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Self-supervised feature learning and phenotyping for assessing 
age-related macular degeneration using retinal fundus images

Baladitya Yellapragada1,2,3, Sascha Hornauer2, Kiersten Snyder3, Stella Yu1,2, Glenn Yiu3

1Department of Vision Science, University of California, Berkeley, Berkeley, CA

2International Computer Science Institute, Berkeley, CA

3Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA

Abstract

Objective: Diseases such as age-related macular degeneration (AMD) are classified based on 

human rubrics that are prone to bias. Supervised neural networks trained using human-generated 

labels require labor-intensive annotations and are restricted to the specific trained tasks. Here, 

we trained a self-supervised deep learning network using unlabeled fundus images, enabling 

data-driven feature classification of AMD severity and discovery of ocular phenotypes.

Design: Development of a self-supervised training pipeline to enable grading of AMD severity 

using fundus photographs from the Age-Related Eye Disease Study (AREDS).

Subjects: 100,848 human-graded fundus images from 4,757 AREDS participants between 55-80 

years of age.

Methods: We trained a deep neural network with self-supervised Non-Parametric Instance 

Discrimination (NPID) using AREDS fundus images without labels, then evaluated its 

performance in grading AMD severity using 2-step, 4-step, and 9-step classification schemes 

using a supervised classifier. We compared balanced and unbalanced accuracies of NPID against 

supervised-trained networks and ophthalmologists, explored network behavior using hierarchical 

learning of image subsets and spherical k-means clustering of feature vectors, then searched for 

ocular features that can be identified without labels.

Main Outcome Measures: Accuracy and kappa statistics

Results: NPID demonstrated versatility across different AMD classification schemes without 

re-training, and achieved balanced accuracies comparable to supervised-trained networks or 

human ophthalmologists in classifying advanced AMD (82% vs. 81-92% or 89%), referable 

AMD (87% vs. 90-92% or 96%), or on the 4-step AMD severity scale (65% vs. 63-75% or 

67%), despite never directly using these labels during self-supervised feature learning. Drusen 

area drove network predictions on the 4-step scale, while depigmentation and geographic atrophy 

(GA) areas correlated with advanced AMD classes. Self-supervised learning revealed grader-

mislabeled images and susceptibility of some classes within the more granular 9-step AMD scale 

to misclassification by both ophthalmologists and neural networks. Importantly, self-supervised 
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learning enabled data-driven discovery of AMD features such as GA and other ocular phenotypes 

of the choroid (e.g. tessellated or blonde fundi), vitreous (e.g. asteroid hyalosis), and lens (e.g. 

nuclear cataracts) that were not pre-defined by human labels.

Conclusions: Self-supervised learning enables AMD severity grading comparable to 

ophthalmologists and supervised networks, reveals biases of human-defined AMD classification 

systems, and allows unbiased, data-driven discovery of AMD and non-AMD ocular phenotypes.

Keywords

Self-supervised Deep Learning; Deep Learning; Machine Learning; Artificial Intelligence; Age-
related macular degeneration; AMD; AMD Classification; Feature Discovery

Introduction

Deep convolutional neural networks (CNNs) can be trained to perform visual tasks by 

learning patterns across hierarchically complex scales of representations 1 with earlier filters 

identifying low-level concepts such as color, edges, and curves, and later layers focused 

on higher-level features such as animals or animal parts 2. Although CNNs are typically 

used for natural image tasks such as animal classification 3, aerial-view vehicle detection 4, 

and self-driving 5, these algorithms have also been adapted for medical image classification 

for clinical applications. In ophthalmology, deep learning algorithms can provide automated 

expert-level diagnostic tasks such as detection of diabetic retinopathy 6–11, age-related 

macular degeneration (AMD) 12–14, and glaucoma 15–17 using retinal fundus images. They 

can also extract information including age, sex, cardiovascular risk 18, and refractive error 19 

that are not discernable by human experts.

However, supervised learning approaches are trained using expert-defined labels which 

classify disease type or severity into discrete classes based on human-derived rubrics that 

are prone to bias and may not accurately reflect the underlying disease pathophysiology. 

Because supervised networks can only identify phenotypes that are defined by human 

experts, they are also limited to identifying known image biomarkers. Moreover, training 

labels are labor intensive to generate, typically involving multiple expert graders who are 

susceptible to human error. Even trained ophthalmologists do not grade retinal images 

consistently, with significant variability in sensitivity for detecting retinal diseases 20.

Self-supervised and unsupervised learning organizes images based on features that are 

not predetermined by human graders. While unsupervised learning uses no labels and self-

supervised learning generates labels for a proxy task, both methods are functionally similar 

in that neither require expert labels. These algorithms learn features from images without 

the constraints or arbitrary delineation of human labels during training, potentially enabling 

generalizability to classifying novel domains of data at the expense of reduced performance 

on known domains of data. Unsupervised and self-supervised neural networks have been 

developed using several methods, including instance-based learning 21, exemplar learning 22, 

deep clustering 23, and contrastive learning 24–27 As a contrastive learning approach, Non-

Parametric Instance Discrimination (NPID) was previously designed for complex visual 

tasks 24. NPID predicts a query image’s class label by determining the most common 
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label among its nearest neighbors within a multi-dimensional hypersphere of encoded 

feature vectors drawn from training images. This technique significantly outperforms 

other unsupervised networks for ImageNet, Places, and PASCAL Visual Object Classes 

classification tasks 24. An updated version of NPID attempts to modulate the distance 

between the negative pairs based on presumed cross-level hierarchy of instances and groups 
28.

In this study, we trained a self-supervised neural network through the NPID algorithm using 

unlabeled retinal fundus photographs from the Age-Related Eye Diseases Study (AREDS), 

then evaluated its ability to classify AMD across different human-derived severity scales 

using a supervised classifier. We then investigated the network’s behavior to explore human 

label biases that may not conform to disease pathophysiology, and to enable unbiased 

discovery of ocular phenotypes. Because class boundaries are not explicitly established 

during the self-supervised training, (1) any set of labels can be used for evaluation without 

needing to train or retrain the classifier, and (2) visually-similar patterns outside of human-

defined classes can be discovered.

We found that our CNN achieved similar accuracy to ophthalmologist graders 20 and 

supervised-trained CNNs, despite never learning the class definitions directly during training 

of the feature representations. Importantly, our examination of NPID behavior provides new 

insights into the visual features that drive test prediction, and enabled unbiased, data-driven 

discovery of AMD phenotypes not encompassed by human-assigned categories, as well 

as non-AMD features including camera artifacts, lens opacity, vitreous anomalies, and 

choroidal patterns. Our results show that self-supervised deep learning based on visual 

similarities rather than human-defined labels can bypass human bias and imprecision, enable 

accurate grading of disease severity comparable to supervised-trained neural networks or 

human experts, and discover novel pathologic or physiologic phenotypes that the algorithm 

was not specifically trained to detect.

MATERIALS & METHODS

Study data characteristics & partitioning

Sponsored by the National Eye Institute, the AREDS enrolled 4757 subjects aged 55 to 

80 years in a prospective, randomized, placebo-controlled clinical trial to evaluate oral 

antioxidants as treatment for AMD. The AREDS design and results have been previously 

reported 29. The study protocol was approved by a data and safety monitoring committee 

and by the institutional review board (IRB) for each participating center, adhered to the 

tenets of the Declaration of Helsinki, and was conducted prior to the advent of the Health 

Insurance Portability and Accountability Act (HIPAA).The AREDS sites received informed 

consent from subjects, which was not necessary for this this post-hoc analysis on the fundus 

data; digitized AREDS color fundus photographs and study data were obtained from the 

National Eye Institute’s Online Database of Genotypes and Phenotypes website (dbGaP 

accession phs000001, v3.p1.c2) after approval for authorized access, and exemption by the 

IRB. The median age of participants was 68, 56% were women, and 96% were Caucasian 
30,31. Color fundus images from AREDS were previously graded by the University of 

Wisconsin fundus photograph reading center for anatomic features, including the size, area, 
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and type of drusen, area of pigmentary abnormalities, area of geographic atrophy (GA), and 

presence of choroidal neovascularization (CNV) 30. These gradings were used to develop 

a 9-step (more accurately a 9+3-step) AMD severity scale for each eye which predicts the 

5-year progression risk to CNV or central GA 29, with steps 1-3 representing no AMD, 

4-6 representing early AMD, 7-9 representing intermediate AMD, and 10-12 representing 

advanced AMD including central GA (step 10), CNV (step 11), or both (step 12) 29–32 

(Supplemental Figure 1a). Both the 9+3-step scale and the simplified 4-step scale have been 

used to successfully train supervised CNNs to classify AREDS fundus images for AMD 

severity 13,20. As NPID’s feature space is more dependent on low-level visual variety to 

make its prediction space less susceptible to bias, performance is bolstered by not excluding 

any images, such as stereoscopic duplicates or repeated subject eyes from different visits. 

A total of 100,848 fundus images were available, with a long-tailed imbalance and 

overrepresentation of the no-AMD classes for both scales, and class 11 (CNV) in the 9+3-

step scale (Supplemental Figure 1b–1c). Images were randomly partitioned into training, 

validation, and testing datasets in a 70:15:15 ratio, respectively, while ensuring that fundus 

images from the same subject did not appear across different datasets.

Data Preprocessing

Fundus images were down-sampled to 224x224 pixels along the short edge while 

maintaining the aspect ratio as similarly done in past literature 13. Fundus images were 

also preprocessed with a Laplacian filter applied in each of the red-green-blue (RGB) 

color dimensions to better emulate the properties of more natural images of everyday 

scenes and objects (Supplemental Figure 2). Laplacian filtering is the difference of two 

Gaussian-filtered versions of the original image. In this study, it is the original fundus image 

(effectively, a Gaussian-filtered image with no blur) subtracted by the image Gaussian-

filtered with a standard deviation (SD) of 9 pixels in each of the RGB color channels. 

Fundus photographs exhibit approximately the 1/f power distribution of natural images 

of everyday scenes and objects 33,34 but with more low-frequency than high-frequency 

information (Supplemental Figure 2a). The Laplacian-filtered fundus images more closely 

resembles that of natural statistics (Supplemental Figure 2b).

Network Pretraining

A CNN can transfer knowledge from one image dataset to another by using the same or 

similar filters 2. Unlike natural images that contain a variety of shapes and colors that 

are spatially distributed throughout the image, fundus photographs are limited by shared 

fundus features such as the optic disc and retinal vessels, as well as the restricted colors 

of the retina and retinal lesions. This in turn limits the variability of the filters learned by 

the network. Thus, to transfer learning from a higher variety of discriminable features, we 

pretrained the network using the large visual database ImageNet (i.e., initialize the neurons 

across naturalistic filters), and then finetuned on the AREDS dataset without any weights 

frozen to further improve performance. A comparison of different sizes for the final layer 

feature vector for NPID, which depends on the complexity of the filters learned from the 

task, revealed an ideal size of 64 dimensions for our pretrained model to maximize the 

performance gained from transfer learning (Supplemental Figure 3).
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NPID Training & Prediction

NPID discriminates unlabeled training images using instance-based classification of feature 

vectors in a spherical feature space. At its core, NPID uses a backbone network (ResNet-50) 

whose logit layer is replaced with a fully connected layer of a given size (64 dimensions), 

and an L2-normalization function on the output feature vectors. The vectors computed 

for the training images are stored and compared from the previous loop of the data 

to determine how to update the network. Details of the NPID Training and Pretraining 

Requirements are included in Appendix A, including performance without pretraining and 

the hyperparameters for the best NPID results.

Measurement of Network Performance

We evaluated trained network performance by measuring the overall testing accuracy on a 

novel group of images across both the 2-step classification and 4-step AMD severity scale. 

For classification, predictions are made through a weighted k-Nearest Neighbors (wkNN) 

voting function, a common performance evaluation scheme for self-supervised networks 35. 

Though this method was traditionally used to benchmark the self-supervised pretraining that 

leads to better supervised fine-tuning, we instead adopted it as a supervised classification 

head that does not modify the underlying features learned. wkNN is more appropriate for 

evaluating NPID compared to other classification protocols for evaluating self-supervised 

networks because it requires no additional training (so there is no change in interpretation of 

the representations learned from NPID), its classification boundaries scale with the data, and 

the only hyperparameter we need to specify is the number of neighbors, k, to consider for 

voting. Further, NPID’s loss function is based on wkNN, so using this evaluation technique 

assesses the underlying representations learned from NPID directly.

For wkNN, we chose k=12, as it produced the highest balanced accuracies (Supplemental 

Figure 4). We chose the epoch that yielded the best balanced accuracy using wkNN 

classification voting scheme (see Appendix A). Then, we evaluated that epoch on a separate 

testing dataset using various metrics from the wkNN result including unbalanced accuracy, 

Cohen’s kappa, true positive rate, and false positive rate. Unbalanced accuracy is the average 

accuracy across all samples, whereas balanced accuracy is the average class accuracy 36,37. 

While both accuracy metrics are relevant and positively highlight the performance of NPID, 

balanced accuracy is less biased to skewed class distributions by weighting underrepresented 

class scores as equally as overrepresented ones, and is more appropriate for comparing 

performance across different subsets of the same data as in our study. We also employed a 

second method to evaluate self-supervised features using Linear Support Vector Machines 

(Linear SVMs) 35.

Supervised Training & Prediction

To establish our own baseline, we perform supervised finetuning on ResNet-50 with the 

9+3-step severity scale, after pretraining on ImageNet, using the same set of AREDS 

fundus photographs. The data augmentations and hyperparameters match that of our best 

implementation of NPID. To avoid retraining for each new scale, we mapped the logits 

from the 9+3-step scale to 4-step, 2-step advanced AMD, and 2-step referrable AMD classes 

to generalize coarse-grained performance. This baseline network is established to evaluate 
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how our NPID-trained representations from fundus images without expert labels compare to 

those from a network supervised-trained with expert labels.

t-SNE visualization & Search Similarity

To assess neighborhoods of learned features, we evaluated search similarity and t-

Distributed Stochastic Neighbor Embedding (t-SNE) visualizations. Search similarities show 

how a given query image’s severity is predicted based on nearest neighbor references, and t-

SNE visualizations show us how all the fundus images are distributed across neighborhoods 

of visual features chosen by the network. Specifically, t-SNE maps feature vectors from 

high-dimensional to low-dimensional coordinates while approximately preserving local 

topology. Here, we map the encoded 64D features onto 2D coordinates, wherein coordinates 

that are near each other in 2D are also near each other in the original feature space, 

meaning they are similarly encoded because they share visual features. Although t-SNE 

visualizations can distort some mapping from high dimensional to 2D feature spaces, our 

claims about NPID feature groupings were confirmed by visual review by a board-certified 

ophthalmologist (GY), and are thus based on the original images. The t-SNE visualization 

is used as a tool to discover these images faster for additional review. Thus, we can color 

each 2D coordinate by the known labels for each fundus image in the training set to observe 

which images are encoded near to each other and what visual groupings emerge from 

these locally similar encodings. This process is label agnostic, so evaluation across multiple 

domains of labels (e.g. 2-step AMD severity, 4-step AMD severity, drusen count, media 

opacity, etc.) is possible without retraining, unlike a supervised-trained network.

Hierarchical Learning

Because NPID appears more suitable for coarse-level than fine-level classification across 

dependent classes, we split up the 9+3-step dataset into each of the 4-step classes. We 

trained the NPID network on only no, early, intermediate, or advanced AMD images, then 

evaluated NPID’s ability to discriminate between the three fine 9+3-step classes within each 

coarse 4-step class to identify which of the 9+3-step classes appear to show less visual 

discriminability than the grading rubric suggests.

Spherical K-Means Clustering

To locate specific, notable training images aside from exhaustive similarity searches of 

random query images, we employed spherical K-means to identify clusters of training 

images of interest. For conventional K-means clustering, the algorithm groups feature 

vectors into k distinct equally-sized gaussian-distributed groups based on the distances of 

the feature vectors to the approximated group centers 38,39. Spherical K-means differs by 

calculating the distance along a sphere, instead of directly through Euclidean space, which 

is more suitable for NPID because it maps images into vectors on a sphere 40. Mapping of 

K-means-defined labels onto the pre-existing t-SNE helps to identify regions that are notably 

defined by or distinct from the original labels for further analysis.
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Results

Accuracy in grading AMD severity

We first evaluated NPID performance on a 2-step discrimination task for detecting 

advanced AMD (CNV and/or central GA), and found that wkNN applied to the self-

supervised-learned features achieved an unbalanced accuracy (94%) that is comparable to 

the performance of our supervised-trained CNN (95.8%), a similar published supervised 

network (96.7%) or trained ophthalmologist (97.3%) 14. The balanced accuracy, which 

is more applicable due to dataset imbalance, was also similar between the self-supervised-

trained NPID (82%), our supervised-trained network (92%), the published supervised 

network (81%), and ophthalmologist (89%) (Figure 2a). Next, we compared the balanced 

accuracy of NPID with another supervised algorithm to distinguish “referable” AMD 

(intermediate or advanced) from no or early AMD, and found that our self-supervised-

trained network performed only slightly worse (87%) than our supervised-trained network 

(90%), the published supervised network (92%), and ophthalmologist (96%) 20, despite 

never learning the class definitions directly (Figure 2b). For grading AMD severity using 

the 4-step scale, NPID achieved a 65% balanced accuracy, which was comparable to 

our supervised-trained network (75%), the published network (63%), and ophthalmologist 

(67%)(Figure 2c) 20. In particular, the confusion matrix for NPID demonstrated superior 

performance for distinguishing early AMD (class 2) as compared to both the published 

supervised network and human expert (Figure 2d) 20.

When applied to a finer classification task, NPID only achieved a balanced accuracy of 

25% on the 9+3-step scale, as compared to 40% using our supervised-trained network and 

74% using the published supervised network 13 that utilized the same backbone network 

as our NPID approach. We achieved this balanced accuracy score using k=12 for wkNN, 

although we also tested k=5, 8, 23, and 50, and found that results were mostly consistent 

across different k-values (Supplemental Figure 4). Even though our most class-homogenous 

neighborhoods are defined by k=12 neighbors, they are still mostly coherent with k=50 

neighbors, which was how NPID was originally evaluated on the ImageNet dataset 24. With 

k=50, 28% shared the query image’s label while 68% were within 2 steps of the correct 

9+3-step label (Figure 2e). Even for cases with incorrect 9+3-step class predictions, the 

50 nearest neighbor images shared the query’s 4-step class label 56% of the time, which 

accounts for the higher accuracy of our network in the 4-step classification task. Thus, 

although self-supervised learning achieves lower supervised wkNN performance on the finer 

9+3-step AMD severity scale compared to binary or 4-step AMD classifications, incorrect 

predictions deviate minimally from ground-truth labels. We confirmed our findings using 

linear SVM classifiers, which achieved a 26% balanced accuracy for 9+3-step classification 

consistent with the wkNN results.

Network behavior for grading AMD severity

To discern how the NPID network visually organizes images from different AMD classes, 

we employed t-SNE visualizations which mapped encoded 64-dimensional features onto 

2-D coordinates. On the 4-step AMD severity scale, fundus images with no (blue), 

intermediate (yellow), and advanced (red) AMD formed distinct clusters, while early AMD 
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(aqua / green) images are scattered throughout the plot (Figure 3a), which likely explains 

the lower performance in this class (Figure 2d). On the 9-step AMD severity scale (Figure 

3b), the t-SNE plot appear similar to that of the 4-step scale, as each of the 4 major 

classes on the simplified scale are dominated by one or two of the finer classes within 

each subset (Supplemental Figure 1b), and may account for the poorer performance of our 

self-supervised-trained network on the 9+3-step task.

Examining the training images that contribute to NPID predictions helps explain the 

self-supervised-trained network’s behavior in an interpretable way that supervised-trained 

networks cannot, as the specific training images that drive a supervised network’s 

predictions cannot be easily recovered. In our study, comparison of query images with a 

selection of neighboring reference images demonstrates high phenotypic similarity across 

adjacent 9+3-step classes (Figure 3c), and explains class confusions that contribute to NPID 

performance loss on the finer-grained 9+3-step scale. Furthermore, hierarchical learning on 

image subsets of each of the 4-step simplified AMD classes showed that the early AMD 

subset (class 2 on the 4-step scale) exhibited the least fine-class separability across the 

9+3-step scale, with many class 4 images that resembled no AMD and class 6 images 

that appear similar to intermediate AMD (Figure 3c, bottom rows), which helps explain 

the difficulty with distinguishing early AMD images by the NPID method, as well as by 

supervised-trained networks and human ophthalmologists (Figures 2d–2e).

To determine which AMD features contributed most to the self-supervised learning, we 

mapped AREDS reading center-designated labels including (1) drusen size, area, and type, 

(2) depigmentation or hyperpigmentation area, and (3) total or central GA area onto the 

t-SNE plots (Figure 4). We found that drusen area provided the most visually distinct 

clusters that matched the separation of the 4-step severity scale. GA area and depigmentation 

correlated well with advanced AMD classes as expected, while larger drusen size or soft 

drusen type corresponded to intermediate AMD classes. Our results show that t-SNE 

visualizations, similarity searches, and hierarchical learning based on NPID can unveil the 

susceptibility of more granular human-defined AMD severity schemes to misclassification 

by both ophthalmologists and neural networks, and provide insight into the anatomic 

features that may drive AMD severity predictions.

Data-driven AMD phenotype discovery

Current AMD severity scales suffer from human bias because they were developed in part to 

reflect clinical severity (i.e. impact on visual function) rather than disease pathophysiology. 

For example, only vision-threatening GA involving the central macula was ascribed as 

advanced AMD (class 10 on the 9+3-step scale), while non-central GA cases were scattered 

across other AMD classes. With the goal of extracting features of any GA, both central and 

non-central, we conducted hierarchical training on only the referable AMD subsets (classes 

3 and 4 on the 4-step scale), which consist of the most prominent AMD features. We found 

that the intermediate and advanced AMD cases in this subset were mostly separable within 

the t-SNE-defined feature space, and that the intermediate AMD images that grouped with 

advanced AMD samples exhibited features of GA (Figures 5a–5c).
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To more objectively delineate the feature pockets that define the GA phenotype, rather 

than human-defined demarcations between intermediate and advanced AMD classes, we 

performed spherical K-means clustering to segregate fundus image feature vectors into K 

clusters. Using K=6 to correspond to the 6 fine-grained classes within the referrable AMD 

subset (classes 7-12), we found three clusters (Clusters A, B, and C) among eyes with 

intermediate AMD that correspond to variable degrees of GA (Figures 5a–5b), including 

non-central GA (Figure 5c, top row), as well as cases with central GA that should have been 

labeled as class 10, but were possibly mislabeled by human graders (Figure 5c, bottom row).

Because the advanced AMD hierarchical subset predictably demonstrated the greatest 

separability between its three fine-grained 9+3-step classes (classes 10-12), we also 

performed spherical K-means clustering on this subset’s feature vectors using K=3 to 

correspond to these 3 classes (Figures 5d–5e). Here, we discovered one of the three 

clusters (cluster C) to contain 75% of class 10 (central GA) and class 12 (central GA + 

CNV) fundus images. Sampling from class 11 images within this unbiased cluster also 

revealed images with non-central GA, even though class 11 was agnostic to GA presence 

(Figures 5f). We did not locate class 11 images with obvious central GA. Thus, hierarchical 

learning and K-means clustering using NPID may enable unbiased, data-driven discovery of 

AMD phenotypes such as GA which are not specifically encoded by human-assigned AMD 

severity labels.

Non-AMD phenotype discovery

To identify other physiologic or pathologic phenotypes beyond AMD features, we 

performed K-means clustering on all training images using a K-value of 4, based on the 

presence of 4 coarse classes in the 4-step severity scale. We observed one cluster (Cluster 

A) which correspond to images with no AMD, and three other clusters (Clusters B, C, 

and D) which appear to straddle AMD classes, suggesting that these latter groups may 

be distinguished by features unrelated to AMD pathophysiology (Figures 6a–6b). A closer 

examination of cluster B images near the border between AMD and non-AMD classes 

revealed eyes with a prominent choroidal pattern known as a tessellated or tigroid fundus 

appearance (Figure 6c) – a feature associated with choroidal thinning and high myopia 
41. Cluster C images near this border contain fundi with a blonde appearance (Figure 

6d), often found in patients with light-colored skin and eyes, or in patients with ocular 

or oculocutaneous albinism 42. Images from cluster D in this area showed poorly-defined 

fundus appearances that were suspicious for media opacity (Figure 6e). To determine if this 

cluster may include eyes with greater degrees of lens opacity, we overlaid the main t-SNE 

plot with labels for nuclear sclerosis, cortical cataracts, or posterior sub-capsular opacity 

from corresponding slit lamp images obtained in AREDS, and found that eyes in cluster D 

corresponded to a higher degree of both nuclear and cortical cataracts (Supplemental Figure 

5). Hence, fundus images contain other ophthalmologically-relevant information that are not 

constrained to the retina, and K-means clustering of retinal images can also identify eyes 

with tessellated or blonde fundi as well as visually-significant cataracts.

To explore other potential phenotypes not related to AMD, we also investigated images 

with no AMD that are grouped with those with more advanced stages of AMD (Figure 6f). 
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Among these images, we found examples of eyes with asteroid hyalosis – vitreous opacities 

consisting of calcium and lipid deposits, as well as camera artifacts such as lens flare or dirt 

(Figures 6g–6i), which may resemble AMD features to an nonexpert human or CNN that 

was not trained to identify these conditions. Our findings show that NPID-trained networks 

have the capacity for unbiased, data-driven discovery of both AMD features that were not 

encoded in the 4-step or 9+3-step human labels, as well as non-AMD phenotypes such as 

camera artifacts (lens flare or dirt), media opacity (nuclear cataracts or asteroid hyalosis), 

and choroidal appearance (tessellated or blonde fundus).

DISCUSSION

In this study, we successfully trained a self-supervised neural network using fundus 

photographs which could be used in combination with a simple classifier to predict AMD 

severity across different human-defined classification schema, reveal AMD features that 

drive network behavior, and identify novel pathologic and physiologic ocular phenotypes, 

all without the bias and constraints of human-assigned labels during the training process. 

NPID performance was comparable to a supervised-trained CNN using the same backbone 

network, previously-published supervised networks, and human experts in grading AMD 

severity on a 4-step scale (none, early, intermediate, and advanced AMD) 20, and in binary 

classification of advanced AMD (CNV or central GA) 14 and referable AMD (intermediate 

or advanced AMD) 20. Our self-supervised-trained network also performed similarly to a 

supervised-trained network that was trained with both fundus images and genotype data on 

a custom 3-step classification of class 1, class 2-8, and class 9-12 on the 9+3-step severity 

scale (65% vs. 56-60) 43. Our results suggest that even without human-generated labels 

during training, self-supervised learning without further feature refinement can be combined 

with a simple classifier to achieve predictive performance similar to expert human and 

supervised-trained neural networks.

Self-supervised learning using NPID has significant advantages over supervised learning. 

First, eliminating the need for labor-intensive annotation of training data vastly enhances 

scalability and removes human error or biases. Also, NPID predictions resemble 

ophthalmologists more closely than do supervised networks (Figure 2d). Like humans, the 

self-supervised-trained NPID network considers the AMD severity scale as a continuum 

and the relationship of adjacent classes. By contrast, supervised-trained algorithms generally 

assume independence across classes, are susceptible to noisy or mislabeled images, and may 

produce more egregious misclassifications. Because the NPID algorithm groups images by 

visual similarity rather than class labels, inaccurate predictions can be salvaged by other 

nearest neighbors during group voting.

Another advantage of NPID is its versatility across different labeling schemes (2-step, 4-

step, or 9+3-step), whereas distinct supervised-trained networks must be trained or retrained 

for these different labeling splits, or for cross-study comparisons. Because self-supervised 

learning is label agnostic, the same network can be evaluated for different classification 

tasks, and its performance readily compared with other networks or human experts as we 

showed in our study. Our approach also benefits from the versatility to use other datasets, 

such as fundus images from the AREDS2 study, for external validation in future studies.
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Also, NPID predictions using locally-defined wkNN voting are not dominated by 

overrepresented classes because local neighborhoods are populated with sufficient class 

homogeneity (especially with k=12 neighbors used here, compared to k=50). This is an 

advantage of self-supervised over supervised training approaches, as the latter trains neurons 

to drive overrepresented class predictions more than other classes. Although classification 

methodologies vary between different studies using AREDS fundus images, the training 

dataset used in our study exceeded the size of those used in training other supervised 

networks (70,349 [this study] vs 56,402 14, 5,664 20, or 28,135 43). These previous 

studies often excluded stereoscopic duplicates or same eye images from different visits 

to avoid associating non-relevant fundus features such as optic disc shape or vessel patterns 

with any given class. Because self-supervised learning is feature-driven, and not class-

driven, our network could exploit the entire available AREDS dataset which improves its 

coherence across different features. For instance, the testing subset used in one prior study 

overrepresented eyes with intermediate (33%) and late AMD (33%), and underrepresented 

early AMD (3%), which deviates from the skewed distribution of these classes in the full 

dataset (50%, 20%, 15%, and 15% across the 4-step classes, respectively), and may account 

for the higher reported performance of some supervised networks which are susceptible to 

overrepresentation bias without appropriate measures to counterbalance such as class-aware 

sampling or weighted loss function 13,44,45. A similar image subset selection with a higher 

frequency of late AMD images than the full dataset (33% vs. 6%) could also explain the 

higher unbalanced accuracy and kappa for another supervised network compared to NPID, 

despite a lower balanced accuracy, true positive rate, and false positive rate 14.

Our findings are remarkable because while the NPID-trained network was trained without 

labels, its performance was validated using human-assigned categories, analogous to testing 

students on a topic that was never taught to them. In contrast to supervised-trained networks 

that were originally trained with these labels, the self-supervised network had no a priori 

knowledge of the classification schema, many aspects of which are defined by humans 

using somewhat arbitrary rationale for taxonomy that may not reflect an actual distinction 

in disease pathophysiology, such as distinguishing central from non-central GA due to its 

impact on patients’ visual function and quality of life. This likely explains why NPID 

performed better on binary or 4-step classification of AMD severity, which more likely 

presents true pathophysiologic distinction, than on the finer 9+3-step AMD severity scale, 

where subtle differences in phenotype such as drusen size or pigmentation are arbitrarily 

categorized into distinct, human-defined classes. For example, our t-SNE visualizations 

demonstrated a clear separation between no AMD and advanced AMD, but not between 

early-AMD classes (Figures 3a–3b), for which human grader performance is also the worst 
20. Also, the fine-grained class prediction result for each hierarchical learning setup trained 

on an individual 4-step class subset is consistent with the confusion matrices derived from 

training on the full dataset. One or two of the 9+3-step classes dominate each 4-step class 

due to the low visual variability among them. These findings support the need to reevaluate 

these finer class definitions using more unbiased, data-driven methodologies.

In our study, we probed the NPID network’s behavior and found that AMD features such 

as drusen area drove predictions of AMD severity more than drusen size or type, or area 

of pigmentary changes. Using hierarchical learning and spherical K-means clustering, we 
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also identified eyes with non-central GA among those with intermediate or advanced 

AMD based on proximity to eyes with central GA (class 10), even though this feature 

is not encoded in the human-labeled AMD severity scales. Our findings suggest that self-

supervised learning can more objectively identify certain AMD phenotypes such as drusen 

area or GA presence which may better reflect disease pathophysiology, and enable the 

development of more unbiased, data-driven classification of AMD severity or subtypes that 

could better predict disease outcomes than human-assigned grades. Interestingly, K-means 

clustering also identified images with central GA that appeared mislabeled as intermediate 

AMD, further highlighting the ability of an self-supervised-trained network to discover 

miscategorized images in ways that label-driven supervised learning cannot.

Another interesting feature of self-supervised learning is the ability to identify non-retinal 

phenotypes from fundus images, including camera artifacts (lens dirt or flare), media opacity 

(cataracts or asteroid hyalosis), and choroidal patterns (tessellated or blonde fundus). While 

we identified these features by spherical K-means clustering using a K-value of 4, additional 

cluster resolution could unveil additional pathologic or physiologic phenotypes. Future 

studies using von-Mises mixture models for spherical K-means clustering, which do not 

assume identical cluster size, may enable smaller, localized clusters of phenotypic groupings 

to be identified. Thus, the application of NPID may not be limited to AMD grading, and its 

potential supersedes that of supervised-trained networks that are limited to the classification 

task for which it is trained.

Because fundus photographs exhibit very little visual and semantic variability compared to 

natural object images, we found that preprocessing by 2D Laplacian-filtering transformed 

the spatial frequency power spectra of fundus images to better resemble natural objective 

images (Supplemental Figure 2), and that pretraining with ImageNet before finetuning on 

AREDS increased network performance for the 9+3-step and 4-step tasks by 100% and 

33% (Supplemental Figure 3), respectively, than compared to no ImageNet pretraining. This 

performance improvement implies that discriminating features relevant to the task were 

difficult to learn directly from the fundus photos, but improves with transfer learning, as 

seen on t-SNE comparisons with and without pretraining which demonstrate extra learned 

features that better correlate with intermediate AMD classes (data not shown).

In summary, we trained a self-supervised network with NPID using fundus photographs 

without human-generated class labels, and, using a supervised classification scheme, 

it produced balanced class accuracies for predicting AMD severity similar to human 

ophthalmologists and supervised-trained networks that require labor-intensive manual 

annotations and are susceptible to human error and biases. The NPID algorithm exhibits 

versatility across different labeling schemes without the need for retraining and is less 

susceptible to class imbalances, overrepresentation bias, and noisy or mislabeled images. 

Importantly, self-supervised learning provides unbiased, data-driven discovery of both 

AMD-related and other ocular phenotypes independent of human labels, which can provide 

insight into disease pathophysiology, and pave the way to more objective and robust 

classification schemes for complex, multifactorial eye diseases.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic of NPID training & testing.
Schematic diagram of the process by which Non-Parametric Instance Discrimination (NPID) 

trains a self-supervised neural network to map preprocessed fundus images to embedded 

feature vectors. The feature vectors and associated AMD labels are used as a reference for 

queried severity discovery through neighborhood similarity matching. The NPID network 

can then be analyzed to measure balanced accuracy in AMD severity grading, explore visual 

features that drive network behavior, and discover novel AMD-related features and other 

ocular phenotypes in an unbiased, data-driven manner.
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Figure 2: Comparison of NPID-trained performance with supervised-trained networks and 
human experts.
(a-c) Comparisons of the self-supervised-trained NPID network performance with a 

supervised-trained ResNet-50 network, as well as published supervised baselines and human 

ophthalmologists as reported by *Peng, et al. [14] and #Burlina, et al. [20] for binary 

classification of advanced AMD (a) or referable AMD (b), as well as the 4-step AMD 

severity scale (c). (d) Comparison of confusion matrices of our self-supervised-trained 

network with our supervised-trained network, published supervised baselines, and human 

expert gradings reported in #Burlina, et al. [20] for the 4-step AMD severity scale task. 

(e) Confusion matrices of the NPID network and our supervised-trained network on the 

9+3-step AMD severity classification task.
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Figure 3. Self-supervised NPID clusters fundus images based on visual similarity
t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature 

vectors colored by (a) 4-step and (b) 9+3-step AMD severity labels, where each colored 

spot represents a single fundus image with AMD severity class as described in the legend 

and Supplemental Figure 1. (c) Representative search similarity images for successful and 

failed cases for the 9+3-step AMD severity scale task. The leftmost column corresponds 

to the query fundus image, while the next 5 images on each row correspond to the top 5 

neighbors as defined by network features. The colored borders and numeric labels for each 
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image define the true class label defined by the reading center for AREDS, and correspond 

to the color scheme in Supplemental Figure 1.
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Figure 4. AMD-related fundus features that drive NPID-trained network predictions.
t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature 

vectors colored by AREDS reading center labels for AMD-related fundus features, with 

corresponding stacked bar plots showing ratio of each label across the 4-step AMD severity 

classes. Labels include (a) drusen area, (b) maximum drusen size, (c) reticular drusen 

presence, (d) soft drusen type, (e) hyperpigmentation area, (f) depigmentation area, (g) total 

geographic atrophy (GA) area, and (h) central GA area. Category definitions for each fundus 

feature are shown in Supplemental Table 1.
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Figure 5. Data-driven discovery of central and non-central geographic atrophy.
t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature 

vectors colored by (a) 9+3-step AMD severity labels and (b) spherical K-means cluster 

labels with K=6, based on hierarchical learning using only fundus images with referable 

AMD (intermediate or advanced AMD). A selection (outlined area) of intermediate AMD 

cases (classes 7-9) adjacent to advanced AMD cases (classes 10-12) from clusters A-C show 

(c) fundus images with non-central GA (top row) and central GA (bottom row). t-SNE 

visualizations of NPID feature vectors colored by (d) with 9+3-step AMD severity labels 
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and (e) spherical K-means cluster labels with K=3, based on hierarchical learning using only 

fundus images with advanced AMD (classes 10-12). A selection (outlined area) of CNV 

cases (class 11) adjacent to images with central GA with or without CNV (classes 10 and 

12) from cluster C show (f) non-central GA.
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Figure 6. Data-driven discovery of ophthalmic features.
t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature 

vectors colorerd by (a) 4-step AMD severity labels and (b) spherical k-means (K=4) cluster 

labels. Fundus images that straddle no AMD vs. early, intermediate, or advanced AMD 

within K-means cluster B (yellow-purple circle), cluster C (teal-blue circle), and cluster D 

(green-red circle), corresponded to fundus images with (c) tessellated fundus, (d) blonde 

fundus, and (e) media opacity. (f) t-SNE visualization of 9+3-step AMD severity labels with 

a selection (outlined areas) of fundus images with no AMD (class 1) located within clusters 
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of early, intermediate, or late AMD classes corresponded to fundus images with (g) asteroid 

hyalosis, (h) camera lens flare, and (i) camera lens dirt.
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