
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Formal Verication of Neural Networks

Permalink
https://escholarship.org/uc/item/2xx757px

Author
Khedr, Haitham

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xx757px
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Formal Verification of Neural Networks

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Haitham Khedr

Thesis Committee:
Assistant Professor Yasser Shoukry, Chair

Associate Professor Mohammad Al Faruque
Assistant Professor Yanning Shen

2021



© 2021 Haitham Khedr



TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

LIST OF ALGORITHMS vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1

2 Background 4
2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 ReLU linear relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Interval arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Symbolic interval analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Neural network verification problem . . . . . . . . . . . . . . . . . . . . . . . 8

3 Related work 10
3.1 SMT-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 MILP-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Reachability based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Convex relaxations methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Algorithm 13
4.1 PeregriNN Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Sum-of-Slacks Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Max-Slack Conditioning Priority . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Layer-wise-Weighted Penalty . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 Initial Counterexample Search by Sampling . . . . . . . . . . . . . . 18

5 Verification Problems 19
5.1 Adversarial Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Safety of a neural network controlled quadrotor . . . . . . . . . . . . . . . . 20

5.2.1 Dynamics and Workspace . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



5.2.2 LiDAR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Imaging-Adapted Workspace Partitioning . . . . . . . . . . . . . . . 23
5.2.4 Finite state abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.5 Verification framework . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Experiments 28
6.1 Adversarial Robustness Verification Task . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.2 Comparison with Other NN Verifiers . . . . . . . . . . . . . . . . . . 33

6.2 Safety of a neural network controlled quadrotor . . . . . . . . . . . . . . . . 35

7 Conclusion 37
7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 40

iii



LIST OF FIGURES

Page

2.1 Triangular relaxation of the ReLU function . . . . . . . . . . . . . . . . . . . 6
2.2 Symbolic interval analysis relaxations . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Block Diagram of the PeregriNN Algorithm . . . . . . . . . . . . . . . . . . 14

5.1 Pictorial representation of the problem setup under consideration. . . . . . . 21
5.2 Workspace imaging-adapted partitioning . . . . . . . . . . . . . . . . . . . . 25
5.3 Safety verificaion on finite state abstraction . . . . . . . . . . . . . . . . . . 25

6.1 Performance of PeregriNN variants with different conditioning priorities . . . 30
6.2 Performance of PeregriNN variants with different objective functions . . . . . 32
6.3 Cactus plot of various solvers on 300-case testbench . . . . . . . . . . . . . . 33

iv



LIST OF TABLES

Page

6.1 Architecture of the NN models used in the experiments . . . . . . . . . . . . 29
6.2 The number of safe and unsafe regions for 10 different networks . . . . . . . 35
6.3 Scalability results for the safety of a NN controlled Quadrotor . . . . . . . . 36

v



LIST OF ALGORITHMS

Page
1 Verification of ReLU networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



ACKNOWLEDGMENTS

I’d like to express my extreme gratitude to my advisor Yasser Shoukry for the useful feedback,
guidance throughout the project, and hands-on engagement. I would also like to thank my
fellow colleagues for a great work environment. A special thanks goes to James Ferlez
and Xiaowu Sun for their collaboration on different projects. Finally, I would also like to
thank the National Science Foundation for their funding assistance via awards CNS-2002405
and CNS-2013824. The text of this thesis is a reprint of the material as it appears in
the papers; Formal verification of neural network controlled autonomous systems[27] and
Effective Formal Verification of Neural Networks using the Geometry of Linear Regions [20]

vii



ABSTRACT OF THE THESIS

Formal Verification of Neural Networks

By

Haitham Khedr

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2021

Assistant Professor Yasser Shoukry, Chair

Neural networks(NNs) have been widely used over the past decade at the core of intelligent

systems from sensing modules to learning-based controllers. They’ve also been deployed in

different safety-critical domains including healthcare and transportation. However, recent

work has shown that NNs are fragile and can make dangerous mistakes that are either

unintentional or adversarial. As a consequence, formal verification of NNs holds the promise

of providing safety guarantees on the behaviour of such systems. We focus our work on

ReLU networks as it is the most widely used activation function. Exact formal verification

of ReLU NNs was proved to be NP-hard due to the combinatorial nature of the problem,

therefore all of the current verification methods use some relaxation of the problem. We

propose a novel framework for formal verification of ReLU neural networks that can ensure

that they satisfy some polytopic specifications on the input and the output of the network.

Our approach uses a relaxed convex program to mitigate the combinatorial complexity of

the problem together with some optimization heuristics to efficiently verify the satisfaction

of the specification on a given network. We have implemented our algorithm in a toolkit,

PeregriNN. To test PeregriNN, we run it on two test benches in different domains. First,

we achieve SOTA results on verifying the adversarial robustness of different networks on the

MNIST dataset. Second, we verify the safety of a neural network controlled autonomous

robot in a structured environment.
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Chapter 1

Introduction

Neural Networks have become an increasingly central component of modern machine learning

systems, including those that are used in safety-critical cyber-physical systems such as au-

tonomous vehicles. The rate of this adoption has exceed the ability to reliably verify the safe

and correct functioning of these components, especially when they are integrated with other

components such as controllers. Thus, there is an increasing need to verify that NNs reliably

produce safe outputs. This has been well studied in the domain of image classification. Most

state-of-the-art object detectors are sensitive to small adversarial perturbation[28] to their

inputs that are not noticeable to humans. Moreover, these adversarial attacks were shown to

be able to fool systems operating in the physical world [26, 21] which could lead to fatalities.

For example, a change in lighting condition led a Tesla autopilot to crash into a truck[1].

Similarly, Uber’s autonomous vehicle collided[2] with a woman on a bicycle because it kept

fluctuating between identifying her as an unknown object, a vehicle, or a bicycle. Such

examples significantly limit NNs usefulness, especially in safety-critical applications.

We propose a novel framework, PeregriNN, for formal verification of neural networks that

can ensure that they satisfy some specifications. Formal verification algorithms can be
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classified according to soundness and completeness. The former means that the algorithm

can verify that a system actually satisfy the specification, but can’t decide if the system

violates the specification. While the latter means that the algorithm can verify that a system

actually violates the specification. Sound algorithms usually scale better, but they might

not be able to solve many problems given a finite amount of time. Complete algorithms are

guaranteed to solve the verification problem, however, they suffer from scalability due to

their computational complexity. We only consider complete methods in this thesis.

PeregriNN is a sound and complete algorithm for efficiently and formally verifying ReLU

NNs. In particular, we consider the problem of whether a particular set of inputs always

results in NN outputs within some other (output) set. However, PeregriNN will also verify

input and output constraints that are interrelated by convex inequalities: this feature dis-

tinguishes PeregriNN from other formal NN verifiers, which verify only static input/output

constraints and it makes PeregriNN uniquely well suited to the verification of NNs when

they are used as state-feedback controllers for dynamical systems: in such cases, static in-

put/output constraints are inadequate to capture the most important safety properties.

PeregriNN falls into the broad category of sound and complete search and optimization NN

verifiers [22]. The search aspect of PeregriNN involves iterating over different combinations

of neuron activation patterns to verify that each is compatible with the specified safety

constraints (on the input and output of the network). Like other algorithms in this category,

PeregriNN combines this search with optimization techniques to make inferences about the

feasibility of full-network activation patterns on the basis of activation patterns of only a

subset of neurons. The optimization in question reformulates the original NN feasibility

problem into a relaxed convex feasibility problem to allow sound inferences: i.e. if the

convex relaxation is infeasible, then the original NN problem may soundly be concluded to be

infeasible. In this relaxed feasibility problem, the output of each individual neuron is assigned

a relaxation variable that is decoupled from the actual output of that neuron. PeregriNN
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also uses a type of reachability analysis (symbolic interval analysis) both to enhance the

optimization-based inference described above and as a source of additional sound inference

itself. For this reason, PeregriNN’s search procedure searches neurons in a layer-by-layer

fashion, preferring to fix the phases of neurons closest to the input layer first.

In contrast to other search and optimization algorithms, however, PeregriNN augments each

convex feasibility query with a (convex) penalty function in order to obtain better guidance

on which activation patterns to search next. In particular, we note that the amount of

relaxation needed on a neuron can be regarded as a quasi-measure of how close the convex

solver came to operating the associated neuron in a valid regime – i.e. at a valid evaluation

of that neuron on a particular input. In this sense, the amount of relaxation in aggregate can

be regarded as a quasi-measure of how close the solver came to finding a valid evaluation of

the network as a whole. Inversely, the largest distance between a relaxation variable and its

neuron’s closest ReLU constraint intuitively corresponds in some sense to how “problematic”

that neuron is with regard to obtaining such a valid evaluation. These distances we refer to

as the “slacks” for each neuron. Thus, PeregriNN may be regarded as greedily minimizing a

slack-based penalty.

We compared the performance of our proposed algorithm against present state-of-the-art

verification algorithms for proving adversarial robustness of networks trained on the MNIST

dataset. On average, PeregriNN verified more properties than all SOTA methods. We also

used PeregriNN to verify safety of transitions of a ground robot in a structured environment

with dynamical constraints. These experiments are explained in details in chapter 6
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Chapter 2

Background

In this chapter, we introduce all the notation and concepts needed to define our problem, as

well as the formal definiton of the NN verification problem. We also discuss briefly the state

of the art algorithms of the field and categorize them based on the underlying methods used.

2.1 Neural networks

We consider an n-layer feedforward neural network NN : Rk0 → Rkn with input x ∈ Rk0 and

ouput z ∈ Rkn , where R is the set of real numbers, k0 is the dimension of the input, and kn is

the dimension of the output of the network. The i-th layer in NN corresponds to a function

fi : Rki−1 → Rki . Hence, the neural network can be represented by NN = fn ◦ fn−1 ◦ ... ◦ f1,

where ◦ is function composition operator. For the i-th hidden layer, we denote the layer

inputs (pre-activations) by ŷi ∈ Rki and the layer outputs (post-activations) by yi ∈ Rki .

Specifically, we consider networks with ReLU activation layer which is parameterized by

weights, Wi, and biases, bi, and is defined as fi : y ∈ Rki−1 7→ max{Wiy + bi, 0} ∈ Rki .
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Hence, the neurons’ input and output can be represented by

ŷi = Wiyi−1 + bi, i = 1, ...., n

yi = max(0, ŷi), i = 1, ...., n− 1

y0 = x, z = yn = ŷn,

(2.1)

where Wi ∈ Rki×ki−1 , bi ∈ Rki are the weights and bias of the i-th layer respectively, and the

max function is taken element-wise. Moreover, we denote the j-th neuron in the i-th layer

by nij, the lower bound of ŷi by l̂i, the upper bound of ŷi by by ûi. Similarly, the lower and

upper bounds of yi are denoted by li and ui.

2.2 ReLU linear relaxation

Due to the non-linearity and non-convexity of the ReLU function, many of the algorithms

that will be discussed use a convex relaxation to approximate the ReLU neurons. Ehlers

[12] introduced linear (triangular) relaxation to approximate the ReLU non-linear function.

The relaxation replaces each ReLU constraint by a set of three linear constraints on the

input and the output of the neuron. This convex relaxation leads to an overestimation of

the actual output set of the ReLU function.

Formally, for a ReLU with input ẑ, the output set is given by {z | z = max(0, ẑ)}. Given

the lower and upper bounds l̂ and û on the ReLU input, the relaxed convex set will be

{z | z ≥ 0, z > ẑ, z ≤ û(ẑ − l̂)
û− l̂

}.

Figure 2.1 shows a pictorial representation of the ReLU function (figure 2.1a) and its relax-

ation (figure 2.1b).
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(a) ReLU activation function (b) ReLU triangular relaxation

Figure 2.1: Triangular relaxation of the ReLU function

2.3 Interval arithmetic

Calculating the lower and upper bounds of each neuron is used in many of the tools discussed

in this thesis. In this section we discuss interval arithmetic and how it can be used to compute

the neuron lower and upper bounds.

By using interval arithmetic, given the bounds of layer i− 1, the bounds at layer i is given

by

l̂i = W+
i li−1 +W−

i ui−1 + bi, (2.2)

ûi = W+
i ui−1 +W−

i li−1 + bi, (2.3)

li = max(0, l̂i), (2.4)

ui = max(0, ûi), (2.5)

where W+ = max(0,W+) and W− = min(0,W−) element wise. The interval arithmetic

bounds are usually very loose, which is a major drawback of this method. This is due to the

fact that the neurons cannot reach their maximum and minimum at the same time. This is

not taken into account in equations (2.2)-(2.5)
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2.4 Symbolic interval analysis

To tighten the bounds computed by interval arithmetic, [31] introduced symbolic interval

analysis. Symbolic interval analysis propagates linear symbolic equations instead of concrete

bounds. Concrete neuron bounds can then be computed by maximizing and minimizing the

symbolic equation.

Let eqi−1low (x) and eqi−1up (x) be the lower and upper bound equations of layer i − 1. Then

the preactivation lower and upper bound equations of layer i can be computed using the

formulas:

êqilow(x) = W+
i eq

i−1
low (x) +W−

i eq
i−1
up (x) + bi

êqiup(x) = W+
i eq

i−1
up (x) +W−

i eq
i−1
low (x) + bi

The challenge in symbolic propagation is how to maintain linear bound equations. How-

ever, propagating the preactivation bounds equations through a ReLU will yield a nonlinear

function. Instead of propagating the symbolic bounds through the ReLU function, Wang

et al.[31] addressed this issue by introducing two linear relaxations, the upper bound equa-

tion is propagated through the upper linear relaxation, while the lower bound equation is

propagated through the lower linear relaxation. Figure 2.2 shows the upper and lower linear

relaxations used.

 

Figure 2.2: Symbolic interval analysis relaxations, the upper dotted line is the upper relax-
ation, and the lower line is the lower bound relaxation
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Formally, the post-activation lower and upper bound linear equations for neuron nij can be

computed using the formulas:

eqijlow(x) =
uijlow

uijlow − l
ij
low

eqijlow(x),

eqijup(x) =
uijup

uijup − lijup
(eqijlow(x)− lijup),

where uijlow and lijlow are the pre-activation concrete upper and lower bounds for the lower

bound equation êqijlow. Similarly, uijup and lijup are the pre-activation concrete upper and lower

bounds for the upper bound equation. These bounds can be simply be computed as follows.

For a linear equation eq(x) =
∑

i cixi, the upper and lower bounds are given by:

u =
∑
i|ci>0

cix
u
i +

∑
i|ci≤0

cix
l
i (2.6)

l =
∑
i|ci>0

cix
l
i +

∑
i|ci≤0

cix
u
i , (2.7)

where xui and xli are the upper and lower bounds on the input to the neural network.

2.5 Neural network verification problem

Let NN be an n-layer NN as defined above. Furthermore, let Py0 ⊂ Rk0 be a convex

polytope in the input space of NN , and let Pyn ⊂ Rkn be a convex polytope in the output

space of NN . Finally, let h` : Rk0 × Rkn → R, ` = 1, . . . ,m be convex functions. Then the

verification problem is to decide whether for all inputs x ∈ Py0 , the output is NN (x) ∈ Pyn

given the constraints h` for ` = 1, . . . ,m. Formally, this is equivalent to deciding whether

{
x ∈ Rk0

∣∣∣ x ∈ Py0 ∧ NN (x) ∈ Pyn ∧
(

m
∧
`=1

h`(x,NN (x)) ≤ 0
)}

= ∅. (2.8)
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Note that the addition of the convex inequality constraints hj is a unique feature of our

problem formulation compared to other NN verifiers, and it significantly broadens the scope

of the problem. In particular, other solvers can only verify independent input and output

constraints Py0 and Pyn .

So, given the input and output constraints, we either prove that no valid input that violates

those constraints and deem the property provably satisfied (SAT) or find an input that does

and return a counter example which shows that the property is unsatisfied (UNSAT).

We can verify Neural networks against different specifications in different domains using

the same formulation explained above. We will discuss two different problems in chapter 6

where we are able to use this formulation to verify neural networks with different types of

specifications.

9



Chapter 3

Related work

In this chapter, we review current state of the art verification algorithms, discuss them briefly,

and categorize them into different categories based on their underlying methodologies. We

only consider to sound and complete verification algorithms. Most of the SOTA algorithms

can be grouped in four categories as follows.

3.1 SMT-based methods

SMT-based algorithms [19, 18, 12] rely on a Linear Programming (LP) solver to check the

feasibility of a relaxed version of the verification problem. If the algorithm cannot conclude

the satisfiability of the property, they refine the problem by splitting the nonlinear neurons,

the neuron splitting is done by the aid of a SAT solver to assign different phases to the

nonlinear neurons. Even though these algorithm use a similar strategy, their approach is

different. Katz et al.[18] extend the simplex algorithm for solving LPs to be able to support

the non-linear constraints of the ReLU neurons. Ehlers[12] used linear relaxation to relax

the nonlinear ReLUs and then use an LP solver to check the feasibility of the problem. It

10



uses a SAT solver to explore all possible combinations of neurons’ splits.

3.2 MILP-based methods

Algorithms in this category [23, 29, 6, 8, 15, 3, 9, 7] directly encode the verification problem

in (2.8) into a Mixed Integer Linear Program (MILP) using five constraints per neuron.

Using MILP requires computing the upper and lower bounds of each neurons, which can be

computed by interval arithmetic or linear programming.

3.3 Reachability based methods

Reachability based methods [4, 34, 35, 16, 32, 30, 17, 14, 5] perform layer-by-layer reacha-

bility analysis to compute the reachable set and compare it with the property output set to

conclude satisfiability of the propert. Wang et al. [32] uses interval arithmetic to compute

an overapproximation of the output reachable set. If the algorithm can’t conclude the satis-

fiability of the property, they refine the problem by splitting the input domain of the neural

network which results in two refined problems that are verified independantly. Another class

of algorithms [4, 30] use star sets to compute an overapproximation of the output reachable

set, they refine the problem by splitting one of the hidden neurons if the initial problem was

inconclusive.

3.4 Convex relaxations methods

Convex relaxation methods[31, 11, 33] use linear relaxation to the ReLU constraints and

rely on solving a convex program to determine the feasibility of the problem. Similar to

11



reachability, if the solution of the convex program is not conclusive, these methods refine

the problem by splitting one of the neurons and solving two convex problems, one for each

phase.

In general, SMT, MILP and reachability methods suffer from poor scalability. On the other

hand, convex relaxation methods depend heavily on pruning the search space of indetermi-

nate neuron activations; thus, they generally depend on obtaining good approximate bounds

for each of the neurons in order to reduce the search space (the exact bounds are computa-

tionally intensive to compute [10]). The convex relaxation methods are the most similar to

PeregriNN. The full details of the algorithm is explained in chapter 4.

12



Chapter 4

Algorithm

The general structure of PeregriNN is depicted in Figure 4.1. Like other search and optimiza-

tion based NN verifiers it has two main components: a search component and an inference

component, and PeregriNN iterates back and forth between these two components until ter-

mination. In particular, the search and inference components interact in the following way.

The search component successively iterates over all possible on/off activations for each neu-

ron; this is done by fixing these activations one neuron at a time, starting from the input

layer and working towards the output layer. The process of fixing a neuron’s activation is

referred to as conditioning its phase: each neuron can be in either its active phase (operat-

ing linearly) or inactive phase (outputting zero). Thus, the search component provides the

inference component a subset of neurons, each of which has been conditioned; the inference

component then attempts to soundly reason about whether the remaining, unconditioned

neurons can be operated in such a way as to violate the safety constraint. If the inference

component soundly concludes safety for all possible activations of the remaining uncondi-

tioned neurons, then the search component backtracks, oppositely reconditioning one of the

neurons that was already conditioned. Otherwise, if a sound safe conclusion is not made,

then the search component uses information from the inference component to decide on a

13



Sampling

Inference

Inference Component

Symbolic Interval

Inference

Convex Program

Inference
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Neurons un-
conditioned?

All neurons
conditioned?

SAFE

UN-SAFE
Counterexample

Neuron

Recondition
Infeasible?

Else

Found?

Else

Figure 4.1: Block Diagram of the PeregriNN Algorithm

new neuron to condition, and the process repeats. The algorithm terminates if either a coun-

terexample to safety is found, or else all possible neuron activations are considered without

finding such a counterexample.

The convex program inference block is at the heart of the inference component and Pere-

griNN itself. In this block, PeregriNN, like other search and optimization solvers, uses a

relaxed linear feasibility program where the output of each individual neuron is assigned a

relaxation variable that is decoupled from the actual output of that neuron.In the notation

of Equation 2.1, such a linear feasibility program can be written as follows, where the vector

variables yi, i 6= 0 are the relaxation variables.


yi ≥ 0, yi ≥ Wiyi−1 + bi ∀i = 1, . . . , n

y0 ∈ Py0 , yn ∈ P c
yn ,

m
∧
`=1
h`(y0, yn) ≤ 0

(4.1)

Importantly, if (4.1) is infeasible, then the original NN problem in (2.8) may be soundly

concluded to be infeasible as well – and hence, the property is SAT. However, as described

above, the primary function of the convex feasibility program is to use a set of conditioned

neurons supplied by the search component in order to soundly reason about the remain-

ing neurons. To do this, the conditioned neurons supplied by the search component are

14



Algorithm 1 Verification of ReLU networks
1: procedure NN verify(nn, problem)
2: inferred = φ; decided = φ
3: while True do
4: inferred, undecided ← SymIntervalAnalysis(nn, problem.input bounds)
5: sol, realxed neurons←CheckFeas(nn, problem, undecided) . Inter layer prioritization
6: if sol.status == INFEASIBLE then
7: if decided == φ then return SAFE
8: else
9: decided ← backtrack(decided, problem)

10: else if |relaxed neurons| == 0 then return UNSAFE, sol
11: else
12: neuron ←pick one(relaxed neurons) . Intra layer prioritization
13: decided ← decided

⋃
neuron

incorporated into the feasibility program (4.1) as equality constraints in the following way:

Neuron (yi)j ON: (yi)j = (Wiyi−1 + bi)j ∧ (yi)j ≥ 0 (4.2)

Neuron (yi)j OFF: (yi)j = 0 ∧ (Wiyi−1 + bi)j ≤ 0. (4.3)

Inferences created by the symbolic interval inference block using Symbolic Interval Analysis

[32] are also incorporated using equality constraints like (4.2) and (4.3). Algorithm 1 briefly

summarizes the verification steps.

Of the remaining blocks, the “Backtracking & Reconditioning” block is essentially described

above. The “Condition New Neuron” and “Sampling Inference” blocks have features unique

to PeregriNN that are described in section 4.1; the former implements a novel neuron prior-

itization, and the latter is a unique approach to quickly obtaining initial safety counterex-

amples.
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4.1 PeregriNN Enhancements

4.1.1 Sum-of-Slacks Penalty

The core enhancement in PeregriNN is the inclusion of a specific objective function in the

convex program used by the inference component. As per the discussion above, this ob-

jective function is interpreted as a penalty on how far away a particular solution is from a

valid input/output response of the network (and activation pattern on all hidden neurons).

Specifically, this penalty function penalizes the sum of all of the “slack” variable for the

entire network, where each neuron’s slack variable is defined as si , yi − (Wi · yi−1 + bi).

That is the distance between a relaxation variable yi and the linear response of its associated

neuron. During each feasibility/inference call, this has the obvious effect of incentivizing the

convex solver to choose an actual input/output response of the network.

In addition, this penalty is effectively the L1-norm of the vector of all the slack variables,

since the slack variables are non-negative. The L1-norm of a vector, used as a penalty

function, is well known to effectively encourage sparsity on the resulting optimal solution.

Thus, the sum-of-slacks effectively incentivizes the convex solver to leave as few neurons as

possible indeterminate in the solution. That is a sum-of-slacks penalty effectively encourages

the convex solver to fix the phases of as many neurons as possible.

4.1.2 Max-Slack Conditioning Priority

As noted above, the search component of PeregriNN operates layer-wise from input layer to

output layer in order to leverage Symbolic Interval Analysis for additional inference. Hence,

the search component always chooses the next neuron to be searched (i.e. conditioned) from

among those as-yet-unconditioned neurons that are closest to the input layer. It further
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makes sense to only consider conditioning neurons that the convex solver was unable to

operate at valid inputs/output. However, the convex solver typically returns several neurons

to choose from with this property, and it is necessary to choose which of them to search next.

Given the interpretation of a neuron’s “slack” variable as a measure of how “problematic”

that neuron was for the solver to obtain a valid evaluation of the network, PeregriNN’s

search component chooses the next neuron to condition based on slack-order ranking of

those neurons that are not being operated at valid input/output points. This “max-slack”

heuristic choice is unique to PeregriNN; compare to the output gradient heuristic employed

in [31].

4.1.3 Layer-wise-Weighted Penalty

PeregriNN takes the “max-slack” neuron search priority one step further, though. Using

techniques similar to those in [25], it is possible to show that there exists weights q1, . . . , qn

such that solving (4.1) with the penalty

min
y0,..,yn

n∑
i=0

ki∑
j=1

qisij (4.4)

will result in a solution that is guaranteed to concentrate the most total slack in the earliest

(unconditioned) layer. Thus, by using the layer-wise weighted sum-of-slacks penalty in (4.4),

PeregriNN is uniquely able to force the (unconditioned) layer closest to the input layer to

have the largest total slack among all the layers. As a consequence, PeregriNN effectively

concentrates the most “problematic” neurons in the layer where the next conditioning choice

will be made. This scheme makes it much more likely that the neuron with the highest slack

among all of the neurons will be among the next neurons considered for conditioning – in

effect, often guiding the search component to condition on the most problematic neuron in

the whole network (although this is not guaranteed).
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4.1.4 Initial Counterexample Search by Sampling

Finally, PeregriNN incorporates a simple, yet novel, approach to help identify un-safe net-

works early on. In particular, PeregriNN uses the Volesti [13] Python library to uniformly

sample points within the input constraint set, Px, and evaluates the network exactly for

those inputs. Unsafe outputs thus constitute counterexamples to the safety of the network,

and PeregriNN can terminate.

The impact of these enhancements are tested by running ablation tests. These tests are

reported in chapter 6
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Chapter 5

Verification Problems

In this chapter we discuss two different applications where verification of NNs is needed. We

briefly discuss both tasks, and how can each of the verification problems be formulated as

discussed in chapter 2.

5.1 Adversarial Robustness

A Neural network is said to be adversarially robust, if small perturbations in the input

doesn’t lead to misclassification of the target. We consider max-norm perturbations in

this work. Formally, let x′ be a given image in category t ∈ {1, . . . ,M}, and let ε > 0 be a

specified maximum amount of max-norm perturbation of x′. Then we say that a NN with M

classification outputs, NN , is robust if for each classification category m ∈ {1, . . . ,M} \ {t}

the set of inputs yielding classification of x′ as m

φm , {x | x ∈ Rk0 , ‖x− x′‖∞ ≤ ε, z ∈ Rkn , max
i=1,...,n

NN (x)i = NN (x)m} (5.1)

is empty. Note that each instance of (5.1) is compatible with the problem in (2.8).
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5.2 Safety of a neural network controlled quadrotor

We consider the problem of formally verifying the safety of an autonomous robot equipped

with a Neural Network (NN) controller that processes LiDAR images to produce control

actions. Given a workspace that is characterized by a set of polytopic obstacles, our objective

is to compute the set of safe initial states such that a robot trajectory starting from these

initial states is guaranteed to avoid the obstacles. Our approach is to construct a finite

state abstraction of the system and use standard reachability analysis over the finite state

abstraction to compute the set of safe initial states. To mathematically model the imaging

function, that maps the robot position to the LiDAR image, we introduce the notion of

imaging-adapted partitions of the workspace in which the imaging function is guaranteed to

be affine. Given this workspace partitioning, a discrete-time linear dynamics of the robot,

and a pre-trained NN controller with Rectified Linear Unit (ReLU) nonlinearity, we use

PeregriNN to verify the safety of transitions between workspace partitions.

5.2.1 Dynamics and Workspace

We consider an autonomous robot moving in a 2-dimensional polytopic (compact and convex)

workspace W ⊂ R2. We assume that the robot must avoid the workspace boundaries ∂W

along with a set of obstacles {O1, . . . ,Oo}, with Oi ⊂ W which is assumed to be polytopic.

We denote by O the set of the obstacles and the workspace boundaries which needs to be

avoided, i.e., O = {∂W,O1, . . . ,Oo}. The dynamics of the robot is described by a discrete-

time linear system of the form:

x(t+1) = Ax(t) +Bu(t), (5.2)

where x(t) ∈ X ⊆ Rn is the state of robot at time t ∈ N and u(t) ⊆ Rm is the robot input.
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Figure 5.1: Pictorial representation of the problem setup under consideration.

The matrices A and B represent the robot dynamics and have appropriate dimensions. For

a robot with nonlinear dynamics that is either differentially flat or feedback linearizable,

the state space model (5.2) corresponds to its feedback linearized dynamics. We denote by

ζ(x) ∈ R2 the natural projection of x onto the workspace W , i.e., ζ(x(t)) is the position of

the robot at time t.

5.2.2 LiDAR Imaging

We consider the case when the autonomous robot uses a LiDAR scanner to sense its envi-

ronment. The LiDAR scanner emits a set of N lasers evenly distributed in a 2π degree fan.

We denote by θ
(t)
lidar ∈ R the heading angle of the LiDAR at time t. Similarly, we denote by

θ
(t)
i = θ

(t)
lidar + (i− 1)2π

N
, with i ∈ {1, . . . , N}, the angle of the ith laser beam at time t where

θ
(t)
1 = θ

(t)
lidar and by θ(t) = (θ

(t)
1 , . . . , θ

(t)
N ) the vector of the angles of all the laser beams. While

the heading angle of the LiDAR, θ
(t)
lidar, changes as the robot pose changes over time, i.e.,

θ
(t)
lidar = f(x(t)) for some nonlinear function f , in this work we focus on the case when the

heading angle of the LiDAR, θ
(t)
lidar, is fixed over time and we will drop the superscript t from

the notation. Such condition is satisfied in several real-world scenarios whenever the robot
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is moving while maintaining a fixed pose (e.g. a quadrotor whose yaw angle is maintained

constant).

For the ith laser beam, the observation signal ri(x
(t)) ∈ R is the distance measured between

the robot position ζ(x(t)) and the nearest obstacle in the θi direction, i.e.:

ri(x
(t)) = min

Oi∈O
min
z∈Oi

‖z − ζ(x(t))‖2

s.t. atan2
(
z − ζ(x(t))

)
= θi. (5.3)

In this work, we restrict our attention to the case when the LiDAR scanner is ideal (with

no noise) although the bounded noise case can be incorporated in the proposed framework.

The final LiDAR image d(x(t)) ∈ R2N is generated by processing the observations r(x(t)) as

follows:

di(x
(t)) =

(
ri(x

(t)) cos θi, ri(x
(t)) sin θi

)
,

d(x(t)) =
(
d1(x

(t)), . . . dN(x(t))
)
. (5.4)

As shown in (5.4), the LiDAR imaging function is non-linear which makes it hard to verify

the safety specification. PeregriNN can verify this system only if the imaging constraints

were linear. We proposed an algorithm that partitions the input space in a way, such that

in each partition, the LiDAR imaging function is linear. We call this an imaging-adapted

partitioning.
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5.2.3 Imaging-Adapted Workspace Partitioning

We start by introducing the notation of the important geometric objects. We denote by

Ray(w, θ) the ray originated from a point w ∈ W in the direction θ, i.e.:

Ray(w, θ) = {w′ ∈ W | atan2(w′ − w) = θ}.

Similarly, we denote by Line(w1, w2) the line segment between the points w1 and w2, i.e.:

Line(w1, w2) = {w′ ∈ W | w′ = νw1 + (1− ν)w2, 0 ≤ ν ≤ 1}.

For a convex polytope P ⊆ W , we denote by Vert(P ), its set of vertices and by Edge(P )

its set of line segments representing the edges of the polytope.

Imaging-Adapted Partitions

The basic idea behind our algorithm is to partition the workspace into a set of polytopic

sets (or regions) such that for each region R the LiDAR rays intersects with the same

obstacle/workspace edge regardless of the robot positions ζ(x) ∈ R. To formally characterize

this property, letO? =
⋃
Oi∈OOi be the set of all points in the workspace in which an obstacle

or workspace boundary exists. Consider a workspace partition R ⊆ W and a robot position

ζ(x) that lies inside this partition, i.e., ζ(x) ∈ R. The intersection between the kth LiDAR

laser beam Ray(ζ(x), θk) and O? is a unique point characterized as:

zk,ζ(x) = argmin
z∈W

‖z − ζ(x)‖2 s.t. z ∈ Ray(ζ(x), θk) ∩ O?. (5.5)
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By sweeping ζ(x) across the whole region R, we can characterize the set of all possible

intersection points as:

Lk(R) =
⋃

ζ(x)∈R

zk,ζ(x).

Using the set Lk(R) described above, we define the notion of imaging-adapted partitions as

follows.

Definition 5.1 A set R ⊂ W is said to be an imaging-adapted partition if the following

property holds:

Lk(R) is a line segment ∀k ∈ {1, . . . , N}.

Figure 5.2 shows concrete examples of imaging-adapted partitions. Imaging-adapted parti-

tions enjoy the following property:

Lemma 5.2.1 Consider an imaging-adapted partition R with corresponding sets

L1(R), . . . ,LN(R). The LiDAR imaging function d : R → R2N is an affine function of the

form:

dk(ζ(x)) = Pk,Rζ(x) +Qk,R, d = (d1, . . . , dN) (5.6)

for some constant matrices Pk,R and vectors Qk,R that depend on the region R and the

LiDAR angle θk.
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Figure 5.2: (left-up) A partitioning of the workspace that is not imaging-adapted. Within
region R1, the LiDAR ray (cyan arrow) intersects with different obstacle edges depending
on the robot position. (left-down) A partitioning of the workspace that is imaging-adapted.
For both regions R1 and R2, the LiDAR ray (cyan arrow) intersects the same obstacle edge
regardless of the robot position. (right) Imaging-adapted partitioning of the workspace.
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Figure 5.3: Pictorial representation of the proposed framework.

Before we describe the proposed framework, we need to briefly recall the following definitions

capturing the notion of a system and relations between different systems.

Definition 5.2 An autonomous system S is a pair (X, δ) consisting of a set of states X

and a set-valued map δ : X → X representing the transition function. A system S is finite

if X is finite. A system S is deterministic if δ is single-valued map and is non-deterministic

if it is not deterministic.

Definition 5.3 Consider a deterministic system Sa = (Xa, δa) and a non-deterministic

system Sb = (Xb, δb). A relation Q ⊆ Xa × Xb is a simulation relation from Sa to Sb,
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and we write Sa 4Q Sb, if the following conditions are satisfied:

1. for every xa ∈ Xa there exists xb ∈ Xb with (xa, xb) ∈ Q,

2. for every (xa, xb) ∈ Q we have that x′a = δa(xa) in Sa implies the existence of x′b ∈ δb(xb)

in Sb satisfying (x′a, x
′
b) ∈ Q.

Using the previous two definitions, we describe our approach as follows. As pictorially

shown in Figure 5.3, given the autonomous robot system SNN = (X , δNN), where δNN : x 7→

Ax + B NN (d(x)), our objective is to compute a finite state abstraction (possibly non-

deterministic) SF = (F , δF) of SNN such that there exists a simulation relation from SNN to

SF , i.e., SNN 4Q SF . This finite state abstraction SF will be then used to check the safety

specification.

The first step to compute the finite state abstraction is to compute an imaging-adapted

partitioning W? of the workspace. Unfortunately, the number of partitions grows exponen-

tially in the number of lasers N and the number of vertices of the polytopic obstacles. To

harness this exponential growth, we compute an aggregate-partitioning W ′ using only a few

laser angles (called primary lasers and denoted by θp). The resulting aggregate-partitioning

W ′ would contain a smaller number of partitions such that each partition in W ′ represents

multiple partitions in W?.

After constructing the transition system SNN using the imaging adapted partitioning. We

use PeregriNN to verify the feasibility of transition between different pairs of states. Lastly,

Using backward reachability analysis, we can compute the complete safe and unsafe sets.
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5.2.5 Verification framework

Using the notion of imaging-adapted workspace partitioning, the imaging function inside

each partition is now linear, and the transition between two workspace partitions can be

easily verified using PeregriNN. Given the partitions S1, . . . , Sw, we can check the feasibility

of transition between these partitions to the unsafe set (obstacles) O1, . . . , Oo. Let x ∈ R2

be the position of the quadrotor. As shown in [27], the next position of the quadrotor is

then given by Ax + B NN (Hx + d) where the matrices A and B describes the physics of

the robot (e.g., mass, friction, .. etc) while the affine term Hx + d captures the relation

between the quadrotor position and the LiDAR image. Therefore, checking the safety of the

NN controller is then written as:

{
x
∣∣∣x ∈ w⋃

m=1

Sm, Ax+B NN (Hx+ d) ∈
o⋃
t=1

Ot

}
= ∅. (5.7)

Indeed, the system safety property (5.7) can be checked by solving w × o formulas of the

form (2.8).
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Chapter 6

Experiments

We evaluated the performance and effectiveness of PeregriNN at verifying the adversarial

robustness of NNs trained to recognize digits using the standard MNIST dataset. This

verification problem fits into the general NN verification problem described in chapter 2,

and it is described subsequently in detail. In this context, we evaluated PeregriNN with two

objectives described as follows.

1. We conducted ablation experiments for all of PeregriNN’s novel features as described

in section 4.1. In particular, we compared the performance of a full implementation of

PeregriNN – i.e. exactly as described in section 4.1 – with implementations that are

otherwise the same except for changing one and only one of the following: the penalty

function used in the convex program inference block; the neuron prioritization used by

the search component.

2. We compared PeregriNN against other state-of-the-art NN verifiers, both in terms of

the time required to verify individual networks and properties and in terms of the

number of properties proved with a common, fixed timeout.
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Table 6.1: Architecture of the NN models used in the experiments

Models # ReLUs Architecture
MNIST FC1 512 <784,256,256,10>
MNIST FC2 1024 <784,256,256,256,256,10>
MNIST FC3 1536 <784,256,256,256,256,256,256,10>

Implementation. We implemented PeregriNN in Python, and used an off-the-shelf Gurobi

9.1 [24] convex optimizer for solving linear programs; the Volesti [13] Python interface was

used to sample from the input polytope for the sampling inference block. For the other NN

verifiers, we used publicly available implementations that were published by their creators

(citations are included below). Each instance of of any verifier was run within its own single-

core Virtual Box VM with 30 GB of memory. The VMs were run no more than 4 at a time

on a host machine with 48 hyperthreaded cores and 256 GB of memory; this ensured that

each VM had adequate access to hardware resources.

6.1 Adversarial Robustness Verification Task

Subsequent experiments used the testbench we describe in this chapter.

Neural Networks. We used three ReLU NNs to recognize digits using the standard

MNIST training database. The size and architectures of these networks are described in

Table 6.1. Each entry in the “Architecture” column of Table 6.1 describes the architecture

of the corresponding network in terms of number of neurons per layer, from input layer on

the left to output layer on the right.

Verification Properties. We created a number of NN verification tasks based on prov-

ing whether the above described networks were robust against max-norm perturbations of

their inputs. In particular, each verification task involves proving whether a particular in-
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Figure 6.1: Performance of PeregriNN variants with different conditioning priorities

put image, x′, always results in the same classification when it is subjected to a max-norm

perturbation of at most some fixed size, ε > 0. Thus, each such verification problem is pa-

rameterized by both the specified input image, x′, and the maximum amount of perturbation,

ε.

Adversarial Robustness Verifier Testbench Our verification testbench was then con-

structed by selecting 50 test images from the MNIST test dataset. Each test instance was

then a combination of one of those images, one of the networks from Table 6.1 and one the

following two max-norm perturbations, ε = 0.02 or ε = 0.05. Thus, each verification test

in our testbench can be identified by one of 300 tuples of the form: (net, image, perturb.) ∈

TB , {FC1, FC2, FC2} × {1, . . . , 50} × {0.02, 0.05}.

6.1.1 Ablation Experiments

In this series of experiments we evaluated the contribution that each of the primary Pere-

griNN enhancements made to its overall performance. This was done by comparing the full

PeregriNN algorithm – as described in section 4.1 – with altered versions that replace exactly

one of those enhancements at a time.

Note: removing core features of PeregriNN often resulted in much longer run times, so the

experiments in this section use a testbench TB′ ⊂ TB that excludes all tests with one of
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the larger networks FC2 or FC3 and ε = 0.05.

Penalty Function Ablation.

Our first ablation experiment evaluated the contribution of PeregriNN’s unique penalty

function features; see subsection 4.1.1 and subsection 4.1.3. In particular, we ran different

variants of PeregriNN with the following penalty functions used inside the convex program

inference block:

1. “Weighted sum of slacks”: PeregriNN’s own weighted sum of slacks penalty;

2. “Sum of slacks”: A sum-of-slacks penalty with equal weighting on all layers;

3. “Feasibility”: A feasibility-only convex program such as the one used in other tools,

e.g. [31] (i.e. simply using a constant penalty function of 1);

4. “Inverted weighted sum of slacks”: PeregriNN’s own weighted sum of slacks penalty,

except with the layer-wise weights applied in reverse order force slack towards deeper

layers rather than shallower ones (see also subsection 4.1.3).

Figure 6.2a shows a cactus plot of the number of proved cases vs. the timeout permitted

to the algorithm: i.e. to prove at least a specified number of the test cases, each algorithm

must have its timeout set at to the value of its curve in Figure 6.2a. Figure 6.2b shows a

histogram of the number of times each of the algorithm variants needed to call the convex

solver in order to terminate; this quantifies each algorithm’s cost in a well-known unit of

computation, also the single most computationally costly part of PeregriNN. Figure 6.2b

plots the number of convex solver calls required for evenly spaced bins of convex solver calls.

Conclusions: Figure 6.2a demonstrates that PeregriNN’s weighted sum of slacks has a clear

benefit over both a uniformly weighted sum-of-slacks penalty and a plain feasibility convex
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Figure 6.2: Performance of PeregriNN variants with different objective functions

program. For timeouts of longer than ≈ 1.2 seconds, PeregriNN overtakes the other two in

terms of number of properties proved; even the uniform sum-of-slacks penalty considerably

outperforms the feasibility convex program at similar timeouts. Note that reversing the

layer-wise weights of PeregriNN’s penalty function incurs a performance hit, especially for

timeouts of ≈1.2 seconds. This suggests that driving slacks toward shallower layers, where

the next neuron is conditioned, is the correct heuristic to apply. Figure 6.2b also shows that

going from feasibility to sum-of-slacks to weighted sum-of-slacks significantly reduces the

number of test cases that require between 225 and 325 calls to the convex solver. This order

of comparison shows a concomitant net influx of tests into the lowest bin of <25 convex calls;

PeregriNN has the most test cases in this category, with nearly 130 test cases proved in <25

convex solver calls.

Neuron Conditioning Priority Ablation.

In the second ablation experiment, we evaluated the contribution of PeregriNN’s maximum-

slack neuron conditioning priority (see subsection 4.1.2). To that end, we ran variants of

PeregriNN with three different neuron conditioning priorities for the search component:

1. “Maximum slack”: PeregriNN’s max-slack neuron conditioning priority;

2. “Minimum slack”: This variant conditions the neuron with the smallest slack;

3. “Random choice”: This variant conditions on a random indeterminate neuron.
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The performance of these algorithm variants is shown in Figure 6.1a and Figure 6.1b. As in

the previous ablation experiment, Figure 6.1a shows a cactus plot of the number of proved

cases vs. the timeout, and Figure 6.1b shows a histogram of the number of calls to the

convex solver required under each of the conditioning priorities.

Conclusions: Figure 6.1a shows that PeregriNN’s maximum-slack neuron priority allows it to

prove more properties for a given timeout than either a random neuron choice priority or the

minimum-slack choice priority. Figure 6.1b also shows that the benefit of this neuron priority

is reflected in a dramatic reduction in the number of test cases where 250-350 convex solver

calls are required; PeregriNN’s maximum-slack priority has the most test cases requiring

<25 calls.

6.1.2 Comparison with Other NN Verifiers

In this experiment, we evaluated the performance of PeregriNN with respect to a number

of state-of-the-art NN verifiers on our adversarial robustness testbench, TB. In particular,

we ran the following tools on all 300 test cases in TB: Venus [7]; Marabou [19]; Neurify

[31]; and nnenum [5]. Venus was used with st ratio = 0.4, depth power = 4, offline deps =

True, online deps =True, and ideal cuts=True; Marabou and Neurify were used with default

parameters but with THREADS = 1; and nnenum was used with ADVERSARIAL SEARCH

turned off. As noted, each algorithm ran inside its own single-core VM.
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Figure 6.3 contains a cactus plot showing the results for each of these algorithms, including

PeregriNN. For a given number of test cases to be proved, Figure 6.3 depicts the corre-

sponding timeout required for each of the algorithm to prove that many cases. Of all the

algorithms, PeregriNN was able to prove the most properties within the timeout limit of

300 seconds: PeregriNN was able to prove 206 properties; it was followed by nnenum, which

proved 172; Venus, which proved 159; Neurify, which proved 149; and Marabou, which proved

125. Marabou consistently performed the worst, proving fewer cases than any other algo-

rithm at every timeout. By contrast, Neurify was able to prove significantly more test cases

than any other algorithm for extremely short timeouts, but it failed to prove more than 150

out of 300 test cases across the whole experiment nnenum performed worse than Neurify on

the way to proving 150 test cases, but it fared significantly better than either PeregriNN

or Venus, which had more or less similar performance below this threshold. However, after

≈150 test cases, PeregriNN significantly outperformed all other algorithms: as the time-

out was increased, PeregriNN continued prove additional properties at a rate significantly

outpacing its closest competitor in this regime, nnenum.

This data, taken as a whole, suggests that PeregriNN suffers from a worse “best-case” perfor-

mance than several other algorithms, especially nnenum and Neurify. However, PeregriNN’s

performance seems to be much more consistent across different test cases. This allows it

to prove more properties in aggregate at the expense of being slower on a smaller subset of

them. This further suggests that PeregriNN is significantly less sensitive to peculiarities of

particular test cases on the TB testbench. This will likely be a considerable advantage, on

average, when faced with verifying unknown networks and properties of this type.
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6.2 Safety of a neural network controlled quadrotor

We use PeregriNN to verify (5.7) by varying the workspace discretization parameter ε and

recording the execution time for 10 different NN that have the same exact architecture and are

all trained using imitation learning with 1143 episodes. Table 6.2 shows how the safe regions

of the workspace varies with the discretization parameter ε. PeregriNN is able to verify the

safety properties for all the networks and exactly identify the safe regions in the workspace.

Next, we evaluate the scalability of PeregriNN by verifying the property (5.7) for NNs with

different architectures and recording the verification time. Table 6.3 shows the scalability

of our framework with different architectures of NNs. PeregeriNN can verify networks with

100,000 ReLUs in just a few seconds. However, increasing the depth of the network increases

the difficulty of the verification problem. Note that the results reported in [27], which uses

SMC solvers [25], are capable of handling at most networks with 1000 ReLUs. Comparing

PeregeriNN to SMC solver in [27], we conclude that PeregeriNN can verify networks that

are 2 orders of magnitude larger than SMC with 1900 times less execution time.

Table 6.2: Shows the number of safe and unsafe regions for 10 different networks

Epsilon Number of safe/unsafe regions

1 2 3 4 5 6 7 8 9 10

0.25 46/52 33/65 49/49 45/53 46/52 53/45 51/47 63/35 74/24 51/47

0.5 27/38 22/43 30/35 27/38 27/38 29/36 31/34 39/26 49/16 36/29

0.75 20/34 17/37 24/30 21/33 21/33 23/31 26/28 31/23 43/11 32/22
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Table 6.3: (Left)Shows the execution time in seconds for checking the feasibility of transition
between a pair of regions in the workspace. We test the scalability of the solver by solving
the verification problem for different architectures by varying the number of neurons per
layer and the depth of the network. (Right) shows the verification time for single layer
networks with different width.

# of neurons per layer # of layers

1 2 3 4 5 6

20 0.025 0.0479 0.1184 0.4767 26.76 0.257

128 0.267 1.57 243.8 3394.18 2740.341 1368.55

256 0.31 0.92 6956.69 136.44 4.4352 1471.29

512 0.679 19.83 5.43 10058.13 9649.55 35783.58

# of neurons time(s)

1024 3.374

4096 7.2517

20000 7.458

50000 30.189

100000 68.8614
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Chapter 7

Conclusion

This thesis introduce a new solver, PeregriNN, to formally verify whether a NN satisfies

specified formal properties in a bounded model checking scheme. The basic idea of bounded

model checking is to search for a counterexample that violate the formal property. Such

counterexamples can be then used by NN developers to better understand the limitations of

the trained NN in terms of safety, robustness, and hopefully bias. This in turn can enable

the use of AI in safety critical cyber-physical applications that are generally regarded to

have positive societal influences: autonomous cars and aircraft collision avoidance systems,

for example. This work can also be used to identify performance and robustness problems

in NNs that are used in non-cyber-physical applications: for example, NNs that are used in

criminal justice contexts or to decide creditworthiness.

PeregriNN is implemented in Python and it uses Gurobi off the shelf convex optimizer. It

extends symbolic analysis methods with new contributions. We used our tool to verify NNs

trained for different tasks like adversarial robustness of networks on the MNIST dataset and

the safety of a NN controlled quadrotor. PeregriNN compares favorably with other state-

of-the-art NN verifiers, thanks to a number of unique algorithmic features. The benefits of
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these features were established with ablation experiments.

7.1 Summary of contributions

PeregriNN extends previous work by introducing novel contributions summarized as:

• Sum-of-Slacks Penalty. We introduced an convex optimization objective function that

corresponds to the sum of slack variables in each layer. This incetivizes the convex

solver to choose an actual inputoutput response of the network.

• Max-Slack Conditioning Priority. PeregriNN uses a max-slack heuristic to choose

which neuron to condition. This neuron slack variable can be thought of as a measure

of how problematic each neuron is.

• Layer-wise-Weighted Penalty. In addition to using a sum-of-slacks penalty, PeregriNN

also uses a weighted penalty of those slack variables. These weights encourage the

solver to push problematic neurons towards the start of the network. This leads to

conditioning on earlier neurons and hence tightening the bounds of the outputs.

• Initial Counterexample Search by Sampling. PeregriNN also incorporates a sampling

step early on to try to prove unsafe properties quickly.

7.2 Future work

PeregriNN performs better than SOTA methods on the MNIST benchmark. However, there

are still room for improvements. This is a brief list of improvements and research directions

that we think are promising:
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• Many of the computationally expensive steps in PeregriNN, can be done in parallel

using a multi-core system. For example, conditioning on different neurons (exploring

different paths of the search tree) in parallel. In some problems, there is a need to

solve multiple independant verification problems (e.g. Adversarial robustness). Each

of those problems can be run in parallel.

• PeregriNN currently performs well on problem with large input space. However, for

problems with small input space, other methods like input splitting would be faster.

An interesting topic for future research is to build a unified framework for splitting the

input space and the neurons, together with finding the suitable heuristics for splitting.

• This work focuses only on verifying neural networks to check if it satisfies a property or

not. An interesting research direction is to figure out how the network can be changed

in order to satisfy the specification, or even better, how can the training process be

altered to generate a network that satisfies a specification.

• Studying the safety of a neural network controlled system as a binary property is

restrictive in my opinion. Designing an autonomous system that is much safer -but

not necessarily 100% safe- than a benchmark system, can by itself be a huge success.

In the context of autonomous driving for example, designing autonomous cars that

are statistically much safer that human drivers is a satisfying goal. This motivates

for studying the safety of such systems in a probabilistic fashion without treating the

safety property as a restrictive binary metric.
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