(a) Q1

5 10 15 20 250

2000

4000

6000

8000

10000

12000

k

To
ta

l P
ai

r-
w

is
e

D
is

ta
nc

e

Dia QMax LB Rand

(b) Q3

5 10 15 20 250

1000

2000

3000

4000

5000

6000

7000

8000

9000

k

To
ta

l P
ai

r-
w

is
e

D
is

ta
nc

e

Dia QMax LB Rand

(c) Q4

Figure 2.16: Total Pair-wise Distance vs k (|(T)| = 11500)

39

2.5 Related Work

Our work in this chapter is related to three different branches of computing research.

Query Processing on Semi-structured Data (i.e. XML documents) has been ad-

dressed in several occasions and there are three different types of algorithms have been pro-

posed; path based [14][30], twig based [23][59] and sequence based [78]. In path based meth-

ods, the original query is divided into paths from root to leaves and, the matches corresponding

to these paths are joined together to construct a complete match. Twig based methods perform

better than path based ones by considering the twig as a whole and, therefore, eliminates expen-

sive stitching operations. Sequence based methods first convert the query and document into

sequences and perform a search for the query subsequence in the document sequence. It has

been recently shown that LCS-Trim [78] outperforms the other approaches. Hence we have

chosen it as the query processor for our algorithms in this chapter. It should be noted that the

choice of query processing algorithm is orthogonal to our problem.

Diversifying search results is also a well addressed area of research. [48] provides

a general framework for the result diversification problem. Specialized solutions for relational

and web databases are also proposed [12][41][81]. There are rich surveys on diversification

[42][51][83] that classify the available algorithms into two principal types, the greedy best first

approach and the iterative gain maximization approach. In this chapter, we focused on the

greedy best first method because it needs few linear scans of the data and does not depend on a

large number iterations to produce better quality results.

Despite the wide range of work on diversification, there is little on diversifying XML

query results. [39][65] proposed result diversification based on keyword queries instead of clas-

sic XPath or XQuery queries and concentrate only on the content information of the documents.

None of these methods formally consider the structural diversity among the results. We present

40

the first of such diversification algorithm that treats the results as trees rather than collections of

labels.

Computing dissimilarity between trees using the tree edit distance (TED) [87] is

one of the first methods for comparing tree-like structures. [49] proposed O(n2) lower and

upper bounds of the tree edit distance. [17] provides an O(n2) algorithm for approximating tree

edit distance through string edit distance. None of these methods defined the special case of

computing TED in presence of a given seed mapping. We present the first exact algorithm to

compute the seeded tree edit distance.

41

Chapter 3

Adaptive Diversification

This chapter is based on [53]. At first, we provide a user navigation cost model that

captures the actions of a user navigating a result set (Section 3.1). The cost model is necessarily

probabilistic since it computes the cost based on possible future actions taken by the user while

navigating a result set. We propose ways of estimating the expected cost in Section 3.2. We

then show that the problem of computing the best set of results to minimize the expected user

effort is NP-hard (Section 3.3) and propose efficient approximate algorithms to compute an

appropriately balanced diversified result-set that minimizes the expected user navigation cost

(Section 3.4). We present the results of an extensive experimental evaluation of the proposed

techniques compared to state-of-the-art ranking methods using two real datasets (Section 3.5).

We validate our cost model and measure user navigation time with a user study at Amazon

Mechanical Turk, which shows that our methods outperform the state-of-the-art (Section 3.6).

Finally we discuss the related work in Section 3.7.

3.1 Problem Definition

We proceed with the problem setting (Section 3.1.1), and describe our navigation cost model

(Section 3.1.2), which mimics the actions of a user navigating query results and quantifies the

42

user effort, that is, assigns cost to the user actions. We then conclude with a formal problem

definition (Section 3.1.3).

3.1.1 Preliminaries

Let D = {r1, . . . , rn} be a database consisting of n tuples and A= {A1, . . . , Am} be a set

of attributes. Each attribute has an associated domain ADom(Ai) consisting of uninterpreted

constants. The database D is heterogeneous and each tuple ri ∈ D has a value for a subset

Ai ⊆ A of attributes and a null (ε) value for the rest.

Query: The user exploring D, navigates the results RQ ⊆ D of a query Q which

could be a keyword query. Each attribute-value combination in the results of RQ, denoted by

c : Ai = vi, is a condition and can be used to refine the query. We denote the set of all conditions

of RQ by C(RQ).

Example: Figure 1.4(a) shows a result-set RQ for Q : Camera, where the user could

refine the query by selecting condition ci : Brand = Canon, which would return the two

Canon cameras (#1,#3).

Paginated Result Subset Sk: Typically, the result set RQ is too large to fit into a

single page on the user interface. These results are therefore paginated and only a small subset

Sk ⊆ RQ of size k is presented to the user at a time. The size k of the result subset depends

on the display size of the device. For example, e-commerce and web-search interfaces typically

show 10 − 15 results at a time on desktop browsers and 5 on mobile devices. The latter are

the key focus of this chapter, which are even more challenging because the screen size does not

allow displaying other result information like facets.

Example: Figures 1.4(b-d) show examples of various paginated result subsets (with

k = 3) for the query results in Figure 1.4(a).

43

The choice of the subset Sk is critical in determining the effectiveness of a search

interface. In particular, Sk should contain relevant and a diverse set of results.

Let rel(r,Q) be the relevance score of a result r ∈ RQ, where a higher score means

the result r is more relevant to queryQ. Existing object relevance ranking functions like [29] can

be used to compute rel(r,Q). Also, let dist(ri, rj) be the distance between two results ri,rj ∈

RQ. For instance, dist(ri, rj) can be the Euclidean distance between the vectors representing ri

and rj . Currently, most systems model search result diversification as a bi-criteria optimization

problem that balances the effect of relevance and diversity using a trade-off parameter (λ ∈

[0, 1]) as follows:

Sk = argmax
S⊆RQ,|S|=k

[
(1− k)(1− λ)

∑
ri∈S

rel(ri, Q) + 2λ
∑

ri,rj∈S
dist(ri, rj)

]
(3.1)

We described several scenarios where this bi-criteria optimization is problematic. The

primary reason is the difficulty in selecting a value of λ for a given navigation step of a query.

Instead of fixing the trade-off between relevance and diversity, we model the diversi-

fication problem in terms of the user navigation effort. We do this by designing a holistic model

of the user navigating a list of paginated results that considers all the actions taken by a user,

discussed next.

3.1.2 Navigation Cost Model

Users execute queries on a search interface to satisfy a certain information need, which may be

satisfied by a certain objects in the query result. Given a user query Q and corresponding result

set RQ, the query interface presents the first page of results Sk ⊆ RQ of size k to the user. Each

result consists of a set of attribute-value conditions. These conditions are selectable (e.g. by

clicking on the associated link), thereby refining the query. Note that the search interface does

44

not provide any facet conditions to refine the results, but the results serve this dual purpose.

Such an arrangement is desirable especially in mobile devices where there is not enough space

to show both results and facet conditions. In particular, the user chooses among the following

possible actions at each step:

1. TERMINATE: If the users search need is satisfied on the current page, the search is termi-

nated.

2. NEXT-PAGE(RQ): The user can navigate to the next page of the result set in the hope of

satisfying her search need there. In this case, the search interface computes the next page

of results and presents these results to the user.

3. REFINE (Q,c): Typically, a user has a notion of the properties or conditions that a target

(desired) object must have. If one of these conditions is found in one of the displayed

results, then the user can refine her query by selecting (clicking) this condition c. The

query is then refined to Q ∧ c. For example, if a user is looking for Compact cameras

while reading through the result subset in Figure 1.4(d), she could click on the Compact

attribute value. This user repeatedly executes REFINE and NEXT-PAGE actions until

the target object is found, at which point the user TERMINATEs the navigation. This

iterative result navigation process is captured by the recursive navigation model presented

by algorithm 9. At the beginning of each step (line 1), the system computes a page of k

results to be presented to the user. The user reads all the results, represented by READ-

RESULT(Sk) and the rest of the navigation repeats recursively.

In our model, the user executes an action based on the displayed result set. Such

navigation models, where the user only selects actions proposed by the system, have been used

extensively in the navigation of keyword-based query results [60][73][27]. Each user action

45

Algorithm 9 NAV IGATE(Q,RQ)

1: Sk = COMPUTE − PAGE(Q,RQ)
2: READ −RESULT (Sk)
3: if search need satisfied by Sk then
4: TERMINATE
5: else
6: Choose one of the following:
7: (a): Select a condition c ∈ C(Sk) to refine; REFINE(Q, c);Q← Q ∧ c
8: (b): NEXT − PAGE(RQ \ Sk)
9: NAV IGATE(Q,RQ)

(REFINE, READ-RESULT, NEXT-PAGE) is an effort on the part of the user. The total effort

of the user to satisfy her search need is the navigation cost.

As an example, consider the user navigating the result set in Figure 1.4(a) using the

initial pagination in Figure 1.4(d). Further assume that the user is interested in Lenses with

55 − 300mm Focal Length (#11). As a first step, the user would read (READ-RESULT) the

first page of 3 results. Next, the user REFINEs by Type: Lens to see only the Lens results, since

she is interested in Lenses. Up to this point the navigation cost consists of 3 READ-RESULT

actions and 1 REFINE. Upon REFINE, the interface presents the 2 lens results (#10,#11),

which the user reads and finds the desired object, thereby TERMINATING the navigation. The

overall navigation cost is 5 READ-RESULT + 1 REFINE.

If we assume that reading a result incurs unit cost (as was assumed in [60]), and the

cost of REFINE (click) action is a constant greater than one (say α = 3), the total cost is

5.1 + 1.3 = 8. This assumption about the constant α reflects our belief that REFINE incurs

more user effort than reading a result, since the user has to consider all the conditions and then

decide on a condition to click on. Similarly, the user could do NEXT-PAGE instead of REFINE

if she does not find any useful condition to refine on. The cost of NEXT-PAGE is β.

46

3.1.3 Problem Statement

The overall navigation cost depends on the result subset Sk that is presented to the user at each

step. For example, if the user in the example above is presented with a paginated result subset

containing the Camera Lens with 55− 300 Focal Length(#11), then she would find the desired

target object on the first page and TERMINATE the search. In this case, the total navigation

cost is 3 (3 READ-RESULTs).

Therefore, we need to compute a paginated result subset Sk ⊆ RQ, that will min-

imize the expected navigation cost, by appropriately balancing relevance and diversity. Let

cost(Q,RQ, Sk) denote the cost of navigating the result set RQ of a query Q, using the pagi-

nated result subset Sk. Then the minimal cost of navigation, cost(Q,RQ, k), is the cost of the

paginated result set Soptk , amongst the
(|RQ|
k

)
k-subsets, that has the minimum cost. Formally,

Minimum Cost Diversification (RQ, Q, k): Given a query Q and its result set RQ

(|RQ| ≥ k), compute the result subset Soptk of size k such that the expected navigation cost

incurred to satisfy the users search need is minimized.

cost(Q,RQ, k) = minSk⊆RQ
cost(Q,RQ, Sk) (3.2)

Next, we show how to estimate cost(Q,RQ, Sk), the cost of a result subset Sk for a

result set RQ.

3.2 Navigation Cost Estimation

The navigation cost of a result set RQ, computed as discussed in Section 3.1.2, depends on the

actions taken by the user in reaching a target object and can be exactly determined after the

navigation is complete. However, solution to the minimum cost diversification problem requires

the selection of result subset Sk before knowing what sequence of actions the user will perform

47

after viewing Sk. In this section, we propose a way to estimate the cost of navigating a result

subset Sk by means of a probabilistic cost model that assigns uncertainty measures to each

possible action a user can take and computes the expected navigation cost for a given Sk.

We begin by introducing the probability measures that capture the uncertainty in user

action. In the user navigation model explained by algorithm 9, the user, at each navigation step,

has three choices (1) TERMINATE the navigation (line 4) (2) REFINE by a condition (line 7)

and (3) to go to the NEXT-PAGE of results (line 8), and we introduce probability measures for

each of these actions (ways to estimate these probabilities are proposed in Section 3.2.1).

• PT (TERMINATE Probability): This is the probability that the user finds the

result she is looking for in Sk, and therefore terminates the navigation process.

• PR (REFINE Probability): This is the probability that the user chooses to refine the

result set RQ by adding a condition c to the query Q. On the other hand, the user could instead

choose to see the next page of the results. Since these are the only two choices supported by the

navigation model, the probability that the user chooses the NEXT-PAGE action is (1− PR).

• PR (REFINE by condition c Probability): If the user chooses to REFINE, then she

also has to select a condition c ∈ C(Sk) to refine by. The probability Pc captures the probability

that the user selects a condition c.

Given the probabilities defined above, the entire navigation process can be expressed

by the following recursive cost equation (cost(.,.,.) is overloaded):

cost(Q,RQ, Sk) =Sk + (1− PT).[
PR.{α+

∑
c∈C(Sk)

Pc.cost(Q ∧ c,RQ∧c, k)}

+ (1− PR)(β + cost(Q,RQ \ Sk, k))
]

(3.3)

48

This cost equation can be described as follows:

1. The user reads the results in Sk, and decides about her next action. The cost for reading

the results is |Sk| (assuming unit cost for the READ-RESULT action). If the user finds

the target object then she terminates the navigation.

2. Otherwise, with probability (1 − PT), she can either refine the query or go to the next

page,

a. The user decides to refine the query with probability PR. Let α be the cost for a

REFINE action. As the user can select any condition c ∈ C(Sk), we consider the cost

associated with each selection candidate c (shown as cost(Q ∧ c,RQ∧c, k)) weighted by

the Pc value.

b. With probability PN the user decides to go to the next page. β is the cost of a

NEXT-PAGE action, and the cost entailed by the NEXT-PAGE action and the cost of the

rest navigation is cost(Q,RQ \ Sk, k).

The cost equation (Equation 3.3) depends on the key probability terms PT , PR and Pc

which are computed as follows.

3.2.1 Computing Probabilities

In this section, we present specific and reasonable methods to compute the probabilities used in

our cost model. Depending on the specific application, other computation methods may more

closely model the user. The computation of these probabilities is orthogonal to the methods and

algorithms presented in Section 3.4, which are the key contributions of this chapter.

Computing PT : This is the probability that the user finds the target object in Sk and

therefore terminates the navigation. Since the target object is not known before navigation, a rea-

sonable assumption is the probability of a potential target object is proportional to its relevance

49

score rel(r,Q). If the user finds the target object amongst the result subset Sk, then she can

terminate the navigation. Therefore, we estimate the probability of termination as being propor-

tional to the sum of relevance scores in the paginated result subset Sk and normalize it with sum

of relevance scores of all the results in RQ as PT =
∑

r∈Sk
rel(r,Q)/

∑
r∈RQ

rel(r,Q). The

choice of the relevance function is orthogonal to this chapter and can be computed in various

ways such as TF-IDF [74] for keyword queries.

Computing PR: The key assumption we make is that the user has a high likelihood of

refining the query when the results in Sk are diverse. This is the key purpose of diversity which

is to provide to the user a variety of attribute values that better represent the result set RQ. For

example, the diverse result subset in Figure 1.4(d) contains results from different categories

and also contains a variety of attribute values, and hence offers many refinement opportunities,

which translated to a high PR. In contrast, the result subset of Figure 1.4(b) would translate to

a low PR.

To compute the diversity of a result subset Sk, we need to compute the distance be-

tween all pairs of results ri, rj ∈ Sk [83]. Distance measures like Euclidean distance, Cosine

Similarity can be used for this purpose and again the choice is orthogonal to this chapter. The

diversity of Sk can be defined as div(Sk) =
∑

ri,rj∈Sk
dist(ri, rj). Hence, PR can be computed

as,

PR =

∑
ri,rj∈Sk

dist(ri, rj)

maxS⊆RQ,|S|=k
∑

ri,rj∈S dist(ri, rj)

Here the denominator is used for normalization and is equal to the maximum possible

diversity of a k-result set fromRQ. Finding the maximum diversity in the denominator is similar

to the p-dispersion problem, and therefore known to be NP-Hard [48]. We use MMR [26] to

compute the maximum diversity for our experiments (in Section 3.5).

50

3.3 Complexity Avalysis

We proceed with the complexity analysis of the Minimum Cost Diversification (MCD) problem.

We prove that a simpler version of MCD is NP-hard, which means that MCD is also NP-hard.

In particular, we consider the Minimum Cost Single Step Diversification (MCSSD) Problem,

which is based on the following simplified navigation model:

Single Step Diversification Model (SSDM): In this simplified navigation model, the

system shows a subset Sk ⊆ RQ of k (k is unbounded) results. Then, the user either performs a

single NEXT-PAGE action, in which case the system shows all the remaining results (RQ \ Sk)

or selects one of the attribute conditions (c : A = v) in Sk and executes a REFINE action in

which case the system shows all the results with condition (c : A = v). In SSDM the cost

of a REFINE is 0, the cost of READ-RESULT action is 1, and that of NEXT-PAGE action is

|RQ|+ 1 (or any other value larger than the number of results).

Minimum Cost Single Step Diversification (MCSSD): Compute a set Sk ⊆ R of

size k such that the expected cost based on SSDM is minimized.

Theorem 2 MCSSD is NP-Hard.

Proof 5 In MCSSD, we have an initial cost k for reading the initial result subset Sk. The cost of

the next step is either (a)(|RQ|+1)+ |RQ|−k in case of NEXT-PAGE or (b) 0+#results shown

after executing the REFINE, which can be at-most |RQ|. Therefore, it is always cost-efficient

to perform the REFINE action. However, a result r ∈ RQ can be reached only if there exists a

condition c ∈ C(r) inC(Sk), REFINing by which would lead to r. As shown below, to minimize

the navigation cost it is sufficient to select a minimal sized result subset Sk′ of size k′, which

contains at-least one condition from every result in RQ.

51

Note that displaying an additional result r′ in Sk′ that is already covered (i.e., Sk′

contains a condition c′ of r′) increases the expected cost for the following reason. Assuming

all results have equal probability of being the target object, if r′ is the target object, the cost

saving is 1
|RQ|(#results with condition c

′−1)+ (|RQ|−1)
|RQ| (1−#results with condition c′),

which is negative since there at least 2 results with condition c′. #results with condition c′

represents the cost of viewing the results of REFINE on c′, whereas 1 represents the cost of

viewing one more result (r′) in the initial Sk.

Similarly it is shown that not covering a result in the initial Sk leads to increased cost.

Next, we reduce MINIMUM-SET-COVER to MCSSD.

MINIMUM-SET-COVER(U, S): Given a universe of elements U = {e1, . . . , em} and

a family S = {s1, . . . , sn} of subsets of U where each si ∈ U , compute a sub-family C ⊆ S

such that ∪si∈Csi = U and size |C| of C is minimum.

MINIMUM-SET-COVER reduces to MCSSD as follows: For each element e ∈ U ,

create a Boolean attribute Ae. For each set si in family S create a result ri and add to ri

attribute conditions Ac = 1, for each c ∈ si, and null to the rest attributes. It is easy to verify

that a solution to MINIMUM-SET-COVER translates to a solution to MCSSD and vice versa.

3.4 Adaptive Diversification

Exact Algorithm: To compute the paginated result set such that cost of navigating RQ is mini-

mized, it is necessary to compute the cost, using Equation 3.3, of each subset Sk ⊆ RQ of size k

and selecting the subset Soptk that has the minimum cost. We show that this problem is NP-hard

in Section 3.3, by reducing Set Cover to a simplified version of this problem. There are two

sources of complexity that make the exact algorithm computationally expensive:

1. Computing the navigation cost of each subset Sk ⊆ RQ of size k requires evaluating

Equation 3.3 for O(|RQ|k) subsets.

52

2. Since Equation 3.3 is recursive, to solve it we must compute for each condition c in Sk

(more formally c ∈ C(Sk)), the minimum cost (according to Equation 3.2), which in turn

requires computing the minimum cost over all subsets ofRQ (Figure 3.1(a)). This process

continues recursively for deeper levels of the recursion tree. The depth of the recursion is

|RQ| in the worst case, since each refinement may eliminate just one result in RQ. The

width of each recursive step, i.e., the cardinality of the summation, can be up to m.k,

which is the number of attribute values displayed at each step.

Approach overview: We attack the problem by proposing efficient techniques to ap-

proximate both sources of complexity. We first show how to effectively eliminate the recursion

from Equation 3.3 using a sequence of two relaxations. Then we show how to avoid evaluating

the simplified equation for every combination of result subsets using a greedy algorithm.

Our approach starts by eliminating recursion from Equation 3.3 using two relaxations.

Figure 3.1 shows the recursive tree to compute Equation 3.3 and the simplifications achieved

through the two relaxation steps.

Relaxation 1 (Eliminate Conditions from Recursion Tree): The navigation cost

function (Equation 3.3) has two recursive calls - one each for REFINE and NEXT-PAGE actions,

respectively to compute the navigation cost for subsequent navigation steps.

Intuitively, the navigation cost of a result-set RQ is proportional to its size |RQ|, since

for a larger result-set the user must explore more results to reach the results of interest. This

assumption is backed by our experiments in Section 3.5 (specifically Figure 3.3) and we use this

observation to simplify the cost equation. Formally,

cost(Q,RQ, k) ∝ |RQ| (o1)

53

The cost associated with REFINE actions, denoted by cost(Q ∧ c,RQ∧c, k), is the

navigation cost incurred to reach the target results from the refined result set RQ∧c. Based on

the observation above, this cost is proportional to size of RQ∧c, i.e.

cost(Q ∧ c,RQ∧c, k) ∝ |RQ∧c| (o2)

Based on observations o1 and o2 and ignoring the constants of proportionality, the

cost of the REFINE by a condition c can be estimated as:

cost(Q ∧ c,RQ∧c, k) =
(|RQ∧c|)
|RQ|

cost(Q,RQ, k)

Analogously, the cost of NEXT-PAGE action (cost(Q,RQ\Sk, k)) can approximated

as |RQ\Sk|
|RQ| cost(Q,RQ, k), since the user is left with RQ \ Sk of the original result-set RQ after

a NEXT-PAGE action.

By plugging in these approximations and rearranging terms, our cost equation can be

rewritten as:

cost(Q,RQ, Sk) =Sk + (1− PT).[
αPR + β(1− PR)+

cost(Q,RQ, k){PR
∑

c∈C(Sk)

Pc
(|RQ∧c|)
|RQ|

+ (1− PR)
|RQ \ Sk|
|RQ|

}
]

(3.4)

Equation 3.4 replaces the recursive calls of REFINE and NEXT-PAGE actions (in

Equation 3.3) with cost(Q,RQ, k)(Figure 3.1(b)). However, it still requires evaluation of all

possible k-subsets of RQ to compute cost(Q,RQ, k) according to Equation 3.2. We address

this by the next relaxation.

Relaxation 2 (Eliminate Result Subsets from Recursion Tree): Our goal is to find

the result subset Sk that minimizes Equation 3.4. But note that this same optimal Sk is used to

54

compute cost(Q,RQ, k) according to Equation 3.2. Hence, we can replace cost(Q,RQ, k) by

cost(Q,RQ, Sk) in Equation 3.4.

Then, by solving for cost(Q,RQ, Sk), Equation 3.4 can be further simplified as:

cost(Q,RQ, Sk) =
|Sk|+ (1− PT).{αPR + β(1− PR)}

1− (1− PT).{PR
∑

c∈C(Sk)
Pc

(|RQ∧c|)
|RQ| + (1− PR)

|RQ\Sk|
|RQ| }

(3.5)

Equation 3.5 has no recursion, and can be easily computed for a given Sk. Note that

Relaxation 2 does not incur any approximation error, in contrast to Relaxation 1.

Given the relaxed cost Equation 3.5, we still need to compute the cost of all possible

k-result subsets Sk of RQ to find the optimal Soptk with minimum cost.

N-P
Relax. 1 Relax. 2

(a) (b) (c)

Figure 3.1: Elimination of Recursion Using Relaxations 1&2

For that, we present an efficient greedy algorithm, called Adaptive Diversification

Algorithm (ADA), which incrementally builds the result set Sk by adding at each step the result

with minimum incremental navigation cost. At each iteration p (0 ≤ p ≤ k), ADA makes use

of two sets: the set of remaining results E and the set of selected results Sp, with |Sp| = p. Note

that E ∪ Sp = RQ, the set of all the results. Initially E = RQ and S0 = ∅. At each iteration,

ADA computes cost(Q,RQ, Sp−1 ∪ r) (using Equation 3.5) for each result r ∈ E and moves

the result with minimum navigation cost to Sp. This process continues until we select k results

(i.e. p = k).

55

Algorithm 10 shows the pseudo-code of our diversification algorithm ADA. The first

result is chosen as the object with highest relevance score (line 3) since we want to provide to the

user the most relevant object. After that, in each iteration, ADA ranks the results in E according

to Equation 3.5 with Sk replaced by Sp−1∪ r, removes the result with minimum navigation cost

from E, and adds it in the selected result set (line 6 − 9). The algorithm terminates when we

select k results.

Algorithm 10 ADA(Q,RQ)
Require: Query Q and Result Set RQ
Ensure: Return set of k results, Sk ⊆ RQ

1: S0 ← ∅
2: E ← RQ
3: r ← argminri∈RQ

rel(ri, Q)
4: S1 ← S0 ∪ r
5: E ← E \ r
6: for p← 2 to k do
7: r ← argminri∈E cost(Q,RQ, Sp−1 ∪ r)
8: Sp ← Sp−1 ∪ r
9: E ← E \ r

10: return Sk

Complexity: The running time of ADA depends on the cost computation time in line

7, which is invoked up to O(k.|RQ|) times. To compute cost(Q,RQ, Sp−1 ∪ r) using Equation

3.5, we need to calculatePT , PR, PN , the cost of all possible REFINEments (
∑

c∈C(Sk)
Pc

(|RQ∧c|)
|RQ|)

and of NEXT-PAGE action (
|RQ\Sk|
|RQ|). Computation of PT and PR (Section 3.2) is domi-

nated by their denominators, which depend on the result set RQ and k. However, in ADA

we only need to compute these probabilities for the original result-set RQ, which takes time

O(|RQ|) and O(k.|RQ|)(using MMR [26]), respectively. The computation of all REFINE-

ments cost(
∑

c∈C(Sk)
Pc

(|RQ∧c|)
|RQ|) requires O(k.m+ |RQ|) time. The cost of NEXT-PAGE and

PN can be computed in O(1) time. Therefore, the total running time of ADA is O(k.|RQ|2)

(assuming |RQ| > k.m). In practice, the execution time is much faster than this worst case

bound (Section 3.5).

56

Example: Let us apply ADA to the result set in Figure 1.4(a). We are interested to find

the 3 results returned by ADA. But before that we analyze Equation 3.5 more closely to infer the

implication of the cost equation. The cost of a result set Sk is minimized when the denominator

of the right hand side in Equation 3.5 is maximized, which implies having higher PT value. But

when the result set size |RQ| is high, we have smaller PT value (since the denominator part of

PT in Section 3.2 is high). Therefore, the navigation cost depends on the cost of REFINE and

NEXT-PAGE actions. Since the NEXT-PAGE cost (denoted as |RQ\Sk|
|RQ|) is the same for all result

sets, the navigation cost is minimized for the result set Sk containing highly diverse results with

popular selective conditions (i.e., with high Pc). As |RQ| becomes smaller, PT dominates cost

equation, therefore cost is minimized for highly relevant results.

The conclusion of the above discussion is that, initially when |RQ| is large (small

PT), ADA prefers diversity over relevance. As |RQ| becomes smaller (higher PT) in the next

iterations, ADA increases preference to relevance, and provides highly relevant results.

Returning to the running example, ADA initially prefers diversity over relevance in

Figure 1.4(a) since |RQ| is relatively large. The first result is the result #1 as it has the highest

relevance score (diversity is not a factor when selecting the first result, which is always selected

by relevance). The second result would be from Compact or Accessory categories. Assuming

all the conditions in Compact and Accessory categories have similar selectivity (similar Pc and

similar diversity with respect to #1), the second result is #6 because of its high relevance score.

The third result would be from the Accessory category to increase diversity, and specifically #10

since it has higher relevance score than #11. Thus ADA would return result set in Figure 1.4(d).

In the next iteration, as RQ becomes smaller, ADA will return more relevant result-set snippets

like the one in Figure 1.4(c), and in the last iterations like the ones in Figure 1.4(b).

57

3.5 Evaluation

In this section, we describe the results of an extensive experimental evaluation of our approach.

The setup, including methodology, datasets, baselines and metrics used, is described in Section

3.5.1. Sections 3.5.2 and 3.5.3 demonstrate the quality and performance of diversification al-

gorithms in terms of estimated user navigation cost and actual user navigation time. In Section

3.5.4 we present the results of applying our algorithm to large result-sets and show that our tech-

niques scale almost linearly with result-set size. All experiments were performed on a 2.5 GHz

Intel Core i5 CPU, 8GB RAM machine running Windows 7. We used MySQL as our database

and all algorithms were implemented in Java.

3.5.1 Setup

We evaluated our approach on two datasets:

1. UsedCars: This dataset consists of a listing of 15, 191 used cars, extracted from a popular

car-trade website. Each tuple in this dataset has 10 attributes, 4 categorical and the rest

numeric.

2. Electronics: This dataset consists of 65K products from the Electronics product catalog

of a popular e-commerce website. The products were sampled from various Electronics

categories, such as Laptops, Desktops, Cameras, Printers etc. and therefore the dataset

is highly heterogeneous in nature. The dataset has a total of 86 (51 categorical and 35

numeric) attributes, but each product has values for a small subset (avg. 12) of these

attributes and null for the rest.

Queries: We selected 8 queries each from the two datasets. These queries are shown

in Figure 3.2 along with result-set sizes. Note that we are interested optimizing the navigation

of diverse result sets, and therefore these queries were selected to be deliberately ambiguous

58

so as to include results from a variety of categories. For that, we use single-keyword queries,

although our methods support any number of keywords or query conditions; more keywords

could be used if larger e-commerce datasets were available. For each query, we select a target

object, which we assume the user is looking for, i.e. the navigation terminates when the user

locates this target object.

Electronics UsedCars

Query
ID Query # Results Query

ID Query # Results

Q1 Kodak 193 Q9 Honda 789

Q2 Dell 125 Q10 BMW 730

Q3 Canon 1097 Q11 2001 2034

Q4 Nikon 511 Q12 2005 920

Q5 Camcorder 789 Q13 Dallas 2932

Q6 Speaker 737 Q14 Irving 1064

Q7 Desktop 394 Q15 Black 2163

Q8 Laptop 518 Q16 Blue 1183

Figure 3.2: Query Set

State-of-the-art: Current approaches to diversification use a fixed relevance-vs.-diversity

trade-off parameter (λ in Equation 3.1) to diversify rankings. However, as we argued earlier,

setting this parameter is not always obvious and depends on the characteristics of the result

set. In Section 3.5.2, we provide evidence to further support this claim. We compare with two

commonly used approaches for ranking results:

1. Baseline 1 (REL): In this approach, the results were ranked solely based on relevance,

i.e. by setting λ = 0 in Equation 3.1.

2. Baseline 2 (MMR-λ = 0.5): As a second baseline, we choose the Maximal Marginal

Relevance (MMR) diversification algorithm [26]. MMR computes a diversified result-set

by balancing relevance and diversity based on Equation 3.1. MMR is an approximation

59

algorithm since computing a diversified set based on Equation 3.1 is NP-Hard [26]. In

our experiments, we set λ = 0.5 giving equal weight to diversity and relevance factors.

Note that, for a fair comparison, we used MMR both as a baseline and to compute PR

in ADA algorithm. We chose MMR since it outperforms other algorithms in terms of time and

generates quality results [83]. However, our use of MMR does not preclude the use of other

diversification algorithms, e.g. GMC, GNE [83], which may produce better quality results but

take more time compared to MMR [83].

Next, we describe the relevance (rel)and diversity (dist) measures used in our experi-

mental evaluation. We reemphasize that computing these measures is orthogonal to our problem

and any suitable rel and dist versions can be plugged in to our approach. Due to space limitations

we omit experiments with additional measures.

Computing dist: We use the sum of distances between the attribute values as the dis-

tance (dist) between two results
(
dist(ri, rj) =

√∑
Ak∈A(ri(Ak)− rj(Ak))

2
)
. For numeric

attributes, we used the Manhattan distance and for categorical attributes, the Kronecker delta

function was used between the values of attribute.

Computing rel: In a structured result-set, the relevance of a result depends on rele-

vance of its attribute values. We estimated the relevance of each attribute value by computing

the Google Trends scores (see [29] for more details). The rationale for using Google Trends is

based on the idea that the relevance of a term can be based on its frequency in a query workload.

Since results inRQ satisfy all conditions inQ, the relevance score was computed using

the unspecified attributes in A by Q, as was proposed by [29], where unspecified refers to an

attribute that does not match any query condition. For example in Figure 1.4(a), all the records

satisfy the query condition ”Camera” with their Product attribute. Therefore, we compute the

relevance score using the unspecified attributes (e.g. Category, Brand, Type).

60

Methodology: For each query in Figure 3.2, we picked a result t ∈ RQ as the target

object. The chance of selecting a result as the target object is proportional to its relevance score,

which means the results with high relevance scores have a higher chance to be selected as the

target object. We then simulated the user navigation until target t is reached. Since multiple

navigation paths can lead to the target object t, we used a randomized simulation [60] to select

navigation paths. Note that, given a set of displayed results Sk, the set of conditions that can lead

to t is C(Sk)∩C(t). We assumed that the user will select one of these conditions, or go to next

page, according to the navigation probabilities (Section 3.2). For example in Figure 1.4(a), if

the target object is #4, and we select Figure 1.4(c) as the displayed result subset, the conditions

that lead to #4 are ”Product=Camera”, ”Category = DSLR” and ”Brand = Nikon”. The user

would go to the next page if she does not like or know these three conditions. Therefore, in our

simulation, we computed PN as
∏
c∈(C(Sk)∩C(t))(1 − Pc) (the probability that the user would

not like any condition in C(Sk) ∩ C(t) and PR as (1 − PN). In case of refinement, the user

could refine the query by selecting any condition in C(Sk) ∩ C(t). The choice of selecting a

condition c ∈ (C(Sk) ∩ C(t)) is proportional to Pc.

We used k = 10 in the experiments in Sections 3.5.2, 3.5.3, and showed the findings

averaged over 1000 runs (50 random target objects, and 20 runs per target object) for each query.

3.5.2 Qualitative Analysis

In this section, we present the experimental results of the qualitative evaluation of the three dif-

ferent algorithms (REL, MMR and our algorithm ADA). Figures 3.3(a), 3.3(b) show the average

navigation cost and average number of REFINE and NEXT PAGE actions incurred respectively

by each algorithm to reach the target object for the queries of Electronics dataset. Note that, all

algorithms require similar number of REFINE actions (i.e. selection of target object conditions)

to filter out enough undesired objects (Figure 3.3(b)). Since REL displays results from popular

61

categories, it requires a larger number of NEXT-PAGE actions to display the conditions of the

less relevant target objects. MMR has a fixed ratio of relevance and diversity, which happens to

work well for some queries with small number of results like Q1, Q2 and Q4, but is ineffective

for other queries like Q3, Q6, where more NEXT-PAGE actions are required to find the target

object conditions.

0

50

100

150

200

250

A
v

g
.
N

av
ig

at
io

n
 C

o
st

REL ADA MMR (λ = 0.5)

R A M R A M R A M R A M R A M R A M R A M R A M
0

5

10

15

20

25

30

A
v

g
.
N

u
m

b
er

 o
f

A
ct

io
n

s

Refine Next Page

R – REL A – ADA M – MMR (λ = 0.5)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

20

40

60

80

100

120

140

A
v

g
.
N

av
ig

at
io

n
 C

o
st

REL ADA MMR (λ = 0.5)

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
R A M R A M R A M R A M R A M R A M R A M R A M

0

2

4

6

8

10

12

14

A
v

g
.
N

u
m

b
er

 o
f

A
ct

io
n

s

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Refine Next Page

R – REL A – ADA M – MMR (λ = 0.5)

(c) (d)

(a) (b)

Figure 3.3: (a) Avg. Navigation Cost (b) Avg. Number of Refine and Next Page actions incurred
for Electronics Dataset using α = 1, β = 1. (c), (d) show the same figures respectively for
UsedCars Dataset

ADA outperforms the other two algorithms, because of its adaptive nature. As dis-

cussed in Section 3.4, when |RQ| is high, ADA prefers diversity over relevance to pick the top-k

results. As RQ becomes more selective over iterations, ADA switches to preferring relevance.

Therefore, by balancing diversity and relevance based on the result set at hand, ADA displays

the target object conditions much earlier compared to the other two algorithms. This results

in fewer NEXT-PAGE actions, and thus reduces the navigation cost of ADA algorithm (Figure

3.3(a)). The improvement of ADA over the other two algorithms is more pronounced for the

queries that have large number of results (e.g. Q3, Q5, Q6).

Figures 3.3(c), 3.3(d) show the average cost and actions respectively for the queries of

UsedCars dataset. Similar to the Electronics dataset, ADA outperforms the other two algorithms

62

for all the queries of UsedCars. Since the UsedCars dataset is homogeneous, REL and MMR

perform slightly better as compared to Electronics dataset, due to less variability in attribute

conditions.

We also compare the average navigation cost incurred by the three algorithms, REL,

MMR and ADA, with the expected optimal navigation cost computed by solving Equations 3.2

and 3.3. Due to the exponential complexity, we compute the expected optimal cost for a smaller

range sizes of initial result sets (RQ) and query parameter (k). Figure 3.4 shows the average

navigation costs for |RQ| = 100 and k = 5 across all queries for the two datasets Electronics

and Usedcars. As seen from the figure, on average, each algorithm incurs more navigation cost

compare to the optimal. We see that our algorithm ADA is only 1.07 and 1.03 times worse than

the optimal for the Electronics and Usedcars datasets respectively, which implies that the result

sets displayed by ADA at different navigation steps are close to optimal. For MMR and REL,

these factors are 1.36 (1.32) and 1.69 (1.65) respectively for the Electronics(Usedcars)dataset.

Datasets
Average Navigation Cost (α=1, β=1)

REL ADA MMR
(λ = 0.5)

Expected
Optimal

Electronics 48.25 30.625 38.75 28.525
UsedCars 30.5 19.15 24.375 18.512

Figure 3.4: Average Navigation Cost for Electronics and UsedCars Datasets

Figure 3.5 shows average navigation cost of MMR with increasing trade-off (λ) val-

ues (high λ value implies preference to diversity over relevance). Since ADA is independent of

λ value, therefore the cost of ADA is shown as a straight line. We skipped REL since it incurs

higher cost compared to ADA and MMR. As seen from Figure 3.5, there is no value for λ that

is optimal for a given datasets or even for a particular query. Intuitively λ should change adap-

tively, at each navigation step, depending on the characteristics of the result set. By balancing

63

the relative importance of relevance and diversity adaptively at each step, ADA shows better

performance (on average) compared to MMR with a fixed λ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 130

40

50

60

70

80

90

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Kodak Dell

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 150

100

150

200

250

300

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Canon Nikon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Camcorder Desktop

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 160

80

100

120

140

160

180

200

220

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Speaker Laptop

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 150

55

60

65

70

75

80

85

90

95

100

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Honda Toyota

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 140

50

60

70

80

90

100

110

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

2001 2005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 170

75

80

85

90

95

100

105

110

115

120

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Dallas Irving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 150

60

70

80

90

100

110

λ

Av
g.

 N
av

ig
at

io
n

C
os

t

ADA MMR

Black Blue

(a)

(b)

Figure 3.5: Average Navigation Cost vs. Tradeoff (λ) values for (a) Electronics Dataset (b)
UsedCars Dataset (α = 1, β = 1)

Experiments varying model parameters (α, β): We also compared the average cost

incurred by each algorithm while varying the cost NEXT-PAGE actions (hitherto assumed to be

unit). Intuitively, a user reads several results and its conditions before deciding whether to go

to the NEXT-PAGE, instead of selecting a condition to REFINE by, and therefore these actions,

captured in our model by β, should have a higher cost than those of REFINE or reading a result.

We evaluated the algorithms with higher values of NEXT PAGE action and results of these

experiments are displayed in Figure 3.6. As expected, the overall navigation cost increases with

the increased β value. Since REL and MMR do not consider β in selecting results, they suffer a

higher increase in navigation cost. But ADA adapts its actions, displaying a diverse set of results

and conditions based on avoiding the costly NEXT-PAGE actions, and therefore the overall cost

increases at a slower rate.

64

1 2 3 4 580

100

120

140

160

180

200

Av
g.

 N
av

ig
at

io
n

C
os

t
β

REL ADA MMR (λ = 0.5)

1 2 3 4 560

70

80

90

100

110

120

β

Av
g.

 N
av

ig
at

io
n

C
os

t

(a) (b)

REL ADA MMR (λ = 0.5)

Figure 3.6: Average Navigation Cost vs. β for (a) Electronics Dataset (b) UsedCars Dataset
(α = 1)

3.5.3 Performance Analysis

We now present the performance results of REL, MMR and our ADA algorithms. Figure 3.7

shows the average (across all queries) computation (CPU) times taken by each of these algo-

rithms to reach the target object. As expected, the relevance-only algorithm (REL) takes the

shortest time among all the algorithms. Computing diversity is a costly operation since it in-

volves computation of distance between all pairs of results. As a result any algorithm that

incorporates diversity is much slower as compared to REL; our implementation of MMR is

three times slower as REL. Our algorithm (ADA) performs this distance computation over all

future navigations and therefore is slower than MMR by a factor of 1.6. While ADA takes more

time to compute the set of paginated results, it is very effective in reducing the time or effort

incurred by users to navigate such diverse result sets, as shown in Figure 3.7. To calculate user

times we mapped the navigation cost obtained during simulation to the time taken by users to

perform the actions associated with a given navigation. In Section 3.6 we present the results of

the user study that we conducted at Amazon Mechanical Turk and show that cost is linearly pro-

portional with navigation time. More specifically, the relation between navigation time and cost

is expressed as, time = 0.39 ∗ cost+10.92 (the trend line in Figure 3.12). Therefore, given the

overall navigation cost, we used this formula to calculate the overall navigation time. As seen

in Figure 3.7, ADA significantly improves the user navigation time as compared to REL and

65

MMR. The improvement is by a factor of 1.26 and 1.51 over MMR and REL respectively for

the Electronics dataset, and 1.14 and 1.31 over MMR and REL respectively, for the UsedCars

dataset. This represents a significant improvement since the user navigation time is orders of

magnitude greater than the computation time.

Algorithm

Electronics UsedCars

CPU Time
(sec)

User Time
(sec)

% CPU
Time

CPU Time
(sec)

User Time
(sec)

% CPU
Time

REL 0.02 68.98 0.0287 0.058 49.09 0.1188

ADA
(α=1,β=1) 0.106 45.58 0.2312 0.156 37.34 0.4154

MMR
(λ=0.5) 0.066 57.52 0.1146 0.107 42.55 0.2505

Figure 3.7: Average CPU, User Navigation Time for Electronics and UsedCars Datasets

3.5.4 Scalability Analysis

We next examine the scalability of the algorithms (for Electronics dataset) in terms of navigation

cost and computation time while varying the size of initial result set RQ (with α = 1, β = 1).

For this experiment, we randomly choose 20 different queries from each dataset as our query

set.

Figure 3.8(a) shows the average navigation cost incurred by the three algorithms for

different initial results set size (500 to 5000) over all the queries of Electronics dataset. The

average number of REFINE and NEXT-PAGE actions are also shown on top of the bars. As

seen from the figure, our algorithm (ADA) outperforms the other two approaches by a significant

margin in all cases. As the result set size |RQ| increases, this margin also increases. This justifies

the effectiveness of our adaptive diversification algorithm (ADA) in handling large amount of

results, compared to the state-of-the-art approaches.

Figure 3.8(b) shows the average computation time taken by the three algorithms per

REFINE or NEXT-PAGE action. As described in Section 3.5.4, ADA considers all future nav-

igations while computing the result set in a single iteration, thus slower than the other two

66

algorithms. Since the difference is in tens of milliseconds, the readers might consider this as a

small amount of price paid for the significant improvement achieved by the ADA algorithm in

terms of user navigation cost, and also user navigation time.

500 1000 2000 3000 4000 5000
Size of RQ

0

200

400

600

800

1000

1200

1400

Av
g.

 N
av

ig
at

io
n

C
os

t

8 4 7

30
20 26

64

42

59

100

60

82

125

74

101

138

77

110

REL ADA MMR (λ = 0.5)

500 1000 2000 3000 4000 5000
Size of RQ

0

10

20

30

40

50

60

70

Av
g.

 C
PU

 T
im

e
(m

se
c)

REL ADA MMR (λ = 0.5)

(a) (b)

Figure 3.8: For Electronics Dataset, (a) Average Navigation Cost, Average number of REFINE
and NEXT PAGE actions (numbers on top of bars), vs. Size of RQ (b) Average CPU Time vs.
Size of RQ (for α = 1, β = 1)

Varying the Page Size: We also explore the changes in navigation cost while varying

the page size (k value). As seen in Figure 3.9, when k = 1 the user needs to execute larger num-

ber to NEXT-PAGE and READ-RESULT actions to reach the target object, resulting to higher

navigation cost. As the k value increases, the chances of getting the target object conditions in a

particular page increases. As a result, the user tends to execute more REFINE actions, resulting

to fewer READ-RESULT and NEXT-PAGE actions, therefore decreases the overall navigation

cost. If we continue to increase the k value, the effect of increasing the page size starts to play

a negative role after a certain k, because the user must read many results before refining (our

model assumes that the user reads all page results before taking an action). Therefore the total

number of READ-RESULT actions, as well as the overall navigation cost increases.

Figure 3.9 shows the average navigation cost incurred by the three algorithms for

Electronics dataset, while changing k value from 1 to 35, and REFINE and NEXT PAGE costs,

α and β, from 1 to 5 (α = β), which are the values used in previous user navigation work [60].

Since all the algorithms picked the most relevant object as the first result, they have identical

67

performance for k = 1 (no diversity employed). For all other k values, ADA clearly outperforms

the other two approaches. The experiments in Figure 3.9 are useful to find the optimal k value

for a particular algorithm in a given dataset (e.g. in Figure 3.9(a) the optimal page size of our

approach ADA is 7 for Electronics dataset). Also, moving from left to right (from a to c) in

Figure 3.9, we observe that the optimal page size increases with increased α and β value. The

reason is that as the overhead of a user click action (REFINE and NEXT-PAGE) increases,

longer result pages are more effective.

5 10 15 20 25 30 35
100

200

300

400

500

600

700

800

900

Av
g.

 N
av

ig
at

io
n

C
os

t
k

REL ADAMMR (λ = 0.5)REL ADAMMR (λ = 0.5)

5 10 15 20 25 30 3550

100

150

200

250

300

Av
g.

 N
av

ig
at

io
n

C
os

t

k
5 10 15 20 25 30 35

100

200

300

400

500

600

700

800

Av
g.

 N
av

ig
at

io
n

C
os

t

k

REL ADAMMR (λ = 0.5)

(a) α = β = 1 (b) α = β = 3 (c) α = β = 5

Figure 3.9: For Electronics Dataset, Average Navigation Cost vs. k

3.6 User Study

In this section, we present the results of a user study that we conducted at Amazon Mechanical

Turk (MTurk) [1] using the UsedCars dataset. We selected three keyword queries (e.g., ’Ford’),

and for each query we created a set of search tasks; each search task specifies a set of target

conditions (e.g., find a car with Color = Green). We asked the users, starting from the results

of the initial keyword query, to find the best car (according to the relevance score defined in

Section 3.5.1) that satisfies all the target conditions.

We repeated the experiment for the four different ranking algorithms: REL (λ = 0),

MMR (λ = 0.5), ADA (λ-independent) and a diversity-only baseline, DIV, which constructs

the k-result subset greedily at each step by maximizing the score function (Equation 3.1); i.e.

with λ = 1. The reason that we asked users to find the best and not any result is to avoid giving

68

an unfair advantage to methods biased towards diversity like DIV. Such methods may help the

user to find a satisfying result, but this result may have low relevance. Figure 3.10 shows the list

of initial queries, their results’ cardinality, the target conditions, and the cardinality of results

that satisfy all the target conditions. The page size (k) is set to 10. Each task was completed by

36 MTurk users; we present the average results.

Query
ID

Initial
Query

Initial
Result Set

Size
Target Conditions # of Results contain all

Target Conditions

Q17 Toyota 1470 Color = Green 86

Q18 Ford 2747 City = Grand Prairie 133

Q19 Ford 2747
Model = F150 Regular CAB,

State = MD, Color =
Maroon

1

Q20 Ford 2747 Color = Maroon 42

Q21 Ford 2747 City = Ashland 75

Q22 Ford 2747 Color = Beige 40

Q23 Toyota 1470 City = Richmond 88

Q24 Toyota 1470 Color = Red; 79

Q25 Ford 2747 Color = Gold; 116

Q26 BMW 730 Model = Convertible,
City = Fairfax, Color = Grey; 1

Figure 3.10: Query Set for User Study

Figures 3.11(a) and 3.11(b) show the average time taken and average number of ac-

tions executed respectively, by users to find the best target object. As seen in Figure 3.11(b),

if we have more target conditions (e.g. Q19, Q26), using DIV (diversity-only), the chances of

getting a desired target condition on a given page increases. This increases the probability of

REFINE action and, therefore, DIV performs better (Figure 3.11(b)) than the other two base-

lines REL, MMR, and slightly worse that our algorithm ADA, which prefers diversity over

relevance during the initial steps. If we decrease the number of target conditions, the perfor-

mance of DIV degrades, especially if multiple results satisfy all target conditions (as seen for

the other queries), since the user needs to find the best and not any object. For Q17 and Q24,

MMR (λ = 0.5) and ADA perform similarly, which intuitively shows that 0.5 happens to be

the ideal balance between relevance and diversity for these two queries. This is clearly not that

case for other queries such as Q23, where MMR takes longer time even compared to REL.

69

Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Avg.0

10

20

30

40

50

60

70

80

90

100

N
av

ig
at

io
n

Ti
m

e
(s

ec
)

REL ADA MMR (λ = 0.5) DIV

(a)

R AMD R AMD R AMD R AMD R AMD R AMD R AMD RAMD R AMD R AMD R AMD0

2

4

6

8

10

12

14

16

N
um

be
r o

f A
ct

io
ns

Refine Next Page
R – REL A – ADA M – MMR (λ = 0.5) D – DIV

Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Avg.
(b)

Figure 3.11: (a) Avg. User Navigation Time, (b) Avg. number of Refine and Next Page Actions
incurred by the users for 10 different queries using UsedCars dataset (for α = 1, β = 1)

As shown by the average values in Figure 3.11(a), ADA reduces the navigation time

significantly compared to all other algorithms. On average, ADA is faster by a factor of 2.04 (p-

value 0.004), 1.97 (p-value 0.001) and 1.66 (p-value 0.0002) over REL, MMR and DIV,respectively.

This significant improvement is because of the smaller number of actions incurred by ADA

compared to the other three algorithms (Figure 3.11(b)).

Figure 3.12 shows the actual user navigation time vs. the estimated cost (using our

cost model in Section 3.2) for the 10 different queries using the four different algorithms, where

for each query we average over all users. The figure and the trend line show a clear correlation,

and specifically a linear relationship, which confirms the validity of the cost model.

20 40 60 80 100 120 140 160 18010

20

30

40

50

60

70

80

90

Estimated Navigation Cost

A
ct

ua
l N

av
ig

at
io

n
Ti

m
e

(s
ec

) Rel ADA MMR (λ = 0.5) Div

Figure 3.12: Estimated Cost vs. Actual Time

70

3.7 Related Work

Ranking based on relevance has been investigated and applied in search engines to provide the

user top relevant results. [29] uses data and workload statistics and correlations, and apply

probabilistic IR models to rank the results. Various other strategies have been proposed in

literature to rank the results in keyword search [56][13][11]. Since top relevant objects come

from the popular (top) categories, ranking solely based on relevance is not useful to minimize

navigation cost, especially for the users interested in less popular objects.

Diversification has recently been introduced in search engines to increase user satis-

faction. Various approaches have been developed to diversify search results in different domains.

[81] introduces diversity ordering for the attributes of structured data and selects results that are

diverse according to the ordering. [52] extends k-nearest neighbors to find the diverse results that

are significantly different from each other. [12][63] use coverage approaches to cover diverse

aspects of search space. [43] expresses the degree of diversification by a setting a parameter

which also determines the size of final result set. [12] operates on Web documents and selects

diverse documents to cover many different interpretations of the query. [63] proposes document

summarization that highlights different concepts of a document. Diversification has also been

proposed in recommendation systems. [84] provides diversity using the content of the recom-

mendations and the past history of the user. [22] presents a method based on medoids clustering

to select a set of diverse and highly-ranked items to recommend to a user. Topic diversification

using personalized lists in recommendation system has been explored in [89]. Several content

based diversifications have been addressed in [44][41]. However, none of these approaches con-

siders the problem of how to minimize the total navigation cost incurred by the user to find the

target object by considering subsequent navigation steps. In this chapter, we have addressed this

concern by introducing a navigation cost model described in Section 3.1.

71

Diversification is being used along with relevance in [33][39][83][26][41]. Most of

these approaches (e.g. [83]) consider diversification as a bi-criteria optimization, which uses a

fixed trade-off value for relevance and diversity. In Section 3.5, we have shown that different

search tasks require different ideal trade-off value. Threshold based techniques, a variant of

the optimization problem, have been proposed in [69][88] to solve the diversification problem.

These approaches consider a threshold value of relevance and maximize the diversity between

results (or vice versa). Setting a threshold value is hard, and depends on the domains. Our

approach does not require the threshold value, and can adaptively set the balance between rele-

vance and diversity for different tasks.

Faceted Search has been shown to be effective in reducing the user effort and time re-

quired to navigate large result sets of structured databases. For a given query, these approaches

compute the best facet conditions and matching results to display to the user [60][73][27]. How-

ever, this model is not suitable for our setting of limited screen size, where we cannot display

separately faceted conditions and results. Instead, our results serve a dual purpose, since a user

can click on results conditions to refine her navigation.

Navigation Modeling of Search Results has been a subject of intense research in recent

years and several methods of reducing user effort have been proposed [73][76][67]. In [73], a

navigation model based on a minimum cost decision tree is proposed to minimize navigation

effort. [76] proposes a method of rapidly skimming through the results of the query by show-

ing representative tuples from the query result, where the representative tuples are chosen by

clustering the results. In contrast, our approach balances relevance and diversity in a princi-

pled manner by considering navigation cost. In [67], result navigation based on multi-criteria

optimization problem that balances relevance and result set coverage (skyline) is proposed.

72

Chapter 4

Distributed Diversification

In this chapter, we present the first distributed solution for diversifying large datasets

using the MapReduce framework [54]. We propose two approaches for distributed diversifi-

cation; one optimized for the disk access cost while the second optimized towards the network

transfer cost. We present a cost model that can dynamically choose the suitable approach consid-

ering the environment parameters (disk rate, network speed, number of cluster nodes) and data

size. We also propose an approach to improve the quality of the diversification by iteratively

refining the output. The final output is a 2-approximation over the optimal solution.

The rest of the chapter is organized as follows: Section 4.1 describes the problem.

Section 4.2 explains the core components of diversification (i.e. diversification approaches, cost

model, iterative refinement). Section 4.3 provides an experimental evaluation of the components

using two real life datasets. Finally, Section 4.4 describes the related work.

4.1 Problem Definition

Consider a set of n elements D = {e1, e2, . . . , en}, a query Q and an integer k (≤ n). Each

element ei ∈ D has a relevance score, rel : D → R+, to the query Q, where higher relevance

score implies the element ei is more relevant to the query Q. The dissimilarity between two

73

elements ei, ej is defined by the function, dis : D×D → R+, where a higher score implies that

the elements ei and ej are highly dissimilar to each other. Our goal is to find a set of k elements,

Sk ⊆ D, such that the elements in Sk are highly relevant to the query Q and highly dissimilar

to each other.

Most previous works define top-k diversification as a bi-criteria optimization problem:

to each k-element subset Sk ⊆ D a score F(Sk) is assigned, using both the relevance and

dissimilarity of the elements in Sk. In particular, let d : D × D → R+ be the distance metric

defined as,

d(ei, ej) = (1− λ) rel(ei) + rel(ej)

2
+ λ dis(ei, ej) (4.1)

where, the trade-off parameter, λ ∈ [0, 1], balances the relative weights between rel-

evance and dissimilarity [83]. Then F(Sk) is the sum of all pairwise distances between the

elements in Sk, namely:

F(Sk) =
k−1∑
i=1

k∑
j=i+1

d(ei, ej) (4.2)

Problem 1 (Top-k Diverse Elements) GivenD,Q and k identify the subset Sk for whichF(Sk)

is maximum.

4.2 Diversification Framework

There are three main components in our diversification framework (Figure 4.1): 1) the Diversi-

fication Stage, 2) the Cost Analysis, and, 3) the Iterative Refinement. The Diversification Stage

component reads data from HDFS and generates the set Sk using a diversification algorithm.

In Section 4.2.1 we propose two distributed diversification approaches for this component. In

Section 4.2.2 we present a cost model to estimate the execution time of each diversification ap-

74

proach given the environment parameters and data characteristics. Using this model, the Cost

Analysis component chooses the best approach dynamically at runtime. Finally, the Iterative

Refinement component iteratively refines the set Sk returned from the diversification stage until

it either converges (no further score improvement) or a user time threshold is reached (Section

4.2.3).

Cost
Analysis

Diversification
Stage

Iterative
Refinement

Results

User Interruption/
Max Time Reached/

No Further Score
Improvement is Possible

Sk

HDFS

(1) (2) (3)

Figure 4.1: The Diversification Framework Architecture

4.2.1 Diversification Approaches

In the rest of the chapter, we assume a distributed MapReduce framework with m mappers

and r reducers. Previous works [35][45] on designing algorithms in a MapReduce framework

generally consider the following approach: First the data is divided (mapped) into partitions

and each partition is assigned to a single node. Each node solves (reduces) the problem on the

assigned partition and generates an output. Then, all outputs are merged together in single node

which produces the final output. Our first approach, the Divide and Merge based diversification

(DM), follows a similar strategy. This approach is disk I/O efficient since it reads the whole data

only once from the disk. However, it incurs high network cost to send all the elements through

the network for partitioning.

To reduce the network cost, recently another approach, namely “sample and ignore”,

has been proposed for the problem of clustering large data [35]. It reduces the network cost by

first finding the major clusters from a sample of the input data and then ignoring the elements

that are contained in the major clusters from passing through the network. The sampling idea is

75

useful for our purposes as it maintains the charasteristics of the dataset; however, we replaced

the “ignore” phase with a novel “refine” phase which reduces the network cost significantly

compared to the “ignore” phase by sending only k results from each node. This resulted to the

Sample and Refine based diversification (SR) approach.

Note that both of our approaches use a uniprocessor diversification algorithm as a

plug-in when each single node performs diversification on its local element set. The choice of

this diversification algorithm is independent with our framework. Therefore, any of the algo-

rithms proposed in [81][83][26] can serve the purpose.

HDFS

M1 M2 Mm …

R1 R2 Rr

Single
Node

…

HDFS

M1 M2 Mm …

R

M1 M2 Mm …

R

HDFS HDFS

Sample

Refine Merge

Input Split from HDFS

(a) (b)

Divide

Figure 4.2: Overview of (a)DM and (b)SR Diversification Approaches

4.2.1.1 Divide and Merge (DM)

As the name implies, there are two phases, divide and merge (Figure 4.2(a)). In the divide

phase, data is partitioned randomly to different nodes maintaining a balanced load. Each node

executes the uniprocessor diversification algorithm on the assigned partition and generates a top-

k diversified subset from its own partition. One key assumption in this phase is that each node

has enough memory to store its assigned partition (the case that this does not hold is considered

in Section 4.2.3). In the merge phase, all k-diverse results generated by different nodes are

merged in a single node to compute the overall top-k diverse results.

76

The divide phase is implemented by a single MapReduce job. In the map phase, each

map task reads a split (block) of D from HDFS. For each element in the file split, it outputs

the pair < key, element >. The key denotes the ID of the reducer (between 1 to r). In the

shuffle phase, each reducer gets the pairs with the same key, and pairs with distinct key values

are forwarded to distinct reducers to be processed separately. In the reduce phase, each reducer

executes the uniprocessor diversification algorithm on the assigned elements and generates k-

diverse elements. Note that, the value of k is relatively small (in tens) while the value of r is

assumed in the hundreds. Therefore, the total number of merged elements (rk) is small enough

to fit in the memory of a single node at the merge phase. This node executes the uniprocessor

diversification algorithm on the rk elements and generates the overall k diverse elements Sk.

4.2.1.2 Sample and Refine (SR)

Although the DM approach reads the input data only once in its divide phase (therefore, is disk

I/O efficient), it sends all the elements through the network for partitioning. For a slow network,

this might cause a bottleneck. Instead, the SR approach reduces the network load significantly

by sending a small subset of the elements through the network.

SR (Figure 4.2(b)) also works in two phases, namely, sample and refine. In the sample

phase, each mapper reads a split of D from HDFS and selects a small random sample from the

split. Let α be the sampling ratio. A single reducer collects all the samples, executes the

uniprocessor algorithm on the sampled elements and computes the k diverse elements S′k. Note

that, only the selected samples need to be shuffled through the network. Thus the SR algorithm

reduces the network cost significantly compared to the DM algorithm.

The key challenge of the sample phase is to select a good representative sample from

each mapper’s file, such that the single node that diversifies the samples, can still produce a

good k-diverse result. Since the quality of the diversification depends on the score F(S′k)

77

(higher score means more diversified result), we investigate the effect of α on the diversifi-

cation score. Figure 4.3 shows the F(S′10) score of top-10 diverse tweets computed from 10

million tweets[10] by varying the sampling ratio α. The MMR uniprocessor algorithm [26] was

used for diversification. For small k, a sample of about 1% is good enough. However, for higher

k, a larger sample is needed (around 30% for k = 25).

0.0001 0.01 0.1 0.3 1
0

50

100

150

200

250

300

α

ℱ

k = 5 k = 10 k = 15

k = 20 k = 25

Figure 4.3: Effect of α on F

Note that the SR approach assumes that all samples taken from the mappers will fit in

the memory of the single reducer node. If this is not the case (assuming that a limited amount

of memory is available for the diversification task), the sampling rate needs to be adjusted, thus

reducing the quality of the sample. This motivates us to further refine the k diverse element set

(S′k) generated in the sample phase by a novel refine phase using the elements in D.

In the refine phase, S′k is broadcasted to all mappers. Each mapper reads a split of

data from the disk and tries to refine S′k using the elements from the split. Since in MapReduce

framework the mapper works on a single element at a time, we use the swap strategy [84] for

refinement. Each element e in the partition is checked against all the elements ei in S′k to see if

there exists a replacement operation, e for ei, that can improve the quality of S′k. If there exists

multiple such operations, e replaces the element ei in S′k that improves the quality the most.

When all elements in the split are checked, the refined k-diverse element set is forwarded to a

single reducer. This reducer combines all refined element sets returned from different mappers,

78

executes the uniprocessor algorithm on the combined element set and computes the final k-

diverse results. Note that, the total number of elements shuffled in the refine phase is mk. The

value of k is in tens (as discussed before) and the value of m is in hundreds depending on the

split size and data size. Therefore, the network cost of the refine phase is negligible compared

to the DM algorithm.

Algorithm 11 shows the pseudocode of the SR algorithm in high level. The sample

phase corresponds to the lines (2-3). The refine phase (line 5) is further elaborated by Algorithm

12. In the map phase of Algorithm 12 (lines 2-5), each mapper works on a split of D and call

the subroutine get refined set for each element in the file split. When all the elements are

processed, the refined element set is forwarded to a single reducer. Finally, one reducer merges

the refined element sets and computes the final k-diverse results (line 7).

Algorithm 11 SR(D,k, α)
Require: Element Set D, value of k and Sampling Ratio α
Ensure: Return k diverse results

1: // sample
2: In parallel, each mapper reads a split of D from HDFS, selects some elements with proba-

bility α and sends the elements to a single reducer
3: one reducer gets the elements, executes the uniprocessor algorithm and produces a k-diverse

results, S′k
4: // refine
5: Sk ← Refine(D,S′k)
6: return Sk

Algorithm 12 Refine(D,Sk)
Require: Element Set D and k-element set Sk
Ensure: Return refined k diverse results

1: // map
2: In parallel, each mapper reads a split of D from HDFS and do the following
3: for each element e in the file split do
4: Sk ← get refined set(e, Sk)
5: sends Sk to a single reducer
6: // Reduce
7: one reducer gets the refined result sets, executes the uniprocessor algorithm, and produces

k-diverse results Sk
8: return Sk

79

Algorithm 13 get refined set(e, Sk)
Require: an element e and k-element set Sk
Ensure: Return k diverse results

1: S′k ← Sk
2: for each element ei in Sk do
3: if F({Sk − ei} ∪ e) >F(S′k) then
4: S′k ← {Sk − ei} ∪ e
5: if F(S′k) >F(Sk) then
6: Sk ← S′k
7: return Sk

In Section 4.3, we show that the quality of the diversified result set produced by each

of our approaches, DM and SR, matches the quality of the diversified result set that a unipro-

cessor diversification algorithm would produce (if it was fed the full data set). Furthermore, in

Section 4.2.3 we theoretically prove that combined with some refine phases, both of our algo-

rithms produce a diversified result set whose score is 2-approximate to the score of the optimal

diversified result set.

4.2.2 Cost Model

The performance of the two approaches depends on various parameters of the distributed envi-

ronment (disk speed, network speed, number of nodes etc.) For example, Figures 4.7(a), 4.7(c)

show the wall clock time needed to compute top-10 diverse results (for twitter[10] and image[9]

datasets respectively), by varying the number of reducers. As seen from these experiments, the

SR approach performs better for smaller number of reducers while the DM dominates as the

number of reducers increases. Ideally, depending on the environment parameters and data char-

acteristics, we would like to choose the best diversification approach. We thus proceed with a

cost model that captures the disk I/O, network I/O and CPU cost for DM and SR.

Our cost model is developed on a standard deployment of Hadoop 1.0.4 for massive

data. Therefore, we do not assume data piping from memory to memory, instead, pessimistically

assume disk is being used in between the mappers and reducers. Table 4.1 summarizes the pa-

80

Symbols Definitions
FD File Size of D in bytes
Dr Disk Rate in bytes/sec (average read/write)
Nr Network Rate in bytes/sec
α Sampling Ratio
β Dispersion Ratio
m Number of Mappers
r Number of Reducer

Table 4.1: Cost Model Parameters

rameters used. Using an approach similar to [35] we first model the cost of a single MapReduce

job which is the sum of costs for the Map and Reduce phases.

Map Cost: Let the cost to start m mappers be delay(m), where delay(1) denotes the

time required to start a single task (map/reduce). To read FD bytes from the disk by m mappers

incurs FD
m.Dr

cost. On average, each mapper gets FD
m bytes. Let costP (FD

m) be the cost to process

the FD
m bytes by each mapper. A factor of α bytes are picked during the processing. To spill the

sampled bytes to disk each mapper takes α.FD
m.Dr

cost. Note that, we ignore the additional bytes

required to store the key part in the output pairs since this is negligible compared to input bytes

α.FD. Therefore the cost to execute the map phase, costM(FD,m, α), is:

costM(FD,m, α) =delay(m) +
FD
m.Dr

+ costP (
FD
m

)

+
α.FD
m.Dr

Reduce Cost: In the reduce phase, the data stored in the mapper local disks are copied

in the reducer memory. To read α.FD bytes from m mappers’ local disks takes α.FD
m.Dr

cost. Note

that, a fraction of these α.FD bytes are shuffled through the network to reach the other cluster

nodes running reduce tasks. Let β is the dispersion ratio, denotes the fraction of mapper output

are shuffled though the network. To shuffle β.α.FD bytes to r reducers requires β.α.FD
r.Nr

cost.

81

Once the data is copied in reducer memory, the uniprocessor diversification algorithm

is executed on the data. On average each reducer gets α.FD
r bytes. Let costD(α.FD

r) be the cost

to execute the uniprocessor algorithm on α.FD
r bytes. Finally the output records in written in

HDFS. Since each reducer needs to write only k elements, which is small in size, thus the cost

to write the output is ignored.

Therefore, the cost to execute the refine phase, costR(FD,m, r, α), is defined as,

costR(FD,m, r, α) =delay(r) +
α.FD
m.Dr

+
β.α.FD
r.Nr

+ costD(
α.FD
r

)

Note that, in both the DM and SR approaches, each reducer gets the elements with the

same key. Therefore, the sorting time is negligible in the reduce phase.

DM Cost: In the divide phase, m mappers read the data and do the partitioning with

cost costM(FD,m, 1). The reducers execute the uniprocessor algorithm with cost costR(FD,m, r, 1).

Note that, in the merge phase, one single machine runs the uniprocessor algorithm on r.k ele-

ments. Since the value of r.k is relatively small (discussed in Section 4.2.1), the cost associated

with the merging phase is ignored from calculation. Therefore, the cost to execute the DM

algorithm is:

costDM = costM(FD,m, 1) + costR(FD,m, r, 1) (4.3)

SR Cost: The cost to execute SR algorithm consists of the cost associated with the

two phases, sample and refine. In the sample phase, m mappers do the sampling with cost

costM(FD,m, α). One reducer processes the remaining data with cost costR(FD,m, 1, α). In

the refine phase, m mappers do the refinement with cost costM(FD,m, 1). Note that, in the

map phase, each mapper outputs k elements. Thus the single reducer gets a total m.k elements

82

by m mappers; since this is small, the cost associated in diversifying these mk elements is

ignored. Hence, the cost to execute the SR algorithm is:

costSR = costM(FD,m, α) + costR(FD,m, 1, α) + costM(FD,m, 1) (4.4)

Using Equations 4.3 and 4.4, the cost analysis component in Figure 4.1 estimates the

execution times of two diversification approaches DM, SR respectively, and picks the best one

at runtime.

4.2.3 Iterative Refinement

Our DM approach assumes that in the divide phase each reducer has enough memory to store

the assigned partition. However, in case of limited memory, each reducer gets a sample of

the partition, thus reduces the quality of diversification (Figures 4.9(a)) by the DM approach.

Therefore, we propose an iterative refinement component that further refines the output of the

DM approach and guarantees a 2-approximate solution compared to the optimal. Note that this

component is also applicable after the SR approach to guarantee the 2-approximate solution.

The iterative refinement component works as a plug-in after the diversification stage

and iteratively improves the quality of the k-diverse elements returned by the diversification

approaches. Each iteration corresponds to a single mapreduce job and does exactly the same task

like the refine phase in SR algorithm. This process continues until no further score improvement

is possible or a user threshold time is reached. Also note that, the user can stop the execution at

any point in the iterative refinement to get the best result set produced at the elapsed period of

time. This ensures a possible adaptation of our approach as an anytime algorithm.

Algorithm 14 (DivF) describes the overall workflow of our diversification frame-

work. At first, the cost analysis component computes the cost of our two diversification ap-

proaches DM and SR (line 1). Based on the costs, the best approach is executed in diversifi-

83

cation stage (lines 2-5). Finally the iterative component refines the k diverse set returned from

diversification stage (lines 6-11).

Algorithm 14 DivF (D,k, α)
Require: Element set D and size of k, Sampling Ratio α
Ensure: Return set Sk ⊆ D of size k

1: compute costDM and costSR using the cost model proposed in Section 4.2.2
2: if costDM < costSR then
3: Sk ← DM(D,k)
4: else
5: Sk ← SR(D,k, α)
6: repeat
7: S′ ← Refine(D,Sk)
8: diff = score(Q,S′)− score(Q,Sk)
9: if diff > 0 then

10: Sk ← S′

11: until diff ≤ 0 or max time elapsed or user interrupts
12: return Sk

Next, we prove that DivF halts after finite number of iterations, and when it halts (no

refinement is possible in the mappers of the refine phase), it produces a 2-approximate solution

compared to the optimal solution.

Lemma 5 DivF halts after finite number of iterations.

Proof 6 Since the while loop in Algorithm 14 is the only iterative component, it suffices to show

that the while loop halts after finite number of iterations. Let Sopt denotes the optimal k-diverse

element set of D. Each iteration of the while loop changes the current k element set Sk to a

new refined set and improves the current score by a positive value (0,F(Sopt) − F(Sk)]. Note

that, the total number of k elements subsets of D is
(|D|
k

)
, and each subset has a fixed score F .

Therefore, DivF halts after at most
(|D|
k

)
iterations.

Although the proof section of Lemma 5 considers the worst case scenario (
(|D|
k

)
iter-

ations), in Section 4.3, we show empirically (Figures 4.9(b)) that there is a high probability that

DivF halts after 2 ∼ 3 iterations.

84

To prove that our iterative algorithm DivF produces 2-approximate solution we as-

sume that the distance metric d follows the triangular inequality. We can rewrite the scoreF(Sk)

as, F(Sk) = 1
2

∑
ei∈Sk

∑
ej∈Sk,ej 6=ei d(ei, ej) =

1
2

∑
ei∈Sk

CSk
ei . Here CSk

ei denotes the contri-

bution of an element ei ∈ Sk to F(Sk) which is the sum of all d(ei, ej) between ei and the other

elements ej in Sk. Let S is the final k element set returned by DivF when it halts.

Theorem 3 F(Sopt) ≤ 2F(S).

Proof 7 Let us consider the worst case scenario where Sopt and S have no elements in common,

that means Sopt ∩ S = ∅. We will establish a one to one mapping between the elements in Sopt

and S. Let ei and e′i are two arbitrary elements from S and Sopt respectively. Since, the total

score of an element set is half to the sum of all individual element contributions to the score, to

prove Theorem 3, it suffices to show that CSopt

e′i
≤ 2CSei .

Let e′j is an element in Sopt and e′j 6= e′i. Also let C1 (or C2) denotes the sum of

all d(., .)s between the elements in S/ei and e′i (or e′j). Note that C1 (or C2) is less than CSei ,

otherwise ei would be replaced by e′i (or e′j) in the refine phase. By the triangular inequality, we

can say that the sum of C1 and C2 is at least as (k − 1)d(e′i, e
′
j) (as seen in Figure 4.4). Thus,

(k − 1)d(e′i, e
′
j) ≤ C1 +C2 ≤ 2CSei . Therefore, we can write, CSopt

e′i
=
∑

e′j∈Sopt/e′i
d(e′i, e

′
j) ≤∑

e′j∈Sopt/e′i
2

(k−1)C
S
ei = 2CSei .

…

e’i e’j

ei

d(e’i,e’j)

ej

ek

element ∊ S

element ∊ Sopt

Figure 4.4: 2-approximation of DivF

85

4.3 Evaluation

We proceed with an experimental evaluation of the three main components (diversification ap-

proaches, cost model, iterative refinement) of our diversification framework. Section 4.3.1 de-

scribes the setup along with the datasets, methodology, cluster parameters used for the exper-

iments. In Section 4.3.2, we evaluate the quality and performance of our two diversification

approaches, DM and SR, by changing the environmental and algorithmic parameters, and the

dataset size. In Section 4.3.3, we analyze the accuracy of our cost model. Finally, Section 4.3.4

provides an empirical evaluation of the iterative refinement component using real life datasets.

4.3.1 Setup

All of our experiments are performed on a five node cluster running Hadoop 1.0.4. Each node

has 8 cores (3.30GHz Intel Xeon CPU) with 16GB RAM and 1TB of raw disk storage. We

configure each node to run 8 tasks (map/reduce) at a time. Thus, at any point of time, we can

run at most 40 tasks concurrently on our cluster.

Datasets: We use two datasets for the experiments in this section,

• TwitterCrawl: This dataset contains 82,774,328 tweets crawled from Twitter[10]. Each

tweet has 8 terms on average. The total size of the dataset on disk is 7.55GB.

• Image: This dataset has 79,302,017 feature vectors extracted from collection of images[9].

Each vector has 16 features. The total size on disk is 5.12GB.

Methodology: We randomly select 100 elements from each dataset and use them as

the queries. The results shown in this section are averaged over these 100 queries. We use

the same distance metric for rel and dis calculation; euclidean distance for Image dataset, and

cosine similarity for TwitterCrawl dataset. Note that, the relevance features are always taken

from the user in the form of a query and the user always expects relevant answers. However,

86

since the user has given a subset of features, diversification is necessary before presenting the

potential large set of relevant results. Therefore, in our experiments, a subset of the feature set is

used for rel calculation and the whole feature set is used for dis calculation [83]. For the Image

dataset, first half of the features are used for rel calculation (i.e. rel = (1 − L2(1..8))), and

the whole feature set is used for dis calculation (i.e. dis = L2(1..16)). For the TwitterCrawl

dataset, three random terms are used for rel calculation (i.e. rel = cosine(terms)), and the

whole tweet is used for dis calculation (i.e. dis = 1− cosine(tweets)).

Uniprocessor Diversification: Several algorithms have been proposed in literature

for result diversification in a uniprocessor system [81][83][36][84][26]. For our experiments,

we use the MMR [26] diversification because of its efficiency within a single node [83]. MMR

picks diverse results using the greedy strategy. The first element is always picked as the most

relevant one. Successive diverse results are picked (one at a time) that maximize the F score

with respect to the current selected diverse results. This process continues until k diverse results

are picked. Note that, recently two other algorithms (GMC and GNE) have been proposed

for diversification[83]. These algorithms may provide better diversification quality but require

quadratic running time on the size of the data set D. Instead MMR’s running time is linear to

the size of D.

Cluster Parameters: We perform several experiments on our cluster to estimate the

values of the parameters in Table 4.1. Based on our experiments, the values are estimated as,

disk rate Dr = 20MB/sec, network rate Nr = 10MB/sec, delay(1) = 0.1sec, dispersion

ratio β = 0.8. The uniprocessor MMR cost is estimated as costD(bk) = 3.37E−6bk sec,

which is the cost to generate k diverse results from b bytes. The mapper cost during the refine

phase of SR approach is estimated as, costP (bk) = 2.9E−7bk sec. Note that, the mapper

processing cost in the first phase of the diversification approaches (DM and SR) are ignored

from our calculation since the values are estimated as close to zero.

87

In all of our experiments, the number of mappers m is set by the Hadoop framework

and we vary the number of reducers r from 1 to 40 (default value 40). We set the sampling ratio

such that the number of elements processed in the single reducer during the sample phase of SR

algorithm is ∼ 1 million, i.e. α = 1million
|D| . The results shown in this section are averaged over

10 distinct runs. Note that, unless specified explicitly, the default value used for k is 10 and for

λ is 0.5

4.3.2 Evaluation of Diversification Approaches

We proceed with an evaluation of our two diversification approaches, DM and SR, in terms of

quality and performance.

4.3.2.1 Qualitative Analysis

The motivation of the qualitative analysis is to answer the question, Does the distributed imple-

mentation of the diversification algorithm degrades the quality when compared to the unipro-

cessor algorithm? Therefore, we compare the quality achieved by the top-k result set generated

by our two distributed approaches, DM and SR, with the quality of the uniprocessor MMR algo-

rithm (i.e., a naive implementation where all elements are forwarded to a single reducer which

computes the top-k diverse results using MMR). The comparison with a uniprocessor optimal al-

gorithm has been skipped due to the optimal algorithm’s time complexity (given that the dataset

we consider is in the millions of records). However, [24] contains a comparison between the

uniprocessor MMR and the optimal algorithm for a small dataset (|D| = 200), which shows

that MMR produced good quality results with respect to the optimal algorithm. We use score

(F) as the measurement of quality[83] for our experiments (i.e. higher F denotes better quality

results).

Due to memory constraints and problem complexity, we could run the uniprocessor

MMR only on a small set of elements. Figure 4.5 shows the quality comparisons of three al-

88

gorithms, DM, SR and uniprocessor MMR, using a dataset with 10 million elements. We vary

the number of reducers r from 1 to 40 (Figures 4.5(a),4.5(d)), the λ values from 0.1 to 0.9

(Figures 4.5(b),4.5(e)), the k values from 5 to 25 (Figures 4.5(c),4.5(f)) for two datasets Twit-

terCrawl, Image (respectively). Note that, since both the SR and uniprocessor MMR algorithms

use only one reducer, the (F) scores are fixed, independent from the changing r values (Figures

4.5(a),4.5(d)).

(c) r = 40, λ = 0.5r
0 10 20 30 40

33

34

35

36

37

38

39

40

ℱ Uniprocessor DM SR

(a) λ = 0.5, k = 10

0.1 0.3 0.5 0.7 0.9
26
28
30
32
34
36
38
40
42

ℱ

λ

Uniprocessor DM SR

5 10 15 20 25
0

20
40
60
80

100
120
140
160
180
200

k

ℱ
Uniprocessor DM SR

0.1 0.3 0.5 0.7 0.937

38

39

40

41

42

43

λ

ℱ

Uniprocessor DM SR

5 10 15 20 250

50

100

150

200

250

300

k

ℱ

Uniprocessor DM SR

(d) λ = 0.5, k = 10

(b) r = 40, k = 10

(e) r = 40, k = 10 (f) r = 40, λ = 0.5

0 10 20 30 40
25

26

27

28

29

30

31

ℱ Uniprocessor DM SR

r

Figure 4.5: For TwitterCrawl dataset, (a) Avg. F vs. r, (b) Avg. F vs. λ, (c) Avg. F vs. k.
(d),(e),(f) show the same figures for Image dataset

In all the experiments of Figure 4.5, the DM and SR approaches produce equal or bet-

ter quality results when compared to the uniprocessor MMR algorithm. This is due to the nature

of the DM and SR approaches. Note that, the quality of the final k diverse results produced

by the uniprocessor MMR algorithm depends heavily on the first chosen element. If the first

element is not chosen properly then the final k diverse results may be of low quality. In compar-

ison, during the divide phase of our DM approach, each reducer uses a separate initial element

to compute the k-diverse results from the assigned sample. Thus r different initial elements (one

in each reducer) are used to compute a total of rk diverse elements. These rk elements form

89

a better candidate set to be considered for diversification since these elements are selected by a

uniprocessor MMR (run on different reducers). Therefore, the final k diverse results computed

from these rk elements (during the merge phase) would be of better quality when compared

to the results produced by the uniprocessor MMR on the whole dataset (as seen in most of the

experiments of Figure 4.5).

In the case of the SR approach, a k diverse set is computed using the uniprocessor

MMR from a sample of the dataset (in the sample phase) which is further refined by an addi-

tional scan of the whole dataset (in the refine phase). Therefore, the second scan of the dataset

improves the quality of the diverse results produced by the SR approach when compared to the

results produced by the uniprocessor MMR on the whole dataset.

Figure 4.6 shows the wall clock time needed by the three algorithms (uniprocessor

MMR, DM and SR) for the quality experiments. As seen from the figure, our algorithms, DM

and SR, compute diverse results much faster compare to the uniprocessor MMR. In fact, DM

(SR) decreases the running time of uniprocessor MMR to a factor of 0.037 (0.119) and a factor

of 0.039 (0.107) for the TwitterCrawl and Image datasets respectively.

Dataset
Wall Clock Time (sec)

Uniprocessor DM (r = 40) SR

TwitterCrawl 3053.94 113.19 363.49

Image 2193.72 85.1 235.63

Figure 4.6: Avg. wall clock time needed by Uniprocessor MMR, DM and SR algorithms for
k = 10 and |D|= 10 millions

4.3.2.2 Performance Analysis

Figures 4.7(a),4.7(c) show the wall clock time needed to compute top-10 diverse results by

varying the number of reducers r, 1 to 40, using 10 million elements from the TwitterCrawl and

image datasets respectively. As described earlier, the SR approach uses only one reducer, thus

90

the total time taken by this approach is independent from the increasing number of reducers.

However, the total time for the DM algorithm is decreasing nonlinearly with the increasing r.

Note that, the SR algorithm performs better for smaller number of reducers 1 ∼ 10. If we

increase the number of reducers, then DM algorithm starts to dominate.

0 5 10 15 20 25 30 35 40
40

400

4000

r

W
al

l C
lo

ck
 T

im
e

(s
ec

)

DM SR

(a)

10 20 30 40 50 60 70 80 900

200

400

600

800

1000

1200

1400

|𝒟|

W
al

l C
lo

ck
 T

im
e

(s
ec

)

(b)

DM SR

0 5 10 15 20 25 30 35 4020

200

2000

r

W
al

lC
lo

ck
Ti

m
e

(s
ec

)
(c)

DM SR

(d)

10 20 30 40 50 60 70 800
100
200
300
400
500
600
700
800

W
al

l C
lo

ck
 T

im
e

(s
ec

)

|𝒟|

DM SR

Figure 4.7: For TwitterCrawl dataset, (a) Avg. wall clock time vs. r, (b) Avg. wall clock time
vs. |D|. (c),(d) show the same figures for Image dataset

0 5 10 15 20 25 30 35 40
40

400

4000

r

W
al

l C
lo

ck
 T

im
e

(s
ec

)

DM Predicted

r
0 5 10 15 20 25 30 35 40

40

400

4000

W
al

l C
lo

ck
 T

im
e

(s
ec

)

SR Predicted

r
0 5 10 15 20 25 30 35 40

20

200

2000

W
al

l C
lo

ck
 T

im
e

(s
ec

) DM SR Best

0 5 10 15 20 25 30 35 40
20

200

2000

r

W
al

l C
lo

ck
 T

im
e

(s
ec

) DM Predicted

0 5 10 15 20 25 30 35 40
40

400

4000

r

W
al

l C
lo

ck
 T

im
e

(s
ec

)

DM SR Best

0 5 10 15 20 25 30 35 40
20

200

2000

r

W
al

l C
lo

ck
 T

im
e

(s
ec

)

SR Predicted

(a) (b) (c)

(d) (e) (f)

Figure 4.8: For TwitterCrawl dataset, (a) the ability of the cost model to select the best strategy
(red curve) from DM and SR (b) actual and predicted times for DM, (c) actual and predicted
times for SR. (d),(e),(f) show the same figures for Image dataset

Figures 4.7(b),4.7(d) show the wall clock time needed to compute top-10 diverse re-

sults by varying the number of records |D|, 10 to ∼80 millions, from the TwitterCrawl and

Image datasets respectively. The number of reducers is fixed to 40. As seen from the figures,

91

both of the approaches, DM and SR, show linear scale-up with the increasing |D| value. Unlike

to the Figures 4.7(a) and 4.7(c), DM algorithm performs better for small number of elements

(up to ∼ 25 millions), while SR works better for larger dataset.

Therefore, Figures 4.7(a)-(d) conclude that none of two diversification approaches,

DM and SR, is a universal winner in all scenarios. DM performs better for small dataset and large

number of reducers, while SR works better for larger dataset and small number of reducers. This

provides a strong motivation of our cost model which has been analyzed in the next subsection.

4.3.3 Evaluation of Cost Model

In this subsection, we analyze the accuracy of the cost model. Figures 4.8(a), 4.8(d) show

the same figures as in Figures 4.7(a), 4.7(c) with one more red curve (denoted as best) that,

using cost model in Section 4.2.2, can consistently pick the best approach at runtime (as shown

from Figures 4.8(a), 4.8(d)). Figures 4.8(b), 4.8(e) (Figures 4.8(c), 4.8(f)) show the actual and

predicted running times for DM (SR) algorithm using two datasets TwitterCrawl and Image

respectively. As seen from the figures, the predicted and actual times are close to each other.

This confirms the fact that the cluster parameters estimated in Section 4.3.1 are realistic.

1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Iterations

Pr
ob

ab
ili

ty
 to

 C
on

ve
rg

e

DM SR

(b)(a)

0 1 2 3 433

34

35

36

37

38

39

40

Number of Iterations

ℱ

DM SR

Figure 4.9: For TwitterCrawl dataset, (a) Avg. F vs. Number of Iterations, (b) Probability to
Converge vs. Number of Iterations

4.3.4 Evaluation of Iterative Refinement

Our last experiment is to evaluate our iterative refinement component. As discussed in Section

4.2.3, our iterative component is useful when we have limited amount of resources (e.g. number

92

of reducers, memory). Therefore, in the divide phase of DM approach, we set r to 8 and assign

a random sample of 0.5 millions to each reducer. Similarly, the single reducer in the sample

phase of SR approach gets a sample of size 0.5 millions.

Figure 4.9(a) shows the average values of F over iterations (0 to 4) for the top-10

diverse results calculated from the whole TwitterCrawl dataset. Note that, the scores at iteration

0 denote theF(S10) scores of the 10 diverse results returned from the diversification stage by the

two diversification approaches DM and SR. As seen in Figure 4.9(a), the SR approach produces

better quality result compare to the DM approach for limited resources. This is due to the refine

phase in SR approach which makes a whole pass on D. The DM approach reaches the quality

of SR approach at iteration 1. After that the quality remains similar for both of the approaches.

We then estimate the number of iterations needed to converge the while loop in Algo-

rithm 14. Figure 4.9(b) shows our estimated probability to converge vs. number of iterations us-

ing 100 random queries selected from the TwitterCrawl dataset. As seen from the figure, both of

the diversification approaches, DM and SR, have high probability of convergence within 1 ∼ 3

iterations. The maximum number of iterations needed in our experiment was 7. Therefore,

empirically we conclude that, with high probability, our iterative refinement strategy guarantees

2-approximate solution after 3 iterations.

4.4 Related Work

Diversification has recently been researched heavily for a uniprocessor environment. Sev-

eral approaches have been proposed in literature for result diversification in many domains.

[81][39][65][43] propose diversification in structured databases. [81] introduces diversity or-

dering between the result attributes of structured data and proposes diversification based on this

ordering. [39] proposes diversification based on the possible interpretation of keyword queries

and novelty of the search results. [65] tries to identify a set of differentiating features that help

93

the users to analyze and compare the search results. [43] computes a diverse result set where

the results are dissimilar to each other as well as cover the whole dataspace. Diversification has

also been applied in recommendation systems [89][84]. [89] proposes topic diversification in

the recommendation lists to cover the user’s different range of interests. [84] introduces expla-

nation based diversification where the explanation of an item is defined by a set of similar items

rated by the user in the past. However, all these works consider online applications of diversifi-

cation and propose algorithms assuming the size of the dataset is small enough (e.g. thousands

of elements) to be stored in a single node’s memory, thus fail to diversify large datasets (e.g.

millions of elements). In this chapter, we consider diversification on massive datasets.

There are also diversification frameworks [25][37] proposed in literature that generate

the diverse result set in polynomial time. [25] uses the query log information to measure the

ambiguity of query terms (e.g. java, apple, jaguar) and proposes diversification which retrieves

k documents that cover different specializations. [37] proposes diversification by proportion-

ality; the number of documents in the final top-k result set covering a particular query aspect

is proportional to the popularity of the aspect. However, all these approaches require some

prior knowledge (e.g. query log, specializations, query aspects) which may not be available

in all applications (when workloads and query information are not known in advance [83]).

In this chapter, we adapt the general diversification framework described in [83] and propose

distributed solution to the problem.

One may argue using an existing clustering approach [35][45], that clusters large

datasets using the MapReduce framework, to generate k clusters and then pick one represen-

tative from each of the clusters, to provide a diversified result. In fact [80] uses clustering

technique to generate diverse result set. However, as pointed out in [83] this approach does

not guarantee good quality of diversification. This is because it is not trivial to identify which

representative point to select from each cluster for the most diversified result. [83] showed

94

experimentally that obvious choices of picking cluster representatives for the diversified result

(k-medoids, etc.) provides low diversification score.

95

Chapter 5

Spatial Top-k Queries

In this chapter, we investigate the problem of answering top-k queries satisfying spa-

tial constraints. Section 5.1 formulates the problem. Section 5.2 describes our index structure

and Section 5.3 presents our model. Finally, we evaluate our indexing approach in Section 5.4.

5.1 Problem Definition

Let D ={o1, o2, ..., oN} be a dataset with N objects where each object o ∈ D has a pair of

attributes < Loc, Terms >; o.Loc is a point in a d-dimentional space Rd and o.Terms =

{t1, t2, ...} is a set of terms including duplicates. Let V = {∪o∈Do.Terms} is the vocabulary

with all terms.

As an example, consider a dataset with 10 objects (Figure 5.1). Figure 5.1(a) shows

the locations of the objects in a 2D space and Figure 5.1(b) shows the terms of the objects.

{∪10i=1ti} is the vocabulary with 10 terms.

The frequency of a term t ∈ V is denoted as f(t) = {fo1(t) + fo2(t) + ...+ foN (t)},

where fo(t) denotes the number of times t appears in o.Terms. Given a spatial regionR ⊆ Rd,

the frequency of term t in R is denoted as fR(t) = {
∑
foi(t)|oi.Loc ∈ R}.

96

A top-k spatial query Q is a pair of attributes < RQ, k >, where RQ denotes the

region the user is interested in and k denotes the number of output terms. The goal is to find the

k terms whose frequencies are the maximum in RQ.

Consider the example in Figure 5.1. The dotted region in Figure 5.1(a) denotes the

query region RQ. Let the user is interested in two terms (k = 2). Therefore, the goal is to

compute the two terms from {∪10i=1ti} whose frequencies are the maximum in the dotted region

(i.e. in the Terms of five objects {o1, o2, o3, o6, o7}).

[TOP-k SPATIAL TERMS]. Given Q and D, find the k terms: t1, t2, ..., tk, whose fre-

quencies fRQ
(t1), fRQ

(t2), ..., fRQ
(tk) are the maximum among all terms in V .

o1

o2

o3

o4

o5

o7
o6

o8

o9

o10

Object Terms Object Terms

o1 {t1 ,t2, t4, t6} o6 {t1 ,t2, t5, t9}

o2 {t2 ,t2, t4} o7 {t1 ,t1, t4}

o3 {t1 ,t3, t4} o8 {t4 ,t6, t9, t10}

o4 {t6 ,t7, t8, t8} o9 {t2, t4, t9}

o5 {t4 , t9, t10} o10 {t2 , t6, t7}

(a) Locations (b) Terms

Figure 5.1: Sample dataset containing 10 objects, (a) shows the locations and (b) shows the
terms of the objects.

5.2 Index Structure

To solve the top-k spatial terms (k-ST) problem, we consider two main challenges. First, given

the dataset D and the query region RQ, how can we efficiently identify the objects that are

contained in RQ? Second, given these contained objects, how can we compute the top-k terms

efficiently from the Terms of the contained objects? The first challenge has been addressed

using a spatial index R-tree[50]. To address the second challenge, we pre-compute some sorted

lists of terms for the nodes of the R-tree. We then execute the top-k algorithm on top of the

sorted term lists. The details are explained next.

97

R-Tree Index: We stored the objects in D using an R-tree index. Each node n of the

R-tree corresponds to a region Rn ⊆ Rd and indexes the set objects contained in Rn. Each non-

leaf node contains an entry< ChildP tr,Region > for each child node of that node: ChildP tr

is the pointer to the child node and Region ⊆ Rd is the space covered by the child node. The

leaf nodes contain entries of the form < ObjPtr, Loc >: ObjPtr is the pointer to an object

and Loc ∈ Rd is the location of the object in the d-dimentional space. The number of childs of

an R-tree node is determined by the page size. Figure 5.2(a) shows the R-tree structure for the

sample dataset in Figure 5.1.

Term ObjectEntries Freq

t2 <o1.Loc,1>, <o2.Loc,2> 3

t4 <o1.Loc,1>, <o2.Loc,1>, <o3.Loc,1> 3

t1 <o1.Loc,1>, <o3.Loc,1> 2

t3 <o3.Loc,1> 1

t6 <o1.Loc,1> 1

Term ObjectEntries Freq

t1 <o6.Loc,1>, <o7.Loc,2> 3

t2 <o6.Loc,1> 1

t4 <o7.Loc,1> 1

t5 <o6.Loc,1> 1

t9 <o6.Loc,1> 1

STL of R3 STL of R4

…

o1

o2
o3

o4

o5

o7
o6

o8

o9

o10

R1 R2R3

R4

R5

R6 o10o3

R1 R2

R3 R4

o1 o2 o6 o7 o4 o5 o8 o9

R5 R6

R-Tree Structure

(a) (b)

Query Region

Figure 5.2: Spatial R-Tree for the sample dataset in Figure 5.1 and leaf level STLs

Given the R-tree and the query region RQ, we first traverse the R-tree to find the leaf

nodes whose regions intersect with RQ. We start from the root node of the R-tree. For a non-

leaf node, we check the child entries to determine whether the entries overlap with the query

region. The overlapping child entries are then checked further using the same strategy. This

process continues until we reach the leaf level where the leaf nodes that intersect with RQ are

identified. The objects contained in RQ are indexed by these leaf nodes. However, to compute

the top-k terms efficiently, we pre-compute some additional sorted term lists for the leaf nodes

of the R-tree.

Leaf Level Sorted Term List: For each leaf node nl of the R-tree, we pre-compute a

Sorted Term List (STL) which is a list of term entries sorted based on the frequencies of the terms

inRnl
. The total number of entries in STL is equal to |Vnl

|where Vnl
= {∪o∈Do.Terms|o.Loc ∈

Rnl
}. For each term t ∈ Vnl

, we have a term entry te of the form< Term,ObjectEntries, Freq >.

98

The first field te.T erm denotes the term t. The second field te.ObjectEntries is a list of ob-

ject entries of the form < Loc, Freq > ≡ [∃o ∈ D: Loc = o.Loc ∈ Rnl
and Freq =

fo(t)>0]. Finally, the third field te.F req is the sum of all Freq values of the object entries in

te.ObjectEntries. The term entries in STL are sorted by their Freq values in descending or-

der. For example, Figure 5.2(b) shows the STLs for the two leaf nodes R3 and R4 of the R-tree

in Figure 5.2(a).

Once the leaf nodes that intersect with the query region RQ are identified, we then

execute the top-k algorithm on top of the STLs of the intersected leafs nodes. There are several

existing top-k algorithms [46][68] in the literature. In this chapter, we use the most popular

top-k threshold algorithm [46].

Threshold Algorithm: The threshold algorithm (TA) scans in parallel all the STLs

that are involved in top-k computation. At each iteration i, it extracts the ith term entry te from

each of the involved STLs. The sum of all te.F req values is considered as the threshold θ at

iteration i. Each time a new term t is seen, TA scans the other STLs to compute the aggregate

fRQ
(t).

Note that in our case, for a given term entry te with the term t, if the leaf node nl of

the STL (that contains te) is fully contained in RQ then te.F req is used in the fRQ
(t) computa-

tion. Otherwise, te.ObjectEntries is scanned to compute fRQ∩Rnl
(t) which contributes to the

fRQ
(t). TA stops when it finds k terms whose frequencies are higher or equal to the threshold θ

value.

As an example, consider the dotted query region in Figure 5.1(a). Based on the R-tree

in Figure 5.2(a), only the two leaf nodes R3 and R4 intersect with the query region. The STLs

of the two leaf nodes are shown in Figure 5.2(b). Therefore TA executes on these two STLs.

Assume the user is interested on two terms (i.e. k = 2). At iteration 1, TA scans the term entries

at position 1. The two terms at position 1 are t1 and t2. TA scans these terms in all STLs and

99

computes the frequency values: fRQ
(t1) = 3+2 = 5 and fRQ

(t2) = 3+1 = 4. The θ value at

this point is 3+3 = 6. Therefore the algorithm goes on and scans the term entries at position 2.

The two terms at position 2 are t4 and t2. TA computes the frequency of the new term t4 which

is 3+1 = 4. At this point, the top-2 terms are t1 and t2 (ties are broken arbitrarily). The θ value

at position 2 is 3 + 1 = 4 which is not higher than the frequencies of t1 and t2. Therefore TA

stops the execution and declares t1 and t2 as the top-2 terms.

Solving k-ST with leaf level STLs shows good performance for small query regions.

However, as the query region size increases, the number of intersected leaf nodes as well as the

number of involved STLs in top-k computation increases. This slows down the performance of

TA (Figure 5.10). Therefore, to improve the performance, we enhance our index structure with

the STLs for the inner level nodes of the R-tree. Figure 5.3 shows the STLs for two inner level

nodes R1 and R2. Note that the ObjectEntries fields are removed from the term entries of the

inner level STLs. This is to reduce the redundancy (as well as to improve the space efficiency)

of the index structure.

Term Freq

t1 5

t2 4

t4 4

t3 1

t5 1

t6 1

t9 1

STL of R1

Term Freq

t4 3

t6 3

t9 3

t2 2

t7 2

t8 2

t10 2

STL of R2

…

Figure 5.3: Inner level STLs for the R-tree in Figure 5.2(a)

Using the additional inner level STLs, we consider a modified tree traversal algorithm

(Algorithm 16). We start from the root node of the R-tree. If an inner level node is fully con-

tained in the query region, then no further checking is required for the childs of that node. The

STL of this fully contained node is used in top-k computation. However, if an inner level node

overlaps with the query region then the child nodes are checked. This process continues until

100

we reach the leaf level where the leaf nodes that intersect with the query region are identified.

The STLs of these intersected leaf nodes are used top-k computation.

Using the modified tree traversal algorithm, consider the previous dotted query region

in Figure 5.1(a). Based on the R-tree in Figure 5.2(a), only the inner level node R1 is fully

contained in the query region. Therefore, no further checking is done and the top-k terms are

returned by TA from the STL of R1. This reduces the number of involved STLs in TA from 2

to 1.

The problem with this modified approach is that it requires large amount of space

especially for the STLs of the higher level nodes. Figure 5.4 shows the average number of term

entries of the STLs at different levels. As seen from the figure, the number of term entries (as

well as the size of STL) increases for the higher levels. Note that, TA scans only a small subset

of the entries in general. In the example explained previously, TA stops after scanning two

term entries from the STLs. Therefore, we exploit this early stopping property to compute the

expected number of term entries (l) to be stored in a STL (discussed in section 5.3). We then

use this l value to shrink the list size for the inner level STLs.

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Level

A
v
g
.

N
u

m
b

er
 o

f

T
er

m
 E

n
tr

ie
s

(i
n

 m
il

li
o
n

s)

0.02 1.97

116.72

215.55

Figure 5.4: Level vs. avg. number of term entries per STL. The numbers on the top of the bars
show the avg. sizes of STLs in MB

In the rest of this section, we describe the algorithms to solve the k-ST problem given

that the inner level STLs contain l number of term entries while the leaf level STLs contain

all term entries. We define this approach as Spatial Term Indexing (STI) approach. At first,

101

Algorithm 15 finds the R-tree nodes whose STLs are involved in top-k computation (line 1).

After that, it executes the TA to compute the top-k term entries using algorithm 17 (line 2). The

main component of algorithm 17 is the repeat-until loop (lines 2 - 24). At each iteration i, it

scans the ith term entry from each of the involved STLs (lines 5 - 8) and computes the θ value

(line 9). Note that, when the index i exceeds l, algorithm 18 is called (line 8) for each involved

inner level STL to compute the next term entry sorted order. Algorithm 18 invokes algorithm 17

recursively for the STLs of the child nodes. If a new term t is seen, algorithm 17 looks up the

term t in all involved STLs and computes the aggregate frequency (lines 11 - 20). Algorithm 19

is a supporting method used to compute the value of a term entry te inRQ. It scans all the object

entries in te.ObjectEntries, finds the object entries that are contained in RQ and aggregates

their frequencies.

Algorithm 15 STI(RQ, k, root)
Require: Query Region RQ, number of output terms k and the root node of R-tree root
Ensure: Return top-k terms with highest frequencies in RQ

1: N← FindCandidateNodes(RQ, root)
2: E← ExecuteTA(N , RQ, k)
3: T ← ∅
4: for each term entry te in E do
5: T ← T ∪ te.T erm
6: return T

5.3 Estimation of Expected STL Size

We estimate the expected STL size l in two steps. In the first step, we estimate the expected

numbers of STLs (from different levels of the R-tree) that are involved in top-k calculation. Let

M = (m1,m2, ...,mh) be the vector; h is the height of the R-tree and mi denotes the expected

number of STLs involved from level i. Using M , we calculate l in the second step.

102

Algorithm 16 FindCandidateNodes(RQ, n)
Require: Query Region RQ, and the node n
Ensure: Return the set of candidate nodes from the subtree rooted at n such that the STLs of

the selected nodes are used for top-k computation
1: if IsLeaf(n) then
2: if RQ ∩Rn 6= ∅ then
3: return {n}
4: else
5: return ∅
6: if Rn ⊆ RQ then
7: return {n}
8: else
9: N ← ∅

10: for each child c of n do
11: N← N ∪ FindCandidateNodes(RQ, c)
12: return N

Step 1: Given the query region RQ, we start from the root level (level h) of the

R-tree. At each inner level i (2 ≤ i ≤ h), we estimate the expected number of nodes which

are fully contained in query region and the region covered by the contained nodes. The STLs of

the contained nodes are involved in the top-k calculation. Thus, mi for inner levels is equal to

the number of contained nodes. The remaining query region (i.e. the query region which is not

covered by the contained nodes) is used as the new query region for the next level i + 1. This

process continues until we reach the leaf level (i = 1) where the number of nodes that intersect

with the new query region is estimated and considered as m1.

Now we start our theoretical analysis on how to estimate the M . Table 5.1 describes

the model parameters. We consider an d-dimensional unit dataspace ([0, 1)d) which contains

the N objects. An R-tree with height h and average node capacity (fanout) f stores these N

objects. Let, Ni is the number of nodes at level i and Si = (si,1, si,2, ..., si,d) is the average size

of a level i node. First we estimate the R-tree properties (h,Ni,Si) using the analysis described

in [79], then we calculate the M .

103

Algorithm 17 ExecuteTA(N , RQ, k)
Require: Set of nodes N , the query region RQ and the number of output term entries k
Ensure: Execute TA on the STLs of the nodes in N and return the top-k term entries with

highest frequencies
1: E ← ∅, i← 0
2: repeat
3: θ ← 0, f ← 0
4: for each node n in N do
5: L← getSTL(n)
6: te ← ith term entry in L
7: if te is null and NotIsLeaf(n) then
8: te ← GetTermEntry(n,RQ, i)
9: θ ← θ + te.F req

10: t← te.T erm
11: if t has not been seen yet then
12: f ′ ← 0
13: if isLeaf(n) then
14: f ′ ← ComputeTermFreq(te, RQ)
15: else
16: f ′ ← te.F req
17: for each node n′ in N do
18: if n′ 6= n then
19: do random access for term t on STL of n′ and compute fRQ∩R′

n
(t)

20: f ′ ← f ′ + fRQ∩R′
n
(t)

21: E← E ∪ {< t, ∅, f ′ >}
22: f ←frequency of the kth term entry in E
23: i← i+ 1
24: until θ>f
25: return top-k term entries in E with highest frequencies

Since N objects are contained in N1 nodes at leaf level and the average fanout factor

is f , the number of leaf level nodes is N1 = N
f . Similarly N1 nodes are contained in N2 nodes

at level 2, therefore N2 =
N
f2

. Thus the number of nodes at level i is,

Ni =
N

f i
(5.1)

The height h of the R-tree is calculated as [79],

h = 1 + dlogf
N

f
e (5.2)

To compute Si, we assume that the node sides are equal in all dimensions (i.e. si,1 =

si,2 = ... = si,d). Let si be the average size of a level i node in all dimensions. Since f number

104

Algorithm 18 GetTermEntry(n,RQ, i)
Require: The node n, the query region RQ and the index i
Ensure: Return the ith term entry in the region Rn

1: N ← ∅
2: for each child c of n do
3: N← N ∪ c
4: E← ExecuteTA(N , RQ, i)
5: return the ith term entry in E

Algorithm 19 ComputeTermFreq(te, RQ)
Require: The term entry te, and the query region RQ
Ensure: Return the frequency of te in the region RQ

1: f ← 0
2: for each object entry oe in te.ObjectEntries do
3: if oe.loc ∈ RQ then
4: f ← f + oe.freq
5: return f

of level (i− 1) nodes are contained in a single node at level i, the number of level (i− 1) nodes

that contribute to a single side of level i node is d
√
f . Therefore si can be computed as,

si = (f1/d − 1).
1

(Ni−1)1/d
+ si−1 (5.3)

Here (Ni−1)
1/d is the average distance between the centers of two consecutive level

(i− 1) node projections in a single dimension. The detailed analysis is described in [79].

For simplicity, we assume that the query sides of RQ are also equal in all dimensions

(i.e. q1 = q2 = ... = qd = q). Given Ni and si, the number of level i nodes that intersect with

query region qd is [79],

intersect(Ni, si, q) = Ni.(si + q)d (5.4)

As stated earlier, in this chapter we are interested in the estimation of the number

of fully contained nodes for inner levels (which is a subset of intersected nodes computed in

[79]). The next analysis describes how we can estimate the number of contained nodes given

the values Ni, si and q.

105

Symbol Description
h height of R-tree

Si = (si,1, si,2, ..., si,d) avg. size of an MBR at level i
Nr = (N1, N2, ..., Nh) number of MBRs at different levels
RQ = (q1, q2, ..., qd) size of query region

f avg. node capacity (fanout)
N number of objects

Table 5.1: Model Parameters

RQ

si
si si si

q q q

(a) case 1 (b) case 2 (c) case 3

Figure 5.5: Case analysis of si and q

Depending on the values of si and q, there are three possible cases (Figure 5.5),

Case 1 (si>q): The node size is greater than the query region. Therefore, no node is

contained in the query.

Case 2 (q ≥ 2si): In this case, we consider a d-dimensional rectangle (the shaded

region in Figure 5.5(b)) inside the query region where each side of the inner rectangle is si

distance far away from the query rectangle. We argue that the nodes which intersect with the

inner rectangle are the nodes that are contained in the query region. The number of nodes that

intersect with the inner rectangle is intersect(Ni, si, q − 2si). Let Ai is the region covered by

the contained nodes. By the similar analysis performed during si calculation, we can estimate

the average size (say ai) of a single side of Ai, which is,

ai = (intersect(Ni, si, q − 2si)
1/d − 1).

1

(Ni)1/d
+ si (5.5)

The remaining uncovered region (i.e. qd−(ai)d) is considered as the new query region

for the next level which can be divided into small rectangles of size (q−ai2)d. The number of

small rectangles is estimated as d(qd − (ai)
d)/(q−ai2)de.

106

Case 3 (si ≤ q<2si): In this case, only one node can be contained in the query region

assuming no overlapping between the nodes at a given level. This assumption is a reasonable

property for a good R-tree [19]. Using the similar analysis explained in case 2, the remaining

uncovered region (i.e. qd− (si)
d) is divided into d(qd− (si)

d)/(q−si2)de small rectangles of size

(q−si2)d. These small rectangles are considered as the new query region for the next level.

To compute m1, we first compute the total number of leaf nodes covered by the con-

tained inner level nodes. We compute this value as
∑h

i=2mif
i−1 since each contained node at

level i (2 ≤ i ≤ h) covers total f i−1 number of leaf nodes. We then subtract this value from the

total number of leaf nodes that intersect with the original query qd. The exact formula used for

m1 computation is,

m1 = intersect(N1, s1, q)−
h∑
i=2

mif
i−1 (5.6)

Algorithm 20 shows the pseudocode to compute M . At first, lines 1− 4 compute the

R-tree properties h, Ni and si. Then using the R-tree properties, the second for loop (lines

7− 21) computes the M . Each iteration of the for loop corresponds to a level of R-tree. Lines

8−9 computem1 for the leaf level and lines 10−21 computemi for the inner levels (2 ≤ i ≤ h).

The variable factor stores the number of query rectangles at a level i.

Step 2: The analysis in this step is based on the assumption that the frequencies of

terms in the whole corpus (i.e. the collection of all terms in the dataset) follow the Zipf distri-

bution. This is true[57] for the collection of documents collected from several online sources:

Myspace[7], Twitter[10], Slashdot[8].

Let each object has x number of terms on average. Therefore, the total number of

terms (including duplicates) in the whole corpus is Nx. The Zipf law states that the frequency

of a term is inversely proportional to its rank in the frequency list. That means,

107

Algorithm 20 ComputeM(N, f, d, q)

Require: The number of objects N , the fanout factor f , the dimensionality d and the average
size of query region side q

Ensure: Return the vector M
1: Calculate h using Equation 5.2
2: s0 ← 0
3: for i← 1 to h do
4: Calculate Ni and si using Equations 5.1 and 5.3 respectively
5: factor ← 1
6: q′ ← q
7: for i← h to 1 do
8: if i = 1 then
9: Calculate m1 using Equation 5.6

10: else
11: if q′<si then
12: mi ← 0
13: else if q′ ≥ 2si then
14: mi = factor × intersect(Ni, si, q

′ − 2si)
15: Calculate ai using Equation 5.5
16: factor ← factor × d((q′)d − (ai)

d)/(q
′−ai
2)de

17: q′ ← q′−ai
2

18: else
19: mi ← factor × 1
20: factor ← factor × d((q′)d − (si)

d)/(q
′−si
2)de

21: q′ ← q′−si
2

22: return M = {m1,m2, ...,mh}

p
freq(p,Nx)

Nx
= c (5.7)

Here, p is the rank of the term, freq(p,Nx) is the frequency of the pth term in the

frequency list of a dataset containing Nx terms and c is the collection specific parameter. Using

Equation 5.7, the frequency freq(p,Nx) of a term at any arbitrary rank p can be computed

which is cNx
p .

In our case, each level i node of the R-tree contains on average Nx/Ni terms. There-

fore, the frequency of the pth term in the STL of a level i node is ciNx
Nip

. Similarly the frequency

of the pth term in the STL of the query region qd is cqqdNx
p .

108

Note that the top-k threshold algorithm works by computing the threshold value at

successive index p which is the sum of all pth frequency values in the STLs that involved in

top-k calculation. Given Nx, q and M , the threshold value at an index p is computed as,

θ(p, q,Nx,M) =

h∑
i=1

mi
ciNx

Nip
(5.8)

The top-k threshold algorithm stops at an index p when the threshold value equals or

drops below the kth frequency value in the query region qd. Therefore the expected list size is

computed as,

l(k, q,Nx,M) = argmin
p
{θ(p, q,Nx,M) ≤ cqq

dNx

k
} (5.9)

5.4 Experimental Evaluation

In this section we present the results of an experimental evaluation of our STI approach. Section

5.4.1 describes the setup including the dataset, baseline approaches and index structures used

for the experiments. Section 5.4.2 evaluates our estimated M and l with respect to the actual

values. Section 5.4.3 compares the index sizes required by the baseline approaches and our STI

approach. Finally, Section 5.4.4 analyzes the scalability of the approaches by varying the query

selectivity size. All experiments are performed on a 2.5GHz Intel Core i5 CPU, 8GB RAM

machine running Windows 7 OS.

5.4.1 Setup

Dataset: For our experiments, we crawled total 5,362,676 tweets [10] within the continental

United States. We remove the stop keywords from the tweet text to get meaningful top-k terms.

After removing the stop keywords, each tweet has 6 terms on average.

Baseline Methods: We compare our STI approach with the following two baseline

approaches,

109

Baseline-LL: In this approach, we pre-compute STLs only for the leaf level nodes.

Baseline-FL: As a second baseline, we pre-compute full (i.e. the STL of a node n

contains term entries for all terms in Rn) STLs for all nodes in the R-tree.

Index Structure: We consider three level indexing scheme for all the methods. First,

We compute an R-tree on top of the tweets in the dataset. The page size of the R-tree node is set

to 16KB (maximum 200 entries). The average fanout factor f is 136 (typical 68% average node

capacity [79]). Second, we store the STLs of R-tree nodes in a column family using Cassandra

2.0.5 database management system. To improve the efficiency of TA, we divide each STL into

collection of pages of size 16KB and load one page at a time. We store each STL page as a

separate row in the column family. The row key is the concatenate form of the STL identifier

and the page index. Third, to allow random access on the STLs, we store the terms in the STLs

in a separate column family. Here, each term is stored as a separate row in the column family.

The row key is the concatenate form of STL identifier and the term. The value is the frequency

of the term in the STL.

Note that the top-i term entries is a subset of the top-(i + 1). Thus each successive

execution of Algorithm 18 performs some repetitive computation which has been done in the

previous execution. Therefore, to improve the efficiency, we store the final state of Algorithm

18 (as well as Algorithm 17) after each execution which has been used in the next execution.

The location of the query region is selected based on the number of tweets contained

in that region. The dense areas have higher probabilities to be selected as query regions. We

varied the query region size as a fraction (selectivity) of the whole space and the results showed

in this section are averaged over 100 runs. The default value of k is set to 10 in all experiments.

110

5.4.2 Evaluation of M and l

Our first experiment is to evaluate the vector M computed by Algorithm 20. Figure 5.6 shows

the expected (
∑h

i=1mi) and the actual numbers of STLs involved in TA for different selectivity

of the query regions. As expected, the number of STLs increases with the query selectivity

size. The gaps between the actual and expected numbers are because of our assumption made in

Section 5.3. We assume that the objects’ locations follow uniform distribution, while in practice,

the tweets’ locations follow skewed distribution.

10
-5

10
-4

10
-3

10
-2

10
-1

0

200

400

600

800

1000

1200

Query Selectivity

A
v
g
.

n
u

m
b

er
 o

f
S

T
L

s
in

v
o
lv

ed

in
 T

A

 Actual Predicted

Figure 5.6: Avg. number of STLs involved in TA for different selectivity of query regions

10
0

10
1

10
2 10

4

10
5

10
6

10
7

Rank

F
re

q
u

en
cy

Actual Values
Trend Line (c = 0.0613)

(a) Level 3

10
0

10
1

10
2 10

3

10
4

10
5

10
6

Rank

F
re

q
u

en
cy

Actual Values
Trend Line (c = 0.0615)

(b) Level 2

10
0

10
1

10
2 10

1

10
2

10
3

10
4

Rank

F
re

q
u

en
cy

Actual Values
Trend Line (c = 0.0619)

(c) Level 1

10
0

10
1

10
2 10

-1

10
0

10
1

10
2

Rank

F
re

q
u

en
cy

Actual Values
Trend Line (c = 0.1204)

(d) Level 0

Figure 5.7: zipf parameters for different levels of R-tree

We then compute the zipf parameters for different levels of the R-tree constructed on

top of the tweets. Based on setup described in Section 5.4.1, the R-tree contains four levels.

Figure 5.7 shows the average frequency vs. rank values for the STLs at different levels of the

R-tree. As seen from the figure, the zipf parameters are almost equal (∼ 0.061) for the top three

levels of the R-tree. The leaf level STLs have different zipf parameter (0.1204). This is because

111

for the less number of tweets contained by the leaf level nodes compared to the top level nodes.

For the experiments in this section, we set the query region zipf parameter equal to the closest

sized R-tree level’s parameter.

Our next experiment is to evaluate the expected stopping point (l) of TA computed

using Equation 5.8. Figure 5.8 shows the expected and the actual stopping points for different

selectivity of query regions. The black line shows the average selectivity of level 2 nodes.

Starting from left, at selectivity 0.00001, the query region is less than the average size of leaf

nodes. Therefore, TA invokes Algorithm 19 to compute the actual frequencies of the term entries

in the query region. Note that the threshold value is computed using the term entry frequency

values (line 9 in Algorithm 17). Thus the threshold value has been overestimated compared to

the actual values and hence, the stopping point is high. As the query region size increases, the

problem caused by the overestimation decreases, so the stopping point also decreases as well

(as seen from Figure 5.8). When the query selectivity exceeds the average selectivity of level 2

nodes, some of the leaf level STLs are replaced by inner level STL(s) which start(s) to dominate

in top-k computation. Therefore, the threshold value continues to decrease.

During the index build up phase for the STI approach, we first select a query range to

be answered. We compute the expected l values for different query regions within the range and

find the maximum (lmax) of the computed l values. We then store lmax number of term entries

in the inner level STLs. For the rest of the experiments in this section, we set the query range to

be answered from selectivity 0.00001 to 0.05. The lmax value is computed as 62 (for selectivity

0.00001 in Figure 5.8).

5.4.3 Index Size

We also compare the three approaches (LL, STI and FL) in terms of the sizes required to store

the three different indexes: R-tree index, STL index and term index (Figure 5.9). Since the

112

10
-5

10
-4

10
-3

10
-2

10
-1 0

10

20

30

40

50

60

70

Query Selectivity

A
v
g
.
𝑙

Actual Predicted

Figure 5.8: Avg. stopping index of TA for different selectivity of query regions

R-trees are identical in all three approaches, the R-tree index sizes are same (as seen in Figure

5.9). The LL approach stores STLs only for the leaf level nodes, thus it requires the least storage

(both for the STL and term indexes) among all three approaches. The FL approach stores full

STLs for all nodes, therefore the space requirement is the maximum among all three approaches.

STI approach stores full STLs for the leaf level nodes and partial STLs (only 62 entries) for the

inner level nodes. In comparison with the other approaches, the space requirement of STI is

slightly greater than LL (factor of 0.0014) while lot less than FL (factor of 0.2817).

0

0.5

1

1.5

2

2.5

3

3.5

LL STI FL

In
d

e
x
 S

iz
e
 (

G
B

)

RTreeIndex STLIndex TermIndex

Figure 5.9: Disk sizes required for different index structures

5.4.4 Scalability Analysis

Finally, we perform the scalability analysis for the three approaches, LL, STI and FL (Figure

5.10). As seen from the figure, the processing time increases with the query selectivity size.

Note that, when the query region size is less than the size of level 2 nodes, only leaf level STLs

are involved in TA. Thus all three approaches perform same. As the query size increases, some

113

leaf level STLs are replaced by the inner level STL(s) both for the STI and FL approaches.

Therefore, STI and FL approaches start to perform better compare to the LL approach (Figure

5.10). Our approach STI shows same performance like FL. This is because we have stored 62

entries for the inner level STLs which are sufficient to answer the query regions greater than the

size of the level 2 nodes (Figure 5.8).

0 0.01 0.02 0.03 0.04 0.05
0

2

4

6

8

10

12

Query Selectivity

P
ro

ce
ss

in
g
 T

im
e

(m
in

u
te

s)

 LL STI FL

Figure 5.10: Avg. processing time of TA for different selectivity of query regions

114

Chapter 6

Conclusions and Future Work

6.1 Diversification of Query Results

In this thesis, we have considered result diversification on semi-structured data (Chapter 2).

For this, we have modified the standard tree edit distance to consider the query-context and

the contents for semi-structured result diversification. We have also given a novel heuristic and

pruning based technique for speeding up the existing algorithms by factor of two.

Our focus has been to develop methods to diversify exact matches to the query. As for

future research, we note that our algorithm can be extended to work on approximate matches.

In a typical approximate query matching system [15][16], the query is perturbed to generate

few approximate queries. Later, exact matches for these approximate queries are found. Let SQ

denotes the set of approximate queries of Q. Also let the exact result set for a query q ∈ SQ

be T q. Finding the top-k diverse results for Q can then be done in two steps. In the first

step, we compute top-k diverse results for each T q using our efficient STED and diversification

algorithm. In the second step, we find the top-k diverse results from the k|SQ| matches of the

first step. As two matches for two different queries in SQ may not have a complete mapping

between them, we use the modified tree edit distance described in 2.2 instead of STED. The

115

number of distances computed in the second step is not significant as k|SQ| is in the order of

hundreds. All the approximate matches are not equally relevant to the query, which necessitates

to use relevance score in diversity calculation. We can use relevance score in [16] or any other

function suitable for this purpose.

We also have described a novel framework for adaptive diversification of query re-

sults that dynamically adjusts the relevance and diversity of displayed results with the aim to

minimize the total expected user navigation cost to reach the desired target objects (Chapter 3).

Based on this framework, we prove that the problem is NP-hard and we present an efficient

approximate algorithm (ADA) that computes the best set results to display, by dynamically bal-

ancing relevance and diversity at each query step. We experimentally evaluate the performance

of our proposed algorithm and show that it outperforms state-of-the-art algorithms. A Mechani-

cal Turk user study confirms our findings and validates our navigation model. As a future work,

we plan to extend our navigation model where the user can update/delete the selected conditions

during the navigation process.

We then propose two distributed approaches, DM and SR, for result diversification

on massive datasets (Chapter 4) . The actual winner of these two approaches depends on the

environment parameters and data characteristics. Therefore, we propose a cost model that can

choose the best approach at runtime. We also propose an iterative refinement component that

iteratively refines the diverse result set returned by the diversification approach and guarantees

a 2-approximate solution when converses.

Note that, our discussion in Chapter 4 consider diversification on a static dataset; it

is an interesting open problem whether we can iteratively identify a good quality diversified

answer if the dataset changes over time (i.e., a new element is added to D or an element is

deleted). For further future work, we are planning to add diversification on the Asterix platform

(both as an extension of AQL and on top of the Hyracks engine) [20].

116

6.2 Spatial Top-k Queries

In Chapter 5, we propose a novel indexing approach (STI) for fast answering of top-k spatial

queries using threshold algorithm [46]. Our STI approach uses a model to reduce the size of

the index structure without sacrificing the performance of the threshold algorithm. In future,

we are planning to enhance our STI approach with distributed threshold algorithm (like [24]) to

process large volume of data.

117

Bibliography

[1] Amazon mechanical turk, https://www.mturk.com.

[2] emarketer report http://www.emarketer.com/article/smartphones-tablets-drive-faster-
growth-ecommerce-sales/1009835, 2013.

[3] Facebook, https://facebook.com/.

[4] Facebook statistics, http://www.digitalbuzzblog.com/facebook-statistics-stats-facts-2011/.

[5] http://en.wikipedia.org/wiki/twitter.

[6] https://twitter.com/search-home.

[7] Myspace, http://myspace.com/.

[8] Slashdot, http://slashdot.org//.

[9] Tiny image dataset, http://horatio.cs.nyu.edu/mit/tiny/data/index.html.

[10] Twitter, https://twitter.com/.

[11] B. Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri, Charuta Nakhe, Parag
Parag, and S. Sudarshan. Banks: Browsing and keyword searching in relational databases.
In VLDB, 2002.

[12] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diversifying
search results. In Proc. ACM WSDM, 2009.

[13] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based search
over relational databases. In ICDE, 2002.

[14] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel, Divesh Srivastava, and
Yuqing Wu. Structural joins: A primitive for efficient xml query pattern matching. In
ICDE, pages 141–152, 2002.

[15] Sihem Amer-Yahia, Sungran Cho, and Divesh Srivastava. Tree pattern relaxation. In
EDBT, pages 496–513, 2002.

[16] Sihem Amer-Yahia, Laks V.S. Lakshmanan, and Shashank Pandit. Flexpath: Flexible
structure and full-text querying for xml. In SIGMOD, pages 83–94, 2004.

[17] Taku Aratsu, Kouichi Hirata, and Tetsuji Kuboyama. Approximating tree edit distance
through string edit distance for binary tree codes. In SOFSEM, 2009.

118

[18] Nikolaus Augsten, Denilson Barbosa, Michael Bohlen, and Themis Palpanas. Tasm: Top-k
approximate subtree matching. In ICDE, 2010.

[19] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-
tree: An efficient and robust access method for points and rectangles. In SIGMOD, pages
322–331, 1990.

[20] Alexander Behm, Vinayak R Borkar, Michael J Carey, Raman Grover, Chen Li, Nicola
Onose, Rares Vernica, Alin Deutsch, Yannis Papakonstantinou, and Vassilis J Tsotras.
Asterix: towards a scalable, semistructured data platform for evolving-world models. Dis-
tributed and Parallel Databases, 29(3), 2011.

[21] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce. In
SIGMOD, 2010.

[22] Rubi Boim, Tova Milo, and Slava Novgorodov. Diversification and refinement in collabo-
rative filtering recommender. In CIKM, 2011.

[23] Nicolas Bruno. Holistic twig joins: Optimal xml pattern matching, 2002.

[24] Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed networks. In
PODC, pages 206–215, 2004.

[25] Gabriele Capannini, Franco Maria Nardini, Raffaele Perego, and Fabrizio Silvestri. Effi-
cient diversification of web search results. VLDB, 4(7), 2011.

[26] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for re-
ordering documents and producing summaries. In SIGIR, 1998.

[27] Kaushik Chakrabarti, Surajit Chaudhuri, and Seung won Hwang. Automatic categorization
of query results. In SIGMOD, 2004.

[28] D Chamberlin. Xquery 1.0: An xml query language.

[29] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. Probabilistic
ranking of database query results. In VLDB, 2004.

[30] S Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo Zaniolo. Effi-
cient structural joins on indexed xml documents. In VLDB, pages 263–274, 2002.

[31] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-merge:
simplified relational data processing on large clusters. In SIGMOD, 2007.

[32] J Clark. Xml path language (xpath) version 1.0.

[33] Charles Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin Ashkan,
Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information retrieval eval-
uation. In SIGIR, 2008.

[34] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, John Gerth, Justin Tal-
bot, Khaled Elmeleegy, and Russell Sears. Online aggregation and continuous query sup-
port in mapreduce. In SIGMOD, 2010.

119

[35] Robson Leonardo Ferreira Cordeiro, Caetano Traina Junior, Agma Juci Machado Traina,
Julio López, U Kang, and Christos Faloutsos. Clustering very large multi-dimensional
datasets with mapreduce. In KDD, 2011.

[36] Maurice Coyle and Barry Smyth. On the importance of being diverse. In IIP. 2005.

[37] Van Dang and W. Bruce Croft. Diversity by proportionality: an election-based approach
to search result diversification. In SIGIR, 2012.

[38] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. In OSDI. 2004.

[39] Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl. Divq: Diversifica-
tion for keyword search over structured databases. In SIGIR, 2010.

[40] Marina Drosou and Evaggelia Pitoura. Comparing diversity heuristics. In Technical Re-
port. Computer Science Department, University of Ioannina, 2009.

[41] Marina Drosou and Evaggelia Pitoura. Diversity over continuous data. IEEE Data(base)
Engineering Bulletin, 32:49–56, 2009.

[42] Marina Drosou and Evaggelia Pitoura. Search result diversification. In ACM SIGMOD
Record, 2010.

[43] Marina Drosou and Evaggelia Pitoura. Disc diversity: result diversification based on dis-
similarity and coverage. VLDB, 6(1), 2012.

[44] Marina Drosou, Kostas Stefanidis, and Evaggelia Pitoura. Preference-aware pub-
lish/subscribe delivery with diversity. In DEBS, 2009.

[45] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In
SIGKDD, 2011.

[46] Ronald Fagin. Combining fuzzy information from multiple systems. In PODS, pages
216–226, 1996.

[47] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
SOSP, 2003.

[48] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification.
In WWW, pages 381–390, 2009.

[49] Sudipto Guha, H V Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu. Approximate
xml joins. In SIGMOD. ACM, 2002.

[50] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD,
pages 47–57, 1984.

[51] Marios Hadjieleftheriou and Vassilis J Tsotras. (eds.) Result Diversity. IEEE Data Engi-
neering Bulletin, 32(4), 2009.

[52] Jayant R. Haritsa. The kndn problem: A quest for unity in diversity.

[53] Mahbub Hasan, Abhijith Kashyap, Vagelis Hristidis, and Vassilis Tsotras. User effort
minimization through adaptive diversification. Submitted for publication.

120

[54] Mahbub Hasan, Abdullah Mueen, and Vassilis Tsotras. Distributed diversification of large
datasets. In IC2E, 2014.

[55] Mahbub Hasan, Abdullah Mueen, Vassilis Tsotras, and Eamonn Keogh. Diversifying
query results on semi-structured data. In CIKM, 2012.

[56] Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou. Authority-based keyword
search in databases. ACM Trans. Database Syst., 33(1):1:1–1:40, 2008.

[57] Giacomo Inches, Mark J. Carman, and Fabio Crestani. Statistics of online user-generated
short documents. In ECIR, pages 649–652, 2010.

[58] Anoop Jain, Parag Sarda, and Jayant R Haritsa. Providing diversity in k-nearest neighbor
query results. In PAKDD. 2004.

[59] Haifeng Jiang, Weii Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig joins on indexed
xml documents. In Proc. of VLDB, pages 273–284, 2003.

[60] Abhijith Kashyap, Vagelis Hristidis, and Michalis Petropoulos. Facetor: Cost-driven ex-
ploration of faceted query results. In CIKM, 2010.

[61] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a
method for solving graph problems in mapreduce. In SPAA, 2011.

[62] Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. Soviet Physics Doklady, 10:707–10, 1966.

[63] Kun Liu, Evimaria Terzi, and Tyrone Grandison. Highlighting diverse concepts in docu-
ments. In SDM, 2009.

[64] Ziyang Liu and Yi Chen. Identifying meaningful return information for xml keyword
search. In SIGMOD, pages 329–340. ACM, 2007.

[65] Ziyang Liu, Peng Sun, and Yi Chen. Structured search result differentiation. In VLDB,
2009.

[66] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive
time-series data. In SIGMOD, 2010.

[67] Danupon Nanongkai, Ashwin Lall, Atish Das Sarma, and Kazuhisa Makino. Interactive
regret minimization. In SIGMOD, 2012.

[68] Surya Nepal and M. V. Ramakrishna. Query processing issues in image(multimedia)
databases. In ICDE, pages 22–29, 1999.

[69] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Diversifying top-k results. VLDB, 5(11):1124–
1135, 2012.

[70] Filip Radlinski and Susan Dumais. Improving personalized web search using result diver-
sification. In SIGIR, 2006.

[71] Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search results. In
WWW, 2010.

121

[72] Alexander Rasmussen, Michael Conley, Rishi Kapoor, Vinh The Lam, George Porter, and
Amin Vahdat. ThemisMR: An I/O-Efficient MapReduce. Technical Report CS2012-0983,
UCSD, 2012.

[73] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh Mohania.
Minimum-effort driven dynamic faceted search in structured databases. In CIKM, 2008.

[74] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., 1986.

[75] Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. Selectively diversifying web
search results. In CIKM, 2010.

[76] Manish Singh, Arnab Nandi, and H. V. Jagadish. Skimmer: Rapid scrolling of relational
query results. In SIGMOD, 2012.

[77] Barry Smyth and Paul McClave. Similarity vs. diversity. In ICCBR. 2001.

[78] Shirish Tatikonda, Srinivasan Parthasarathy, and Matthew Goyder. Lcstrim: Dynamic
programming meets xml indexing and querying. In VLDB, 2007.

[79] Yannis Theodoridis and Timos Sellis. A model for the prediction of r-tree performance. In
PODS, pages 161–171, 1996.

[80] Reinier H van Leuken, Lluis Garcia, Ximena Olivares, and Roelof van Zwol. Visual di-
versification of image search results. In WWW, 2009.

[81] E Vee, U Srivastava, J Shanmugasundaram, P Bhat, and S Amer-Yahia. Efficient compu-
tation of diverse query results. In ICDE, pages 228–236, 2008.

[82] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins using
mapreduce. In SIGMOD, 2010.

[83] Marcos R. Vieira, Humberto Luiz Razente, Maria Camila Nardini Barioni, Marios Had-
jieleftheriou, Divesh Srivastava, Caetano Traina, and Vassilis J. Tsotras. On query result
diversification. In ICDE, pages 1163–1174, 2011.

[84] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It takes variety to make a world:
diversification in recommender systems. In EDBT, 2009.

[85] Yisong Yue and Thorsten Joachims. Predicting diverse subsets using structural svms. In
ICML, 2008.

[86] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy Katz, and Ion Stoica. Im-
proving mapreduce performance in heterogeneous environments. In Proceedings of the
8th USENIX conference on Operating systems design and implementation, 2008.

[87] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance be-
tween trees and related problems. Siam Journal on Computing, 18:1245–1262, 1989.

[88] Mi Zhang and Neil Hurley. Avoiding monotony: Improving the diversity of recommenda-
tion lists. In RecSys, 2008.

[89] Cai Nicolas Ziegler, Sean M. Mcnee, Joseph A. Konstan, and Georg Lausen. Improving
recommendation lists through topic diversification. In WWW, 2005.

122

	List of Figures
	List of Tables
	Introduction
	Diversification of Query Results
	Diversification on Semi-Structured Data
	Adaptive Diversification of Query Results
	Distributed Diversification of Large Datasets

	Spatial Top-k Queries
	Thesis Overview

	Semi-Structured Diversification
	Problem Formulation
	Distance Measure for Diversification
	Context Aware Diversity
	Content Based Diversity
	Algorithm for STED
	Properties of the Distance Measure
	Triangular Inequality
	Lower Bounds
	Upper Bounds

	Diversification
	Novel Heuristic for Seed Selection
	Pruning while Maintaining Diversity
	The Algorithm for Pruning Based Diversification

	Evaluation
	Speedup of STED
	Evaluation of Diversification Algorithms
	Qualitative Analysis
	Scalability Analysis

	Related Work

	Adaptive Diversification
	Problem Definition
	Preliminaries
	Navigation Cost Model
	Problem Statement

	Navigation Cost Estimation
	Computing Probabilities

	Complexity Avalysis
	Adaptive Diversification
	Evaluation
	Setup
	Qualitative Analysis
	Performance Analysis
	Scalability Analysis

	User Study
	Related Work

	Distributed Diversification
	Problem Definition
	Diversification Framework
	Diversification Approaches
	Divide and Merge (DM)
	Sample and Refine (SR)

	Cost Model
	Iterative Refinement

	Evaluation
	Setup
	Evaluation of Diversification Approaches
	Qualitative Analysis
	Performance Analysis

	Evaluation of Cost Model
	Evaluation of Iterative Refinement

	Related Work

	Spatial Top-k Queries
	Problem Definition
	Index Structure
	Estimation of Expected STL Size
	Experimental Evaluation
	Setup
	Evaluation of M and l
	Index Size
	Scalability Analysis

	Conclusions and Future Work
	Diversification of Query Results
	Spatial Top-k Queries

	Bibliography

