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Measurements of dijet pT correlations in Pb+Pb and pp collisions at a nucleon–nucleon centre-of-
mass energy of √

sNN = 2.76 TeV are presented. The measurements are performed with the ATLAS 
detector at the Large Hadron Collider using Pb+Pb and pp data samples corresponding to integrated 
luminosities of 0.14 nb−1 and 4.0 pb−1, respectively. Jets are reconstructed using the anti-kt algorithm 
with radius parameter values R = 0.3 and R = 0.4. A background subtraction procedure is applied 
to correct the jets for the large underlying event present in Pb+Pb collisions. The leading and sub-
leading jet transverse momenta are denoted pT1 and pT2 . An unfolding procedure is applied to the 
two-dimensional (pT1 , pT2 ) distributions to account for experimental effects in the measurement of both 
jets. Distributions of (1/N)dN/dxJ, where xJ = pT2 /pT1 , are presented as a function of pT1 and collision 
centrality. The distributions are found to be similar in peripheral Pb+Pb collisions and pp collisions, but 
highly modified in central Pb+Pb collisions. Similar features are present in both the R = 0.3 and R = 0.4
results, indicating that the effects of the underlying event are properly accounted for in the measurement. 
The results are qualitatively consistent with expectations from partonic energy loss models.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Jets have long been considered an important tool for study-
ing the matter produced in ultra-relativistic heavy-ion collisions. 
In these collisions, a hot medium of deconfined colour charges 
is produced, known as the quark–gluon plasma (QGP). Jets pro-
duced in the initial stage of the collision lose energy as they 
propagate through the medium. This phenomenon, known as jet 
quenching, was first observed at the Relativistic Heavy Ion Collider 
(RHIC) [1,2]. Early measurements using fully reconstructed jets in 
Pb+Pb collisions at the LHC provided a direct observation of this 
phenomenon [3]. In Pb+Pb collisions the transverse momentum 
(pT) balance between two jets was found to be distorted, resulting 
from configurations in which the two jets suffer different amounts 
of energy loss. This measurement was the experimental confirma-
tion of some of the initial pictures of jet quenching and signatures 
of a deconfined medium [4].

Subsequent measurements of jets in Pb+Pb collisions have im-
proved the understanding of properties of quenched jets and the 
empirical features of the quenching mechanism [5–14]. Signifi-
cant theoretical advances also occurred in this period, and while 
a complete description of jet quenching is not available, some 
models are capable of reproducing its key features and provid-

� E-mail address: atlas.publications@cern.ch.

ing testable predictions. Measurements of the dijet asymmetry, 
AJ ≡ (pT1 − pT2)/(pT1 + pT2 ), where pT1 and pT2 are the transverse 
momenta of the jets with the highest and second highest pT in the 
event, respectively, have been crucial in facilitating these develop-
ments. The experimental results demonstrate that the measured 
asymmetries in central collisions, where the geometric overlap of 
the colliding nuclei is almost complete, differ from those in pp col-
lisions more than is expected from detector-specific experimental 
effects [3,9,10]. However, such effects, in particular the resolution 
of the measured jet pT, must be corrected for in order for the 
measurement to be directly compared to theoretical calculations. 
Unfolding procedures have been applied to correct for such effects 
for single-jet measurements [6]; however, the dijet result requires 
a two-dimensional unfolding to account for migration in the pT
of each jet separately. The measurement reported here is the first 
unfolded Pb+Pb dijet measurement and as such can be directly 
compared to theoretical models.

This Letter presents a measurement of dijet pT correlations 
in Pb+Pb and pp collisions at a nucleon–nucleon centre-of-mass 
energy of 2.76 TeV performed with the ATLAS detector. Jets are 
reconstructed with the anti-kt algorithm with radius parameter 
values R = 0.3 and R = 0.4 [15]. The analysis is described mostly 
for the example of R = 0.4 jets. A background subtraction proce-
dure is applied to account for the effects of the large underlying 
event (UE) present in Pb+Pb collisions on the measured jet kine-
matics. The momentum balance of the dijet system is expressed 
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0370-2693/© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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by the variable xJ ≡ pT2/pT1 . Measurements of the dijet yield nor-
malised by the total number of jet pairs in a given pT1 interval, 
(1/N)dN/dxJ , are presented as a function of xJ in intervals of pT1

and collision centrality. The results are obtained by first measur-
ing the two-dimensional distribution, (pT1 , pT2 ), and unfolding in 
the two-dimensional space. The binning in the (pT1 , pT2 ) distribu-
tion is chosen such that the bins in the two-dimensional space 
correspond to fixed ranges of xJ , and the (1/N)dN/dxJ results 
are obtained by projecting into these xJ bins. The (pT1 , pT2 ) dis-
tributions are less strongly correlated for jets reconstructed with 
a smaller value of R due to the effects of parton radiation out-
side the jet cone, which makes them less suitable as a probe of 
medium-induced effects in Pb+Pb collisions. However, for smaller 
jet sizes the effect of the UE on the measurement is significantly 
reduced. It is therefore interesting to compare the results obtained 
using R = 0.3 and R = 0.4 jets, to see if the same features are vis-
ible.

2. Experimental set-up

The measurements presented in this Letter are performed using 
the ATLAS inner detector, calorimeter and trigger systems [16]. The 
inner detector provides measurements of charged-particle tracks 
over the range |η| < 2.5.1 It is composed of silicon pixel detectors 
in the innermost layers, followed by silicon microstrip detectors 
and a straw-tube tracker, all immersed in a 2 T axial magnetic 
field provided by a solenoid. The minimum-bias trigger scintilla-
tors (MBTS) measure charged particles over 2.1 < |η| < 3.9 using 
two planes of counters placed at z = ±3.6 m and provide timing 
measurements used in the event selection [17].

The ATLAS calorimeter system consists of a liquid argon (LAr) 
electromagnetic (EM) calorimeter (|η| < 3.2), a steel–scintillator 
sampling hadronic calorimeter (|η| < 1.7), a LAr hadronic calorime-
ter (1.5 < |η| < 3.2), and a forward calorimeter (FCal) (3.2 < |η| <
4.9). The hadronic calorimeter has three sampling layers longitudi-
nal in shower depth and has a �η×�φ granularity of 0.1 ×0.1 for 
|η| < 2.5 and 0.2 × 0.2 for 2.5 < |η| < 4.9.2 The EM calorimeters 
are longitudinally segmented in shower depth into three compart-
ments following a pre-sampler layer (|η| < 1.8). The EM calorime-
ter has a granularity that varies with layer and pseudorapidity, but 
which is generally much finer than that of the hadronic calorime-
ter. The first layer has high η granularity (between 0.003 and 
0.006) that can be used to identify photons and electrons. The mid-
dle sampling layer, which typically has the largest energy deposit 
in EM showers, has a granularity of 0.025 × 0.025 over |η| < 2.5. 
A total transverse energy (TE) trigger is implemented by requiring 
a hardware-based determination of the total transverse energy in 
the calorimeter system, Etot

T , to be above a threshold.
The zero-degree calorimeters (ZDCs) are located symmetrically 

at z = ±140 m and cover |η| > 8.3. In Pb+Pb collisions the ZDCs 
primarily measure “spectator” neutrons: neutrons that do not in-
teract hadronically when the incident nuclei collide. A ZDC coin-
cidence trigger is implemented by requiring the pulse height from 
each ZDC to be above a threshold set below the single-neutron 
peak.

In addition to the ZDC and TE hardware-based triggers, a soft-
ware-based high-level trigger is used to further reduce the ac-

1 ATLAS uses a right-handed coordinate system with its origin at the nominal in-
teraction point (IP) in the centre of the detector and the z-axis along the beam pipe. 
The x-axis points from the IP to the centre of the LHC ring, and the y-axis points 
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the 
azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of 
the polar angle θ as η = − ln tan(θ/2).

2 An exception is the third sampling layer, which has a segmentation of 0.2 × 0.1
up to |η| = 1.7.

cepted event rate. This trigger applies a jet reconstruction proce-
dure, including a UE subtraction, similar to that used in the offline 
analysis, which is described in Section 4.

3. Data and Monte Carlo samples

The Pb+Pb data used for these measurements were recorded in 
2011 and obtained using a combination of jet and minimum-bias 
triggers. The minimum-bias trigger is defined by a logical OR of 
the TE trigger with a threshold of Etot

T = 50 GeV and the ZDC coin-
cidence trigger. The combined trigger is fully efficient in the range 
of centralities presented here. In the events selected by the ZDC 
coincidence trigger alone, at least one track is required to remove 
empty events. The jet trigger [18] first selects events satisfying the 
TE trigger with a threshold of Etot

T = 20 GeV. A jet reconstruction 
procedure is then applied using the anti-kt algorithm with R = 0.2
and utilising a UE subtraction procedure similar to that used in the 
offline reconstruction described in Section 4. Events with at least 
one jet with ET > 20 GeV at the electromagnetic scale [19] are se-
lected by the jet trigger. The use of R = 0.2 for jets in the trigger, 
as opposed to the values of R = 0.3 and 0.4 applied in the mea-
surement, is motivated by the need to define an algorithm that 
is robust against UE fluctuations, which grow with R . The effects 
of the different R values on the trigger efficiency are discussed in 
Section 5. The minimum-bias trigger operated with a prescale of 
approximately 18 while no prescale was applied to the jet trigger. 
After accounting for these prescales, the recorded events corre-
spond to integrated luminosities of 8 μb−1 and 0.14 nb−1 for the 
minimum-bias and jet-triggered samples, respectively.

Events are further subjected to criteria designed to remove non-
collision background and inelastic electromagnetic interactions be-
tween the nuclei. Events are required to have a reconstructed pri-
mary vertex and have a timing difference of less than 5 ns between 
the times measured by the two MBTS planes. After the trigger and 
event selection criteria, the resulting data samples contain 53 and 
14 million events in the minimum-bias and jet triggered samples, 
respectively. The average number of collisions per bunch-crossing 
in the Pb+Pb data sample was less than 0.001, and the effects of 
multiple collisions are neglected in the data analysis.

The centrality of the Pb+Pb collisions is characterised by the 
total transverse energy measured in the FCal modules, 

∑
EFCal

T . The ∑
EFCal

T distribution obtained in minimum-bias collisions is par-
titioned into separate ranges of 

∑
EFCal

T referred to as centrality 
classes [17,20,21]. Each class is defined by the fraction of the dis-
tribution contained by the interval, e.g. the 0–10% centrality class, 
which corresponds to the most central collisions, contains the 10% 
of minimum-bias events with the largest 

∑
EFCal

T . The centrality 
boundaries used in this analysis are 0%, 10%, 20%, 30%, 40%, 60% 
and 80%.

The pp data sample, recorded in 2013, was composed of events 
selected by a jet trigger and used a series of different pT thresh-
olds each selected with a different prescale. The jet trigger is the 
same used in other ATLAS measurements in pp collisions [18] and 
applies the anti-kt algorithm with R = 0.4. The events are fur-
ther required to contain at least one primary reconstructed vertex. 
The average number of pp collisions per bunch-crossing varied be-
tween 0.3 and 0.6 during data taking. The sample corresponds to 
a luminosity of 4.0 pb−1.

The impact of experimental effects on the measurement is eval-
uated using the Geant4-simulated detector response [22,23] in a 
Monte Carlo (MC) sample of pp hard-scattering events. Dijet events 
at 

√
s = 2.76 TeV are generated using Pythia version 6.423 [24]

with parameter values chosen according to the AUET2B tune [25]
using the CTEQ6L1 parton distribution function (PDF) set [26]. To 
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fully populate the kinematic range considered in the measure-
ment, hard-scattering events are generated for separate intervals 
of p̂T, the transverse momentum of outgoing partons in the 2 → 2
hard-scattering, and combined using weights proportional to their 
respective cross sections. Separate samples are generated for the 
Pb+Pb and pp analyses, with the simulated detector conditions 
chosen to match those present during the recording of the re-
spective data samples. In the pp data sample, the contribution of 
additional collisions in the same bunch crossing (pile-up) is ac-
counted for by overlaying minimum-bias pp collisions produced at 
the same rate as in the data, generated by Pythia version 8.160 [27]
using the A2 [28] tune with CT10 PDF set [29]. In the Pb+Pb sam-
ple, the UE contribution to the detector signal is accounted for by 
overlaying the simulated events with minimum-bias Pb+Pb data. 
The vertex position of each simulated event is selected to match 
the data event that is overlaid. Through this procedure the MC 
sample contains contributions from underlying-event fluctuations 
and harmonic flow that match those present in the data. The com-
bined signal is then reconstructed using the same procedure as is 
applied to the data. So-called truth jets are defined by applying the 
anti-kt algorithm with R = 0.3 and R = 0.4 to stable particles in 
the MC event generator’s output, defined as those with a proper 
lifetime greater than 10 ps, but excluding muons and neutrinos, 
which do not leave significant energy deposits in the calorimeter.

The detector’s response to quenched jets is studied with an 
additional sample using Pyquen [30]. This event generator ap-
plies medium-induced energy loss to parton showers produced by
Pythia. It is used to generate a sample of jets with fragmentation 
functions that differ from those in the nominal Pythia sample in a 
fashion consistent with measurements of fragmentation functions 
in quenched jets [11–13].

4. Jet reconstruction

The procedure used to reconstruct jets in heavy-ion collisions 
is described in detail in Ref. [5] and is briefly summarised here. 
First, energy deposits in the calorimeter cells are assembled into 
�η × �φ = 0.1 × π

32 logical towers. Jets are formed from the tow-
ers by applying the anti-kt algorithm [15] as implemented in the 
FastJet software package [31].

An estimate of the UE contribution to each tower within the jet 
is performed on an event-by-event basis by estimating the trans-
verse energy density, ρ(η, φ). Global azimuthal modulation in the 
UE arises due to the physics of flow and is traditionally described 
in terms of the Fourier expansion of the φ dependence of the 
transverse energy density. In the subtraction procedure, the UE es-
timate is assigned a φ dependence using the measured magnitudes 
and phases of the modulation:

ρ(η,φ) = ρ(η) ×
(

1 + 2
∑

n

vn cos[n(φ − 	n)]
)

, (1)

where vn and 	n are the magnitudes and phases of the harmonic 
modulation, respectively, and ρ(η) is the average transverse en-
ergy density measured from energy deposits in the calorimeter 
as a function of η. In Ref. [5], only the second-order harmonic 
modulation (n = 2) was considered, but in this measurement the 
procedure has been extended to account for n = 3 and 4 har-
monic modulations as well. The subtraction is applied to each 
tower within the jet. The quantities in Eq. (1) may be biased if the 
energy in a jet is included in their calculation, which results in an 
over-subtraction of the average UE contribution to the jet energy or 
incomplete removal of the harmonic modulation. To mitigate such 
effects, the contribution from jets is excluded from the estimate 
of the background. The typical background energy subtracted from 

the jets varies from a few GeV in peripheral collisions to 150 GeV
in the most central collisions.

A calibration factor, derived from MC studies, is then applied af-
ter the subtraction to account for the non-compensating hadronic 
response. A final in situ calibration is applied to account for known 
differences in detector response between data and the MC sample 
used to derive the initial calibration [32]. This calibration is de-
rived in 8 TeV pp data and adapted to the different beam energy 
and pile-up conditions relevant for the samples considered here. It 
uses the balance between jet pairs in different η regions of the de-
tector to provide an evaluation of the relative response to jets as 
a function of η. It subsequently uses jets recoiling against objects 
with an independently-determined energy scale such as Z bosons 
or photons to provide constraints on the absolute energy measure-
ment.

5. Data analysis

In this analysis, jet pairs are formed from the two highest-pT
jets in the event with pT > 25 GeV and |η| < 2.1. The pair is 
required to have �φ > 7π/8, where �φ ≡ |φ1 − φ2|. For events 
selected by a jet trigger, the leading jet is required to match a jet 
identified by the trigger algorithm responsible for selecting the jet. 
The two-dimensional (pT1 , pT2 ) distributions obtained from differ-
ent triggered samples are combined such that intervals of pT1 are 
populated by a single trigger. In the pp data analysis, the trigger 
with the most events that is more than 99% efficient for selecting 
a jet with pT > pT1 is used, with the reciprocal of the luminosity 
for the respective trigger samples used as a weight.

The Pb+Pb jet trigger efficiency has a broad turn-on as a func-
tion of pT since the trigger jets are identified using R = 0.2 and 
have no energy scale calibration applied. This effect is the strongest 
in central collisions where the UE fluctuations are the largest and 
further weaken the correlation between jets reconstructed with 
different values of R . In the most central collisions, the single-jet-
trigger efficiency does not reach a plateau until pT ∼ 90 GeV. The 
jet-triggered sample is used where the efficiency is found to be 
greater than 97%, which occurs at a pT of approximately 85 GeV
in the most central collisions. A trigger efficiency correction is ap-
plied in the region where there is an inefficiency.

In addition to the dijet signal, the measured (pT1 , pT2 ) distri-
bution receives contributions from so-called combinatoric jet pairs. 
Such pairs arise when two jets, which are not from the same hard-
scattering process, fulfil the pair requirements through random 
association. Jets forming such pairs may originate from indepen-
dent hard scatterings or from upward UE fluctuations identified as 
jets, referred to as UE jets. The rate for such occurrences is high-
est in the most central collisions, and the reduction in the true 
sub-leading jet pT due to quenching effects further enhances the 
likelihood of forming a combinatoric pair.

The shape of the �φ distribution for the combinatoric jet pairs 
is influenced by the harmonic flow. Since the jet pT spectrum falls 
steeply, the jets most likely to be measured at a given pT value are 
those lying on top of larger-than-average UE. If the effects of the 
modulation of the UE are not fully accounted for in the background 
subtraction, more jets would be observed at angles corresponding 
to the flow maxima (φ ∼ 	n). Thus combinatoric jet pairs, with-
out any underlying angular correlation, are expected to acquire a 
modulation to their �φ distribution determined by the dominant 
flow harmonics [33]. Although the second-, third- and fourth-order 
harmonic modulations are considered event-by-event in the jet re-
construction procedure described in Section 4, only the effects of 
the second-order modulation on the �φ distribution are observed 
to be completely removed. The residual effects are an indication 
that the method of estimating the modulation of the UE under-
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Fig. 1. The �φ distribution for R = 0.4 jet pairs with 89 < pT1 < 100 GeV in the 
0–10% centrality interval. The distribution for all jet pairs is indicated by the black 
circles. The combinatoric contribution given by Eq. (2) is shown as a blue line. The 
ranges of �φ used to fix the value of Y and to define the signal region (�φ > 7π

8 ) 
are indicated by yellow and green shaded regions, respectively. The parameters c3

and c4 are obtained by fitting the �φ distribution for jet pairs with |�η| > 1 in 
the region 0 < �φ < π

2 , which is indicated by the red squares (scaled to match the 
black circles in the yellow region for presentation purposes). The error bars denote 
statistical errors. (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article.)

neath the jet is less accurate for the higher-order harmonics than 
for n = 2.

To account for the residual modulation, the combinatoric con-
tribution is assumed to be of the form:

C(�φ) = Y (1 + 2c3 cos 3�φ + 2c4 cos 4�φ) . (2)

The c3 and c4 values are determined by fitting the �φ distribu-
tions over the range 0 < �φ < π/2 where the real dijet contri-
bution is expected to be small. The region 0 < �φ � 0.8 is also 
expected to receive real dijet contributions arising from parton ra-
diation which results in pairs of jets at nearby angles. To remove 
this contribution, the fit to obtain c3 and c4 is performed only us-
ing jet pairs with a separation of |�η| > 1. Once c3 and c4 are 
obtained, the �φ distribution without this |�η| requirement is 
integrated over the range 1 < �φ < 1.4 to obtain Y . This proce-

dure is performed separately in each (pT1 , pT2 ) interval. In intervals 
where the c3 and c4 are found to not be statistically significant 
their values are taken to be zero. The expected combinatorial con-
tribution, B , in the signal region is obtained by integrating C(�φ)

from 7π/8 to π .
The �φ distribution of jet pairs is shown in Fig. 1 for pairs with 

89 < pT1 < 100 GeV in the 0–10% centrality interval. Also shown is 
the �φ distribution obtained from such jet pairs with |�η| > 1, 
which is fitted to obtain c3 and c4. The background subtraction is 
most significant in central collisions, where the fraction subtracted 
from the total yield in the signal region is as large as 10% for small 
xJ and is less than 1% for xJ values greater than 0.5. The back-
ground contribution in more peripheral collisions is less than 1%
for all values of xJ . This background subtraction is not applied in 
the pp data because the pile-up is small.

The presence of combinatoric jet pairs also reduces the effi-
ciency for genuine pairs. The measured inclusive jet spectrum is 
used to estimate the likelihood that another jet in the event, un-
correlated with the dijet system, is measured with a transverse 
momentum greater than pT2 . For the 40–60% and 60–80% central-
ity intervals the effect is negligible. In the 0–10% centrality bin 
the efficiency is approximately 0.9 for pT2 = 25 GeV and increases 
with pT2 , reaching unity at 45 GeV. The effects of the combinatoric 
jet pairs are accounted for by first subtracting the estimated back-
ground and then correcting for the efficiency, ε, in each (pT1 , pT2 ) 
bin. The number of jet pairs corrected for such effects is defined 
to be:

Ncorr = 1

ε

(
Nraw − B

)
,

where Nraw is the number of jet pairs after correcting for trigger 
efficiency and luminosity/prescale weighting as described above.

In a given event, the pT resolution may result in the jet with 
the highest true pT being measured with the second highest pT

and vice-versa. To properly account for such migration effects, 
(pT1 , pT2 ) distributions are symmetrised prior to the unfolding by 
apportioning half of the yield in a given (pT1 , pT2 ) bin, after combi-
natoric subtraction, to the bin related to the original by pT1 ↔ pT2 . 
The two-dimensional distributions after symmetrisation are shown 
in Fig. 2 for central and peripheral Pb+Pb collisions and for pp
collisions. The choice of binning in (pT1 , pT2 ) is motivated by the 
mapping to the xJ variable, and is described in more detail in the 
following section.
Fig. 2. The two-dimensional (pT1 , pT2 ) distributions after correction and symmetrisation for Pb+Pb data in the 0–10% (left) and 60–80% (centre) centrality bins and for 
pp data (right) for R = 0.4 jets. The dashed lines indicate the boundaries used in selecting the different triggers. The Pb+Pb data distributions have their combinatoric 
contribution subtracted.
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Fig. 3. Left: the (1/N)dN/dxJ distributions used as priors in the unfolding of the R = 0.4 jets for the nominal (dashed red) and alternate variation (dotted blue) for the 
100 < pT1 < 126 GeV and 0–10% centrality interval. The same distribution obtained from the Pythia MC sample is shown in solid black. Right: unfolded (1/N)dN/dxJ

distributions from data for the same pT1 and centrality ranges using the nominal (red circles) and alternate (blue diamonds) priors shown in the left panel. The ratio of 
nominal to alternate is shown in the bottom panel. In the bottom panel on the right the first two bins are off scale with bins centres of xJ = 0.34 and 0.38 and bins contents 
of 2.49 and 1.82, respectively. Statistical errors are not shown. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this 
article.)
6. Unfolding

The calorimetric response to jets is evaluated in the MC sam-
ple by matching truth and reconstructed jets; the nearest recon-
structed and truth jets within �R = √

(�η)2 + (�φ)2 of 0.3 are 
considered to be a match. The same requirement is applied in both 
the R = 0.3 and R = 0.4 versions of the analysis. The response is 
typically characterised in terms of the jet energy scale (JES) and 
jet energy resolution (JER). These quantities describe the mean and 
width of the preco

T distributions at fixed ptruth
T , expressed as a frac-

tion of ptruth
T . Generally, the mean of preco

T differs from ptruth
T by 

less than a percent, independent of ptruth
T and centrality. This indi-

cates that the subtraction of the average UE contribution to the jet 
energy is under good experimental control. The JER receives contri-
butions both from the response of the calorimeter and from local 
UE fluctuations about the mean in the region of the jet. The latter 
contribution dominates at low pT with the resolution as large as 
40% at pT � 30 GeV in the most central collisions. At the same pT, 
the JER is only 20% in peripheral collisions, similar to that in pp
collisions. At larger pT values the relative contribution of the UE 
fluctuations to the jet pT diminishes, and the JER is dominated by 
detector effects, reaching a constant, centrality-independent value 
of 8% for pT > 300 GeV.

The migration in the two-dimensional (pT1 , pT2 ) distribution is 
accounted for by applying a two-dimensional Bayesian unfolding 
to the data [34,35]. This procedure utilizes a response matrix ob-
tained by applying the same pair selections to the truth jets in MC 
simulation as in the data analysis (except the trigger requirement) 
and recording the values of ptruth

T1
and ptruth

T2
and the transverse 

momenta of the corresponding reconstructed jets preco
T1

and preco
T2

. 
The matched reconstructed jets are not required to have the high-
est pT in the event, but are subject to all other requirements ap-
plied to the data and truth jets. The response matrix is populated 
symmetrically in both truth and reconstructed pT. The full four-
dimensional response behaves similarly to the factorised product 
of separate single-jet response distributions, and the migration ef-
fects can be understood in terms of the above discussion. While 
this provides intuition for the nature of the unfolding problem, 
such a factorisation is not explicitly assumed, and any correlations 
between the response of the two jets are accounted for in the pro-
cedure.

After unfolding, the leading/sub-leading distinction is restored 
by reflecting the distribution over the line pT1 = pT2 : for each 
bin with pT2 > pT1 the yield is moved to the corresponding bin 
with pT2 < pT1 . The bins along the diagonal, e.g. those containing 
pairs with pT2 = pT1 , are not affected by this procedure. The two-
dimensional distribution is constructed using binning along each 
axis such that the upper edge of the ith bin obeys,

pT i = pT 0 αi , α =
(

pT N

pT 0

)1/N

,

where N is the total number of bins and pT 0 and pT N are the 
minimum and maximum bin edges covered by the binning, re-
spectively. As a consequence, the bins are of the same size when 
plotted with logarithmic axes. With these choices of binning, the 
range of xJ values in any given (pT1 , pT2 ) bin is fully contained 
within two adjacent xJ bins, which have boundaries at xJ i = αi−N . 
In this analysis, half of the yield in each (pT1 , pT2 ) bin is appor-
tioned to each of the xJ bins. The exceptions are the bins along 
the diagonal. These bins contribute solely to the xJ bin with bin 
edges (α−1, 1). The effects of such a mapping on the xJ distribu-
tion are studied and found to not significantly distort the shape of 
the distribution for a variety of input xJ distributions.

The Bayesian unfolding method is an iterative procedure that 
requires both a choice in a number of iterations, niter, and assump-
tion of a prior for the underlying true distribution. An increase in 
niter reduces sensitivity to the choice of prior but may amplify sta-
tistical fluctuations that are already present in the input distribu-
tion. As Pythia does not include the effects of jet quenching, the xJ
distributions obtained from the MC sample are not expected to be 
optimal choices for the prior. In particular, the xJ distributions in
Pythia increase monotonically with xJ , whereas the distributions in 
the data become flatter and develop a peak near xJ ∼ 0.5 in lower 
pT1 intervals and in the most central collisions. The (pT1 , pT2 ) dis-
tributions from Pythia are reweighted in a centrality-dependent 
way to obtain features that qualitatively match those present in 
the data.

The effects of the reweighting procedure are shown in the left 
panel of Fig. 3 in the 100 < pT1 < 126 GeV range and 0–10% cen-
trality interval, where the largest difference between the data and
Pythia is observed. The “nominal” distribution, or the reweighted 
distribution, is used as the prior in the unfolding of the data. An 
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Fig. 4. Uncertainties sensitive to the number of iterations in the unfolding procedure as a function of niter for the 0–10% centrality interval for R = 0.4 jets. Left: The 
combination (solid black) of the unfolding (dashed red) and statistical (dotted blue) uncertainty, 

√
�δ2 for the 100 < pT1 < 126 GeV interval. Right: The combined uncertainty 

for each pT1 interval considered in the measurement. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
“alternate” reweighting is also shown, which has a shape signifi-
cantly different from the nominal, but does not increase as much 
as the Pythia distribution. The features in the data are observed 
to be robust with respect to the choice of prior for a broad set 
of reweighting functions. The systematic uncertainty due to the 
choice of prior is estimated by comparing the results of the un-
foldings using the “nominal” and “alternate” xJ distributions. The 
results of applying unfoldings with these two choices of priors are 
shown in the right panels of Fig. 3 for the same pT1 and centrality 
selection.

An alternative study is performed in the MC sample to vali-
date the estimation of this uncertainty. The “alternate” reweighting 
is applied to obtain input truth and reconstructed distributions in 
which no peak structure is present. The reconstructed distribution 
is then unfolded using the nominal prior. The unfolded distribution 
does not develop the strong peak present in the nominal prior. The 
differences between the unfolded result and the input truth distri-
bution are similar to the uncertainty obtained by varying the prior 
used to unfold the data.

The value of niter is selected separately in each centrality in-
terval by examining the uncertainty, 

√
�δ2, in (1/N)dN/dxJ after 

unfolding considering statistical uncertainties and systematic un-
certainties attributed to the unfolding procedure,

δ2 = δ2
stat + δ2

prior ,

and summing over all xJ bins. Here δprior is the uncertainty due 
to the choice of prior, obtained using the procedure described 
above. The statistical uncertainties are evaluated using a pseudo-
experiment technique. Stochastic variations of the data are gen-
erated based on its statistical uncertainty and each variation is 
unfolded and projected into xJ . The statistical covariance of the set 
is taken as the statistical uncertainty. An additional covariance is 
obtained from applying the pseudo-experiment procedure to the 
response matrix and combined with that obtained from applying 
the procedure to the data. The δ2

stat for each xJ bin is taken to be 
the diagonal element of the resulting covariance matrix. The statis-
tical covariance matrices exhibit similar trends across all pT1 and 
centrality ranges. Nearby xJ bins show a strong positive correla-
tion that diminishes for bins separated in xJ , and is expected from 
the effects of the procedures for unfolding and mapping to xJ . Bins 
well separated in xJ show an anti-correlation attributable to the 
normalisation of (1/N)dN/dxJ .

The left panel of Fig. 4 shows 
√

�δ2 as a function of niter along 
with its various contributions for the 100 < pT1 < 126 GeV range 
and 0–10% centrality interval. Since the unfolding is performed in 
two dimensions, the value of niter cannot be chosen separately for 

each range of pT1 . At higher values of pT1 the effects of the un-
folding are smaller while the effects of the statistical fluctuations 
can be more severe. The right panel of Fig. 4 shows the total 

√
�δ2

for each range of pT1 considered in the measurement along with 
the total combined over all pT1 ranges. The value of niter for each 
centrality bin and R value is chosen by considering the niter de-
pendence of 

√
�δ2 for each pT1 bin and selecting a value that 

maintains comparable uncertainties across all pT1 ranges. The more 
central bins require the most iterations, resulting from the larger 
jet energy resolution in these events. The number of iterations for 
R = 0.4 jets is at most 20 for 0–10% centrality and at the least 
6 for 60–80% centrality. The 

√
�δ2 distributions for R = 0.3 jets 

show behaviour similar to those for R = 0.4 jets in the same cen-
trality bin.

It is possible for a third jet present in the event to be recon-
structed as the jet with the second highest pT through the exper-
imental resolution. As a check to study the impact of such effects 
on the measurement, an alternative response matrix is constructed 
where no �R matching is required between the truth and recon-
structed jets. A weighting is applied such that the pT distribution 
of the reconstructed third jet matches that observed in the data. 
Differences between the unfolded distributions obtained with this 
response matrix and the nominal one are observed to be small and 
well within the systematic uncertainty associated with the unfold-
ing procedure.

The (1/N)dN/dxJ distributions before and after unfolding are 
shown in Fig. 5 for central and peripheral Pb+Pb collisions and for 
pp collisions for jet pairs with 100 < pT1 < 126 GeV. The system-
atic uncertainties indicated contain all of the contributions to the 
total systematic uncertainty described in Section 7. In the pp and 
60–80% centrality interval, the resolution effects before unfolding 
reduce the sharpness of the peak near xJ ∼ 1. In the case of the 
0–10% centrality interval, the effect is to smear out the peak near 
xJ ∼ 0.5. The lowest xJ bins exhibit instability in the unfolding pro-
cedure due to the MC sample having too few events in this region. 
However, including this range in the unfolding improves the sta-
bility of the adjacent xJ bins. Thus, after unfolding, only the range 
0.32 < xJ < 1 is reported in the results even though pairs with 
pT2 > 25 GeV are included in the measurement.

7. Systematic uncertainties

Systematic uncertainties attributed to the response matrix used 
in the unfolding arise due to uncertainties in the JES and JER. To 
account for these effects, new response matrices are constructed 
with a systematically varied relationship between the truth and 
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Fig. 5. The (1/N)dN/dxJ distributions for R = 0.4 jets before (black) and after (red) unfolding for the 100 < pT1 < 126 GeV interval for the Pb+Pb 0–10% (left) and Pb+Pb
60–80% (middle) centrality ranges and for pp collisions (right). Statistical uncertainties are indicated by vertical error bars (not visible in most cases). Systematic uncertainties 
in the unfolded result are indicated by the red shaded boxes. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this 
article.)
reconstructed jet kinematics. The data are then unfolded using the 
new response and the result is compared with the nominal.

In the pp data analysis, the JES uncertainty is described by a 
set of 11 independent nuisance parameters; these include effects 
from uncertainties derived through the in situ calibration [32]. In 
the MC sample used to determine the calibration, the calorimet-
ric response to jets initiated by the fragmentation of quarks and 
gluons is observed to differ. Potential inaccuracies in the MC sam-
ple describing both this flavour-dependent response and the rela-
tive abundances of quark and gluon jets are accounted for using 
separate nuisance parameters. A source of uncertainty related to 
the adaptation of the in situ calibration derived at 

√
s = 8 TeV to 

2.76 TeV data is also included.
In the Pb+Pb data analysis, two additional uncertainties in the 

JES are considered. The first accounts for differences between the 
detector operating conditions in the Pb+Pb and pp data, which 
were recorded in 2011 and 2013, respectively. This is derived by 
using charged-particle tracks reconstructed in the inner detector 
to provide an independent check on the JES, which only uses infor-
mation from the calorimeter. For each jet, all reconstructed tracks 
within �R < 0.4 and having ptrk

T > 2 GeV, are matched to the jet 
and the scalar sum of the track transverse momenta is evaluated. 
The ratio of this sum to the jet’s pT is evaluated both in data 
and in the MC sample, and a double ratio of the two quantities 
is formed. The double ratio obtained in peripheral Pb+Pb data is 
compared with that in pp data. The precision of the comparison is 
limited by having too few events in the peripheral Pb+Pb data and 
at high jet pT, and a pT- and η-independent uncertainty of 1.46% 
is assigned to account for potential differences.

The second additional uncertainty is a centrality-dependent JES 
uncertainty to account for potential differences in the detector re-
sponse to quenched jets. This is estimated by comparing the de-
tector response evaluated in the Pythia and Pyquen MC samples. 
This estimate is checked in data using a track-based study similar 
to the one described above, but comparing central and periph-
eral Pb+Pb collisions and accounting for the measured variation 
of the fragmentation function with centrality [11–13]. An uncer-
tainty of up to 1% in the most central collisions and decreasing 
linearly with centrality percentile to 0% in the 60–80% centrality 
class is assigned.

The uncertainty attributed to the JER is obtained by adding 
Gaussian fluctuations to each reconstructed jet pT value when pop-
ulating the response matrix. The magnitude of this uncertainty is 
fixed by a comparison of the data and MC descriptions of the JER 

in 8 TeV data [36]. Since the MC sample is constructed using the 
data overlay procedure, it is expected that the centrality depen-
dence of the JER should be well described in the MC sample. This 
is checked by studying the distribution of UE fluctuations using 
random, jet-sized groups of calorimeter towers in Pb+Pb data. The 
standard deviations of these distributions describe the typical UE 
contribution beneath a jet. The centrality dependence of the UE 
fluctuations is compared to that of the JER in the MC sample, and 
a systematic uncertainty is included to account for the observed 
differences. As expected, these differences are much smaller than 
the centrality-independent contribution to the JER uncertainty.

The data-driven estimates of the JES and JER uncertainties de-
scribed above are derived using R = 0.4 jets. Additional uncertain-
ties are included in the R = 0.3 jet measurement to account for 
potential differences between data and the MC sample in the rel-
ative energy scale of R = 0.3 jets with respect to R = 0.4 jets. 
These uncertainties are estimated from a study that matched jets 
reconstructed with the two R values and compared the means of 
the pR=0.3

T /pR=0.4
T distributions in data and the MC sample. Differ-

ences may arise between the data and MC sample from differences 
in the calorimetric response or because the jets in the two sam-
ples have different internal structure. The contribution of the latter 
is constrained by using existing jet shape measurements [37]. An 
uncertainty in the energy scale is applied to account for residual 
differences, which are 1.5% at the lowest pT and decrease sharply 
as a function of pT to a limiting value of 0.3% at high pT. A similar 
study comparing the variances of the pR=0.3

T /pR=0.4
T distributions 

is used to constrain the uncertainty in the relative resolution. This 
uncertainty is applied in the R = 0.3 jet measurement in the same 
fashion as the other JER uncertainties described above. Although 
larger than the centrality-dependent contribution, it is also much 
smaller than the centrality-independent contribution.

As the response matrix is sparsely populated (containing 404

bins), statistical fluctuations could introduce instabilities in the 
unfolding. To evaluate the sensitivity to such effects, along with 
any other defects in the response, a new response matrix is con-
structed as a factorised product of single-jet response distributions, 
i.e. assuming the responses in pT1 and pT2 are independent. The 
data are unfolded using this new response and the differences be-
tween the unfolded distributions are taken as a systematic uncer-
tainty. Systematic uncertainties in the unfolding due to the choice 
of prior are estimated as described in the previous section and are 
also included.
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Fig. 6. The total systematic uncertainty and its various components for 100 < pT1 < 126 GeV for R = 0.4 jets in Pb+Pb collisions with 0–10% centrality (left) and pp collisions 
(right). In the figure on the left the first two bins are off scale with bins centres of xJ = 0.34 and 0.38 and bins contents of 1.25 and 0.75, respectively.
Uncertainties due to the correction for the combinatoric effects 
described in Section 5 affect the number of jet pairs before the 
unfolding and are thus included as additional contributions to the 
previously described statistical uncertainties in the data. These in-
clude statistical uncertainties in ε and the uncertainties in the 
values of the fit parameters c3 and c4, accounting for their covari-
ance. Uncertainties in the normalisation are estimated by varying 
the region of �φ used to estimate Y from 1.0–1.4 to 1.1–1.5. The 
uncertainty due to this correction is smaller than the other uncer-
tainties in all pT and centrality bins, and is only greater than 5% at 
values of xJ < 0.4. This correction was not applied to the pp data 
so there is no corresponding systematic uncertainty.

The breakdown of different contributions to the total system-
atic uncertainty is shown in the 100 < pT1 < 126 GeV range for 
the 0–10% centrality interval and for pp collisions in Fig. 6. Each 
contribution to the uncertainty, and thus the total uncertainty, 
tends to decrease with increasing xJ . The total uncertainty at xJ ∼ 1
reaches approximately 12% in most pT1 and centrality bins in the 
Pb+Pb data. For xJ < 0.4, the relative uncertainty becomes large, 
but this region represents only a small contribution to the total 
(1/N)dN/dxJ distribution. The JER uncertainty is the largest con-
tribution. In the Pb+Pb data it reaches values of approximately 
10% and 15% at xJ ∼ 1 and xJ = 0.5, respectively. The JES contri-
butions are the second largest contribution to the uncertainties, 
typically between 5% and 10%. In the most central bins the unfold-
ing uncertainty can become as large as the JES contribution. The 
contributions to the uncertainty in the other centrality intervals 
and in the pp data follow trends similar to those described for the 
0–10% centrality interval, but the magnitudes are smaller in more 
peripheral collisions. In the pp data they are typically smaller by 
a factor of two compared to the 0–10% Pb+Pb data. The uncer-
tainties for the R = 0.3 result follow the same trends as those for 
the R = 0.4 result but are slightly larger due to the two additional 
sources included in that measurement to describe the relative en-
ergy scale and resolution between the two R values.

8. Results

The unfolded (1/N)dN/dxJ distribution in pp collisions for 
100 < pT1 < 126 GeV is shown in Fig. 7. Also shown are the corre-
sponding distributions obtained from the Pythia 6 sample used in 
the MC studies and also from Pythia 8 using the AU2 tune and 
Herwig++ [38] with the UE-EE-3 [39] tune. An additional sam-
ple, referred to as Powheg+Pythia 8 is generated using Powheg-Box 
2.0 [40–42], which is accurate to next-to-leading order in pertur-
bative QCD, and interfaced with Pythia 8 to provide a description 
of the parton shower and hadronisation. All samples used the 

Fig. 7. The (1/N)dN/dxJ distribution for R = 0.4 jets in pp collisions for the 100 <
pT1 < 126 GeV interval is shown in black points with the grey shaded boxes indi-
cating the systematic uncertainties. Also shown are results obtained from various 
MC event generators: Pythia 6 (red squares), Pythia 8 (blue diamonds), Herwig++ 
(green crosses) and Powheg+Pythia 8 (purple stars). The ratio of each MC result to 
the data is shown in the bottom panel where the systematic uncertainties of the 
data are indicated by a shaded band centred at unity. (For interpretation of the ref-
erences to colour in this figure, the reader is referred to the web version of this 
article.)

CTEQ6L1 PDF set [26] except the Powheg+Pythia 8, which used the 
CT10 PDF set [29]. All four models describe the data fairly well 
with the Herwig++ and Powheg+Pythia 8 showing the best agree-
ment over the full xJ range.

The unfolded (1/N)dN/dxJ distributions in Pb+Pb collisions 
are shown in Fig. 8, for jet pairs with 100 < pT1 < 126 GeV for 
different centrality intervals. The distribution in pp collisions is 
shown on each panel for comparison. In the 60–80% centrality bin, 
where the effects of quenching are expected to be the smallest, 
the Pb+Pb data are consistent with the pp data. In more central 
Pb+Pb collisions, the distributions become significantly broader 
than that in pp collisions and the peak at xJ ∼ 1, corresponding to 
nearly symmetric dijet events, is reduced. At lower centrality per-
centiles the distribution becomes almost constant over the range 
0.6 � xJ � 1, and develops a peak at xJ ∼ 0.5 in the 0–10% central-
ity interval.
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Fig. 8. The (1/N)dN/dxJ distributions for jet pairs with 100 < pT1 < 126 GeV for different collision centralities for R = 0.4 jets. The Pb+Pb data are shown in red circles, 
while the pp distribution is shown for comparison in blue diamonds, and is the same in all panels. Statistical uncertainties are indicated by the error bars while systematic 
uncertainties are shown with shaded boxes. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
Fig. 9 shows the (1/N)dN/dxJ distributions for 0–10% central-
ity Pb+Pb collisions and pp collisions for different selections on 
pT1 . In pp collisions, the xJ distribution becomes increasingly nar-
row with increasing pT1 , indicating that higher-pT dijets tend to be 
better balanced in momentum (fractionally). At higher pT1 , the xJ
distribution begins to fall more steeply from xJ ∼ 1, but appears to 
flatten at intermediate values of xJ . The modifications observed in 
the Pb+Pb data lessen with increasing pT1 and for jet pairs with 
pT1 > 200 GeV the maximum at xJ ∼ 1 is restored.

The distributions for R = 0.3 jets are also shown for the 0–10% 
centrality interval and for pp collisions for different pT1 ranges in 
Fig. 10. The pT of an R = 0.3 jet is generally lower than that of an 
R = 0.4 jet originating from the same hard scattering, and thus 
features observed in the (1/N)dN/dxJ distributions for R = 0.4
jets are expected to appear at lower values of pT1 for R = 0.3
jets. To facilitate a comparison between results obtained with the 
two R values, the R = 0.3 jet results include an additional pT1 in-
terval, 79 < pT1 < 100 GeV. The differences between the Pb+Pb

and pp (1/N)dN/dxJ distributions are qualitatively similar to those 
observed for R = 0.4 jets. Fig. 11 shows the (1/N)dN/dxJ distribu-
tions for 79 < pT1 < 100 GeV for different collision centralities but 
for jets reconstructed with R = 0.3. This indicates that the trends 
present in pT1 and centrality are robust with respect to the UE 
and that UE effects are properly accounted for by the combinatoric 
subtraction and unfolding procedures applied in the data analysis. 
The distributions are flatter for R = 0.3 jets in all pT and centrality 
bins, including in pp collisions. This is consistent with the expec-
tation that the (pT1 , pT2 ) correlation is weaker for smaller-R jets 
due to the effects of parton radiation outside the nominal jet cone.

9. Conclusion

This Letter presents a measurement of dijet xJ distributions in 
4.0 pb−1 of pp and 0.14 nb−1 of Pb+Pb collisions at 

√
sNN =

2.76 TeV. The measurement is performed differentially in leading-
jet transverse momentum, pT1 , and in collision centrality using 
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Fig. 9. The (1/N)dN/dxJ distributions for R = 0.4 jets with different selections on pT1 , shown for the 0–10% centrality bin (red circles) and for pp (blue diamonds). Statistical 
uncertainties are indicated by the error bars while systematic uncertainties are shown with shaded boxes. (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article.)

Fig. 10. The (1/N)dN/dxJ distributions for R = 0.3 jets with different selections on pT1 , shown for the 0–10% centrality bin (red circles) and for pp (blue diamonds). Statistical 
uncertainties are indicated by the error bars while systematic uncertainties are shown with shaded boxes. (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article.)
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Fig. 11. The (1/N)dN/dxJ distributions for jet pairs with 79 < pT1 < 100 GeV for different collision centralities for R = 0.3 jets. The Pb+Pb data are shown in red circles, 
while the pp distribution is shown for comparison in blue diamonds, and is the same in all panels. Statistical uncertainties are indicated by the error bars while systematic 
uncertainties are shown with shaded boxes. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
data from the ATLAS detector at the LHC. The measured distri-
butions are unfolded to account for the effects of experimental 
resolution and inefficiencies on the two-dimensional (pT1 , pT2 ) dis-
tributions and then projected into bins of fixed ratio xJ = pT2/pT1 . 
The distributions show a larger contribution of asymmetric dijets 
in Pb+Pb data compared to that in pp data, a feature that becomes 
more pronounced in more central collisions and is consistent with 
expectations of medium-induced energy loss due to jet quenching. 
In the 0–10% centrality bin for 100 < pT1 < 126 GeV, the xJ distri-
bution develops a significant peak at xJ ∼ 0.5 indicating that the 
most probable configuration for dijets is for them to be highly un-
balanced. This is in sharp contrast to the situation in the pp data 
where the most probable values are near xJ ∼ 1. The centrality-
dependent modifications evolve smoothly from central to periph-
eral collisions, and the results in the 60–80% centrality bin and the 
pp data are consistent. At larger values of pT1 the xJ distributions 
are observed to narrow and the differences between the distribu-
tions in central Pb+Pb and pp collisions lessen. This is qualita-

tively consistent with a picture in which the fractional energy loss 
decreases with increasing jet pT. The features in the data are com-
patible with those observed in previous measurements of dijets in 
Pb+Pb collisions by the ATLAS and CMS collaborations, however, 
the trends in this measurement are more prominent due to the 
application of the unfolding procedure. This result constitutes an 
important benchmark for theoretical models of jet quenching and 
the dynamics of relativistic heavy-ion collisions.
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L. Živković 14, G. Zobernig 176, A. Zoccoli 22a,22b, R. Zou 33, M. zur Nedden 17, L. Zwalinski 32

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
7 Department of Physics, University of Arizona, Tucson AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and 
Natural Sciences, Istanbul; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States
25 Department of Physics, Brandeis University, Waltham MA, United States
26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of 
Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil



400 The ATLAS Collaboration / Physics Letters B 774 (2017) 379–402

27 Physics Department, Brookhaven National Laboratory, Upton NY, United States
28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza 
University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, 
Bucharest; (f ) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, University of CAS, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua 
University, Beijing 100084, China
36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China; (b) School of Physics, 
Shandong University, Shandong, China; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai Key 
Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China bb

37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington NY, United States
39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, 
Poland
42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
43 Physics Department, Southern Methodist University, Dallas TX, United States
44 Physics Department, University of Texas at Dallas, Richardson TX, United States
45 DESY, Hamburg and Zeuthen, Germany
46 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
47 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
48 Department of Physics, Duke University, Durham NC, United States
49 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
52 Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland
53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
55 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
56 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
57 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
58 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States
60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für 
technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (b) Department of Physics, The University of Hong Kong, Hong Kong, China; 
(c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, National Tsing Hua University, Taiwan, Taiwan
64 Department of Physics, Indiana University, Bloomington IN, United States
65 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
66 University of Iowa, Iowa City IA, United States
67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States
68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
70 Graduate School of Science, Kobe University, Kobe, Japan
71 Faculty of Science, Kyoto University, Kyoto, Japan
72 Kyoto University of Education, Kyoto, Japan
73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
74 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
75 Physics Department, Lancaster University, Lancaster, United Kingdom
76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
78 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
81 Department of Physics and Astronomy, University College London, London, United Kingdom
82 Louisiana Tech University, Ruston LA, United States
83 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
84 Fysiska institutionen, Lunds universitet, Lund, Sweden
85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
86 Institut für Physik, Universität Mainz, Mainz, Germany
87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
88 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
89 Department of Physics, University of Massachusetts, Amherst MA, United States
90 Department of Physics, McGill University, Montreal QC, Canada
91 School of Physics, University of Melbourne, Victoria, Australia
92 Department of Physics, The University of Michigan, Ann Arbor MI, United States
93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States
94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
97 Group of Particle Physics, University of Montreal, Montreal QC, Canada



The ATLAS Collaboration / Physics Letters B 774 (2017) 379–402 401

98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
100 National Research Nuclear University MEPhI, Moscow, Russia
101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
102 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
103 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
104 Nagasaki Institute of Applied Science, Nagasaki, Japan
105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States
108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
110 Department of Physics, Northern Illinois University, DeKalb IL, United States
111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
112 Department of Physics, New York University, New York NY, United States
113 Ohio State University, Columbus OH, United States
114 Faculty of Science, Okayama University, Okayama, Japan
115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States
116 Department of Physics, Oklahoma State University, Stillwater OK, United States
117 Palacký University, RCPTM, Olomouc, Czech Republic
118 Center for High Energy Physics, University of Oregon, Eugene OR, United States
119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120 Graduate School of Science, Osaka University, Osaka, Japan
121 Department of Physics, University of Oslo, Oslo, Norway
122 Department of Physics, Oxford University, Oxford, United Kingdom
123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States
125 National Research Centre “Kurchatov Institute” B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States
128 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of 
Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f ) Departamento de Fisica Teorica y del 
Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
130 Czech Technical University in Prague, Praha, Czech Republic
131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
137 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques 
Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des 
sciences, Université Mohammed V, Rabat, Morocco
138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States
140 Department of Physics, University of Washington, Seattle WA, United States
141 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
142 Department of Physics, Shinshu University, Nagano, Japan
143 Department Physik, Universität Siegen, Siegen, Germany
144 Department of Physics, Simon Fraser University, Burnaby BC, Canada
145 SLAC National Accelerator Laboratory, Stanford CA, United States
146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of 
Sciences, Kosice, Slovak Republic
147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the 
Witwatersrand, Johannesburg, South Africa
148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
149 Physics Department, Royal Institute of Technology, Stockholm, Sweden
150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States
151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
152 School of Physics, University of Sydney, Sydney, Australia
153 Institute of Physics, Academia Sinica, Taipei, Taiwan
154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
160 Tomsk State University, Tomsk, Russia
161 Department of Physics, University of Toronto, Toronto ON, Canada
162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy
163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
165 Department of Physics and Astronomy, Tufts University, Medford MA, United States
166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States
167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
169 Department of Physics, University of Illinois, Urbana IL, United States
170 Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Spain



402 The ATLAS Collaboration / Physics Letters B 774 (2017) 379–402

171 Department of Physics, University of British Columbia, Vancouver BC, Canada
172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
173 Department of Physics, University of Warwick, Coventry, United Kingdom
174 Waseda University, Tokyo, Japan
175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
176 Department of Physics, University of Wisconsin, Madison WI, United States
177 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
178 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
179 Department of Physics, Yale University, New Haven CT, United States
180 Yerevan Physics Institute, Yerevan, Armenia
181 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom.
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
c Also at Novosibirsk State University, Novosibirsk, Russia.
d Also at TRIUMF, Vancouver BC, Canada.
e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America.
f Also at Physics Department, An-Najah National University, Nablus, Palestine.
g Also at Department of Physics, California State University, Fresno CA, United States of America.
h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
i Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
l Also at Tomsk State University, Tomsk, Russia.

m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
n Also at Universita di Napoli Parthenope, Napoli, Italy.
o Also at Institute of Particle Physics (IPP), Canada.
p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
r Also at Borough of Manhattan Community College, City University of New York, New York City, United States of America.
s Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America.
t Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
u Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
v Also at Louisiana Tech University, Ruston LA, United States of America.

w Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
x Also at Graduate School of Science, Osaka University, Osaka, Japan.
y Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.
z Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

aa Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America.
ab Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
ac Also at CERN, Geneva, Switzerland.
ad Also at Georgian Technical University (GTU),Tbilisi, Georgia.
ae Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
af Also at Manhattan College, New York NY, United States of America.
ag Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
ah Also at The City College of New York, New York NY, United States of America.
ai Also at School of Physics, Shandong University, Shandong, China.
aj Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal.
ak Also at Department of Physics, California State University, Sacramento CA, United States of America.
al Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

am Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
an Also at International School for Advanced Studies (SISSA), Trieste, Italy.
ao Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.
ap Also at School of Physics, Sun Yat-sen University, Guangzhou, China.
aq Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
ar Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
as Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
at Also at National Research Nuclear University MEPhI, Moscow, Russia.
au Also at Department of Physics, Stanford University, Stanford CA, United States of America.
av Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

aw Also at Giresun University, Faculty of Engineering, Turkey.
ax Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
ay Also at Department of Physics, Nanjing University, Jiangsu, China.
az Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
ba Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
bb Also at PKU-CHEP.
∗ Deceased.


	Measurement of jet pT correlations in Pb+Pb and pp collisions at √sNN=2.76 TeV with the ATLAS detector
	1 Introduction
	2 Experimental set-up
	3 Data and Monte Carlo samples
	4 Jet reconstruction
	5 Data analysis
	6 Unfolding
	7 Systematic uncertainties
	8 Results
	9 Conclusion
	Acknowledgements
	References
	The ATLAS Collaboration




