Lawrence Berkeley National Laboratory

LBL Publications

Title

A Simple Scrubber for Removing Nitrogen and Sulfur Oxides from Waste Gas

Permalink

https://escholarship.org/uc/item/2xz8b91q

Authors

Chang, S G Liu, D K

Publication Date

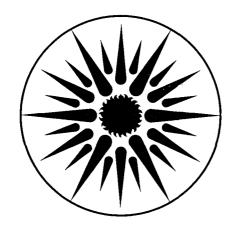
1989-07-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA


APPLIED SCIENCE DIVISION

Submitted to Nature

A Simple Scrubber for Removing Nitrogen and Sulfur Oxides from Waste Gas

S.G. Chang and D.K. Liu

July 1989

APPLIED SCIENCE DIVISION

2 weeks: Bldg.50 Libra

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

A Simple Scrubber for Removing Nitrogen and Sulfur Oxides from Waste Gas

S. G. Chang* and D. K. Liu

Applied Science Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720, USA.

Sulfur and nitrogen oxides emitted by the combustion of fossil fuels in power plants play an important role in acid rain production. Most of the flue gas desulfurization (FGD) scrubbers installed to date involves wet limestone processes which are efficient in SO₂ control but are incapable of removing nitric oxide. We report herein a new and efficient method for the combined removal of SO₂ and NO_x from flue gas using aqueous emulsions containing yellow phosphorus and an alkali. The products comprise of sulfate, nitrate, and phosphate salts which can be used as fertilizer materials. The process described here may also be applied to stationary sources other than power plants, such as smelters, nitric acid plants, and municipal incinerators for NO_x control.

The role of sulfur and nitrogen oxides in acid rain formation and the destruction of lakes and forest ecosystems has been established.^{2,3} More stringent regulations of these emissions from both mobile and stationary sources are therefore imminent. The development of efficient processes for simultaneous SO₂ and NO_x control for power plants flue gas is particularly important since fossil fuel-fired steam boilers represent a major source of sulfur and nitrogen oxide emissions. Existing wet FGD scrubbers in power plants are incapable of removing flue gas NO because of its low solubility in water. Several methods have been developed to enhance NO absorption in these scrubbers, including the use of oxidants to oxidize NO to the more soluble NO₂⁴ and the addition of various iron (II) chelates to bind and activate NO.⁵⁻¹⁰ So far, none of these methods has been

^{*} To whom correspondence should be addressed

demonstrated to be cost-effective despite high removal efficiencies of both SO₂ and NO_x. In our continuing effort to search for new additives for scrubbing flue gas NO, we have discovered that aqueous emulsions containing yellow phosphorus (P₄) and an alkali such as limestone (CaCO₃) can be used to remove up to 100% NO and SO₂ in a simulated flue gas stream.

The removal of NO from flue gas by aqueous yellow phosphorus emulsions was studied using a bench-scale gas scrubber. In a typical experiment, 1.0 g yellow phosphorus was melted in 0.2 *l* water at 60 °C in a Pyrex reaction column (50 mm i.d. x 210 mm). A fine yellow phosphorus dispersion was created when a simulated flue gas stream (~500 ppm NO, 4% O₂, and the balance N₂) was bubbled through the reactor at a flow rate of ~0.9 *l* min⁻¹. The scrubbed flue gas was passed through a gas washing bottle containing 0.2 M NaOH, and the NO and NO₂ concentrations in the exit gas were monitored by a Thermoelectron Model 14A chemiluminescent NO_x analyzer. The compositions of the spent scrubbing liquor and the NaOH absorbing solution were determined using a Dionex 2101i ion chromatograph.

The important finding that flue gas NO can be effectively scrubbed by an aqueous yellow phosphorus emulsion is shown in Figure 1. We found that the presence of O₂ is essential for the NO removal, and that the system is more effective in the presence of excess O₂ in flue gas. The gradual decline of NO removal efficiencies as a function of time is attributed to the increasing acidity of the scrubbing liquor and can be eliminated by the addition of an alkali to the system (see Figure 2). Ion chromatographic analyses of the spent scrubbing liquor and the NaOH absorbing solution showed that all the NO absorbed was converted to a mixture of nitrite (NO₂⁻) and nitrate (NO₃⁻), and that >95% of the P₄ consumed can be recovered as a mixture of hypophosphite (H₂PO₂⁻), phosphite (H₂PO₃⁻), and phosphate (H₂PO₄⁻).

The simultaneous removal of NO and SO₂ from flue gas can be accomplished by the addition of limestone to the phosphorus emulsion, as shown in Figure 2. The experiment was performed using a ~1.2 l jacketed reactor containing 0.9 l of a 0.3% w/w phosphorus/5.0% w/w CaCO₃ slurry. The simulated flue gas was composed of 560 ppm NO, 2900 ppm SO₂, 10% O₂, and the balance was N₂. In this case, up to 100% of the flue gas NO and SO₂ can be removed. The solid collected from the scrubber after the reaction was shown by laser Raman spectroscopy to contain gypsum (CaSO₄·2H₂O), CaCO₃, and P4. The liquid phase in both the scrubber and the absorber were determined by ion chromatography to contain SO₃=, SO₄=, NO₂-, NO₃-, H₂PO₂-, H₂PO₃-, and H₂PO₄-, as shown in Figure 3. In addition, the production of the nitrogen-sulfur compounds hydroxyimidodisulfate (HIDS) and imidodisulfate (IDS) in the scrubbing liquor were confirmed by ion chromatography. 11 Both HIDS and IDS were subsequently hydrolyzed to NH₄+ when the scrubbing liquor was acidified to pH < 2. The formation of nitrogensulfur compounds via the reaction between NO₂⁻ and HSO₃⁻ in scrubbing liquor and their hydrolysis reactions have been reported previously.^{5,12} Therefore, the use of yellow phosphorus for combined NO and SO₂ removal can result in the production of sulfate, nitrate, and phosphate salts of calcium or ammonium, all of which are valuable chemicals for the manufacture of fertilizers.¹³

The effectiveness for NO removal by yellow phosphorus was measured in a closed reaction system. A 1.0 *l* round bottom flask containing 0.25 mg P₄, 0.1 g CaCO₃, and 60 ml deionized H₂O was evacuated and refilled with 1 atm of a gas mixture consisting of 500 ppm NO, 10% O₂, and the balance N₂. The reaction mixture was stirred magnetically at 50 °C until all phosphorus has been consumed (~4 h). The composition of the reaction mixture was analyzed periodically by ion chromatography to determine the NO removal effectiveness as defined by

$$P/NO = \frac{[H_2PO_2^-] + [H_2PO_3^-] + [H_2PO_4^-]}{[NO_2^-] + [NO_3^-]}$$

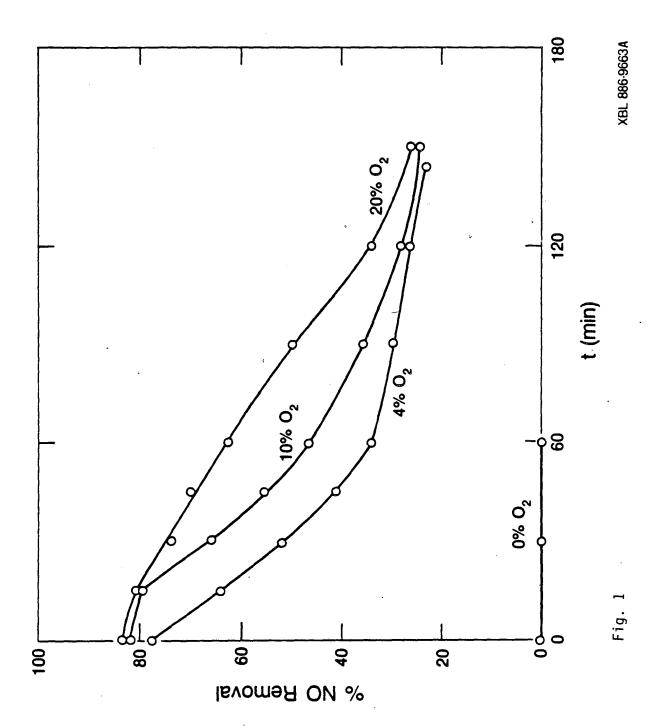
Our results showed that a P/NO ratio of 0.5 was obtained throughout the 4 h period. Control experiments without yellow phosphorus indicated that NO removal via oxidation by O₂ to form NO₂ accounted for <10% of the total NO removed when yellow phosphorus was present. When 0.92 mM HSO₃⁻ (corresponding to ~3,000 ppm flue gas SO₂) was added to the above reaction mixture, a P/NO ratio of 0.8 was obtained.

A mechanism for NO removal by yellow phosphorus can be proposed. It is well known that phosphorus vapor reacts with oxygen gas in the presence of moisture to give various phosphorus oxides, oxygen atom, and ozone. The O and O3 thus produced can oxidize NO to NO2, which can then react with another molecule of NO to form N2O3 or dimerize to form N2O4. Both N2O3 and N2O4 are much more soluble in water than NO, and the HNO2 and HNO3 produced upon the hydrolysis of N2O3 and N2O4 are neutralized by alkali present in the scrubbing liquor (e.g. CaCO3) to yield NO2⁻ and NO3⁻. The mechanism for the oxidation of phosphorus to various phosphorus oxides appears to be complicated and is presently under investigation.

A preliminary economic consideration of the above phosphorus-based process has been carried out, suggesting that the technology warrants further development. The addition of yellow phosphorus to a limestone FGD system to achieve simultaneous control of NO_x emissions does not require excessive additional equipments, since the processing of the scrubbing liquors appears to be rather straightforward. The recovery of phosphorus by-products can be achieved simply by precipitation at appropriate pH of the liquors. At the operating pH of a limestone scrubber (between 3.5 and 5.5), the majority of phosphate is

in the form of H₂PO₄⁻. The calcium salt Ca(H₂PO₄)₂·H₂O is relatively water-soluble under such conditions and can be separated from less soluble CaSO₃·1/2H₂O and CaSO₄·2H₂O by simple filtration. Limestone can then be added to the filtrate to raise the pH to 8 or higher where H₂PO₄⁻ is converted to HPO₄⁻. The calcium salt CaHPO₄·2H₂O is quite insoluble under such conditions and can be recovered as a precipitate. Therefore, much of the value of yellow phosphorus (\$0.91/lb)¹⁷ consumed can be recovered as CaHPO₄·2H₂O, which is a valuable commercial product used as animal feed and fertilizer (\$0.63/lb of P)¹⁷. At a P/NO ratio of 1, the loss in the value of phosphorus reagent (\$560 per ton of NO removed) is small compared to the cost of a selective catalytic reduction (SCR) process¹⁸. With an improvement of P/NO ratio, this loss in chemical value can be further reduced. The soluble nitrogen-sulfur compounds formed in the system can be removed from the solutions either by precipitation as potassium salts or by acid hydrolysis.^{5,12} A scale-up test of this phosphorus-based process is being conducted on a 20-acfm bench-scale system, and a realistic economic evaluation of a commercial plant design will follow the conclusion of future integrated pilot-scale tests.

In summary, we have discovered a new approach for the efficient removal of flue gas NO and SO₂ in a single scrubbing system. This could provide a cost-effective alternative to commercial SCR processes in which separate scrubbers for SO₂ and NO_x removal are required.


Acknowledgement. This work was supported by the Assistant Secretary of Fossil Energy, Office of Coal Utilization Systems, US Department of Energy under Contract No. DE-AC03-76SF00098 through the Pittsburgh Energy Technology Center, Pittsburgh, PA.

References

- 1. Wark, K. and Warner, C. F. Air Pollution-Its Origin and Control (Harper & Row, New York, 1981).
- 2. Cosby, B. J. et al. Environ. Sci. Technol. 19, 1144-9 (1985).
- 3. Hileman, B. Environ. Sci. Technol. 18, 8-10A (1984).
- 4. Yaverbaum, L. H. Nitrogen Oxides Control and Removal (Noyes Data Corp., New Jersey, 1979).
- 5. Chang, S. G. in *Fossil Fuels Utilization: Environmental Concerns*; Markuszewski, R. and Blaustein, B. D. eds, pp 159-75 (American Chemical Society, Washington, D.C., 1986).
- 6. Liu, D. K., Frick, L. P. and Chang, S. G. Environ. Sci. Technol. 22, 219-23 (1988).
- 7. Liu, D. K. and Chang, S. G. Environ. Sci. Technol. 22, 1196-200 (1988).
- 8. Chang, S. G., Littlejohn, D. and Liu, D. K. Ind. Eng. Chem. Res. 27, 2156-61 (1988).
- 9. Zhuang, Y. and Deng, Y. Acta Sci. Circumstantiae 5, 347-53 (1985).
- 10. Bedell, S. A., Tsai, S. S. and Grinstead, R. R. Ind. Eng. Chem. Res. 27, 2092-5 (1988).
- 11. Littlejohn, D. and Chang, S. G. Anal. Chem. 59, 158-60 (1986).
- 12. Chang, S. G., Littlejohn, D. and Lin, N. H. in *Flue Gas Desulfurization*; Hudson, J. L. and Rochelle, G. T. eds, pp 127-52 (American Chemical Society, Washington, D.C., 1982).
- 13. Huffman, E. O. in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn, Bushey, G. J. et al. eds., Vol. 10, pp 31-125 (Interscience, New York, 1980).
- 14. Cordes, H. and Witschel, W. Z. Phys. Chem. 46, 35-48 (1965).
- 15. VanZee, R. J. and Khan, A. U. J. Chem. Phys. 65, 1764-72 (1976).
- 16. Andrews, L. and Withnall, R. J. Am. Chem. Soc. 110, 5605-11 (1988).
- 17. Chemical Marketing Reporter, November 7, 1988.
- 18. Eskinazi, O. D. and Cichanowicz, J. E. JAPCA 39, 1131-9 (1989).

Figure Captions

- Figure 1. NO removal by yellow phosphorus emulsions as a function of O₂ partial pressure in flue gas. The reactions were carried out at 60 °C, and the initial and final pH were 3.5 and 1.5, respectively. The simulated flus gas contained 500 ppm NO, 0-20% O₂, and the balance was N₂.
- Figure 2. Combined NO and SO₂ removal using an aqueous emulsion containing 0.8% w/w P₄ and 5.0% w/w CaCO₃. The reaction was performed at 55 °C, and the initial and final pH were 7.5 and 4.2, respectively. The simulated flue gas contained 560 ppm NO, 2900 ppm SO₂, 20% O₂, and the balance was N₂.
- Figure 3. Ion chromatograms of 25x diluted spent scrubber and absorber solutions from the combined NO and SO₂ removal experiment with P₄/CaCO₃. A Dionex 2101i ion chromatograph equipped with a conductivity detector and a Dionex AS4 anion separation column were used for the analyses. The eluants were: (a) 5.3 mM Na₂CO₃; and (b) 4.0 mM Na₂CO₃/2.0 mM NaOH/0.5% v/v CH₃CN.

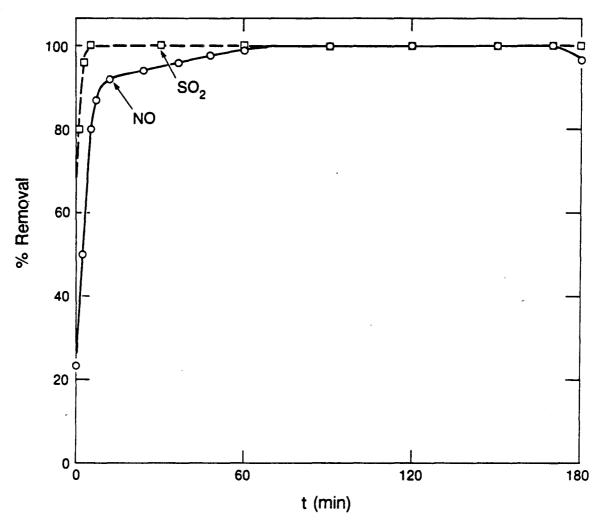


Fig. 2 XBL 886-9664

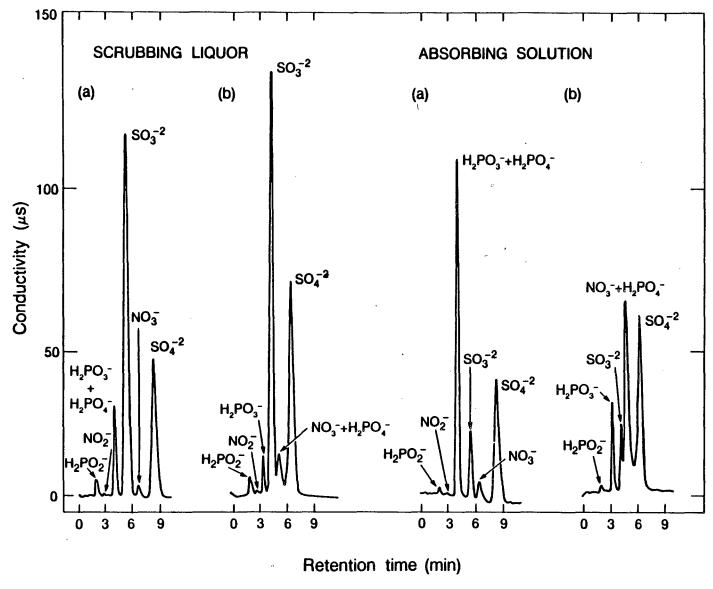


Fig. 3 XBL 886-9665 A

gone, jung

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT 1 CYCLOTRON ROAD BERKELEY, CALIFORNIA 94720

1....