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Abstract

Developing and testing decadal‐scale predictions of soil response to climate 
change is difficult because there are few long‐term warming experiments or 
other direct observations of temperature response. As a result, spatial 
variation in temperature is often used to characterize the influence of 
temperature on soil organic carbon (SOC) stocks under current and warmer 
temperatures. This approach assumes that the decadal‐scale response of 
SOC to warming is similar to the relationship between temperature and SOC 
stocks across sites that are at quasi steady state; however, this assumption 
is poorly tested. We developed four variants of a Reaction‐network‐based 
model of soil organic matter and microbes using measured SOC stocks from 
a 4,000‐km latitudinal transect. Each variant reflects different assumptions 
about the temperature sensitivities of microbial activity and mineral sorption.
All four model variants predicted the same response of SOC to temperature 
at steady state, but different projections of transient warming responses. The
relative importance of Qmax, mean annual temperature, and net primary 
production, assessed using a machine‐learning algorithm, changed 
depending on warming duration. When mineral sorption was temperature 
sensitive, the predicted average change in SOC after 100 years of 5 °C 
warming was −18% if warming decreased sorption or +9% if warming 
increased sorption. When microbial activity was temperature sensitive but 
mineral sorption was not, average site‐level SOC loss was 5%. We conclude 
that spatial climate gradients of SOC stocks are insufficient to constrain the 
transient response; measurements that distinguish process controls and/or 
observations from long‐term warming experiments, especially mineral 
fractions, are needed.

1 Introduction

Soils store more than 2,500 Pg carbon (C) despite the ubiquity of 
microorganisms that decompose organic matter (Ciais et al., 2014). Changes
in soil organic matter stock over time depend on climate, plant inputs, and 
soil properties such as mineral surface area (Belay‐Tedla et al., 2009; 
Giardina et al., 2014). Under the 2014 Intergovernmental Panel on Climate 
Change highest emissions scenario (Representative Concentration Pathway 
8.5), global‐average soil temperatures are projected to rise 2.6 to 4.8 °C by 



2100 (Friedlingstein et al., 2014). Different Earth system models (ESMs) 
project widely different soil organic carbon (SOC) stock responses to this 
warming (Knutti & Sedlácek, 2012). Experimental warming studies have 
measured changes in SOC stock over timescales of 1–25 years, with most 
warming experiments spanning <5 years (Crowther et al., 2016; van Gestel 
et al., 2018). Moreover, many experiments do not manipulate both plants 
and soil at the same time. As a result, some studies use climate gradients to 
infer the long‐term influence of temperature on soils (Anderson‐Teixeira et 
al., 2011; Dunne et al., 2004; Giardina & Ryan, 2000; Post et al., 1982; Raich 
& Schlesinger, 1992; Sinsabaugh et al., 2017; Townsend et al., 1995; 
Zimmermann & Bird, 2012). This space‐for‐time substitution approach is a 
specific case of the state factor approach (Jenny & Amundson, 1941) that 
uses state factor gradients to understand the influence of a factor on soil 
properties.

The space‐for‐time approach assumes that the state factor of interest can be
empirically or statistically isolated and that there is no significant transient 
effect, that is, decadal‐scale responses to a change in some factor are similar
to steady state differences among sites differing in that factor (Pickett, 
1989). For example, if decomposition is primarily limited by temperature, 
then we would expect a cold site to have a larger steady state carbon stock 
than an otherwise equivalent warm site. Under these assumptions, warming 
the cold site would result in SOC loss, effectively shifting the cold site to 
have the properties of the warm site. Models that parameterize or validate 
their temperature response using spatial gradients (e.g., Bugmann, 2010; 
Schimel et al., 1994; Wieder et al., 2013) implicitly make a space‐for‐time 
assumption. This assumption has not been explicitly tested for soil carbon 
models, though studies have explored more general challenges of modeling 
steady state versus transient effects (Carvalhais et al., 2008; Ryan et al., 
2018; Sierra & Muller, 2015). We recognize that spatial gradients can be 
important tools to benchmark model responses, but they are not necessarily 
sufficient to constrain future predictions (Collier et al., 2018; Koven et al., 
2017; Torn et al., 2015). We tested whether fitting an SOC model to sites 
that span a wide range of temperature and other environmental conditions 
would constrain model projections of future warming responses. We 
hypothesized that models with different representations of soil processes can
make identical predictions across space (where SOC stocks are assumed to 
be at quasi steady state) yet very different predictions of transient dynamics 
due to warming. We test this hypothesis using a Reaction‐network‐based 
model of Soil Organic Matter and microbes (ReSOM).

Empirical warming studies ascribe changes in SOC stocks to changes in net 
primary production (NPP; Saleska et al., 2002; Harte et al., 2015) or microbial
decomposition rates (Melillo et al., 2011; Schindlbacher et al., 2011; Zhou et 
al., 2012; Zogg et al., 1997). Soil microbes respond to increased temperature
in various ways, including altered carbon use efficiency, increased mortality 
rates, faster enzyme activity rates, and greater instability of enzyme binding 



sites (Alster et al., 2016; Ratkowsky et al., 2005). Studies measuring the 
instantaneous or short‐term (order of days) microbial functional response to 
changes in temperature have consistently observed increases in 
extracellular enzyme activity, biomass growth, turnover, and respiration 
(Bárcenas‐Moreno et al., 2009; Hagerty et al., 2014; Schindlbacher et al., 
2015). In situ and over longer time periods, observed responses of microbial 
activity are less consistent. Indeed, studies over annual‐to‐decadal scales 
have reported an increase, a decrease, and no change in microbial activity 
(Frey et al., 2008; Rousk et al., 2012; Schindlbacher et al., 2011; Zhang et 
al., 2005). This range of responses suggests that the length of the warming 
treatment and initial site conditions affect the microbial response to 
warming.

Mineral protection is considered a major control of SOC stocks generally 
(Giardina et al., 2014; Jagadamma et al., 2014; Mathieu et al., 2015; Tian et 
al., 2016; Torn et al., 1997), but the temperature response of mineral‐
associated SOC is not well understood. Soil organic matter, derived from 
degraded plant C, dead microbial biomass, and microbial secretions, can be 
protected from decomposition through complexation with minerals or 
physical isolation in aggregates (Chenu & Plante, 2006; Mikutta et al., 2011; 
Rumpel & Kögel‐Knabner, 2011; Six et al., 2000; Torn et al., 1997). However,
the integrated temperature sensitivity of these mechanisms depends on the 
bond types and chemical species involved (Conant et al., 2011). Though 
thermal indices of mineral associations can be measured with calorimetric 
methods (Kleber et al., 2011; Plante et al., 2011), many models that include 
mineral associations do not represent their temperature sensitivity (Ahrens 
et al., 2015; Wang et al., 2013).

Current global‐scale SOC decomposition models simulate mineral protection 
of SOC implicitly by modifying the SOC decomposition rate with an empirical 
factor based on soil clay fraction (Coleman & Jenkinson, 1996; Hararuk et al.,
2015; Parton et al., 1987; Sulman et al., 2014; Wieder et al., 2013). Some 
site‐level models explicitly estimate the fraction of SOC sorbed to minerals, 
using adsorption and desorption rates derived from laboratory sorption 
experiments (Dwivedi et al., 2017; Grant et al., 1993; Riley et al., 2014; Tang
& Riley, 2015; Wang et al., 2013). Sorption can be calculated by imposing 
rates of the forward and reverse reactions or by using the Equilibrium 
Chemistry Approximation (ECA; Tang & Riley, 2013; Zhu et al., 2017). The 
ECA method accounts for the substrate concentration in solution and the 
total mineral surface area expressed as a sorption capacity. The advantage 
of this approach is that it can estimate the saturation state and temperature 
effects in a dynamic and chemically explicit way (Kalbitz et al., 2000; 
Pignatello, 1999). Even among models that use explicit sorption equations, 
however, the formulations and parameters for mineral sorption vary, which 
results in differing temperature responses associated with mineral sorption 
(Sulman et al., 2018).



To explore how warming could affect future SOC stocks, we developed four 
model variants of ReSOM (abbreviated NN, TN, TD, and TI) to test how 
different assumptions about the temperature sensitivity of microbial activity 
and mineral association affect the response of SOC stocks to warming (Table 
1). The NN model assumes that neither microbial activity nor mineral 
sorption is temperature sensitive. The TN model assumes that microbial 
activity is temperature sensitive but mineral sorption is not. In reality, the 
temperature sensitivity of microbial activity is likely in between these two 
extremes, with incomplete microbial acclimation lowering the apparent 
temperature sensitivity to rapid warming. The TD and TI models both assume
that microbial activity and mineral sorption are temperature sensitive but 
differ in the temperature sensitivity of mineral sorption as follows. The TD 
model assumes that adsorption to minerals decreases with warming, and the
TI model assumes that adsorption to minerals increases with warming. These
two variants reflect assumptions about the dominant type of mineral‐
association and their hypothesized temperature sensitivity (i.e., primarily 
exothermic [TD] and endothermic [TI] reactions; Conant et al., 2011), where 
the TN model represents the null hypothesis that mineral‐association is not 
temperature sensitive (Nguyen et al., 2019). We used a large data set to 
parameterize ReSOM, to ensure that it could match observations spanning a 
wide range of climate and edaphic conditions. We predicted SOC stock at 24 
sites along a 4,000‐km spatial gradient in South America, spanning 11 soil 
orders, a 20 °C range in mean annual temperature, and a 2,200‐mm range in
annual precipitation (Doetterl et al., 2015). We then ran the four model 
variants for 100 years under a sustained 5 °C warming to compare the 
warming responses between model variants.

2 Methods

2.1 Data Set

We used previously published measurements of near‐surface SOC stocks at 
24 sites along ‐a 4,000 km South American transect (Doetterl et al., 2015). 
This data set represents a wide range of relevant state factors: climate, 
mineralogy, and NPP. Hereafter, we refer to this data set as D2015 and use 



SOC and SOC stock interchangeably, unless otherwise stated. The D2015 
data set contains measurements of mean annual temperature (MAT), mean 
annual precipitation (MAP), annual plant biomass increment, elevation, SOC, 
and a variety of soil chemistry and texture information (Table S1 in the 
supporting information). We derived the model forcing (MAT, NPP, and 
maximum mineral sorption capacity [Qmax]) from this data set. We used mean
annual plant biomass increment (kg ha−1 yr−1) as a proxy for annual NPP at 
each site and assumed that dry plant biomass is 44% carbon (Harmon, 
2013). We performed a sensitivity analysis to estimate the effect of this 
assumption on predicted SOC (Text S1 and Figure S1). We estimated Qmax (g 
C eqv/m−2) for each site from observed carbon (g C/m−2) in the mineral 
fraction, measured using density fractionation, and the fraction of the 
mineral surface occupied by SOC, or saturation fraction. Because saturation 
data were not available, we fitted the saturation fraction as a parameter 
during the multiparameter optimization described in section 2.3. It would be 
ideal to estimate Qmax from relationships with variables that are not affected 
by organic matter stocks, such as geochemical variables. But these types of 
relationships have not yet been developed, and the data that could be used 
to build them are sparse across soil types (Jagadamma et al., 2012, 2014; 
Mayes et al., 2012). The model does not take MAP as a direct input, but 
mean annual plant increment and MAP are positively correlated with an R2 of
0.89 (Figure S2).

2.2 Model Description

The ReSOM model was originally developed in Tang and Riley (2015). We 
here developed four new variants of the ReSOM model with different 
process‐level assumptions about microbial and mineral sorption temperature
sensitivity. Throughout the text, we will refer to the model variants using 
their two‐letter abbreviations (Table 1). The ReSOM model represents 
microbial activity and mineral sorption as potential controls of the emergent 
decomposition rates and thus SOC stocks. The model represents five carbon 
pools: polymers, monomers, microbial structural biomass, microbial reserve 
biomass, and extracellular enzymes (Table 2). Pool, flux, and parameter 
values are defined in Tables 2 and S2. All units are given in Table S2. For full 
equations, additional parameters, and model development, see Tang and 
Riley (2015).



The ReSOM model computes depolymerization of polymers, sorption of 
monomers and enzymes, and uptake of monomers (i.e., microbial 
assimilation) using equilibrium chemistry approximation (ECA) kinetics, a 
generalization of Michaelis‐Menten (MM) kinetics (Tang & Riley, 2013). ECA is
more accurate than MM kinetics in approximating the law of mass action 
kinetics, which underlies both approaches (Michaelis & Menten, 1913; Tang, 
2015; Tang & Riley, 2013). ECA kinetics represents decomposition and 
substrate uptake as a competition between minerals and SOC for enzymes, 
and minerals and microbes for low molecular weight C, respectively. Two 
advantages of the ECA approach are the ability to (i) include distinct 
temperature‐dependent effects on mineral sorption and microbial processes 
(i.e., decomposition, uptake, and maintenance) based on well‐established 
kinetic theory and (ii) represent the multi‐consumer, multi‐substrate 
competitive environment in a computationally efficient manner. Thus, 
depolymerization (FS) and uptake (FC) are defined as

(6)

(7)

where E is the extracellular enzyme pool, S is the polymeric organic carbon 
pool, B is the structural microbial biomass pool, D is the monomeric organic 
carbon pool, and M is the mineral sorption capacity (i.e., Qmax), Vmax is the 
maximum rate of each process, z is a scaling parameter for transporter 
density, and k is the affinity parameter for decomposition (kES), uptake (kBD), 
sorption to enzymes (kME), and sorption to monomers (kMD).



Plant inputs estimated from site‐level NPP are partitioned (Tang & Riley, 
2015) into polymer and monomer pools, respectively, where the polymer 
pool represents polymeric compounds in litter (e.g., cellulose, hemicellulose, 
and lignin) and the monomer pool represents intracellular material, easily 
leached monomeric compounds in litter, and root exudates.

2.2.1 Variant 1: NN

To test the case where neither microbial activity nor mineral sorption is 
temperature sensitive, we created a model variant by assuming that no soil 
processes are temperature sensitive. This variant implicitly assumes that 
microbes are capable of either upregulating the production of temperature‐
optimal proteins or shifting the activity and/or dormancy state within the 
community to organisms that are adapted to the current thermal regime 
(Bradford et al., 2010; Lennon & Jones, 2011). Some empirical evidence 
suggests that decomposition is insensitive to temperature over wide spatial 
gradients (Giardina & Ryan, 2000), although these studies are the 
exceptions. This variant also simulates a condition where acclimation to 
temperature change is perfect and instantaneous.

2.2.2 Variant 2: TN

To test the case where microbial activity is temperature‐sensitive but 
mineral sorption is not, we created a model variant where the temperature 
sensitivity of microbial activity is defined using thermodynamic equations 
governing enzyme and microbial reactions. Overall microbial activity has a 
temperature optimum that emerges from a trade‐off between temperature 
limitation on maximum reaction rates (often approximated with the 
Arrhenius relationship) and the denaturation of enzymes at high 
temperatures (Conant et al., 2011; Murphy et al., 1990; Ratkowsky et al., 
2005; Schipper et al., 2014). Considering the positive and negative effects of 
warming on microbial activity leads to a temperature response curve with 
the highest rates of activity centered on an optimum temperature. If this 
response curve does not shift or flatten (i.e., acclimate) under warming, then
at any particular time, microbes in a given biome would respond differently 
to warming based on their initial acclimated temperature.

The temperature‐dependent processes in the TN model variant are grouped 
into three categories: (i) equilibrium reactions, (ii) nonequilibrium reactions, 
and (iii) enzyme‐mediated reactions. Some processes such as 
depolymerization and uptake may have equilibrium, nonequilibrium, and 
enzyme‐mediated components affecting different parameters (e.g., binding 
affinity, maximum rate, and fraction of active enzymes, respectively). 
Equilibrium reactions include reversible binding (enzyme‐polymer, microbe‐
monomer, enzyme‐mineral, and monomer‐mineral) and microbial 
maintenance.

The temperature dependence of these reactions is based on Eyring's 
transition state theory (Eyring, 1935; Tang & Riley, 2013),



(8)

where T0 is the reference temperature, set to the mean annual temperature, 
K(T0) is the reference affinity, ΔGEQ is the Gibbs free energy change of the 
equilibrium reaction, R is the gas constant, and T is the current temperature. 
Maximum reaction rates for depolymerization and monomer uptake are 
classified as nonequilibrium or forward reactions. The temperature 
dependence of the forward reaction is

(9)

where V(T0) is the reference maximum rate for the forward reaction and 
ΔGNEQ is the Gibbs free energy change of the nonequilibrium reaction. 
Enzyme‐mediated processes considered in this model include 
depolymerization of polymers by extracellular enzymes and uptake of 
monomers by transporter proteins. Enzyme‐mediated processes are 
governed by a temperature‐dependent optimum, which affects the fraction 
of enzymes that are active (i.e., conformationally able to bind to substrates), 
defined by

(10)

(11)

(12)

where fact is the fraction of enzymes that are active at a given temperature 
and varies between 0 and 1 (Figure S3), ΔGE is the Gibbs free energy change 
of the enzyme reaction, ΔH* is the enthalpy change at the convergence 
temperature for enthalpy (T*

H), ΔS* is the entropy change at the convergence
temperature for entropy (T*

S), ΔCP is the change in heat capacity, n is the 
average number of amino acid residues in an enzyme, and NCH is the average
number of nonpolar hydrogen atoms per amino acid residue. From Murphy et
al. (1990), Ratkowsky et al. (2005), and Schipper et al. (2014), we defined 
parameters for amino acid traits (n, NCH, ΔH*) that result in a thermal 
optimum at 290 K.

This model variant (TN) assumes that mineral sorption is not temperature 
sensitive. The temperature dependence of mineral sorption is applied to the 
binding‐affinity parameters following equation 8. We set the expression

 equal to 0, so that the binding‐affinity parameter is equal to the 
reference binding affinity at any temperature.

2.2.3 Variant 3: TD



To test the case where microbial activity and mineral sorption are 
temperature sensitive, we created a model variant with microbial 
temperature sensitivity as described in section 2.2.2. Conant et al. (2011) 
described several hypotheses for how the temperature sensitivity of mineral 
sorption could depend on the thermodynamics of the binding compounds. 
For example, if a forward reaction (e.g., adsorption) is exothermic, increasing
temperatures would shift the equilibrium toward the reactants or unbound 
(desorbed) state. Conversely, an endothermic reaction would shift toward 
the bound (adsorbed) state with warming. Organic matter associates with a 
wide variety of mineral surfaces and metal complexes (e.g., Fe and Al oxides,
phyllosilicates, metal ions) that all have different enthalpies of reaction. This 
model variant assumes that adsorption will decrease with warming (i.e., is an
exothermic reaction). Many adsorption reactions can be exothermic, such as 
adsorption of organic matter to iron oxides and to expandable clays such as 
montmorillinite (Arnarson & Keil, 2000; Gu et al., 2008). We represent 
exothermic sorption reactions using equation 8 to modify the binding‐affinity 
parameter of sorption (kME and kMD in equations 6 and 7; Table 2). We chose a
value for ΔGEQ (20 kJ/mol−1) that is less temperature sensitive, and therefore 
conservative, relative to the empirically equivalent activation energy 
parameter of chemically resistant pool decomposition in other models (e.g., 
54 kJ/mol in Sulman et al., 2014) and measurements (e.g., 32 kJ/mol for 
phenol oxidase activity in Davidson et al., 2012).

2.2.4 Variant 4: TI

To test an alternative theory of mineral sorption temperature sensitivity, we 
created a model variant that assumes microbial activity is temperature 
sensitive as described in section 2.2.2 and that mineral sorption is also 
temperature sensitive. The temperature sensitivity of mineral sorption in 
Variant 4 differs from Variant 3 in that it assumes that increasing 
temperatures favor adsorption relative to desorption (i.e., is an endothermic 
reaction). Endothermic adsorption reactions in soils include sorption of soils 
to lead (Adhikari & Singh, 2003; Tan et al., 2008). In two calorimetry 
experiments with phosphorus on Al and Fe minerals and kaolinite, Penn and 
colleagues found that reactions could be endothermic or exothermic 
depending on the pH of the soil and the type of reaction that occurred (Penn,
2010; Penn & Warren, 2009). Indeed, the thermal properties of different 
adsorption reactions may vary widely depending on the organic and mineral 
substrates and the soil environment. To represent endothermic adsorption, 
we modified equation 9 so that the Gibbs free energy change of the 
monomer‐mineral or enzyme‐mineral binding affinity has the opposite sign 
compared to the TD variant. For the TD variant, equation 8 defines ΔGEQ as a 
negative value, describing an exothermic forward reaction where higher 
temperatures shift the equilibrium toward the unbound state, assuming that 
entropy change is negligible. In this model variant (TI), ΔGEQ is given the 
equivalent positive value (i.e., endothermic forward reaction), such that 
higher temperatures shift the equilibrium toward the bound state.



(13)

2.3 Parameterization and Model Runs

We fit the model to the SOC stocks measured in D2015 by minimizing the 
sum of squared residuals between modeled and measured SOC stocks. We 
used interior‐point optimization with upper and lower bounds set at +50% 
and −50% of the default parameters reported in Tang et al. (2015; fmincon; 
MATLAB, 2018; MATLAB Optimization Toolbox, 2018). We fit 27 parameters 
related to microbial, enzyme, substrate, and mineral interactions (marked 
with an asterisk in Table S2). We did not fit certain parameters that we 
considered to be constants, such as the gas constant, convergence 
temperature for entropy, and the number of amino acids per average 
enzyme. Given the bounds on each parameter, the large number of 
parameters, and model complexity, it is possible that other minima exist. 
However, the aim of this paper is to examine the temperature sensitivity of a
model that fits site‐level data well, and not to identify the most realistic or 
general parameters for use in future studies.

We ran ReSOM at each of the 24 sites in D2015 assuming 10‐cm soil depth 
to match observations. We spun‐up each site for 1,000 years using Qmax, 
MAT, and NPP as model forcing (Table S3). We imposed the MAT with a 
constant temperature forcing. We verified that the system had reached 
steady state by confirming that the first derivative of each carbon pool over 
the last 100 years of the model run was statistically indistinguishable from 
zero using a one‐sample t test.

To test the effects of warming on model predictions, we projected SOC stock 
for 100 years with a sustained +5 °C step change in temperature. For 
subsequent analyses of site‐level SOC under ambient conditions and after 
warming, we used the mean SOC stock during the last year of the model run.

2.4 Statistical Analysis

Linear regression and generalized least squares regression relationships 
between model‐predicted SOC and explanatory factors of interest (i.e., Qmax, 
MAT, and NPP) did not satisfy assumptions of normality. Specifically, all 
linear regression models tested in this study showed significant curvature 
and heteroskedasticity of residuals, both by visual inspection and by formal 
testing following Peña and Slate (2017). Similarly, in the D2015 data set, we 
identified significant curvature in the relationship between SOC and MAT. As 
a result, we used the Random Forest nonparametric machine‐learning 
algorithm to identify the predictor variables that had the greatest influence 
on predicted SOC stock at different timescales. Random Forest identifies 
important predictor variables using an ensemble of regression trees grown 
by subsampling from the data set (Liaw & Wiener, 2002). Trees produced 
using the bootstrapped subsample and the remaining “Out‐of‐Bag” data are 
compared and aggregated across trees to estimate the mean square error 



and the percentage of variance explained by the model. Variable importance
is reported as the mean decrease in prediction accuracy when the variable is
excluded from the model (Breiman, 2001). Importance values are 
comparable for predictors within a model for the purpose of ranking. 
However, because these values are aggregated estimates of prediction 
accuracy that do not relate to classical statistical measurements, the values 
themselves cannot be compared across models.

We applied the Random Forest algorithm to all model variants' SOC stock 
predictions at steady state and to changes in SOC stock after 100 years of 
+5 °C warming. To reanalyze the D2015 transect data in a consistent 
manner, we also applied the Random Forest algorithm to all of the soil and 
environmental properties provided in that data set. All analyses were 
performed in the R Statistical Language (packages “lm,” “gvlma,” and 
“randomForest”; Version 3.5.1; R Core Team, 2018).

3 Results

3.1 Predicted SOC at Steady State and Measured SOC Across a Spatial 
Gradient

We predicted steady state SOC stock with ReSOM at the 24 D2015 sites. To 
force the model, MAT was taken directly from D2015 and NPP and mineral 
sorption capacity (Qmax) were estimated from D2015 measurements of 
annual plant biomass increment and mineral‐associated SOC stock as 
described in section 2.1. There was a strong correlation and little bias 
between modeled and observed SOC stock for all model variants (slope = 
1.18, R2 = 0.94, P < 0.001; Figures 1 and S4), and all model variants 
predicted the observed spatial data equally well (Figure 1)—across sites 
spanning a 7.2 kg C/m−2 range in observed SOC stocks, a 20 °C range in 
mean annual temperature, and 11 soil orders. The difference among model‐
variant temperature‐response functions did not affect within site predictions 
at steady state. The microbial temperature response curve assumed 
microbes were initially acclimated to their site MAT, such that their reference
temperature (T0; Table S2) is set equal to the site MAT. The reaction rates 
were the same at steady state for all model variants at a given site, because 
reaction rates are calculated based on deviation from the reference 

temperature (e.g., terms  and  in equation 9). Because all model 
variants made identical steady state predictions, we represent them in 
Figure 2 using only one symbol (light blue symbols).



Steady state SOC stock predictions (Figure 2, blue symbols) were highly 
correlated with mineral sorption capacity Qmax. There was also a significant 
correlation between measured SOC stock and Qmax in the D2015 data set 
(Figure 2, open symbols). In our Random Forest analysis of all soil and 
environmental properties in the D2015 data set, Qmax was the highest ranked
soil property, followed by CEC, bulk density, NPP, total reserve base cations, 



MAT, and other geochemical and texture variables (Figure S5). Notably, clay 
fraction (fClay) was the least important predictor of observed SOC stock, 
despite being commonly used as a proxy for mineral sorption capacity in 
global‐scale soil decomposition models (Sulman et al., 2014; Wieder et al., 
2013). At some sites, clay fraction has been well correlated with the sorption 
capacity of dissolved organic carbon (Mayes et al., 2012), but across a global
range of soil orders, clay fraction is a poor predictor of mineral‐associated 
carbon (Jagadamma et al., 2014). Some of the predictors of total SOC in 
Figure S5, such as CEC and bulk density, and to a lesser extent Qmax, are 
confounded with SOC because organic matter affects these soil properties. 
However, data on CEC and bulk density are widely available (Hengl et al., 
2014; Nachtergaele et al., 2012) and could be used with geochemical 
variables to create proxies for sorption capacity, especially if sorption is 
considered to represent not only the monolayer organomineral interaction 
that is assumed in ECA (Tang & Riley, 2013) but also multilayer sorption and 
complexation.

3.2 Predicted Changes in SOC After Warming

The four model variants diverged in their predictions of SOC response to a 
+5 °C step change in temperature (Figure 3). When SOC stock was projected
for 100 years under a 5 °C warming scenario, the NN model (no temperature 
sensitivities) predicted no change in SOC stock at all sites, as expected, 
regardless of Qmax, initial MAT, and NPP (Figure 3a, dark blue). In contrast, 
the TN model (microbial activity is temperature sensitive but mineral 
sorption is not, light blue) predicted an average loss in SOC stock of 0.2 kg C/
m2 after 100 years of warming across the sites, with a maximum loss of 0.6 
kg C/m2. This change represents a 5% to 6% decrease from the total initial 
SOC. The TD model (microbial activity is temperature sensitive and 
adsorption decreases with warming) predicted an average loss of 0.8 kg C/m2

across sites, with a maximum loss of 1.8 kg C/m2 and a strong relationship 
with initial SOC (slope = −0.02, R2 = 0.62; Figure S6. The TI model (microbial
activity is temperature sensitive and adsorption increases with warming) 
predicted no loss in SOC and up to a 0.9 kg C/m2 increase in SOC, depending 
on the site. These absolute changes represented an average SOC stock 
change of −18% and +9% for the TD and TI models, respectively.



The range of predicted change in (Δ) SOC stock in the lowest and highest 
quintiles of site MAT were 2.8 and 1.0 kg C/m2, respectively, reflecting 
assumptions about the change in enzyme activity relative to the initial site 
MAT. The range of predicted ΔSOC in the lowest and highest quintiles of site 
Qmax were more similar, 2.9 and 2.2 kg C/m2, respectively. This means that 
the effect of warming differed by initial site MAT, with warmer sites losing 
less SOC than colder sites.

3.3 Controls on SOC Across Timescales

Using the Random Forest algorithm (Table S4), we ranked the importance of 
Qmax, MAT, and NPP on the data set derived from D2015 observations and on 
modeled SOC stock at the D2015 sites. Variable importance was calculated 
as the mean decrease in statistical prediction accuracy when the variable 
was excluded from the model (Breiman, 2001). Mineral sorption capacity 
(Qmax) was more important than MAT and NPP in explaining modeled steady 
state SOC stock and measured SOC stock (Figure 4). The agreement among 
model variants in the ranking of predictor variable importance suggests that 
Qmax is the most important factor determining site‐level SOC at steady state 
regardless of microbial or mineral temperature sensitivity.



According to the Random Forest results, the relative importance of the 
environmental variables explaining SOC stock were different in the steady 
state case (Figure 4) compared to the decadal‐scale warming case (Figure 
5). Modeled steady state SOC stock was controlled by Qmax but controls on 
the SOC warming response varied by timescale. In particular, MAT was the 
most important predictor of SOC stock change after 1, 5, and 10 years of +5 
°C warming, but after 100 years NPP was the most important predictor. This 
result challenges the assumption that decadal‐scale responses to warming 
are similar to steady state differences across a temperature gradient of a 
similar magnitude in temperature change (i.e., the space‐for‐time 
assumption), at least as interpreted by the TN, TD, and TI models. For the NN
model, none of the predictor variables were explanatory because there were 
no SOC changes in response to temperature (Table S4). The TN, TD, and TI 
models predicted similar importance of variables across timescales, 
suggesting no interaction effect between the temperature sensitivity of 
mineral sorption and the relative importance of Qmax, MAT, and NPP.



4 Discussion

We found that measurements from sites in quasi steady state across a 
spatial gradient in temperature could not help distinguish how model 
variants with different temperature sensitivities would respond to changes in
temperature over time. More generally, differences in model behavior could 
not be constrained by steady state observations. Thus, a key implication of 
our simulations is that spatial gradients may be insufficient to infer (or have 
confidence in model predictions of) future SOC changes under transient 
warming. While spatial gradients generate useful insights into the influence 
of various factors on SOC (Clemmensen et al., 2015; Doetterl et al., 2018; 
Koven et al., 2017; Raymer et al., 2013), the fast timescales of 
anthropogenic climate change will likely create transient responses that 
cannot be inferred from variation among sites at or near steady state. Using 
different process representations of microbial and mineral temperature 
sensitivity, we showed that models with identical steady state predictions 
across spatial gradients make different dynamic predictions under future 
warming scenarios. We also demonstrated that large, warming‐induced 
losses of mineral‐associated C are possible with or without direct 
temperature effects on mineral‐associated C, as long as microbial activity is 
temperature sensitive. The converse was also shown: if mineral sorption is 
temperature sensitive, then overall SOC stocks will be temperature sensitive 



as well even if microbial parameters are not temperature sensitive, because 
soprtion coefficients control the transfer of carbon from a mineral‐associated 
state to a more microbially accessible dissolved state (Figure S7 and Text 
S2).

The ReSOM model agreed well with the observations from the large D2015 
transect of SOC stocks and the factors controlling them. For both the models 
and observations, Qmax was strongly correlated with steady state SOC stocks 
(Figure 2), suggesting that minerals control the long‐term spatial distribution 
of SOC stocks. Similarly, the Random Forest analysis showed that Qmax was 
more important than MAT and NPP in explaining steady state SOC stocks 
(Figure 4). Although mineral‐SOC tends to be old and relatively stable 
(Trumbore, 2009), mineral control of SOC stocks did not prevent large 
temperature responses under warming. We predicted −1.8 to +0.9 kg C/m2 
changes in SOC stocks across the model variants (Figure S8). These absolute
changes represented a −19% loss to a +11% gain in SOC stocks, with a 
mean [1st, 3rd quartiles] of −4% [−9%, +1.6%]. The largest losses were 
predicted when adsorption decreases with warming (TD), which increases 
the availability of C accessible to microbes (Figures 3 and S7). Conversely, 
SOC stocks increased even without changes to NPP in the TI model variant 
where adsorption increases with warming, decreasing microbially available 
C. Further, fairly large losses were observed in the TN model where mineral 
sorption is not temperature sensitive but microbial activity is. Warming 
increased microbial consumption of monomer and enzyme C, creating 
increased competition for the remaining C, and ultimately less C sorbed to 
minerals. Therefore, mineral‐associated C that exchanges dynamically with 
aqueous C is temperature sensitive as long as microbial activity is 
temperature sensitive. This dependency should be the case for all models 
that have an explicit sorption model that depends on the concentration of 
total C, but to our knowledge, it has never been demonstrated with a soil C 
model before. Thus, a key implication of reversible mineral sorption is that 
mineral‐associated C is vulnerable to warming, regardless of the explicit 
temperature sensitivity of sorption.

The range in site‐level SOC stock changes due to warming was not affected 
by mineral sorption capacity (Qmax; Figures 3b and 3d) but was affected by 
initial site MAT (Figures 3a and 3c). At low initial site MAT, there was a larger 
range of SOC stock change predictions than at high initial site MAT. At warm 
sites, microbial enzyme activity was closer to the predicted maximum 
activity based on the heat capacity of enzymes (Figure S3). As a result, the 
model variants predicted smaller SOC stock losses with warming because the
increased encounter rate between molecules when warmed (Davidson et al., 
2012; Rodrigo et al., 1997) was compensated by the decreased ability of 
proteins (such as enzymes) to bind substrates at high temperatures (Alster 
et al., 2016; Ratkowsky et al., 2005; Schipper et al., 2014).

The relative importance of the different variables governing soil response to 
warming are not consistent over time. For some of the model variants, there 



was a relationship between initial SOC stock and SOC stock change after 
warming, similar to that observed in Crowther et al. (2016). For example, the
TN and TD models have a significant negative relationship between initial 
SOC and change in SOC stock with warming, implying that sites with large 
SOC stocks before warming will lose more SOC than sites with small SOC 
stocks (Figure S6). However, this relationship is not observed in van Gestel et
al. (2018), suggesting that controls on SOC stocks with warming cannot be 
described with the single factor relationships (to initial SOC, MAT, MAP, 
percent clay, pH) tested in those two studies. The relative influence of 
controls like mineral sorption, MAT, and NPP may change over time in 
response to a perturbation, resulting in a phased SOC stock response such as
that observed in a 26‐year soil warming experiment (Melillo et al., 2017). At 
seasonal timescales and in response to perturbations, there are also many 
examples of transient responses whose controlling factors are not linearly 
related to climate or site characteristics (Oikawa et al., 2014; Placella et al., 
2012). For example, soil respiration responses to pulses of water cannot be 
explained by instantaneous soil moisture alone and are thought to involve 
interaction effects between microbial drought responses, buildup of 
substrates in drying soils, and changes to soil structure (Arnold et al., 2015; 
Blankinship & Schimel, 2018; Evans & Wallenstein, 2012; Waring & Powers, 
2016).

There is a wide range of possible soil responses to warming, and the 
predicted responses were different between model variants (Figure 3). There
was little sensitivity of SOC stock to warming in the variants without 
microbial or mineral sensitivity (NN) or with opposing sensitivities in which 
temperature‐sensitive microbial activity is offset by increasing mineral 
adsorption (TI; Figure S6). Because different combinations of process‐level 
assumptions can make similar predictions of SOC stocks (Figure 6), it is not 
possible to determine the most accurate model variant from measured 
changes in total SOC such as those reported in Crowther et al. (2016) and 
van Gestel et al. (2018). However, the factors affecting model predictions 
differ across the model variants (Figure 5), and the model predicts multiple 
measurable pools and fluxes, including soil fractions, heterotrophic 
respiration, and enzyme activity. Therefore, given additional measurements 
from long‐term warming experiments, especially mineral fractions, it may be 
possible to invalidate some of the temperature assumptions simulated here.



This study is the first application of the ReSOM model to a large, spatially 
extensive data set. Like other standalone soil decomposition models, ReSOM 
lacks plant feedbacks and other processes relevant to global change 
predictions. However, this model is suitable for our analyses investigating 
the impact of microbial and mineral temperature responses under steady 
state and transient warming conditions. The evidence presented here is 
consistent with the emerging perspective that interactions between microbes
and their environment (e.g., temperature and mineral surfaces) affect SOC 
stocks (Sulman et al., 2018; Wieder et al., 2015). These results imply the 
need to improve soil biogeochemical modules in ESM land models and the 
observations used to constrain these models, because many reasonable 
assumptions can lead to a broad set of SOC stock change predictions. For 
example, ReSOM could be better constrained with targeted measurements of
sorption and enzyme kinetic parameters in response to temperature 
perturbations, plant inputs, and other effects on microbial access to inputs 
(e.g., soil moisture, pH, and microbial allocation). Experiments that measure 
microbial responses to temperature over different timescales and consider 
the enzymatic capabilities of different microbial communities will help 
determine the shape and flexibility of microbial temperature responses 
across space and time. Predictions made by ESM‐scale land models may 
benefit from using microbe‐ and chemical‐explicit processes such as sorption
and enzyme catalysis to estimate SOC accumulation and decomposition. 
Most importantly, long‐term warming experiments used to validate soil C 
models, such as those reported in Crowther et al. (2016) and van Gestel et 
al. (2018), would benefit from ancillary measurements of as many factors 
(e.g., Qmax, MAT, NPP, MAP, pH, and other soil C pools) as possible to enable 
modelers to distinguish between models that make the same SOC stock 
predictions for different reasons.



We found that models developed to reproduce observed SOC spatial 
gradients may be inadequate for predicting transient temperature 
responses, in part because the effects on SOC stocks of some chemical and 
biological processes are indistinguishable at steady state. Different 
combinations of reasonable assumptions about microbial and mineral 
temperature sensitivity resulted in a wide range of SOC stock changes. 
Although many soil C models have considered and incorporated explicit 
assumptions about microbial temperature sensitivity (Abramoff et al., 2017, 
2018; Allison et al., 2010; Finzi et al., 2015; German et al., 2012; He et al., 
2015; Lawrence et al., 2009; Sistla et al., 2014; Sulman et al., 2014; Wang et
al., 2013; Wieder et al., 2013), there are fewer models that consider the 
temperature sensitivity of mineral sorption (Dwivedi et al., 2017; Huang et 
al., 2018; Riley et al., 2014; Tang & Riley, 2015). The wide range of SOC 
stock changes predicted by varying only mineral sorption assumptions 
implies that the temperature sensitivity of sorption may be just as important 
as that of microbial activity in determining total C stock changes with 
warming.
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