
UCLA
UCLA Electronic Theses and Dissertations

Title
FPGA Overlay Processor for Deep Neural Networks

Permalink
https://escholarship.org/uc/item/2z05w2q6

Author
Yu, yunxuan

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2z05w2q6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

FPGA Overlay Processor for Deep Neural Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Yunxuan Yu

2020

© Copyright by

Yunxuan Yu

2020

ABSTRACT OF THE DISSERTATION

FPGA Overlay Processor for Deep Neural Networks

by

Yunxuan Yu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Lei He, Chair

The rapid advancement of Artificial intelligence (AI) is making our everyday life eas-

ier with smart assistants, automatic medical analyzer, bank plagiarism checkers and traffic

predictions, etc. Deep learning algorithms, especially deep convolutional neuron networks

(DCNNs), achieve top performance on AI tasks, but suffers from dense computational re-

quirements, which calls for hardware acceleration. In this thesis we propose several archi-

tectures including compilation flow for general DCNN acceleration using FPGA platform.

Starting from late 2015 we began to design customized accelerators for popular DCNNs

such as VGG and YOLOv2. We reformulate the convolution computation by flattening it to

large-scale matrix multiplication between feature maps and convolution kernels, which can

be computed as inner product. With this formulation, the accelerators across all layers can

be unified to enhance resource sharing, and maximize utilization of computing resources.

We also quantized the network into 8bit with negligible accuracy loss to reduce memory

footprint and computation resources. Different parallelism optimization strategies are ex-

plored for different networks. The VGG16 accelerator achieved 1.15x throughput under

1.5x lower frequency compared with state-of-the art designs. The YOLOv2 accelerator was

ii

commercialized and employed for real-time subway X-ray auto-hazard detection.

Based on the experience we gained through customized accelerator designing, we de-

signed a RTL compiler as an end-to-end solution to automatically generate RTL design for

given CNN network and FPGA platform, which greatly reduced the human effort in devel-

oping a specific network accelerator. The compiler applies analytical performance models

to optimize parameters for modules based on a handwritten template library, such that the

overall throughput is maximized. Several levels of parallelism for convolution are explored,

including inter feature-map, intra-kernel-set, input/output channel, etc. We also optimize

architectures for block RAM and input buffers to speed up data flow. We tested our compiler

on several well-known CNNs including AlexNet and VGGNet for different FPGA platforms.

The resulting AlexNet is 113.69 GOPS on Xilinx VCU095 and 177.44 GOPS on VC707, and

VGGNet is 226 GOPS on VCU095 under 100MHZ. These are 1.3×, 2.1× and 1.2× better

than the best reported FPGA accelerators at that time, respectively.

However, network-specific accelerator requires regeneration of logic and physical imple-

mentation whenever network is updated. Moreover, it certainly cannot handle cascaded

network applications that are widely employed in complex real-world scenarios. Therefore,

we propose a domain-specific FPGA overlay processor, named OPU to accelerate a wide

range of CNN networks without re-configuration of FPGA for switch or update of CNN

networks. We define our domain-specific instruction architecture with optimized granular-

ity to maintain high efficiency while gaining extra progammability. We also built hardware

micro-architectures on FPGA to verify ISA efficiency, and a compiler flow for parsing, opti-

mization ans instructuin generation. Experiments show that OPU can achieve an average of

91% run-time MAC efficiency (RME) among various popular networks. Moreover, for VGG

and YOLO networks, OPU outperforms automatically compiled network-specific accelera-

tors in the literature. In addition, OPU shows 5.35× better power efficiency compared with

Titan Xp. For a case using cascaded CNN networks, OPU is 2.9× faster compared with

edge computing GPU Jetson Tx2 with a similar amount of computing resources. Our OPU

iii

platform was employed in an automatic curbside parking charging system in real-world.

Using OPU as base design, we extend different versions of OPU to handle the newly

emerged DCNN architectures. We have Light-OPU for light-weight DCNNs acceleration,

where we modified the OPU architecture to fit the memory bounded light-weight operations.

Our instruction architecture considers the sharing of major computation engine between LW

operations and conventional convolution operations. This improves the run-time resource

efficiency and overall power efficiency. Our experiments on seven major LW-CNNs show

that Light-OPU achieves 5.5× better latency and 3.0× higher power efficiency on average

compared with edge GPU NVIDIA Jetson TX2. Moreover, we also have Uni-OPU for

the efficient uniform hardware acceleration of different types of transposed convolutional

(TCONV) networks as well as conventional convolution (CONV) networks. Extra stage in

compiler would transform the computation of Zero-inserting based TCONV (Zero-TCONV),

nearest-neighbor resizing based TCONV (NN-TCONV) and CONV layers into the same

pattern. The compiler conducts the following optimizations: (1) Eliminating up to 98.4%

of operations in TCONV by making use of the fixed pattern of TCONV upsampling; (2)

Decomposing and reformulating TCONV and CONV processes into streaming paralleled

vector multiplication with uniform address generation scheme and data flow pattern. Uni-

OPU can reach throughput up to 2.35 TOPS for TCONV layer. We evaluate Uni-OPU

on a benchmark set composed of six TCONV networks from different application fields.

Extensive experimental results indicate that Uni-OPU is able to gain 1.45× to 3.68× superior

power efficiency compared with state-of-the-art Zero-TCONV accelerators. High acceleration

performance is also achieved on NN-TCONV networks, whose acceleration have not been

explored before. In summary, we observe 15.04× and 12.43× higher power efficiency on

Zero-TCONV and NN-TCONV networks compared with Titan Xp GPU on average. To the

best of our knowledge, we are the first in-depth study to completely unify the computation

process of both Zero-TCONV, NN-TCONV and CONV layers.

In summary, we have been working on FPGA acceleration for deep learning vision algo-

iv

rithms. Several hand-coded customized accelerator as well as an auto-compiler that generates

RTL code for customized accelerator have been developed. An initial tool-chain for an FPGA

based overlay processor was also finished, which can compile DCNN network configuration

file from popular deep learning platforms and map to processor for acceleration.

v

The dissertation of Yunxuan Yu is approved.

Abeer Alwan

Yong Chen

Puneet Gupta

Lei He, Committee Chair

University of California, Los Angeles

2020

vi

To my family

vii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background . 1

1.1.1 The rising of deep learning . 1

1.1.2 DCNN for computer vision tasks . 2

1.1.3 The curse of computation complexity 2

1.2 Motivation . 3

1.2.1 FPGA Acceleration of DCNNs . 3

1.2.2 An Auto-code generator . 4

1.2.3 Deep Learning for Edge . 4

1.3 Organization of the Dissertation . 6

2 Customized FPGA Accelerator for CNN using Uniform Inner Product

Engine . 8

2.1 Introduction . 8

2.2 Basic CNN Architecture . 10

2.2.1 Preliminary of Convolutional Neural Network 10

2.2.2 Network Architecture of a Real-Life CNN 11

2.3 Data Quantization . 12

2.4 Uniform Accelerator for Convolutional and Fully-Connected Layer 16

2.4.1 Reformulation of the Convolution Operation 17

2.4.2 Design of Convolution-Flattening and Inner-Product Accelerators . . 17

2.5 Architecture and Performance Evaluation . 19

viii

2.5.1 Overall Architecture . 19

2.5.2 Implementation and Accelerator Resource Allocation 21

2.5.3 Performance . 22

2.5.4 Automation and Scalability . 23

2.6 Conclusion . 23

3 Auto-compiler for Customized FPGA Accelerator 25

3.1 Introduction . 25

3.2 Overall Template architecture . 27

3.2.1 Memory . 27

3.2.2 Pooling and Output Control . 28

3.2.3 top level control . 29

3.3 Uniform Convolution Accelerator . 29

3.3.1 Reformulation of the Convolution Operation 29

3.4 Module parameter Optimization . 32

3.5 Performance Evaluation . 36

3.5.1 Testing networks and platform . 36

3.5.2 Comparison with existing work . 36

3.5.3 Comparison of AlexNet on two different FPGAs 37

3.5.4 Comparison of AlexNet and VGGNet on same FPGAs 38

3.6 Conclusions . 39

4 OPU: An FPGA Overlay Processor for Convolutional Neural Networks 40

4.1 Introduction . 40

ix

4.2 Related Work . 42

4.3 Instruction Set Architecture . 43

4.3.1 Conditional instruction . 44

4.3.2 Unconditional instruction . 46

4.4 Micro-Architecture . 48

4.4.1 Computation unit . 48

4.4.2 Data Fetch and Post-Process . 50

4.4.3 Memory management . 52

4.4.4 Irregular operation handling . 53

4.5 Compiler . 54

4.5.1 Operation fusion . 55

4.5.2 Data Quantization . 58

4.5.3 Intermediate representation (IR) . 59

4.5.4 Slicing and allocation . 59

4.5.5 Extra Efficiency improvements . 61

4.6 Experiment Results . 62

4.6.1 Network Description . 62

4.6.2 Runtime MAC Efficiency (RME) . 63

4.6.3 Comparison with Existing FPGA Accelerators 64

4.6.4 Power comparison . 66

4.6.5 Case study of real-time cascaded networks 69

4.7 Conclusions and Discussions . 70

x

5 Light-OPU: An FPGA-based Overlay Processor for Lightweight Convolu-

tional Neural Networks . 71

5.1 Introduction . 71

5.2 Motivation . 74

5.2.1 Non-proportional operation reduction and speedup 74

5.2.2 Uniform support for a variety of Models 75

5.3 Instruction Set Architecture . 76

5.3.1 Instruction Types . 76

5.3.2 Instruction Execution . 78

5.4 Micro-Architecture . 79

5.4.1 Computation Engine . 80

5.4.2 Other LW operations handling . 82

5.5 Compiler . 86

5.5.1 Network Reformulation . 86

5.5.2 Hardware Mapping . 87

5.6 Experiments . 91

5.6.1 Network Benchmarks . 91

5.6.2 Network Quantization . 92

5.6.3 Comparison with CPU and GPU . 93

5.6.4 Comparison with FPGA Accelerators 94

5.7 Conclusions . 96

6 Uni-OPU: An FPGA based Uniform Accelerator for Convolutional and

Transposed Convolutional Networks . 97

xi

6.1 Introduction . 97

6.2 Background and Motivation . 101

6.2.1 Background . 101

6.2.2 Motivation . 103

6.2.3 Observation . 105

6.3 System overview of Uni-OPU . 107

6.4 Software Compilation . 108

6.4.1 Computation reformulation . 108

6.4.2 Scheduling Optimizer . 116

6.5 Hardware Micro-Architecture . 120

6.5.1 Address generator . 120

6.5.2 Data Process . 121

6.5.3 Data fetch and Data write . 121

6.5.4 Memory Arrangement . 122

6.6 Instruction Set Architecture . 123

6.7 Experiment . 124

6.7.1 Experiment Setting . 124

6.7.2 Network Quantization . 126

6.7.3 Acceleration performance of Zero-TCONV networks 127

6.7.4 Acceleration performance of NN-TCONV networks 130

6.8 Conclusion . 131

7 Summary . 133

xii

References . 138

A OPU ISA . 148

A.1 Instruction Set Listings . 149

xiii

LIST OF FIGURES

1.1 (a). OPU platform; (b). OPU platform installed inside box, connected wit 5

camera lines for smart city application . 5

2.1 Convolutional Layer . 10

2.2 An illustration of the architecture of 16-layer VGG network (VGG-16) [SZ14a] . 11

2.3 Convolution Flattening . 17

2.4 Convolution-Flattening (CF) Accelerator . 18

2.5 Inner-Product (IP) Accelerator . 18

2.6 Overall architecture . 20

3.1 An illustration of the complete template architecture[SZ14a] 28

3.2 Convolution-Flattening (CF) Accelerator . 30

3.3 Inner-Product (IP) Accelerator . 31

4.1 OPU working flow. 41

4.2 The configuration of instruction unit and block. 44

4.3 Instruction execution order controlled by TCI 46

4.4 Overview of Micro-architecture. 47

4.5 (a). Conventional intra-kernel based parallelism. (b). OPU input/output channel

based parallelism. (c). Feature map data fetch pattern of OPU. 47

4.6 Computation Unit . 50

4.7 Data Fetch module. 51

4.8 Data Post Process module. 52

4.9 Channel based memory storage Management. 53

xiv

4.10 (a) Residual module type description; (b) Embedding addition operation into

post process data streaming pipeline; (c) Loading time management for residual

data. 54

4.11 Two-step flow of compiler. 55

4.12 p-fusion example on a sequence of layers. 56

4.13 (a) Original Inception. (b) Merged Inception. 57

4.14 Throughput improvements by applying r-fusion-II on inception modules. 58

4.15 Input Rearrangement: channel dimension filling. 63

4.16 Evaluation board and runtime results for classification network VGG16 and de-

tection network YOLO. 63

4.17 Performance comparison of OPU implemented on similar number of MACs with

reference designs. 67

4.18 Power efficiency (GOPS/W) comparison of CPU/GPU/OPU using CPU as baseline. 69

5.1 Light-OPU working flow. 72

5.2 Grouping examples of parameters with different updating frequencies. 77

5.3 Instruction execution and TCI updates of time range t1 to t8. Red lines indicate

TCI updates by instruction read. Each colored block shows the execution time

range of one triggered instruction. 78

5.4 Overall micro-architecture and PE structure. 78

5.5 Conventional mode: Only the input and output channel parallelisms are explored.

Kernel weights of size kipx × kipy × ICi
p are decomposed to kipx × kipy ×1×1× ICi

p

point-wise kernels. FM is copied for different output channel calculation. 80

xv

5.6 DW mode: three levels of parallelisms are explored. (1) Input&output channel

level; (2) Intra-kernel level; (3) FM level, as input FMs are fetched from two FM

blocks. 82

5.7 (a) Channel Shuffle operation and (b) its hardware-friendly implementation. . . 83

5.8 Calculation of two group convolutions in parallel. 85

5.9 Calculation process of SE block. 86

5.10 Compiler Flow. 87

5.11 Channel slicing example. Each column represents one slicing strategy and each

row represents one computation round. Labels on block indicates the number of

[channelin, channelout] calculated in this round. 90

5.12 Latency comparison (Normalized over embedded CPU ARM Cortex-A57 data). 93

5.13 Power efficiency comparison (with power normalized over embedded CPU ARM

Cortex-A57). 95

6.1 Comparison of Uni-OPU with existing work. 99

6.2 A complete two-step process of TCONV. 102

6.3 (a) up-sampling by padding zeros; (b) up-sampling by NN-based interpolation. . 102

6.4 (a) Zero-TCONV, heavy checkerboard artifacts; (b) NN-TCONV, no checker-

board artifacts [ODO16]. 103

6.5 Basic components of Uni-OPU flow. 107

6.6 Processing flow of computation reformulation. 109

6.7 Searching for all pre-addable combinations of original kernel weights. (a). Naive

method; (b). Improved method for higher efficiency. 110

6.8 Reformulation of the new kernel weights. 111

6.9 An example of address constraint extraction . 116

xvi

6.10 Operation reduction by computation reformulation. 117

6.11 Throughput under different choices of [IC,OC]. 117

6.12 (a) Overview of the hardware accelerator architecture; (b) Strided address gen-

erator; (c) first visit identification module . 119

6.13 Eliminating regular padding by write address manipulation. The green area cov-

ers the 9 Input FM elements that need to be multiplied with kernel weights K1.

However, 5 out of 9 multiplications are redundant. Therefore, we only conduct

4 multiplications in the yellow area and write to the corresponding position of

Output FM. 123

6.14 Data storage format arrangement. 124

6.15 Instruction set. 124

6.16 (a) Unet; (b) DCGAN; (c) DiscoGAN; (D) ArtGAN. 126

6.17 Uni-OPU vs. CONV-FPGA (Zero-TCONV). 128

6.18 Uni-OPU vs. GPU baseline (Zero-TCONV). 129

6.19 Uni-OPU vs. CONV-FPGA (NN-TCONV). 130

6.20 Uni-OPU vs. GPU baseline (NN-TCONV). 131

7.1 Timeline of our work . 133

7.2 Different stages of our work . 136

xvii

LIST OF TABLES

1.1 DCNN Acceleration platform comparison . 3

2.1 A detail breakdown of the network parameter and computational load in each

layer of VGG-16 [SZ14a] . 13

2.2 Fix Point Strategy Performance Comparison . 14

2.3 Dynamic fraction length strategy . 15

2.4 Computation resource comparison . 16

2.5 Overall Resource Utilization . 22

2.6 Performance Comparison . 22

3.1 Pre-defined network configuration . 32

3.2 Pre-defined platform resources . 32

3.3 optimal parameters . 34

3.4 resource of platforms . 36

3.5 resource utilization . 36

3.6 Performance Comparison . 37

3.7 AlexNet on two different FPGA . 38

3.8 AlexNet and VGGNet on XCVU095 . 38

4.1 8-bit quatization evaluation for different networks. 59

4.2 IR content for single layer group. 60

4.3 FPGA Resource Utilization. 61

4.4 Network Information . 62

4.5 RME of OPU1024 for Different Networks. 62

xviii

4.6 Comparison with customized accelerators (VGG and YOLO). 64

4.7 Power comparison among CPU, GPU and FPGA designs. 68

4.8 Real-time cascaded network evaluation comparison with Jetson 69

5.1 Inference time (Batch=1) on NVIDIA Titan Xp GPU, model parameters and

number of multiply-add operations. † indicates the ratio compared with that of

VGG-19. Input size is 229×229 for Xception and 224×224 for others. 74

5.2 Inference time on CPU with various number of cores. 75

5.3 FPGA resource utilization. 90

5.4 Network benchmark statistics. 91

5.5 Network quantization accuracy (Top-1). Performance evaluated on ImageNet

LSVRC-2012 dataset. 92

5.6 GPU and FPGA data sheets. 92

5.7 Comparison with customized FPGA accelerators. 94

6.1 Implementation influence of hyper parameters when exploring different level of

parallelism . 106

6.2 The value of reformulated kernel. 112

6.3 Information of Network Benchmarks. 125

6.4 FPGA Resource Utilization. 127

6.5 Performance/Watt over GPU compared with other TCONV accelerators. 127

xix

VITA

2010–2014 B.S., Microelectronics, Department of Electrical Engineering and Com-

puter Science, Peking University, Beijing, China.

2014–now MS/PhD program, Department of Electrical and Computer Engineering,

University of California, Los Angeles, California, USA

2015 - 2019 Teaching Assistant/Research Assistant, ECE, 205A (3 quarters)/113DA (3

quarters)/113DB (3 quarters)/209 (one quarter)

2018 Internship, Synposys FPGA Eumlation Group, San Jose

2020 Internship, Amazon Annapurna lab, San Jose

2020 Internship, Synposys Design Compiler Group, San Jose

PUBLICATIONS

Yu, Y., Wu, C., Zhao, T., Wang, K. and He, L., 2019. OPU: An fpga-based overlay pro-

cessor for convolutional neural networks. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 28(1), pp.35-47.

Yu, Y., Zhao, T., Wang, K. and He, L., 2020, February. Light-OPU: An FPGA-

based Overlay Processor for Lightweight Convolutional Neural Networks. In The 2020

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (pp. 122-132)

xx

Yu, Y., Zhao, T., Wang, M., Wang, K. and He, L., 2020. Uni-OPU: An FPGA-Based

Uniform Accelerator for Convolutional and Transposed Convolutional Networks. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems

Yu, Y., Wu, C., etc. ”Overview of a FPGA-Based Overlay Processor.” 2019 China

Semiconductor Technology International Conference (CSTIC). IEEE, 2019.

Yu, Y., and He, L. ”FPGA Power Estimation Using Automatic Feature Selection.”

Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. 2016.

xxi

CHAPTER 1

Introduction

1.1 Background

1.1.1 The rising of deep learning

Neural Network based deep learning has obtained tremendous advancement in the past few

years, which brought Artificial Intelligence (AI) to our everyday life. The smart assistants

in our home and cell phone, automatic medical analyzer, bank plagiarism checkers, traffic

predictions and shopping recommendations help make our life easier.

The power of deep learning was recognized in 2012 ImageNet [RDS+15] contest, when

AlexNet [KSH12] beat the traditional machine learning methods with handcrafted features

and won. From then we have seen the emergence of various more accurate and powerful

networks. In 2013 ZFNet [ZF14] reduce the top-5 error rate from 15.3% to 11.2%; In 2014

Inception V1 [SLJ+15] and VGGNet [SZ14a] were presented, not only did these two networks

reduced the top-5 error rate to 6% to 7%, they also became the most popular backbones

for numerous future networks for both classification, detection and segmentation. Another

DCNN structure that has big influence on later DCNN architecture design is the residual

layer concept used by ResNet [HZRS16b] in 2016. At this stage the accuracy of deep learning

for classification has already achieved ”superhuman performance”, which means the machine

running DCNN can be more accurate then an actual human being in this classification task

specifically.

1

1.1.2 DCNN for computer vision tasks

DCNN has great performance on various traditional computer vision tasks. Object Clas-

sification requires recognizing previous learned object classes in a 2D image or 3D poses

in the scene. The previous mentioned AlexNet, VggNet, ResNet, etc. handles classifica-

tion problems very well. Object Detection is another important area in computer vision,

which requires detect certain types of the object in give image and draw bounding box

as well as give out classification probability. The development of object detection DCNN

has been through several stages, famous networks include Fast-RCNN [Gir15], Mask-RCNN

[HGDG17], YOLO V1-V4 [RDGF16][RF17][RF18][BWL20] have become very popular. Fur-

thermore, Unet [RFB15], FCN [XTW+18] performed well on segmentation tasks. FSR-

CNN [DLT16] outperforms traditional algorithm on Image Super Resolution. On Image

synthesis area GANs [ZXL+17][TCAT17][KCK+17][WZZH17] have opened various possi-

bilities including style transfer, 3D Object generation, Photo Blending, Face Frontal View

Generation, etc.

The outstanding performance of DCNN on computation vision tasks has render DCNN

more and more important as a research topic.

1.1.3 The curse of computation complexity

The great performance of DCNN comes with a price, it requires far more computation

compared with traditional method. The 2D convolution operation is widely applied in DCNN

(will be introduced in detail in 2.2). However, a single layer of convolution with 224×224×16

input image size, 224×224×64 output image size and a 3×3 kernel size would require 462M

multiplication operations. And a general DCNN would have tens to hundreds convolution

layers. VggNet needs 30G operations in total to process one image, which may take a low-end

CPU several seconds to execute.

High computation complexity of DCNN constraints its application scenario and calls for

2

hardware acceleration solutions.

1.2 Motivation

1.2.1 FPGA Acceleration of DCNNs

High computation of DCNN motivates accelerations by computing clusters [DCM+12], GPUs

[CWV+14], Domain Specific ASICs [LCL+15][LCL+15][JYP+17] and FPGAs [ORK+15].

The comparison between different platforms are listed in Table 1.1. It can be seen that

FPGA has relatively good properties on verious aspects can obvious drawbacks. Moreover,

FPGA has the advantage of lower Non-recurrent engineering as it does not require the long

and expensive tape out process. An update of the design can be accomplished by simple

reconfiguration. This can be an advantage in DCNN acceleration area as the development of

new DCNN architecture is at a high speed with new operators emerging every year. ASIC

can fall into the dilemma of trying to be general to accommodate more future operators and

lose it’s domain specific advantage.

Therefore, we designed and implemented a customized FPGA accelerator for VGGnet

(in 2016), which is the start-of-the art classification network at that time. Details can be

find in Chapter 2.

Table 1.1: DCNN Acceleration platform comparison

GPU ASIC FPGA

Flexibility high low medium

Power Efficiency low high medium

Unit Price high low medium

Technology iteration speed fast slow fast

3

1.2.2 An Auto-code generator

Customized FPGA accelerator has been widely explored since 2016 [ZLS+15a, QWY+16,

SCD+16, SPM+16, MCVS17a, ZFZ+16, WYZ+17], demonstrating FPGA as a promising

acceleration platform for DCNN. However, design and implement a high-performance cus-

tomized FPGA accelerator for a certain network can be time-consuming as it normally

involves parallel architecture exploration, memory bandwidth optimization, area and timing

tuning, as well as software-hardware interface development.

Therefore, an auto-code generator that can produce RTL code based on FPGA board

constraints (memory, DSP, LUT, DDR bandwidth, etc.) and Network configuration (kernel

size, layer types, input/output channel, etc.) can be a useful end-to-end solution for FPGA

accelerator users. Here we proposed automatic DCNN accelerator RTL generator based on

a hand-coded architecture template. Detailes can be found in Chapter 3.

1.2.3 Deep Learning for Edge

The huge computation requirement of deep learning constrains it to data center and servers.

Meanwhile, the ever-increasing number of Internet of Things (IoT) devices are creating

enormous amount of data at edge. Sending these data back to data center would cause huge

network burden, and slow the processing speed as well. For example, parking surveillance

cameras at the light poles are capturing high resolution (1920 x1080) pictures at 24 frames/s,

which generates 712MB data per one second for a five camera device. If we can process these

data right at the source, we can reduce them to less than 1KB of result before sending back

to the server. Edge computing for AI is in high demand.

However, current platforms for edge deep learning acceleration have limitations. GPU

based platform is the most popular one, but it suffers from high single unit price and lack of

domain specific architecture, which greatly reduces its acceleration effect on deep learning

algorithm with uncommon architectures, such as light-weight CNNs and Transpose CNNs.

4

ASIC based platform requires very high NRE cost for circuit design and fabrication. Ap-

plications with low volume can hardly meet the price bar. Moreover, ASIC designs have

potential adaptation issues considering the fast evolvement of deep learning algorithms. As

a re-configurable platform, FPGA can be used to implement the domain specific acceleration

architecture for deep learning, but existing FPGA designs are mostly limited to customized

accelerator for specific network, which lacks generality and cannot be widely adopted. So

we developed an FPGA-based overlay processor (OPU) for the acceleration of various deep

learning algorithms on the edge. We studied and evaluated all the computation patterns

of popular CNN families and designed an instruction set architecture (ISA) that is flexi-

ble yet still maintaining domain specific optimization advantages. We then implemented

the corresponding tool chain for the ISA, including algorithm parser, instruction compiler

and the data flow driven hardware micro-architecture. We than evaluated our architecture

with selected set of CNNs that cover the applications of object classification, object detec-

tion, human pose detection, semantic segmentation, image super-resolution and automatic

image generation. We design and fabricate our own mother board(Fig. 1(a)) to achieve

only half unit price compared with the most popular existing edge deep learning acceler-

ation platform, while achieving 6.14x better performance and consumes 3.67x less energy

[YWZ+19, YZWH20, YZW+20]. Details of OPU and its extension can be found in Chapter

456.

Figure 1.1: (a). OPU platform; (b). OPU platform installed inside box, connected wit 5

camera lines for smart city application

5

1.3 Organization of the Dissertation

The research presented in this dissertation mainly focuses on architecture design for deep

learning acceleration on FPGA. The remaining parts of this dissertation are organized as

follows:

• Chapter 2: Customized FPGA Accelerator for CNN using uniform inner

product engine.

A customized FPGA Accelerator is designed for the acceleration of VGGnet, which is a

deep convolutional Neural Network (CNN) for image classification. We reformulate the

convolution computation by flattening it to large-scale matrix multiplication between

feature maps and convolution kernels, which can be computed as inner product (IP).

With this formulation, the accelerators across all layers can be unified to enhance

resource sharing,and maximize utilization of computing resources.

• Chapter 3: Auto-compiler for customized FPGA accelerator

We present a RTL compiler to automatically generate Verilog code for given CNN

network and for given FPGA platform. The compiler is based on a parameterized

template, and applies analytical performance models to optimize parameters for mod-

ules in the template such that the overall throughput is maximized.

• Chapter 4: OPU : An FPGA Overlay Processor for Convolutional Neural

Networks

we propose a domain-specific FPGA overlay processor, named OPU to accelerate a wide

range of CNN networks without re-configuration of FPGA for switch or update of CNN

networks. We define OPU instructions including instructions for data block handling.

We also optimize the granularity of instructions, microarchitectures on FPGA, and

compiler to maximize parallelism.

• Chapter 5: Light-OPU : An FPGA-based Overlay Processorfor Lightweight

6

Convolutional Neural Networks

We extend our OPU overlay architecture of OPU to accelerate the newly emerged

Light-weight CNNs. This Software-hardware co-designed Light-OPU reformulates and

decomposes lightweight operations for efficient acceleration.

• Chapter 6: Uni-OPU : An FPGA based Uniform Accelerator for Convo-

lutional and Transposed Convolutional Networks We extend our OPU overlay

architecture of OPU for the efficient uniform hardware acceleration of different types of

transposed convolutional (TCONV) networks and conventional convolution (CONV)

networks. Specifically, a software compiler is provided to transform the computation of

various TCONV and CONV layers, i.e., Zero-inserting based TCONV (Zero-TCONV),

nearest-neighbor resizing based TCONV (NN-TCONV) and CONV layers into the

same pattern.

• Chapter 7: Summary

The summary and future works are discussed.

• Appendix ISA specification for OPU.

7

CHAPTER 2

Customized FPGA Accelerator for CNN using

Uniform Inner Product Engine

2.1 Introduction

In the early stage, accelerators have computation engines customized for each layers. Sev-

eral FPGA based deep CNNs are proposed in 2009 - 2016 [FPHL09, CMB+10, CSJC10,

PSM+13, ZLS+15a]. Among them, [FPHL09] uses FPGA as a vectorial arithmetic unit,

and implements CNN mainly on a 32bit soft processor for flexibility. Work in [ORK+15,

CMB+10, CSJC10] design specific accelerator for each layer, while accelerators cannot be

shared between layers1. The key to a high performance FPGA design is to make full use

of on-chip resources, including both computing resources, (e.g., DSP slides), and enormous

on-chip memory bandwidth. Using specific accelerators for each layer actually creates a

dilemma between maximizing computational capability and memory bandwidth. To keep

all the accelerators busy (optimize computational capability), accelerators have to be de-

signed as a pipeline, which requires intermediate data for each accelerator. Due to the data

size, they are typically stored in off-chip memory. Off-chip memory bandwidth becomes the

bottleneck when multiple accelerators access them simultaneously.

This dilemma motivates the proposed FPGA architecture which speeds up CNN using

uniform accelerators. Benefiting from uniform accelerators, we can process one layer at

1Work in [ZLS+15a] designs uniform accelerator for convolutional layers, but the accelerator cannot be
used for the fully-connected layer.

8

a time, virtually using all the computing resource. Moreover, the data required for one

layer can be easily buffered in on-chip memory with massive bandwidth. This optimizes

the memory access. Naturally, convolutions with different kernel size or stride cannot be

implemented by the same accelerator. To tackle this problem, we reformulate the convolution

to two separate steps, 1) convolution flattening (CF) to flatten the feature map and kernel

from high-dimensional matrices to big 2-D matrices, 2) inner product (IP) between each

rows and columns of the flattened feature map and kernel matrices. As the CF accelerators

involve only light-weight memory manipulation, they consumes less resource compared with

IP accelerators.

Our design philosophy is to share the computing resource across layers by formulate

the convolution operations as CF operations and IP operations. While the CF operations

at different layers might be different, the IP operations are unified at each layer, hence

the expensive IP accelerators can be shared across all layers (even including the the fully

connected (FC) layers).

Moreover, we compress the precision of the network parameters without impairing accu-

racy, therefore we can fit more accelerators on the same hardware with almost no accuracy

loss. We use 8-bit fixed-point numbers instead of the single-precision floating-point number

to represent the feature map and kernel weights in the network. On a large validation set,

we verified that the CNN top-1 inference accuracy only drops 2.3%, and top-5 accuracy even

increases 1% with more compact fixed-point numbers. On the other hand, we are able to

implement about 6 times more accelerators on the same hardware when we optimize the

algorithm w.r.t. fixed-point arithmetic unit.

Experimental results indicate that the proposed design achieves 245.04 GOPS at 125

MHZ. This is the fastest design compared with the state-of-the-art. Moreover, our design flow

is semi-automated. The CF and IP accelerators with given parameters can be automatically

synthesized, which make it easier to adopt the proposed architecture to new CNNs and new

FPGA devices.

9

The remaining of this chapter is organized as follows: Section 2.2 introduces the back-

ground of CNN. Section 2.3 discusses the data quantization and its impact on accuracy

and resource consumption. Section 2.4 presents the reformulation of convolution and the

design of uniform accelerators. Section 2.5 describes the proposed architecture implementa-

tion details, evaluation and comparison with other related work. Section 2.6 concludes this

chapter.

2.2 Basic CNN Architecture

2.2.1 Preliminary of Convolutional Neural Network

The area of Artificial Neural Networks (ANN) was originally inspired by the goal of modeling

biological neural systems and has achieved good results in classification [RDS+15]. Regular

ANN has an input vector and several hidden layers, where each layer has a set of neurons

fully connected to the neurons in previous layer, resulting a large parameters matrix.

𝑤1 ,11
2 𝑤1,12

2

𝑤1,21
2 𝑤1,22

2

w1

wN

Input Feature Map Output Feature Map

𝑤1 ,11
𝑁 𝑤1,12

𝑁

𝑤1,21
𝑁 𝑤1,22

𝑁

B
G

R 𝑤1 ,11
1 𝑤1,12

1

𝑤1,21
1 𝑤1,22

1

1
2

N
...

w2

× =

=

=×

𝑥1,11 𝑥1,12

𝑥1,21 𝑥1,22

×

x

Figure 2.1: Convolutional Layer

Convolutional neural network (CNN) is proposed to reduce the number of parameters in

regular ANN by featuring local connectivity and parameter sharing. As illustrated in Fig.

2.1, first, each neuron at convolutional layer is only connected to a local region of the input

instead of the entire input feature map. Second, all neurons in a single depth slice are using

the same weight vector. Those two features are reasonable for high dimensional data, such

10

as images, where one pixel is only relevant to the pixels nearby.

2.2.2 Network Architecture of a Real-Life CNN

Typical CNN layers include convolutional layer, fully-connected (FC) layer and pooling layer.

The convolutional and FC layers count for the majority of computation, while pooling layers

only perform very simple calculation, e.g. getting the maximum or average out of a block

of feature map. The architecture of a real-life CNN, VGG-16 designed by Visual Geometry

Group at university of Oxford [SZ14a], is illustrated in Fig. 2.2. It is a winning top-5 classifier

in ILSVRC 2014 [RDS+15], which categorizes the objects from high-resolution images into

1000 different classes.

Figure 2.2: An illustration of the architecture of 16-layer VGG network (VGG-16) [SZ14a]

As shown in Fig. 2.2, the VGG-16 network consists of 16 computing layers (13 convolution

layer and 3 FC layer), which are grouped in 8 layer sets. Other layers, such as rectifier

and normalization layers, are not plotted in Fig. 2.2. Using 224x224x3 image as input, 2

convolutional layers produce 224x224x64 output feature map, which is then compressed to

112x112x64 via a max pooling layer. Those 3 layers form the first convolutional-pooling

layer block. After going through 5 such convolutional-pooling layer blocks, the feature map

is compressed 7x7x512 at the output of pool5. This feature map is then processed by 3 FC

layers to generate an 1x1x1000 output, which can be used to infer the object class in the

11

original image out of 1000 classes .

A detailed breakdown of the network parameters at each layer is presented in Table 2.1.

It is obvious that convolutional layers and fully-connected layers count for almost 100% of

the computational load, and the convolutional layers are the majority (97.2%) of them.

There are at lease two challenges in designing specific hardware for an accurate, but

cumbersome network like VGG-16.

• First, their are more than 138 million network parameters in this network. Using single

precision floating point number (32-bit), it could take 4222 Mbit (Mb) to store those

network parameters, let alone the feature maps.

• Second, using specific accelerators for each layer actually creates a dilemma between

maximizing computational capability and memory bandwidth, which motivates the

design of uniform accelerators.

The discussions in Section III and IV address these two problems respectively.

2.3 Data Quantization

In this section, we discuss the data quantization, which improves the throughput of the

proposed design at fine-grained data-level.

One major problem for the design of FPGA CNN accelerator is the large memory capacity

required due to the enormous amount of kernel weights. While the on-chip memory is

typically limited to sub-150 Mb even on some high-end FPGAs (Xilinx Ultrascale series2),

the kernel weights can easily go up to 4222Mb when using 32bit single-precision floating-

point representation. This motivates the development of fixed-point number based CNN,

where both the kernel weights and intermediate product feature maps are truncated to less

2The particular FPGA used in this chapter (Xilinx Ultrascale XCVU095) has only 60Mb on-chip memory.

12

Table 2.1: A detail breakdown of the network parameter and computational load in each

layer of VGG-16 [SZ14a]

Layer Name
Ker. size Output

FI
1 FO

1
of P. 2 Gega

Percentage
FPGA Latency3

/ Stride Size (x106) OPS (x106 cycles)

L1

conv1-1 3x3/1 224x224x64 3 64 0.001 0.173 0.005 % 3.211

conv1-2 3x3/1 224x224x64 64 64 0.036 3.699 11.626%
3.211

pool1 2x2/2 112x112x64 64 64

L2

conv2-1 3x3/1 112x112x128 64 128 0.073 1.850 5.813% 1.606

conv2-2 3x3/1 112x112x128 128 128 0.147 3.699 11.626%
1.606

pool2 2x2/2 56x56x128 128 128

L3

conv3-1 3x3/1 56x56x256 128 256 0.294 1.850 5.813% 0.803

conv3-2 3x3/1 56x56x256 256 256 0.589 3.699 11.626% 1.606

conv3-3 3x3/1 56x56x256 256 256 0.589 3.699 11.626%
1.606

pool3 2x2/2 28x28x256 256 256

L4

conv4-1 3x3/1 28x28x512 256 512 1.179 1.850 5.813% 0.803

conv4-2 3x3/1 28x28x512 512 512 2.359 3.699 11.626% 1.606

conv4-3 3x3/1 28x28x512 512 512 2.359 3.699 11.626%
1.606

pool4 2x2/2 14x14x512 512 512

L5

conv5-1 3x3/1 14x14x512 512 512 2.359 0.925 2.907% 0.401

conv5-2 3x3/1 14x14x512 512 512 2.359 0.925 2.907% 0.401

conv5-3 3x3/1 14x14x512 512 512 2.359 0.925 2.907%
0.401

pool5 2x2/2 7x7x512 512 512

L6 fc6 1x1x4096 102.760 0.822 2.605% –

L7 fc7 1x1x4096 16.78 0.034 0.108% –

L8 fc8 1x1x1000 4.10 0.008 0.025% –

Total 138.357 31.556 100.00% 18.868

1 FI/FO: Number of input/output feature maps.

2 # of P.: Number of parameters.

3 FPGA Latency: Latency at each layer based on the implementation presented in this

chapter.

13

precise fixed-point to reduce memory footage and bandwidth requirements. Consider the

accuracy degradation that can be caused by data quantization, we need to find the best

strategy to use as less bit as possible while maintain reasonable accuracy.

One realistic problem about the fixed-point number is the range of the data. Unlike

the floating-point number, fixed-point numbers has very limited range. Without properly

scaling, 8-bit fixed-point number can only represent numbers from -128 to 127. The feature

map and weight parameters in a CNN could scale up and down at a much larger range.

In our implementation we use dynamic fraction length to accommodate the data range of

different layers. The process of finding the best fraction length can be described as below:

frac = argmin
floc

∑
(float− fix(floc))2 (2.1)

where float is the original single precision representation of kernel weights or the feature

map, and fix(floc) is the value after the float is cut into fixed-point based on certain fraction

length floc. A summary for different data quantization performance can be find in Table 2.2.

It can be seen that when using dynamic fraction length, the accuracy is not impaired much

until the precision is down to 8/4 bit.

Table 2.2: Fix Point Strategy Performance Comparison

Word Length Accuracy (relative)

Weights Feature Map Top-1 Top-5

32bit FL1 32bit FL 62.67% 85.14 %

16bit FI2 16bit FI 61.38% (-1.3%) 86.14% (+1.0%)

16bit FI 8bit FI 61.38% (-1.3%) 86.14% (+1.0%)

8bit FI 8bit FI 60.41% (-2.3%) 86.14% (+1.0%)

8bit FI 4bit FI 45.54% (-17.1%) 75.24% (-9.9%)

4bit FI 8bit FI 59.40% (-3.3%) 85.15% (-0.0%)

1FI: Fixed-point number

2FL: Floating-point number

14

Table 2.3: Dynamic fraction length strategy

fraction Length Weights Bias FMOUT

Conv1-1 7 5 -2

Conv1-2 9 7 -4

Conv2-1 8 8 -5

Conv2-2 9 7 -6

Conv3-1 9 8 -6

Conv3-2 9 8 -7

Conv3-3 9 7 -8

Conv4-1 10 8 -5

Conv4-2 10 9 -4

Conv4-3 10 8 -4

Conv5-1 10 7 -3

Conv5-2 11 7 -2

Conv5-3 11 3 -1

Finally the dynamic fraction length we chose to use is shown in Table 2.3. Negative

fraction length indicates that the data is all in the integer part. For example, -2 for Conv1-1

output means the data is within range [29-1, 22] for positive number and [-29, -22] for negative

number. Similarly, for fraction length bigger than 8, for instance the 11 for layer Conv5-3

means that the whole layer is in the fraction part, and the value range is within [2−4-1, 2−11]

for positive number and [-2−4, -2−11] for negative number.

In order to maintain the precision, for addition between values of different fraction length,

we choose to move the value with smaller fraction length left to match the fraction length.

Moreover, when doing the precision reduction, we use nearest rounding method for all the

values.

Besides saving storage space, the benefits of fix point CNN including reducing bandwidth

and decreasing computation resource requirement. For bandwidth, since kernel weights are

mainly stored off chip, available IO ports on the chip set limit to the speed of kernel loading.

15

In our case, to fully utilize the on-chip computation resource, each time two kernels of size

3x3x64 are needed, which require 2x576x32 IO ports if single float precision is employed, but

only 832 IO ports are available on chip. So cutting down the length of the kernel weights

representation greatly shortens the kernel loading latency.

Moreover, computation unit for fix point arithmetic normally occupies less resources than

float arithmetic, with detailed implementation resource estimation in Table ??. It is worth

noting that although it would require the same number of DSP48 slice to realize the Adder

for 32bit, 16bit and 8bit, the limited availability of DSP48 slices on-chip prevents using DSP

to implement all the computation units. When it comes to the implementation using logic,

short length fix point shows its advantage, compared with 32bit precision, 8bit multiplier

saves approximately 88.33% resources.

Table 2.4: Computation resource comparison

resource 32bit FL 16bit FI 8bit FI

Multiplier
DSP48 slice 3 1 1

LUT6s (∆) 617 280 (-54.6%) 72 (-88.3%)

Adder
DSP48 slice 2 1 1

LUT6s (∆) 379 17 (-95.5%) 9 (-97.6%)

2.4 Uniform Accelerator for Convolutional and Fully-Connected

Layer

Apart from compressing the network parameter to fixed-point number with smaller footage,

we also optimize the design at algorithm and architecture level. In this section, we reformu-

late the convolution operation and design uniform accelerators to speed up convolution at

different layers.

16

2.4.1 Reformulation of the Convolution Operation

Naturally, convolutions with different kernel sizes or strides cannot be accelerated by the

same accelerators. Yet, as shown in Fig. 2.3, the convolution between a local region of

feature map (x) and a kernel (wi) is essentially inner-product (IP) when they are flattened to

vectors xf and wf i. Note that wf i can be pre-calculated since the kernels remain unchanged

for different inputs, but xf needs to be generated in real-time when input changes. It

is acceptable to flatten feature maps at different layer by different accelerators because it

only involves memory manipulations, which can be handled in FPGA at low cost. On the

𝑥1,11 𝑥1,12 𝑥1,21 𝑥1,22 xf 𝑥2,11 𝑥2,12 𝑥2,21 𝑥2,22 𝑥3,11 𝑥3,12 𝑥3,21 𝑥3,22

wf1 𝑤1,11
1 𝑤1,12

1 𝑤1,21
1 𝑤1,22

1 𝑤2,11
1 𝑤2,12

1 𝑤2,21
1 𝑤2,22

1 𝑤3,11
1 𝑤3,12

1 𝑤3,21
1 𝑤3,22

1

×

wfN 𝑤1,11
𝑁 𝑤1,12

𝑁 𝑤1,21
𝑁 𝑤1,22

𝑁 𝑤2,11
𝑁 𝑤2,12

𝑁 𝑤2,22
𝑁 𝑤3,11

𝑁 𝑤3,21
𝑁 𝑤3,22

𝑁 𝑤2,21
𝑁 𝑤3,12

𝑁

𝑤1 ,11
𝑁 𝑤1,12

𝑁

𝑤1,21
𝑁 𝑤1,22

𝑁

𝑤1 ,11
1 𝑤1,12

1

𝑤1,21
1 𝑤1,22

1

×

𝑥1,11 𝑥1,12

𝑥1,21 𝑥1,22

×

x w1

wN

Figure 2.3: Convolution Flattening

other hand, the acceleration of IP is very expensive as it involves all the floating-point

operations. At different layers, the lengths of flattened vectors xf and wf i are typically

different. However, the flattened vectors xf and wf i are typically very long, e.g. for layer

2, the length is 2400 (5x5x96). Given this characteristic, we can break the long vectors into

shorter uniform segments, and design uniform accelerators to calculate inner product for

each segment.

2.4.2 Design of Convolution-Flattening and Inner-Product Accelerators

According to the reformulation of convolution operation, each convolutional layer has its

own light-weight CF accelerators, while all layers share the same uniform IP accelerators,

which take care of all the floating-point operations.

17

IN

FIFO Pixel Buffer

Output Vector

x1,11 x1,12 x1,13 x1,21 x1,22 x1,23 x1,31 x1,32 x1,33

Figure 2.4: Convolution-Flattening (CF) Accelerator

2.4.2.1 Convolution-Flattening Accelerator

Even though the CF operation only counts for memory manipulation, it is non-trivial to

design a CF accelerator. The key of designing an efficient CF accelerator is to reuse the data

when the convolutional filter (kernel) slides on the feature map.

As shown in Fig. 2.4, the CF accelerator is designed mainly using a set of shift registers.

At each clock cycle, the shift register takes in 1 pixel in the 7x7 feature map, and outputs a

1x9 vector on the left hand side (flattened from the data in the 3x3 window). To generate a

vector that is long enough for the inner product, a convolutional layer may consist of multiple

CF accelerators.

×
×

×
×

+

+
++

+

IP ACC

Figure 2.5: Inner-Product (IP) Accelerator

18

2.4.2.2 Inner-Product Accelerator

The design of IP accelerator is relatively straightforward. As shown in Fig. 2.5, it uses a set

of multipliers to calculate the production between each element of two input vectors. The

multiplier outputs are summed up to a single result using an adder tree. This IP accelerator

is fully streamable, which can process two input vectors at each clock cycle.

The key of achieving a high computational capability is to keep the computing resource

(DSPs) always busy. In this design, all convolutional layers shares the same IP accelerators.

At each layer, the CF accelerators continuously stream data to the IP accelerator, resulting

a high computational capability.

Moreover, we developed tools to automatically generate the CF and IP accelerators with

given parameters such as kernel size, stride, IP vector length. Such tools facilitate the

adoption of this architecture to other CNNs or FPGA devices.

2.5 Architecture and Performance Evaluation

2.5.1 Overall Architecture

The overall architecture of the proposed FPGA based CNN is illustrated in Fig. 2.6. Clearly,

the architecture can be partitioned into 3 parts mainly consisting of logic, DSPs and on-chip

memory blocks, respectively. The memory part includes feature map(FM) buffers, kernel

buffers and a temp buffer for intermediate results. The logic and DSP parts including CF

accelerators for feature map data flattening and IP accelerators for inner product calculat-

ing. We are able to implement two CF accelerators and two IP accelerators to maximize

parallelism and throughput based on our FPGA resources.

The data flow can be described as following: one of the FM buffers provides feature

map data to both CF accelerators, and after CF accelerators the flattened feature map data

will be sent to IP accelerator for inner product calculating. On the other hand, one set of

19

kernel buffers will provide two kernel vector to IP accelerators as well. The result after IP

accelerators will be sent through two adders for addition between IP accelerators and with

former intermediate results if needed. Partial intermediate result will be stored in Temp

buffer, and final output feature map will be sent to the other FM buffer. Below we discuss

each block one by one.

Off-chip Memory

Kernel Buffer C

FM
Buffer A

Kernel Buffer ControllerFM Buffer Controller

MUX

Logic 22%, DSP 0% DSP 75%, Logic 65%

BRAM

FM
Buffer B

CF Accelerator A
IP ACC A

×
×

×
×

+

+
++

+

IP ACC B
×
×

×
×

+

+
++

+

Kernel Buffer A Kernel Buffer B

Kernel Buffer D

Temp
buffer

Adders

CF0
CF2
CF3
CF4
...

CF63

CF Accelerator B
CF0

CF4
...

CF63

CF2
CF3

Figure 2.6: Overall architecture

In this architecture, we use two page-flip buffers to store the feature map. While one

FM buffer stores the input of the CF accelerators, the other one accepts the output from

IP accelerators. Those buffers are implemented as distributed BRAMs on FPGA, allowing

multiple(3x3x64x2) 8-bit numbers to be loaded in one cycle. Moreover, once the original

image is loaded from off-chip DRAM, the feature map data always stay in the on-chip

memory, which saves off-chip memory bandwidth drastically.

We also use two sets of buffers to load kernel data from off-chip memory, each set has two

buffers of length 3x3x64x8 bit. While using the kernel data in one buffer set, the controller

20

loads the kernel data of the next computation to the other buffer set. We can achieve very

high off-chip memory bandwidth because only block-wise reading operation is involved for

kernel loading.

The logic part consists of CF accelerators that flattens the input feature maps. We have

two uniform CF accelerators which are responsible for the data flatten for all the layers.

This design minimizes the off-chip memory access by keeping feature map data always

on chip, and only load kernel data. It also shares uniform IP accelerators and CF flatten

accelerators across layers, which keeps the DSP always busy and maximizes the performance.

2.5.2 Implementation and Accelerator Resource Allocation

The proposed design is synthesized and implemented with Vivado (v2015.4) while targeting

to a Xilinx Ultrascale XCVU095 FPGA. The kernel data are extracted from Caffe [JSD+14]

and stored in off-chip DRAM. We also use a fixed-point VGG-16 network implemented in

Matlab to validate the accuracy of the FPGA-based implementation.

For a given FPGA device, it is straightforward to determine the number and size of the

IP accelerators based on available DSPs and CLBs. The CF accelerators and IP accelerator

are shared across all the layers, thus allocation of accelerators is a matter of optimizing the

usage of both CF accelerator and IP accelerator under limited resources.

In our implementation, the kernel vectors in several layers are of 3x3x64, thus using

any single IP accelerator longer than 576 is a waste of resource. We instantiate two IP

accelerators, while each of them calculates the IP between two 576x1 vectors. The IP size is

chosen as 576 since all of the Layers have kernel lengths which are the multiple of 576.

The input of these IP accelerates are connected to multiple CF accelerator banks via a

multiplexer, as illustrated in Fig. 2.6. Hence, we can choose different CF accelerators to

accommodate the data at each layer without losing generality. For the VGG-16 network, it

happens that the kernel filters at different layers are 3x3. Although the feature map size

21

is different at layers, we can still directly instantiate 2 CF accelerator banks, where each

bank consists of 64 CF accelerators. Using these CF accelerators, 576 8-bit numbers can be

generated and streamed to each of the IP accelerator at every clock cycle.

Table 2.5: Overall Resource Utilization

LUT LUTRAM FF BRAM DSP

used 321603 11915 580160 1230 577

available 537600 76800 1075200 1728 768

Percentage 59.82% 15.51% 53.96% 71.21 75.13%

The overall resource consumption is listed in Table 2.5.

2.5.3 Performance

Table 2.6: Performance Comparison

ISCA2010[CSJC10] FPGA2015[ZLS+15a] FPGA2016 [QWY+16] FPGA2016[SCD+16] Our Design

Precision 48bit fixed 32bit floating 8-16bit fixed 16 bit fixed 8bit fixed

FPGA
Virtex5 Virtex7 Stratix-V Kintex-7 Virtex Ultrascale

SX240T VX485T GSD8 XCVU095

Frequency(MHZ) 120 100 120 150 125

Throughput (GOPS) 16 61.62 136.5 187.80 245.04

Available DSPs 1056 2800 1963 874 768

Utilized DSPs N/A 2240 727(Alex,no vgg data) 780 576

The proposed design is implemented with clock configured at 125MHz. The throughput

of the design is calculated below. At the current stage, all the layers expect the last 3 fully-

connected layers in Table 2.1 are implemented on FPGA, which accounts for a total of 30.6

GOP (97.2% of the total computation). These three fully-connected layers can also be easily

implemented in our current architecture by sharing the same IP accelerators, at almost no

extra area cost.

The proposed design takes a total of 15,656,573 clock cycles to finish one round of process.

22

Therefore the throughput can be calculated as

Throughput =
Fclk

Ncycle

×NOP = 245.04 GOPS, (2.2)

which is substantially higher than the state-of-the-art [CSJC10, ZLS+15a] as presented in

Table 2.6.

2.5.4 Automation and Scalability

The proposed architecture involves a semi-automation flow of synthesizing an FPGA design

once CNN parameters are given. We have developed the tools that automatically generate

the CF and IP accelerators, and pack the CF accelerators to a layer.

It is also convenient to applied the proposed architecture to larger network, or imple-

mented on more advanced FPGA. Since we only store the kernel of the current and the

next layer on chip, larger CNN can be easily fit in this architecture, let alone one important

trend of FPGA is 3D stacking of large amount of memory to FPGA logic [LM13]. When

more advanced FPGAs are available, we can just use more CF accelerators and larger IP

accelerators, which are automatically generated by tools.

2.6 Conclusion

CNN achieves very good accuracy at the cost of high computational complexity, which moti-

vates FPGA based acceleration. This chapter proposed an FPGA based CNN using uniform

Convention-Flattening(CF) Accelerators and Inner-Product (IP) accelerators shared across

multiple convolutional layers. The uniform CF and IP accelerator creates two benefits. First,

the throughput is maximized because the uniform accelerators can be fully utilized while pro-

cessing each layer. Second, it minimizes the off-chip memory access. Instead of accessing the

kernel data from all the layers, we only need to process one layer at a time to make use of all

the computing resources. This make it easier to buffer the data on chip since we only use the

23

data from adjacent layer. We also developed a semi-automation flow that enable automatic

synthesis of the accelerators and other building blocks. Experimental results shown that the

proposed design achieves 245.04 GFLOPS at 125 MHZ clock throughput.

24

CHAPTER 3

Auto-compiler for Customized FPGA Accelerator

3.1 Introduction

Customized FPGA accelerator for deep learning neural network has been extensively stud-

ied in recent years. [ZLS+15a] implemented Alexnet [KSH12] on a VC707 board with high

throughput using HLS. [QWY+16] proposed a handwritten RTL accelerator for VGGnet[SZ14a].

[SCD+16] used HLS to design accelerators for both Alexnet and VGGnet, etc. These work

demonstrated the good ability of FPGA to act as CNN accelerator platform.

However, for customized accelerators optimized for certain DCNNs, while the throughput

is optimized for one single network in those designs, the application of the design is limited.

The constraint comes from the various configurations for different networks. Despite the

distinct layer numbers for each network, the convolution kernel sizes and pool sizes also

vary, which makes it hard to directly utilize the accelerator designed for one network to run

another.

On the other hand, a general end-to-end solution is needed for generation of accelerators

for different CNNs targeted on different FPGA boards. In fact, benefited from the fact

that CNNs tend to have the same typical convolution operation, which is exactly where

main acceleration is needed, most of the CNNs can share similar parallelism logic and coarse

acceleration architecture. As long as the design systems can satisfy different kernel sizes,

strides and pooling parameters, a base architecture can be developed. Then sub-modules

can be designed with regards to network configuration and platform resources under certain

25

templates.

In this chapter, an automatic compiler is built based on an architecture template, the

input of the compiler are network configuration and FPGA specification related information

, and the output is the RTL code for the accelerator targeted on specified Xilinx FPGA

board.

The template uses a uniform accelerator for different layers in the network, which vir-

tually uses all the computing resources. And the data required for one layer can be easily

buffered in on-chip memory with massive bandwidth. This optimizes the memory access.

In order to realize the template that is suitable for different kernel sizes and strides, We

reformulate the convolution to two separate steps, 1) convolution flattening (CF) to flatten

the feature map and kernel from high-dimensional matrices to big 2-D matrices, 2) inner

product (IP) between each rows and columns of the flattened feature map and kernel matri-

ces. As the CF accelerators involve only light-weight memory manipulation, they consume

less resource compared with IP accelerators. 8-bit fixed-point numbers is used instead of

the single-precision floating-point number to represent the feature map and kernel weights

in the network, therefore we can fit more accelerators on the same hardware with almost no

accuracy loss.

Our main contributions in this work can be summarized as the followings:

• We proposed an architecture template for CNN accelerator. Based on our template

design, we develop an analytical model to optimize the module parameters to achieve

optimal performance.

• We build an automatic compiler that can generate RTL code for CNN accelerator

based on the template for given network configuration and FPGA specification.

• Our design makes use of different levels of parallelism to deal with different computa-

tional burden. The flexibility ensure the fully utilization of the resources.

26

• Our automatically generated accelerators can achieve comparable performance with

the single network specified accelerators.

We have experimented with two different networks on more than one platform, the au-

tomatically generated accelerators show good performance compared with the state of the

art. To be specific, the Alexnet tested on both VC707and XCVU095 exhibit 2.1x and 1.35x

times better performance compared with [MGAG16], and VGGnet on XCVU095 performs

1.2 times better than [QWY+16].

The remaining of this chapter is organized as follows: Section 3.2 discusses the overall

template architecture. Section 3.4 shows the parameter optimization model. And finally

section 3.5 presents the experiment results, evaluation and comparison with other related

work. Section 3.6 concludes this chapter.

3.2 Overall Template architecture

The complete architecture is shown in Fig.3.1. The architecture can be partitioned into

4 parts: (1) Convolution acceleration that includes CFA and IPA, which is introduced in

previous chapter. (2) Memory where feature map buffer(FM buffer), kernel buffer, bias

buffer and temp buffer(used to store intermediate feature map) is implemented. (3) Pooling

and output control where the pooling operation is completed and output data is rearranged

to fit into FM buffer for next layer’s calculation. And (4) top level control where the data

flow and connections is set. Below, we discuss the last three parts in detail.

3.2.1 Memory

FM buffers take most of the memory on board. They store the input feature and output

feature map for each layer’s computation, where the outputs from previous layer serve as the

input for next layer. In order to realize the data streaming we use two FM buffers to form the

27

Off-chip Memory

FM
Buffer A

Kernel Buffer ControllerFM Buffer Controller

MUX

BRAM

FM
Buffer B

CF Accelerator A

IP ACC A
×
×

×
×

+

+

++
+

Kernel Buffer A Kernel Buffer B

CF0
CF2

...

CF Accelerator B

CF0
CF2

...

CF Accelerator C

CF0
CF2

...

Output
control

Top level
Control

...

Temp
Buffer

Bias
Buffer

Control

A
d

d
e

r
Pool1 PoolN

Figure 3.1: An illustration of the complete template architecture[SZ14a]

ping-pong structure, where one acts as the input buffer and the other acts as output buffer

at the same time. The kernel buffer is designed the same way, while using the pre-loaded

kernel data in one buffer set, the controller loads the kernel data of the next computation

to the other buffer set. We can achieve very high off-chip memory bandwidth because only

block-wise reading operation is involved for kernel loading.

3.2.2 Pooling and Output Control

The compiler can generate pooling modules with different size and stride according to the

network configuration. Since we only store the data after pooling operation, pooling mod-

ules consume very small amount of resource. Then the output control module will assign

single/multiple outputs into calculated locations of the FM buffer to satisfy the data stream

demand of next layer.

28

3.2.3 top level control

The top level control connects sub-modules and takes care of the data quantization. Since

we are using fix point kernel weights and feature map, the addition between two data with

different fix-point location needs additional shifting before the operation, at the same time

the output data needs to be cut into required data length before store into FM buffer.

All the submodules including the top control are parameterized and can be generated

by the compiler given necessary parameters, which will be optimized based on network

configuration and resource constraint. The details of the optimization will be illustrated in

section 3.5.

3.3 Uniform Convolution Accelerator

Two main requirements need to be satisfied the convolution accelerator template for our

automatic compiler:

• Capable to perform convolution for different kernel sizes and strides.

• Able to explore multiple level of parallelism with regard to different computation bur-

den for different layers, as well as different networks. This renders the FPGA compu-

tational resources fully utilized over different networks.

As discussed before, We reformulate the convolution operation to fulfill these two purposes.

3.3.1 Reformulation of the Convolution Operation

Details can be found in 2.4.1.

29

3.3.1.1 Convolution-Flattening Accelerator

The key of designing an efficient CFA is to reuse the data when the convolutional filter

(kernel) slides on the feature map, so it is designed mainly using a set of shift registers. Fig.

2.4 illustrates a CFA for convolution with kernel size of 3 and stride 1. At each clock cycle,

the shift register takes in 1 pixel from the input feature map, and outputs a 1x9 vector on the

left hand side (flattened from the data in the 3x3 window). To generate a vector that is long

enough for the inner product, a convolutional layer may consist of multiple CF accelerators.

Figure 3.2: Convolution-Flattening (CF) Accelerator

This design can be expand to CFA with other kernel sizes and strides. For example, to

deal with kernel size of 5 with stride of 2, the CFA works in the way showed by Fig. 3.2.

For each clock cycle, 2x2 pixels from the input feature map is provided and the CFA buffer

shifts in the 2x2 square step. At the left side a vector of length 25 will be the output. The

input size and shifting distance is decided by the stride. Since the CFA stops only when

the complete number of output is generated, in the case where input feature map size is not

dividable by input size, extra dummy data is provided at the end of each line to keep the

shift going without influencing the output results.

Based on this CFA design, the compiler can generate code for CFA with kernel size K,

stride S and with padding or without padding.

30

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Output 1

M
U
X

Output 2

Delayed

Filled with
extra zero

Final output

Figure 3.3: Inner-Product (IP) Accelerator

3.3.1.2 Inner-Product Accelerator

The design of IP accelerator is relatively straightforward. It uses a set of multipliers to

calculate the production between each element of two input vectors. The multiplier outputs

are summed up to a single result using an adder tree. This IP accelerator is fully pipelined,

processing two input vectors at each clock cycle.

The IPA is design to achieve the smallest latency for all the layers. But the computation

burden can vary a lot between different layers. Taking Alexnet as an example, the first layer

has vector length of 3∗11∗11 = 363, while the later layers has vector length of 2400, which we

use as the IPA length. So during the calculation of first layer, only 15% of the computational

units is used. In order to fully utilize all the computational units, for layers with shorter

convolution-flattening vectors, multiple outputs is calculated at one round. This means the

adder tree will have more than one stage that can act as output. As shown in Fig. 3.3, we

can either calculate the one inner product result for length 16 vectors, or four inner product

results for length 4 vectors. Then the MUX at the end of IPA chooses which result to use

as the final output. Using this structure, in our Alexnet implementation we can calculate 6

outputs at the same time during first layer, which reduce the layer latency by 6 times.

Given total IPA length and sub-IPA lengths(for multiple outputs), the compiler will

31

automatically generate the desired IPA module.

3.4 Module parameter Optimization

In this section, we discuss the parameter optimization. For a given CNN configuration, we

have all the network pre-define parameters listed in Table 3.1. Suppose the network has M

convolutional layers, then array ker size[M] stores the kernel size for each convolution layer.

Then for a given FPGA platform, we can acquire the information about computational

and memory resources as listed in Table 3.4.

Table 3.1: Pre-defined network configuration

representation meaning(of each conv layer)

M number of convolutional layers

ker size[M] kernel size

stride[M] stride length

layer size[M] size of input feature map

layer depth[M + 1] depth of input feature map

layer com[M] computation units needed for one complete output

pool size[M] pooling size(0 represents no pooling)

pool stride[M] pooling size(0 represents no pooling)

Table 3.2: Pre-defined platform resources

representation meaning

com resource computational units available (DSPs, LUT configured as fix-point multiplier)

BRAM resource number of 18k/36k BRAM tiles on board

IO resource number of IOs

DRAM constraint the limit imposed by DRAM speed

The parameters need to be optimized are shown Table 3.3. Among them the key pa-

rameter is the IPA length. We consider 3 levels of parallelism while finding the optimal IPA

length:

32

• Intra-kernel level: the convolution process has no data dependency between multipli-

cations within a kernel, so the 9 multiplication in a 3 ∗ 3 kernel convolution can be

flattened and calculated in one multiplier time unit.

• Inter-kernel level: different kernels within a kernel set convolve with different input

feature maps, all the multiplication can be finished in parallel.

• Inter-kernel set level: different kernel sets corresponds to different output feature map,

so it is also called inter-feature map parallelism. We can calculate the element in the

same position for multiple output feature maps concurrently, with no data dependency

involved.

The number of computation units each layer needed to generate one complete output

calculated in Eq.(3.1) is one of the deciding facts for the IPA length. For large CNNs that

we normally face in acceleration tasks, one output would take as many as 2400 computa-

tional units to finish, which will occupy most of the computational resources on board. For

smaller networks and less computational-intense layer in large networks, inter-kernel set level

parallelism will be considered to make full use of the resource.

layer com[i] = ker size[i]× ker size[i]× layer depth[i]1 (3.1)

Then the uniform IPA length can be calculated by solving the optimization problem

in Eq.(3.2), where one of the constraint is on board computational resources. As for the

other constraints, while using kernel buffer alleviates the off-chip bandwidth pressure, in

later layers where kernel reloading is needed more frequently, DRAM speed still needs be

1All the i show up in this equation and the following equations go from 0 to M − 1

33

taken into consideration.

Minimize
IPA len,output num

latency

=
∑

ceil(
layer com[i] ∗ layer size[i + 1] ∗ layer size[i + 1] ∗ layer depth[i + 1]

layer IPA len[i] ∗ output num[i]
)

s.t.IPA len ≤ {com resource,DRAM speed}

Resource Utilization < BRAM resource, LUT resource (3.2)

Based on the optimal uniform IPA length, the length of input feature map vector that

each CFA needs to provide for each layer’s calculation can be calculated by Eq.(3.3) and

(3.4), which decides the number of CFA we need.

layer IPA len[i] = floor(
IPA len

ker size[i]2
)× ker size[i]2 (3.3)

Table 3.3: optimal parameters

representation meaning(of each conv layer)

BRAM width Width of FM buffer

BRAM depth depth of FM buffer

kernel len length of the kernel buffer

IPA len uniform Inner product accelerator length

layer IPA len[M] inner product acceleration length

CFA len[M] convolutional flattening input length

output num[M] number of output per clock cycle

CFA num[i] =
layer IPA len[i]

ker size[i]2
(3.4)

CFA does memory manipulation, so it consumes LUT resources mainly, which is not the

critical resource constraint on FPGA. But its resources consumption can still be estimated,

and it is proportional to the following equation:

CFA num[i]× kernel size[i]× layer size[i] (3.5)

34

Consequently, the number of CFA decides the bandwidth required by each layer’s calculation,

thus adding design constraint on the FM BRAM. CFA would take the data stream from

FM BRAM and reuse by buffering and rearrangement, which means FM BRAM bandwidth

should as least be CFA number times the number of data needed for each CFA. Additionally,

the FM BRAM depth each layer needs can be calculated based on the FM BRAM width

and feature map size as in Eq.(3.7).

BRAM width[i] = CFA num[i]× stride[i]2 (3.6)

BRAM depth[i] =
layer size[i]2 × layer depth[i]

CFA len[i]
(3.7)

Then the BRAM architecture can be described by:

BRAM width[i]max ×BRAM depth[i]max (3.8)

Since we are taking the maximum for both width and depth. We overestimate the BRAM

resources, but we use Eq. (3.8) for two reasons:

• Layers that requires largeBRAM depth normally has big kernel size, so theBRAM width

for them are big as well. This BRAM estimation does not exceed the worst situation

too much.

• If we decide to only satisfy the maximum of one condition, say BRAM width. When

BRAM depth is not deep enough, we will have to rearrange the data to make use of

the rest of the width, which greatly complex the input and output control logic.

Kernel load size is known to be the same as IPA len. Kernel data in the off-chip memory

will be pre-arranged so the visiting of DRAM is block-wise and each time a successive chunk

of data can be brought in.

35

3.5 Performance Evaluation

3.5.1 Testing networks and platform

In our experiment we use two large CNNs built on Imagnet dataset [FF10], AlexNet [KSH12]

and VGGNet [SZ14a]. The platforms we choose are Virtex-7 XC7VX485T and XCVU095.

They represent two types of boards: one with large on-board BRAM, the other with large

amount of on-board DSPs. The resource for two boards are listed in Table 3.4.

Table 3.4: resource of platforms

LUT LUTRAM FF BRAM DSP

XC7VX485T 303600 130800 607200 1030 2800

XCVU095 537600 76800 1075200 1728 768

Table 3.5: resource utilization

LUT LUTRAM FF BRAM DSP

Alexnet
XC7VX485T 53.79% 21.64% 32.29% 52.04% 85.89%

XCVU095 20.92% 18.71% 15.32% 16.52% 80.60%

VGGnet XCVU095 62.84% 14.96% 54.34% 76.07% 81.64%

3.5.2 Comparison with existing work

For Alexnet, we implement it on both Virtex-7 XC7VX485T and Ultrascale XCVU095.

Frequency of 125MHZ is achieved and throughput is calculated based on the total latency

and computation burden. And the throughput is computed by Eq. (3.9).

Throughput =
Fclk

Ncycle

×NOP = 177.44 GOPS (3.9)

which is substantially higher than the state-of-the-art [ZLS+15a] [MGAG16] as presented in

Table 3.6, where the performance comparison for VGGnet is also listed.

36

Table 3.6: Performance Comparison

Alexnet VGGnet

FPGA2015[ZLS+15a] ASP-DAC2016 [MGAG16] Our Design 1 Our Design 2 FPGA2016 [QWY+16] FPGA2016[SCD+16] Our Design

Precision 32bit floating 32bit floating 8bit fixed 8bit fixed 8-16bit fixed 16 bit fixed 8bit fixed

FPGA VX485T VX485T VX485T XCVU095 Stratix-V Kintex-7 XCVU095

Frequency(MHZ) 120 100 100 100 150 100 100

Throughput (GOPS) 61.62 84.2 113.69 177.44 136.5 187.80 226

Available DSPs 2800 2800 2800 768 1963 874 768

Utilized DSPs 2240 NA 2405 619 727 780 627

Our performance for AlexNet on VX485T is 2.1x better than the state-of-art perfor-

mance [MGAG16], and VGGNet on XCVU095 is 1.2x better than [QWY+16]. Achieving

the comparable and even better performance with single network customized accelerator

design indicates that FPGA acceleration for CNN can be generalized without losing the

performance advantage.

And the higher throughput we are achieving compared to the state-of-art designs can be

credited to our fully streaming architecture and the extra parallelism we are exploring in the

first few layers that makes full use of the available resources.

The overall resource consumption is listed in Table 3.5. It can be seen that VGGnet takes

large amount of BRAM resource compared with Alexnet, thus makes it hard to fit into the

XC7VX485T board although the DSP resource is sufficient, which indicates that for CNN

application, the BRAM resource can be as important as the computational resource.

3.5.3 Comparison of AlexNet on two different FPGAs

In our experiments, AlexNet accelerators were generated for two different platforms, VX485T

and XCVU095. Different performances were achieved due to distinct resource constraints of

the two boards. Parameters of the two accelerator are compared in Table 3.7. It can be seen

that the parameters are not proportionally scaled when shifting from one FPGA to another.

The key difference lies in the IPA len, which is mainly decided by the computational units

available one the FPGA, especially the DSP number. And the IPA len is closely related to

37

the throughput cause it decides how many rounds it would require for a single output to be

finished.

Moreover, larger IPA len means wider FM BRAM is needed. It would consume more

BRAM tiles to satisfy the bandwidth requirements.

Table 3.7: AlexNet on two different FPGA

Optimal IPA length Total CFA nums BRAM width BRAM depth

XC7VX485T 2400 365 266 3249

XCVU095 1152 227 128 3249

3.5.4 Comparison of AlexNet and VGGNet on same FPGAs

We also implemented AlexNet and VGGNet on XCVU095. Due to network size difference,

VGGNet takes more than 15 times more BRAM than AlexNet. But its total CFA num is

smaller benefited from its rather uniform convolution kernel size.

Although the two network share the same IPA length, VGGNet’s throughput exceeds

AlexNet greatly. It is because the high computational requirements for almost all layers of

the VGGNet render the IPA fully used all the time, while in AlexNet there are still several

layers only using partial of the IPA resources.

Table 3.8: AlexNet and VGGNet on XCVU095

Optimal IPA length Total CFA nums BRAM width BRAM depth

AlexNet 1152 227 128 3249

VggNet 1152 128 128 50176

38

3.6 Conclusions

CNN achieves very good accuracy at the cost of high computational complexity, which mo-

tivates FPGA based acceleration. While accelerator targeted on single network has achieved

very good performance, an automatic compiler for general network accelerator has not been

studied in-depth. This chapter developed an auto-compiler that can generate working HDL

code for given CNN accelerator on given FPGA platform based on a architecture template.

The template has uniform Convention-Flattening(CF) Accelerators and Inner-Product (IP)

accelerators shared across multiple convolutional layers. The reformulation of the convo-

lution operation makes it possible to conduct convolution with different sizes and strides

using similar structure, and simplify the optimization problem into finding the best IPA

length, which is easier to solve. Experimental results shown that, despite the fact the imple-

mentation is generated by compiler, the performance is still comparable to network specific

accelerators. For example, our automatically generated Alexnet design on VX485T performs

2.1 times better than the state-of-the-art implementation [MGAG16].

39

CHAPTER 4

OPU: An FPGA Overlay Processor for Convolutional

Neural Networks

4.1 Introduction

FPGA acceleration for DCNNs has drawn much attention in recent years [FPHL09, ORK+15,

CMB+10, CSJC10, ZLS+15a, QWY+16, SCD+16, SPM+16, MCVS17a, ZFZ+16, WYZ+17].

Well-designed FPGA accelerator for CNN can leverage full capacity of parallelism to achieve

low latency and high throughput. Moreover, FPGA’s reconfigurability enables fast adop-

tion to new CNN architectures. Additionally, FPGA has higher energy efficiency compared

to CPU or GPU. As mentioned in chapter 3, implementing a high-performance FPGA ac-

celerator can be time-consuming as it normally involves parallel architecture exploration,

memory bandwidth optimization, area and timing tuning, as well as software-hardware in-

terface development. This leads to the development of automatic compilers for FPGA CNN

accelerators[SPM+16, MCVS17a, ZFZ+16, WYZ+17], where hardware description of tar-

get accelerators can be generated automatically based on parametric templates, and design

space exploration is simplified to parameter optimization with regard to network structure

and hardware resource constraints.

However, some disadvantages still exist. First, while RTL code can be generated as the

final output of auto-compilers, it still takes logic synthesis, placement and routing to obtain

the final bitstream. Second, the resulting design may fail timing requirements. Instead

of fixing timing failing paths as in regular FPGA design process, only module parameters

40

Figure 4.1: OPU working flow.

or relax timing constraints at the expense of performance degradation can be adjusted in

auto-compiler process. Moreover, since complex deep learning tasks usually involve cascaded

network flow, this flow may be inefficient, or even impossible to constantly re-burn FPGA

for different networks during runtime.

In this work, we propose an FPGA overlay domain-specific processor unit (OPU) ap-

plicable to a wide range of CNN networks. OPU accepts network description using CNN

frameworks such as Tensorflow [ABC+16]. Each time a new network configuration is given,

instead of re-generating a new accelerator, we compile the network into instructions to be

executed by OPU. OPU has fine-grained pipe-line, and leverages channel based parallelism.

This ensures an average of 91% runtime utilization of computing resources as shown by exper-

iments on nine different networks, including YOLO[RF17], VGG[SZ14b], GoogleNet[SVI+16]

and ResNet[HZRS16a]. Moreover, superior power efficiency compared with Titan GPU (both

batch = 1 and batch = 64) is observed for all networks in our experiment. In addition, for a

test case with cascaded CNN networks, OPU is 2.9× faster compared with edge computing

GPU Jetson Tx2 with similar amount of computing resources. Specifically, the proposed

overlay processor OPU has following features:

• CPU/GPU like user friendliness. As shown in Fig. 5.1, CNN network is compiled

into instructions. This is done once for each network. Then instructions are executed

by OPU which is implemented on FPGA and is fixed for all networks. The CNN

algorithm developer does not need to deal with FPGA implementation.

• Optimized instruction set. Our instructions have optimized granularity, which

41

is smaller than that in [AHB+18] to ensure high flexibility and computational unit

efficiency, while a lot larger than those for CPU/GPU to reduce the complexity of

compiler. We also define instructions for data block handling to reduce overall memory

latency.

• FPGA based high performance micro-architecture. These architectures are

optimized for computation and data communication and reorganization, and are con-

trolled by parameter registers set directly by instructions.

• Compiler with comprehensive optimization. Independent of micro-architecture,

operation fusion is performed to merge or concatenate closely related operations to

reduce computation time and data communication latency. Data quantization is also

conducted to save memory and computation resources. Related to micro-architecture,

compiler explores multiple degrees of parallelism to maximize throughput by slicing

and carefully mapping the target CNN to overlay architectures.

4.2 Related Work

Deep CNN acceleration by FPGA has been extensively studied, started with developing

customized hardware accelerators for specific networks. Farabet et al.[FPHL09] used FPGA

as a vector based arithmetic unit, and implemented CNN mainly on a 32-bit soft processor.

Authors of [ORK+15], [CMB+10] and [CSJC10] designed specific accelerators for each layer of

CNN. [ZLS+15a] implemented Alexnet [KSH12] on a VC707 board using HLS and [QWY+16]

hand-coded an RTL accelerator for VGGnet[SZ14a]. Suda et al.[SCD+16] used HLS to design

accelerators for both Alexnet and VGGnet. These work demonstrated FPGA’s capability as

a high performance CNN accelerator platform, but manually designing accelerator for each

CNN was inefficient.

More recent work developed automatic compiler to implement CNN accelerators to

42

FPGA. [SPM+16, MCVS17a] mapped a CNN algorithms to a network of hand-optimized de-

sign templates, and gained performance comparable with hand-crafted accelerators. [ZFZ+16]

developed a HLS (high level synthesis)-based compiler with bandwidth optimization by mem-

ory access reorganization. [WYZ+17] applied an systolic array architecture to achieve higher

clock frequency. However, they all generate specific individual accelerators for each CNNs.

This has high re-engineering effort when the target CNN changes.

Most recently, [AHB+18] used FPGA overlay to implement CNN accelerators. While

instructions are used to decrease the control logic overhead, they still reconfigure the overlay

architecture to maximize performance for a specific CNN. Moreover, the granularity of their

instructions is larger than that for our OPU. In [AHB+18], one block of about 10 instructions

are used for a whole sub-graph defined as a list of chained functions, which is normally a single

convolution layer and an optional pooling layer. In contrast, our OPU has the instruction

set with smaller granularity (to be discussed in section 5.3) than that in [AHB+18]. Each

typical operation in CNN inference is mapped to a specific type of instruction, resulting

in high runtime efficiency. Moreover, different CNNs can be compiled and then executed

without FPGA reconfiguration.

4.3 Instruction Set Architecture

Instruction set architecture (ISA) is the key to a processor. Our OPU is specific for CNN

inference. We identify all the operations during CNN inference and group them into different

categories. Each category maps to one type of instruction with adjustable parameters for

flexibility. Our instructions are 32-bit long with complicated functions and variant runtimes

(up to hundreds of cycles). CNN inference can be executed by OPU without a general

processor such as CPU.

We define two types of instructions: Conditional instruction (C-type) and Unconditional

instruction (U-type). C-type instruction specifies target operations and sets operation trig-

43

Figure 4.2: The configuration of instruction unit and block.

ger conditions, while U-type instruction delivers corresponding operation parameters for its

paired C-type. As shown in Fig. 4.2, one instruction unit contains one C-type instruc-

tion with 0 − n U-type instructions. This instruction block consisting of a number of basic

units is fetched together and then is distributed to PE modules. The least significant bit of

instruction indicates the end of current instruction block when its value is 0.

4.3.1 Conditional instruction

Conditional- or C-type instructions contains operation (OP) code and trigger condition. OP

code identifies the target operation while trigger condition defines when operation is ready

to execute. Six types of C-instructions are defined below, each operates on a slice of data

block:

• Memory Read transforms data from external memory to on-board memory. It operates

in two modes to accommodate for different data read patterns. Received data will be

reorganized and distributed to three destination buffers corresponding to the feature

map, kernel weighs and instructions, respectively.

• Memory Write sends the block of computational results back to external memory.

• Data Fetch performs data read from on-board feature map and kernel buffer, then

feeds to computation engine. Its working pattern can be flexibly adjusted by placing

44

constraint parameters on row and column address counters, read strides, and data

reorganize modes.

• Compute controls all processing units (PEs). One PE computes the inner product of

two 1D vectors of length N (set to 16) in current micro-architecture implementation

based on widely used CNNs families’ architectures. This sufficiently guarantees the

design space exploration for different networks. Results of PEs can be summed up in

different modes based on parameter setting.

• Post Process includes pooling, activation, data quantization, intermediate result addi-

tion and residual operations. Selected combination of before-mentioned operations are

executed when post process is triggered.

• Instruction Read reads a new instruction block from instruction buffer and directs it

to target operation modules.

Each instruction introduced above leads one instruction unit. Instead of linking all the

operation modules together in a fixed pipeline, we organize our operations in a dynamic

pipeline fashion and each module is controlled by an individual instruction unit for more

flexibility. For example, after one memory read is called for feature map loading, multiple

data fetch and compute may be called to reuse loaded feature map data. Then at certain

point during computation, memory read can be called again to replace kernel weights data

(in the case where kernel size is large). When residual layer is encountered, memory read

is called one extra time to load feature map data from short cut[HZRS16a] for post process.

Individual control of each module by instruction greatly simplifies overall hardware control

frame, and enhances the architecture applicability to different network configurations.

To realize efficient instruction control, trigger condition is employed, so instruction is

not executed immediately upon read. In CNN inference flow, each operation depends on

previous operations based on different operating patterns, which have limited variations. We

design a trigger condition list for individual operation, then modify trigger condition index

45

Figure 4.3: Instruction execution order controlled by TCI

(TCI) by instruction at runtime to set module initiation dependency. Moreover, using a

dependency based execution strategy relaxes the order enforcement on instruction sequence.

Cause memory related operations has the uncertainty in execution time due to extra refresh

latency. The resulting system has a simple instruction update scheme.

Several instructions executed at different time points can be put into the same instruction

block and read at the same time. As shown in Fig. 5.3, after the first instruction read, initial

TCI0 is set at t0 for all three operations. At t1, memory access is triggered then executes

for t1 − t2. Data fetch is triggered upon finishing memory operation and post process is

triggered at t3. Next instruction read that updates TCI1 for Data fetch and post process can

be performed at any time point between t3 and t7. Moreover, we store current TCI to avoid

setting the same condition repeatedly when modules operate in one pattern consecutively (at

time t0 and t5, memory access is triggered by the same TCI). This shortens the instruction

sequence over 10×.

4.3.2 Unconditional instruction

Unconditional- or U-type instruction provides operation related parameters and is generated

on an updating demand-based scheme, as parameters are stored to reduce the total length

of instruction sequence.

Several U-type instructions combined can update the complete parameters list for one C-

type operation. But in general, when operation pattern switches, only a subset of parameters

46

are changed accordingly. Flexible combinations of U-type instructions can update necessary

parameters with minimum instruction cost. We group parameters that are closely related

to each other and have similar updating rates in one U-type instruction. This reduces

the possibility of loading futile instruction sections, thus reducing both storage space and

communication power.

Figure 4.4: Overview of Micro-architecture.

Figure 4.5: (a). Conventional intra-kernel based parallelism. (b). OPU input/output chan-

nel based parallelism. (c). Feature map data fetch pattern of OPU.

47

4.4 Micro-Architecture

Another challenge in OPU design is overlay micro-architecture design. The overlay micro-

architecture needs to incur as less control overhead as possible while maintaining easily

runtime adjustable and functionality. We design our modules to be parameter customizable,

and switch modes at runtime based on parameter registers that directly accepts parameters

provided by instructions. The computation engine explores multiple level of parallelisms that

generalize well among different kernel sizes. Moreover, CNN operations categorized into the

same group are reorganized and combined (see section 5.3.2) so they can be accomplished

by the same module to reduce overhead.

As shown in Fig. 5.4, the overlay micro-architecture can be decomposed into six main

modules following the instruction architecture definition. Each module can be controlled

by instruction to accomplish functionalities defined in section 5.3.2. Besides, four storage

buffers (i.e., input feature map buffer, kernel buffer, instruction buffer and output buffer)

are placed to cache local data for fast access. With most of the control flow embedded in

instruction, overlay only handles the computation of one sub-feature map block. If layer size

is larger than the maximum block size allocated, the layer will be sliced into sub-blocks by

compiler to fit into the hardware. The optimization of slicing scheme is discussed in section

5.5.

4.4.1 Computation unit

How to utilize the same set of PE structures to accommodate for different layers is domi-

nant in the design of CNN acceleration architecture. Conventional designs tend to explore

parallelism within single 2D kernel, which is straightforward but comes with two disadvan-

tages, i.e., complex feature map data management and poor generalization among various

kernel sizes. As shown in Fig. 4.5(a), expanding a kx ∗ ky kernel sized window of feature

map requires multiple data read from row and column directions within single clock cycle

48

(step 1○). This poses challenge on limited Block Ram bandwidth and generally requires

extra complicated data reuse management (like line buffer) to accomplish. Furthermore,

data management logic designed for one kernel size cannot be efficiently applied to another

one. Similarly, PE architecture optimized for certain kernel size kx ∗ ky may not fit other

sizes very well. That’s why many conventional FPGA designs optimize their architecture on

popular 3 ∗ 3 kernel and perform the best only on networks with pure 3 ∗ 3 layers.

To address this issue, we explore higher level of parallelism and compute the 2D kernel

sequentially. Fig. 4.5(b) explains how it works: At each clock cycle, a slice of input channel

of depth ICi
p with width and height as 1∗1 is read along with corresponding kernel elements.

This fits natural data storage pattern and requires much smaller bandwidth. Parallelism is

then implemented within input channel slice ICi
p and output channel slice OCi

p. Fig. 4.5(c)

further shows the computation process. For round 0 cycle 0, input feature map channel slice

from position (0, 0) is read. Then we jump stride x (x = 2 is used as example here) and read

position (0, 2) in next cycle. Read operation continues until all pixels corresponding to kernel

position (0, 0) is fetched out and computed. Then we enter round 1 and read starting from

position (0, 1) to get all pixels corresponding to kernel position (0, 1). To finish computing

this data block of size IN i∗IM i∗ICi with current slice of kernel with size kipx∗kipy∗ICi
p∗OCi

p

in kernel buffer, kipx ∗ kipy ∗ (ICi/ICi
p) ∗ (OCi/OCi

p) rounds are needed.

One implementation of the computation unit is shown in Fig. 4.6. One single Multiplier

Unit (MU) computes two 8 × 8 multiplication with one of the inputs kept the same. This

constraint comes from the DSP decomposition implementation. Each PE consists of 16 MU

followed by an adder tree structure, thus each PE equals to 32 MACs. For one of our imple-

mentations of OPU, we implement 32 PEs within the computation unit, and an adder tree

with switch is implemented to sum up results from different group sizes of PEs. The outputs

number choices include [64, 32, 16, 8, 4, 2]. This allows the computation unit to flexibly fit

into the needs of different combinations of input/output channels. For example, current

implementation supports 1024 multiplications, which is able to handle 6 [inchannel, outchannel]

49

Figure 4.6: Computation Unit

pairs: [512, 2],[256, 4],[128, 8],[64, 16], [32, 32] and [16, 64].

Our computation pattern guarantees the uniform data fetching pattern for any kernel

size or stride. This greatly simplifies the data management stage before compute operation,

and enables higher design frequency with less resource consumption. Moreover, we leverage

both the input and output channel level parallelisms. This provides higher flexibility for

resource utilization and promises reasonable generalization performance.

4.4.2 Data Fetch and Post-Process

The data fetch module reads feature map and kernel data from on-chip buffer, rearranges

the data and then sends to the computation unit. As shown in Fig. 4.7, for input feature

map read, FM ADDR GEN takes control parameters from instruction and produce feature

map buffer read address at each clock cycle. The parameters include [Xmin, Xmax, Y min,

Y max, Xstride, Y stride, Xsize, Y size]. The feature map data read from buffer will be

selected and copied by the FM REARR to fit the target computation pair of computation

50

Figure 4.7: Data Fetch module.

unit. For kernel weights, the bandwidth requirement can be as high as 8192 bit/cycle, since

all the parallelisms are explored on the kernel side (input channel / output channel). We

choose a computation pattern that shares the same set of kernel weights during computation.

Accordingly, kernel weights are only pre-loaded once from buffer for each round. We use W

PRE-LOAD ADDR GEN to generate weights address for buffer, and each weight takes 32

cycles to load. This loading time is overlapped with previous round of data fetch process.

A pair of local shift registers using ping-pong structure [W SHIFT REG SET 1, W SHIFT

REG SET 2] is used to cache the weights.

The data post-process module performs data quantization, partial sum addition, pooling,

activation and residual addition. Since pooling, activation and residual are only conducted

once for one memory write, they are concatenated with the data memory write module to

reduce extra on-chip data movement. As shown in Fig. 4.8, a data concatenation block is

placed right after the input port to collect computation output (the output data number can

be [2, 4, 8, 16, 32, 64] based on different computation patterns) and formulate a 64-word long

array for later process. A set of adders is used for bias addition and partial sum addition.

Then the data quantization is achieved by data shift, cut and round modules that work

based on parameters provided by instructions. When the complete output is ready, another

part of the post process will be called and conduct pooling, activation and residual addition.

The detailed corresponding module structure is shown in Fig. 4.8.

51

Figure 4.8: Data Post Process module.

4.4.3 Memory management

One crucial issue for CNN acceleration on FPGA is off-chip communication latency. Roof-line

model [ZLS+15b] reveals the relationship between bandwidth utilization and computational

roof performance. Bandwidth can easily be the bottleneck of performance. Therefore, we

utilize a ping-pong structure based caching memory management system to hide off-chip

communication latency. While one buffer’s data is being fetched, the other buffer can get

refilled and updated, which maintains the maximum bandwidth utilization.

Another key point in memory management is data storage format in both local on-board

buffer and external memory. For on-board storage format, data from the same channel slice

is stored under the same address so that they can be fetched in one clock cycle. The limit

of channel slice depth is set to be the width of on-chip buffer to guarantee such memory

arrangement. Benefited from computation pattern, enough data bandwidth is provided and

no extra memory latency is caused.

Moreover, data storage format in external memory influences data transmission efficiency

and complexity of memory access unit. We thereby employ a channel sliced scheme for feature

map storage. As shown in Fig. 4.9, data from one channel slice with shape 1 ∗ 1 ∗ ICi is

stored adjacently. In this way, data can be streamed on-board in burst mode to fully utilize

bandwidth. During the computation process, data chunk loading order is 1○ − > 2○ − >

52

Figure 4.9: Channel based memory storage Management.

3○ − > 4○. Each chunk of data represents one sub-feature map block.

4.4.4 Irregular operation handling

ResNet [HZRS16a] and GooglNet [SVI+16] exhibit excellent performance with reduced com-

putational requirements compared with VGGNet[SZ14b] and AlexNet[KSH12]. However,

they also introduce new non-convolution operations.

Inception module. Channel-wise input concatenation is required for inception module.

Thanks to our memory storage pattern, we manipulate output memory addresses of preceding

layers to place their outputs adjacently. Therefore, input concatenation can be achieved

without any extra computational operation or latency cost. The arranged memory can be

loaded in burst mode for efficient off-chip memory transmission.

Residual module. The operation of residual module is matrix element-wise addition,

which is not computational intensive but may cause extra stage of off-chip data communica-

tion. We embed the addition operation into post process pipeline and cover the additional

block loading stage with computation time, so residual operation is executed with negligible

latency increment. Fig. 4.10 illustrates the implementation of all types of residual mod-

ules. As shown in Fig. 4.10(a), three kinds of residual paths are labeled out. Moreover,

an activation module after element-wise addition is optional. We group element-wise addi-

53

Figure 4.10: (a) Residual module type description; (b) Embedding addition operation into

post process data streaming pipeline; (c) Loading time management for residual data.

tion, pooling and activation together and embed to previous convolution layer’s operation

pipeline. Fig. 4.10(b) shows that an adder array is inserted at the first stage of post-process

hardware implementation. All function modules are implemented with bypass logic. With

the combination of different bypass and functions, all types of residual layer can be com-

puted. Fig. 4.10(c) shows the ping-pong input buffer at different time steps. At time step 2,

current block’s computation is at the final stage and uses data from input buffer A. Mean-

while, residual source is being loaded to input buffer B. At time step 3, both matrices for

element-wise addition are ready and post process begins with no extra latency incurred.

4.5 Compiler

We develop a compiler to perform operation fusion, network slicing, and throughput opti-

mization on input CNN configuration. There are two stages during the operation of com-

piler: Translation and Optimization, as shown in Fig. 4.11. Translation extracts necessary

information from model definition files and reorganizes them into a uniform intermediate

54

representation (IR) we defined. During this process, operation fusion (introduced in subsec-

tion 4.5.1) is conducted to combine closely related operations. Another aspect of translation

stage is data quantization and arrangement. Fast Data quantization is performed for Kernel

Weights/Bias/Feature Maps with negligible accuracy loss. Generated dynamic fixed-point

representation system is then merged into IR. Moreover, processed weights get re-arranged

based on network slicing and optimization results from the optimization stage. Optimization

stage parses Translation generated IR and explores the solution space of network slicing to

maximize throughput. For this stage, an optimizing scheme for slicing is developed, which

will be introduced in subsection 5.5.2. In the end, the optimization solution is mapped to

an instruction sequence.

Figure 4.11: Two-step flow of compiler.

4.5.1 Operation fusion

Conventional CNNs contain various types of layer that are connected from top to bottom to

form a complete flow. In order to avoid the off-chip memory communication between layers

as to reduce computation requirements, operation fusion is employed to merge or concatenate

related layer operations. Here we define two types of fusions, p-fusion and r-fusion. p-fusion

indicates operation fusion that only contributes to off-chip memory access reduction, and

r-fusion not only avoids communication latency but reduces the total number of operations

and inference time. Among them, p-fusion and r-fusion-I are hardware micro-architecture

independent, while r-fusion-II is related to actual implementation scale.

p-fusion. We perform p-fusion to concatenate different layers into the same data stream

pipeline, which prevents saving intermediate results back to off-chip memory. Convolu-

55

tion and Fully connected layers are major layers. Pooling, Padding, Activation, Residual

and Output concatenation layers are treated as affiliated layers, as shown in Fig. 4.12.

Originally off-chip memory access is required between each pair of adjacent layers, such as

{Padding, Convolution}, {Convolution,ReLU} and {ReLU, Pooling}. After employing p-

fusion 1− 3, memory access is reduced to only two times. The fused layers are called a layer

group.

Figure 4.12: p-fusion example on a sequence of layers.

r-fusion. Fusion that decreases the amount of hardware arithmetic computations by

merging adjacent operations is also conducted. There are mainly two kinds of r-fusions.

r-fusion-I is Batch normalization [IS15] elimination. A batch normalization operation

can be represented by:

y = γ
x− µ√
σ2 + ε

+ β, (4.1)

where γ, µ, σ, β and ε are fixed values during inference time. x and y represent input and

output matrix of one channel. Eq. (4.1) is essentially a linear function of input matrix,

which can be merged to preceding convolutional layer. This merging avoids the separate

computation of Batch normalization, thus reducing the inference time. The merged convo-

lutional layer works with modified weights and bias that incorporate Batch normalization

coefficients.

56

r-fusion-II is input sharing. In many cases, layers that share identical inputs can be

computed by the same round to fully utilize computational resources and reduce memory

communication time. As shown in Fig. 4.13(a),

Figure 4.13: (a) Original Inception. (b) Merged Inception.

Conv1-Conv4 share the same input layer, but the numbers of their output channels

are either small or cannot be evenly divided by available computing resources. Therefore, it

takes 5 rounds to compute the four layers sequentially with relatively low runtime efficiency of

PEs. To make use of idle resources, we add an optimization step into compiler that identifies

input sharing layers and reassembles them based on their individual resource consumption, as

shown in Fig. 4.13(b). Fig. 4.14 shows the improvement of Computation resource runtime

efficiency after applying input sharing r-fusion to different inception modules. Different

groups indicate different scales of computing resource, which increase from left to right.

More resources available means higher possibility of resource idling, thus providing more

room for input sharing optimization.

57

Figure 4.14: Throughput improvements by applying r-fusion-II on inception modules.

4.5.2 Data Quantization

It has been proven that CNNs are robust against precision reduction[QWY+16][GSQ+18].

To reduce memory footprint and save computational resources, we use limited precision

fixed-point values during computation, data type can be set to fixed-4/8/16 bit based on

platform constraint and network accuracy requirements. Taking general network precision

redundancy and hardware architecture complexity into consideration, 8 bit is chosen as

our data quantization standard for both feature map and kernel weights. We employ a

fast yet effective stationary quantization method. Dynamic quantization scheme (similar as

[QWY+16][MCVS17b]) has been employed for better accuracy. Each layer’s kernel weights

and feature maps have their own range for higher precision. The process of finding the best

range for each trunk of data is described as follows:

argmin
floc

∑
(float− fix(floc))2, (4.2)

where float is the original single precision representation of kernel weights or feature maps,

and fix(floc) is the value after float is cut into fixed-point based on certain fraction length floc.

Table 4.1 shows the quantization accuracy of 9 experiment networks, where the accuracy loss

is within 1% on average.

58

Table 4.1: 8-bit quatization evaluation for different networks.

Classificationa Detectionb

VGG16 VGG19 Inception V1 Inception V2 Inception V3 resenet V1 resnet V2 YOLO V2c Tiny YOLOd

Float 32 bit 89.8% 85.2% 87.29% 90.30% 93.15% 92.9% 93.7% 85.93% 90.8%

Fixed 8 bit 89.4% 84.3% 85.49% 89.87% 91.41% 92.3% 93.2% 86.19% 89.5%

a: Reported accuracy are top-5 accuracy evaluated on Imagenet ILSVRC2012 validation set

b: Reported value are mAP. c: Evaluated on a private subway x-ray dataset. d: Evaluated on a private traffic view dataset.

4.5.3 Intermediate representation (IR)

The IR is defined based on layers after p-fusion, which we call layer groups, and each layer

group gets represented by a set of coefficients, as shown in Table 4.2. The representation

is easy to expand by adding more terms to accommodate for new network features. IR

contains all the operations included in the current layer groups. Layer index is the sequential

number assigned to each conventional layer. Single layer group may have multiple layer index

for input in the case of inception module, where various previous outputted feature maps

(FMs) are concatenated to form the input. Meanwhile, multiple intermediate FMs generated

during layer group computation can be used as other layer groups’ residual or normal input

sources. Dump out location specifics which set of FM to dump out to the off-chip memories.

Element-wise operation location is used to flexibly adjust element-wise residual addition

position in layer groups, so any combination of pool/activation/element-wise addition can

be accommodated.

4.5.4 Slicing and allocation

In this stage, IR generated by Translation stage is parsed to get network architecture after

operation fusion and quantization. Then, an automatic optimizer is applied to explore

optimal slicing scheme that maps current architecture to overlay with maximum throughput.

Suppose an individual layer i is sliced into pi blocks. One slicing scheme for layer i can

be defined as a vector of parameter groups ~P : [(IN i
jn , IM

i
jm , IC

i
jc , OC

i
jc)|jn ∈ [0, pin), jm ∈

59

Table 4.2: IR content for single layer group.

Layer Type Fully connected(0), Conv(1), extra pool(2)

Input idx

Output idx

Input/Output layer index of length lin, lout

lin > 1 for inception case

lout > 1 for residual case

Input size

Output size
3 Dimensional Triple

Kernel info Kernel size Kernel stride

Pool info Pool enable Pool type Pool size Pool stride

Padding info Pad enable Pad size pad bf pool info

Activation type Relu and Leaky Relu

Dump out loc
Intermediate FM from either major or affiliated layer

can be dumped out to DRAM

Element-wise op loc
Residual addition can be performed between any

two conventional layers

Quantization info Dynamic fix point design for Weights/FM

[0, pim), jc ∈ [0, pic)]. Each parameter group (IN i
jn , IM

i
jm , IC

i
jc , OC

i
jc) decides one round of

overlay computation, where IN i
jn , IM i

jm , ICi
jc , and OCi

jc represent input block width, height,

input depth, and output depth, respectively. Then we have:

N i
in =

pin∑
jn

IN i
jn , M i

in =

pim∑
jm

IM i
jm

Ci
in =

pic∑
jc

ICi
jc

#Ci
out slices

, Ci
out =

pic∑
jc

ICi
jc

#Ci
in slices

, (4.3)

and

pi = pin × pim × pic. (4.4)

The inference latency Li
j of one round computation can be represented by

Li
j = (kix × kiy + 2)×ON i

jn ×OM
i
jm , j ∈ [0, pi), (4.5)

where ON i
jn and OM i

jm indicate the output block width and height, and the +2 term accounts

for initial memory read and final memory write latency. Then we define the throughput of

inferencing a network as

60

T =

∑m̂
i N

i
out ×M i

out × (2× Ci
in × kix × kiy − 1)× Ci

out∑m̂
i

∑pi

j L
i
j

, (4.6)

where m̂ represents the number of layers after fusion.

Therefore, the slicing optimization can be represented as

max
P

T

s.t. IN i
jn ∗ IM

i
jm <= depththres

ceil(
ICi

jc

VPE

) ∗OCi
jc <= NPE

ICi
jc , OC

i
jc <= widththres, (4.7)

where depththres and widththres stand for on-chip BRAM depth and width limit, respectively.

4.5.5 Extra Efficiency improvements

In most cases, combining two levels of parallelism ICi ∗ OCi utilizes a large portion of PE

resources. However, rare cases exist where Ci
in and Ci

out are too small and offer limited

parallelism. This usually happens in the first layer, where C1
in is fixed to 3 and Ci

out is

usually below 64. Thereby, our proposed compiler further rearranges input feature maps.

Pixels in kernel window are moved to fill the channel dimension to increase the parallelism

availability channel-wise, as shown in Fig. 4.15. This rearrangement is able to gain over 10×

speedup for the first layer computation on average.

Table 4.3: FPGA Resource Utilization.

LUT FF BRAM DSP

OPU1024 XC7K325T 94763(46.50%) 150848(37.01%) 165(37.08%) 516(61.43%)

OPU2048 XC7K325T 129927(63.75%) 233996(57.41%) 165(37.08%) 817(97.26%)

OPU4096 XC7Z100 154516(55.70%) 337651(60.86%) 337(44.64%) 1986(98.32%)

61

Table 4.4: Network Information

YOLOv2 tiny-YOLO VGG16 VGG19 InceptionV1 InceptionV2 InceptionV3 Resnet-50 Resnet-101

Input size 608×608 416*416 224×224 224×224 224×224 224×224 299×299 224×224 299×299

Kernel size 1×1,3×3 1×1,3×3 3×3 3×3 1×1,3×3,5×5,7×7 1×1,3×3 1×1,3×3,5×5,1×3,3×1,1×7,7×1 1×1,3×3,7×7 1×1,3×3,7×7

Pool size/Pool stride 2×2 2×2 2×2 2×2 3×2,3×1,7×1 3×2,3×1,7×2 3×2,3×1,8×2 3×2,1×2 3×2,1×2 height#Conv layer

21 9 13 16 57 69 90 53 53

Activation Type Leaky ReLU Leaky ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU

Operations (GOP) 54.07 5.36 30.92 39.24 2.99 3.83 11.25 6.65 12.65

Table 4.5: RME of OPU1024 for Different Networks.

YOLOV2 tiny-YOLO VGG16 VGG19 InceptionV1 InceptionV2 InceptionV3 Resnet-50 Resnet-101

Frequency (MHZ) 200

RME 95.51% 89.21% 97.18% (B) 97.30% (B) 90.38% (B) 90.48% (B) 91.10 (B)% 84.48% 86.92%

Conv RME 95.51% 89.21% 97.01% 97.75% 90.45% 90.75% 90.90% 84.48% 86.92%

Frame/s 7.23 68.32 12.18 (B) / 11.28 9.72 (B) / 9.4 112.48 (B) / 104.47 89.77 (B) / 84.60 30.01 (B) / 27.28 54.36 27.05

B: Evaluated in batch mode with batch size 8.

4.6 Experiment Results

We implement three OPU versions with different MAC numbers on Xilinx XC7K325T

FPGA and XC7Z100 FPGA. Corresponding resource utilization is shown in Table 5.3. For

OPU1024, all the MACs are implemented with DSP. For OPU2048 and OPU4096, part of

the MACs are implemented with LUT since the number of DSPs are not enough. A PC with

Xeon® 5600 CPU is used for our compiler program. Result interface and device are shown

in Fig. 4.16.

4.6.1 Network Description

To evaluate the performance of OPU, 9 CNNs of different architectures are mapped, including

YOLOv2, tiny-YOLO, VGG16, VGG19, Inceptionv1/v2/v3, Resnetv1-50 and Resnetv1-101.

Among them YOLOV2 and tiny-YOLO are object detection networks and the rest are image

classification networks. Detailed network architectures are shown in Table 4.4. Different

Kernel sizes from square kernel (1×1, 3×3, 5×5, 7×7) to sliced kernel (1×7, 7×1) are used,

in addition to various pooling (1×2, 2×2, 3×1, 3×2, 7×1, 7×2, 8×2) sizes and activation

62

Figure 4.15: Input Rearrangement: channel dimension filling.

Figure 4.16: Evaluation board and runtime results for classification network VGG16 and

detection network YOLO.

types (ReLU and Leaky ReLU). Irregular operations such as inception module and residual

module are included. All networks are quantized to 8 bit precision for both kernel weights

and feature maps to achieve higher efficiency.

4.6.2 Runtime MAC Efficiency (RME)

OPU is designed to be a domain specific processor for a variety of CNNs. Therefore, Runtime

MAC Efficiency (RME) for different CNNs is an important metric for hardware efficiency.

RME is calculated by the actual throughput achieved during runtime, divided by the theo-

retical roof throughput (TTR) of design. The TTR can be calculated by

TTR = MACnum × 2× f, (4.8)

where MACnum indicates the number of MACs and f represents design frequency. For

instance, in our implementation of OPU1024 running with 200MHZ, 1024 MAC units are

utilized for PE array. Therefore, we have TTRopu1024 = 1024× 2× 200Mhz = 409.6 GOPS.

The actual throughput achieved by running the convolution part of VGG network on the

63

Table 4.6: Comparison with customized accelerators (VGG and YOLO).

[SCD+16] [QWY+16] [XLL+17] OPU1024 [GSQ+18] OPU1024

Device XC7Z045 XC7Z045 XC7Z045 XC7K325T XC7Z020 XC7K325T XC7K325T

Network VGG16 tiny-YOLO YOLOv2

DSP Utilization 727 (900) 780 (900) 824 (900) 516 (840) 190 (220) 516 (840)

Data format (bit) 16 16 8 8 200 200 200

Frequency (MHZ) 120 150 100 200 214 200 200

TTR (GOPS) 174 234 329 412 162 412 412

Throughput(GOPS) 118 / 137 (C) 137 / 188 (C) 230 354 / 397 (C) 62.9 366 391

RME 67% / 78 (C)% 58% / 79% (C) 69% 86% / 97%(C) 39 % 89% 95 %

C: Convolutional layer only

OPU is 397 GOPS, so the RME for VGG (CONV) is 397
409.6

= 97.79%. High RME indicates

all computational resources of hardware are well-utilized and processor is efficient for the

current network. Note that for fully connected (FC) layers, a high RME is normally difficult

to be obtained under non-batch mode due to large number of weights and relatively small

computational requirements. Therefore, for networks that contain FC layers, we report the

overall RME under batch mode, and frames per second under both non-batch and batch

mode for better evaluation. Processor are running under 200 MHZ. As shown in Table 4.5,

on average an overall RME of 91.44% on average is achieved for all test networks. This is

even higher than the start-of-the-art customized implementations (see 5.6.4).

4.6.3 Comparison with Existing FPGA Accelerators

In this subsection, we compare the performance of OPU with auto-compiler generated

network-specific accelerators. Table 4.6 lists out customized accelerators designed for net-

works VGG16 or YOLO, which are implemented on FPGAs of similar scales for fair compar-

ison. We use throughput and RME as the comparison criteria. The number of MACs and

design frequency decide the TTR that can be achieved by certain design. RME shows how

well the accelerator utilizes all its available resources actually, which can be directly trans-

formed to real throughput based on TTR. When estimating the TTR of reference design, we

64

also take the data format into consideration. One 25bit× 18bit DSP can be decomposed to

handle two 8bit× 8bit multiplications, while it can only handle one 16bit× 16bit multiplica-

tion. Therefore, for the same number of DSPs, 8bit system has twice overall computational

capability compared with 16bit system. A coefficient α is used to account for the influence

of data format. The RME of different designs can be computed as follows:

RME =
T

α×DSPnum × f × 2
, (4.9)

where T represents the real throughput achieved by the design, DSPnum indicates the total

number of DSP utilized. Here α = 1 for 16bit system, and α = 2 for 8bit system. The×2 term

is used to compute both multiplication and addition operation. Compiling VGG and YOLO

for OPU takes much less time compared to generating one network-specific accelerator by

automatic compile. Yet, OPU achieves better RME compared with automatically compiled

network-specific accelerators. For example, OPU has 86% RME while the RME for other

VGG-specific accelerators ranges from 58% to 69% in table 4.6.

Direct comparison of throughput without taking the number of utilized MACs into con-

sideration is not fair, so we scale our design to match the number of MACs in different

reference designs. As shown in Fig. 4.17, the blue dots represent the simulated real perfor-

mance of OPU implemented with different number of MACs running VGG16. Increasing of

the MAC number leads to the improvement of the real throughput. But their relationship is

not linear, as MAC number that can not evenly divide the available parallelism of network

very well may have low RME. In such cases, extra MACs come with no additional through-

put (as indicated by the horizontal lines formed by the blue dots). Purple dots indicate the

throughput of reference designs. Most of them locate in the area below OPU ”line”, which

means the similar number of MAC provides lower throughput compared with OPU. Among

all the reference designs, implementations in [WYZ+17] and [ZWZ+18] has higher perfor-

mance compared with OPU. The performance of [WYZ+17] is achieved by its high design

frequency (231 MHZ), which is enabled by the systolic PE matrix architecture that shares

65

inputs with neighboring PEs to provide simple routing. However, this architecture is easily

constrained by the specific network structure, thus requires the change of PE matrix shape

for every new network to achieve claimed performance. (PE matrix shape of [11, 14, 8] and

[8, 19, 8] are used for Alexnet and VGG separately [WYZ+17]). Authors of [ZWZ+18] create

their own version of pruned VGG to improve performance. Moreover, they use layer-pipe-

lined design which accelerate several layers of one network independently. It requires large

modifications of FPGA implementation for different networks ([#DSP, #BRAM] resource

of [680, 542] and [808, 303] are used for Alexnet and VGG, respectively).

Normally the design parameters of customized accelerators are tuned specifically to fit

the configuration of target network. Therefore, they are able to gain better performance. For

example, an accelerator design for VGG can be specifically tuned to fit only the 3× 3 kernel

size and cannot perform well with YOLO where 1× 1 kernel size is included. Moreover, the

control flow and data buffer need to be changed to fit different target network. We summarize

our performance advantages over customized accelerators into two points. First, input and

output channel parallelism has less variation compared with kernel/input feature map pixel

parallelism. Combined with the first layer re-arrangement, it can provide enough parallelism

to fully utilize the computation resources and gain high throughput. For example, if only

paralleling the kernel and input channel, the computation resource can easily fall under-

utilized when kernel size is too small. Second, our PE array is designed to fit various types

of [input, output] pairs, which cover the majority of the configurations in CNNs. Therefore,

we can achieve higher throughput than designs with fixed number of input and output

channels.

4.6.4 Power comparison

We compare the power efficiency of OPU with other FPGA designs as well as GPU and

CPU. Table 5.13 lists out the comparison results of different hardware platform running

VGG16. We measure the power consumption of OPU using a PN2000 electricity usage

66

Figure 4.17: Performance comparison of OPU implemented on similar number of MACs with

reference designs.

monitor. The reported power includes static and dynamic power consumed by the whole

board. FPGA designs generally have better power efficiency compared with CPU, around

2× better power efficiency compared with GPU with batch = 1 and no obvious advantage

compared with GPU with larger batch [ZFZ+16][GSQ+18][MSC+16]. Considering the fast

development speed of GPU devices, we include the comparison results of three GPUs of

different technologies. GTX 780 uses 28nm (same as OPU), GTX 1080 and Titan Xp use

16nm.

We can see From Table 5.13 that the power efficiency of OPU1024 running a VGG16

network is 11.7× better than 14nm technology CPU, on average 4.5× better for batch = 1

GPU devices, and 3.6× to 1.2× better compared with other FPGA designs. The only FPGA

design that has better power efficiency is from [ZFZ+16], where they use LUT to implement

all the MACs and leave on-chip DSPs idle. They implemented over 4000 MACs (the exact

MACs number is not specified by [ZFZ+16]), which brings large throughput advantage

compared with OPU1024 with only 1024 MACs implemented. Therefore, we implement

67

Table 4.7: Power comparison among CPU, GPU and FPGA designs.

CPU GPU FPGA

Device i7-8700 GTX 780 GTX 1080 a Titan Xp
[ZFZ+16] [ZFZ+16] [ZFZ+16] [GSQ+18] [GSQ+18] [MSC+16] OPU1024 OPU4096

KU060 KU060 VX690t XC7Z045 XC7Z020 Stratix-V GXA7 XC7K325t XC7Z100

Technology 14 nm 28 nm 16 nm 16 nm 20nm 20nm 28nm 28nm 28nm 28nm 28nm

Power(W) 120 228 180 180 180 25 25 26 9.63 3.5 19.5 16.5 17.7

batch 1 64 1 64 1 64 1 1 1 1 1 1 1 1

Throughput (GOPS) 26 1563 1310 3788 628.53 10620 266 1171 354 137 61.8b 114.5c 354 1218

Throughput/power (GOPS/W) 0.21 6.85 7.28 21.04 3.49 51.80 10.65 46.84 13.61 14.22 17.65 5.87 21.45 68.81

power efficiency 1× 3.73× 3.96× 11.47× 1.91× 28.25× 5.8× 25.54× 7.42× 7.75× 9.63× 3.20× 11.7× 37.53×

a Data taken from [ZFZ+16]

b [GSQ+18] only reports convolutional layer throughput(84.3 GOPs), while all the other designs are compared with the overall network throughput. We compute the equivalent overall network throughput

based on the throughput relationship of another design implemented by the same paper: 84.3× 137
187 = 61.8GOPs

c This performance is obtained with running Alexnet

OPU4096 with 4096 MACs on another board with Zynq7z100 for fair comparison. The result

shows that OPU4096 has 1.5× better power efficiency compared with [ZFZ+16]. Moreover,

OPU4096 shows 3.27× and 1.33× better power efficiency comparing with GTX 1080 and

Titan Xp running at batch = 64. This is because static power after bitstream download,

which takes a big portion of the overall power, does not tend to increase in proportional with

board size. Therefore, using a larger board normally can acquire better power performance,

on condition that the performance does not degrade due to design size change.

We also compare the power performance of OPU with GPU/CPU when running other

networks such as inception series and residual-net series. We use edge computing targeted

GPU platedform Jetson Tx2 and server targeted Titan Xp for evaluation. As shown in Fig.

4.18, OPU1024 with 28 nm has over 15× better power efficiency compared with 14nm i7-

8700 CPU. For 16nm Jetson Tx2 and Titan Xp running with batch = 1, the power efficiency

of OPU1024 is 2.13× and 5.35× better. For Titan Xp running with batch = 64, OPU1024

is 1.25× better. For Jetson Tx2 running with batch = 16, OPU1024 shows 89% power

efficiency. However, big batch size indicates over 6× larger latency compared with batch = 1

mode. For edge computing targeted device the real-time batch = 1 mode with short latency

performance is more important.

68

Figure 4.18: Power efficiency (GOPS/W) comparison of CPU/GPU/OPU using CPU as

baseline.

4.6.5 Case study of real-time cascaded networks

To further evaluate real-time performance on cascaded networks of OPU, we implement the

task on OPU1024 to recognize car license plate from street-view pictures. It is composed of

three networks: car-YOLO (YOLO-trained car detection), plate-tiny-YOLO (YOLO-trained

plate detection) and a character recognition network (cr-network). For single picture input,

the car-YOLO network runs first to label all cars. Then plate-tiny-YOLO and cr-network

run to detect the plate numbers or characters for each car.

We compare the performance for OPU1024 and Jetson Tx2. Tx2 is running with batch

= 5 and the speed data is computed by total time between input to output divided by 5.

Table 4.8 shows that OPU is faster in executing all three networks compared to Jetson.

Table 4.8: Real-time cascaded network evaluation comparison with Jetson

Frequency (MHZ) TTR (TOPs) car-YOLO plate-tiny-YOLO cr-network Speed

Jetson Tx2 845 0.45 188 ms 47 ms 16 ms 1×

OPU1024 200 0.41 64 ms 19 ms 1 ms 2.9×

Overall, OPU is 2.9× faster than Jetson. With similar computation capability, the higher

speed achieved by OPU comes from the higher PE utilization rate enabled by our domain

specific architecture and compiler.

69

4.7 Conclusions and Discussions

In this chapter we propose OPU, a domain-specific FPGA overlay processor. We develop

a set of instructions with granularity optimized for hardware efficiency. OPU is software

programmable and is applicable to a wide range of CNNs without hardware re-configuration.

OPU of different scales show 1.2× to 5.35× better power efficiency compared with GPU

(batch = 1, batch = 16, batch = 64) and other FPGA designs. Moreover, for cascaded CNN

networks to detect car license plate, OPU is 2.9x faster compared with edge computing GPU

Jetson Tx2 with similar amount of computing resources. Our future work will develop better

micro-architecture and more compiler optimization mechanisms, extend OPU to RNN, and

also apply and optimize OPU for different deep learning applications, particularly for three

dimensional medical images.

70

CHAPTER 5

Light-OPU: An FPGA-based Overlay Processor for

Lightweight Convolutional Neural Networks

5.1 Introduction

FPGA accelerators for DCNN possess the advantages of high power efficiency, low latency,

excellent flexibility and good computational capability. These features make it stand out

especially in applications of deep CNNs on edge and embedded devices, e.g., speech recogni-

tion on smart phones and visual object recognition in real-time on autonomous driving cars

[8], where real-time speed and low power are needed.

With the development of deep learning algorithms, a new group of networks, called

LightWeight CNNs (LW-CNNs) [IHM+16, SHZ+18, IMK+14, ZZLS18, Cho17], emerge with

the advantages of faster inference time and smaller model size compared with conventional

CNNs. While LW-CNNs dramatically shrink down the model size, they also introduce new

lightweight operations that cannot be handled well by conventional FPGA CNN accelerators.

Moreover, reduction in latency on GPU is also limited. This indicates that lightweight oper-

ations do not fit in GPU acceleration architecture (or at least not as nicely as conventional

CNN operations do). Therefore, accelerators tuned specifically for LW-CNNs is needed. Sev-

eral work developed FPGA acceleration for LW-CNNs. [SFL+18] and [ZNL18] designed cus-

tomized accelerators for MobileNet. However, separated or only partially shared acceleration

engines are utilized for conventional convolution and depthwise convolution (DW-CONV).

This causes the redundancy in resource utilization and further reduces the runtime efficiency.

71

Figure 5.1: Light-OPU working flow.

[BZH18] deployed shared acceleration engine for different convolutions, but the architecture

is designed for MobileNetV2 specifically. Moreover, some work tried to unify operations by

modifying network architectures. [YHW+19] used 1×1 convolution and shift to get rid of

DW-CONV, [VB18] and developed network architecture search (NAS) to enhance hardware

efficiency for targeted model and dataset. [LDS18] performed NAS with respect to hard-

ware friendly templates and again, targeted dataset. However, modified models are not as

universally adaptive to different datasets as the original model, and training cost for NAS

is extremely high. In short, existing methods suffer from poor adaptivity to other models,

limited operation types, inefficient resource utilization, and high cost of NAS.

To deal with these problems above, we propose Light-OPU as an FPGA-based general

processor for LW-CNNs acceleration. We adopt part of the instruction and architecture

design of our work on conventional CNN acceleration[YWZ+19], then make major improve-

ments to fit the acceleration need of LW-CNNs. More precisely, Light-OPU accelerates

conventional convolution, DW-CONV and other lightweight operations with one single uni-

form computation engine. Meanwhile, an automatic compilation framework is provided for

the support of general LW-CNNs. As shown in Fig. 5.1, the compiler takes the network

architecture configuration from Tensorflow/Keras/ONNX as input, performs the network

reformulation and optimization, along with the quantization for compression, then maps

network operations to processor modules for instruction generation. Afterwards, the gener-

72

ated instruction sequence is sent to Light-OPU for execution. Consequently, fast deployment

is enabled for officially published models without any network retraining due to architecture

modification.

To be more specific, the features of our proposed Light-OPU are listed as follows:

• Efficient adaptivity to Light-Weight operations. Taking CNNs as input, Light-

OPU slices and maps all types of convolutions, including DW-CONV and group convo-

lution to a uniform acceleration framework. Moreover, irregular lightweight operations

are either reformulated to fit in the primary computation engine or assigned to the

specific acceleration module with low resource cost.

• Flexible ISA for LW-CNNs. Our instructions have optimized granularity to guar-

antee the generality of computation modules. Moreover, instruction based control

enables dynamic pipelining of operations. This hides the communication latency and

increases the overall efficiency.

• Acceleration for state-of-the-art LW-CNNs. We test a set of benchmarks of

seven LW-CNNs on Light-OPU for performance evaluation. The benchmarks are com-

posed of MobileNet series [HZC+17, SHZ+18, HSC+19], including the newly released

MobileNetV3, as well as Xception [Cho17], DenseNet [IMK+14], ShuffleNet [ZZLS18]

and SqueezeNet [IHM+16]. All networks can be accelerated without any network ar-

chitecture modification while achieving 1.3× to 8.4× better power efficiency and up to

172× lower latency compared with state-of-the-art designs [SFL+18, ZNL18, BZH18,

VB18, WSWZ19a, MPT+18, PKNP18].

The rest of the chapter is organized as follows. Section 5.2 lists the motivation. Section 5.3

describes the Light-OPU instructions. Sections 5.4 and 5.5 explain the Light-OPU micro-

architecture and the compiler, respectively. Section 5.6 presents our experiment results on

various state-of-the-art LW-CNNs. Section 5.7 concludes the chapter.

73

Table 5.1: Inference time (Batch=1) on NVIDIA Titan Xp GPU, model parameters and

number of multiply-add operations. † indicates the ratio compared with that of VGG-19.

Input size is 229×229 for Xception and 224×224 for others.

Inference Speedup† #Parameter #Operation

Time/ms Reduction† Reduction†

VGG-19 5.50 1× 1× (138 M) 1× (20G)

SqueezeNetV1.1 1.60 3.43× 74.67× 57.58×

MobileNetV1 2.45 2.24× 32.62× 33.50×

MobileNetV2 3.34 1.65× 40.69× 66.89×

ShuffleNetV1 5.40 1.02× 74.67× 150.57×

Xception 6.44 0.85× 6.05× 4.37×

DenseNet-161 15.50 0.35× 4.85× 2.60×

5.2 Motivation

5.2.1 Non-proportional operation reduction and speedup

Note that when running LW-CONV on GPU platforms, compared with conventional CNNs,

the reduction on inference time of LW-CNNs is not proportional to their reduced number

of parameters and multiply-add operations. Table 5.1 lists out the comparison of inference

time, parameter number and operation number of LW-CNNs with conventional CNN VGG-

19 [SZ14b]. It can be seen that the operation number of VGG-19 is 150.57× more than

that of ShuffleNetV1, but their inference time on NVIDIA Titan XP GPU is basically the

same. Moreover, MobileNetV1 has 33.5× fewer operation number but only gains a speedup

of 2.24×. The possible reason is that light-weight operation, e.g., DW-CONV, is more

memory bounded than computation bounded. The operations per input element significantly

drop compared with conventional convolution. However, CUDA cores are designated for

computation-intensive workloads, and they cannot be efficiently utilized in such case. Despite

DW-CONV, new lightweight operations still impede acceleration by GPU. As can be seen

in Table 5.1, while MobileNetV2 has only 50% of the operation number compared with

74

MobileNetV1, its execution time on GPU increases by 36%.

Table 5.2: Inference time on CPU with various number of cores.

CPU cores 1 2 4 6 8 10

V1 Latency (ms) 33.56 20.24 13.28 10.31 10.40 9.80

V2 Latency (ms) 27.05 17.27 13.39 11.14 11.35 10.72

As to multi-core CPU, MobileNetV2 has quickly diminished advantage for multi-core ex-

ecution when compared with V1, because inverted residual operation and higher percentage

of DW-CONV employed in V2 require extra memory accesses. This is shown in Table 5.2,

where the ratio of Latencyv1/Latencyv2 gradually decreases with the increase of CPU cores.

In short, general acceleration platforms (e.g., GPU and multi-core CPU) cannot handle LW

operations efficiently. This calls for customized hardware architecture optimized for LW

operations, and FPGA acceleration with low non-recurring engineering (NRE) cost is an

appropriate candidate.

5.2.2 Uniform support for a variety of Models

Previous work accelerated LW-CNNs via optimizing hardware modules for different opera-

tions individually. For instance, [BZH18] and [PKNP18] were specifically designed for Mo-

bileNetV2 and SqueezeNet, respectively. [SFL+18] applied separate modules for DW-CONV

and conventional convolution without any resource sharing. Moreover, all intermediate fea-

ture maps (FMs) are stored on-chip to reduce expensive on-chip off-chip memory traffic,

posing constraints on the size of intermediate FMs. DenseNet [IMK+14], with intensive con-

catenations of previous FMs, can introduce more than 10× on-chip memory overhead and

cannot be fit in. Therefore, general support with efficient resource utilization for all special

operations in LW-CNNs is required.

Light-OPU accelerates different lightweight operations under a unified hardware archi-

tecture. It also optimizes computation efficiency by our compilation framework.

75

5.3 Instruction Set Architecture

Light-OPU is designed for general LW-CNN inference. We adopt the instruction frame-

work from [YWZ+19] with extra parameter settings for LW-operations specific. Moreover,

improvements are made to the instruction execution mechanism for a more flexible and

compact run-time execution.

We utilize a complex instruction set architecture, where each instruction can take up

several hundreds of cycles to execute. Specifically, each instruction is composed of vari-

ous number of 32-bit length short instructions. There are two types of short instructions:

Conditional instruction (C-type) and Unconditional instruction (U-type). C-type instruction

specifies target operations and sets operation trigger conditions. U-type instruction delivers

corresponding operation parameters for its paired C-type. One instruction unit contains one

C-type instruction with 0 − n U-type instructions. One instruction block consisting of a

number of basic units is fetched together and then distributed to various modules. The least

significant bit of instruction indicates the end of current instruction block when its value is

0.

5.3.1 Instruction Types

C-type instruction contains operation (OP) code and trigger condition. OP code indicates

the operation type and trigger condition defines the operation execution prerequisite.

We keep six main types of C-instructions defined in [YWZ+19], i,e., Memory Read,

Memory Write, Data Fetch, Compute, Post Process and Instruction Read, then add extra

control parameters for LW operations. Specifically:

• Data Fetch is improved to operate in two modes: (1) FM reuse mode corresponds

to conventional convolution operation, where only the channel parallelism is explored.

Fetched FM is reused for the computations of multiple output channels. The paralleled

76

Figure 5.2: Grouping examples of parameters with different updating frequencies.

number of input and output channel can be run-time tuned; (2) Kernel weights reuse

mode targets on DW-CONV operations. It explores intra-kernel parallelism to com-

pensate for the limited channel parallelism in DW-CONV. Moreover, kernel weights

are reused for computations of multiple FM windows.

• Compute controls all processing elements (PEs). One PE computes the inner product

of two 1D vectors of length N . N = 9 is chosen for our Light-OPU (See section 5.4.1),

which sufficiently guarantees the space exploration for different networks. Control

parameters are added to switch Compute between FM share mode and Kernel weights

share mode.

• Post Process takes care of extra non-computational-intensive operations, e.g., Squeeze

and Excitation (SE) block.

U-type instruction provides operation related parameters. In general, when operation

pattern switches, only a subset of parameters are changed accordingly. For a certain C-type

instruction, its corresponding parameters may have different updating rates. Therefore, as

shown in Fig. 5.2, we group parameters with the similar updating rates into the same U-type

instruction to minimize the total length of instruction sequences, which in turn reduces the

memory access time and power consumption.

All the instructions are generated on an updating demand-based scheme, as a set of

registers are provided to store the current parameters and trigger conditions until they get

updated, which further reduces the length of instruction sequence.

77

Figure 5.3: Instruction execution and TCI updates of time range t1 to t8. Red lines indicate

TCI updates by instruction read. Each colored block shows the execution time range of one

triggered instruction.

Figure 5.4: Overall micro-architecture and PE structure.

5.3.2 Instruction Execution

We utilize dynamic pipeline fashion to organize our operations. Instead of fixing the instruc-

tion order within one layer, the order of our instruction units can be flexibly adjusted for

different computation purpose. For efficient instruction control, we design a trigger condition

list for each instruction, according to the dependency relationship among different operations

under various operating patterns. Modifying the trigger condition index (TCI) by instruction

at run-time sets the operation execution prerequisites. Using a dependency based execution

strategy relaxes the order enforcement on instruction sequence, leaving enough room for the

time uncertainty caused by memory related operations.

For example, Fig. 5.3 shows a fragment of the instruction execution process for one

78

FM block’s computation, where several instructions executed at different time points can be

grouped together and read at the same time. Several Instruction Read are performed for

TCI update, each labeled with one color. The color of instruction during execution process

indicates the TCI it currently uses. Note that we update the next TCI right after the trigger

of current TCI to make sure the operation will be triggered based on the new TCI next time.

For example, TCI update 1 is performed at time t2 right after the trigger of FM load at

time t1. It can be seen that TCIs for Compute, Post Process and Data Write have not been

updated within the time range plotted in the figure, where the instructions get executed

multiple times whenever the preset condition is satisfied. Another example is Kernel Load

operation, one mode of the Memory Read operations. For Kernel Load with TCI color blue,

its trigger condition is the completion of FM Load. It gets executed twice until TCI update 3,

labeled with color green, and updates its trigger condition to the completion of Data Write.

Then at t6 Kernel Load labeled with green is triggered to pre-load kernel weights for the

next round of computation that happens after t8.

5.4 Micro-Architecture

Hardware modules in Light-OPU are parameter tunable, which switch modes at run-time

based on parameter registers updated by instructions. The computation engine is able to

operate in different modes according to layer types in order to explore different combinations

of parallelism.

As shown in Fig. 5.4, the Light-OPU micro-architecture is composed of Memory Read,

Memory Write, Data Fetch, Computation engine, Post-Process and on-chip storage buffers.

Each module accepts instruction updates from the Instruction Update control module. Micro-

architectures only handle the computation of one sub-FM block. If the layer size is larger

than the maximum block size allowed by hardware, the layer is sliced into sub-blocks by

compiler to fit into hardware (See section 5.5).

79

Figure 5.5: Conventional mode: Only the input and output channel parallelisms are explored.

Kernel weights of size kipx × kipy × ICi
p are decomposed to kipx × kipy ×1×1× ICi

p point-wise

kernels. FM is copied for different output channel calculation.

5.4.1 Computation Engine

For layers in conventional CNN such as YOLO[RF17], GoogLeNet[SVI+16], VGG[SZ14b],

ResNet[HZRS16a], and Openpose[CSWS17], flattening the channel level computation guar-

antees enough parallelism for small to medium FPGA board resources. Moreover, the channel

level parallelism is free from the architecture constraints posed by changeable kernel sizes,

which ensures the generality of computation engine. However, the emerging LW-CNN comes

with the wide application of DW-CONV, bringing challenges to the channel level parallelism

based acceleration architectures. For a DW-CONV with n input channels and n output

channels, each of the output FM channels is produced by one kernel channel convolving with

only one input FM channel. Therefore, the explorable channel parallelism is reduced by

n× compared with conventional convolution layer with the same input and output channel

number. Considering the fact that conventional convolution layer is still widely used in LW-

CNNs (e.g., DenseNet, SqueezeNet and Xception), we develop two operation modes for the

computation engine. With conventional mode targeting at traditional convolutional layers,

channel parallelism is explored and FM gets reused. For DW-mode, multiple extra levels of

parallelism are explored to handle the DW-CONV layer.

80

5.4.1.1 Conventional Mode

For conventional convolutional layers, we leverage channel parallelism. Fig. 5.5 explains how

it works. For layer i, at each clock cycle, a slice of input channel of depth ICi
p with width

and height as 1× 1 is read along with corresponding kernel elements. This fits natural data

storage pattern and requires much smaller bandwidth. Parallelism is explored for ICi
p×OCi

p.

For kernel weights of position (0, 0), input FM channel slice from position (0, 0) to (2, 2) will

be fetched out and perform corresponding multiplication. Then we move to kernel weights

of position (0, 1). Moreover, our design of the computation unit provides flexible combi-

nations of [ICi
p, OC

i
p] pairs to accommodate for different layer configurations. By adding

selective adder trees after PE array, the computation engine is able to efficiently handle the

computation of [ICi
p, OC

i
p] = {[128, 8], [64, 16], [32, 32], [16, 64]}. This computation pattern

guarantees a uniform data fetching logic for any kernel size or stride, which greatly simplifies

the data fetch module, and enables higher design frequency with less resource consumption.

5.4.1.2 DW Mode

For a [channelin, channelout] = [64, 64] DW-CONV, if we use Conventional mode for the

computation, only 64 multiplications in total can be done in parallel. Therefore, the purpose

of introducing DW mode for our computation engine is to ensure high run-time resource

efficiency of DW-CONV while sharing the same set of PEs with conventional CONV. This

can be achieved with an extra data management module. Among all of our target DW-

CNNs, the DW layers have a uniform small kernel size of 3× 3 (expect for a few layers with

kernel size 5×5 in the newly released MobileNetV3). Therefore, we make use of this property

and build a typical shift line buffer structure for 3 × 3 FM window data fetch. The 5 × 5

kernel can be decomposed into several 3 × 3 kernels for adaptation. This leads to only less

than 3% extra computation time in MobileNetV3 compared with having another line buffer

for 5 × 5 window. As shown in Fig. 5.6, the shift register based line buffer reuses previous

81

Figure 5.6: DW mode: three levels of parallelisms are explored. (1) Input&output channel

level; (2) Intra-kernel level; (3) FM level, as input FMs are fetched from two FM blocks.

values to expand the available FM bandwidth. In this way, the intra-kernel parallelism can

be explored and the parallelable multiplications increase to 64× 9 = 576.

Moreover, we decompose each Xilinx DSP48E1 into two 8× 8 multipliers to fully utilize

computation resources. However, these two decomposed multipliers require sharing of one

input due to hardware constraints. For Conventional mode, we share the same FM channel

data between two different output channels. While for DW mode, one input FM channel

only corresponds to one output channel. To solve the sharing problem, we fetch FM data

from two different FM blocks and share the same kernel weights, as shown in Fig. 5.6.

5.4.2 Other LW operations handling

Apart from DW-CONV, LW-CNNs such as DenseNet [IMK+14] and ShuffleNet [ZZLS18]

introduce several other irregular operations which require extra handling.

82

Figure 5.7: (a) Channel Shuffle operation and (b) its hardware-friendly implementation.

5.4.2.1 Channel Shuffle

Introduced to increase information sharing among group convolutions, Channel Shuffle, ex-

plained in Fig. 5.7 (a), performs an important role in ShuffleNet. We label the results

from three group convolutions with different colors. The original Channel Shuffle opera-

tion selects channels separately from each result and recombines channels to form the input

of DW-CONV. Then the result of DW-CONV will be fed into another set of group con-

volutions. This shuffle scheme breaks up the continuous data storage format in memory,

thus requiring multiple extra memory read and write operations. To implement the same

shuffle scheme in a hardware-friendly way, we reorganize the shuffled results, as shown in

Fig. 5.7(b). For each new group, channels from the same original group are put together as

smaller groups. Correspondingly, the channel position of kernel weights and biases from fol-

lowing DW-CONVs and following group convolutions gets switched to match the new input

order. We label them as Weights-Switched (WS) DW-CONV and WS Group CONV. This

reorganization does not change the original shuffle scheme, but greatly simplifies hardware

operations. We directly compute the small groups separately and write them to adjacent

destination addresses. Therefore, the shuffled results can be formed naturally without any

extra memory manipulation operations.

83

5.4.2.2 Group Convolution

ShuffleNet utilizes group convolution to relieve the computation burden from an increased

number of channels. group convolution slices input FM into separate chucks in channel

dimension and conducts individual convolution for each chuck, then concatenates the output

FMs. Therefore, performing a group convolution can be simplified as calculating several

conventional convolutions in sequence with input/output FMs address control, which helps

fetch the input channel segments and concatenates output channels. However, as described

in subsection 5.4.2.1, group convolution in ShuffleNet gets split into smaller convolutions for

different output channel groups, which reduces the explorable parallelism and potentially

leaves partial PEs idle.

To solve this issue, we fit two group convolutions into one round of computation. As

shown in Fig. 5.8, we reorganize the kernel weights of group CONV i
1 and group CONV i

2

into w1, w2 and w3, each corresponding to one input of next set of three group convolutions,

respectively. Meanwhile, input FMs for two group convolutions are fetched from different

FM banks and sent to PE array together with reorganized weights. As a result, the output

results get concatenated automatically and can be directly written back to memory. The

parallelism of two group convolutions cuts the computation time in half without introducing

extra memory manipulation operations.

5.4.2.3 Squeeze and Excitation (SE) block

In MobileNetV3 [HSC+19], SE block is applied to weight channels for accuracy improvement.

The computation increment brought by SE block is limited. However, ShuffleNet with SE

blocks inserted is evaluated in [MZZS18], leading to 26% slow-down in GPU speed compared

with original version. This indicates that the irregular structure of SE block could degrade

computation efficiency of GPU. Therefore, a specific acceleration module is needed. We find

that sharing the main computation engine for SE block leads to high memory access cost

84

Figure 5.8: Calculation of two group convolutions in parallel.

due to imbalanced computation cost and data requirement. Therefore, we insert a hardware

SE module for the computation of SE block into the on-chip data flow, which avoids the

off-chip data communication with small hardware resource cost. Calculation in SE block is

shown in Fig. 5.9, where the circled number labels different data sources for different rounds

of calculation. For example, when computing FC (fully connected layer) + ReLU 1○, two

inputs for the multiplier array are the results of average pooling and FC weights from the

buffer. When computing round 3○, one of the inputs is the FC results as the scaling factor,

while the other input switches to the intermediate results kept in on-chip BRAM. For one SE

block with input channel number chin = 40, input FM size fmin = 56 and reduction ratio

r = 4, the calculation takes 6324 cycles with no memory access latency (the weights for FC

operation are pre-loaded during previous layer’s calculation). Meanwhile, if we calculate the

SE block using main computation engine, the calculation takes 6324 cycles with 6322 extra

memory access latency for intermediate results write and read between rounds. Moreover,

the multiplier array in SE module can be shared for the computation of activation function

H-swish introduced by MobileNetV3, represented as follows:

out =
x× relu6(x+ 3)

6
, (5.1)

where two arrays of multipliers are needed. Thereby, the multiplier array in the SE module

calculates x× relu6(x+ 3), and following activation module takes care of ×1
6
.

85

Figure 5.9: Calculation process of SE block.

5.5 Compiler

In this section, we propose a compiler as the bridge between network configuration repre-

sentation and Light-OPU ’s hardware inference execution. The flow of compiler is shown in

Fig. 5.10, mainly accomplishing two goals: (1) Network Reformulation that reformulates

the network computation into hardware-friendly operations. Network Reformulation

consists of the steps from Network Configuration Parsing to Operation reordering ; (2) Hard-

ware Mapping that maps the reformulated network into hardware with minimum execution

latency. Hardware Mapping covers the steps from Network slicing to Instruction genera-

tion. The details of each target are discussed as follows.

5.5.1 Network Reformulation

Network Configuration Parsing extracts network structure related information, with input

as the frozen model file generated by Tensorflow/Keras/ONNX. Layer parameters and con-

nections are fetched and compressed for easy representation.

Layer Grouping is conducted to link adjacent layers into computation blocks. Each

computation block is led by one convolution or fully connected layer, then followed by pooling

86

Figure 5.10: Compiler Flow.

/ activation / residual layers. External memory access only happens between computation

layers to reduce the communication latency.

Operation Fusion is a typical operation in hardware acceleration compilers [CMJ+18].

Layers such as Batch Normalization can be completely merged into preceding convolution

layers in some networks. Moreover, we merge the padding operation into the following

convolution layer, where padding can be accomplished by zero data selection in Data Fetch

module.

Operation Reordering is performed in section 5.4.2.1 and 5.4.2.3, where computation order

arrangement is sometimes required to make the operation more hardware-friendly. Therefore,

kernel weights reorganization and operation order switches are performed to handle the

irregular operations introduced by LW-CNNs.

5.5.2 Hardware Mapping

In this stage, an automatic optimizer is applied to explore optimal slicing scheme that maps

current architecture to overlay with maximum throughput.

Network Slicing. There are two levels of Network slicing, i.e., 2D block slicing and channel

slicing. For 2D block size slicing, the block size is constrained by the on-chip buffer size.

For channel slicing, the [Channelin, Channelout] combination is limited by the on-chip PE

resources. Suppose an individual layer i is sliced into pi blocks. Then each block is defined as

(IN i
j , IM

i
j , IC

i
j, OC

i
j), with j ∈ [0, pi), where IN i

j , IM
i
j , IC

i
j, and OCi

j represent input block

87

width, height, input channel number, and output channel number, respectively. Note that

one sliced block is the FM input for one round of overlay computation, and kernel weights

input can be calculated by parameter [ICi
j, OC

i
j].

If the layer type is conventional convolution, the inference latency Li
j of one round’s

computation can be calculated by

memoryij = IN i
j+1 × IM i

j+1 ×
⌈

ICi
j+1

Bandwidth

⌉
+ kix × kiy ×⌈

OCi
j+1 × ICi

j+1

Bandwidth

⌉
+ON i

j+1 ×OM i
j+1 ×

⌈
OCi

j+1

Bandwidth

⌉

computeij = (kix × kiy)×ON i
j ×OM i

j ×

⌈

ICi
j

MACPE

⌉
×OCi

j

PEnum

 ,
Li
j = max(memoryij, compute

i
j), (5.2)

where ON i
j and OM i

j indicate the width and height of output block. Bandwidth represents

the off-chip memory bandwidth, which takes value 64 under current hardware platform and

frequency. MACPE indicates the number of MACs implemented within one PE unit, which

takes 9. PEnum indicates the number of PEs, which takes 128. memory is the memory access

time, including FM data reading and writing as well as kernel weights reading. Note that the

kernel weights reading is only required at the first block of the whole layer. compute is the

computation time required for current block. The overall latency is defined as the maximum

of memory and compute, as we use computation time to hide memory access time.

If the layer type is DW convolution, we modify Eq. (5.2) into

memoryij = (IN i
j+1 × IM i

j+1 + kix × kiy +ON i
j+1 ×OM i

j+1)×
⌈

ICi
j+1

Bandwidth

⌉

computeij = α×
⌈
ON i

j ×OM i
j × ICi

j

2× PEnum

⌉
+ IN i

j × 2 + 2,

Li
j = max(memoryij, compute

i
j), (5.3)

88

where α represents the kernel size adjustment coefficient, and takes value 1 for 3× 3 kernel

and 4 for 5 × 5 kernel. The 2 in the denominator of computeij indicates the two FM banks

calculated in parallel (See section 5.4.1.2), and the IN i
j × 2 + 2 term represents pre-loading

time for line buffers.

Therefore, the slicing optimization target can be represented as

min
ω

m̂∑
i

(

pi∑
j

Li
j +memoryi0)

s.t. IN i
j × IM i

j <= depththres

ICi
j, OC

i
j <= widththres, (5.4)

where depththres and widththres stand for the depth and width limit of on-chip BRAM, re-

spectively. memoryi0 represents the memory pre-loading time. m̂ indicates the total number

of layers after Network reformulation. ω represents a set of slicing scheme configurations,

where each scheme defines pi sliced block parameters for layer i, including both 2D block

slicing and channel slicing.

We use an example to illustrate our slicing strategy. Suppose for a conventional convolu-

tion layer, we have channelinput = 96, channeloutput = 48, fmsize = 48×48 and kersize = 2×2.

The constraints are set as depththres = 2048 and widththres = 64.

For channel slicing, Fig. 5.11 shows the number of computation rounds required for

different slicing schemes. For example, if we slice the layer channel into 2 blocks as {[64, 48]×

2}, i.e., reading 64 input channels for each block, we compute partial results of 48 output

channels. The computation engine has mode [64, 16], thereby it takes 48/16 = 3 rounds to

finish one block’s computation. In total, 6 rounds are required to complete the computation.

Similarly, if we slice the channel as {[64, 48], [32, 64]}, it takes 3 rounds to compute [64, 48]

via computation engine mode [64, 16], and 2 rounds to compute [32, 64] using different mode

[32, 32]. In total, only 5 rounds are needed for the computation, which is the best choice.

For 2D block size slicing, apart from the intuitive rule of filling up the on-chip buffer,

89

Figure 5.11: Channel slicing example. Each column represents one slicing strategy and

each row represents one computation round. Labels on block indicates the number of

[channelin, channelout] calculated in this round.

we also need to keep all the block size balanced to hide the memory access latency. As

the sum of computation latency stays the same for different slicing strategies, only the

memory access time leads to extra latency. From the constraints, we know that at least 4

blocks need to be sliced as FM size 48 × 48 > 2048. Suppose we apply the best channel

slicing of {[64, 48], [32, 64]}. This layer will be sliced into 4 × 2 = 8 blocks in total, with

each block size slicing corresponding to each channel slicing. If we slice the block size as

{[3 × 3], [45 × 3], [3 × 45], [45 × 45]}, where minimal sized [3 × 3] block is calculated first

since the FM and kernel load latency of the first block cannot be hidden. Then during the

computation of block {block : [3 × 3], channel : [64, 48]}, we need to load all the data of

{block : [45 × 3], channel : [64, 48]}. We have computation = 108 cycles and memory =

270 cycles based on Eq. (5.2). An extra 162 cycles of memory access latency cannot be

hidden by the computation. In total, 3033 extra memory latency is induced. However, if

we choose a balanced block slicing {[22 × 22], [22 × 23], [23 × 22], [23 × 23]}, only the pre-

load memory access latency of 916 from the first block is required. Moreover, for balanced

Table 5.3: FPGA resource utilization.

LUT FF BRAM DSP

Utilization 173522(85.14%) 241175(59.16%) 193.5(43.48%) 704(83.81%)

90

Table 5.4: Network benchmark statistics.

MobileNetv1 MobileNetv2 MobileNetv3 SqueezeNetV1.1 DenseNet-161 ShuffleNetV1 Xception

Input size 224× 224 224× 224 224× 224 224× 224 224× 224 224× 224 229× 229

Kernel size including 1× 1, 3× 3, 5× 5, 7× 7

Kernel stride including 1× 1, 2× 2

#Conventional CONV layer 15 36 50 26 160 2 40

#DW-CONV layer 13 17 15 0 0 16 34

#Group CONV layer 0 0 0 0 0 31 0

Activation Type ReLu ReLu H-swish, H-sigmoid ReLu ReLu ReLu ReLu

slicing scheme, the extra memory access latency stays the same regardless of block number.

While for imbalanced slicing scheme, the extra latency increases with the increment of block

number. In summary, the minimum latency slicing strategy of this example layer should be

{[64, 48], [32, 64]} for channel slicing and {[22×22], [22×23], [23×22], [23×23]} for 2D block

size slicing.

5.6 Experiments

We implement Light-OPU on Xilinx XC7K325T FPGA in a customized board with resource

utilization shown in Table 5.3. The power consumption of FPGA board is measured using

a PN2000 electricity usage monitor. A PC with Xeon 5600 CPU is used for off-line software

compiler. For hardware comparison, we use Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz,

with power measured by Stress Terminal UI. We also compare our Light-OPU with edge GPU

Jetson TX2. Inferences on GPU use batch = 1 mode for latency dominating evaluation, with

power consumption all averaged over 500 runs.

5.6.1 Network Benchmarks

We use seven LW-CNNs including all major lightweight CNNs for a comprehensive evalu-

ation. They are MobileNetV1 [HZC+17], MobileNetV2 [SHZ+18], MobileNetV3 [HSC+19],

SqueezeNet [IHM+16], DenseNet [IMK+14], Xception [Cho17] and ShuffleNet [ZZLS18], with

91

Table 5.5: Network quantization accuracy (Top-1). Performance evaluated on ImageNet

LSVRC-2012 dataset.

Network 32bit float-point 8bit fixed-point

DenseNet-161 77.1% 76.6%

MobileNetV3 68.4% 66.7%

Table 5.6: GPU and FPGA data sheets.

Jetson TX2 Light-OPU

Technology(nm) 16 28

Frequency(MHZ) 1300 200

Peak GOPS 1300 460.8

Bit-width 32bit float-point 8bit fixed-point

Peak GOPS:Theoretical Peak GOPS when all PEs are

used.

statistics shown in Table 5.4. Different kernel sizes (1×1, 3×3, 5×5, 7×7), strides (1×1,

2×2), layer types (Conventional-CONV, DW-CONV, group-CONV) are covered. Irregular

operations such as channel shuffle, residual addition and dense block concatenation are also

included.

5.6.2 Network Quantization

With existing 8bit quantization for SqueezeNet [TM18, PYV18, LHC+18], MobileNetV1

[SFZ+18], MobileNetV2 [PYV18], ShuffleNetV1 [TM18] and Xception [LHC+18], we quantize

DenseNet-161 and newly released MobileNetV3 into 8bit using typical dynamic fixed-point

quantization scheme in this chapter and present accuracy in Table 6.7.2. Below, we use

quantized networks for our experiments for FPGA acceleration. Note that CPU and GPU

use floating point in our experiments.

92

Figure 5.12: Latency comparison (Normalized over embedded CPU ARM Cortex-A57 data).

5.6.3 Comparison with CPU and GPU

With GPU and FPGA information in Table 5.6, we compare the latency in Fig. 5.12 with

all latency normalized with respect to ARM A57. Compared with CPUs, Light-OPU shows

30.6× and 4.9× speedup over embedded ARM and i7-8700k Intel on average. For GPU

comparison, Light-OPU has on average a speedup of 5.5× compared with edge GPU TX2,

which has 2.8× higher Peak GOPS. The latency advantage of Light-OPU over GPUs comes

from its domain-specific ISA and micro-architecture tailored for CNN operations, especially

LW-CNN operations. For example, Light-OPU shows 25.1/6.0 = 4.18× speedup over GPU

Jetson TX2 when running SqueezeNet, which contains only conventional 3 × 3 and 1 × 1

convolutions. Meanwhile for MobileNetV2, speedup increases to 30.5/3.3 = 9.18×, because

acceleration of DW-CONV layers and residual addition in MobileNetV2 is specifically opti-

mized in Light-OPU (See section 5.4.1.2). Moreover, the weights reorganization and group

convolution parallelism (See section 5.4.2.1 and 5.4.2.2) reduce the memory access latency

and the number of operations for ShuffleNet, enabling Light-OPU to achieve 11.3× speedup

93

Table 5.7: Comparison with customized FPGA accelerators.

[SFL+18] [ZNL18] [BZH18] Light-OPU [VB18] [WSWZ19a] Light-OPU [MPT+18] [PKNP18] Light-OPU

Year 2018 2018 2018 2019 2018 2019 2019 2018 2018 2019

Device XCZU9EG Stratix V 5SGSD8 Arria 10 Soc XCK325T Zynq7045 4×VCU118 XCK325T XC7Z020 DE-10 XCK325T

Network RR-MobileNet MobileNetV1 MobileNetV2 MobileNetV1 V2 V3-Large DenseNet-161 SqueezeNetV1.1

Bit-width 8/4 8 16 8 16 16 8 32 8 float 8

DSP Utilization 1452 1641 1278 704 816 4×4993 704 192 <336 704

Frequency(MHZ) 150 150 133 200 125 200 200 100 100 200

FPS 127.4 231.2 266.2 264.6 313.7 323.1 11.69 153.8 24.1 2.6 9 420.9

Throughput/MAC (GOPS) 0.03 0.13 0.12 0.21 0.14 0.12 0.17 0.18 0.25 0.02 0.02 0.19

Power efficiency
NA NA 4.9 17.9 11.1 9.6 38.9a 31.1a 52.5a 1.89 6.49 15.83

GOPS/W

a: The power data with note (a) is subtracted with Idle power to match the evaluation method of reference power data.

compared with Jetson TX2.

We compare the power efficiency in Fig. 5.13, where the number of useful multiplication/

addition per Watt is utilized to evaluate the power efficiency of different networks, and the

plotted performance is normalized with respect to ARM A57. Light-OPU shows an average

of 3.0× better power efficiency compared with GPU Jetson TX2. The superior performance

of Light-OPU on both latency and power efficiency makes it ideal for various embedded real-

time edge computing tasks, e.g., detection, tracking and classification on robotic systems.

5.6.4 Comparison with FPGA Accelerators

To the best of our knowledge, all existing FPGA accelerators are designed specifically for

a particular LW-CONV network, therefore we compare our general accelerator Light-OPU

with customized accelerators. In Table 5.7, we use frame per second (FPS) for latency

evaluation as all FPGA designs are running at batch = 1 mode. The Throughput/DSP

is employed for the evaluation of run-time computation resource efficiency, which reflects

the percentage of useful computation conducted by DSP on average during run-time. The

Throughput/DSP is adjusted based on data-width for fair comparison, where values for

8bit system are multiplied with 0.5. For MobileNetV1/V2, Light-OPU performs 1.6× and

2.3× better in Throughput/DSP compared with existing customized designs, and also gains

2.3× higher power efficiency. For DenseNet-161, compared with [VB18], Light-OPU (with

94

Figure 5.13: Power efficiency comparison (with power normalized over embedded CPU ARM

Cortex-A57).

compression of data width) doubles FPS and power efficiency. Multiple-FPGA design in

[WSWZ19a] has 153.8/24.1 = 6.4× higher FPS compared with Light-OPU, but it utilized

28× more DSP slices. Therefore, it has significantly worse power efficiency and per DSP

performance. For SqueezeNet, Light-OPU exhibits up to 8.4× higher power efficiency com-

pared with existing designs [MPT+18, PKNP18]. Overall, Light-OPU has 1.39× to 8×

improvement in terms of throughput per DSP.

Advantages of Light-OPU over existing accelerators are due to the following reasons: (1)

Flexible instruction and control enables dynamic pipelining, which reduces off-chip commu-

nication time and latency; (2) 8bit data representation helps to fully utilize on-chip resources,

improve throughput and reduce power consumption; (3) Flexible computation engine design

and special handling of various operation in LW-CONV greatly improve the performance

and power efficiency.

95

5.7 Conclusions

We have proposed Light-OPU, an FPGA-based overlay processor to accelerate a variety

of lightweight CNNs (LW-CNNs). Light-OPU performs two levels of optimization: (1)

Software-level network reformulation, including layer grouping, operation fusion and opera-

tion reordering, eliminates redundant memory access and reduces number of operations in

LW-CNN; (2) Hardware-level micro-architecture is specifically designed for LW-CNN oper-

ations. Meanwhile, the micro-architecture can be used for conventional convolutional layer

computation since it keeps all hardware features such as those from [YWSH19] for conven-

tional CNNs. The flexible acceleration engine guarantees high run-time resource efficiency,

and thereby leads to low latency and high power efficiency. Light-OPU achieves 5.5× better

latency and 3.0× better power efficiency compared with edge computing targeted GPU Jet-

son TX2, and obtains 1.39× to 8× better throughput per DSP and 5× to 8.4× better power

efficiency compared with recent FPGA accelerators for LW-CNNs. Moreover, Light-OPU

is fully software programmable, and no FPGA reconfiguration is required for network and

application switches. In contrast, existing FPGA accelerators are all designed for specific

LW-CNNs.

96

CHAPTER 6

Uni-OPU: An FPGA based Uniform Accelerator for

Convolutional and Transposed Convolutional Networks

6.1 Introduction

Transposed convolution (TCONV) — also referred to as fractional strided convolution

[RMC15], deconvolution [YBK+18], inverse, up or backward convolution [DV16][SCT+16] —

has been proven to be important in various deep learning domains. To begin with, Generative

Adversarial Networks (GANs), which are composed of a generator implemented by TCONV

and a discriminator by conventional convolution (CONV), have demonstrated remarkable

success on style transfer [JAFF16][ZPIE17], synthetic dataset generation [TCAT17][WZX+16]

and text-to-image translation [ZXL+17]. Second, a fully convolutional network [LSD15] and

its successors that use TCONV to recover input size have shown outstanding performance

on biomedical segmentation [RFB15], pixel-wise prediction and content generation tasks

[CEE+16][GMAB17]. Moreover, a super-resolution convolutional neural network (SRCNN)

[DLHT16][DLT16] equipped with TCONV outperforms traditional image reconstruction ap-

proaches in various image super-resolution tasks.

Nevertheless, the efficient execution of TCONV is an issue due to the large number

of inefficient operations in its computation process. A TCONV operation typically in-

volves two steps, i.e., up-sampling and CONV. The up-sampling step inserts zeros into

the original input feature map (FM) to expand the image size, then the CONV step per-

forms normal convolution on the expanded image. Therefore, a big portion of multipli-

97

cations in the latter CONV step involve zero values, which wastes hardware computa-

tion resources and causes the inefficiency. This phenomenon calls for a specific acceler-

ator for efficient execution and acceleration of TCONV networks. Some literature have

developed FPGA accelerators of zero-inserting based TCONV (Zero-TCONV) networks

[YBK+18][YSKE18, CKK18, XTW+18, ZDNKD17, LFN+18, WSWZ19b]. Unlike accel-

erators for CONV networks that focus solely on parallelism exploration and computation-

communication balance, Zero-TCONV accelerators require extra designs for inefficient op-

eration elimination. In existing hardware designs, zero-related computations are skipped

partially or completely to solve the inefficiency issue. However, as shown in Fig. 6.1, there

are mainly three types of existing TCONV accelerators: (1) Accelerators for Zero-TCONV

only [ZDNKD17], which cannot process a complete TCONV network containing CONV lay-

ers as well; (2) Accelerators that implement Zero-TCONV and CONV engines separately

[LFN+18][CKK18], which consumes a large number of hardware resources; (3) Accelera-

tors that implement a combined CONV and Zero-TCONV engine with extra control logic

and data buffer overhead [YBK+18][YSKE18][XTW+18][WSWZ19b], as the computing pat-

terns of these two operations are not arranged completely the same. Therefore, developing

a uniform accelerator architecture for both CONV and Zero-TCONV with minor resource

overhead is still a challenge.

Moreover, recent studies in deep learning algorithms [ODO16] have discovered that Zero-

TCONV leads to obvious checkerboard artifacts on generated images. To solve this issue,

Nearest-neighbor (NN) interpolation is utilized in the up-sampling step to replace the tra-

ditional zero-inserting approach. This new NN-based up-sampling (NN-TCONV) has been

widely applied in existing networks to replace the Zero-TCONV. However, while gaining bet-

ter performance, NN-TCONV renders the existing hardware acceleration architectures in-

valid, as interpolated elements are no longer zeros and related computations cannot be simply

omitted. Meanwhile, if we treat an NN up-sampled image as a regular input and perform

a normal convolution, inefficient computations still exist (see Section 6.2.3.2). Therefore,

98

Figure 6.1: Comparison of Uni-OPU with existing work.

accelerating NN-TCONV poses another challenge.

In this chapter, we propose an efficient FPGA processor based flow, called Uni-OPU, to

solve the aforementioned two challenges together. As shown in Fig. 6.1, Uni-OPU is able

to accelerate Zero-TCONV, NN-TCONV and CONV under a uniform architecture with

negligible area overhead. The control flow, data flow and computation engine are shared

for all three kinds of layers. Additionally, it is equipped with a complete compilation flow

from the high-level network configuration description to an actual FPGA accelerator. We

adopt part of the instruction and compiler framework as well as hardware design from our

previous work [YWZ+19] for general CONV network acceleration. More precisely, we modify

the architecture parser for software compilation, which handles the network architecture

extraction from Tensorflow [ABC+16] generated configuration files to accommodate different

transpose layers. Moreover, a computation reformulation is added for kernel conversion

and data flow reformulation, which transforms different layers into the same computation

pattern. We keep the scheduling optimizer for network slicing and scheduling for hardware

mapping, as well as the final instruction generation. For instruction architecture, we add

99

several instructions for on-chip data write control and better data fetch control (See section

6.6). For hardware system, we add one address generator and a flag buffer, which leads

to negligible area overhead compared with original CONV acceleration design (See section

6.7.1). Overall, Uni-OPU is able to perform the inference process of target networks using

the instruction sequence generated from software compilation.

We evaluate Uni-OPU on various TCONV networks from different application domains,

including GANs such as DCGAN [RMC15] for handwritten digits image synthesis, Disco-

GAN [KCK+17] for style transfer, and ArtGAN [TCAT17] for artwork style picture syn-

thesis. Other networks such as Unet [RFB15] for biomedical image segmentation, FSRCNN

[DLHT16] for image super-resolution and FCN8s [LSD15] for semantic segmentation are also

selected as benchmarks.

The major contributions of this work are as follows:

• To the best of our knowledge, we are the first to develop a uniform software/hardware

stack for efficient acceleration of traditional Zero-TCONV, newly popular NN-TCONV

and regular CONV, with negligible hardware resource overhead compared with regular

CONV accelerator.

• A complete compilation flow is provided to automatically analyze the inefficiency of

TCONV layers with different types, up-sampling sizes and kernel sizes. Then the

computation reformulation, throughput optimization and scheduling will generate in-

structions accordingly for efficient acceleration execution.

• Evaluation has been performed on six different networks that cover a wide range

of applications, while existing accelerators are designed to target only one type of

the TCONV networks. On Zero-TCONV networks, Uni-OPU (16bit) achieves 3.29×

to 45.52× speedup compared with conventional CONV FPGA accelerators (CONV-

FPGA). On NN-TCONV networks, the speedup is 2.09× to 27.20×. In addition,

Uni-OPU (16bit) on average outperforms Titan Xp 1.90× and 1.63× on latency and

100

15.04× and 12.43× on power efficiency, for Zero-TCONV and NN-TCONV respec-

tively. Uni-OPU (8bit) on average outperforms Titan Xp 4.01× and 3.41× on latency

and 26.58× and 21.38× on power efficiency, for Zero-TCONV and NN-TCONV re-

spectively.

6.2 Background and Motivation

6.2.1 Background

TCONV has been widely utilized in many deep learning network architectures. Popular deep

learning platforms such as Tensorflow, Keras [C+15] and Caffe [JSD+14] have specific func-

tions designed to perform TCONV, but many networks implement it using an up-sampling

layer followed by a CONV layer, as shown in Fig. 6.2. The relationship between final output

FM size and input FM size of TCONV is shown as follows:

Wout =
(Wup −K)

S
+ 1, Hout =

(Hup −K)

S
+ 1, (6.1)

where

Wup = Win × up + 2× Pad, Hup = Hin × up + 2× Pad. (6.2)

In Eq. (6.1) and (6.2), we have Win and Hin denoting the input FM width and height. S,

Pad and K represent the convolution stride, single-side padding size and kernel size 1. up2

indicates the up-sampling rate (also known as a scale factor). Wup and Hup represent the

FM size after up-sampling operation. Wout and Hout indicate the output FM size. Normally

we have Wout and Hout larger than Win and Hin. In the example of Fig. 6.2, the size of final

output FM is twice that of input FM.

1Padding size can be different for all four edges, which is considered in our implementation. Here we use
a uniform padding size for simplicity. Similarly, the kernel width and height can be different.

2In Tensorflow implementation of TCONV, the up-sampling rate is represented by parameter strides.

101

Figure 6.2: A complete two-step process of TCONV.

Figure 6.3: (a) up-sampling by padding zeros; (b) up-sampling by NN-based interpolation.

The first up-sampling step can be implemented using different interpolation methods.

Conventional TCONV uses a zero-inserting method, as shown in Fig. 6.3(a), where zero

padding fills up the up-sampled image. However, it has been proven to cause checkerboard

artifacts of various scales in final output image, as can be seen in Fig. 6.4(a). The checker-

board effect comes from the uneven overlapping of non-zeros input values during the second

CONV step, which is induced by the zero-inserting operation [ODO16]. To avoid introducing

the artifacts, various up-sampling algorithms have been evaluated to encourage weights-tying

and reduce the uneven overlap. Among them, nearest-neighbor (NN) interpolation based up-

sampling performs the best, as shown in Fig. 6.4(b), where all the checkerboard artifacts

102

Figure 6.4: (a) Zero-TCONV, heavy checkerboard artifacts; (b) NN-TCONV, no checker-

board artifacts [ODO16].

are eliminated. The up-sampled image based on NN interpolation is shown in Fig. 6.3(b).

6.2.2 Motivation

6.2.2.1 Inefficient operations in Zero-TCONV and NN-TCONV

With regard to hardware acceleration, the inefficiency of TCONV lies in both steps. For

the up-sampling step, the interpolated values and their position in the up-sampled output

can be inferred directly from input FM. Therefore, we can virtually map out an up-sampled

intermediate FM and continue operations afterwards without actually conducting the up-

sampling process in hardware.

The latter CONV step in Zero-TCONV owes its inefficiency to the sparse input FM. We

count the inefficient operations of Zero-TCONV layers in our benchmark networks, finding

that over 70% of the multiplications are wasting the hardware multiplier resources since they

have zero as one of the inputs. For the CONV step in NN-TCONV, the inefficiency is not

obvious at first glance since we have a dense input FM. However, by taking advantage of

the repeated pattern of its intermediate FM, we find that a number of multiplications and

additions can be merged and reduced (see Section 6.2.3.2).

103

6.2.2.2 Lack of a uniform accelerator architecture

Previous work has focused on solving the inefficiency issue for Zero-TCONV. Some work

designed specialized hardware components for Zero-TCONV. For example, Zhang et al.

[ZDNKD17] only sped up Zero-TCONV. They reverse loop and compute input element

positions at run-time, which leads to the hardware resource overhead. Liu et al. [LFN+18]

implemented an accelerator for Unet, where different hardware components are used to accel-

erate CONV and Zero-TCONV. Chang et al. [CKK18] used an individual de-convolutional

processor to accelerate Zero-TCONV in the fast super-resolution CNN (FSRCNN).

Other work tried to reuse part of the CONV accelerator for the computation of Zero-

TCONV. FlexiGAN [YBK+18] accelerates general GANs, and the design is implemented in

ASIC as well [YSKE18]. In this design, the computation is paralleled row-wise. For Zero-

TCONV, even and odd rows have different computation patterns, so a MIMD (multiple

instruction, multiple data)-SIMD (single instruction, multiple data) combined instruction

architecture is used to handle Zero-TCONV while the SIMD part takes care of the CONV.

Moreover, extra local instruction buffers are inserted for MIMD control, which leads to higher

area overhead. FCN-engine [XTW+18] computes the multiplication of FM elements with

one 2D kernel, then adds the overlapped results and crops the edges. It is able to reuse the

input/output buffer, weight buffer and multiplication/addition unit of CONV accelerators

for Zero-TCONV. Nevertheless, an individual address generator is needed for Zero-TCONV

as the data access pattern is not the same as CONV. Moreover, additional distributed on-

chip buffers and adders are inserted among PEs only for Zero-TCONV computation. Yan

et al. [YYT+18] and Wang et al. [WSWZ19b] employed similar parallelism methods with

different hardware implementations. Additional resources are required for the computation

of Zero-TCONV.

All the existing work employs different computing patterns for TCONV and CONV,

which comes with extra hardware overhead. Therefore, a uniform accelerator is in need.

104

6.2.2.3 Lack of hardware accelerator for NN-TCONV

With the advanced NN-TCONV algorithms coming into use, accelerator architectures based

on zero-inserting pattern of Zero-TCONV are rendered invalid. Avoiding the zero-related

computation no longer works as the up-sampled FM is dense. Hardware accelerators for the

new NN-TCONV layers are also in need.

6.2.3 Observation

6.2.3.1 Which level of parallelism should we explore?

The accelerator architecture is decided by the level of parallelism we choose. However, af-

ter determining the architecture, the change of hyper parameters (e.g., kernel size, stride,

up-sampling rate, FM size, channel number) may require implementation modification. For

instance, when the intra-kernel parallelism is explored using the line buffer structure, the line

buffer size needs to be changed according to the kernel size [QWY+16]. Moreover, the output

FM parallelism based design may need to adjust the size of PE matrix when the FM size

varies [DFC+15]. Re-configuration of hardware for each network with different hyper param-

eters is time-consuming and essentially inefficient for cascaded network designs. Moreover,

if layers within the same network have different hyper parameters, the run-time resource

utilization may be low due to mismatched hyper parameters and hardware architecture.

We evaluate all the hidden parallelisms within the computation of CONV and TCONV

layers, with regard to hyper parameters. As shown in Table 6.1, each column represents

one hyper parameter and each row corresponds to one level of hidden parallelism. The red

bullet indicates that the implementation for certain parallelism requires adjustment when

corresponding hyper parameters change. It can be seen that paralleling the input/output

channel is our best choice, because the hardware implementation is only influenced by the

channel number, regardless of the change of kernel size, kernel stride, input/output feature

map size, up-sampling rate and layer type. Moreover, in our hardware design, we insert logic

105

to reduce the influence of channel number (see Section 6.5.2), making it compatible with all

the benchmark networks.

Table 6.1: Implementation influence of hyper parameters when exploring different level of

parallelism

Intra-kernel Input channel Output channel Output FM

Kernel Size •c •

Up-Sampling Rate • •

TConv Type a • •

Layer Type b •

Channel number • •

FM Size •

a Transposed convolution types, including Zero-TCONV and NN-TCONV

b CONV or TCONV

c For example, the change of kernel size will change the hardware architecture

when we parallelize the intra-kernel level.

6.2.3.2 How can we accelerate the NN-TCONV?

Unlike Zero-TCONV, NN-TCONV does not introduce any futile computation. However, we

can make use of its repeated input patterns to merge the computation and reduce operation

number under a properly designed architecture. As shown by the blue kernel and dashed

rectangular of Fig. 6.3(b), applying the kernel to the first window of up-sampled FM is

shown as follows:

output = w1× f1 + w2× f1 + w3× f2 + w4× f1

+w5× f1 + w6× f2 + w7× f3 + w8× f3 + w9× f4. (6.3)

Eq. (6.3) involves 9 multiplications and 8 additions, along with the previous up-sampling

106

Figure 6.5: Basic components of Uni-OPU flow.

operation. However, with a simple rearrangement, Eq. (6.3) can be rewritten as:

output = w1′ × f1 + w2′ × f2 + w3′ × f3 + w4′ × f4,

with w1′ = w1 + w2 + w4 + w5, w2′ = w3 + w6,

w3′ = w7 + w8 and w4′ = w9, (6.4)

where only 4 multiplications and 3 additions are required (w1′ to w4′ can be calculated

one-time off-line), and the up-sampling step can be skipped. Therefore, by reformulating

the kernel weights and perform pre-adding operations to calculate the value of w1 to w4′

off-line, we can simplify and accelerate the computation process of NN-TCONV.

6.3 System overview of Uni-OPU

Uni-OPU is a complete flow including both software compilation and hardware processor

implementation, where two levels of acceleration are performed. The first level is software-

level acceleration, where computation reformulation is conducted to eliminate the inefficient

operations and unify the computation process. The second level is hardware-level accelera-

tion, where channel level parallelisms are explored and optimized. The overall flow is shown

in Fig. 6.5, where a detailed description of each step is described as follows:

• Architecture parser parses the .meta configuration file generated by Tensorflow, and

extracts the network architecture information. Operation fusion is conducted to merge

Batch Normalization or instance Batch Normalization layer into previous CONV layer.

107

Parsed operation structures are written into an intermediate graph representation (IR).

IR also contains the network quantization information (see Section 6.7.2).

• Computation reformulation eliminates inefficient operations, where the kernel con-

version is applied to recompute kernel weights. Then the address constraint extraction

is conducted to help reformulate the computation pattern. Afterwards, TCONV layer

and CONV layer will have the same computation pattern and control flow.

• Scheduling optimizer performs the optimization on network slicing, parallelism ex-

ploration and scheduling. The optimizer fits the reformulated computation into the

processor with the minimum overall latency. Memory allocation is performed along

the process. After the scheduling, instruction sequence is generated.

• Inference execution takes previous quantized data and instruction sequence as input,

and executes the target network inference process on the hardware processor.

In the following section, we will introduce the software components of the Uni-OPU flow

first, then move to the hardware implementation of the processor.

6.4 Software Compilation

The software compilation includes Architecture parser, Computation Reformulation and

Scheduling optimizer. It transforms a network configuration file into an instruction sequence

that is processor-executable. Here we focus on the introduction of Computation Reformula-

tion and Scheduling optimizer.

6.4.1 Computation reformulation

In this step, we reformulate the computation data and operation order for two purposes:

(1) Reducing the inefficiency in TCONV; (2) Unifying the computation patterns of three

108

Figure 6.6: Processing flow of computation reformulation.

different layers, i.e, NN-TCONV layer, Zero-TCONV layer and CONV layer. The overall

flow for the computation reformulation is shown in Fig. 6.6. There are two main functional

blocks: kernel conversion and address constraint extraction. kernel conversion performs pre-

processing on kernel weights to reduce redundant operations (See Section 6.4.1.1). address

constraint extraction calculates the set of required constraints for the control of unified

computation pattern (See Section 6.4.1.2). It can be seen that we first check whether a

layer is a TCONV or not based on architecture parser result. If current layer is a regular

CONV layer, we go through the top path and perform address constraint extraction based

on CONV layer’s original kernel weights and original FM. If current layer is a TCONV layer,

we would further decide the type of TCONV. For Zero-TCONV layer, we would perform

address constraint extraction on its original kernel weights and up-sampled FM. For NN-

TCONV layer, we would first conduct kernel conversion to calculate all pre-addable weight

combinations and form a new set of kernel weights. Then address constraint extraction is

performed on converted kernel weights and up-sampled FM. The final output of computation

reformulation is a set of address constraint parameters and converted kernel weights, which

can be directly applied to original input FM. We discuss each step in detail in the following

subsections.

109

Figure 6.7: Searching for all pre-addable combinations of original kernel weights. (a). Naive

method; (b). Improved method for higher efficiency.

6.4.1.1 Kernel conversion

pre-adds weights to skip the up-sampling process and reduce the computation requirement,

as indicated in section 6.2.3.2. This requires the identification of all pre-addable combinations

of one kernel. A straightforward method is applying the kernel across the up-sampled FM,

and recording all the occurred combinations, as shown in Fig. 6.7(a). However, this method

produces repeated combinations and is thus not efficient. Instead, we create an auxiliary

kernel with size up × up, and slide it across the original kernel weights. As shown in Fig.

6.7(b), all the weights within one kernel window form one pre-addable combination, which

takes only 16/36 = 44% searching time compared with Fig. 6.7(a) in this specific case. Then

we pre-add the elements in each extracted combination to create converted kernel weights.

We can merge these two steps into a CONV operation, where the FM is original kernel

weight, and kernel is the up × up auxiliary kernel with all elements assigned as 1. The

output FM of CONV process is the reformulated kernel.

The process of producing the new kernel weights kernew of one layer is described in Algo-

rithm 1. Suppose Cin and Cout represent the input and output channel number, respectively.

We extract each 2D kernel in the original kernel set, and perform a CONV on it with the

auxiliary kernel. The padding size is set as up − 1. The 2D output gets inserted to kernew

as part of the converted kernel weights. Fig. 6.8 shows an example. Suppose we have kernel

110

Algorithm 1 Kernel Conversion

1: function Kernel conversion(kerori, up)

2: kernew ← empty, auxker ← ones(up, up), pad← up− 1

3: for i← Cout do

4: for j ← Cin do

5: tmp ker = CONV (auxker, kerori, pad)

6: kernew.push back(tmp ker)

7: end for

8: end for

9: end function

Figure 6.8: Reformulation of the new kernel weights.

size = 3 and up = 2. Then the padding size is pad = 2− 1 = 1. The blue arrows illustrate

the convolution process, and the reformulated kernel weight has size 4× 4. The new weights

are listed in Table 6.2.

6.4.1.2 Address constraint extraction

transforms CONV and Zero/NN-TCONV into the same computation pattern, which is de-

scribed in Algorithm 2. The computation pattern parallels the input/output channel. For a

block of input FM and kernel weights, we take out each kernel weight ker[k, j, i], and calcu-

111

Table 6.2: The value of reformulated kernel.

new kernel value new kernel value

w’1 w1 w’9 w4+w7

w’2 w1+w2 w’10 w4+w5+w7+w8

w’3 w2+w3 w’11 w5+w6+w8+w9

w’4 w3 w’12 w6+w9

w’5 w1+w4 w’13 w7

w’6 w1+w2+w4+w5 w’14 w7+w8

w’7 w2+w3+w5+w6 w’15 w8+w9

w’8 w3+w6 w’16 w9

late its multiplications with selected set of elements from input feature map. The selection

is based on the constraints of starting and ending address [xis, xie], [yis, yie], as well as strides

six, siy. Each multiplication result is added to the corresponding output in address xo, yo,

which can be calculated by the starting and ending constraints [xos, xoe], [yos, yoe] and strides

sox, soy of output FM.

Algorithm 3 describes the process of address constraint extraction. If kernel is reformu-

lated, we use the function MAP KORI(r) first to map the position of each kernel weight

element in 2D kernel (regardless of Cin and Cout) back to original kernel. Examples are shown

by the orange arrows and position labels in Fig. 6.8. w′1 maps back to w1 in original kernel

with position (0, 0), and w′16 maps back to w9 with position (2, 2). For reformulated kernel

weights that have more than one original kernel weight components, we use the position of

top left corner weights (see w′10 and w′5).

Then the constraints are calculated by functions CON IN S and CON IN E from

Algorithm 4. Examples are shown in Fig. 6.9. Suppose we have up = 2, pad.left =

pad.right = pad.up = pad.down = 1. For kernel weights w1 at position [0, 0] (mapped back

from reformulated kernel weights w′1), when we slide it through the up-sampled FM, w′1s

112

Algorithm 2 Unified Computation pattern

1: function Computation(fm, ker)

2: for i← 0, (Cout/Pout)− 1 do . Pout parallelism

3: for j ← 0, (Cin/Pin)− 1 do . Pin parallelism

4: for k ← 0,Kx ×Ky − 1 do

5: curk = ker[k, j, i], xo = xos[k], yo = yos[k]

6: for xi ← (xis[k], xie[k]) with step six do

7: for yi ← (yis[k], yie[k]) with step siy do

8: out[xo, yo, i]+ = input[xi, yi, j]× curk

9: xo+ = sox, xo = (xo > xoe)?xos : xo

10: yo+ = soy, yo = (yo > yoe)?yos : yo

11: end for

12: end for

13: end for

14: end for

15: end for

16: end function

113

Algorithm 3 Address constraint Extraction

1: function map kori(r)

2: rori = r − (up− 1), rori = rori < 0? 0 : rori

3: Return rori

4: end function

5: function constraint(fm, ker, pad, s)

6: In addr con, out addr con← empty

7: for xk ← 0,Kx − 1 do

8: for yk ← 0,Ky − 1 do

9: xkori, ykori = (MAP KORI(xk), MAP KORI(yk))

10: xis, yis=CON IN S(xkori, ykori, pad)

11: xie, yie=CON IN E(xkori, ykori, pad)

12: sxi = syi = ceil(s/up)

13: xos, yos=CON OUT(xis, yis, xkori, ykori, s)

14: xoe, yoe=CON OUT(xie, yie, xkori, ykori, s)

15: sxo = syo = 1

16: end for

17: end for

18: end function

114

applicable range starts at address [0, 0] and ends at address [3, 3], which covers elements from

[0, 0] to [1, 1] in the original FM. Note that we calculate the covering range in the original

FM directly using CON IN S and CON IN E, then we have xs = ys = ceil((0−1)/2) = 0.

Furthermore, Wup = Hup = 2×2+1+1 = 6, then xe = ye = floor((6−(3−0)−1)/2) = 1. The

same range of [0, 0] to [1, 1] is gained. Moreover, we have the strides sxi = syi = ceil(1/2) = 1.

Another example is w′14, which equals to w7 + w8 and maps back to position [2, 0] based

on MAP KORI(r). Then we can get xs = ceil((2− 1)/2) = 1, ys = ceil((0− 1)/2) = 0 as

well as xe = floor((6− (3− 2)− 1)/2) = 1, floor((6− (3− 0)− 1)/2) = 1. Therefore, w′14

will be applied to input FM address between [1, 0] to [1, 1] with strides [1, 1].

Algorithm 4 Address mapping between original FM and up-sampled FM.

1: function con in s(x, y, pad)

2: xori = ceil((x− pad.left)/up)

3: yori = ceil((y − pad.up)/up)

4: Return xori, yori

5: end function

6: function con in e(x, y, pad)

7: Wup = Wfm × up + pad.left + pad.right

8: Hup = Hfm × up + pad.up + pad.down

9: xori = floor((Wup − (Korix − x)− pad.left)/up)

10: yori = floor((Hup − (Koriy − y)− pad.up)/up)

11: Return xori, yori

12: end function

After obtaining the address constraints on input FM, corresponding address constraints

on output FM [xos, yos] and [xoe, yoe] can be calculated by Algorithm 5, which simply deduces

the output position based on general convolution rules.

The computation reformulation thoroughly eliminates the inefficient operations, thus

achieving the software-level acceleration. Fig.6.10 shows the operation reduction rate of

115

Figure 6.9: An example of address constraint extraction

Algorithm 5 Address mapping to output FM.

1: function con out(x, y, xk, yk, pad, s)

2: xout = (x× up + pad.left− xk)/s

3: yout = (y × up + pad.up− yk)/s

4: Return (xout, yout)

5: end function

TCONV layers gained by the computation reformulation. Both types of TCONV are tested

on each network. For instance, we reduce 2.2× operation number for NN-TCONV based

DCGAN and 3.6× for Zero-TCONV based DCGAN. Moreover, it can be seen that FCN8s

has much higher operation reduction rate compared with rest of the networks, due to its

higher percentage of redundant operations caused by larger up-sampling rate. It should

be noted that the input and output channel number as well as their computation process

remain the same after computation reformulation, and therefore can be parallelized. Then

the scheduling optimizer section takes care of the parallelism exploration, which performs

the hardware level acceleration. We will discuss it in the following section.

6.4.2 Scheduling Optimizer

Taking the reformulated network as input, we perform the optimization to fit the current

network into the hardware processor, aiming for the maximum throughput. We calculate

116

Figure 6.10: Operation reduction by computation reformulation.

Figure 6.11: Throughput under different choices of [IC,OC].

the network layer by layer. For each layer, the optimization process includes two dimensions

of slicing, i.e., FM slicing and channel slicing. Suppose an individual layer i is sliced into

pi blocks, we can define the slicing scheme for layer i as a vector of parameter groups

~P : [(IN i
jn , IM

i
jm , IC

i
jc , OC

i
jc)|jn ∈ [0, pin), jm ∈ [0, pim), jc ∈ [0, pic)]. Each parameter group

(IN i
jn , IM

i
jm , IC

i
jc , OC

i
jc) decides one round of processor computation, where IN i

jn , IM i
jm ,

ICi
jc , and OCi

jc represent the input block width, height, the input channel number, and the

117

output channel number, respectively. Then we have:

N i
in ≈

pin∑
jn

IN i
jn , M i

in ≈
pim∑
jm

IM i
jm

Ci
in =

pic∑
jc

ICi
jc

#Ci
out slices

, Ci
out =

pic∑
jc

ICi
jc

#Ci
in slices

, (6.5)

and

pi = pin × pim × pic. (6.6)

The use of ≈ for N i
in and M i

in is due to the overlapping area required in the process of

FM slicing, so the summation of block sizes will be slightly larger than the input FM width

N i
in and height M i

in. Moreover, Ci
in and Ci

out represent the input and output channel number

of the layer.

Suppose layer i has kernel weights ki × Ci
in × Ci

out, we require ki sets of constraints

{xisp , xiep , sixp}, {yisp , yiep , siyp}, {xosp , xoep , soxp} and {yosp , yoep , yoxp}, where p ∈ [0, ki − 1].

The inference latency Li
j of one block computation is represented by

comp = ON i
jn ×OM i

jn +

ki−1∑
p=0

xoep − xosp
soxp

×
yoep − yosp

soyp
, (6.7)

load = IN i
jn × IM i

jn + ki × ICi
jc ×OCi

jc, (6.8)

Li
j = max(comp, load), (6.9)

where ON i
jn and OM i

jm indicate the width and height of the output block, ON i
jn × OM

i
jm

accounts for the latency of the output memory write. load summarizes the loading time of

the input FM block and kernel weights block. Then we define the throughput of inferencing

a network as

T =

∑m̂
i N i

out ×M i
out × (2× Ci

in × ki − 1)× Ci
out∑m̂

i

∑pi

j Li
j

, (6.10)

where m̂ represents the number of layers.

118

Figure 6.12: (a) Overview of the hardware accelerator architecture; (b) Strided address

generator; (c) first visit identification module

Therefore, the target of slicing optimization can be represented as

max
P

T

s.t. IN i
jn ∗ IM

i
jm <= depththres

ceil(
ICi

jc

MACPE
) ∗OCi

jc <= PEnum

ICi
jc , OCi

jc <= widththres, (6.11)

where depththres and widththres stand for on-chip BRAM depth and width limit, respectively.

MACPE stands for the number of MACs contained by one processing element (PE) unit,

and PEnum indicates the number of PEs. We have MACPE × PEnum = MACnum, which is

the total number of MACs implemented in the design. Here we use an example to show the

distribution of achievable throughput under different choices of [IC,OC]. Suppose we take

MACPE = 16, MACnum = 4096 and widththres = 64. For one layer with Cin = 128 and

Cout = 128, the results are shown in Fig. 6.11. Note that the throughput is normalized by

the theoretical maximum throughput of the computation engine. It can be seen that there

are three [IC,OC] locations with the maximum throughput. However, [IC : 32, OC : 128]

and [IC : 128, OC : 32] violate the IC,OC ≤ widththres = 64 constraint and we therefore

have [IC : 64, OC : 64] as the final solution.

119

6.5 Hardware Micro-Architecture

In this section, we present the hardware micro-architecture of Uni-OPU, which is adopted

from [YWZ+19] and essentially implements Algorithm 2 as well as the rest of the computation

non-intensive layers, such as pooling and activation. Fig. 6.12(a) shows an overview of the

accelerator. We use ping-pong structure for both input FM buffer and kernel weights buffer

to hide the off-chip memory access latency. Ins Control sends instructions to the rest of

modules. Data Fetch reads and rearranges the on-chip data. Data Write writes back on-

chip data. Then Data Process includes the computation engine and a post process block.

6.5.1 Address generator

We use address generators in Data fetch and Data write for on-chip memory access. Ben-

efiting from our computation reformulation, parallelism strategy and data storage pattern,

only one address generator is required for each of the data access modules. This greatly

simplifies the control logic and provides easy routing. The structure of the address generator

is shown in Fig. 6.12(b). For our uniform computation pattern, the memory access of FM

data follows a strided pattern. Specifically, the generated address is decided by two strided

parameters for x and y dimensions with constraints. Therefore, the address generator is

implemented with two adders for the increments of two strided parameters and one MAC

for final address computation. When init signal is valid, the outputs of adders xout and yout

are assigned xs and ys. Then for each clock cycle, the xout gets incremented by step sx until

it reaches the ending value xe, which will trigger the increment of yout by sy. Each pair of

[xout, yout] will generate one address of yout × x block size + xout using the MAC unit, until

the stop condition (yout = ye and xout = xe) is reached. Then parameters will get updated

and the next round is initiated.

120

6.5.2 Data Process

As shown in Fig. 6.12, we use a multiplier array followed by an adder tree structure to build

the basic PE. MACPE is the number of multipliers in each PE. Here we use MACPE = 16,

which decides the minimum unit of input channel that can be efficiently handled by the com-

putation engine (as described by the second condition of Eq. (6.11)). The number of PEs

(PEnum) can be scaled according to available computation resource. PEnum decides the max-

imum number of output channels that can be produced by one round of computation. The

computation engine is designed to efficiently handle a set of channel number pairs [In,Out]

with In < min(MACnum, widththres) and Out < min(PEnum, widththres). [In,Out] for cer-

tain round of the computation can be set by the parameters In mode and Out mode from

instruction. Specifically, a 1024-multiplier array is able to handle the[16, 64], [32, 32], [64, 16]

pairs with full efficiency. Data Post-process considers the summation of partial results, as

well as pooling and activation operations. It is implemented in a widththres data batch SIMD

mode for higher throughput. A data concatenation unit is implemented to collect data until

the number of output channel reaches widththres. Moreover, data quantization is performed

by data shift, cut and round operations to save on-chip memory.

6.5.3 Data fetch and Data write

Apart from the address generator, a data rearrangement unit is implemented in Data fetch

module for data copy, selection and concatenation. Within each round of computation

(line 4 − 13 in Algorithm 2), one position of kernel weights from different channels will be

shared for all multiplications. Meanwhile, FM data will get updated in each clock cycle

based on the generated address. We will select out the required bits from FM data and

perform the data copy to form fixed length input of Data Process based on the [In,Out]

operating mode. For instance, if the operation mode is [32, 32], and BRAM bandwidth is

set to 64×DATA WIDTH, it indicates only the first 32×DATA WIDTH data is valid

121

and should be selected out. Then the selected data will be copied 32 times to fit the 32

computation requirement of the output channel.

In Data write module, a flag buffer is utilized for first visit identification. As shown in

line 8 of Algorithm 2, each output FM element is the result of multiple additions, thereby

its initial value needs to be set to zero. This requires us to ’refresh’ the content of output

buffer BRAM back to zero for each increment of i, which takes BRAM size clock cycles

due to FPGA hardware constraints. To avoid the ’refreshing’ time overhead, we employ a

small flag buffer with the same depth as output buffer. Elements stored in the flag buffer

take two values, i.e., 0 and 1. For each i iteration computation round, we set a default flag

value (dflag). When we access one output buffer address, corresponding flag value cflag

for that address will be pre-loaded and performs dflag
⊙

xflag, as shown in Fig. 6.12(c).

If XNOR result is True, we add current computation value with bias and store the results

to output buffer, then flip the cflag to its opposite value nflag and store cflag to flag

buffer. If the result is False, we add the current computation value with existing value in

the output buffer, then store the results back. Then dflag will be flipped for next i iteration.

Benefiting from this improved writing architecture, we get rid of the padding step (Note that

the padding step indicates the general padding at the edge of feature map instead of the

up-sampling padding) at the end of Memory Write for each layer. Instead the padding effect

will be reflected during the computation stage. As shown in Fig. 6.13, we only compute

4 multiplications with valid input FM elements and write to 4 corresponding Output FM

positions using the write address generator.

6.5.4 Memory Arrangement

Data arrangement in memory influences the achievable bandwidth and the efficiency of data

access. As shown in Fig. 6.14, we employ a channel-wise storage pattern that groups elements

from different channels under the same address. Therefore, during the data access process,

data from different channels can be fetched within a single clock cycle, which satisfies the

122

Figure 6.13: Eliminating regular padding by write address manipulation. The green area

covers the 9 Input FM elements that need to be multiplied with kernel weights K1. However,

5 out of 9 multiplications are redundant. Therefore, we only conduct 4 multiplications in

the yellow area and write to the corresponding position of Output FM.

requirement of paralleling the input channel.

6.6 Instruction Set Architecture

We utilize a complex instruction set structure for the execution of networks on processor

(details of the instruction architecture and execution scheme can be found in section III of our

previous work [YWZ+19]). Each instruction takes several hundreds cycles to complete. We

define the granularity of our instruction set to be block-level for high flexibility. To be specific,

each instruction only controls a part of operations for a single block of input FM data, instead

of the complete network layer. Six main instructions are shown in Fig. 6.15. Parameters

of different instructions have different lengths. Therefore, in actual implementation, we

decompose each long instruction into several short instructions with 32bit uniform length.

One short instruction contains parameters with the same updating frequency. For example,

[six, xis, xie, siy, yis, yie] are generally updated for each switch of kernel weights. In contrast,

Kernel size and Kernel round will not get updated until current layer is finished. Therefore,

123

Figure 6.14: Data storage format arrangement.

Figure 6.15: Instruction set.

we only generate short instructions for parameters that require updating at current stage,

which reduces the length and loading time of the instruction sequence. Extra parameters

for start/end address and stride for on-chip write step are added in Post process instruction

due to the additional write address generator.

6.7 Experiment

6.7.1 Experiment Setting

We evaluate the acceleration performance of Uni-OPU on FPGA on different TCONV net-

works, which cover a wide range of hyper parameter choices and different application areas.

The description for network benchmarks is shown in Table 6.3. A Xilinx Zynq7z100 is

124

Table 6.3: Information of Network Benchmarks.

Network
TCONV CONV Up-sample kernel kernel

application
number number size size stride

DCGAN 2 1 2 3 1 image synthesis

ArtGAN 5 1 2 3 1 art style image synthesis

DiscoGAN 7 7 2 4 (1,2) style transfer

Unet 4 19 2 (1,3) 1 segmentation

FSRCNN 1 7 2 (1,3,5,9) 1 super resolution

FCN8s 3 18 (2,8) (1,3,4,16) 1 segmentation

used to implement 8bit and 16bit versions of the Uni-OPU by hand-coded Verilog, with

resource utilization shown in Table 6.4. Compared with conventional convolution net-

work accelerator [YWZ+19], which is a 8bit system, the resource overhead of 8bit Uni-

OPU is 339276/337651 − 1 = 0.48% for FF, 337.5/337 − 1 = 0.14% for BRAM and

1987/1986 − 1 = 0.05% for DSP. Benefiting from the regular padding eliminating, we get

an 154389/154516− 1 = −0.08% LUT utilization reduction. An Intel i7-7700k CPU is used

for off-line software compilation. FPGA power is measured using a PN2000 electricity usage

monitor, where the power consumption of the complete board is included. For GPU base-

line, we use a Nvidia Titan Xp with 3840 CUDA cores running at 1481MHZ. We evaluate

the GPU performance of each network using two batch choices (batch = 1 and batch = 64)

for more comprehensive comparison. Specifically, batch = 1 evaluates the best single image

inference latency for real-time applications. Batch = 64 evaluates the largest throughput as

big batch size guarantees high resource utilization. Each test is averaged over 500 runs.

For the rest of the experiment parts, section 6.7.2 shows our network quantization results.

Section 6.7.3 shows the acceleration performance on Zero-TCONV implemented networks

and their comparison with existing FPGA accelerators. Section 6.7.4 shows the acceleration

performance on NN-TCONV implemented networks.

125

Figure 6.16: (a) Unet; (b) DCGAN; (c) DiscoGAN; (D) ArtGAN.

6.7.2 Network Quantization

Network quantization boosts the performance of hardware accelerators, as lower width rep-

resentation means more implementable multipliers and adders with regard to the same hard-

ware resource constraints. In our design, one Xilinx DSP48E1 [dsp] is able to implement one

16bit × 16bit fixed-point multiplier or two 8bit × 8bit fixed-point multipliers. Quantization

is well-studied in conventional CNN, but fewer related researches are found for TCONV

networks. Only Wang et. al. in [WWJ+19] studied the quantization of GANs. Meanwhile,

all the previous acceleration work employed the quantized implementation on FPGA, but

limited information is provided on the quantization influence of network performance.

Here we employ a dynamic fixed-point quantization scheme, which utilizes different frac-

tion lengths for each layer’s weights and FM. The fraction length is chosen so the sum of

least square error of quantized value and original value is minimized. The performance of

four quantized networks is evaluated visually in Fig. 6.16, where we find 8bit fixed repre-

sentation for both kernel weights and FM is able to maintain the quality of their generated

images. For FSRCNN, we calculate the PSNR(dB) [DLT16] of 32 bit float (37.0013 dB),

16bit fixed(37.0012 dB) and 8bit fixed (32.5965 dB) networks for accuracy evaluation, where

16 bits are required for high FSRCNN accuracy. FCN8s shows obvious segmentation error

at 8bit quantization, so we only employ 16bit version.

126

Table 6.4: FPGA Resource Utilization.

LUT FF BRAM DSP

Zynq7z100 8bit 154389(55.66%) 339276(61.15%) 337.5(44.7%) 1987(98.37%)

Zynq7z100 16bit 117971(42.53%) 247238(44.56%) 494.5(65.50%) 1987(98.37%)

Table 6.5: Performance/Watt over GPU compared with other TCONV accelerators.

Network DCGAN DiscoGAN Unet

Design [YBK+18] [WSWZ19b] Uni-OPU [YBK+18] Uni-OPU [LFN+18] Uni-OPU

Bit-width 16 16 16 8 16 16 8 16 16 8

Device XCVU13P XC7VX690T XC7Z100 XCVU13P XC7Z100 XC7Z045 XC7Z100

Utilized DSP 1560 (13%) 2048 (64%) 1987 (98%) NaN 1987 (98%) 640 (71%) 1987 (98%)

Frequency(MHz) 190 200 200 190 200 200 200

Performance/Watt over GPU (batch = 1)
3.3×a 3.2×b

24.91× 37.63×
3.0×

18.65× 31.89× 7.85× 13.95× 28.89×

Performance/Watt over GPU (batch = 64) 4.81× 7.26× 4.22× 7.22× NA 1.89× 4.05×

a. Compared with Nvidia Titan X without the clarification of batch size b. Compared with Nvidia 1080ti without the clarification of batch size

6.7.3 Acceleration performance of Zero-TCONV networks

We first evaluate all six networks with Zero-TCONV for better comparison with existing

acceleration work.

Comparison with conventional convolution accelerator. We use our general ac-

celerator in [YWZ+19] which is optimized only for conventional convolutional layers and

has state-of-the-art performance. We address it as CONV-FPGA, indicating that no opti-

mization for TCONV is considered. CONV-FPGA treats TCONV as a regular up-sampled

CONV, and we ignore the up-sampling time for simplicity. The speedup performance of

Uni-OPU over CONV-FPGA is shown in Fig. 6.17. Benefiting from inefficient operation

reduction, Uni-OPU is 3.29× to 45.52× faster than CONV-FPGA on Zero-TCONV layers.

For CONV layers, Uni-OPU has the same performance as CONV-FPGA. The speedup of

the whole network depends on the percentage of TCONV vs. CONV. More TCONV com-

putation indicates higher network speedup. In summary, Uni-OPU is able to speedup the

TCONV layer without sacrificing its performance on the CONV layer.

Comparison with GPU platform. The performance comparison of Uni-OPU and

127

Figure 6.17: Uni-OPU vs. CONV-FPGA (Zero-TCONV).

GPU baseline is shown in Fig. 6.18. We have the top graph showing the speed evaluation

results of GPU (batch = 1), GPU (batch = 64), Uni-OPU (16bit) and Uni-OPU (8bit) (ex-

cluding FSRCNN and FCN8s). All the performance is normalized using the GPU (batch = 1)

performance. We can find that Uni-OPU obtains an average 4.01× (8bit) and 1.90×(16bit)

speedup compared with GPU (batch = 1). When GPU is running at batch = 64 mode, the

CUDA units have a higher utilization and the normalized single image speed (not latency)

is 5.03× faster than Uni-OPU (16bit) on average. However, Titan Xp has 1.875× more

computation units and 7.4× higher frequency compared with Uni-OPU, which adds up to

a 13.88× higher computation capability. The performance advantage of Uni-OPU is gained

from two aspects: (1) The domain specific acceleration architecture we build in FPGA; (2)

The TCONV computation reduction by our software compilation. The bottom graph of

Fig. 6.18 exhibits the results of performance/Watt, which indicates the energy efficiency

of different platforms. Uni-OPU (16bit) and (8bit) have 2.91× to 24.92× and 11.91× to

37.63× higher performance/Watt compared with GPU (batch = 1). Even for GPU (batch

= 64), Uni-OPU still has 1.14× to 4.81× (16bit) and 2.91× to 7.26× (8bit) better power

efficiency. It can be seen that networks with higher TCONV percentage tend to gain more

power efficiency compared with GPU, as a large amount of computation is eliminated.

128

Figure 6.18: Uni-OPU vs. GPU baseline (Zero-TCONV).

Comparison with other FPGA TCONV accelerators. We also compare Uni-

OPU with state-of-the-art Zero-TCONV accelerators, with the results shown in Table 6.5.

Note that we employ the performance/Watt over GPU as the comparison criterion, as these

benchmarks do not have the network input size and absolute throughput information, which

renders direct throughput comparison difficult. On the other hand, power efficiency compar-

ison with GPU is able to reflect both the speed and power consumption performance of the

design, thus making it a reliable criterion. These comparison networks [YBK+18] [LFN+18]

[WSWZ19b] are implemented via 16 bit quantization. However, as indicated by section

6.7.2, we are able to quantize DCGAN/DiscoGAN/Unet to 8bit without the performance

degradation of the generated image. Therefore, both 8bit and 16bit versions are evaluated.

Results show that for DCGAN, Uni-OPU achieves 4.81× and 7.26× power efficiency over

Titan Xp (batch = 64). Meanwhile, previous design has only 3.3× and 3.2× compared with

less powerful GPU Titan X and 1080ti. Similarly, for DiscoGAN, 4.22× and 7.22× better

power efficiency over Titan Xp is achieved, while previous work shows only 3.0×. For Unet,

129

Figure 6.19: Uni-OPU vs. CONV-FPGA (NN-TCONV).

Uni-OPU obtains 13.95
7.85

≈ 1.8× and 28.89
7.85

≈ 3.8× higher power efficiency compared with

[LFN+18]. It should be noted that work [YBK+18][WSWZ19b][LFN+18] have individual

accelerators with specifically tuned parameters for each network. Meanwhile, Uni-OPU is

a uniform processor that can execute different TCONV networks by switching instruction

sequence without FPGA reconfiguration. The performance gain of Uni-OPU comes from

the uniform architecture we employ for both TCONV and CONV layers. The complete

sharing of control logic, data buffer and computation engine guarantees the high run-time

computation resource efficiency, which in turn improves the power efficiency.

6.7.4 Acceleration performance of NN-TCONV networks

The hardware acceleration of NN-TCONV has not been explored before, therefore we com-

pare our acceleration performance with CONV-FPGA and the GPU baseline only.

Comparison with conventional convolution accelerator: NN-TCONV performs

poorly in inefficiency reduction since no zero multiplication is introduced by the up-sampling

step. However, based on the kernel conversion (see Section 6.4.1.1), we are able to make use

of the NN-up-sampling property, which effectively reduces the required number of compu-

tations. As shown in Fig. 6.19, for NN-TCONV layers, 2.09× to 27.20× speedup can be

130

Figure 6.20: Uni-OPU vs. GPU baseline (NN-TCONV).

achieved by Uni-OPU compared with CONV-FPGA.

Comparison with GPU platform. We also evaluate the performance of speed and

power efficiency against the GPU baseline. As shown in Fig. 6.20, Uni-OPU is able to gain

1.63× (16bit) and 3.41× (8bit) speedup on average compared with Titan Xp (batch = 1).

As for the power efficiency, the performance of Uni-OPU is 2.46× to 19.91× (16bit) and

10.04× to 32.73× (8bit) better. Moreover, compared with Titan Xp (batch = 64), Uni-OPU

still performs 2.32× (16bit) and 4.33× (8bit) better on average for the power efficiency.

6.8 Conclusion

In this chapter, we have presented the first full software/hardware stack solution that utilizes

a uniform processor to accelerate both CONV and different types of TCONV layers. In Uni-

OPU flow, computation reformulation and address constraint extraction are performed for

the reduction of run-time operations and unification of computation patterns. This two-

step process reduces over 70% of required operations on average. Moreover, the hardware

131

processor focuses on channel-wise parallelism, making it capable of accelerating networks

with a wide range of hyper parameters without FPGA reconfiguration. Evaluation results

show that Uni-OPU is 1.45× to 3.68× more power efficient compared with state-of-the-

art Zero-TCONV accelerators. For NN-TCONV, whose acceleration has not been explored

before, Uni-OPU obtains 12.43× (16bit) and 21.38× (8bit) higher power efficiency compared

with Titan Xp, with 1.63× and 3.41× lower latency.

132

CHAPTER 7

Summary

Deep learning is getting employed in our everyday life, hardware accelerator helps improve

DCNNs inference performance and enable them to be applied to real-time scenarios. In this

thesis we propose a series of work on FPGA acceleration for DCNNs. The development of

deep learning algorithm and corresponding hardware acceleration is at a very high speed.

The first typical acceleration work only appears at 2015 [ZLS+15b], and in less then five

years there are many accelerator designs proposed.

Figure 7.1: Timeline of our work

133

Fig 7.1 briefly explain the timeline of our work. In late 2015 and early 2016 we proposed

FPGA based customized DCNN using uniform Convention-Flattening(CF) Accelerators and

Inner-Product (IP) accelerators shared across multiple convolutional layers. The uniform

CF and IP accelerator maximizes throughput and minimizes the off-chip memory access.

Baesd on this framework, we designed customized accelerator for VGGnet and YOLOv2,

with different optimization choices and data management module. Specifically, for YOLOv2

our FPGA accelerator was productized and applied to subway X-ray auto-hazard detection

facilities.

Starting from late 2016 we worked on the auto-generator for customized accelerator that

can generate working HDL code for given CNN accelerator on given FPGA platform, based

on our improved architecture template. The parameterized template can conduct convolution

with different sizes and strides using similar structure, and the optimization problem was

simplified into finding the best IPA length. The experimental results shown that, despite

the fact the implementation is generated by compiler, the performance is still comparable to

network specific accelerators. For example, our automatically generated Alexnet design on

VX485T performs 2.1 times better than the state-of-the-art implementation [MGAG16].

In early 2018 we started our work on the development of the OPU (Overlay processing

unit) for the FPGA based DCNN acceleration processor. We develop a set of instructions

with granularity optimized for hardware efficiency. OPU is software programmable and is

applicable to a wide range of CNNs without hardware re-configuration. OPU of different

scales show 1.2× to 5.35× better power efficiency compared with GPU (batch = 1, batch =

16, batch = 64) and other FPGA designs. Moreover, for cascaded CNN networks to detect

car license plate, OPU is 2.9x faster compared with edge computing GPU Jetson Tx2 with

similar amount of computing resources.

Later we extended our ISA and OPU to cover more newly emerged DCNN architectures.

Light-OPU was proposed to handle the light-weights DCNNs, which shares the computa-

tion engine among conventional convolution layer and depth-wise convolutional layer.The

134

software compiler also conducts network optimization, including layer grouping, operation

fusion and operation reordering, eliminates redundant memory access and reduces number

of operations in LW-CNN. Uni-OPU was proposed for as the first full software/hardware

stack solution that utilizes a uniform processor to accelerate both CONV and different types

of TCONV layers. In Uni-OPU flow, computation reformulation and address constraint

extraction are performed for the reduction of run-time operations and unification of compu-

tation patterns. This two-step process reduces over 70% of required operations on average.

Moreover, the hardware processor focuses on channel-wise parallelism, making it capable

of accelerating networks with a wide range of hyper parameters without FPGA reconfig-

uration. Evaluation results show that Uni-OPU is 1.45× to 3.68× more power efficient

compared with state-of-the-art Zero-TCONV accelerators. For NN-TCONV, whose accel-

eration has not been explored before, Uni-OPU obtains 12.43× (16bit) and 21.38× (8bit)

higher power efficiency compared with Titan Xp, with 1.63× and 3.41× lower latency.

In summary, Fig 7.2 depicts different stages of our work on FPGA DCNN acceleration.

At stage A we need human FPGA designer to analyze the given specific network (calculate

memory usage, bandwidth requirement, multiplier requirement, etc.) and target FPGA

board resources (DSP, Memory, LUT, DDR, PCIE , etc.), then design and implement the

accelerator architecture from scratch. Moreover, a complete accelerator system requires

more than just the accelerator itself, the designer most also consider the implementation of

communication with a CPU to handle the input data acquisition, result output and user

GUI. It could take months for to implement a customized FPGA accelerator, while it may

have outstanding performance with regard to one specific network, the architecture is hard

to be ported for other networks.

Therefore, at stage B we were trying to simply the FPGA accelerator development pro-

cess. We implemented an end-to-end auto-compiler to generate RTL designs based on pre-

defined RTL library. As shown in Fig. 7.2, we would specify the network configuration and

targeted FPGA board and send to auto-compiler as inputs. The auto-compiler would ana-

135

Figure 7.2: Different stages of our work

lyze and optimize design parameters, then generate a complete set of Verilog files to form the

accelerator. This simplifies FPGA accelerator design process and avoid tedious implementa-

tion step. However, there a still underlying issues in auto-generators. For example, different

generation of the FPGA boards have different DDR/PICE, which requires different IPs and

interface on the accelerator side. Moreover, the auto-generator cannot guarantee that the

generated design will satisfy the timing requirement. If the design cannot achieve desired

frequency, we need to lower the frequency and degrade performance. Furthermore, the gen-

erated design can only execute one network, which may not suit growing DCNN application

scenarios which require several DCNNs to execute in a chain for complex AI task.

In the end at stage C we propose OPU, an overlay processor on FPGA for general

DCNN accelerations. From Fig 7.2 it can be seen that we will fix the FPGA board and all

the peripherals including CPU/DDR. For different networks, we would use OPU compiler

to perform a one-time compilation and generated instruction.bin and weights.bin. Then we

136

would store the instruction and weights files of different networks into DDR connected to

FPGA board. During the execution, CPU will send corresponding input image / start signal

and collect result for further processing. We also have our own board fabricated as OPU

test-platform. Using OPU platform for cascaded CNN networks to detect car license plate,

OPU is 2.9x faster compared with edge computing GPU Jetson Tx2 with similar amount

of computing resources. This project has been productized and applied in a roadside curb-

parking system.

137

REFERENCES

[ABC+16] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016.

[AHB+18] Mohamed S Abdelfattah, David Han, Andrew Bitar, Roberto DiCecco, Shane
O’Connell, Nitika Shanker, Joseph Chu, Ian Prins, Joshua Fender, Andrew C
Ling, et al. Dla: Compiler and fpga overlay for neural network inference accel-
eration. In 2018 28th International Conference on Field Programmable Logic
and Applications (FPL), pages 411–4117. IEEE, 2018.

[BWL20] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020.

[BZH18] Lin Bai, Yiming Zhao, and Xinming Huang. A cnn accelerator on fpga using
depthwise separable convolution. IEEE Transactions on Circuits and Systems
II: Express Briefs, 65(10):1415–1419, 2018.

[C+15] François Chollet et al. Keras, 2015.

[CEE+16] Patrick Ferdinand Christ, Mohamed Ezzeldin A Elshaer, Florian Ettlinger,
Sunil Tatavarty, Marc Bickel, Patrick Bilic, Markus Rempfler, Marco Arm-
bruster, Felix Hofmann, Melvin D’Anastasi, et al. Automatic liver and lesion
segmentation in ct using cascaded fully convolutional neural networks and 3d
conditional random fields. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 415–423. Springer, 2016.

[Cho17] François Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1251–1258, 2017.

[CKK18] Jung-Woo Chang, Keon-Woo Kang, and Suk-Ju Kang. An energy-efficient
fpga-based deconvolutional neural networks accelerator for single image super-
resolution. IEEE Transactions on Circuits and Systems for Video Technology,
2018.

[CMB+10] Srihari Cadambi, Abhinandan Majumdar, Michela Becchi, Srimat Chakradhar,
and Hans Peter Graf. A programmable parallel accelerator for learning and
classification. In PACT, pages 273–284. ACM, 2010.

138

[CMJ+18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al.
{TVM}: An automated end-to-end optimizing compiler for deep learning. In
13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18), pages 578–594, 2018.

[CSJC10] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A dynamically configurable coprocessor for convolutional neural net-
works. In ACM SIGARCH Computer Arch. News, volume 38, pages 247–257,
2010.

[CSWS17] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7291–7299,
2017.

[CWV+14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for
deep learning. CoRR, abs/1410.0759, 2014.

[DCM+12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale
distributed deep networks. In Advance in Neural Info. Processing Systems,
pages 1223–1231, 2012.

[DFC+15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision
processing closer to the sensor. In ACM SIGARCH Computer Architecture
News, volume 43, pages 92–104. ACM, 2015.

[DLHT16] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-
resolution using deep convolutional networks. IEEE transactions on pattern
analysis and machine intelligence, 38(2):295–307, 2016.

[DLT16] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-
resolution convolutional neural network. In European conference on computer
vision, pages 391–407. Springer, 2016.

[dsp] Performance and resource utilization for floating-point v7.1.
https://www.xilinx.com/support/documentation/ip documentation/ru/floating-
point.html.

[DV16] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning. arXiv preprint arXiv:1603.07285, 2016.

139

[FF10] Li Fei-Fei. Imagenet: crowdsourcing, benchmarking & other cool things. In
CMU VASC Seminar, 2010.

[FPHL09] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. Cnp: An
fpga-based processor for convolutional networks. In FPL, pages 32–37. IEEE,
2009.

[Gir15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[GMAB17] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised
monocular depth estimation with left-right consistency. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 270–279,
2017.

[GSQ+18] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao,
Song Han, Yu Wang, and Huazhong Yang. Angel-eye: A complete design flow
for mapping cnn onto embedded fpga. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(1):35–47, 2018.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[HSC+19] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan,
et al. Searching for mobilenetv3. arXiv preprint arXiv:1905.02244, 2019.

[HZC+17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[HZRS16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[HZRS16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In European conference on computer vision, pages
630–645. Springer, 2016.

[IHM+16] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

140

[IMK+14] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Dar-
rell, and Kurt Keutzer. Densenet: Implementing efficient convnet descriptor
pyramids. arXiv preprint arXiv:1404.1869, 2014.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[JAFF16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution. In European conference on computer
vision, pages 694–711. Springer, 2016.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[JYP+17] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor process-
ing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pages 1–12. IEEE, 2017.

[KCK+17] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon
Kim. Learning to discover cross-domain relations with generative adversar-
ial networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1857–1865. JMLR. org, 2017.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[LCL+15] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. Pudiannao: A polyva-
lent machine learning accelerator. In ACM SIGARCH Computer Architecture
News, volume 43, pages 369–381. ACM, 2015.

[LDS18] Mohammad Loni, Masoud Daneshtalab, and Mikael Sjödin. Adonn: adaptive
design of optimized deep neural networks for embedded systems. In 2018 21st
Euromicro Conference on Digital System Design (DSD), pages 397–404. IEEE,
2018.

[LFN+18] Shuanglong Liu, Hongxiang Fan, Xinyu Niu, Ho-cheung Ng, Yang Chu, and
Wayne LUK. Optimizing cnn-based segmentation with deeply customized con-
volutional and deconvolutional architectures on fpga. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 11(3):19, 2018.

141

[LHC+18] Jun Haeng Lee, Sangwon Ha, Saerom Choi, Won-Jo Lee, and Seungwon Lee.
Quantization for rapid deployment of deep neural networks. arXiv preprint
arXiv:1810.05488, 2018.

[LM13] Steve Leibson and Nick Mehta. Xilinx ultrascale: The next-generation ar-
chitecture for your next-generation architecture. Xilinx White Paper WP435,
2013.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

[MCVS17a] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. An automatic rtl com-
piler for high-throughput fpga implementation of diverse deep convolutional
neural networks. In Field Programmable Logic and Applications (FPL), 2017
27th International Conference on, pages 1–8. IEEE, 2017.

[MCVS17b] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop oper-
ation and dataflow in fpga acceleration of deep convolutional neural networks.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 45–54. ACM, 2017.

[MGAG16] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi.
Design space exploration of fpga-based deep convolutional neural networks. In
Design Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific,
pages 575–580. IEEE, 2016.

[MPT+18] Panagiotis G Mousouliotis, Konstantinos L Panayiotou, Emmanouil G Tsar-
doulias, Loukas P Petrou, and Andreas L Symeonidis. Expanding a robot’s
life: Low power object recognition via fpga-based dcnn deployment. In 2018
7th International Conference on Modern Circuits and Systems Technologies
(MOCAST), pages 1–4. IEEE, 2018.

[MSC+16] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula. Scal-
able and modularized rtl compilation of convolutional neural networks onto
fpga. In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–8. IEEE, 2016.

[MZZS18] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 116–131, 2018.

[ODO16] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and
checkerboard artifacts. Distill, 1(10):e3, 2016.

142

[ORK+15] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin
Strauss, and Eric S Chung. Accelerating deep convolutional neural networks
using specialized hardware. Microsoft Research Whitepaper, 2, 2015.

[PKNP18] Kathirgamaraja Pradeep, Kamalakkannan Kamalavasan, Ratnasegar
Natheesan, and Ajith Pasqual. Edgenet: Squeezenet like convolution
neural network on embedded fpga. In 2018 25th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS), pages 81–84. IEEE,
2018.

[PSM+13] Maurice Peemen, Arnaud Setio, Bart Mesman, Henk Corporaal, et al. Memory-
centric accelerator design for convolutional neural networks. In ICCD, pages
13–19. IEEE, 2013.

[PYV18] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization
for training and inference of neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 580–595, 2018.

[QWY+16] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with
embedded fpga platform for convolutional neural network. In Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 26–35. ACM, 2016.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. IJCV, 115(3):211–252, 2015.

[RF17] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 7263–7271, 2017.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

143

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[SCD+16] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized opencl-
based fpga accelerator for large-scale convolutional neural networks. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 16–25. ACM, 2016.

[SCT+16] Wenzhe Shi, Jose Caballero, Lucas Theis, Ferenc Huszar, Andrew Aitken,
Christian Ledig, and Zehan Wang. Is the deconvolution layer the same as
a convolutional layer? arXiv preprint arXiv:1609.07009, 2016.

[SFL+18] Jiang Su, Julian Faraone, Junyi Liu, Yiren Zhao, David B Thomas, Philip HW
Leong, and Peter YK Cheung. Redundancy-reduced mobilenet acceleration on
reconfigurable logic for imagenet classification. In International Symposium on
Applied Reconfigurable Computing, pages 16–28. Springer, 2018.

[SFZ+18] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Mickey
Aleksic. A quantization-friendly separable convolution for mobilenets. In 2018
1st Workshop on Energy Efficient Machine Learning and Cognitive Computing
for Embedded Applications (EMC2), pages 14–18. IEEE, 2018.

[SHZ+18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In CVPR 2015, 2015.

[SPM+16] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. From high-level
deep neural models to fpgas. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, page 17. IEEE Press, 2016.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[SZ14a] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

144

[SZ14b] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[TCAT17] Wei Ren Tan, Chee Seng Chan, Hernán E Aguirre, and Kiyoshi Tanaka. Art-
gan: Artwork synthesis with conditional categorical gans. In 2017 IEEE In-
ternational Conference on Image Processing (ICIP), pages 3760–3764. IEEE,
2017.

[TM18] Frederick Tung and Greg Mori. Deep neural network compression by in-parallel
pruning-quantization. IEEE transactions on pattern analysis and machine in-
telligence, 2018.

[VB18] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaconvnet: mapping reg-
ular and irregular convolutional neural networks on fpgas. IEEE transactions
on neural networks and learning systems, 30(2):326–342, 2018.

[WSWZ19a] Deguang Wang, Junzhong Shen, Mei Wen, and Chunyuan Zhang. An effi-
cient design flow for accelerating complicated-connected cnns on a multi-fpga
platform. In Proceedings of the 48th International Conference on Parallel Pro-
cessing, page 98. ACM, 2019.

[WSWZ19b] Deguang Wang, Junzhong Shen, Mei Wen, and Chunyuan Zhang. Towards a
uniform architecture for the efficient implementation of 2d and 3d deconvolu-
tional neural networks on fpgas. arXiv preprint arXiv:1903.02550, 2019.

[WWJ+19] Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin
Liu, Yongqiang Lyu, and Yuan Xie. Qgan: Quantized generative adversarial
networks. arXiv preprint arXiv:1901.08263, 2019.

[WYZ+17] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han
Hu, Yun Liang, and Jason Cong. Automated systolic array architecture syn-
thesis for high throughput cnn inference on fpgas. In Proceedings of the 54th
Annual Design Automation Conference 2017, page 29. ACM, 2017.

[WZX+16] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-
baum. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In Advances in neural information processing systems,
pages 82–90, 2016.

[WZZH17] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. Gp-gan: Towards re-
alistic high-resolution image blending. arXiv preprint arXiv:1703.07195, 2017.

[XLL+17] Qingcheng Xiao, Yun Liang, Liqiang Lu, Shengen Yan, and Yu-Wing Tai. Ex-
ploring heterogeneous algorithms for accelerating deep convolutional neural
networks on fpgas. In Proceedings of the 54th Annual Design Automation Con-
ference 2017, page 62. ACM, 2017.

145

[XTW+18] Dawen Xu, Kaijie Tu, Ying Wang, Cheng Liu, Bingsheng He, and Huawei
Li. Fcn-engine: accelerating deconvolutional layers in classic cnn processors.
In Proceedings of the International Conference on Computer-Aided Design,
page 22. ACM, 2018.

[YBK+18] Amir Yazdanbakhsh, Michael Brzozowski, Behnam Khaleghi, Soroush Gho-
drati, Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh. Flexigan: An
end-to-end solution for fpga acceleration of generative adversarial networks. In
Proceedings of the IEEE Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM’18), 2018.

[YHW+19] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gam-
bardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek,
et al. Synetgy: Algorithm-hardware co-design for convnet accelerators on em-
bedded fpgas. In Proceedings of the 2019 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, pages 23–32. ACM, 2019.

[YSKE18] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh.
Ganax: A unified mimd-simd acceleration for generative adversarial networks.
In Proceedings of the 45th Annual International Symposium on Computer Ar-
chitecture, pages 650–661. IEEE Press, 2018.

[YWSH19] Yunxuan Yu, Chen Wu, Xiao Shi, and Lei He. Overview of a fpga-based overlay
processor. In 2019 China Semiconductor Technology International Conference
(CSTIC), pages 1–3, March 2019.

[YWZ+19] Yunxuan Yu, Chen Wu, Tiandong Zhao, Kun Wang, and Lei He. Opu: An
fpga-based overlay processor for convolutional neural networks. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 2019.

[YYT+18] Jiale Yan, Shouyi Yin, Fengbin Tu, Leibo Liu, and Shaojun Wei. Gna: Recon-
figurable and efficient architecture for generative network acceleration. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
37(11):2519–2529, 2018.

[YZW+20] Yunxuan Yu, Tiandong Zhao, Mingyu Wang, Kun Wang, and Lei He. Uni-
OPU: An FPGA-based uniform accelerator for convolutional and transposed
convolutional networks. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2020.

[YZWH20] Yunxuan Yu, Tiandong Zhao, Kun Wang, and Lei He. Light-OPU: An FPGA-
based overlay processor for lightweight convolutional neural networks. In
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), pages 122–132, 2020.

146

[ZDNKD17] Xinyu Zhang, Srinjoy Das, Ojash Neopane, and Ken Kreutz-Delgado. A design
methodology for efficient implementation of deconvolutional neural networks on
an fpga. arXiv preprint arXiv:1705.02583, 2017.

[ZF14] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In European conference on computer vision, pages 818–833.
Springer, 2014.

[ZFZ+16] Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. Caf-
feine: towards uniformed representation and acceleration for deep convolu-
tional neural networks. In Proceedings of the 35th International Conference on
Computer-Aided Design, page 12. ACM, 2016.

[ZLS+15a] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In FPGA, pages 161–170. ACM, 2015.

[ZLS+15b] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 161–170. ACM, 2015.

[ZNL18] Ruizhe Zhao, Xinyu Niu, and Wayne Luk. Automatic optimising cnn with
depthwise separable convolution on fpga:(abstact only). In Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pages 285–285. ACM, 2018.

[ZPIE17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–2232,
2017.

[ZWZ+18] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-
mei Hwu, and Deming Chen. Dnnbuilder: an automated tool for building
high-performance dnn hardware accelerators for fpgas. In Proceedings of the
International Conference on Computer-Aided Design, page 56. ACM, 2018.

[ZXL+17] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, and Dimitris N Metaxas. Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 5907–5915, 2017.

[ZZLS18] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6848–6856, 2018.

147

APPENDIX A

OPU ISA

We utilize a complex instruction set architecture, where each instruction performs specific

task in the compute workload for deep learning applications and CPI(Cycles per instruction)

is usually several hundreds. To be more specific, each complex instruction can be decom-

posed to multiple 32-bit short instructions, where number of short instructions per complex

instruction varies.

Short instructions fall into two categories: Conditional instruction (C-type) and Uncondi-

tional instruction (U-type). C-type instruction specifies target operations and sets operation

trigger conditions. U-type instruction delivers corresponding operation parameters for its

paired C-type instruction. One complex instruction consists of one C-type instruction fol-

lowed by N U-type instructions. One instruction block, which includes all short instructions

for one complex instruction, is fetched at one time and then dispatched to corresponding

hardware modules.

31 30 6 5 0

immi parameters opcode

• immi: as instruction fetch indicator, immi=1 indicates that next instruction should be

fetched, while immi=0 indicates the end of instruction fetch for one instruction block.

• opcode: operation code, indicating different specific purpose for the parameters section.

148

A.1 Instruction Set Listings

Ubiquitous immi and opcode sections are explained above and will be skipped in this

paragraph, which will focus on the parameters section.

31 30 21 20 19 13 12 6 5 0

immi reserved dw flag dma block y size dma block x size 0

• opcode=0

• U-type

• dw flag: indicates dw-mode for compute, differences to conventional mode are listed

as follows

– shift line buffers are used for more memory-efficient data fetch, where feature map

data reuse is exploited to increase available bandwidth of feature map buffers.

– two line buffers fetch input feature map blocks simultaneously to input buffer of

compute engine so that two input feature map data share one weight data for one

decomposed Xilinx DSP48E1.

• dma block y size,dma block x size: height and width, in the context of the first two

dimensions of a (H,W,C) tensor, of a data block, which is going to be fetched from

DDR to on-chip input feature map buffer in pipeline for one compute round. Since

one DDR address refers to 64 8-bit data, the fetched DMA block corresponds to

dma block y size× dma block x size× 64 feature map data.

149

31 30 26 25 16 15 6 5 0

immi reserved fm in y size fm in x size 1

• opcode=1

• U-type

• fm in y size,fm in x size: original height and width of input feature map. For FC layer,

input tensor is reshaped to (H,W,64).

31 30 28 27 17 16 6 5 0

immi reserved channel out channel in 2

• opcode=2

• U-type

• channel out,channel in: number of output channels and input channels of current layer.

31 30 6 5 0

immi ddr fm addr ini 3

immi ddr ker addr ini 4

immi ddr bias addr ini 5

immi ddr res addr ini 6

• opcode=3,4,5,6

150

• U-type

• ddr fm addr ini: starting address for feature maps in DDR address space for current

ddr load operation

• ddr ker addr ini: starting address for kernel/weight in DDR address space for current

ddr load operation

• ddr bias addr ini: starting address for bias in DDR address space for current ddr load

operation

• ddr res addr ini: starting address for feature maps specifically for residual add in DDR

address space for current ddr load operation

31 30 21 20 6 5 0

immi reserved ddr fm read num 7

immi reserved ddr ker read num 8

immi reserved ddr bias read num 9

immi reserved ddr save fm num 10

• opcode=7,8,9,10

• U-type

• ddr fm read num: number of DDR addresses to be fetched as input feature maps

for current compute round. Say the input tensor block is in the shape (H,W,C).

ddr fm read num = H ×W ×
⌈
C
64

⌉
.

• ddr ker read num: number of DDR addresses to be fetched as kernel/weight for current

compute round.

151

• ddr bias read num: number of DDR addresses to be fetched as bias for current compute

round.

• ddr save fm num: number of DDR addresses to be written to DDR as output feature

maps from current compute round.

31 30 29 28 23 22 20 19 11 10 6 5 0

immi reserved ddr load single ker on board ddr load start trig ddr load start dma num ddr load type 11

• opcode=11

• C-type

• ddr load single: the single load of DDR that happens for the extra loading of multiple

residual blocks

• ker on board: number of kernels on board

• ddr load start trig: trigger condition of DDR load, indicating the precondition to start

DDR load. To be specific, if certain trigger condition, configured by this section,

is satisfied, next DDR load will start. Preconditions corresponding to each trigger

condition index (TCI) are listed as follows

– 000: whenever last DDR load finishes

– 001: whenever both last DDR load and DMA finishes

– 010: whenever layer start signal arrives (ddr load is usually the first instruction

to execute, therefore the initial layer start signal can trigger it.)

– 011: whenever last DDR write finishes

– 100: ddr load will not be triggered again (until TCI changes)

152

– 101: whenever last DDR write back to bram finishes and the last ddr load finishes

(situation where DDR write doesn’t write to DDR, but to the on-chip BRAM).

– 110: whenever last output control bram write finishes and last ddr load finishes

(situation where no DDR write is paired with this round of the computation).

– 111: whenever last DDR write finishes and last DDR load finishes.

• ddr load start dma num: number of DMA rounds that need to be finished before next

DDR load can start

• ddr load type: one-hot encoding, where each bit indicates loading different data. Bit

semantics are as follows, where x stands for arbitrary value. In hardware module, bits

are checked starting from least significant bit.

– xxx1: loading input feature maps is included in this DDR load.

– xx1x : loading kernel/weight is included in this DDR load.

– x1xx : loading bias is included in this DDR load.

– 1xxx : loading residual feature maps is included in this DDR load. Notice residual

feature maps share the same on-chip buffer with input feature map.

31 30 28 27 21 20 17 16 10 9 6 5 0

immi dma start trig y max y min x max x min 12

• opcode=12

• C-type

• dma start trig: next DMA starts upon the completion of certain preconditions, which

are listed as follows

153

– 000: whenever last DMA finishes

– 001: whenever last DDR load finishes

– 010: whenever last DMA and DDR load finish

– 011: whenever last DDR write finishes, and current TCI for DDR write is not 1 or

6. If current TCI for DDR write is 1, it means DDR write needs to run multiple

round in a row, so we cannot start another DMA until all the DDR write finish.

If current TCI for DDR write is 6, it means we are in the residual addition mode,

current DDR write is waiting for the DDR load to finish so it can start to write,

no new DMA should be triggered under this circumstance.

– 100: DMA will not be triggered again (until TCI changes)

– 101: whenever last DDR write finishes

– 111: reserved, currently indicates that DMA will not be triggered again (until

TCI changes)

• x min, x max, y min, y max: DMA read constraints when fetching data from on-chip

BRAM.

31 30 25 24 21 20 17 16 14 13 11 10 6 5 0

immi reserved ker y size ker x size read y stride read x stride ker repeat 13

• opcode=13

• U-type

• ker y size,ker x size: Kh and Kw dimension in the shape of (Kh, Kw, Ci, Co)

• read y stride,read x stride: kernel stride in height and width

154

• ker repeat: the repeating times of one kernel data (currently 1024∗8bit) in DMA. It is

utilized in Fully connected mode, where each time the IPA would only require 64∗8bit

length of the kernel, therefore after reading one complete row of kernel, we would keep

it in the register for 16 cycles and left shift it 64 ∗ 8bit every cycle to get the new data.

31 30 18 17 15 14 9 8 6 5 0

immi reserved type ker round output num 14

• opcode=14

• U-type

• type: layer type. Different layer types are listed as follows

– 0: fully-connected layer

– 1: convolution, including regular convolution, group convolution and depthwise

convolution

– 2: 3D convolution

– 3: single pooling layer

– 4: elementwise scaling in SE(Squeeze-and-Excitation) block

– 5: zero-based transposed convolution

– 6: nearest-neighbor-based transposed convolution

• ker round: The reuse time of one FM data. For example, if for each cycle IPA is able to

compute 16 output channels, and current output channel block is 64. Then we would

set the ker round to 4 and use each FM data 4 times to get 16∗4 = 64 output channels

before we switch to next FM data.

155

• output num: number of output channels that can be generated by current IPA mode

within one round = 2output num+1

31 30 29 28 27 23 22 18 17 12 11 6 5 0

immi reserved copy mode ker repeat last reserved ker addr e ker addr s 15

• opcode=15

• U-type

• copy mode: indicate how input feature map gets replicated to feed IPA input. Say

IPA mode is [64,16], which indicates 64 input channels are to be computed in parallel

and 16 output channels are to be computed in parallel. Also assume that two kernel

share one DSP with one input feature map data. In such case, input feature map data

need 8 replications to fill IPA input buffer. Bit semantics are listed as follows:

– 0: 8 replications

– 1: 16 replications

– 2: 32 replications

– 3: reserved

• ker repeat last: the repeating times of kernel weights for the last row of kernel (In

fully connected layer mode)

• ker addr e: the end address of current DMA round when reading from the on-chip

kernel RAM

• ker addr s: the start address of current DMA round when reading from the on-chip

kernel RAM

156

31 30 24 23 22 21 20 19 15 14 10 9 6 5 0

immi output channel output final block final output add temp add bias shift num cut pos trig output start 16

• opcode=16

• C-type

• output channel: number of output channels of current layer. Since output channels

need to be split and computed in multiple round and then get concatenated, this

parameter is used to check if all output channels have been computed.

• output final block: indicate that this is the last block of current layer, namely the

completion of current layer.

• final output: indicate if this is final result of accumulation of partial sums.

– final output=0: partial sum result should be written to temporary buffer in 16-bit

and would be accumulated in the next round.

– final output=1: final sum should be truncated to 8-bit and written to DDR. Most

significant 8 bits in 16 bits are kept.

• add temp: indicate if we should accumulate IPA outputs with results in temporary

buffer

• add bias: indicate if we should accumulate IPA outputs with biases in temporary buffer

• shift num: the number of bits to be left shifted for bias to match decimal position with

IPA output

• cut pos: decimal position when 27-bit IPA output is cut and written to 16-bit tempo-

rary buffer after addition with bias/temporary result.

157

• trig output start: indicate the start of post-IPA processing in the output control hard-

ware module, including accumulation of partial sum, bias addition, results concatena-

tion, data cut to 8-bit for further DDR store, etc.

31 30 26 25 16 15 6 5 0

immi shift num fm fm out y size fm out x size 17

• opcode=17

• U-type

• shift num fm: the number of bits to be left shifted for IPA output to match decimal

position with bias

• fm out y size,fm out x size: height and width of output feature map block

31 30 29 27 26 23 22 20 19 17 16 15 14 11 10 7 6 5 0

immi ddr write choice padding size activation type pooling y stride pooling x stride pooling type pooling y size pooling x size reserved 18

• opcode=18

• U-type

• ddr write choice: Indicates the location of DDR write. 1’b1, write to on-chip BRAM.

1’b0, write to DDR.

• padding size: post-padding size(must be symmetric for now)

• activation type: Bit semantics for different activation types are listed as follows

– 0: no activation

158

– 1: ReLU

– 2: leaky ReLU

– 3: H-sigmoid

– 4: H-swish

– 5: LUT-based non-linear function

– others: N/A

• pooling y stride,pooling x stride: stride in height and width dimension for pooling

• pooling type: Bit semantics for different pooling types are listed as follows

– 0: max pooling

– 1: average pooling

– 2: global average pooling

– 3: N/A

• pooling y size, pooling x size: height and width of pooling window

31 30 29 28 27 25 24 18 17 11 10 9 8 7 6 5 0

immi ddr save pos ddr save des ddr save start trig block pool y size block pool x size residual upsample output activation pooling padding 19

• opcode=19

• C-type

• ddr save pos: indicate four computation patterns on hardware in the post-IPA stage.

Bit semantics are listed as follows

– 00: data−→ residual add−→ activation−→ pooling

159

– 01: data−→ activation−→ residual add−→ pooling

– 10: data−→ activation−→ pooling−→ residual add

– 11: data−→ activation−→ pooling

• ddr save des: write to ofm BRAM or DDR

– 0(DDR): the final results and padding data, if necessary, of each layer

– 1(ofm BRAM): for some residual layers, we need to do residual addition multiple

times. So the temporary partial sums are stored in ofm BRAM.

• ddr save start trig: next DDR write starts upon the completion of certain precondi-

tions

– 000: whenever last BRAM write and DDR load finishes

– 001: whenever last DDR write finishes

– 010: DDR write not be triggered (until TCI changes)

– 011: last DDR write back tp on-chip bram finishes and last DDR load finishes

– 100: whenever last DDR load finishes

– 101: whenever last DDR write and load finishes

– 110: whenever last extra single load for residual feature maps finishes

– 111: reserved, currently indicates DDR write not be triggered (until TCI changes)

• block pool y size, block pool x size: height and width of the block for pooling

• residual: indicate if residual addition is applied in the post-processing in current layer

• upsample output: indicate if upsampling is applied in current layer, which is realized

by writing extra 0s or replications to DDR.

• activation: indicate if activation is applied in the post-processing in current layer

160

• pooling: indicate if pooling is applied in the post-processing in current layer

• padding: indicate if post-padding is applied in current layer

31 30 6 5 0

immi fm output addr ini 20

immi ddr ins addr ini 21

• opcode=20,21

• U-type

• fm output addr ini: base address when write output feature map to DDR for current

DDR write

• ddr ins addr ini: starting address of instruction block in DDR for current instruction

load

31 30 7 6 5 0

immi reserved network done 22

• opcode=22

• U-type

• network done: indicate the completion of target model

31 30 20 19 13 12 6 5 0

immi reserved output block y size output block x size 23

161

• opcode=23

• U-type

• output block y size, output block x size: block size of result before pooling

31 30 20 19 6 5 0

immi ddr save mask[63:39] 24

immi ddr save mask[38:14] 25

immi reserved ddr save mask[13:0] 26

• opcode=24,25,26

• U-type

• ddr save mask: 64-bit mask corresponds to 64 8-bit data when written to DDR

31 30 18 17 15 14 12 11 9 8 6 5 0

immi reserved pooling padding l pooling padding r pooling padding u pooling padding d 27

• opcode=27

• U-type

• pooling padding l, pooling padding r, pooling padding u, pooling padding d:

padding to left,right,top,bottom edge in pooling stage

31 30 20 19 13 12 6 5 0

immi reserved ddr load block y size ddr load block x size 28

162

• opcode=28

• U-type

• ddr load block y size, ddr load block x size: block size for DDR load. Load address

number=ddr load block y size× ddr load block x size

31 30 28 27 20 19 13 12 6 5 0

immi reserved average pool para ddr save block y size ddr save block x size 29

• opcode=29

• U-type

• ddr save block y size, ddr save block x size: block size for DDR store.

• average pool para:parameter for average pooling multiplication

31 30 29 28 27 21 20 17 16 10 9 6 5 0

immi reserved default flag out y max out y min out x max out x min 30

• opcode=30

• default flag:

• out y max, out y min: selective output height range (used in transposed convolution

mode)

• out x max, out x min: selective output width range (used in transposed convolution

mode)

163

31 30 20 19 13 12 6 5 0

immi reserved out y stride out x stride 31

• opcode=31

• out y stride, out x stride: stride to store output (used in transposed convolution)

31 30 20 19 17 16 14 13 6 5 0

immi reserved SE stage SE fc in num SE fc out num 32

• opcode=32

• SE stage: We define 3 stages for the computation of SE block. In the first stage

we conduct post-process for regular convolution, and collect the result after average

pooling as scaling factors. In the second stage we would fc operations for scaling factor

computing. In the third stage we would perform the output scaling operation.

• SE fc in num, SE fc out num: Input and output size for the two fc operations.

164

