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 Understanding how to tune molecular assemblies and the properties of surfaces of 

different materials at the meso- and nanoscales can lead to unique and controllable 

interactions at interfaces for a variety of applications. I used dipolar forces to control the 

adsorption and alignment of liquid crystals (LCs), which are highly sensitive to surface 

interactions. This work utilized carboranethiol and -dithiol isomers, which possess the same 

geometry and lattice when self-assembled on Au{111}, but differ in the magnitude and 

direction of their dipole moments. Hence, self-assembled monolayers (SAMs) of 

carboranethiol isomers enabled us to deconvolve dipole interactions from other factors that 

influence LC alignment. We fabricated LC devices using carboranethiol SAMs on transparent 

gold surfaces, prepared by oblique evaporation, and measured the LC orientation and 

anchoring energy on surfaces treated with each isomer. These results suggested that the 

dipole moment direction strongly influences the LC alignment and anchoring energy.  
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 In the second part of my dissertation, I used bioinspired omniphobic surface coating 

for rapid cell deformation devices to enable high-throughput intracellular cargo delivery. 

Currently, devices clog within minutes, rendering them inefficient for sustainable cell 

processing. We have developed a method for coating commercial poly(tetrafluoroethylene) 

syringe and poly(ethylene terephthalate) filters with slippery liquid-infused porous surfaces 

(SLIPS). We see that without this coating, essentially no cells are recovered from the device, 

due to clogging. However, with the SLIPS coating, we are able to recover 25-50% of cells. 

Additionally, we have successfully delivered a green fluorescent protein plasmid and a CD19 

chimeric antigen receptors to Jurkat cells, a model T lymphocyte cell line, while maintaining 

high cell viability. These devices made from economical commercial materials will enable 

new opportunities in the development of gene and cellular therapies for a wide variety of 

disease treatments, which are currently limited due to toxicity, low throughput, and off-

target effects. 
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CHAPTER I 

Probing and Controlling 

Interactions and Assemblies 

at the Nanoscale 
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I.A. Motivation and Background 

 Surface-interface interactions have the potential to direct assemblies and to control 

adsorbates at chemically-defined locations, unmasking new and unexpected properties and 

functions.1–15 Understanding how to harness these surface-interface interactions at the 

micro- and nanoscale will drive the development of innovative methods and new capabilities 

in materials chemistry and science.16,17 The ability to tune surface features and their physical 

properties at these resolutions, more precise control of surface-chemical interactions, either 

by achieving precise control of over the orientation of chemical moieties4,9 and/or 

prohibiting the adsorption of species on surfaces.10–15 By mastering these surface-interface 

interactions, I have leveraged self-assembled monolayers (SAMs) on gold surfaces to direct 

the assembly of liquid crystals (LCs) on surfaces (Chapter II)9 and applied bioinspired anti-

fouling chemistries on to commercially available membranes to enable robust and cost-

effective delivery of biomolecular cargo to cells for applications in gene therapy and in cancer 

immunotherapy (Chapter III and Chapter IV). 

I.B. Surface Dipoles to Control Assemblies at the Nano- and Mesoscale 

I.B.1. Self-Assembled Monolayers and their Properties 

 Self-assembled monolayers are used as a versatile and facile nanofabrication 

technique.18–21 To improve the control of molecular assembly and the properties of these 

materials at the meso- and nanoscale, it is critical to probe non-covalent interactions, such 

as dipolar dispersion forces or van de Waals interactions.9,17,22–27 Previous studies have 

demonstrated how SAMs with different terminal groups can alter the surface properties of 

materials; for instance, surfaces can be rendered hydrophobic or hydrophilic by simply 
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changing the terminal group from a carboxylic acid to a fluorinated moiety.15,28,29 

Additionally, several studies have shown that other physical properties can be tuned based 

on the chemical composition of SAMs, such as the work function of metals,17,30 chemical 

recognition and adsorption,31,32 and conductivity.33 In particular, understanding how SAMs 

interact with molecules that adsorb to the surface can offer important information about 

molecular interactions at interfaces at the nanoscale.9,17,30 

I.B.2. Control of Assemblies on Surfaces 

 Several groups have previously shown how the terminal groups of SAMs can be used 

to control how adsorbates interact with surfaces.9,17,30–33 For example, SAMs presenting 

different chemical functionalities can be used to modulate the adsorption of different 

chemical species onto substrate materials and applied to crystal growth3,5 or to alignment of 

liquid crystals.9,22,34–37 Aizenberg and coworkers used SAMs with different terminal 

functional groups to inhibit or to promote nucleation and crystal growth of small molecules 

on surfaces and further found that the selection of the underlying substrate material (e.g., Au 

vs. Ag) alters crystallographic orientation.3 Additionally, the versatility by which SAMs can 

be modified has enabled the chemical tethering of proteins, aptamers, or different 

biomolecules to these surfaces for applications in biosensors.31,32 It is critical to control the 

orientation and alignment of chemically-tethered molecules at SAM interfaces. Chen et al. 

engineered surfaces comprised of positively and negatively charged SAMs to control the 

orientation of two types of antibodies.4 However, in these studies, there is a convolution of 

different competing effects that govern surface-interface interactions, ranging from changes 

in dipole moment, molecular packing, steric effects, and wettability. Designing SAMs where 
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one property is changed, while all other properties remain constant remains a challenge with 

conventional SAM building blocks.30,38 

I.B.3. Carboranethiol and –Dithiol Self-Assembled Monolayers 

 Carboranethiol and -dithiol isomers are of interest as SAM layers for a variety of 

reasons. They provide several advantages over alkanethiols and other common SAM 

molecules, where altering any part of the molecule can change the physical properties 

(e.g., sterics, internal dipole moment, electronics) of the monolayer and alter how the 

molecules interact with their environment.9,26,30,38 These carborane isomers have a nearly 

regular icosahedral boron carbon cluster geometry with two carbon atoms either adjacent 

(ortho) or separated (meta) by a boron atom.9,26,30,38–43 The key advantage of these SAM 

molecules is that their dipole moment’s direction and strength can be altered depending 

where the carbon atom is placed within the cage and when assembled on a Au{111} surface, 

they possess the same geometry, lattice, and molecular tilt (Figure I.1A).9,26,30,38 Additionally, 

these carboranethiol and -dithiol isomers can be easily functionalized at a number of 

positions within the cage and are both chemically and thermally stable.26,30,38–43 

 Our group previously demonstrated that when the 1,7-dicarba-closo-dodecaborane 

m-1-carboranethiol (M1) and m-9-carboranethiol (M9) isomers are assembled on Au{111} 

(Figure I.1A), the two isomers are indistinguishable by scanning tunneling microscopy in 

ambient conditions and that the SAMs possess identical hexagonally close-packed adlayer 

structures (Figure I.1B).30 In follow up studies, it was observed that it is possible to control 

the surface potential. For example, using ultraviolet photoelectron spectroscopy, Kim et al. 

found that varying the ratio of M1 to M9 modifies the work function (Figure I.1C).17 

Monolayers with more M1 character (i.e., with a surface dipole pointing toward the surface) 
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increased the metal’s work function, whereas monolayers with higher M9 content (i.e., with 

the dipole pointing away from the thiol group) lowered the work function of gold 

(Figure I.1C).17 

 

Figure I.1. (A) Schematic of 1,7-dicarba-closo-dodecaborane m-1-carboranethiol (M1) 
and m-9-carboranethiol (M9) assembled on a Au{111} surface. (B) Scanning tunneling 
microscope images of M1 (left) and M9 (right) self-assembled monolayers on Au{111} 
surfaces. Isomers are indistinguishable and have the same hexagonal close-packing. Images 
were collected at a sample bias of 1.0 V and a tunneling current of 3.0 pA. (C) Ultraviolet 
photoelectron spectroscopy showing how the work function varies with different ratios of 
M1 to M9 on gold surfaces. Reproduced with permission from Reference (A, B) 30 and (C) 17. 
Copyright 2009 and 2014 American Chemical Society. 

I.B.4. Control of Liquid Crystal Alignment on Surfaces 

 Liquid crystals (LCs) are known to be sensitive to surface interactions and have 

alignment-dependent optical properties.9,22,34,35,44 Industrially, LC alignment is controlled by 

unidirectional rubbing that breaks the rotational symmetry of the alignment surfaces.45,46 

Without this mechanical rubbing, random local alignment domains are formed; however, the 

application of the rubbing method enables uniaxial alignment of the LCs.45,46 Another 

approach used to break rotational symmetry utilizes dune-like surface textures of obliquely 
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deposited, semi-transparent gold films to direct LC alignment (Figure I.2A).34,44,47 When 

depositing the metal, the substrate is tilted at an angle to the metal source, creating a 

textured gold surface and breaking the azimuthal symmetry of the surface 

(Figure I.2B).9,34,44,47 The LCs adopt in-plane orientations with their long axes perpendicular 

to the oblique deposition direction, minimizing elastic strain within the LC assembly.9,34,44,47  

 

Figure I.2. Schematic of oblique gold deposition. (A) Nano trough, dune-like features 
generated from oblique gold evaporation. (B) Inside a vacuum chamber, gold is heated by an 
electron beam (not shown), causing it to evaporate from a source and deposit onto a tiled 
substrate located above. Reproduced with permission from Reference 9. Copyright 2016 
American Chemical Society. 
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 Using these textured Au surfaces, Abbott and others have reported that SAMs also 

influence the alignment of LCs, with the ability to control both azimuthal and polar 

orientations.34,35,48 An “odd−even” effect was shown to occur, where alkanethiols with odd 

number length chains aligned LCs perpendicular to the oblique gold deposition direction 

(Au�����⃑ ), whereas ones of even lengths aligned the LCs parallel to the Au�����⃑ , and a 1:1 mixture of 

the two thiols aligned the LCs normal, or homeotropic, to the surface (Figure I.3).34,35,48 

Likewise, the terminal functional groups can also change the alignment of LCs to be either 

parallel or perpendicular to the Au�����⃑ .34,35,48 Ultimately, this behavior demonstrates that LC 

alignment is sensitive to variations in the symmetry and orientation of the exposed terminal 

moieties of the underlying SAM.34,35,48 In these studies, many factors influence LC behavior, 

including steric effects, surface topography, and intermolecular forces, which complicates 

the mechanisms responsible for alignment. The independent effects of molecular geometry, 

orientation, and dipole moment on LC alignment are difficult to determine. 



 

8 
 

 
 

Figure I.3. Azimuthal orientation influenced by SAM odd-even effect. Odd length 
alkanethiol self-assembled monolayers (SAMs) align liquid crystals perpendicular to the 
gold evaporation direction (left), whereas even length alkanethiol SAMs align liquid crystals 
parallel to the gold evaporation direction (center). Alkanethiol mixtures (1:1) of the odd and 
even length alkanethiols align liquid crystals normal to the surface, or homeotropic (right). 
Reproduced with permission from Reference 48. Copyright 1997 American Association for 
the Advancement of Science. 
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I.B.5. Surface Dipole Moment Control of Liquid Crystals  

 Following these studies, our group used carboranethiol SAMs to investigate how 

dipolar forces influence how adsorbates interact with the surface by deconvolving dipole 

interactions from other factors that affect how molecules adsorb or interact with the 

surface.9 To study this phenomenon, we used LCs, which have alignment-dependent optical 

properties and can transduce and amplify nanoscale forces into a macroscopic optical 

readout.9 By using isomers of carboranethiol SAMs that differ only in their dipole moment 

direction and magnitude (and not lattice, molecular tilt, or geometry), we were able to isolate 

dipole interactions from other factors that could influence molecular assembly.9 We tested 

how changing the surface dipoles on Au surfaces influenced the alignment and anchoring of 

4-cyano-4′-pentylbiphenyl (5CB) and N-(4-methoxybenzylidene)-4-butylaniline (MBBA) 

liquid crystals (LCs).9 We fabricated LC displays using carboranethiol and -dithiol SAMs on 

thin transparent gold surfaces, prepared by oblique evaporation.9,22,34,35,44 To characterize 

these devices, we measured the LC orientation on surfaces treated with each isomer, 

1,7-dicarba-closo-dodecaborane m-9-carboranethiol (M9), m-1-carboranethiol (M1), 

o-9-carboranethiol (O9), o-1-carboranethiol (O1), o-9,12-carboranedithiol (9O12), and 

o-1,2-carboranedithiol (1O2), using a polarizing optical microscope (Figure I.4). Our results 

demonstrated that the dipole moment direction predominately influences the LC alignment 

direction and anchoring energy strength (Figure I.4).9 Our investigation into this field will be 

fully described in Chapter II, which was first published in the Journal of the American 

Chemical Society in 2016.9 The use of carboranethiols as an alternative to alkanethiol SAM 

coatings for electronic devices has only begun, which is leading to interesting device coatings 

that enable more control over the interface properties.  
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Figure I.4. Molecular structures depicting magnitude and direction of carboranethiol 
and -dithiol isomers’ dipole moment of: 1,7-dicarba-closo-dodecaborane m-1-carboranethiol 
(M1), o-1-carboranethiol (O1), o-1,2-carboranedithiol (1O2), m-9-carboranethiol (M9), 
o-9-carboranethiol (O9), and o-9,12-carboranedithiol (9O12). Schematic of induced 
alignment of liquid crystals with inward- or outward-pointing surface dipoles on Au 
substrates. Reproduced with permission from Reference 9. Copyright 2016 American 
Chemical Society. 
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I.C. Rapid Cell Deformation Microfluidic Devices and Intracellular Delivery of 

Biomolecular Cargo 

I.C.1. Gene Therapy Approaches 

 Emerging cellular therapies are revolutionizing how clinicians approach and treat a 

wide-range of genetic diseases, including hematological disorders, primary 

immunodeficiencies, Duchenne muscular dystrophy, and cancers.49–53 These medical 

interventions are enabled by genome editing strategies that utilize targeted nuclease-based 

strategies, such as zinc fingers nucleases (ZFNs),54–56 transcription activator-like effector 

nucleases (TALEN),55,57–59 and clustered regularly interspaced short palindromic repeat 

(CRISPR) nucleases,60–66 to achieve site-specific disruption or correction of disease causing 

mutations. In addition, the application of chimeric antigen receptors (CAR) in adoptive 

cellular therapies has enabled physicians to harness the immune system to fight cancers 

directly.67–72  

 The current techniques that enable genetic modification of hematopoietic stem cells 

(HSCs) and T lymphocytes (T cells), used in bone marrow transplants and cancer 

immunotherapy, respectively, are inadequate.49,73 For example, viral vector-based and non-

viral-based methods (i.e., electroporation and chemical transfection) suffer from off-target 

effects and are expensive while suffering from low yields, low processing throughputs, and 

induce damage to treated cells, which has limited their broader application at clinically 

relevant scales.60,74 To address these issues, other approaches, including microinjection,75–77 

rapid cell deformation,78–84 nanoparticles85,86 or nanostructures,87–94 acoustic waves,95 or 

sonoporation,96–99 have been reported for delivery of genetic or other biomolecular cargo 

into cells. However, the development of methods that are cargo agnostic while achieving 
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rapid, safe, cost effective, and efficient intracellular delivery remains a challenge.73 A decade 

ago, our group showed that when using geometric confinement, membrane vesicles would 

deform creating transient pores at the membrane.100 This idea has been further exploited 

and extended to cell membranes for different type of bimolecular cargo delivery.73 

Unfortunately, these devices suffer from biofouling and cellular buildup rendering them 

inefficient for clinical applications.78–84 

I.C.1.a. Gene Editing of Hematopoietic Stem Cells for Monogenetic Disorders  

 Autologous gene-modified stem cell-based therapies are promising and exciting 

approaches for treating monogenetic disorders. These gene-therapy strategies rely on 

correcting disease-causing mutations in a patient’s own stem cells prior to reinfusion back 

to the patient.49,54,61,67,101–103 In contrast, current allogeneic hematopoietic stem cell 

transplantation (HSCT) strategies rely on finding a match donor.49,54,61,67,101–103 However, 

complications in the form of graft rejection or graft-versus-host disease can occur if a 

suitable donor cannot be identified.49,54,61,67,101–104 Hematological monogenetic diseases are 

promising candidates for these types of cellular therapies based on the well-established 

history of HSCT for offering curative solutions for pathologies.49,54,61,67,101–103 The 

combination of HSCT with gene editing tools (e.g., CRISPR/Cas9 nucleases) paves the way 

for new types of interventions that target monogenetic diseases, which only have one gene 

defect to address.55,60–63,101  

 Disease targets for autologous gene-modified stem cell therapies include 

immunodeficiencies (e.g., SCID),50,51,105,106 hemoglobinopathies (e.g., thalassemia, sickle 

cells),54,107 and coagulopathies (e.g., hemophilia).49,101,108 Currently, allogeneic 

hematopoietic stem cell transplant is the definitive management option for these diseases, 
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but a match is often difficult to find.49,54,67,101–103 Recent advances in the application of 

CRISPR-based genome editing tools are opening new possibilities for gene modification in  

HSCs.55,60–64,109–112 Although in their infancy, these stem-cell-based gene therapies already 

show tremendous promise in the treatment of debilitating genetic diseases. For instance, 

Kohn and coworkers have successfully demonstrated the efficacy of 𝛾𝛾 -retroviral vector-

based insertion of human adenosine deaminase (ADA) cDNA for the treatment of ADA-

deficient SCID.50 Additionally, De Luca and coworkers first reported a possible route to 

treating epidermolysis bullosa, a rare and painful genetic skin disease that causes skin to be 

fragile and blister, using genetically modified stem cells.113 In 2017, De Luca and his team 

reported the successful treatment of a seven year-old boy suffering from epidermolysis 

bullosa using a whole body transplant by autologous stem cell engraftment.114 Sickle cell 

disease (SCD), one of the most common monogenetic diseases worldwide, represents 

another promising target for gene therapies. This hemoglobinopathy results from a single 

point mutation in the seventh codon of the 𝛽𝛽-globin gene. Recent studies demonstrated that 

a ZFN could be used to target the 𝛽𝛽-globin locus containing SCD mutation and be cleaved 

with minimal off-target effects, suggesting a possible treatment option.54 Hemophilias have 

also emerged as tantalizing targets for gene therapies, where ZFNs,56 TALENs,115 and 

CRISPR-Cas973 have been used to correct mutations in the genes encoding for factor VIII or 

IX, which are responsible for different hemophilia subtypes. Moreover, in 2017 George et al. 

demonstrated that a one-time dose of the Factor 9 Padua transgene could be administered 

to hemophilia B patients to prevent bleeding, without any serious toxicities or adverse 

effects.116 In general, for these therapies to be effective, highly efficient and prolonged 
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expression of genetic constructs and survival of the transfected HSCs are critical to 

success.49,111,112,117 

I.C.1.b. Adoptive Cellular Therapies for Engineering T Cells for Cancer Therapy 

 Adoptive cellular therapies that utilize either engineered T-cell receptors (TCRs) or 

chimeric antigen receptors (CARs) are enabling powerful immunotherapies in the fight 

against cancer.49,68–72,118,119 It has been established for over 50 years that T cells and other 

immune system cells help promote tumor rejection.118 Previously, allogeneic T cells have 

been used to treat patients with leukemias or lymphomas, but the trials resulted in graft-

versus-host disease.104,118,120 These early investigations pointed to the possibility to use the 

immune system via T cells to treat cancer.118 The ability to collect T cells from patients 

autologously via apheresis and to engineer these cells to target malignancies via the insertion 

of CAR constructs has led to new treatment options for high-risk patients that circumvent 

manifestations of graft-versus-host disease and other undesirable effects.49,104,118,120 The 

successful delivery of the CAR vector to the patient’s T cells enables these engineered 

immune cells to recognize and to specifically target tumor antigens.49,118,121,122 These cellular 

immunotherapies approaches effectively harness the immune system to attack malignant 

cells, reducing reliance on conventional, harsher cancer treatments like surgery, 

chemotherapy, or radiation, or may be used in conjunction with or when these traditional 

treatments fail.118,119,123,124  

 Anti-CD19 expressing CARs have emerged as the most common CAR therapy to date. 

These genetically modified T cells target the CD19 receptor present on the surfaces of B cell- 

derived lymphomas and leukemias. Recently, two CAR-based approaches have gained Food 

and Drug Administration (FDA) approval for treating B cell malignancies. Similar CAR T cell 
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approaches are actively being explored as potential treatments for multiple myeloma, 

myeloid malignancies, and other solid tumors.49,119,123–125 Based on their success in treating 

cancer, other groups are developing similar CAR therapies for application in the treatment 

of HIV and other autoimmune diseases.49,118,126 For these therapies to be successful there 

exists a critical need for stable and long-lasting gene expression of the transferred CAR 

construct in target T cell populations to maintain immune memory and prohibit relapse, 

which, to date, has been difficult to achieve safely and at desirable throughputs using current 

gene delivery methods.49,119,121,122  

I.C.2. Limitations of Current ex Vivo Gene Editing Methods  

 Despite the promise of emerging cellular therapies, current methods used to process 

engineered stem or immune cells are limited in their ability to generate appropriate cellular 

products effectively. New approaches are being developed rapidly, with ZFN- and TALEN-

based approaches entering FDA clinical trials, several CRISPR-based packages have already 

been approved in China,49 and the first two CAR T cell therapies have recently gained FDA 

approval.127,128 Despite these advances, there remains an unmet need for methods that 

enable the effective delivery of therapeutic packages into cells in a high throughput, efficient, 

safe, universal, and cost-effective manner. 

 Both viral vectors and non-viral-based transfection methods are used currently to 

deliver the genes and genome editing machinery to cells (Figure I.5).49,111,117,129 However, 

viral vectors are prone to potential off-target effects and require specialized, good 

manufacturing practice (GMP)-grade materials and reagents that are expensive at clinical 

scales.130 Similarly, non-viral-based transfection approaches (e.g., electroporation, 

lipofection) tend to be slow, require specialized equipment and/or regents, and yield 
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variable transfection efficiencies across different cell lines when scaled for therapeutic 

applications.49,111,117,129 Moreover, a significant part of the high costs associated with gene 

editing of therapeutic cell products is the need to process large populations of cells 

(i.e., ~1x106 cells/kg for T cells and ~2x108 cells/kg for HSCs) to achieve appropriate 

doses.131–135 Additionally, the maintenance of cell viability is an important criterion when 

manipulating HSCs and/or T cells ex vivo for therapeutic applications.112 The broader 

deployment of these innovative medical interventions will require solutions that address the 

current unmet needs for improved intracellular delivery tools and methods that enable 

efficient delivery of biomolecular cargo economically, safely, and quickly. In this section, I 

review the advantages and setbacks associated with viral and non-viral transfection 

methods, and later present my research, which targets solutions motivated by advances from 

the nanoscience community, to streamline the development, manufacture, and access to 

gene and cellular therapies. 
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I.C.2.a. Viral Vectors for Gene Editing 

 Viral vectors are inactivated viruses that are engineered to deliver genetic constructs 

to cells (Figure I.5).136–138 These genetic delivery vehicles are used routinely in the laboratory 

setting for investigations in molecular biology and related fields and have more recently 

achieved limited success when applied in early phase clinical trials.49 The most commonly 

used viral vector approaches for ex vivo transfection are derived from either 𝛾𝛾-retroviruses 

or lentiviruses.49,112 As opposed to 𝛾𝛾-retroviral vectors, lentiviral-based systems enable gene 

delivery to non-dividing cells and are able to package larger gene cassettes (~8 kb of 

DNA).49,112 However, lentiviral-based delivery remains prone to potentially dangerous off-

target effects that can result in undesirable constitutive expression and/or insertional 

mutagenesis.112 Despite their relatively high transfection efficiency, safety concerns (off-

target effects, immunogenicity, oncogenesis) associated with viral vector-based approaches 

often out-weigh their potential therapeutic benefits, even when applied to most debilitating 

diseases.139–142 In addition, a significant limitation of viral vector carriers is the size of 

plasmid sequences that can be effectively packaged and delivered to target cells, not to 

mention the labor intensive and costly methods required to manufacture them.136,139 

Moreover, these methods are limited to gene addition and are not easily reconfigured for 

targeting other diseases.49,112 Each new gene therapy would have to go through a separate 

FDA approval process based on the specific vector system and genetic cargo used, greatly 

limiting their universal application and effectiveness across a variety of disease 

targets.51,136,143 
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I.C.2.b. Non-Viral Delivery of Cellular Therapies 

 Non-viral intracellular delivery approaches often rely on either harsh chemicals or 

physical and/or energetic manipulation to deliver biomolecular cargo intracellularly 

(Figure I.5).74,111,139,144–146 These methods are capable of either gene addition or disruption 

and, in some cases, are less prone to off-target effects.49,57,60,62 However, successful gene 

delivery and/or editing requires genetic cargo to be delivered inside of the nucleus of cells, 

which often comes at the cost of cell viability and efficiency.139 In addition, these methods 

are often highly variable across cell lines and primary cells, where no existing method, to 

date, has achieved universally robust performance.139 

 Chemical transfection methods (e.g., lipofection) are limited by concerns with toxicity 

and variable transfection efficiencies.139,147 For instance, Park et al. recently reported a 

lipofection-based method for delivering CRISPR-Cas9 cargo targeting correction of 

mutations of the Factor VIII gene in induced pluripotent stem cells.101 However, the long-

term survival of treated mice and the efficacy of Factor VIII gene correction were inadequate 

in their animal models.101 Energetic methods (e.g., electroporation) are more efficient than 

chemical transfection approaches due, in part, to their ability to force cargo directly into the 

cytoplasmic compartment or nucleus of target cells.139,148 However, electroporation and 

related methods tend to result in lower cell viabilities, are highly operator dependent, and 

require specialized reagents to yield optimal transfection.139,148 Moreover, the mechanism of 

delivery is not well understood, leading to difficulties in evaluating the optimal conditions 

for delivery across different cells lines and types of cargo.147 
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I.C.2.b.i. Rapid Membrane Deformation 

 Several alternative intracellular delivery technologies have been reported and are in 

active development.73 For example, microinjection techniques where genetic cargo is 

inserted directly into individual cells have enabled breakthroughs in in vitro fertilization and 

somatic cell nuclear transfer for applications in reproductive medicine and stem cell 

biology.73 However, microinjection is highly inefficient for processing large numbers of cells 

(Figure I.5).75–77 Additional intracellular delivery approaches include sonoporation,96–99 

nanoparticle carriers,85,86 or membrane piercing nanostructures,87–94 but have not been 

optimized for clinically relevant scales or universal use.  

 One interesting intracellular delivery approach, reported recently by Langer and 

coworkers, is based on the mechanical deformation of cells as they are passed through 

microfluidic constrictions.73,78–81 As target cells are directed to squeeze through narrow 

microfluidic channels, they are rendered transiently permeable (~5 min), enabling the 

efficient delivery of biomolecular cargo across mechanically generated pores across the 

membranes of processed cells via diffusion.73,78–81 Unfortunately, the broader 

implementation of this technology has been limited by issues with biofouling of cellular 

debris that leads to device failure due to clogging of the microfluidic network. Effective 

delivery of biomolecular payloads requires cells to squeezed by approximately 30-80% of 

their normal diameter (Figure I.6).73,78–81 Ultimately, the degree of biofouling within the 

microfluidic channels compromises the long-term reliability of these device and the ability 

to reach reliable and sustainable cell processing throughputs for clinical applications. 
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Figure I.6. (A) Rapid cell deformation schematic. Adapted with permission from 
Reference 81. Copyright 2017 Nature. (B) Poly(dimethylsiloxane) (PDMS) channels before 
and (C) after flowing with K562 cells. The PDMS microfluidic devices clog within several 
minutes. 
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I.C.3. Design of Materials for Rapid Cell Deformation and Cargo Delivery 

 The current materials used to fabricate microfluidic devices for intracellular cargo 

delivery via rapid membrane deformation clog within minutes and are inadequate for 

sustainable cell processing. In our group, we have designed and tested a new intracellular 

delivery where coating commercially-available membranes (pore diameters 3 – 10 µm) are 

treated with slippery liquid-infused porous surfaces (SLIPS). These bioinspired surface 

chemistries enable rapid transport of biomolecular payloads (e.g., DNA/RNA, proteins) into 

target cells via transient permeabilization that occurs as cells pass through the narrow 

constriction and avoid biofouling issues that have precluded existing embodiments of this 

technique. We have applied these SLIPS-functionalized devices to the delivery of expression 

plasmid cargo for the generation of gene and cellular therapies. 

I.C.3.a. Slippery Liquid-Infused Porous Surface-Coated Cell Deformation Devices 

 To address the challenges associated with clogging of rapid cell deformation devices, 

we have developed a cost-effective method where bioinspired omniphobic surface 

chemistries are incorporated into commercially available membrane materials to enable 

high-throughput and efficient intracellular delivery nucleic acids to cells. Device 

performance is characterized using model payloads. Our initial proof-of-concept studies 

utilize expression plasmid cargo encoding for either green fluorescent protein (GFP) or a 

CD19 CAR construct. The commercially available syringe filter membranes utilized for our 

cell-squeezing devices (Fig. I.7) are made from either poly(tetrafluoroethylene) (PTFE) or 

poly(ethylene terephthalate) (PET). These materials are then treated with a chemically 

matched oil to establish a SLIPS overlayer that is akin to a layer of “artificial mucous.”11–14 

The SLIPS process was first developed by Aizenberg and coworkers for the generation of 
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materials with unprecedented omniphobic behavior and have applied them broadly to a 

number of industrial applications.11–14 

 The omniphobic behavior enabled by SLIPS prevents the deposition of biomolecules 

at treated interfaces, which we leverage to achieve continuous processing of target cells via 

rapid deformation across treated membranes.11–14 A key advantage of our approach is our 

use of commercially available membrane materials, which, when combined with SLIPS-

coatings, enable scalable, simple to use, biocompatible, non-toxic, and rapid intracellular 

delivery (Fig. I.7). These devices circumvent several major obstacles that have precluded the 

generation of genetically modified therapeutic HSCs and T cells via conventional 

intracellular delivery approaches. Materials treated with SLIPS not only prevent clogging but 

also enable the mechanical properties of the microchannels to be fine tuned. Our 

investigations into applying these devices made from commercial materials, with and 

without SLIPS modification, for delivering biomolecular cargo to cells are detailed in 

Chapter III and Chapter IV. 
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Figure I.7. Schematics of rapid cell deformation devices using commercially available 
materials. The experimental procedure of a (A) slippery liquid-infused porous surfaces-
infused poly(tetrafluoroethylene) syringe filter. Jurkat cells are mixed with either a green 
fluorescent protein-based plasmid (GFP) or a plasmid encoding for a CD19 chimeric antigen 
receptor (CAR) and suctioned into a syringe. The syringe is connected to the syringe filter, 
which is either unmodified or modified with a fluorinated silicone oil. The cells are flowed 
through the filter using a syringe pump (not shown) with a flow rate of 0.25 mL/min and the 
cells are cultured for 24 – 72 h and a (B) vacuum filtration system using poly(ethylene 
terephthalate) cell culture filter inserts, either unmodified or modified with a fluorinated or 
unfluorinated silicone oil. Jurkat cells and mixed with either a GFP or a CD19 CAR plasmid 
and vacuum filtered through a porous culture insert membrane with 3-8 µm track-etched 
pores, using house vacuum. Cells are cultured for 24 to 72 hours after transfection. 
Corresponding bright field images are shown below of the Jurkat cells 24 hours after cell 
deformation experiments.  
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I.D. Dissertation Overview 

 This dissertation is organized as follows: Chapter I reviews the current methods used 

for controlling adsorbates and tuning surface properties for applications in electronics and 

intracellular delivery systems. Chapter II describes research that leverages carboranethiol 

and -dithiol self-assembled monolayers for precisely controlling the alignment and 

anchoring energy of liquid crystals to surfaces. Chapter III describes our recent research 

where SLIPS-modified surfaces are applied to commercial membranes to achieve the reliable 

and cost-effective generation of engineered cells for gene and cellular therapies via precisely 

controlled membrane disruption. In Chapter IV, a facile SLIPS-modified vacuum filtration 

system is developed to achieve similarly robust intracellular delivery to target cell 

populations. Chapter V summarizes the two project areas as well as the future directions and 

prospects of these fields. 

Chapter II has been reformatted from the following manuscript with permission: 

 Schwartz; J. J.; Mendoza, A. M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V.; Spokoyny, A. M.; 

 Mirkin, C. A.; Baše, T.; Weiss, P. S. Surface Dipole Control of Liquid Crystal Alignment. 

 J. Am. Chem. Soc. 2016, 138, 5957. DOI: 10.1021/jacs.6b02026 

 Copyright 2016 American Chemical Society. 

Chapter III is based on a manuscript in preparation. Currently, it is as follows: 

 Mendoza, A.M.; Chiou, T.T.; Frost, I.M.; Wattanatorn, N.; Kim, P.; Aizenberg, J.; De Oliveira, 

 S.N;.  Jonas, S.J.; Weiss, P.S. Slippery Liquid-Infused Porous Surfaces for Rapid Cell 

 Deformation Devices and Cargo Delivery. (in preparation). 
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Chapter IV is based on a manuscript in preparation. Currently, it is as follows: 
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 Introduction	

	 Self-assembly	plays	critical	roles	 in	 the	development	of	materials	with	customized	

chemical	and	physical	properties	from	the	bottom	up,	and	provides	insights	into	molecular-

scale	 phenomena.1–4	 Non-covalent	 interactions,	 including	 dipolar	 and	 dispersion	 forces,	

mediate	 molecular	 assembly	 and	 influence	 the	 properties	 and	 functions	 of	 pure	 and	

composite	 materials.5–9	 Understanding	 and	 controlling	 the	 types	 and	 strengths	 of	 these	

interactions,	particularly	at	interfaces,	enables	engineering	precisely	tailored	structures	at	

the	nanoscale.10–15	Self-assembled	monolayers	(SAMs)	not	only	exemplify	these	structures,	

but	also	serve	as	a	powerful	and	versatile	means	of	tuning	the	interactions	of	a	surface	with	

its	surroundings	and	other	molecular	adsorbates.16–19	A	great	deal	of	work	has	been	done	

using	SAMs	to	control	the	adsorption,	position,	orientation,	and	nucleation	of	crystalline	and	

molecular	assemblies.20–26	Despite	 recent	progress,	however,	predictive	understanding	of	

complex,	extended	assemblies	across	textured	surfaces	remains	challenging.27,28		

	 Liquid	crystals	(LCs)	assemble	with	long-range	orientational	order	due	to	anisotropic	

intermolecular	interactions	with	their	surroundings	and	are	particularly	sensitive	to	surface	

textures	 and	 coatings.29–31	 Industrially,	 LC	 alignment	 is	 controlled	 by	 unidirectional	

rubbing32,33	 or	 other	 techniques	 that	 break	 the	 rotational	 symmetry	 of	 the	 alignment	

surfaces.34–36	 One	 such	 alternative	 utilizes	 the	 dune-like	 surface	 texture	 of	 obliquely	

deposited,	 semi-transparent	 gold	 films37,38	 to	 direct	 LC	 alignment.34,37,39–42	 In	 this	 case,	

mesogens	 adopt	 in-plane	 orientations	with	 their	 long	 axes	 perpendicular	 to	 the	 oblique	

deposition	direction,	minimizing	elastic	strain	within	the	LC	assembly.		

	 Abbott	 and	others	have	 shown	 that	SAMs	also	 influence	 the	alignment	of	LCs,43–48	

with	the	ability	to	control	both	azimuthal	and	polar	orientations,	which	have	found	use	in	
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sensors.49	However,	a	convolution	of	steric	effects,	surface	topography,	and	intermolecular	

forces	 complicates	 our	 understanding	 of	 the	 mechanisms	 responsible	 for		

alignment.46,47,50–52	 Molecular	 adsorbates,	 in	 the	 form	 of	 either	 well-organized	 SAMs	 or	

adventitious	surface	contamination,	can	alter	LC	arrangement	by	changing	the	preferred	in-

plane	alignment	axis	or	inducing	homeotropic	alignment,	normal	to	the	surface.43,45,53	In	the	

case	of	alignment	layers	treated	with	SAMs,	different	LC	orientations	have	been	observed	

using	polar	and	nonpolar	adsorbate	molecules.38,44,51	Additionally,	chiral	and	“odd−even”54	

effects	 have	 been	 observed,	 showing	 that	 LC	 alignment	 is	 sensitive	 to	 variations	 in	 the	

symmetry55–57	and	orientation46,47	of	the	exposed	moieties	of	the	terminal	functionality	of	

the	SAM.	Self-assembled	adsorbates	used	in	previous	studies	typically	varied	in	two	or	more	

of	these	factors	simultaneously	(e.g.,	comparing	structural	analogues	with	different	exposed	

moieties:	−CH3,	−OH,	and	−COOH).	As	such,	the	independent	effects	of	molecular	geometry,	

orientation,	and	dipole	moment	on	LC	alignment	are	difficult	to	determine.		

	 We	used	positional	isomers	of	carboranethiol	and	-dithiol	molecules58	to	deconvolve	

the	effects	of	SAM	dipole	magnitude	and	orientation	on	the	alignment	of	LCs.	The	isomers	

chemisorb	onto	gold	surfaces	through	the	formation	of	Au−S	bonds,	thereby	assembling	into	

monolayers	with	exposed	carborane	moieties.	Each	isomer	possesses	an	identical	molecular	

geometry	and	assembles	 “upright”	with	negligible	 tilt	 and	a	 characteristic	 lattice	 spacing	

(7.2	and	7.6	Å	for	monothiol	and	dithiol	species,	respectively).14,59–64	The	primary	attribute	

that	 distinguishes	 SAMs	 of	 each	 isomer	 is	 their	 different	 constituent	 dipole	 moments.	

Intermolecular	 forces	 between	 carboranethiol	 monolayers	 and	 mesogens	 resulted	 in	

uniaxial	 planar	 alignment	 of	 LCs	 along	 one	 of	 two	 distinct	 directions	 relative	 to	 the	

underlying	anisotropic	substrate:	parallel	or	perpendicular	to	the	oblique	gold	deposition	
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direction	(Au#####⃑ ).	The	effects	of	these	short-range,	nanoscale	forces14,65	were	transduced	and	

amplified	by	the	LCs	to	a	macroscopic	scale,	enabling	optical	readout	via	transmitted	light.	

Azimuthal	 anchoring	 energies	 of	 LCs	 on	 carboranethiol	 and	 -dithiol	 monolayers	 were	

measured	to	quantify	SAM-LC	coupling.	This	work	targets	and	elucidates	the	roles	of	surface	

dipoles,	 in	 the	 form	 of	 adsorbed	molecular	 dipoles,	 on	 the	 alignment	 and	 orientation	 of	

subsequent	adsorbates	(LCs),	which	has	applications	in	sensing,	catalysis,	photovoltaics,	and	

templated	growth	of	nanostructures.66–69	Self-assembled	carboranethiols	are	well	suited	to	

this	purpose	as	they	enable	direct	comparison	of	the	effects	of	different	isomers’	molecular	

dipoles,	while	holding	constant	other	factors	influencing	LC	alignment	that	have	confounded	

previous	studies.		

 Results	and	Discussion	

	 Figure	 II.1	 illustrates	 the	 molecules	 used	 in	 these	 studies.	 Caboranethiol	 isomers	

m-9-carboranethiol	 (M9),	 m-1-carboranethiol	 (M1),	 o-9-carboranethiol	 (O9),	

o-1-carboranethiol	 (O1),	 and	 -dithiol	 isomers	 o-9,12-carboranedithiol	 (9O12)	 and	

o-1,2-carboranedithiol	 (1O2)	 possess	 dipole	 moments	 with	 various	 strengths	 and	

orientations.70	 The	 dipole	 moments	 of	 these	 six	 carboranethiols	 were	 calculated	 using	

density	 functional	 theory.14,60,71,72	 Although	 the	 molecular	 dipoles	 will	 be	 altered	 upon	

chemisorption	to	a	gold	surface,73	we	use	these	values	to	make	qualitative	comparisons	of	

their	relative	strengths,	their	orientations,	and	the	degree	to	which	they	modify	the	surface	

energy	 of	 a	 substrate	 through	 their	 dipolar	 fields.60,72	 We	 use	 two	 LCs,	

4-cyano-4′-pentylbiphenyl	 (5CB)	 and	 N-(4-methoxybenzylidene)-4-butylaniline	 (MBBA),	

possessing	oppositely	 signed	dielectric	 anisotropies	 (Δε),	 to	probe	 these	 fields.	Mesogens	
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with	positive	Δε	(5CB)	align	parallel	 to	an	applied	electric	 field,	whereas	the	 long	axes	of	

mesogens	with	negative	Δε	(MBBA)	align	perpendicular	to	an	applied	field.	Comparison	of	

the	alignment	of	5CB	and	MBBA	on	carboranethiol	monolayers	enables	us	to	infer	the	role	of	

the	dipolar	field	on	LC	alignment.43	

	

 Molecular	 structures	 of	 carboranethiol	 and	 -dithiol	 isomers:	
(A)	m-9-carboranethiol	 (M9),	 (B)	m-1-carboranethiol	 (M1),	 (C)	 o-9-carboranethiol	 (O9),	
(D)	o-1-carboranethiol	 (O1),	 (E)	o-9,12-carboranedithiol	 (9O12),	 and	
(F)	o-1,2-carboranedithiol	 (1O2).	Dipole	moment	magnitudes	and	orientations,	 calculated	
for	 isolated	 molecules,	 are	 indicated	 in	 blue.	 Positive	 (negative)	 angles	 estimate	 dipole	
orientations	above	(below)	the	plane	of	the	substrate	when	assembled	onto	gold	surfaces.	
Mesogen	 molecular	 structures	 of	 (G)	 4-cyano-4′-pentylbiphenyl	 (5CB)	 and	
(H)	N-(4-methoxybenzylidene)-4-butylaniline	 (MBBA)	 with	 corresponding	 dielectric	
anisotropy	(Δε)	signs	noted.	Hydrogen	atoms	are	omitted	from	all	structures	for	clarity.	
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	 To	monitor	SAM-regulated	mesogen	alignment,	LC	cells	were	constructed	as	shown	

in	Figure	II.2A.	The	outgoing	polarization	of	light	transmitted	through	a	cell	depends	on	the	

angle	 between	 the	 polarization	 of	 the	 incoming	 light	 and	 the	 orientation	 of	 the	 nematic	

director,	 which	 represents	 the	 average	 alignment	 direction	 of	 mesogens	 in	 a	 LC.	 If	 the	

mesogens	 align	 homeotropically,	 this	 angle	 is	 independent	 of	 cell	 rotations	 about	 axes	

normal	to	the	alignment	layers	and	the	cells	appear	“dark”	(0%	transmittance)	when	viewed	

between	crossed	polarizers.	Variations	in	the	intensity	of	transmitted	light	with	rotations	of	

the	cell,	however,	indicate	planar	alignment	of	the	nematic	director.	Figure	II.3	shows	the	

modulation	in	the	intensity	of	the	light	transmitted	through	5CB	cells	as	they	were	rotated	

between	crossed	polarizers	 (Figure	II.2B);	 corresponding	MBBA	data	are	provided	 in	 the	

Supporting	Information.	Alignment	layers	treated	with	M9,	M1,	O9,	O1,	9O12,	and	1O2	SAMs	

all	induced	uniaxial	planar	alignment	in	both	5CB	and	MBBA	cells,	as	indicated	by	the	four-

fold	 symmetry	 of	 their	 transmittance	 spectra.	 Cells	 constructed	 without	 a	 twist	 in	 their	

nematic	directors	vary	from	nearly	extinguishing	all	transmitted	light	to	transmitting	∼50%.	

By	contrast,	cells	that	possess	a	90°	twist	in	their	directors	have	transmittances	varying	from	

∼50%	 to	 nearly	 100%,	 due	 to	 the	 rotation	 of	 the	 transmitted	 light’s	 polarization	 as	 it	

traverses	the	cell.74	
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 (A)	 Schematic	 of	 liquid	 crystal	 (LC)	 cells	 used	 in	 rotation	 and	 electrically	
modulated	optical	transmittance	measurements	(“transmittance	cells”).	Carboranethiol	and	
-dithiol	self-assembled	monolayers	(SAMs)	adsorbed	on	semitransparent,	anisotropic	gold	
films	induced	uniaxial	planar	alignment	of	a	LC	at	the	interface.	Schematics	illustrating	the	
rotation	of	LC	cells	360°	about	axes	normal	to	their	alignment	planes	(B)	and	a	Fréedericksz	
transition	 (C)	 in	 a	 LC	with	 positive	 dielectric	 anisotropy	 (Δε	>	 0)	upon	 application	of	 an	
alternating	 electric	 potential	 (VAC).	 (D)	Wedge	 cell	 geometry	 used	 to	measure	 azimuthal	
anchoring	energies,	as	viewed	from	multiple	perspectives	(“anchoring	energy	cells”).	Each	
alignment	 layer	 was	 divided	 into	 two	 distinct	 sections	 defined	 by	 SAMs	 composed	 of	
complementary	molecules.	Here,	a	carboranethiol	or	-dithiol	isomer	SAM	(green)	is	shown	
to	induce	LC	alignment	parallel	to	the	gold	deposition	direction	(Au#####⃑ ),	although	other	isomers	
may	instead	promote	planar	alignment	perpendicular	to	Au#####⃑ .	Alkanethiol	SAMs	(blue)	were	
used	 to	 induce	 planar	 LC	 alignment	 orthogonal	 to	 that	 induced	 by	 the	 carboranethiol	
or	 -dithiol	 isomer.	Once	assembled,	 the	 cell	was	 comprised	of	 three	nematic	 regions,	one	
possessing	a	∼90°	twist	in	the	azimuthal	director	orientation,	while	the	other	two	exhibited	
untwisted	LC	alignment	(90°	apart)	through	the	bulk	of	the	cell.	The	thickness	(d)	of	the	gap	
between	the	alignment	layers	varied	due	to	the	presence	of	a	spacer	(not	shown)	at	only	one	
end	of	the	cell.	
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 Optical	 transmittances	(indicated	by	the	radial	distance	 from	the	origin,	 in	
arbitrary	units)	of	liquid	crystal	(LC)	cells	rotated	between	crossed	polarizers.	Alignment	
layers	 were	 prepared	 with	 matching	 self-assembled	 monolayers	 of	 m-9-carboranethiol	
(M9),	 m-1-carboranethiol	 (M1),	 o-9-carboranethiol	 (O9),	 o-1-carboranethiol	 (O1),	
o-9,12-carboranedithiol	 (9O12),	 and	 o-1,2-carboranedithiol	 (1O2),	 as	 indicated.	 At	 these	
surfaces,	uniaxial,	planar	alignment	was	manifest	in	4-cyano-4′-pentylbiphenyl	(5BC)	LCs,	as	
evidenced	 by	 the	 variations	 in	 optical	 transmittance	 possessing	 four-fold	 rotational	
symmetry.	Cells	were	 constructed	with	angles	of	 either	0°	or	90°	between	 the	alignment	
layers’	gold	deposition	axes,	inducing	untwisted	(red)	or	twisted	(blue)	nematic	structures,	
respectively.	 Initially,	 one	 or	 both	 of	 a	 cell’s	 gold	 deposition	 axes	were	 aligned	with	 the	
polarizer	 axis,	 defined	 to	 be	 at	 0°.	 Rotation	 angles	 were	 measured	 with	 respect	 to	 this	
reference	orientation,	 incremented	 in	5°	steps.	Reported	spectra	are	averages	of	analyses	
performed	 on	n	 separate	 LC	 cells,	 each	 consisting	 of	 three	measured	 regions,	where	 the	
radial	line	widths	indicate	the	data’s	standard	deviations.	Spectra	are	scaled	such	that	their	
respective	transmittance	maxima	are	equal;	in	actuality,	the	maximum	transmittance	of	an	
untwisted	nematic	cell	nearly	equals	the	minimum	transmittance	of	a	cell	with	a	90°	twist	in	
its	director.	
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	 Applying	a	potential	difference	between	the	alignment	 layers	generates	an	electric	

field	that	can	distort	 the	planar	alignment	of	LCs	with	Δε	>	0,	 inducing	them	to	adopt	an	

orientation	parallel	to	the	field	(normal	to	the	surface),	as	illustrated	in	Figure	II.2C.75	This	

reorientation	of	the	mesogens	alters	the	transmittances	of	LC	cells	viewed	between	crossed	

polarizers,	as	shown	in	Figure	II.4.	Transmittances	of	twisted	nematic	cells	containing	5CB	

(Δε	>	0)	decrease	to	near	0%	with	increasing	field	strengths.	By	contrast,	twisted	nematic	

cells	made	using	MBBA	do	not	exhibit	a	change	in	their	transmittance	due	to	their	Δε	<	0,	

maintaining	 planar	 alignments	 that	 are	 reinforced	 by	 the	 applied	 field	 (see	 Supporting	

Information).	 The	 applied	 potentials	 produce	 no	 lasting	 changes	 to	 the	 carboranethiol	

monolayers,	 as	evidenced	by	 the	 reproducibility	of	 the	voltage-	modulated	 transmittance	

curves	 through	 repeated	 sweeping	 of	 the	 potential’s	 amplitude	 between	 0	 and	 7	V.	 The	

observed	optical	responses	of	the	cells	to	applied	electric	fields	is	further	indication	of	the	

planar	alignment	adopted	by	both	5CB	and	MBBA	LCs	on	carboranethiol	and	-dithiol	SAMs.		



 

49	

	

 Normalized	 optical	 transmittances	 of	 electrically	 modulated	 liquid	 crystal	
(LC)	 cells	 viewed	 between	 crossed	 polarizers.	 Alignment	 layers	 were	 prepared	 with	
matching	self-assembled	monolayers	of	m-9-carboranethiol	(M9),	m-1-carboranethiol	(M1),	
o-9-carboranethiol	 (O9),	 o-1-carboranethiol	 (O1),	 o-9,12-carboranedithiol	 (9O12),	 and	
o-1,2-carboranedithiol	(1O2),	as	indicated.	These	surfaces	induced	uniaxial	planar	alignment	
in	 4-cyano-4′-pentylbiphenyl	 (5CB)	 LCs.	 Cells	were	 constructed	with	 perpendicular	 gold	
deposition	 axes,	 producing	 twisted	 nematic	 structures,	 and	 were	 positioned	 between	
crossed	 polarizers	 such	 that	 their	 zero-voltage	 optical	 transmittance	 was	 maximized.	
Subsequently,	 a	 sinusoidally	varying	 (1	kHz)	voltage	was	applied	between	 the	alignment	
layers	in	order	to	distort	the	LC	director	away	from	the	surface.	Root-mean-square	voltages,	
varied	in	0.1	V	steps,	are	indicated	along	the	horizontal	axes.	Reported	spectra	are	averages	
(black	lines)	of	analyses	performed	on	n	separate	LC	cells,	where	the	vertical	widths	of	the	
surrounding	blue	outlines	indicate	the	data’s	standard	deviations.	
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	 The	 rotation-	 and	 field-induced	 variations	 in	 transmittance	 described	 above	were	

observed	 uniformly	 over	 the	 entire	 area	 (∼1	cm2)	 of	 each	 cell	 measured.	 These	 results	

indicate	uniaxial	planar	alignment	of	5CB	and	MBBA	on	anisotropic	gold	surfaces	treated	

with	each	of	the	six	carboranethiols	considered	here.	However,	these	observations,	alone,	do	

not	uniquely	determine	the	nematic	director	orientation	on	a	surface.	Transmittance	minima	

of	 untwisted	 nematics	 are	 expected	when	 the	 director	 aligns	 along	 either	 of	 the	 crossed	

polarizers’	axes,	while	maxima	are	expected	at	these	orientations	for	cells	constructed	with	

90°	 twists	 in	 their	directors.	These	expectations	are	 realized	 in	Figure	II.3;	 transmittance	

extrema	coincide	with	cell	rotations	that	align	Au#####⃑ 	parallel	to,	and	45°	from,	the	polarizers’	

axes.	Two	possible	in-plane	director	orientations	can	produce	this	effect:	director	alignment	

parallel	or	perpendicular	to	Au#####⃑ . 	

	 In	 order	 to	 determine,	 unambiguously,	 the	 LC	 orientation	 relative	 to	 the	 gold	

deposition	axis	(parallel	or	perpendicular),	a	wedge	cell	geometry	was	used,	as	illustrated	in	

Figure	II.5.	Illuminating	a	LC	wedge	with	monochromatic	light,	polarized	45°	from	its	optical	

axis,	 produced	 a	 series	 of	 bright	 and	 dark	 fringes	 visible	within	 the	 cell	 when	 observed	

between	 crossed	 polarizers.	 These	 fringes	 result	 from	 changes	 in	 the	 transmitted	 light’s	

polarization	 as	 it	 traverses	 the	 birefringent	 cell.	 The	 optical	 retardation	 (Γ)	 between	

ordinary	and	extraordinary	waves	causes	transmitted	light	to	vary	continuously	between	

linear	and	elliptical	polarization	states,	dependent	on	the	wedge	thickness	(d).	In	the	two	

extremes,	light	exits	the	wedge	linearly	polarized	parallel	or	perpendicular	to	its	incoming	

polarization,	producing	transmittance	minima	and	maxima,	respectively.	The	conditions	on	

the	optical	retardation	(wedge	thickness)	required	for	a	transmittance	extreme	are	given	by		
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Γ = ∆𝑛 ∙ 𝑑 = +
(𝑚 +½) ∙ 𝜆,maxima

𝑚 ∙ 𝜆,minima
		𝑚 = 0, 1, 2, 3, …	

where	 λ	 is	 the	 wavelength	 of	 light,	 Δn	 is	 the	 LC’s	 birefringence,	 and	 m	 is	 an	 integer	

enumerating	 the	 fringe	order.	Wave	plates,	 inserted	 in	 series	with	a	wedge	cell	between	

crossed	polarizers,	modify	 the	total	retardation	by	 fixed	amounts	and	cause	the	apparent	

positions	of	the	fringes	to	shift.	When	the	optical	axes	of	a	wave	plate	and	untwisted	nematic	

align,	the	total	retardation	of	the	transmitted	light	increases,	whereas	when	their	optical	axes	

are	crossed,	the	retardation	decreases.	Increased	(decreased)	optical	retardation	results	in	

shifts	in	the	fringe	position	toward	(away	from)	the	vertex	of	the	wedge,	toward	the	thinner	

(thicker)	end	of	the	cell.	In	this	way,	one	can	infer	the	orientation	of	the	nematic	director	

from	the	known	orientation	of	a	wave	plate’s	slow	axis	and	the	direction	of	the	observed	shift	

in	fringe	positions.		
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 Wedge	 cell	 scheme	 used	 to	 determine	 the	 in-plane	 liquid	 crystal	 director	
orientation	 with	 respect	 to	 the	 alignment	 layers’	 gold	 deposition	 axes	 (“anchoring	
orientation	cells”).	Linearly	polarized,	monochromatic	light	(λ	=	531	nm)	traversing	the	cell	
accumulates	an	optical	retardation	(Γ)	dependent	on	the	wedge	thickness.	As	a	result,	the	
transmitted	light	varies	between	linear	and	elliptical	polarization	states,	as	indicated	along	
the	top	of	the	figure.	This	retardation	is	modified	by	placing	wave	plates	in	series	with	the	
cell.	When	the	optical	axes	of	the	cell	and	wave	plate	align,	the	overall	retardation	increases,	
whereas	when	the	optical	axis	of	the	wave	plate	is	perpendicular	to	that	of	the	nematic,	the	
total	retardation	is	reduced.	When	viewed	through	an	analyzer	(not	shown),	oriented	90°	
from	the	incoming	light’s	polarization,	a	series	of	bright	and	dark	fringes	are	visible	within	
the	cell	due	to	extinction	of	light	polarized	along	the	initial	direction.	As	shown,	the	wave	
plate	modifies	 the	optical	retardation	of	 the	transmitted	light	by	λ/2,	 thereby	causing	the	
transmittance	maxima	to	become	minima,	and	vice	versa.	All	angles	indicate	orientations	in	
the	xy-plane	with	respect	to	the	+x-axis.	
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	 As	shown	in	Figure	II.6,	 the	 fringes	observed	 in	cells	made	using	M1,	O1,	and	1O2	

SAMs	shift	toward	the	thinner	ends	of	the	cells	with	increased	optical	retardation	along	Au#####⃑ .	

This	result	indicates	that	the	5CB	director	is	aligned	parallel	to	Au#####⃑ 	in	these	cells.	By	contrast,	

cells	prepared	with	M9,	O9,	and	9O12	SAMs	induced	planar	alignment	of	the	5CB	director	

perpendicular	to	Au#####⃑ ,	as	the	fringes	were	observed	to	move	toward	the	thicker	ends	of	the	

cells.	We	note	that	self-assembled	carboranethiol	and	-dithiol	isomers	with	dipole	moments	

directed	 toward	 the	gold	 surface	 induced	5CB	alignment	parallel	 to	Au#####⃑ ,	whereas	 isomers	

with	dipoles	directed	away	from	the	substrate	induced	planar	alignment	perpendicular	to	

Au#####⃑ .	A	similar	tendency	was	also	observed	in	the	case	of	MBBA	LCs	(see	Appendix),	with	the	

exceptions	of	M9	and	1O2	SAMs,	vide	infra.	Comparing	the	in-plane	alignment	orientations	

of	5CB	and	MBBA	directors	enables	us	to	examine	and	to	constrain	the	coupling	mechanism	

between	the	mesogens	and	carboranethiol	SAMs.	If	a	dipolar	electric	field	due	to	the	SAM	

dominates	 the	 interaction,	 then	 orthogonal	 director	 orientations	 of	 the	 two	 LCs	 (with	

oppositely	signed	values	of	Δε)	are	expected.	However,	this	behavior	is	not	observed,	which	

is	understandable	due	to	the	inversion	symmetry	of	the	nematic	director	(η	and	−η	represent	

equivalent	director	orientations).76	Therefore,	 the	molecular	dipole	moments	 in	 the	SAM	

must	influence	mesogen	alignment	by	other	means.	

	 Anchoring	 energy	 measures	 the	 work	 (per	 unit	 area)	 required	 to	 reorient	 a	 LC	

director	perpendicular	 to	 its	preferred,	 “easy	axis”	orientation	on	a	surface.	We	compare	

azimuthal	anchoring	energies	of	5CB	aligned	by	M1,	O9,	O1,	and	9O12	monolayers	as	a	means	

of	 quantifying	 SAM-LC	 interactions.	 In	 doing	 so,	 we	 test	 for	 differences	 in	 anchoring	

strengths	 between	 isomers	 that	 align	 LCs	 in	 the	 same,	 and	 perpendicular,	 directions	 on	

anisotropic	 gold	 surfaces.	 A	 torque-balance	 measurement	 scheme77,78	 was	 adopted	 to	
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estimate	anchoring	energies	on	patterned,	hybrid,	alignment	layers	assembled	in	a	wedge	

configuration,	as	illustrated	in	Figure	II.2D.	Twisted	and	untwisted	nematic	regions	in	a	cell	

were	 created	 using	 bifunctional	 alignment	 layers,	 pairing	 carboranethiol	 SAMs	 with	

alkanethiol	monolayers	known	to	induce	planar	LC	alignment	in	orthogonal	directions.46	The	

untwisted	nematic	regions	within	the	cells	enable	determination	of	the	easy	axes	of	both	the	

top	and	bottom	alignment	layers,	which	coincide	with	the	director	orientation.	In	the	twisted	

nematic	regions,	however,	the	director	deviates	from	the	surfaces’	easy	axes	due	to	an	elastic	

restoring	torque	acting	on	the	mesogens	as	a	result	of	the	twist	deformation	through	the	bulk	

of	the	cell.	The	angle	(φ)	by	which	the	director	deviates	from	the	easy	axes,	and	thus	partially	

untwists	itself,	is	related	to	the	azimuthal	anchoring	energy	(Waz):	

𝑊?@ = 	
ABCCD

E FGH(AI)
	,	

where	K22	is	the	twist	elastic	constant	of	the	mesogen	and	Ψ	is	the	overall	twist	of	the	nematic	

director	through	a	cell	with	thickness	d	(see	Figure	II.11	in	the	Appendix).	In	wedge	cells,	d	

varies	continuously	along	their	longitudinal	axes	and,	as	such,	must	be	determined	at	each	

measurement	 location.	 Wedge	 thicknesses	 may	 be	 inferred	 from	 their	 apparent	

(transmitted)	 colors.	 When	 illuminated	 with	white	 light	 and	 viewed	 between	 polarizers	

crossed	at	±45°	from	the	optical	axis	of	an	untwisted	nematic	with	known	birefringence,	the	

color	of	 transmitted	 light	 is	related	to	a	cell’s	thickness	using	a	Michel−Lev́y	 interference	

color	chart.79	However,	this	chart	provides	only	a	qualitative	measure	since	it	is	based	on	a	

subjective	judgment	of	color	and	is	prone	to	misinterpretation.	Monochromatic	transmission	

fringes	visible	within	a	cell,	like	those	seen	in	Figure	II.6,	provided	a	quantitative	means	of	

estimating	 the	wedge	 thickness	using	known	values	of	Δn	 and	λ	 in	 eq	1.	 In	 this	way,	we	

determined	the	5CB	azimuthal	anchoring	energies	summarized	in	Table	II.1.		



 

55	

	

 Transmission	 fringes	 observed	 in	 liquid	 crystal	 (LC)	 wedge	 cells	 viewed	
between	 crossed	 polarizers	 while	 illuminated	 with	 monochromatic	 light	 (wavelength	
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λ	=	531	nm).	 Alignment	 layers	 prepared	 with	 matching	 self-assembled	 monolayers	 of	
m-1-carboranethiol	 (M1),	 m-9-carboranethiol	 (M9),	 o-1-carboranethiol	 (O1),	
o-9-carboranethiol	(O9),	o-1,2-carboranedithiol	(1O2),	and	o-9,12-carboranedithiol	(9O12),	
as	 indicated,	 induced	 uniaxial	 planar	 alignment	 of	 4-cyano-4′-pentylbiphenyl	 (5CB)	 LCs.	
Wave	 plates	 inserted	 between	 the	 polarizers	 modified	 the	 optical	 retardation	 of	 light	
transmitted	through	the	cells	by	fixed	amounts	(ΓWP).	Here,	positive	(negative)	values	of	ΓWP	
signify	that	a	wave	plate’s	optically	slow	axis	was	aligned	parallel	(perpendicular)	to	a	cell’s	
gold	 deposition	 direction	 (Au#####⃑ ).	 Arrows	 and	 dashed	 lines	 track	 transmittance	maxima	 of	
constant	order	within	4.8	mm	×	0.5	mm	fields	of	view.	Fringes	in	cells	containing	M1,	O1,	and	
1O2	 monolayers	 were	 observed	 to	 shift	 toward	 the	 thinner	 ends	 of	 the	 wedges	 with	
increasing	ΓWP	(blue),	indicating	that	their	nematic	directors	were	oriented	parallel	to	Au#####⃑ .	By	
contrast,	 fringes	 shifted	 toward	 the	 thicker	 ends	 of	 cells	 containing	 M9,	 O9,	 and	 9O12	
monolayers	(red),	indicating	director	alignment	perpendicular	to	Au#####⃑ .	

Table	II.1. Anchoring	 energy	 (𝑾𝒂𝒛 )	 of	 5CB	 liquid	 crystals	 in	 cells	 prepared	with	

various	carboranethiol	self-assembled	monolayers	(SAMs).	

Anchoring	SAMa	 p⊥b	 𝑾𝒂𝒛	(µJ∙m-2)	 Sample	Size,	n	

O9c	 ↑	 7.5	±	0.1	 28	

9O12d	 6.7	±	0.1	 29	

M1e	 ↓	 14.3	±	0.4	 36	

O1f	 14.3	±	0.4	 37	

aCarboranethiol	or	-dithiol	isomer	used	to	align	4-cyano-4′-pentylbiphenyl	(5CB).	bNormal	
dipole	(p⊥)	orientation	toward	(↓)	or	away	from	(↑)	the	gold	surface.	co-9-carboranethiol.	
do-9,12-carboranedithiol.	em-1-carboranethiol.	fo-1-carboranethiol.	

	 If	 LC	 alignment	 is	modulated	 by	 the	monolayer’s	 constituent	 dipole	moments,	we	

expect	 to	observe	differences	 in	 the	anchoring	strengths	of	alignment	 layers	 treated	with	

different	 carboranethiol	 and	 -dithiol	 isomers.	We	 found	 a	 nearly	 bimodal	 distribution	 of	

anchoring	 energies	 from	 the	 four	 carboranethiol	 SAMs	 tested	 here,	 with	 the	 stronger	

(weaker)	anchoring	surfaces	corresponding	to	those	with	normal	dipoles	oriented	toward	

(away	from)	the	substrate.	Anisotropic	gold	surfaces	functionalized	with	either	O9	or	9O12	
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aligned	5CB	with	approximately	half	the	strength,	perpendicular	to	Au#####⃑ ,	as	monolayers	of	M1	

or	O1,	which	induced	alignment	parallel	to	Au#####⃑ .	Although	each	of	these	molecules	possesses	

distinct	dipole	magnitudes	and	orientations,	 the	anchoring	strengths	of	M1	and	O1	 (both	

monothiol	 species)	 SAMs	 did	 not	 differ	 appreciably.	 By	 contrast,	 the	 anchoring	 energy	

measured	on	9O12	(dithiol)	SAMs	was	found	to	be	∼10%	less	than	the	value	measured	on	

O9	 (monothiol)	 SAMs.	 However,	 that	 decrease	 in	 anchoring	 energy	 coincides	 with	 a	

matching	 reduction	 in	 the	 areal	 density	 of	 9O12	 molecules	 within	 close-packed	 SAMs,	

compared	 with	 O9	 monolayers,	 due	 to	 the	 larger	 nearest-neighbor	 spacing	 of	

carboranedithiol	 adsorbates.14,60,64	These	 findings	 suggest	 that	 the	polarity	of	 the	normal	

dipole	moment,	toward	or	away	from	the	surface,	and	the	molecular	packing	density	are	the	

dominant	 factors	 affecting	 LC	 anchoring	 in	 these	 systems.	 We	 note	 that	 the	 measured	

anchoring	energies	of	5CB	LCs	on	carboranethiol	monolayers	(∼7	μJ∙m−2	and	∼14	μJ∙m−2)	

exceed	the	values	reported	for	oligo(ethylene	glycol)-containing	SAMs	(<6	μJ∙m−2),78,80	and	

are	 comparable	 to	 those	 on	 unfunctionalized	 surfaces.37,81,82	 These	 values,	 however,	 are	

almost	two	orders	of	magnitude	weaker	than	the	anchoring	strengths	of	rubbed	polyamide	

films.83,84	

	 Uncertainty	in	the	local	gold	deposition	angle	is	expected	to	be	a	major	contributor	to	

variations	in	the	measured	azimuthal	anchoring	energies.38,80,85,86	All	of	the	gold	films	used	

in	 these	 studies	were	deposited	at	 the	 same	 angle,	nominally	50°	away	 from	 the	 surface	

normal.	However,	due	to	the	finite	sizes	of	the	glass	substrates	and	their	positions	relative	to	

the	evaporating	metal	source,	departures	of	up	to	6°	from	the	intended	angle	are	possible	

(see	 Appendix).	 Variations	 in	 the	 average	 grain	 size	 and	 surface	 roughness	 affect	 the	

substrate’s	 contribution	 to	 LC	 alignment,	 resulting	 in	 stronger	 anchoring	 on	 gold	 films	
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deposited	at	higher,	more	oblique	angles.85	Additionally,	uncertainty	in	the	anchoring	energy	

typically	increases	with	deposition	angle	due,	in	part,	to	its	sensitivity	to	uncertainties	in	the	

nematic	director’s	twist	and	deviation	from	the	easy	axes.80	This	sensitivity	becomes	more	

pronounced	with	increasing	anchoring	strength	(higher	deposition	angles).	The	anchoring	

energies	 reported	 here	 reflect	 averages	 of	 measurements	 performed	 on	 multiple	 cells,	

inversely	 weighted	 by	 their	 estimated	 variances.	 Such	 averaging,	 however,	 biases	 the	

reported	values	in	favor	of	lower	anchoring	energies	that	possess	correspondingly	smaller	

uncertainties.	The	complete	data	sets,	as	well	as	a	discussion	of	the	statistical	methods	used	

in	our	analysis,	are	provided	in	the	Appendix.		

	 As	 noted	 above,	 we	 observe	 a	 trend	 in	 the	 alignment	 of	 LCs	 by	 carboranethiol	

monolayers	 prepared	 on	 anisotropic	 gold	 surfaces	 that	 follows	 the	 polarity	 of	 the	

adsorbate’s	normal	dipole	moment.	The	constituent	molecules	of	a	SAM,	in	general,	possess	

dipoles	with	 components	oriented	parallel	 and	normal	 to	 the	 functionalized	 surface.	The	

cumulative	 effects	 of	 the	 in-plane	 molecular	 dipoles	 are	 diminished	 by	 their	 varying	 or	

disordered	azimuthal	orientations	expected	at	room	temperature.14	Molecules	may	adsorb	

to	the	surface	with	random	in-plane	dipole	orientations	and,	in	the	cases	of	M9,	M1,	O9,	and	

O1,	which	possess	only	a	single	attachment	to	the	substrate,	rotate	about	their	Au−S	bonds.	

If	long-range	orientational	order	is	present,	the	formation	of	differently	polarized	domains	

(including	closure	domains)	would	compensate	for	a	net	in-plane	dipole	over	macroscopic	

scales.	 Additionally,	 image	 dipoles,	 formed	 through	 the	 redistribution	 of	 charge	 on	 the	

underlying	gold	substrate,	would	further	attenuate	the	effects	of	in-plane	molecular	dipoles.	

Normal	 dipole	 moments,	 however,	 are	 not	 subject	 to	 these	 mitigating	 factors.	 Each	

carboranethiol	 in	 a	 single-species	 SAM	 adsorbs	 to	 the	 surface	 with	 the	 same	 polar	
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orientation	 and,	 as	 such,	 enhances	 the	 net	 dipole	 moment	 normal	 to	 the	 surface.	

Carboranedithiol	isomers	(9O12	and	1O2)	were	included	in	these	experiments	due	to	their	

expected	dipole	orientations	normal	 to	the	surface	as	a	result	of	 their	bilateral	molecular	

symmetry.	Since	these	isomers	bind	to	the	substrate	via	two	Au−S	bonds,	they	are	not	free	

to	rotate	azimuthally.	In	principle,	these	isomers	could	tilt	about	the	axis	connecting	their	

two	adsorbed	thiolate	moieties,	out	of	the	plane	normal	to	the	gold	substrate,	resulting	in	a	

portion	of	their	dipole	moments	orienting	parallel	to	the	surface.	Nevertheless,	we	observe	

the	 same	 trend	 in	5CB	alignment	 induced	by	 carboranedithiol	 isomers	as	 in	 the	 cases	of	

monothiol	isomers,	dependent	upon	the	polarity	of	the	normal	dipole.	As	such,	we	conclude	

that	 the	 net	 in-plane	 dipole	of	 a	 SAM	 is	 either	 compensated	 through	one	 or	more	 of	 the	

mechanisms	mentioned	above,	or	 is	 a	 less	significant	 contributor	 than	 the	normal	dipole	

when	determining	LC	alignment.		

	 In	addition	to	the	factors	discussed	above,	other	surface	anisotropies	may	contribute	

to	 the	 existence	 of	 an	 easy	 alignment	 axis.	 One	 such	 contribution	 originates	 from	 an	

anisotropic	 electric	 susceptibility	 of	 the	 alignment	 surface.	 Obliquely	 deposited	 films	 are	

expected	to	have	an	anisotropic	response	to	electric	stimuli	(e.g.,	from	mesogen	dipoles)	due	

to	their	dune-like	or	columnar	surface	textures.87,88	Molecular	monolayers	can	modify	this	

anisotropy,	dependent	on	the	adsorbate	polarizabilities	and	orientations	on	the	surface.	To	

examine	 this	 effect,	 molecular	 polarizability	 tensors	 (α)	 were	 calculated	 using	 density	

functional	theory	for	each	of	the	six	carboranethiol	and	-dithiol	isomers	considered	here	(see	

Supporting	Information).	To	facilitate	comparison,	Cartesian	coordinate	bases	were	chosen	

for	each	molecule	such	that	the	bond(s)	connecting	the	sulfur	atom(s)	to	the	carborane	cage	

moiety	coincided	with	(or	symmetrically	straddled)	the	z-axis.	Additionally,	one	or	both	of	
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the	carbon	atoms	within	the	isomers	were	designated	to	lie	along	the	x-axis,	in	the	cases	of	

M1,	O9,	O1,	9O12,	 and	1O2,	 and	 symmetrically	about	 the	x-axis	 in	 the	 case	of	M9.	These	

coordinate	bases	 closely	 coincided	with	 the	molecules’	principal	polarizability	axes,	 such	

that	 the	 off-diagonal	 polarizability	 tensor	 elements	 (𝛼NO, 𝑖 ≠ 𝑗)	were	 negligible	 (<1%)	 by	

comparison	to	the	diagonal	elements	(αii).	Considering	upright	adsorption,	we	found	that	

the	molecular	polarizabilities	of	carboranethiols	were	nearly	symmetric	in	the	plane	of	the	

substrate	 (𝛼SS ≈ 𝛼UU ),	 with	 variations	 of	 <2%.	 Larger	 in-plane	 variations	 in	 molecular	

polarizability	were	 found	 for	9O12	and	1O2	 (∼10%),	 in	part	due	 to	 the	 lower	 (two-fold)	

rotational	symmetry	of	carboranedithiols	compared	that	of	with	monothiol	isomers	(five-

fold).	 Symmetric	 adsorbate	 polarizabilities	 reduce	 the	 likelihood	 of	 anisotropic	 in-plane	

polarizations	of	a	SAM	inducing	LC	alignment	on	flat,	isotropic	surfaces.	On	textured	surfaces,	

however,	the	local	(microscopic)	surface	normal	generally	deviates	from	that	of	the	average	

(macroscopic)	plane	of	the	substrate,	effectively	varying	the	orientations	of	molecules	within	

the	assembly.	As	a	result,	the	in-plane	electric	susceptibility	of	a	SAM	depends,	in	part,	on	the	

polarizability	of	carboranethiols	along	their	z-axes	(αzz),	which	is	∼20%	greater	than	their	

polarizability	 along	 orthogonal	 directions.	 Therefore,	 geometric	 surface	 anisotropies	

present	 in	 obliquely	 deposited	 films,	 generate	 additional	 anisotropies	 in	 a	 monolayer	

without	requiring,	a	priori,	long-range	azimuthal	alignment	of	carboranethiols.	However,	we	

do	not	find	any	consistent	correlation	between	the	observed	LC	alignment	and	all	six	of	the	

carboranethiol	molecular	polarizabilities	considered	here.		

	 Comparing	the	alignments	of	mesogens	with	oppositely	signed	dielectric	anisotropies	

provides	insight	into	the	role	of	the	dipolar	field	on	LC	anchoring	by	functionalized	surfaces.	

Assuming	direct	 coupling	between	 the	mesogens	and	 the	 field,	5CB	and	MBBA	LCs	were	
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expected	to	align	along	orthogonal	directions,	relative	to	each	other,	at	the	SAM-LC	interface.	

Instead,	both	mesogens	adopted	the	same	planar	orientation,	dependent	on	the	polarity	of	

the	monolayer’s	constituent	molecular	dipoles	normal	to	the	surface,	as	detailed	previously.	

However,	 in	 the	 case	 of	MBBA	 alignment,	M9	 and	 1O2	 carboranethiol	monolayers	were	

found	 to	 be	 exceptions	 to	 this	 trend.	 Alignment	 layers	 functionalized	 with	 M9	 induced	

alignment	of	MBBA	parallel	to	Au#####⃑ ,	whereas	1O2	monolayers	resulted	in	more	heterogeneous	

and	 less	 reproducible	 anchoring	 of	MBBA	 than	 observed	 on	 surfaces	 treated	with	 other	

isomers	under	the	same	conditions.	To	understand	these	anomalies,	we	reemphasize	that	

the	monolayer’s	constituent	dipoles	are	not	the	sole	factor	affecting	LC	alignment,	despite	

being	the	focus	of	these	studies.	Other	influences,	including	surface	topography,	molecular	

geometry,	 tilt,	 and	 order,	 are	 still	 present	 (albeit	 consistent)	 in	 each	 cell,	 while	 the	

contribution	from	carboranethiol	dipoles	varies	between	isomers.	Out	of	the	three	isomers	

with	dipoles	directed	away	from	the	underlying	gold	surface	tested	here,	M9	possesses	the	

weakest	moment	and	is	the	only	one	to	induce	LC	alignment	counter	to	the	prevailing	trend	

(and	 only	 with	 MBBA).	 Previously,	 we	 noted	 that	 the	 anchoring	 strength	 of	 5CB	 on	

carborane-functionalized	surfaces	did	not	depend	on	the	magnitude	of	the	molecular	dipoles	

of	a	SAM.	This	unexpected	alignment	of	MBBA	may	indicate	a	minimum	threshold	strength	

of	molecular	dipoles	required	to	orient	LCs	along	a	particular	direction	on	these	surfaces.	

Alternatively,	we	propose	 that	 the	properties	of	MBBA	 itself	may	 instead	be	 responsible.	

Relative	 to	 5CB,	 MBBA	 has	 a	 weaker	 internal	 dipole	 moment	 and	 smaller	 dielectric	

anisotropy	(see	Appendix).	As	a	result,	the	coupling	strength	of	MBBA	to	external	electric	

fields	is	weaker	than	that	of	5CB,	with	which	no	alignment	anomalies	were	observed.	Future	

experiments	using	a	LC	with	a	more	negative	dielectric	anisotropy	could	test	this	hypothesis	
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and	distinguish	whether	or	not	the	observed	alignment	is	indicative	of	the	carboranethiol	

monolayer	or	a	property	of	the	mesogen	itself.	In	the	case	of	the	heterogeneous	alignment	of	

MBBA	on	1O2	monolayers,	we	note	the	potential	for	dithiol	isomers	to	chemisorb	to	the	gold	

surface	in	either	singly	or	doubly	bound	states.	Here,	we	used	ethanolic	solutions	of	each	of	

the	carboranedithiols	with	added	base	(sodium	hydroxide)	to	promote	dual	binding	via	both	

thiol	 moieties	 on	 each	 molecule.	 However,	 even	 under	 these	 circumstances,	 not	 every	

adsorbed	molecule	binds	to	the	gold	with	both	thiol	moieties.	We	have	observed	elsewhere64	

that	the	1O2	isomer	is	more	likely	to	adsorb	in	mixed	states	(both	singly	and	doubly	bound)	

compared	to	the	9O12	 isomer	under	alkaline	conditions,	resulting	 in	a	 less	uniform	SAM.	

This	 molecular-scale	 heterogeneity	 may,	 in	 turn,	 produce	 more	 heterogeneous	 LC	

arrangements	than	those	observed	on	alignment	layers	treated	with	other	carboranethiol	

isomers.	

 Conclusions	and	Prospects	

	 Here,	 LCs	 serve	 as	 advantageous	 probes	 of	 the	 nanoscale	 intermolecular	 forces	

between	 SAMs	 and	 their	 environment.	 These	 combinations	 of	 forces	 result	 from	 several	

factors,	 including	 surface	 topography,	 molecular	 orientation,	 and	 chemical	 functionality,	

which	modulate	 the	 properties	of	 the	 underlying	 substrate	 and	mediate	 the	 assembly	of	

adsorbates.	We	report	on	the	uniaxial,	planar	alignment	of	5CB	and	MBBA	LCs	on	obliquely	

deposited	gold	films	functionalized	with	carboranethiol	and	-dithiol	SAMs.	Carboranethiol	

monolayers	 enable	 direct	 comparisons	 of	 LC	 alignment	modulated	 by	 differences	 in	 the	

magnitudes	and	orientations	of	assembled	molecular	dipoles	on	a	surface.	Carboranethiol	

monolayers	 hold	 constant	 other	 factors	 that	 influence	 LC	 alignment,	 such	 as	 molecular	
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geometry,	tilt,	and	order,	which	have	confounded	previous	studies.	Furthermore,	comparing	

LC	alignment	on	monolayers	composed	of	monothiol	isomers	(M9,	M1,	O9,	and	O1)	to	those	

composed	of	carboranedithiols	(9O12	and	1O2)	enabled	inference	of	the	roles	of	the	normal	

and	 lateral	 surface	 dipoles.	 We	 observed	 that	 the	 in-plane,	 azimuthal	 orientation	 of	

mesogens	on	anisotropic	gold	 films	was	modulated	predominantly	by	 the	 carboranethiol	

dipole	 component	 normal	 to	 the	 surface.	Monolayers	 composed	 of	 carboranethiols	with	

dipoles	oriented	toward	(away	from)	the	underlying	gold	surface	induced	planar	alignment	

of	 5CB	 parallel	 (perpendicular)	 to	 the	 gold	 deposition	 direction.	 A	 similar	 trend	 was	

observed	in	the	case	of	alignment	of	MBBA,	which	possesses	an	oppositely	signed	dielectric	

anisotropy.	 Since	 LCs	 with	 dielectric	 anisotropies	 of	 opposite	 signs	 align	 similarly,	

dependent	on	 the	monolayer’s	normal	dipole	polarity,	we	conclude	 that	 it	 is	not	a	direct	

result	of	 dipolar	 field	 coupling	 between	 SAMs	 and	mesogens.	We	 attribute	 the	 observed	

alignment	 to	 more	 complex	 mechanisms	 involving	 intermolecular	 dispersion	 forces.	 To	

quantify	SAM-LC	interaction	strength,	we	measured	the	azimuthal	anchoring	energies	of	5CB	

on	 alignment	 layers	 treated	 with	 M1,	 O9,	 O1,	 and	 9O12	 monolayers.	 A	 nearly	 bimodal	

distribution	 of	 anchoring	 energies	 was	 measured,	 dependent	 on	 the	 polarity	 of	 the	

carboranethiol	 isomer	 dipole	 moment	 component	 normal	 to	 the	 surface.	 Monolayers	

composed	of	carboranethiol	isomers	with	dipoles	oriented	away	from	(O9	and	9O12)	and	

toward	(M1	and	O1)	the	substrate	were	measured	to	anchor	5CB	with	strengths	of	∼7	and	

∼14	μJ·m−2,	respectively.	Additionally,	comparing	the	anchoring	energies	of	pairs	of	isomers	

with	the	same	polarity	normal	to	the	surface,	we	found	no	difference	in	anchoring	strengths	

between	monothiol	species	(M1	and	O1).	However,	we	observed	that	the	anchoring	energies	

measured	 on	 surfaces	 treated	 with	 9O12	 (dithiol)	 were	 about	 10%	 lower	 than	 those	
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measured	 on	 surfaces	 treated	 of	 O9	 (monothiol),	 coinciding	 with	 the	 decrease	 in	 areal	

density	of	carboranethiols	within	the	close-packed	monolayers.	This	result	indicates	that	not	

only	the	polarities	of	the	molecular	dipoles	affect	LC	anchoring,	but	also	their	densities	on	

the	 surfaces.	 We	 also	 considered	 other	 sources	 of	 surface	 anisotropy	 arising	 from	 the	

molecular	 polarizabilities	 of	 the	 carboranethiols	 used	 in	 this	 work	 that	 may	 affect	 LC	

anchoring	direction	and	strength.	We	do	not	expect	that	long-range	molecular	alignment	of	

carboranethiol	 adsorbates	within	SAMs	at	 room	 temperature	 is	 likely.14	However,	others	

have	 previously	 observed	 azimuthal	 ordering	 of	 exposed	methyl	moieties	 in	 alkanethiol	

monolayers	prepared	on	anisotropic	gold	films.41	Complementary	techniques,	such	as	sum-

frequency	generation	spectroscopy,	may	be	used	in	future	studies	to	test	this	possibility	in	

the	 case	 of	 carboranethiol	 SAMs.89	 The	mechanism	 involved	 remain	 unresolved,	 but	 this	

work	 isolates	elements	of	 the	alignment	of	LCs	on	 functionalized,	 anisotropic	 surfaces	 in	

order	 to	 elucidate	 the	 role	 of	 molecular	 dipole	 moments	 of	 the	 monolayers	 on	 the	

subsequent	adsorption	and	assembly	of	other	molecular	species.	Extending	this	knowledge	

to	other	molecular	systems	will	enhance	the	predictive	capabilities	of	nanoscale	engineering	

and	 enable	 rational	 design	 of	 structures	 extended	 to	 macroscopic	 scales	 on	 complex	

surfaces.		

 Materials	and	Methods	

 Materials	

	 Positional	isomers	of	dicarba-closo-dodecaboranethiol	and	-dithiol	O1,	O9,	1O2,	and	

9O12	were	synthesized	using	previously	reported	methods;90–92	M1	and	M9	isomers	were	

purchased	from	Sigma-Aldrich	(St.	Louis,	MO).	Mesogens	5CB	and	MBBA,	as	well	as	sodium	
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hydroxide,	and	alkanethiols	1-undecanethiol	(C11)	and	1-octadecanethiol	(C18)	were	also	

obtained	from	Sigma-	Aldrich.	Ethanol	(200	proof)	was	purchased	from	Goldshield	Chemical	

Company	(Hayward,	CA),	while	potassium	hydroxide	and	hydrogen	peroxide	(30%)	were	

acquired	 from	Fisher	Scientific	(Pittsburgh,	PA).	Sulfuric	acid	(98%)	was	purchased	from	

EMD	Chemicals	(Gibbstown,	NJ).	All	commercial	chemicals	were	used	as	received.	Deionized	

(DI)	 water	 (18.2	 MΩ·cm)	 was	 dispensed	 from	 a	 Milli-Q	 water	 purifier	 (EMD	 Millipore,	

Billerica,	MA).		

 Polymeric	Stamp	Preparation	

	 Polymeric	stamps	were	produced	using	a	Sylgard	184	silicone	elastomer	kit	 (Dow	

Corning,	Midland,	MI)	following	a	previously	reported	procedure.93	Flat,	featureless	stamps	

were	obtained	and	cut	into	strips	approximately	8	mm	wide,	76	mm	long,	and	4	mm	thick.		

 Polarizing	Microscopy	and	Image	Analysis		

	 An	Olympus	BX51-P	polarizing	microscope	and	CCD	camera	(Center	Valley,	PA)	were	

used	throughout	this	work	to	record	the	transmittances	and	optical	textures	of	LC	cells	as	

8-bit	 grayscale	 images.	 The	 transmittance	 of	 a	 LC	 cell	 was	 computed	 using	 the	 average	

intensity	of	all	pixels	within	an	image	(1600	×	1200	pixels).	Variations	in	the	transmittance	

within	the	microscope	 field	of	view	were	quantified	using	the	standard	deviation	of	pixel	

intensities.	Reported	transmittance	values	reflect	aggregated	analyses	of	multiple	cells	and	

multiple	locations	within	each	cell.	Automated	routines	facilitated	image	processing.		

 Alignment	Layer	Preparation	

	 Eagle	XG	glass	(Corning	Display	Technologies,	Corning,	NY),	1.1	mm	thick,	was	used	

throughout	this	work.	Glass	used	in	anchoring	energy	measurements	had	lateral	dimensions	

of	 76	mm	 ×	 25	mm,	while	 pieces	 intended	 for	 transmittance	measurements	were	 cut	 to	
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approximately	19	mm	×	25	mm.		

II.D.4.a. Substrate	Cleaning	

	 Glass	substrates	were	cleaned	through	sequential	rinsing	and	ultrasonication	steps	

(>20	min)	in	ethanol,	DI	water,	and	concentrated	potassium	hydroxide	solution.	Afterward,	

the	glass	was	rinsed	in	DI	water	and	then	immersed	in	piranha	solution	(3:1	H2SO4/H2O2)	

for	∼1	h	before	a	final	rinse	in	DI	water	and	being	blown	dry	with	nitrogen	gas.		

II.D.4.b. Oblique	Metal	Deposition	

	 Cleaned	glass	substrates	were	loaded	into	the	vacuum	chamber	of	an	electron	beam	

metal	evaporator	(Kurt	J.	Lesker	Company,	Jefferson	Hills,	PA)	immediately	after	drying	and	

held	at	a	base	pressure	of	∼1	×	10−7	Torr.	The	substrates	were	mounted	with	fixed	positions	

and	orientations	within	the	chamber	such	that	their	surface	normal	was	inclined	at	an	angle	

of	50°	away	from	the	metal	source.	Semitransparent	gold	films	(10	nm)	were	deposited	on	

top	of	chromium	adhesion	layers	(2	nm)	at	rates	of	∼0.5	Å/s.	Nominal	film	thicknesses	were	

measured	 using	 a	 quartz	 crystal	microbalance	 orientated	 toward	 the	metal	 source,	 thus	

overestimating	the	amount	of	metal	adsorbed	on	the	glass	by	a	factor	of	sec(50°)	≈	1.6.	Due	

to	the	finite	sizes	of	the	glass	substrates	and	their	positions	relative	to	the	metal	source,	a	

deviation	of	<6°	from	the	intended	deposition	angle	is	expected	for	gold	films	deposited	in	

the	same	batch.		

II.D.4.c. Self-Assembled	Monolayer	Preparation	

	 Self-assembled	monolayers	were	formed	on	obliquely	deposited	Au/glass	substrates	

from	1	mM	ethanolic	solutions	of	the	desired	adsorbate:	O1,	O9,	M1,	M9,	1O2,	9O12,	C11,	or	

C18.	 In	 the	 cases	 of	 1O2	 and	 9O12,	 1:2	carboranedithiol/NaOH	 equivalent	 solutions	 in	

ethanol	were	used	to	promote	divalent	adsorption	on	the	gold	surface.64	Immediately	prior	
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to	SAM	deposition,	Au/glass	substrates	were	exposed	to	an	oxygen	plasma	(Harrick	Plasma,	

Ithaca,	NY)	for	40	s	in	order	to	remove	adventitious	organic	adsorbates.	Substrates	intended	

for	 use	 in	 transmittance	 measurements	 were	 immersed	 in	 solutions	 of	 the	 desired	

carboranethiol	 or	 -dithiol	 isomer	 for	 12−18	h.	 Afterward,	 the	 uniformly	 functionalized	

surfaces	were	rinsed	in	copious	amounts	of	ethanol	and	then	blown	dry	with	nitrogen	gas.	

By	contrast,	soft	lithography	was	employed	to	create	two	adjacent,	spatially	separated,	SAMs	

on	substrates	used	in	anchoring	energy	measurements.	A	polymeric	stamp	was	soaked	in	a	

solution	of	either	C11	or	C18	“ink”	for	at	least	20	min,	then	rinsed	with	ethanol	and	blown	

dry	with	 nitrogen	 gas.	 The	 inked	 stamp	was	 placed	 into	 conformal	 contact	with	 a	 clean	

Au/glass	surface	for	10	min.	This	stamping	resulted	in	the	formation	of	an	alkanethiol	SAM	

over	about	one-third	of	the	alignment	surface	(conformal	contact	area).	The	surface	was	then	

immersed	into	a	solution	of	the	carboranethiol	or	-dithiol	under	investigation	for	60	min	in	

order	 to	 functionalize	 the	 remaining	 bare	 surface.	 Finally,	 the	 surface	 was	 rinsed	 with	

ethanol	and	blown	dry	with	nitrogen	gas.	Observing	the	distinct	wetting	behavior	of	ethanol	

over	 the	 two	 SAM	 regions,	 possessing	 either	 nonpolar	 (aliphatic)	 or	 polar	 (carborane)	

moieties,	confirmed	the	bifunctional	character	of	the	surface.		

 Liquid	Crystal	Cell	Assembly	

	 All	 LC	 cells	 were	 assembled	 (vide	 infra)	 immediately	 following	 alignment	 layer	

preparation	and	their	cavities	filled	with	either	5CB	or	MBBA	via	capillary	action.	To	prevent	

flow-induced	 LC	 alignment,	 the	 alignment	 layers	 and	mesogens	were	 heated	 to	 5−10	°C	

above	the	mesogen’s	clearing	temperature	during	filling.	Afterward,	the	cells	were	allowed	

to	cool	to	room	temperature	(∼20	°C)	and	permanently	sealed	using	cyanoacrylate	adhesive	

(Henkel,	Westlake,	OH).		
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II.D.5.a. Transmittance	Cells	

	 Transmittance	cells	were	assembled	using	plastic	spacers	(30	μm	thick)	to	separate	

the	matching	functionalized	gold	surfaces	of	two	alignment	layers.	Alignment	layers	were	

paired	such	that	their	gold	deposition	axes	were	either	parallel	or	crossed	at	angles	of	∼90°,	

producing	 cells	with	untwisted	or	 twisted	nematic	 structures,	 respectively.	Copper	wires	

were	affixed	to	the	outermost	edges	of	both	gold	surfaces	using	conductive	carbon	glue	(Ted	

Pella,	 Redding,	 CA),	 enabling	 manipulation	 of	 LC	 orientations	 by	 applied	 electric	 fields	

(potentials).		

II.D.5.b. Anchoring	Orientation	Cells	

	 The	 alignment	 layers	 of	 cells	 used	 to	 determine	 the	 in-plane	 LC	 anchoring	

orientations	 were	 prepared	 identically	 to	 those	 used	 in	 transmittance	 measurements.	

However,	in	contrast	to	transmittance	cells,	anchoring	orientation	cells	were	constructed	as	

wedges	with	a	spacer	separating	the	alignment	layers	at	only	one	end.	In	this	configuration,	

the	 thickness	 of	 the	 cavity	 between	 the	 alignment	 layers	 varied	 linearly	 along	 the	 cell’s	

longitudinal	axis,	independent	of	the	transverse	position.	Only	untwisted	nematic	cells,	with	

parallel	anisotropy	axes,	were	used	to	determine	anchoring	orientations.		

II.D.5.c. Anchoring	Energy	Cells	

	 Adopting	the	design	described	by	Abbott	and	co-workers,77,78	anchoring	energy	cells	

were	 constructed	with	 the	wedge	 cell	 geometry	 described	 previously	 and	 engineered	 to	

contain	three	nematic	regions.	Alignment	layers	were	arranged	with	crossed	gold	deposition	

axes,	 oriented	 along	 the	 longitudinal	 and	 transverse	 cell	 axes,	 and	 with	 matched	 and	

mismatched	overlapping	SAM	regions,	as	illustrated	in	Figure	II.2D.	As	such,	the	azimuthal	

director	orientation	was	induced	to	twist	by	∼90°	in	the	central	region,	whereas	the	regions	
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on	either	side	exhibited	untwisted,	uniaxial	LC	alignment	(90°	apart)	through	the	bulk	of	the	

cell.	To	prevent	flexing	of	the	alignment	layers	during	assembly,	custom-built	jigs	were	used	

to	 ensure	 uniform	 compression.	 Flexing	 was	 not	 observed	 to	 pose	 a	 problem	 when	

constructing	other,	comparatively	shorter,	types	of	LC	cells.		

 Transmittance	Measurements	

	 Transmittance	cells	were	examined	between	the	crossed	polarizers	of	a	polarizing	

optical	microscope	while	 illuminated	with	white	 light.	 The	 optical	 axes	 of	 the	 cells	were	

aligned	 initially	 with	 either	 of	 the	 microscope’s	 polarizing	 axes,	 thus	 minimizing	

(maximizing)	 the	relative	 intensity	of	 light	 transmitted	through	cells	constructed	with	no	

twist	(90°	twist)	in	their	nematic	directors.	The	transmittance	was	measured	at	5°	intervals	

over	 one	 complete	 rotation	 of	 a	 cell.	This	 process	was	 repeated	 three	 times,	 in	 different	

regions	(1.2	mm	×	0.9	mm	field	of	view),	for	each	cell	measured.	Afterward,	the	orientation	

of	the	cell	was	fixed	and	its	transmittance	measured	as	a	sinusoidally	varying	voltage	was	

applied	between	the	alignment	layers	(3.0	mm	×	2.2	mm	field	of	view).		

 Anchoring	Orientation	Determination	

	 Anchoring	orientation	cells	were	illuminated	with	monochromatic	light	polarized	45°	

from	their	optical	axes.	When	viewed	through	an	analyzer	crossed	90°	from	the	polarization	

of	 the	 incoming	 light,	 a	 series	of	bright	and	dark	 fringes	were	observed,	 as	 illustrated	 in	

Figure	II.5.	These	fringes	were	a	consequence	of	differences	in	the	optical	retardation	of	light	

transmitted	through	the	birefringent,	LC,	wedges.	Wave	plates	(RealD,	Beverly	Hills,	CA,	and	

Edmund	Optics,	Barrington,	NJ)	were	 inserted	 between	 the	 polarizers,	 in	 series	with	 the	

cells,	to	alter	this	retardation	by	fixed	amounts.	Changes	in	the	fringe	positions	due	to	the	

wave	plates	were	tracked	within	viewing	areas	of	about	6.0	mm	×	4.5	mm.		
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 Anchoring	Energy	Measurements	

	 Azimuthal	 anchoring	 energies	 were	 measured	 using	 a	 similar	 procedure	 to	 that	

reported	by	Abbott	and	co-workers.78	The	LC	alignment	directions	and	twist	angles	were	

determined	using	automated	routines	to	fit	the	observed	rotation−transmittance	spectra	in	

each	of	the	cells’	three	nematic	regions	(590	μm	×	440	μm	field	of	view)	to	their	expected	

trigonometric	 responses.	 Estimates	 of	 local	 wedge	 cavity	 thicknesses	 were	 made	 by	

comparing	 the	 observed	 color	 of	 cells	 illuminated	 with	 white	 light	 to	 a	 Michel−Lev́y	

interference	 color	 chart.79	 These	 estimates	 were	 refined	 using	 the	 positions	 of	 the	

transmission	 fringes	 made	 visible	 by	 illuminating	 the	 cells	 with	 monochromatic	 light.	

Transmittance	minima	and	maxima	bands	acted	as	internal	graduations	corresponding	to	

known	 cavity	 thicknesses.	 Reported	 anchoring	 energies	 represent	 an	 average	 of	 all	

measurements	weighted	 by	 their	 respective	measurement	 uncertainties	 (see	 Supporting	

Information).		

 Density	Functional	Theory	Calculations	

	 The	 six	 carboranethiol	 isomers	 used	 in	 this	 work	 were	 analyzed	 using	 density	

functional	 theory.	 Optimized	 molecular	 structures,	 dipole	 moments,	 and	 polarizabilities	

were	 computed	 at	 the	 M062X	 level	 of	 theory	 using	 the	 6-311G**	 basis	 set	 with	 the	

Gaussian	09	software	package	(Gaussian,	Wallingford,	CT).94,95	

 Appendix	

 Physical	Properties	of	Liquid	Crystals	

	 Relevant	physical	properties	of	the	liquid	crystals	(LCs)	used	in	this	work,	5CB	and	

MBBA,	are	summarized	in	Table	II.2.		



 

71	

Table	II.2. Physical	properties	of	5CBa	and	MBBAb	liquid	crystals.	

Propertyc	
Liquid	Crystals	

5CBd	 MBBAe	

Δnf	 0.1873	 0.184	

Δεg	 +11.5	 -0.5	

K22	(pN)h	 4.22	 4.0	

TNI	(°C)i	 35	 47	

µ	(D)j	 5.1	 2.2	

a4-cyano-4′-pentylbiphenyl	(5CB).	bN-(4-methoxybenzylidene)-4-butylaniline	(MBBA).	cThe	
values	 of	 these	 properties	 depend	 on	 the	 specific	 measurement	 conditions	
(e.g.,	temperature,	 optical	 wavelength,	 and	 chemical	 purity).	 Here,	 we	 report	 values	
applicable	 to	 this	 work.	 dSee	 Refs.	 78,96–98.	 eSee	 Refs.	 55,76,99.	 fBirefringence	 (Δn),	
calculated	as	the	difference	in	the	indices	of	refraction	of	light	polarized	along	the	mesogen’s	
extraordinary	and	ordinary	axes.	gDielectric	anisotropy	(Δε),	calculated	as	the	difference	in	
the	mesogen’s	dielectric	constant	parallel	and	perpendicular	to	the	director.	hMesogen	twist	
elastic	 constant	 (K22).	 iTransition	 temperature	 (TNI)	 between	 the	 nematic	 and	 isotropic	
phases.	jPermanent	molecular	dipole	moment	(μ)	of	the	mesogen.	The	dipole	moment	of	5CB	
lies	 along	 its	molecular	 axis,	whereas	 the	 dipole	moment	 of	MBBA	 is	 directed	 primarily	
perpendicular	to	its	long	axis.	

 MBBA	Cell	Rotation–Transmittance	Spectra	

	 Figure	 II.7	 shows	 the	modulation	 in	 the	 intensity	of	 the	 light	 transmitted	 through	

MBBA	cells	as	they	were	rotated	between	crossed	polarizers	(Figure	II.2B).	Alignment	layers	

treated	with	M9,	M1,	O9,	O1,	and	9O12	SAMs	induced	uniaxial	planar	alignment	in	MBBA	

cells,	as	indicated	by	the	four-fold	symmetry	of	their	transmittance	spectra.	Cells	constructed	

without	a	twist	in	their	nematic	directors	vary	from	nearly	extinguishing	all	transmitted	light	

to	 transmitting	~50%.	By	 contrast,	 cells	 that	 possess	 a	 90°	 twist	 in	 their	 directors	 have	

transmittances	varying	from	~50%	to	nearly	100%,	due	to	the	rotation	of	the	polarization	

of	the	transmitted	light	as	it	traverses	the	cell.	
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 Optical	 transmittances	(indicated	by	the	radial	distance	 from	the	origin,	 in	
arbitrary	units)	of	liquid	crystal	(LC)	cells	rotated	between	crossed	polarizers.	Alignment	
layers	 were	 prepared	 with	 matching	 self-assembled	 monolayers	 of	 m-9-carboranethiol	
(M9),	 m-1-carboranethiol	 (M1),	 o-9-carboranethiol	 (O9),	 o-1-carboranethiol	 (O1),	 and	
o-9,12-carboranedithiol	(9O12),	as	indicated.	At	these	surfaces,	uniaxial,	planar	alignment	
was	manifest	in	N-(4-methoxybenzylidene)-4-butylaniline	(MBBA)	LCs,	as	evidenced	by	the	
variations	 in	 optical	 transmittance	 possessing	 four-fold	 rotational	 symmetry.	 Cells	 were	
constructed	with	 0°	 or	 90°	 angles	 between	 their	 alignment	 layers’	 gold	 deposition	 axes,	
producing	untwisted	(red)	or	twisted	(blue)	nematic	structures,	respectively.	Initially,	one	
or	both	of	a	cell’s	gold	deposition	axes	were	aligned	with	the	polarizer	axis,	defined	to	be	at	
0°.	Rotation	angles	were	measured	with	respect	to	this	reference	orientation,	incremented	
in	5°	steps.	Reported	spectra	are	averages	of	analyses	performed	on	separate	LC	cells,	each	
consisting	 of	 three	 measured	 regions,	 where	 the	 radial	 line	 widths	 indicate	 the	 data’s	
standard	deviation.	Spectra	are	scaled	such	that	their	respective	transmittance	maxima	are	
equal;	in	actuality,	the	maximum	transmittance	of	an	untwisted	nematic	cell	nearly	equals	
the	minimum	transmittance	of	a	cell	with	a	90°	twist	in	its	director.		
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 MBBA	Cell	Voltage–Transmittance	Spectra	

	 Applying	a	potential	difference	between	the	alignment	 layers	generates	an	electric	

field	 that	 can	 distort	 the	 LC	 alignment.	Mesogens	with	 negative	 Δε	adopt	 an	 orientation	

perpendicular	 to	 the	 applied	 field.	 In	 the	 case	 of	 MBBA,	 such	 fields	 would	 induce	 (or	

reinforce)	planar	alignment,	parallel	to	the	surface.	Any	reorientation	of	the	mesogens	upon	

the	application	of	an	electric	potential	(VAC	≤	7	V)	would	alter	the	transmittances	of	LC	cells	

viewed	between	crossed	polarizers.	As	seen	in	Figure	II.8,	transmittance	of	cells	containing	

MBBA	 remain	 constant,	 indicating	 prior	 planar	 alignment	 of	 the	 mesogens	 and	 no	

subsequent	reorientation.		
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 Normalized	 optical	 transmittances	 of	 electrically	 modulated	 liquid	 crystal	
(LC)	 cells	 viewed	 between	 crossed	 polarizers.	 Alignment	 layers	 were	 prepared	 with	
matching	self-	assembled	monolayers	of	m-1-carboranethiol	(M1),	which	induced	uniaxial	
planar	 alignment	 in	 N-(4-methoxybenzylidene)-4-butylaniline	 (MBBA)	 LCs.	 Cells	 were	
constructed	with	 0°	 or	 90°	 angles	 between	 their	 alignment	 layers’	 gold	 deposition	 axes,	
producing	 untwisted	 (red)	 or	 twisted	 (blue)	 nematic	 structures,	 respectively.	 Cells	were	
positioned	 between	 crossed	 polarizers	 such	 that	 their	 zero-voltage	 optical	 transmittance	
was	maximized	 (minimized)	 for	 twisted	 (untwisted)	 nematic	 structures.	 Subsequently,	 a	
sinusoidally	varying	(1	kHz)	voltage	was	applied	between	the	alignment	layers.	Root-mean-
square	 voltages,	 varied	 in	 0.1	V	 steps,	 are	 indicated	 along	 the	 horizontal	 axes.	 Reported	
spectra	are	averages	(black	lines)	of	analyses	performed	on	=	3	separate	LC	cells,	of	each	
type,	where	the	vertical	widths	of	the	surrounding	blue	outlines	indicate	the	data’s	standard	
deviation.	No	changes	in	the	transmittance	spectra	were	observed	with	increasing	voltage,	
indicating	that	the	MBBA	mesogens	did	not	reorient	as	a	result	of	the	applied	electric	field.		
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 MBBA	Anchoring	Orientation	Cells	

	 Anchoring	orientation	wedge	cells	were	used	to	determine	the	in-plane	orientation	

of	MBBA	LCs	relative	to	Au#####⃑ :	parallel	or	perpendicular.	As	shown	in	Figure	II.9,	the	fringes	

observed	in	cells	made	using	M1,	M9,	and	O1	shift	toward	the	thinner	ends	of	the	wedges	

with	increased	optical	retardation	along	the	gold	deposition	axis,	indicating	that	the	MBBA	

nematic	director	is	aligned	parallel	to	Au#####⃑ .	By	contrast,	cells	made	with	O9	and	9O12	exhibited	

planar	alignment	of	MBBA	perpendicular	to	Au#####⃑ ,	as	evident	from	the	observed	fringe	shifts	

toward	the	thicker	ends	of	the	wedges.	As	such,	the	orientations	of	the	MBBA	director	match	

those	of	5CB	on	alignment	layers	treated	with	M1,	O1,	O9,	and	9O12	SAMs.	However,	in	the	

case	 of	M9	 SAMs,	 5CB	 and	MBBA	 LCs	were	 observed	 to	 align	 along	 opposite	 directions,	

planar	 alignment	 perpendicular	 and	 parallel	 to	 Au#####⃑ ,	 respectively.	 We	 attribute	 this	

discrepancy	to	relatively	weak	interactions	of	the	M9	molecular	dipole	moment	with	MBBA	

mesogens,	 in	 comparison	 to	 those	 of	 other	 carboranethiol	 isomers,	 and	 other	 factors	

contributing	 to	 LC	 alignment	 that	 are	 always	 present	 in	 each	 cell,	 though	 presumed	

consistent.		
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 Transmission	 fringes	 observed	 in	 liquid	 crystal	 (LC)	 wedge	 cells	 viewed	
between	 crossed	 polarizers	 while	 illuminated	 with	 monochromatic	 light	 (wavelength	



 

77	

λ	=	531	nm).	 Alignment	 layers	 prepared	 with	 matching	 self-assembled	 monolayers	 of	
m-1-carboranethiol	 (M1),	 m-9-carboranethiol	 (M9),	 o-1-carboranethiol	 (O1),	
o-9-carboranethiol	(O9),	and	o-9,12-carboranedithiol	(9O12),	as	indicated,	induced	uniaxial	
planar	 alignment	 of	N-(4-methoxybenzylidene)-4-butylaniline	 (MBBA)	 LCs.	 Wave	 plates	
inserted	between	the	polarizers	modified	the	optical	retardation	of	light	transmitted	through	
the	cells	by	fixed	amounts	(ΓWP).	Here,	positive	(negative)	values	of	ΓWP	signify	that	a	wave	
plate’s	optically	slow	axis	was	aligned	parallel	(perpendicular)	to	a	cell’s	gold	evaporation	
direction	 (Au#####⃑ ).	 Arrows	 and	 dashed	 lines	 track	 transmittance	 maxima	 of	 constant	 order	
within	4.8	mm	x	0.5	µm	field	of	view.	Fringes	in	cells	containing	M1,	M9,	and	O1	monolayers	
were	observed	to	shift	toward	the	thinner	ends	of	the	wedges	with	increasing	ΓWP	(blue),	
indicating	 that	 their	 nematic	 directors	were	 oriented	 parallel	 to	Au#####⃑ .	 By	 contrast,	 fringes	
shifted	 toward	 the	 thicker	 ends	 of	 wedges	 containing	 O9	 and	 9O12	 monolayers	 (red),	
indicating	director	alignment	perpendicular	to	Au#####⃑ .	

 5CB	Cell	Voltage–Transmittance	Spectra	

	 Figure	II.10	 depicts	 the	 normalized	 optical	 transmittances	 of	 untwisted	 5CB	 cells	

modulated	by	an	electric	field.	The	scaling	applied	to	these	spectra	exaggerates	the	apparent	

variations	in	the	measured	transmittances.	Comparing	absolute	transmittances,	the	change	

observed	in	untwisted	5CB	cells	is	only	about	10%	of	that	seen	in	5CB	cells	with	90°	twists	

in	their	directors	(Figure	II.4).	The	observed	transmittance	variations	in	these	cells	is	similar	

to	those	expected	from	untwisted	5CB	cells	using	other	LC	alignment	techniques	(e.g.,	rubbed	

polyimide).		
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 Normalized	 optical	 transmittances	 of	 electrically	 modulated	 liquid	 crystal	
(LC)	 cells	 viewed	 between	 crossed	 polarizers.	 Alignment	 layers	 were	 prepared	 with	
matching	self-	assembled	monolayers	of	m-9-carboranethiol	(M9),	m-1-carboranethiol	(M1),	
o-9-carboranethiol	 (O9),	 o-1-carboranethiol	 (O1),	 o-9,12-carboranedithiol	 (9O12),	 and	
o-1,2-carboranedithiol	(1O2),	as	indicated.	These	surfaces	induced	uniaxial	planar	alignment	
in	4-cyano-4′-pentylbiphenyl	(5CB)	LCs.	Cells	were	constructed	with	parallel	gold	deposition	
axes,	 producing	 untwisted	 nematic	 structures,	 and	 were	 positioned	 between	 crossed	
polarizers	such	that	their	zero-voltage	optical	transmittance	was	minimized.	Subsequently,	
a	sinusoidally	varying	(1	kHz)	voltage	was	applied	between	the	alignment	layers	in	order	to	
distort	 the	LC	director	away	from	the	surface.	Root-mean-square	voltages,	varied	 in	0.1	V	
steps,	are	indicated	along	the	horizontal	axes.	Reported	spectra	are	averages	(black	lines)	of	
analyses	performed	on	n	separate	LC	cells,	where	the	vertical	widths	of	the	surrounding	red	
outlines	indicate	the	data’s	standard	deviation.	

 Azimuthal	Anchoring	Energy	

	 Azimuthal	anchoring	energies	of	5CB	aligned	by	SAMs	composed	of	M1,	O9,	O1,	and	

9O12	isomers	were	measured	using	the	torque	balanced	method	described	by	Abbott	and	
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Fringes in cells containing M1, M9, and O1 monolayers were observed to shift toward the 
thinner ends of the wedges with increasing ΓWP (blue), indicating that their nematic directors 
were oriented parallel to 𝐀𝐀𝐀𝐀. By contrast, fringes shifted toward the thicker ends of wedges 
containing O9 and 9O12 monolayers (red), indicating director alignment perpendicular to 𝐀𝐀𝐀𝐀. 

5CB Cell Voltage–Transmittance Spectra. 

Figure S4 depicts the normalized optical transmittances of untwisted 5CB cells 
modulated by an electric field. The scaling applied to these spectra exaggerates the apparent 
variations in the measured transmittances. Comparing absolute transmittances, the change 
observed in untwisted 5CB cells is only about 10% of that seen in 5CB cells with 90° twists in 
their directors (Figure 4). The observed transmittance variations in these cells is similar to those 
expected from untwisted 5CB cells using other LC alignment techniques (e.g., rubbed 
polyimide). 

 
Figure S4. Normalized optical transmittances of electrically modulated liquid crystal (LC) cells 
viewed between crossed polarizers. Alignment layers were prepared with matching self-
assembled monolayers of m-9-carboranethiol (M9), m-1-carboranethiol (M1), o-9-carboranethiol 
(O9), o-1-carboranethiol (O1), o-9,12-carboranedithiol (9O12), and o-1,2-carboranedithiol 
(1O2), as indicated. These surfaces induced uniaxial planar alignment in 
4-cyano-4′-pentylbiphenyl (5CB) LCs. Cells were constructed with parallel gold deposition axes, 
producing untwisted nematic structures, and were positioned between crossed polarizers such 
that their zero-voltage optical transmittance was minimized. Subsequently, a sinusoidally varying 
(1 kHz) voltage was applied between the alignment layers in order to distort the LC director 
away from the surface. Root-mean-square voltages, varied in 0.1 V steps, are indicated along the 
horizontal axes. Reported spectra are averages (black lines) of analyses performed on 𝑛𝑛 separate 
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coworkers.78	Here,	we	summarize	the	methods	used	to	determine	the	parameters	d,	φ,	and	

Ψ	 in	Eq.	2.	All	measurements	were	made	on	anchoring	energy	wedge	cells	 (Figure	II.2D)	

viewed	between	crossed	polarizers.	Wedge	thicknesses	(d)	were	estimated	by	comparing	

the	observed	 (transmitted)	 color	of	 the	 cells,	 illuminated	with	white	 light	polarized	±45°	

from	their	optical	axes,	to	a	Michel-Lévy	interference	color	chart,79	and	then	refined	using	

Eq.	1	and	the	positions	of	the	transmission	fringes	made	visible	using	monochromatic	light	

(λ	=	531	nm).		

	 We	 calculated	 φ	 and	 Ψ	 using	 the	 values	 of	 δ	 and	 γ	 (Figure	 II.11),	 which	 were	

determined	 by	 monitoring	 the	 transmission	 of	 light	 through	 each	 of	 the	 three	 nematic	

regions	 within	 an	 anchoring	 energy	 cell.	 The	 easy	 alignment	 axis	 of	 the	 bottom	

carboranethiol	alignment	layer	(η0-bottom)	was	found	by	rotating	the	cell	with	respect	to	

crossed	 polarizers	 while	 examining	 an	 untwisted	 nematic	 region.	 There,	 transmission	

minima	occur	when	η0-bottom	coincides	with	either	of	the	polarizer	or	analyzer	axes.	After	

aligning	η0-bottom	with	the	polarizer,	the	easy	axis	of	the	top	carboranethiol	alignment	layer	

(η0-top)	was	identified	by	rotating	the	analyzer	with	respect	the	fixed	cell	until	the	intensity	

of	light	transmitted	through	the	second	untwisted	nematic	region	was	minimized.	In	doing	

so,	the	analyzer	was	aligned	perpendicular	to	η0-top.	The	relative	angle	formed	between	the	

polarizer	 and	 analyzer	 axes	 equaled	 δ.	 Finally,	 the	 optical	 transmittance	 in	 the	 central,	

twisted	nematic,	region	was	minimized	by,	again,	rotating	the	analyzer	while	keeping	the	cell	

orientation	 fixed.	 In	 this	 configuration,	 the	 analyzer	 was	 orthogonal	 to	 the	 equilibrium	

orientation	 of	 the	 director	 anchored	 by	 the	 top	 alignment	 layer	 (ηd-top),	 and	 the	 angle	

formed	between	the	analyzer	and	polarizer	axes	equaled	γ.		
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 Schematic	 illustrating	the	angles	used	to	compute	the	azimuthal	anchoring	
energy.	Orientations	of	the	polarizer	and	analyzer	are	denoted	by	P	and	A,	respectively.	Easy	
alignment	axes	are	indicated	for	the	top	(η0-top)	and	bottom	(η0-bottom)	alignment	layers,	
while	 ηd-top	 and	 ηd-bottom	 indicate	 the	 equilibrium	director	 orientations	 at	 the	 top	 and	
bottom	 alignment	 surfaces,	 respectively,	 as	 a	 result	 the	 opposing	 torques	 acting	 on	 the	
twisted	nematic.	The	angle	by	which	the	azimuthal	orientation	of	the	director	deviates	from	
the	easy	axes	is	denoted	by	φ,	whereas	Ψ	is	the	twist	in	the	LC	director	between	the	top	and	
bottom	alignment	surfaces.	Figure	adapted	with	permission	 from	Ref.	78.	Copyright	2006	
American	Chemical	Society.		

	 Once	δ	and	γ	were	determined,	the	angle	(φ)	by	which	the	azimuthal	orientation	of	

the	director	departs	from	the	easy	alignment	axes	and	the	angular	twist	(Ψ)	of	the	director	

through	the	cell’s	thickness	were	found	using	the	equations:		

φ	=	δ−(γ−90°)	

Ψ=2γ−90°	−δ	

The	anchoring	energies	reported	in	Table	1	represent	a	weighted	average	of	measurements	

made	on	multiple	cells	(at	least	four	of	a	given	isomer)	σ	and	multiple	areas	within	each	cell	

(up	to	10).	We	computed	the	uncertainties	(σ)	of	d,	φ,	and	Ψ	using	the	following	equations:		

𝜎E =
𝜎W
∆𝑛	



 

81	

𝜎I = X𝜎YA + 𝜎ZA	

𝜎D = X𝜎YA + (2𝜎Z)A	

The	partial	derivatives	of	𝑊?@ 	were	found	with	respect	to	φ,	Ψ,	and	d,	as	shown	below:	

𝜕𝑊?@
𝜕𝛹] = 2𝐾AA

𝑑𝑠𝑖𝑛(2𝜑)] 	

𝜕𝑊?@
𝜕𝜑] = −4𝐾AA𝛹

𝑑𝑡𝑎𝑛(2𝜑)𝑠𝑖𝑛(2𝜑)] 	

𝜕𝑊?@
𝜕𝑑] = −2𝐾AA𝛹

𝑑A𝑠𝑖𝑛(2𝜑)e 	

These	quantities	evaluated	using	the	parameters	of	each	measurement,	were	then	used	to	

compute	the	compute	the	uncertainty	in	𝑊?@ 	(𝜎f?@):		

σhij = kl∂Wop
∂Ψ] 	x	σrs

A
+ l∂Wop

∂φ] 	x	σus
A
+ l∂Wop

∂d] 	x	σws
A
	

The	 weighted	 average	 of	𝑊?@ 	and	𝜎xyz 	were	 calculated	 for	 i	 independent	 measurements	

using:		

Weighted	Average	𝑊?@ =
∑
𝑊?@�
𝜎xyz�
AN

∑ 1
𝜎xyz�
AN

� 	

Weighted	Average	𝜎xyz = 1

k∑
1

𝜎xyz�
AN

�
	



 

82	

Table	II.3. Azimuthal	anchoring	energy	 (𝑾𝒂𝒛)	of	4-cyano-4′-pentylbiphenyl	 (5CB)	

liquid	crystals	in	cells	prepared	with	m-1-carboranethiol	(M1)	SAMs.	

M1	 Γ	(nm)a	 δ	(˚)b	 γ	(˚)c	 𝑾𝒂𝒛	(µJ∙m-2)	

Sample	1	 Spot	1	 1590	 86.1	 1.6	 24	±	3	
Spot	2	 2120	 86.2	 0.8	 21	±	3	

Sample	2	

Spot	1	 800	 89.2	 1.7	 160	±	30	
Spot	2	 1060	 89.0	 1.2	 90	±	30	
Spot	3	 1330	 81.8	 5.5	 11	±	1	
Spot	4	 1590	 88.6	 1.3	 49	±	13	
Spot	5	 1860	 88.4	 1.4	 37	±	9	
Spot	6	 2120	 88.5	 0.9	 41	±	12	

Sample	3	 Spot	1	 1860	 88.0	 1.3	 35	±	8	
Spot	2	 2120	 87.7	 2.8	 19	±	3	

Sample	4		

Spot	1	 800	 89.1	 1.5	 110	±	30	
Spot	2	 1060	 89.4	 1.3	 110	±	40	
Spot	3	 1330	 89.6	 1.0	 120	±	60	
Spot	4	 1590	 89.8	 1.1	 110	±	60	
Spot	5	 1860	 89.8	 0.6	 150	±	140	
Spot	6	 2120	 89.7	 0.9	 85	±	51	
Spot	7	 2390	 89.9	 0.4	 180	±	270	

Sample	5	

Spot	1	 800	 86.3	 2.0	 46	±	6	
Spot	2	 1060	 85.0	 3.3	 24	±	2	
Spot	3	 1330	 86.0	 2.7	 24	±	3	
Spot	4	 1590	 85.6	 2.9	 18	±	2	
Spot	5	 1860	 85.5	 2.3	 16	±	2	
Spot	6	 2120	 85.5	 3.0	 13	±	1	
Spot	7	 2390	 86.2	 2.2	 15	±	2	
Spot	8	 2660	 85.7	 2.6	 11	±	1	
Spot	9	 2920	 85.9	 2.3	 11	±	1	
Spot	10	 3190	 86.3	 1.9	 12	±	2	

Sample	6	

Spot	1	 1330	 88.9	 0.8	 85	±	32	
Spot	2	 1590	 88.6	 0.9	 58	±	18	
Spot	3	 1860	 88.6	 0.4	 65	±	26	
Spot	4	 2120	 88.0	 0.0	 49	±	17	
Spot	5	 2390	 88.0	 0.7	 32	±	9	
Spot	6	 2660	 88.2	 0.1	 43	±	17	
Spot	7	 2920	 88.5	 0.1	 45	±	20	

Sample	7	 Spot	1	 1330	 86.7	 2.7	 26	±	3	
Spot	2	 1590	 85.8	 3.4	 17	±	2	
Weighted	Average	(n	=	36)	 14.3	±	0.4	

aRetardation	 (Γ)	 between	 ordinary	 and	 extraordinary	 waves	 traversing	 the	 cell.	 All	
retardation	 values	 are	 assumed	 to	 have	 a	measurement	 uncertainty	 of	σ� = 50	nm.	 bThe	
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angle	(δ)	formed	between	the	alignment	layers’	easy	axes.	cThe	relative	angle	(γ)	between	
the	polarizer	and	analyzer.	The	measurement	uncertainty	in	the	measured	angles	(δ	and	γ)	
are	σ� = σ� = 0.5˚.	
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Table	II.4. Azimuthal	anchoring	energy	 (𝑾𝒂𝒛)	of	4-cyano-4′-pentylbiphenyl	 (5CB)	

liquid	crystals	in	cells	prepared	with	o-1-carboranethiol	(O1)	SAMs.	

O1	 Γ	(nm)a	 δ	(˚)b	 γ	(˚)c	 𝑾𝒂𝒛	(µJ∙m-2)	

Sample	1	

Spot	1	 1060	 84.7	 3.5	 22	±	2	
Spot	2	 1330	 83.1	 4.3	 14	±	1	
Spot	3	 1590	 84.8	 2.9	 16	±	2	
Spot	4	 1860	 85.3	 2.5	 16	±	2	
Spot	5	 2120	 85.4	 2.2	 14	±	2	

Sample	2	

Spot	1	 800	 87.0	 2.1	 51	±	8	
Spot	2	 1060	 86.7	 3.4	 29	±	3	
Spot	3	 1330	 86.9	 3.2	 25	±	3	
Spot	4	 1590	 86.9	 2.5	 24	±	3	
Spot	5	 1860	 87.5	 1.6	 27	±	5	
Spot	6	 2120	 87.2	 0.1	 35	±	9	

Sample	3	

Spot	1	 1330	 88.3	 3.5	 30	±	4	
Spot	2	 1590	 88.1	 1.1	 45	±	11	
Spot	3	 1860	 88.7	 2.4	 30	±	6	
Spot	4	 2120	 88.6	 2.7	 24	±	4	
Spot	5	 2390	 89.4	 2.3	 30	±	7	
Spot	6	 2660	 89.0	 2.0	 27	±	6	

Sample	4	
Spot	1	 2920	 88.2	 1.7	 20	±	4	
Spot	2	 3190	 88.0	 1.4	 19	±	4	
Spot	3	 3450	 87.4	 1.1	 17	±	3	

Sample	5	

Spot	1	 530	 81.9	 0.5	 46	±	6	
Spot	2	 800	 85.3	 4.8	 27	±	2	
Spot	3	 1330	 85.4	 4.3	 17	±	2	
Spot	4	 1590	 85.4	 2.3	 19	±	2	
Spot	5	 1860	 86.3	 2.5	 18	±	2	
Spot	6	 2120	 85.7	 3.7	 12	±	1	
Spot	7	 2390	 86.6	 3.0	 14	±	2	
Spot	8	 2660	 86.8	 2.6	 13	±	2	

Sample	6	

Spot	1	 1060	 85.7	 3.7	 24	±	2	
Spot	2	 1330	 86.0	 3.5	 21	±	2	
Spot	3	 1590	 86.0	 2.8	 19	±	2	
Spot	4	 1860	 86.6	 1.9	 21	±	3	
Spot	5	 2120	 86.4	 2.9	 15	±	2	
Spot	6	 2390	 86.6	 2.4	 15	±	2	
Spot	7	 2660	 86.6	 2.4	 14	±	2	
Spot	8	 2920	 87.0	 2.4	 13	±	2	
Spot	9	 3190	 87.2	 1.9	 14	±	2	

Weighted	Average	(n	=	37)	 14.3	±	0.4	
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aRetardation	 (Γ)	 between	 ordinary	 and	 extraordinary	 waves	 traversing	 the	 cell.	 All	
retardation	 values	 are	 assumed	 to	 have	 a	measurement	 uncertainty	 of	σ� = 50	nm.	 bThe	
angle	(δ)	formed	between	the	alignment	layers’	easy	axes.	cThe	relative	angle	(γ)	between	
the	polarizer	and	analyzer.	The	measurement	uncertainty	in	the	measured	angles	(δ	and	γ)	
are	σ� = σ� = 0.5˚.	
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Table	II.5. Azimuthal	anchoring	energy	 (𝑾𝒂𝒛)	of	4-cyano-4′-pentylbiphenyl	 (5CB)	

liquid	crystals	in	cells	prepared	with	o-9-carboranethiol	(O9)	SAMs.	

O9	 Γ	(nm)a	 δ	(˚)b	 γ	(˚)c	 𝑾𝒂𝒛	(µJ∙m-2)	

Sample	1	
Spot	1	 1060	 87.4	 2.4	 40	±	6	
Spot	2	 1590	 87.5	 2.3	 27	±	4	
Spot	3	 3190	 88.6	 0.7	 32	±	11	

Sample	2	

Spot	1	 1060	 90.3	 2.0	 110	±	50	
Spot	2	 1330	 90.0	 1.6	 96	±	41	
Spot	3	 1590	 89.9	 2.4	 54	±	16	
Spot	4	 1860	 89.4	 0.8	 83	±	43	

Sample	3	

Spot	1	 800	 85.4	 5.5	 26	±	2	
Spot	2	 1060	 83.4	 7.6	 14	±	1	
Spot	3	 1330	 84.8	 5.6	 14	±	1	
Spot	4	 1590	 84.9	 7.0	 11	±	1	
Spot	5	 1860	 85.3	 5.1	 11	±	1	
Spot	6	 2120	 84.3	 6.5	 7.9	±	0.5	

Sample	4	

Spot	1	 1060	 84.4	 4.3	 20	±	2	
Spot	2	 1330	 84.6	 3.8	 17	±	1	
Spot	3	 1590	 84.7	 4.0	 14	±	1	
Spot	4	 1860	 85.2	 3.0	 14	±	1	
Spot	5	 2120	 85.7	 3.3	 13	±	1	
Spot	6	 2390	 85.2	 3.4	 11	±	1	

Sample	5	

Spot	1	 1060	 81.5	 9.9	 11	±	1	
Spot	2	 1330	 83.4	 7.4	 11	±	1	
Spot	3	 1590	 83.1	 7.7	 8.9	±	0.5	
Spot	4	 1860	 83.5	 6.7	 8.4	±	0.5	
Spot	5	 2120	 83.2	 7.4	 6.8	±	0.4	
Spot	6	 2390	 83.7	 6.4	 6.8	±	0.4	
Spot	7	 2660	 83.3	 7.0	 5.6	±	0.3	
Spot	8	 2920	 83.7	 6.5	 5.5	±	0.3	
Spot	9	 3190	 83.7	 6.1	 5.2	±	0.3	

Weighted	Average	(n	=	28)	 7.5	±	0.1	
aRetardation	 (Γ)	 between	 ordinary	 and	 extraordinary	 waves	 traversing	 the	 cell.	 All	
retardation	 values	 are	 assumed	 to	 have	 a	measurement	 uncertainty	 of	σ� = 50	nm.	 bThe	
angle	(δ)	formed	between	the	alignment	layers’	easy	axes.	cThe	relative	angle	(γ)	between	
the	polarizer	and	analyzer.	The	measurement	uncertainty	in	the	measured	angles	(δ	and	γ)	
are	σ� = σ� = 0.5˚.	
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Table	II.6. Azimuthal	anchoring	energy	 (𝑾𝒂𝒛)	of	4-cyano-4′-pentylbiphenyl	 (5CB)	

liquid	crystals	in	cells	prepared	with	o-9,12-carboranedithiol	(9O12)	SAMs.	

9O12	 Γ	(nm)a	 δ	(˚)b	 γ	(˚)c	 𝑾𝒂𝒛	(µJ∙m-2)	

Sample	1	

Spot	1	 800	 86.2	 4.6	 31	±	3	
Spot	2	 1060	 83.5	 3.1	 20	±	2	
Spot	3	 1330	 84.7	 0.3	 28	±	4	
Spot	4	 1590	 84.2	 0.7	 20	±	2	
Spot	5	 1860	 85.5	 2.0	 17	±	2	
Spot	6	 2120	 84.2	 0.6	 15	±	2	
Spot	7	 2390	 85.9	 0.8	 18	±	3	

Sample	2	

Spot	1	 1590	 89.9	 3.4	 38	±	8	
Spot	2	 1860	 89.9	 2.4	 46	±	13	
Spot	3	 2120	 88.7	 2.2	 29	±	6	
Spot	4	 2390	 89.1	 1.7	 34	±	9	
Spot	5	 2660	 89.9	 2.4	 32	±	9	
Spot	6	 2920	 88.8	 3.3	 16	±	3	

Sample	3	

Spot	1	 1330	 81.6	 7.0	 10	±	1	
Spot	2	 1590	 80.9	 7.5	 7.8	±	0.4	
Spot	3	 1860	 82.6	 5.7	 8.5	±	0.5	
Spot	4	 2120	 81.9	 6.5	 6.6	±	0.3	
Spot	5	 2390	 82.8	 5.4	 6.8	±	0.4	
Spot	6	 2660	 81.8	 5.8	 5.6	±	0.3	
Spot	7	 2920	 83.5	 5.2	 6.0	±	0.4	
Spot	8	 3190	 81.5	 6.4	 4.3	±	0.2	

Sample	4	

Spot	1	 1330	 85.8	 5.8	 16	±	1	
Spot	2	 1590	 86.0	 5.7	 13	±	1	
Spot	3	 1860	 85.8	 3.8	 14	±	1	
Spot	4	 2120	 85.7	 4.4	 11	±	1	
Spot	5	 2390	 86.0	 2.9	 13	±	1	
Spot	6	 2660	 86.1	 2.7	 12	±	1	
Spot	7	 2920	 85.9	 2.4	 11	±	1	
Spot	8	 3190	 84.9	 3.0	 8.0	±	0.7	

Weighted	Average	(n	=	29)	 6.7	±	0.1	
aRetardation	 (Γ)	 between	 ordinary	 and	 extraordinary	 waves	 traversing	 the	 cell.	 All	
retardation	 values	 are	 assumed	 to	 have	 a	measurement	 uncertainty	 of	σ� = 50	nm.	 bThe	
angle	(δ)	formed	between	the	alignment	layers’	easy	axes.	cThe	relative	angle	(γ)	between	
the	polarizer	and	analyzer.	The	measurement	uncertainty	in	the	measured	angles	(δ	and	γ)	
are	σ� = σ� = 0.5˚.	
	



 

88	

 Oblique	Gold	Deposition	

	 Gold	 was	 deposited	 at	 an	 oblique	 angle	 (50°	 away	 from	 the	 normal)	 onto	 glass	

substrates,	 as	 shown	 in	 Figure	II.12.	 This	 angle	 describes	 the	 incidence	 angle	 of	 metal	

deposited	 in	 the	 center	 of	 the	 tilted	 substrate,	 located	 directly	 above	 the	 metal	 source.	

However,	for	extended	substrates,	this	angle	depends	on	the	surface’s	distance	away	from	

the	 central	 deposition	 axis.	 Here,	 this	 deviation	 is	 no	 more	 than	 6°	 from	 the	 intended	

deposition	angle.		
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 Schematic	of	oblique	gold	deposition.	(A)	Inside	a	vacuum	chamber,	gold	is	
heated	by	an	electron	beam	(not	shown),	causing	it	to	evaporate	from	a	source	and	deposit	
onto	a	 tiled	substrate	 located	above.	(B)	Due	to	the	non-zero	widths	and	arrangement	of	
glass,	the	deposition	angle	varies	across	the	surface	and	between	slides.	Deviations	from	the	
intended	angle	(θ	=	50°)	are	expected	to	be,	at	most,	ß1	=	ß2	=	6°	for	the	dimensions	and	
configuration	used	in	this	work.	
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 Gaussian	Calculations	

II.E.8.a. Molecular	Dipole	Moments	

	 Table	II.8	summarizes	the	molecular	dipole	moments	of	M9,	M1,	O9,	O1,	9O12,	and	

1O2	calculated	using	density	functional	theory	and	the	Gaussian	09	software	package	at	the	

M062X	 level	with	 the	 6-311G**	 basis	 set.	 Dipole	 component	 vectors	 (𝑝∥ 	and	𝑝�)	 assume	

upright	adsorption	of	the	carboranethiol	species	on	a	gold	surface.		

Table	II.7. Molecular	dipole	moments	(𝒑)	of	carboranethiol	and	-dithiol	isomers.		

Isomer	 Molecular	Dipole	Moment	(D)	
Magnitude	 𝒑||a	 𝒑�b	

M9c	 3.94	 1.38	 3.70	
M1d	 2.20	 2.13	 -0.558	
O9e	 5.46	 2.18	 5.01	
O1f	 3.59	 1.90	 -3.05	

9O12g	 6.78	 0.00	 6.78	
1O2h	 3.20	 0.00	 -3.20	

aIn-plane	dipole	moment,	parallel	to	the	surface.	bOut-of-plane	dipole	moment,	normal	to	the	
surface.	 cm-9-carboranethiol	 (M9).	 dm-1-carboranethiol	 (M1).	 eo-9-carboranethiol	 (O9).	
fo-1-carboranethiol	(O1).	go-9,12-carboranedithiol	(9O12).	ho-1,2-carboranedithiol	(1O2).	

II.E.8.b. Molecular	Polarizability	Tensor	

	 The	molecular	polarizability	tensor	(𝛼)	of	all	six	carboranethiols	studied	here	were	

computed	with	the	Gaussian	09	software	package:		

𝛼 = �
𝛼SS 𝛼SU 𝛼S@
𝛼SU 𝛼UU 𝛼U@
𝛼S@ 𝛼U@ 𝛼@@

�	

As	described	in	the	main	text,	Cartesian	coordinate	bases	were	chosen	for	each	isomer	based	

on	its	molecular	symmetry	and	assumed	upright	adsorption	onto	underlying	gold	substrates.	

We	found	the	polarizability	tensors	of	each	isomer	to	be	nearly	diagonalized	in	the	chosen	
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coordinate	basis.	As	such,	we	consider	only	the	carboranethiol	polarizabilities	along	each	of	

the	coordinate	axes	(αxx,	αyy,	and	αzz),	as	summarized	in	Table	II.8.		

Table	II.8. Molecular	polarizabilities	(𝜶)	of	carboranethiol	and	-dithiol	isomers.	

Isomer	 Principal	Polarizabilities	
(Å3)	𝜶𝒙𝒙	 𝜶𝒚𝒚	 𝜶𝒛𝒛	

M9a	 19.4	 19.2	 24.3	
M1b	 19.4	 19.6	 23.6	
O9c	 19.5	 19.8	 24.0	
O1d	 19.4	 19.7	 23.7	
9O12e	 24.0	 21.3	 26.3	
1O2f	 23.4	 21.3	 26.4	

am-9-carboranethiol	 (M9).	 bm-1-carboranethiol	 (M1).	 co-9-carboranethiol	 (O9).	
do-1-carboranethiol	(O1).	eo-9,12-carboranedithiol	(9O12).	fo-1,2-carboranedithiol	(1O2).	

II.E.8.c. Optimized	Molecular	Geometries	and	Dipoles	

	 Computed	values	of	the	molecular	dipole	vectors	and	polarizability	tensors	depend	

on	the	optimized	orientation	of	the	thiol	moiety	(S–H	bond)	in	each	carboranethiol	isomer.	

However,	the	hydrogen	on	the	molecule’s	thiol	functionality	is	lost	during	chemisoption	onto	

the	gold	surface	(becoming	-thiolate).	As	such,	the	dipoles	and	polarizabilities	computed	for	

these	structures	do	not	accurately	reflect	those	of	the	actual	adsorbed	molecule.	To	account	

for	 this	 change	 in	molecular	 structure	 upon	 chemisorption,	 we	 computed	 the	molecular	

dipoles	 and	 polarizabilities	 of	 each	 isomer	 as	 the	 average	 of	 those	 values	 from	multiple	

(nearly	 degenerate)	 conformations	 of	 each	 isomer.	 Each	 molecular	 conformation	 was	

distinguished	by	 the	 initial	 value	of	 the	 carborane–sulfur–hydrogen	dihedral	 angle	 in	 the	

unoptimized	 structure,	 reflecting	 the	 rotational	 symmetry	 of	 the	 thiol	 moieties	 in	 each	

isomer	 (five-fold	 and	 two-fold	 symmetries	 in	 the	 cases	 of	 mono-	 and	 dithiol	 species,	
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respectively).	 Averaging	 effectively	 eliminates	 the	 thiol	 contributions	 to	 the	 in-plane	

molecular	 dipole	 and	 polarizability.	 Table	 II.9	 present	 the	 atomic	 coordinates	 of	 each	

structure	 after	 optimization,	 labeled	 with	 the	 initial	 thiol	 dihedral	 angles.	 During	

optimization,	 atoms	 in	 each	 structure	 were	 allowed	 to	 relax	 into	 their	 lowest	 energy	

positions	with	the	exceptions	of	dihedral	angles	denoted	by	“F.”	In	these	“frozen”	structures,	

the	 value	 of	 the	 thiol	 dihedral	 angle	was	 not	optimized	 in	order	 to	maintain	 the	 desired	

molecular	 symmetry.	 These	 molecular	 conformations	 do	 not	 represent	 energetically	

optimized	structures.	If	optimized	without	restrictions,	an	unfavorable	interaction	between	

the	electron	deficient	carbon	atoms	 in	the	carborane	cage	and	the	polar	S–H	bond	would	

cause	the	thiol	dihedral	angle	to	deviate	significantly	from	its	initial	value	and	disrupt	the	

symmetry	of	 the	model.	 As	 such,	 these	 structures	were	 used	with	 only	 partial	 structural	

optimization.	 We	 reiterate,	 however,	 that	 the	 adsorbed	 molecule	 does	 not	 possess	 the	

carborane–sulfur–hydrogen	 dihedral	 angle	 left	 unoptimized	 here.	 In	 the	 cases	 of	

carboranedithiol	 isomers,	 the	 two	 conformations	 are	 distinguished	 by	 an	 “M”	 (or	 its	

absence)	 in	 the	table	heading.	These	conformations	are	mirror-symmetric	versions	of	 the	

fully	optimized	structures,	reflecting	the	bilateral	symmetry	of	the	dithiol	species.		



 

93	

Table	II.9. Optimized	molecular	geometries	and	dipoles	of	each	carboranethiol	and	

–dithiol	isomer.	

M9 (0°) Energy: -730.121306 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 0.112328 -0.4994 -1.422584 
B -1.393971 -1.240065 -0.862785 
B 0.131359 1.192437 -0.906861 
B 1.065263 -0.016128 -0.000362 
B 0.115184 -1.520253 0.025303 
B -1.360695 1.500783 -0.024783 
B 0.132472 1.22187 0.865364 
B 0.113277 -0.451841 1.437922 
B -1.393854 -1.210304 0.904755 
C -1.319917 0.443261 1.287942 
H 0.545346 -0.778257 -2.48149 
H 0.633748 -2.580157 0.042517 
H 0.562947 2.034117 -1.609023 
H -1.965234 2.508414 -0.040872 
H 0.54684 -0.695522 2.505253 
H 0.564102 2.086491 1.539219 
H -1.978863 -1.950561 1.609212 
H -1.979496 -2.003201 -1.541961 
B -2.308671 -0.005531 0.000636 
C -1.321212 0.400457 -1.301621 
H -1.816124 0.69738 -2.21541 
H -3.478525 0.103897 -0.00055 
H -1.813884 0.770472 2.191888 
S 2.927707 -0.084822 -0.000618 
H 3.119158 1.243927 0.010164 

M9 (72°, F) Energy: -730.121033 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -0.107117 1.489342 -0.232513 
B 1.407478 1.341038 0.681516 
B -0.124049 0.23107 -1.485054 
B -1.064653 0.023934 0.015641 
B -0.099851 0.71243 1.358978 
B 1.361379 -0.70142 -1.331054 
B -0.144687 -1.331282 -0.667711 
B -0.12732 -1.032239 1.085953 
B 1.396634 -0.222552 1.496113 
C 1.298797 -1.351164 0.224497 
H -0.52408 2.559672 -0.494616 
H -0.619224 1.205486 2.295336 
H -0.556541 0.456686 -2.556171 
H 1.961981 -1.17588 -2.222646 
H -0.567869 -1.855249 1.805434 
H -0.587619 -2.333491 -1.100653 
H 1.982563 -0.502995 2.478173 
H 2.004867 2.297188 1.021268 
B 2.308309 -0.015211 0.004933 
C 1.326391 0.944199 -0.974342 
H 1.825069 1.607339 -1.666786 
H 3.477842 -0.077383 -0.089676 
H 1.778651 -2.3084 0.37096 
S -2.928377 0.083104 -0.008285 
H -3.103354 -1.236404 0.156996 

M9 (144°) Energy: -730.121494 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 0.115038 -0.247782 1.486599 
B -1.389949 0.678357 1.355552 
B 0.123054 -1.48438 0.211914 
B 1.064465 0.002157 0.005351 
B 0.124923 1.340214 0.714753 
B -1.376141 -1.318956 -0.701775 
B 0.11839 -0.660627 -1.352864 
B 0.124748 1.079833 -1.040262 
B -1.378709 1.50418 -0.204677 
C -1.321241 0.238252 -1.340791 
H 0.547625 -0.521716 2.54693 
H 0.654528 2.273163 1.206619 
H 0.543676 -2.564026 0.422844 
H -1.989435 -2.205945 -1.168597 
H 0.560845 1.805697 -1.859864 
H 0.546522 -1.092243 -2.360608 
H -1.95537 2.496756 -0.466906 
H -1.972793 1.023154 2.318847 
B -2.308361 0.019761 0.005842 
C -1.322341 -0.970733 0.950342 
H -1.818246 -1.668702 1.609747 
H -3.479332 -0.064677 -0.041078 
H -1.815604 0.39646 -2.288699 
S 2.927231 -0.080245 0.011026 
H 3.116097 1.237102 -0.155119 

M9 (216°) Energy: -730.121477 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -0.124597 1.086609 -1.033387 
B 1.379 1.505224 -0.195074 
B -0.118495 -0.651983 -1.35705 
B -1.06448 0.002546 0.005272 
B -0.124588 1.335919 0.723338 
B 1.37587 -1.314633 -0.71017 
B -0.123365 -1.485513 0.202565 
B -0.115139 -0.256927 1.48488 
B 1.390147 0.669584 1.359842 
C 1.322024 -0.976836 0.944141 
H -0.560253 1.817911 -1.848367 
H -0.653903 2.265837 1.221148 
H -0.546574 -1.077265 -2.367499 
H 1.988938 -2.198763 -1.182581 
H -0.548029 -0.537573 2.543311 
H -0.544392 -2.566275 0.40671 
H 1.973231 1.007945 2.325235 
H 1.955856 2.499308 -0.451081 
B 2.308375 0.019311 0.005949 
C 1.321141 0.246531 -1.339235 
H 1.815492 0.410709 -2.286122 
H 3.479296 -0.064984 -0.041786 
H 1.817685 -1.679032 1.599219 
S -2.927112 -0.080227 0.011179 
H -3.116187 1.236947 -0.157323 
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M9 (288°, F) Energy: -730.121018 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 0.127109 -1.028763 1.089338 
B -1.396597 -0.217475 1.496728 
B 0.144485 -1.33351 -0.663294 
B 1.064659 0.023668 0.015675 
B 0.099985 0.716784 1.356662 
B -1.361459 -0.705701 -1.328731 
B 0.124055 0.226207 -1.485686 
B 0.10728 1.488266 -0.237305 
B -1.407242 1.34333 0.677033 
C -1.326282 0.941081 -0.977404 
H 0.567346 -1.849514 1.81159 
H 0.619366 1.212841 2.291423 
H 0.587356 -2.337148 -1.092998 
H -1.961899 -1.18308 -2.21888 
H 0.524468 2.557678 -0.502845 
H 0.556726 0.44801 -2.557526 
H -2.004556 2.300618 1.013718 
H -1.982526 -0.494497 2.479764 
B -2.308381 -0.014963 0.00492 
C -1.298953 -1.350281 0.228872 
H -1.778958 -2.306977 0.378352 
H -3.477942 -0.077368 -0.089287 
H -1.824922 1.602042 -1.671963 
S 2.928368 0.083084 -0.008571 
H 3.103583 -1.235965 0.160289 

M1 (0°) Energy: -730.087128 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -0.006375 -2.29319 0 
B -0.459726 -1.363726 1.437534 
B -0.459726 -1.363726 -1.437534 
B 1.223728 -1.384639 -0.891013 
B 1.223728 -1.384639 0.891013 
B -1.182181 0.149111 -0.892629 
B 0.48693 0.123759 -1.444556 
B 1.518888 0.119307 0 
B 0.48693 0.123759 1.444556 
B 0.024159 0.931496 0 
S 0.083814 2.73539 0 
H -0.167801 -3.459906 0 
H 2.067258 -1.914586 1.522554 
H 2.067258 -1.914586 -1.522554 
H -0.921438 -1.89197 -2.383428 
H -2.065369 0.721566 -1.41736 
H -1.248119 2.907203 0 
H 2.505108 0.764927 0 
H 0.772391 0.773359 -2.38313 
H 0.772391 0.773359 2.38313 
H -0.921438 -1.89197 2.383428 
B -1.182181 0.149111 0.892629 
C -1.363978 -1.267222 0 
H -2.347043 -1.716478 0 
H -2.065369 0.721566 1.41736 

M1 (72°) Energy: -730.086719 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -2.292922 0.008104 0.001202 
B -1.351529 1.477475 -0.319174 
B -1.366046 -1.382705 -0.59101 
B -1.384156 -0.997583 1.139364 
B -1.379755 0.774135 1.307899 
B 0.135976 -0.774191 -1.272138 
B 0.130363 -1.474634 0.347126 
B 0.113794 -0.145286 1.521828 
B 0.140591 1.378588 0.620809 
C 0.931724 -0.00727 0.019786 
S 2.734587 -0.082457 0.004335 
H -3.460917 0.028378 -0.149555 
H -1.904398 1.332514 2.204708 
H -1.913163 -1.710976 1.915695 
H -1.899745 -2.282461 -1.131451 
H 0.704107 -1.213897 -2.20145 
H 2.914123 1.246972 -0.047249 
H 0.765394 -0.243144 2.497542 
H 0.774677 -2.442482 0.538475 
H 0.790995 2.289757 0.99037 
H -1.872732 2.469755 -0.681038 
B 0.147192 0.989834 -1.103327 
C -1.281687 0.132558 -1.354182 
H -1.738415 0.228793 -2.329122 
H 0.71892 1.595678 -1.932806 
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M1 (144°) Energy: -730.087017 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -2.293109 0.017216 0.001486 
B -1.360217 0.669061 -1.354707 
B -1.373176 -1.313809 0.72623 
B -1.380499 0.282112 1.492663 
B -1.361946 1.51154 0.203894 
B 0.134621 -1.474987 -0.174985 
B 0.12058 -0.64859 1.381965 
B 0.132345 1.09069 1.051876 
B 0.143705 1.333847 -0.710188 
C 0.932064 0.001243 0.013466 
S 2.734744 -0.080646 -0.013276 
H -3.462148 -0.082814 -0.103683 
H -1.873994 2.567262 0.326204 
H -1.906431 0.46288 2.532934 
H -1.911767 -2.294378 1.094128 
H 0.69376 -2.483458 -0.404766 
H 2.912093 1.23049 0.212904 
H 0.787364 1.799228 1.729461 
H 0.766035 -1.098792 2.256971 
H 0.799147 2.184055 -1.196109 
H -1.887121 0.999917 -2.354646 
B 0.135456 -0.251719 -1.468886 
C -1.285171 -0.976151 -0.939641 
H -1.745808 -1.684442 -1.613714 
H 0.7028 -0.536976 -2.456955 

M1 (216°) Energy: -730.087017 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 2.293109 0.017216 0.001486 
B 1.373176 -1.313809 0.72623 
B 1.360217 0.669061 -1.354707 
B 1.361946 1.51154 0.203894 
B 1.380499 0.282112 1.492663 
B -0.135456 -0.251719 -1.468886 
B -0.143705 1.333847 -0.710188 
B -0.132345 1.09069 1.051876 
B -0.12058 -0.64859 1.381965 
C -0.932064 0.001243 0.013466 
S -2.734744 -0.080646 -0.013276 
H 3.462148 -0.082814 -0.103683 
H 1.906431 0.46288 2.532934 
H 1.873994 2.567262 0.326204 
H 1.887121 0.999917 -2.354646 
H -0.7028 -0.536976 -2.456955 
H -2.912093 1.23049 0.212904 
H -0.787364 1.799228 1.729461 
H -0.799147 2.184055 -1.196109 
H -0.766035 -1.098792 2.256971 
H 1.911767 -2.294378 1.094128 
B -0.134621 -1.474987 -0.174985 
C 1.285171 -0.976151 -0.939641 
H 1.745808 -1.684442 -1.613714 
H -0.69376 -2.483458 -0.404766 

M1 (288°) Energy: -730.086719 Eh 
Atom 

Position Coordinates (Å) 
X Y Z 

B 2.292922 0.008104 0.001202 
B 1.366046 -1.382705 -0.59101 
B 1.351529 1.477475 -0.319174 
B 1.379755 0.774135 1.307899 
B 1.384156 -0.997583 1.139364 
B -0.147192 0.989834 -1.103327 
B -0.140591 1.378588 0.620809 
B -0.113794 -0.145286 1.521828 
B -0.130363 -1.474634 0.347126 
C -0.931724 -0.00727 0.019786 
S -2.734587 -0.082457 0.004335 
H 3.460917 0.028378 -0.149555 
H 1.913163 -1.710976 1.915695 
H 1.904398 1.332514 2.204708 
H 1.872732 2.469755 -0.681038 
H -0.71892 1.595678 -1.932806 
H -2.914123 1.246972 -0.047249 
H -0.765394 -0.243144 2.497542 
H -0.790995 2.289757 0.99037 
H -0.774677 -2.442482 0.538475 
H 1.899745 -2.282461 -1.131451 
B -0.135976 -0.774191 -1.272138 
C 1.281687 0.132558 -1.354182 
H 1.738415 0.228793 -2.329123 
H -0.704107 -1.213897 -2.20145 
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O9 (0°) Energy: -730.094599 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 0.542841 0.916284 0 
B 1.083677 -0.516861 0.891108 
B 1.083677 -0.516861 -0.891108 
B -0.350068 0.357946 -1.448694 
B -1.227917 0.912141 0 
B -0.350068 0.357946 1.448694 
B -0.350068 -1.400445 -1.44712 
B -1.778961 -0.51853 -0.88931 
B -1.778961 -0.51853 0.88931 
B -0.350068 -1.400445 1.44712 
C 0.464261 -1.805781 0 
C -1.152496 -1.811643 0 
H -0.338989 0.957717 2.463669 
H -1.861642 1.90792 0 
H -0.338989 0.957717 -2.463669 
H 2.096703 -0.672771 -1.472741 
H -0.344929 -2.189553 -2.319443 
H -2.788995 -0.685343 1.471825 
H -2.788995 -0.685343 -1.471825 
H -0.344929 -2.189553 2.319443 
H 2.096703 -0.672771 1.472741 
H 0.945015 -2.77296 0 
H -1.627003 -2.78164 0 
S 1.505326 2.513933 0 
H 2.719823 1.944986 0 

O9 (72°) Energy: -730.0948 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 1.064565 -0.007598 0.027938 
B 0.134338 -0.810727 -1.258873 
B 0.143316 0.956589 -1.144262 
B 0.12899 1.404468 0.576582 
B 0.107352 -0.099379 1.526885 
B 0.118428 -1.470079 0.38939 
B -1.357907 1.47662 -0.363681 
B -1.387357 0.81101 1.280286 
B -1.393438 -0.959102 1.166661 
B -1.371079 -1.41017 -0.549248 
C -1.287983 0.089642 -1.355432 
C -2.1468 0.007 0.006049 
H 0.620355 -2.509586 0.634328 
H 0.616099 -0.1701 2.588755 
H 0.640394 2.4016 0.948246 
H 0.552876 1.598589 -2.043203 
H -2.01611 2.381335 -0.726398 
H -2.075255 -1.594078 1.887139 
H -2.064889 1.354372 2.07603 
H -2.038895 -2.255197 -1.021612 
H 0.540415 -1.333767 -2.232292 
H -1.853578 0.151736 -2.27357 
H -3.220411 0.019033 -0.108353 
S 2.928301 -0.082815 0.011069 
H 3.11884 1.243098 -0.068264 

O9 (144°) Energy: -730.094923 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 1.065074 0.002122 0.023183 
B 0.131243 -1.41369 -0.487481 
B 0.136771 0.050894 -1.495056 
B 0.133297 1.456604 -0.419792 
B 0.121093 0.852553 1.261458 
B 0.109025 -0.925264 1.219941 
B -1.363324 0.942262 -1.193502 
B -1.374003 1.431907 0.509057 
B -1.393051 -0.034717 1.511838 
B -1.37787 -1.444914 0.443129 
C -1.288402 -0.758845 -1.122134 
C -2.145982 0.016273 0.004706 
H 0.614246 -1.594332 2.048968 
H 0.631342 1.453155 2.140577 
H 0.649726 2.46875 -0.739337 
H 0.546208 -0.002402 -2.597481 
H -2.024455 1.432524 -2.033672 
H -2.075201 -0.078673 2.471003 
H -2.04357 2.353589 0.807858 
H -2.050969 -2.399175 0.583474 
H 0.529885 -2.428919 -0.932385 
H -1.855808 -1.278364 -1.880146 
H -3.220111 -0.040784 -0.090707 
S 2.927638 -0.075125 -0.021175 
H 3.121548 1.183284 0.401344 

O9 (216°) Energy: -730.094923 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -1.065074 0.002122 0.023183 
B -0.136771 0.050906 -1.495056 
B -0.131243 -1.413686 -0.487492 
B -0.109025 -0.925274 1.219934 
B -0.121093 0.852544 1.261465 
B -0.133297 1.456607 -0.41978 
B 1.37787 -1.444918 0.443117 
B 1.393051 -0.034729 1.511837 
B 1.374003 1.431903 0.509069 
B 1.363324 0.942272 -1.193494 
C 1.288402 -0.758837 -1.12214 
C 2.145982 0.016273 0.004706 
H -0.649726 2.468756 -0.739317 
H -0.631342 1.453138 2.140589 
H -0.614246 -1.594348 2.048955 
H -0.529884 -2.428912 -0.932404 
H 2.050969 -2.39918 0.583455 
H 2.04357 2.353583 0.807876 
H 2.075201 -0.078692 2.471003 
H 2.024455 1.43254 -2.033661 
H -0.546207 -0.002381 -2.597482 
H 1.855808 -1.278349 -1.880156 
H 3.220111 -0.040784 -0.090707 
S -2.927638 -0.075125 -0.021175 
H -3.121547 1.183287 0.401335 



 

97	

	

	

O9 (288°) Energy: -730.094802 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -1.064536 -0.007643 0.027622 
B -0.143157 0.954654 -1.145996 
B -0.134092 -0.812797 -1.257729 
B -0.11843 -1.469495 0.391623 
B -0.107604 -0.096901 1.526948 
B -0.129094 1.405411 0.574124 
B 1.3712 -1.410938 -0.546798 
B 1.393238 -0.957141 1.168435 
B 1.387126 0.813125 1.279144 
B 1.357892 1.475956 -0.36596 
C 1.288246 0.087446 -1.355482 
C 2.146739 0.007061 0.006297 
H -0.640899 2.402939 0.944164 
H -0.616934 -0.165838 2.588657 
H -0.620565 -2.508485 0.63831 
H -0.539891 -1.337663 -2.230285 
H 2.039156 -2.25677 -1.017509 
H 2.064568 1.358071 2.07388 
H 2.075001 -1.591204 1.889772 
H 2.016151 2.380114 -0.729966 
H -0.552612 1.595351 -2.045913 
H 1.85402 0.148077 -2.273603 
H 3.220378 0.018915 -0.107836 
S -2.928263 -0.082801 0.01103 
H -3.118797 1.243109 -0.068106 

O1 (36°, F) Energy: -730.060377 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -2.30685 0.033849 -0.027383 
B -1.328504 1.451868 -0.443923 
B -1.348304 0.036824 -1.512923 
B -1.395652 -1.419808 -0.50585 
B -1.421482 -0.895385 1.195554 
B -1.385301 0.882307 1.234811 
B 0.121861 -0.902669 -1.218768 
B 0.092666 -1.464022 0.464238 
B 0.088928 -0.049452 1.542483 
B 0.14777 1.401038 0.53479 
C 0.094886 0.79469 -1.064737 
C 0.919258 -0.049581 0.053283 
S 2.718972 -0.073822 0.019126 
H -3.485049 0.078135 -0.074749 
H -1.884132 1.531127 2.084568 
H -1.955341 -1.531757 2.03398 
H -1.904568 -2.414726 -0.884153 
H -1.701203 0.148253 -2.631379 
H 0.80432 -1.367142 -2.054957 
H 2.852449 1.198599 -0.389503 
H 0.749676 -0.06051 2.516726 
H 0.743071 -2.408403 0.737016 
H 0.836606 2.332059 0.745296 
H -1.669078 2.503683 -0.850972 
H 0.699184 1.32844 -1.784302 

O1 (108°) Energy: -730.064318 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -2.306267 0.00202 -0.040636 
B -1.339281 0.75951 -1.314289 
B -1.341434 -1.003303 -1.132273 
B -1.38994 -1.384791 0.599931 
B -1.423673 0.156642 1.487431 
B -1.3781 1.484951 0.304025 
B 0.139879 -1.475167 -0.273575 
B 0.084712 -0.75728 1.347705 
B 0.097254 1.006965 1.163099 
B 0.143612 1.386444 -0.572655 
C 0.086061 -0.135484 -1.328059 
C 0.921732 0.001967 0.076731 
S 2.710186 -0.082665 -0.015151 
H -3.48456 0.000161 -0.102136 
H -1.873222 2.53962 0.490543 
H -1.958579 0.268377 2.533586 
H -1.896601 -2.376141 0.990377 
H -1.693514 -1.691212 -2.021323 
H 0.821799 -2.385723 -0.575103 
H 2.902823 1.240347 0.102007 
H 0.752809 1.668739 1.885281 
H 0.738169 -1.2607 2.187737 
H 0.829823 2.215287 -1.049843 
H -1.687246 1.253901 -2.325501 
H 0.704755 -0.228859 -2.20906 
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O1 (180°) Energy: -730.060695 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -0.027166 -2.3076 0 
B -1.220813 -1.348573 0.888096 
B -1.220813 -1.348573 -0.888096 
B 0.460222 -1.389453 -1.442525 
B 1.500646 -1.406745 0 
B 0.460222 -1.389453 1.442525 
B -0.427438 0.12721 -1.45233 
B 1.249234 0.101204 -0.890081 
B 1.249234 0.101204 0.890081 
B -0.427438 0.12721 1.45233 
C -1.329101 0.090015 0 
C 0.059761 0.918474 0 
S -0.089639 2.717101 0 
H -0.081066 -3.486251 0 
H 0.759699 -1.890494 2.467891 
H 2.560175 -1.927466 0 
H 0.759699 -1.890494 -2.467891 
H -2.178727 -1.703393 -1.474799 
H -0.821022 0.810995 -2.323021 
H 1.238015 2.913728 0 
H 2.03239 0.761416 1.473893 
H 2.03239 0.761416 -1.473893 
H -0.821022 0.810995 2.323021 
H -2.178727 -1.703393 1.474799 
H -2.230976 0.686226 0 

O1 (252°) Energy: -730.064318 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 2.306267 0.00202 -0.040636 
B 1.341434 -1.003303 -1.132273 
B 1.339281 0.75951 -1.314289 
B 1.3781 1.484951 0.304025 
B 1.423673 0.156642 1.487431 
B 1.38994 -1.384791 0.599931 
B -0.143612 1.386444 -0.572655 
B -0.097254 1.006965 1.163099 
B -0.084712 -0.75728 1.347705 
B -0.139879 -1.475167 -0.273575 
C -0.086061 -0.135484 -1.328059 
C -0.921732 0.001967 0.076731 
S -2.710186 -0.082665 -0.015151 
H 3.48456 0.000161 -0.102136 
H 1.896601 -2.376141 0.990377 
H 1.958579 0.268377 2.533586 
H 1.873222 2.53962 0.490543 
H 1.687246 1.253901 -2.325501 
H -0.829823 2.215287 -1.049843 
H -2.902823 1.240347 0.102007 
H -0.738169 -1.2607 2.187737 
H -0.752809 1.668739 1.885281 
H -0.821799 -2.385723 -0.575103 
H 1.693514 -1.691212 -2.021323 
H -0.704755 -0.228859 -2.20906 

O1 (324°, F) Energy: -730.060377 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 2.30685 0.033849 -0.027383 
B 1.348304 0.036824 -1.512923 
B 1.328504 1.451868 -0.443923 
B 1.385301 0.882307 1.234811 
B 1.421482 -0.895385 1.195553 
B 1.395652 -1.419808 -0.505851 
B -0.14777 1.401038 0.53479 
B -0.088928 -0.049452 1.542483 
B -0.092666 -1.464022 0.464238 
B -0.121862 -0.902669 -1.218768 
C -0.094886 0.79469 -1.064737 
C -0.919258 -0.049581 0.053283 
S -2.718972 -0.073822 0.019126 
H 3.485049 0.078135 -0.074749 
H 1.904568 -2.414726 -0.884153 
H 1.955341 -1.531757 2.03398 
H 1.884132 1.531127 2.084568 
H 1.669078 2.503683 -0.850972 
H -0.836606 2.332059 0.745296 
H -2.852449 1.198599 -0.389503 
H -0.743071 -2.408403 0.737016 
H -0.749675 -0.060511 2.516726 
H -0.80432 -1.367142 -2.054957 
H 1.701203 0.148253 -2.631379 
H -0.699184 1.32844 -1.784302 
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9O12 (±45°) Energy: -1128.303216 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 0.535882 0.897152 0.003172 
B -0.902604 1.433649 -0.889713 
B -0.902743 1.435681 0.882307 
B -0.015434 0.000035 1.441041 
B 0.535975 -0.897034 0.003185 
B -0.014025 0.000031 -1.437214 
B -1.77226 -0.000068 1.446071 
B -0.902593 -1.435704 0.882248 
B -0.90249 -1.433668 -0.889672 
B -1.779833 -0.000048 -1.445936 
C -2.193546 0.806423 -0.003676 
C -2.193468 -0.806438 -0.003681 
H 0.590193 0.000054 -2.450789 
H 0.586889 0.000075 2.456094 
H -1.059389 2.445061 1.469722 
H -2.555257 -0.000124 2.323534 
H -1.054603 -2.441755 -1.477865 
H -1.059401 -2.444977 1.469814 
H -2.558908 -0.000119 -2.326608 
H -1.054576 2.441888 -1.477674 
H -3.16217 1.284042 0.000373 
H -3.161933 -1.284378 0.000376 
S 2.111133 -1.884974 -0.066359 
S 2.111078 1.885012 -0.066373 
H 1.928085 -2.521092 1.101578 
H 1.928399 2.520681 1.101867 

9O12 (±45°, M) Energy: -1128.303216 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -0.535882 0.897152 0.003172 
B 0.902743 1.435681 0.882307 
B 0.902604 1.433649 -0.889713 
B 0.014025 0.000031 -1.437214 
B -0.535975 -0.897034 0.003185 
B 0.015434 0.000035 1.441041 
B 1.779833 -0.000048 -1.445936 
B 0.90249 -1.433668 -0.889672 
B 0.902593 -1.435704 0.882248 
B 1.77226 -0.000068 1.446071 
C 2.193546 0.806423 -0.003676 
C 2.193468 -0.806438 -0.003682 
H -0.586889 0.000075 2.456094 
H -0.590193 0.000054 -2.450789 
H 1.054576 2.441888 -1.477674 
H 2.558908 -0.000119 -2.326608 
H 1.059401 -2.444977 1.469814 
H 1.054603 -2.441755 -1.477865 
H 2.555257 -0.000124 2.323534 
H 1.059389 2.445061 1.469722 
H 3.16217 1.284042 0.000373 
H 3.161933 -1.284378 0.000376 
S -2.111133 -1.884974 -0.066359 
S -2.111078 1.885012 -0.066373 
H -1.928085 -2.521092 1.101578 
H -1.928399 2.520681 1.101867 

1O2 (±45°) Energy: -1128.239475 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B 2.335055 0.883042 0.006139 
B 0.913764 1.438384 -0.885606 
B 0.904109 1.440401 0.884974 
B 1.765084 -0.000011 1.443479 
B 2.335052 -0.883037 0.006125 
B 1.77926 0.000017 -1.434374 
B 0.000667 0.000003 1.415744 
B 0.904088 -1.440395 0.884941 
B 0.91377 -1.438375 -0.885644 
B 0.006779 0.00001 -1.418041 
C -0.409429 0.860743 -0.002616 
C -0.409434 -0.860747 -0.00264 
H 2.354583 0.000047 -2.464216 
H 2.330562 -0.000056 2.479187 
H 0.734061 2.43911 1.487298 
H -0.78023 -0.000066 2.298465 
H 0.746364 -2.436059 -1.487646 
H 0.7341 -2.439103 1.487277 
H -0.771712 0.000081 -2.302012 
H 0.746422 2.436074 -1.487613 
H 3.322752 1.528521 0.012549 
H 3.322727 -1.528551 0.012538 
S -1.969506 1.717671 -0.080274 
S -1.969479 -1.717719 -0.080256 
H -2.045457 -1.962396 1.23783 
H -2.045378 1.962987 1.237691 

1O2 (±45°, M) Energy: -1128.239475 Eh 
Atom Position Coordinates (Å) 

X Y Z 
B -2.335055 0.883042 0.006139 
B -0.904109 1.440401 0.884974 
B -0.913764 1.438384 -0.885606 
B -1.77926 0.000017 -1.434374 
B -2.335052 -0.883037 0.006125 
B -1.765084 -0.000011 1.443479 
B -0.006779 0.00001 -1.418041 
B -0.91377 -1.438375 -0.885644 
B -0.904088 -1.440395 0.884941 
B -0.000667 0.000003 1.415744 
C 0.409429 0.860743 -0.002616 
C 0.409434 -0.860747 -0.00264 
H -2.330562 -0.000056 2.479187 
H -2.354583 0.000047 -2.464216 
H -0.746422 2.436074 -1.487613 
H 0.771712 0.000081 -2.302012 
H -0.7341 -2.439103 1.487277 
H -0.746364 -2.436059 -1.487646 
H 0.78023 -0.000066 2.298465 
H -0.734061 2.43911 1.487298 
H -3.322752 1.528521 0.012549 
H -3.322727 -1.528551 0.012538 
S 1.969506 1.717672 -0.080274 
S 1.969479 -1.717719 -0.080256 
H 2.045457 -1.962396 1.23783 
H 2.045377 1.962988 1.237691 
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III.A. Introduction 

 Efficient, rapid, and inexpensive techniques that can deliver biomolecular cargo into 

cells is important for enabling gene therapies to treat a wide range of diseases from  

cancer1–9 to monogenetic disorders, such as severe combined immunodeficiency,10–14 sickle 

cell,15,16 hemophilias,3,17,18 retinal diseases,19,20 and Duchenne muscular dystropy.21,22 The 

promise of applying newly developed gene editing methods, such as clustered regularly 

interspaced short palindromic repeats (CRISPR),19,21,23–28 chimeric antigen receptors 

(CARs),2,3,23,29–34 transcription activator-like effector nucleases (TALEN),18,23,28,35–37 and zinc 

fingers nucleases (ZFNs),15,28,35,38–40 to treat these debilitating diseases is offering new hope 

to the field. Current methods to treat cancer rely on chemotherapy, radiation, or surgery, 

which is invasive and not always successful.1,32,33,41–43 Engineered T cells have emerged as a 

potential alternative that can be used in conjunction with or when these cancer treatments 

fail, where the genetically modified CAR T cells recruit the immune system to recognize 

tumor antigens to clear the malignant cells from the body.2,3,23,29–34 As well, gene editing of 

hematopoietic stem cells (HSCs) has shown promise, where a single point mutations or 

larger defects can be corrected with a patient’s own cells via a bone marrow transplant, 

instead of relying on a matched donor.11,13–16,44,45 Presently, the only treatment for these rare, 

monogenetic diseases is a bone marrow transplant, which, if a suitable donor can be found, 

is often met with graft-versus-host-disease or graft rejection.3,15,41,46 The option to perform 

autologous gene-modified stem cell therapies circumvents these issues and broadens the 

scope of pathologies that can be treated via gene therapy.3,15,41 

 Existing methods used to deliver gene editing materials into cells rely primarily on 

viral vectors47–52 or non-viral methods, such as electroporation.24,35,45,53–56 Although there 
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has been some success with viral vectors,14,57,58 their general use for a variety of disease 

treatments is laborious and would need to go through separate Food and Drug 

Administration approvals, limiting their universal application.3,12,51,54 Additionally, viral 

vectors are exceptionally expensive and suffer from off-target effects, concerns of 

immunogenicity, and cell toxicities.12,51,54,59,60 Similarly, electroporation is expensive at 

clinically relevant scales, is toxic to cells, and has a low throughput and transfection 

efficiency. Lipofection, another common non-viral technique, has variable transfection 

efficiency, low cell viability, and is expensive.36,56,61–65 Other non-viral transfection methods, 

such as nanoparticles,66–68 sonoporation,56,69–71 and microinjection,64,72–74 have been 

reported but generally suffer from low throughput, high cost, low viability, low transfection 

efficiency, or some combination of the above.3,65,75,76 For emerging cellular therapies to have 

the most impact, a suitable delivery system needs to be developed that can address these 

present limitations.3,65 

 An interesting alternative to these viral and non-viral delivery methods is to 

mechanically deform cells via a rapid cell deformation platform, first developed by Langer 

and coworkers (Figure III.1A).65,77–83 This system circumvents several of the disadvantages 

of the current state of the art techniques.65,77–83 Using microfluidics enables a potentially high 

throughput system, while maintain high viability and transfection efficiency.65,77–83 

Additionally, the channel constriction size can be easily tuned to fit the need for a variety of 

cell diameters, generating a versatile system.65,77–83 However, the materials used in the 

fabrication of these microfluidic devices are prone to cellular buildup (Figure III.1B and 

III.1C),77 rendering them inefficient for sustainable cell processing. Moreover, these devices 

require expertise photolithography and microfluidic design skills.65,77–83 
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 (A) Rapid cell deformation schematic. As cells are flowed through a narrow 
constriction, transient pores form for ~5 min, enabling biomolecular cargo to be delivered 
via diffusion across the cell membrane. Adapted with permission from Reference 80. 
Copyright 2017 Nature. (B) Poly(dimethylsiloxane) (PDMS) channels before and (C) after 
flowing with K562 cells. The PDMS microfluidic devices clog within several minutes. 
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 Herein, we have developed a method for coating pores, 5 – 8 µm in diameter, of 

commercial syringe filters and cell culture inserts with slippery liquid-infused porous 

surfaces (SLIPS), first developed by Aizenberg and coworkers (Figure III.2).84–90 These 

bioinspired surface chemistries enable rapid transport of biomolecular payloads 

(e.g., DNA/RNA, proteins) into target cells via transient permeabilization that occurs as cells 

pass through the narrow channels and avoid biofouling issues that have precluded existing 

examples of this technology. Commercial poly(tetrafluoroethylene) (PTFE) syringe filters 

and poly(ethylene terephthalate) (PET) cell culture inserts were infused with fluorinated or 

non-fluorinated oils, respectively, to establish a SLIPS interface (Figure III.2).84–90 These 

porous filters infused with oil are a straightforward and easy to use alternative strategy to 

rapidly deform cells in a scalable, facile, and economical manner.  
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 Schematic showing the experimental procedures of a (A) slippery liquid-
infused porous surfaces (SLIPS) -infused poly(tetrafluoroethylene) syringe filter. Jurkat cells 
are suctioned into a syringe. The syringe is connected to the syringe filter, which is either 
unmodified or modified with a fluorinated oil. The cells are flowed through the filter using a 
syringe pump (not shown) with a 0.25 mL/min flow rate and the cells are cultured for 
24 – 72 h. (B) SLIPS-infused cell culture insets. Jurkat cells are vacuum filtered through a 
poly(ethylene terephthalate) porous culture insert membrane with 8 µm track-etched pores, 
using house vacuum. After permeabilized, the cells are directly incubated with a green 
fluorescent protein (GFP) plasmid and cultured for 24 to 72 h after transfection. 
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III.B. Results and Discussion 

 A simplistic approach to squeeze cells rapidly using commercial materials that are 

economical has been developed. This approach does not require expensive and time-

consuming lithographic techniques or specialized materials and methods, as do current 

techniques, and could be performed by any user. Here, we use commercial syringe and cell 

culture insert filters with pores ranging from 5 to 8 µm in diameter. Both PTFE and PET filter 

materials were used, which were subsequently infused for at least 24 h with oil. The PTFE 

syringe filters were infused with a fluorinated oil, whereas the PET cell culture inserts were 

infused with a silicone oil in order to match the material’s surface energy.84–90 After infusing 

the filters with oil, air, and/or media were flowed through the filters, via positive or negative 

pressure, respectively, to establish the SLIPS interface at the pores and to remove any excess 

oil from the devices. 

 For the syringe filters, a 5 µm micromesh membrane was used (Figure III.1A). Jurkat 

cells were used as a model T lymphocyte line, which have an average diameter of 10 microns, 

making the pore sizes ~50% of the cell diameter. The cells were run through the filters at a 

density of two million cells per 100 µL in cell culture media (Roswell Park Memorial 

Institute, RPMI, media) without fetal bovine serum (FBS) at a flow rate of 0.25 mL/min using 

a syringe pump (Figure III.1A). A vacuum filtration system was used to rapidly deform Jurkat 

cells with track-etched filters with 8 µm pores (Figure III.1B). Here, two 15 mL centrifuge 

tubes were placed in parallel, with a hole punctured at the bottom of the lower tube and a 

hole on the top tube, right below where the lower tube came in contact with the upper tube 

(Figure III.1B). The cells were resuspended in RPMI media without FBS at a density of 

4 million cells per 150 µL. Upon application of the vacuum, the cells were added to the cell 
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culture insert and placed on top of the upper centrifuge tube with the house vacuum already 

turned on. Once the culture was vacuum filtered through the device, the filter was washed 

with 100 µL of extra media to improve the cell recovery. The cells recovered were cultured 

in 10% FBS RPMI media for 24 to 72 h to monitor their growth and viability post-cell 

deformation. Figure III.1 (bottom images) show bright field images of the Jurkat cells at 24 h 

post-cell deformation after either using the syringe filter (left) or vacuum filtration system 

(right) with positive and negative differential pressure, respectively. 

 The microporous syringe filter modified with the fluorinated silicone oil was able to 

recover ~25% of cells inputted into the device, whereas the unmodified PTFE filter recover 

almost no cells (Figure III.3A). The syringe filter devices maintained relatively high viability 

24 – 72 h post-deformation (Figure III.3B). Using the vacuum filtration system, with straight-

through pores, we were able to recover roughly ~50% of the cells put into the SLIPS-

modified device, whereas the unmodified device returned ~25% of the cells directly after 

the cell deformation experiment (Figure III.3C). Moreover, for the SLIPS modified vacuum 

filter device, the cells continued to expand and proliferate over the subsequent 72 h 

(Figure III.3C). The viability of the recovered cells was maintained around 80-90% for both 

the unmodified and SLIPS-modified filters when rapidly deformed with the vacuum-

filtration system (Figure III.3D). However, for the syringe filter devices, the number of cells 

recovered and their proliferation was not as favorable as the vacuum filtration system 

(Figure III.3B), which may be due to the micromesh nature of the filter material that can trap 

cells inside the device (Figure III.2A). 

 



 

117 
 

 

 (A) Cell recovery and (B) percent viability of Jurkat cells after rapid-cell 
deformation experiments for 5 µm poly(tetrafluoroethylene) syringe filters that were either 
unmodified (blue) or slippery liquid-infused porous surfaces (SLIPS) -modified (purple) 
with a fluorinated oil from 24 - 72 h (not enough cells were recovered to obtain accurate cell 
viability values for the unmodified syringe filters). (C) Cell recovery and (D) percent viability 
after rapid cell deformation experiments with the vacuum filtration system for 8 µm 
poly(ethylene terephthalate) cell culture filters, which were either unmodified (blue) or 
SLIPS-modified with silicone oil (purple) from 24 - 72 h. The “% Recovered Cells” is relative 
to the initial number of cells put into the device. 
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 To evaluate the cargo delivery efficiency of the unmodified and SLIPS-modified 

vacuum filtration devices, a green fluorescent protein (GFP) plasmid was directly 

administered to the cells post-cell deformation at a concentration of 0.1 mg/mL. Using a 

fluorescence microscope, the GFP-transformed Jurkat cells were imaged 24 to 72 h post-cell 

deformation with the vacuum filter system using both the unmodified filter and the SLIPS-

modified porous membrane (Appendix, Figure III.7 and Figure III.8). Figure III.4 shows 

fluorescence images of the Jurkat wild-type (Figure III.4A), the Jurkat EGFP-EGFR (enhanced 

GFP-epidermal growth factor receptor) cell line (Figure III.4B), and the Jurkat cells that were 

transfected with CMV (cytomegalovirus) -EGFP plasmid using the unmodified (Figure III.4C) 

and SLIPS-modified (Figure III.4D) devices at 24 h. We observed similar transfection with 

both devices when delivering a CMV-EGFP plasmid (~4500 bp) to the Jurkat cells 

(Figure III.4C and III.4D).  

 Subsequently, we analyzed the transfected cells via flow cytometry for both the 

unmodified and SLIPS-modified rapidly deformed cells with negative differential pressure 

(Figure III.5). We delivered either a CMV- (~4500 bp) (Figure III.5) or a MNDU3-EGFP 

(~7400 bp) (Appendix, Figure III.9) plasmid, which showed similar expression when 

analyzed by flow cytometry for both the unmodified and SLIPS-modified filter membranes. 

Figure III.5 shows flow cytometry plots for the CMV-EGFP expression for the unmodified 

(Figure III.5C) and SLIPS-modified (Figure III.5E) vacuum filters and their corresponding 

histograms at 72 h post-transfection compared to the Jurkat wild-type and Jurkat 

EGFP-EGFR cell line (Figures III.5D and Figure III.5F, respectively). We observed a maximum 

transfection efficiency of ~40% using this system (Figure III.5 and Appendix, Figure III.9). 

The average transfection efficiency was ~25% for both the unmodified and SLIPS-modified 
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devices when delivering the CMV- and MNDU3-EGFP (Figure III.6). Using a commercial 

electroporation kit, we observed ~80% transfection of the Jurkat cells using the CMV-EGFP 

plasmid (Appendix, Figure III.10), showing that in comparison, our transfection efficiency is 

moderate.
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 Maximum green fluorescent protein (GFP) expression from Jurkat cells 
24 - 72 h after transfection via the vacuum filtration delivery system using commercial 
poly(ethylene terephthalate) cell culture filters inserts with 8 µm pores. Jurkat cells were 
immediately exposed to a CMV (cytomegalovirus) -EGFP plasmid and analyzed via flow 
cytometry for 24-, 48-, and 72-h time points. Flow cytometry plots of (A) Jurkat wild-type, 
(B) Jurkat EGFP-EGFR (enhanced GFP-epidermal growth factor receptor) cell line, and 
CMV-EGFP transfected Jurkat cells from 24 – 72 h for (C) unmodified and (E) slippery liquid-
infused porous surfaces (SLIPS) -modified filters. A histogram overlay of Jurkat wild-type, 
Jurkat EGFP-EGFR cell line, and CMV-EGFP transfected Jurkat cells after 72 h for 
(D) unmodified and (F) SLIPS-modified filters. 
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 Average green fluorescent protein (GFP) expression from Jurkat cells 24-72 h 
after transfection via the vacuum filtration gene delivery system using commercial 
poly(ethylene terephthalate) cell culture filters inserts (8 µm pore size). Jurkat cells were 
immediately exposed to (A) CMV- (cytomegalovirus) or (B) MNDU3-EGFP plasmids for both 
unmodified and slippery liquid-infused porous surfaces (SLIPS) -modified devices and 
analyzed via flow cytometry for 24-, 48-, and 72-h time points. 
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III.C. Conclusions and Prospects 

 A rapid, facile, and inexpensive platform for cargo delivery to cells has been 

developed and demonstrated. Here, we report a facile and economical way to deform cells 

rapidly in a high-throughput manner, while maintaining cell viability and proliferative 

capacity. Using SLIPS-modified filters, we were able to recover from 25% to 50% more cells 

than with unmodified filters. In particular, the vacuum filtration system offers an exciting 

approach, where potentially billions of cells can be deformed within a few minutes. For 

emerging delivery techniques to be effective, this processing scale would need to be achieved 

to address clinical needs for gene modification of HSCs and T cells for transplants.91 As proof 

of concept, we delivered a GFP plasmid to Jurkat cells and achieved up to 40% transfection 

efficiency with ~80% cell viability in model T cells. In comparison to electroporation, 

commercial kits are able to transfect model cell lines, such as Jurkat cells, with high 

transfection efficiency (~80%) (Appendix, Figure III.10). The key advantage of our system is 

that, at a fraction of the cost, we can safely achieve moderate transfect and high cell viability. 

Improvements to the recovery of cells can be further optimized as well as the delivery 

efficiency. Likewise, more materials and pore sizes can be used with other cell lines. In 

particular, translating this to primary cell lines and stem cells will be an important next step 

to evaluating the potential of this systems.  

 These SLIPS-modified filter membranes offer a route to circumvent biofouling issues 

that have prohibited their usage for clinical applications. Additionally, the key advantage of 

these systems is that they are inexpensive, fast, user-friendly, and are customizable based on 

cell diameter. Moreover, these systems may enable a way to size select healthier and younger 

cells, increasing the fitness of the cells and the overall success of the transplant.92 These 
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SLIPS-functionalized filters will enable new opportunities in the development of gene and 

cellular therapies for a wide variety of disease treatments, which are currently limited when 

applied at clinically relevant scales in part by toxicities and off-target effects arising from 

technical limitations associated with viral and non-viral transduction methods 

(e.g., electroporation). In additions to the cost and ease of this biophysical technique, another 

key advantage is that this method does not suffer from immunogenicity issues that are 

associated with viral vectors methods, which has limited their use as a clinical treatment 

option.60 

III.D. Materials and Methods 

III.D.1. Jurkat Cell Culture 

 Jurkat cells (ATCC, Manassas, VA, USA) were cultured in Roswell Park Memorial 

Institute (RPMI) 1640 medium (Invitrogen, Darmstadt, Germany) containing 10% fetal 

bovine serum (FBS) (R10 medium) (Invitrogen, Darmstadt, Germany) and 100 IU/mL 

penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) in 5% CO2 at 37 °C. 

III.D.2. Vectors 

 Construction of the pCCL-MNDU3-EGFP (7411 bp) has been described previously.93 

The pCMV-EGFP (4479 bp) was purchased from Addgene (Plasmid #11153, Cambridge, MA, 

USA). The DNA plasmids were isolated from E. coli using PureLink™ HiPure Plasmid 

MaxiPrep kits (Invitrogen, Darmstadt, Germany) according to the manufacture’s guidelines. 

III.D.3. Slippery Liquid-Infused Porous Surfaces-Modified Filters 

 Syringe filters made from PVDF (Tisch Scientific, North Bend, OH, USA) with 5-micron 

pores were infused with Krytox GP 103 (ChemPoint, Bellevue, WA, USA) for 24 h, followed 
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by flowing air for 10-15 h and RPMI media directly before the rapid cell deformation studies. 

Falcon™ cell culture inserts with 8-micron pores (Corning, Corning, NY, USA) were infused 

with silicone oil, viscosity 10 cSt, (Sigma-Aldrich, Saint Louis, MO, USA) for at least 24 h. 

Before processing the cells through the device, the vacuum was turned on while connected 

to the apparatus to remove the excess oil, followed by a media rinse. 

III.D.4. Transfection Methods 

III.D.4.a. Syringe Filter for Rapid Cell Deformation 

 After the PTFE syringe filter was SLIPS-modified, Jurkat cells were flowed through 

the device using a syringe pump (positive pressure) (Figure III.2A). The cells were flowed 

through the devices at a density of two million cells per 100 µL in RPMI media without FBS 

at a flow rate of 0.25 mL/min. After the cells were flowed through, both media and then air 

were flowed through the devices to enhance the number of cells recovered. The cells were 

cultured in a well plate (Corning, Corning, NY, USA) at 37 ˚C for 24-72 h post-deformation, 

where their cell count and viability were assessed post-deformation. 

III.D.4.b. Vacuum Filtration Apparatus for Rapid Cell Deformation 

 The vacuum filtration system was made by placing two 15 mL conical centrifuge 

tubes (Thermo Fisher Scientific, Waltham, MA, USA) together, where the top one was 

punctured right below where the bottom tube seals and the bottom tube was punctured at 

the bottom, which was subsequently connected to the house vacuum line (Figure III.2B). The 

cell culture insert was placed in the first tube with cells, at a density of four million cells per 

150 µL, in RPMI media without FBS with the vacuum on (Figure III.2B). Once the Jurkat cells 

were rapidly deformed through the inserts, the permeabilized cells were incubated with 

either a CMV- or MNDU3-expressing EGFP plasmid for 10-15 min with a plasmid 
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concentration of 0.1 mg/mL and a 1% Pluronic F-68 (Thermo Fisher Scientific, Waltham, MA, 

USA) solution (Figure III.2B). After incubating the cells in plasmid, they were transferred to 

a well plate to maintain a density for 500-800K cells per mL for 24-72 h at 37 ˚C and 

subsequently characterized. 

III.D.4.c. Electroporation 

 The Jurkat cells were resuspended in 4D-Nucleofector™ Solution (Lonza, Basel, 

Switzerland) at a concentration of 3.5 × 105 cells per 200 μL and combined with CMV-EGFP 

at a concentration of 50 µg/mL. The DNA/cell mixture was then transferred to the reaction 

strip. Electroporation was carried out using the Lonza 4D-Nucleofector X-unit system (Basel, 

Switzerland), and the cells were allowed to sit at room temperature for 10 min following the 

reaction. The cells were resuspended with pre-warmed medium by gently pipetting up and 

down two to three times. The cells were cultured in a well plate for 24 h and characterized 

with flow cytometry. 

III.D.5. Characterization 

III.D.5.a. Cell Fixing for Post-Analysis 

 After cells were counted, they were fixed for post-analysis with fluorescence 

microscopy and flow cytometry at 24-, 48-, and 72-h time points. Using a 1:1 dilution with 

trypan blue (Invitrogen, Darmstadt, Germany), cells were counted and their viability was 

accessed using the Countess™ Automated Cell Counter (Invitrogen, Darmstadt, Germany). 

Cells were fixed after the viability and cell counts were taken, where cells were pelleted and 

resuspended in phosphate-buffered saline (PBS) (Thermo Fisher Scientific, Waltham, MA, 

USA) with 2.5% FBS and fixation using BD stabilizing fixative (BD Biosciences, NJ, USA). 
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III.D.5.b. Fluorescence Microscopy Imaging 

 Cells were pelleted and resuspended in PBS with 2.5% FBS and fixation using 

BD stabilizing fixative (BD Biosciences, NJ, USA). The fixed cells were either directly mounted 

or mixed in a 3:1 ratio with ProLong™ Diamond Antifade Mountant with DAPI 

(4’,6-diamidino-2-phenylindole, a nuclear counterstain) (Invitrogen, Darmstadt, Germany) 

onto clean microscope glass slides (VWR International, Radnor, PA, USA) and sealed with a 

coverslip (Fisher Scientific, Hampton, NH, USA). Images were taken with the Zeiss M2 Imager 

with Apotome 2 and Zen Blue software (Zeiss, Oberkochen, Germany) with the DAPI 

fluorescent channel (exposure time = 100 ms) and the GFP fluorescent channel (exposure 

time = 350 ms). Brightfield images were taken with the Zeiss AxioImager fluorescence 

microscope with AxioVision (Zeiss, Oberkochen, Germany). All post-analysis and image 

processing were done with Fiji (ImageJ). 

III.D.5.c. Flow Cytometry 

 All flow cytometry measurement were processed by a Fortessa cytometer 

(BD Biosciences, NJ, USA) and data analyses performed using BD FACS Diva Software 6.1 

(BD Biosciences, NJ, USA). The presence of GFP was detected through flow cytometry, where 

the GFP expression was assessed by washing in PBS with 2.5% FBS and fixation using BD 

stabilizing fixative (BD Biosciences, NJ, USA) as described previously.94 All experiments with 

determinations of geometric MFI were performed using the same protocol, fluorochrome 

voltages, and cytometer. 

III.D.6. Statistical Analysis 

 Statistical analysis was performed using Graph Pad Prism 6.01 (GraphPad Software, 

Irvine, CA, USA). All data were expressed as mean ± standard deviation (s.d.). Analysis of 
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variance (ANOVA) was used for multiple comparison. P < 0.05 was considered statistically 

significant.  

III.E. Appendix 

III.E.1.   Fluorescence Microscope Images 

 Fluorescence microscope images for 24 – 72 h time points for delivery of CMV-EGFP 

plasmids to Jurkat cells with the unmodified (Figure III.7) and SLIPS-modified (Figure III.8) 

vacuum filtration system. 

III.E.2.  Flow Cytometry Plots 

 Figure III.9 shows flow cytometry plots for 24 – 72 h time points for delivery of 

MNDU-EGPF plasmids to Jurkat cells with the unmodified and SLIPS-modified (Figure III.9) 

vacuum filtration system. 

III.E.3.  Electroporation 

 Figure III.10 shows flow cytometry plots of electroporated Jurkat cells that were 

transfected with the CMV-EGFP plasmid using the Lonza 4D-Nucleofector X-unit system. 

After 24 h, flow cytometry plots show ~80% transfection of the Jurkat cells. 
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 Maximum green fluorescent protein (GFP) expression from Jurkat cells 
24 - 72 h after transfection via the vacuum filtration gene delivery system using commercial 
poly(ethylene terephthalate) cell culture filters inserts with 8 µm pores. Jurkat cells were 
immediately exposed to a MNDU3-EGFP plasmid and analyzed via flow cytometry for 24-, 
48-, and 72-h time points. Flow cytometry plots of (A) Jurkat wild-type, (B) Jurkat 
EGFP-EGFR (enhanced GFP-epidermal growth factor receptor) cell line, and MNDU3-EGFP 
transfected Jurkat cells from 24 – 72 h for (C) unmodified and (E) slippery liquid-infused 
porous surfaces (SLIPS) -modified filters. A histogram overlay of Jurkat wild-type, Jurkat 
EGFP-EGFR cell line, and MNDU3-EGFP transfected Jurkat cells after 72 h for (D) unmodified 
and (F) SLIPS-modified filters. 
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 Electroporation of Jurkat cells. (A) Flow cytometry plots showing the 
transfection of Jurkat cells 24 h after transfection with CMV-EGFP plasmid (50 µg/mL) using 
a commercial electroporation kit and (B) corresponding histogram plot.   

A B 

76% 
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CHAPTER	IV	

Delivery	of	a	CD19	Expressing	
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IV.A. Introduction	

	 Rapid,	 efficient,	 safe,	 and	 cost	 effective	 delivery	 of	 genetic	 materials,	 such	 as	

expression	plasmids	and/or	gene	editing	nucleases	(e.g.,	CRISPR-Cas9,	zinc	finger	nuclease,	

etc.),	to	large	populations	of	cells	is	essential	for	the	manufacturing	of	gene-modified	stem	

cell	therapies	and	adoptive	cellular	therapies1–7	that	are	now	being	deployed	clinically	for	

the	 treatment	 of	 diseases,	 such	 as	 immunodeficiencies,8,9	 hemoglobinopathies,10,11	

hemophilia,	 Duchenne	 muscular	 dystrophy,12,13	 retinal	 diseases,14	 or	 cancer.15–18	 In	

particular,	 the	 development	 of	 adoptive	 cellular	 therapies	 that	 utilize	 either	 engineered	

T-cell	 receptors	 or	 chimeric	 antigen	 receptors	 (CARs)	 are	 facilitating	 powerful	

immunotherapies	for	cancer,	and	if	successful,	can	potentially	be	applied	to	HIV	and	other	

autoimmune	diseases.1,2,19	These	CAR	T-cell	approaches	harness	the	immune	system	to	fight	

cancers	directly.1,2,15,16,20–24	To	date,	anti-CD19	expressing	chimeric	receptors	are	used	in	the	

current	 two	current	FDA	approved	CAR	T-cell	therapies	 for	the	treatment	of	refractory	B	

cell-derived	lymphomas	and	leukemias.1,2,19	However,	for	these	treatments	to	be	successful,	

the	delivery	of	CAR	transgene	constructs	needs	to	be	stable	and	maintain	long-lasting	gene	

expression	in	T	cell	populations	to	endure	immune	memory	and	to	prohibit	relapse,	which	

has	been	difficult	to	achieve	safely	and	at	desirable	throughputs	using	current	gene	delivery	

methods.1,2,15,18,25	 State-of-the-art	 strategies	 employ	 electroporation26–32	 or	 viral	

vectors;33–37	however,	 these	methods	are	expensive	at	 cell	processing	scales	 required	 for	

clinical	 translation,	 suffer	 from	 toxicity	 and	 potential	 immunogenicity	 and/or	 off-target	

effects,	and	are	unable	to	be	universally	deployed	across	different	cell	lines.34,38–44	

	 Alternative	intracellular	delivery	methods	that	are	being	studied	to	deform	the	cell	

membrane	 to	 permeate	 and	 to	 deliver	 biomolecular	 payloads	 to	 cells	 include	 the	 use	 of	
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microinjection,45–51	 acoustic	 waves,52	 sonoporation,53,54	 nanoparticles,55–57	 and	

nanostructures.58–63	 However,	 these	 approaches	 have	 not	 yet	 been	 demonstrated	 at	

clinically	relevant	scales	or	universal	use.64	In	particular,	rapid	cell	deformation	techniques	

enable	an	elegant	solution	to	permeabilize	cells	temporarily	as	they	pass	through	mechanical	

barriers	 or	 electric	 fields	 to	 enable	 cargo	 delivery.64–71	 However,	 existing	 membrane	

deformation	 techniques	 use	 expensive,	 specialized	 fabrication	 processes	 and	 equipment	

where	devices	are	often	plagued	with	fouling	and	fail	due	to	clogging	of	the	channels.64–71	In	

particular,	recently	reported	cell	squeezing	microfluidic	devices,	can	only	treat	~1-5	million	

cells	 before	 devices	 fail.65	 Ultimately	 a	 fast,	 efficient,	 scalable,	 cost-effective,	 and	 user-

friendly	system	is	needed	for	sustainable	processing	of	homogeneous	cell	products	using	

emerging	cellular	therapies	for	monogenetic	diseases	and	cancer	immunotherapy.1,2	

	 We	 have	 developed	 a	 vacuum	 filtration	 system	 for	 rapid	 cell	 deformation	 using	

commercial	and	cost-effective	materials.	Herein,	we	describe	a	vacuum	filtration	system	that	

uses	commercial	cell	culture	inserts	comprised	of	membranes	fabricated	using	track-etched	

on-wire	lithography	and	uses	negative	pressure	to	deform	cells	mechanically	as	they	pass	

through	 pores	 with	 8	µm	 features.	 This	 system	 is	 capable	 of	 transporting	 biomolecular	

payloads	(e.g.,	nucleic	acids,	proteins)	into	target	cells	via	transient	permeabilization	shortly	

after	 cells	 pass	 through	 the	 narrow	 pores	 of	 the	 filter.	 Using	 this	 method,	 we	 have	

successfully	delivered	a	green	fluorescent	protein	(GFP)	plasmid	and	a	CD19	expressing	CAR	

to	Jurkat	cells,	a	model	T	lymphocyte	(T	cell)	line.	This	vacuum	filtration	system,	made	from	

commercial	 filter	 inserts	and	materials,	enables	new	opportunities	 in	 the	development	of	

gene	and	cellular	therapies	for	a	wide	variety	of	disease	treatments.	
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IV.B. Results	and	Discussion	

	 We	 have	 developed	 and	 tested	 a	 facile	 approach	 to	 deform	 cells	 rapidly	 using	

commercial	and	inexpensive	materials.	This	“tabletop”	strategy	does	not	require	expensive	

and	 time-consuming	 lithographic	 techniques	 or	 specialized	 materials	 and	 methods	 to	

assemble	devices,	as	do	current	techniques,	and	could	be	performed	by	any	user.	We	use	a	

commercial	 filter	 insert	with	 8	µm	pores	made	 from	 poly(ethylene	 terephthalate)	 (PET),	

shown	in	Figure	IV.1.	Two	centrifuge	tubes	are	placed	in	series,	where	the	bottom	tube	has	

a	punctured	hole	in	the	bottom	that	connects	to	the	vacuum	line,	and	the	top	centrifuge	tube	

has	a	punctured	hole	on	the	side,	just	below	where	the	bottom	tube	comes	into	contact	with	

the	top	tube	(Figure	IV.1).	The	vacuum	is	then	turned	on	and	the	cell	culture	insert,	which	

contains	 the	 cells	 in	media,	 is	 placed	 on	 top	 of	 centrifuge	 tube.	 The	 cells	 are	 suctioned	

through	the	filter	and	collected	at	the	bottom	of	the	top	tube	(Figure	IV.1).	The	cells	are	then	

added	to	the	plasmid	of	interest,	CMV	(cytomegalovirus)	-EGFP	(~4500	bp),	MNDU3-EGFP	

(~7400	bp),	 or	MNDU3-CD19	CAR	 (~8700	bp),	 immediately	 and	 allowed	 to	 incubate	 for	

15	min	before	culturing	in	a	well	plate	for	post	analysis	at	24-,	48-,	and	72-h	time	points.		
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 Schematic	illustrating	(A)	the	gene	delivery	vacuum	filtration	system	using	
poly(ethylene	terephthalate)	(PET)	cell	culture	filter	inserts.	Jurkat	cells	are	passed	through	
the	filters	using	negative	differential	pressure	using	house	vacuum.	Two	centrifuge	tubes	are	
place	 in	 series,	 where	 the	 bottom	 tube	 has	 a	 punctured	 hole	 at	 the	 bottom,	 which	 is	
connected	to	a	vacuum	line	(not	shown),	and	the	upper	tube	on	the	side.	The	cells	are	added	
to	the	filter	and	place	on	top	of	the	upper	tube	with	the	vacuum	already	turned	on.	The	cells	
are	rapidly	deformed	as	they	pass	through	the	porous	membrane	and	collect	in	the	top	tube,	
and	 then	 directly	 treated	 with	 either	 a	 green	 fluorescent	 protein	 or	 a	 CD19	 expressing	
chimeric	antigen	receptor	plasmid.	The	cells	are	cultured	for	24	–	72	h	after	transfection	for	
post	 analysis.	 (B)	 Bright	 field	 image	 of	 the	 Jurkat	 cells	 24	 h	 after	 the	 cell	 deformation	
experiment.	
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	 An	average	of	~25%	of	the	cells	were	recovered	from	these	devices	with	an	average	

viability	of	~80%.	In	order	for	the	Jurkat	cells	to	express	GFP,	the	plasmid	must	reach	the	

nucleus	or	 cytoplasm	of	 the	 cell	 for	expression	 to	occur,47	which	was	evaluated	by	 three	

different	methods:	 fluorescence	microscopy	(Figure	IV.2	and	Appendix,	Figure	IV.6),	 flow	

cytometry	 (Figure	 IV.3,	 Figure	 IV.4A,	 and	 Appendix,	 Figure	 IV.7),	 and	 digital	 droplet	

polymerase	chain	reaction	(ddPCR)	(Figure	IV.4B	and	Figure	IV.5).	First,	the	transfection	of	

the	 Jurkat	 cells	 with	 a	 CMV-plasmid	 was	 characterized	 with	 fluorescence	 microscopy	

(Figure	IV.2	 and	 Figure	IV.6).	 Figure	 IV.2	 shows	 fluorescent	 images	 of	 DAPI	 (a	 nuclear	

counterstain)	-stained	Jurkat	wild-type	(WT),	Jurkat	EGFP-EGFR	(enhanced	GFP-epidermal	

growth	factor	receptor),	and	the	transfected	cells	using	the	system	described	here	at	72	h	

post-transfection.	 No	 fluorescence	 was	 observed	 for	 the	 Jurkat	 WT	 in	 the	 GFP	 channel,	

whereas	GFP	fluorescence	was	detected	 for	 the	 Jurkat	EGFP-EGFR	cell	 line	as	well	as	 the	

Jurkat	cells	72-h	post-transfection	with	a	CMV-EGFP	plasmid	(Figure	IV.2).	
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 Fluorescence	 microscope	 images	 of	 Jurkat	 cells	 with	 green	 fluorescent	
protein	(GFP),	DAPI	(a	nuclear	counterstain),	and	their	merged	channels.	(Top)	Jurkat	wild-
type	(WT)	cells,	 (middle)	 Jurkat	enhanced	GFP	(EGFP)	-epidermal	growth	factor	receptor	
(EGFR)	cell	line,	and	(bottom)	GFP	transfected	Jurkat	cells	72	h	after	vacuum	filtration	using	
commercial	porous	culture	insert	membrane	with	8	µm	pores.	Jurkat	cells	were	incubated	
with	0.1	mg/mL	of	GFP	plasmid.	Scale	bars	=	20	µm.	
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	 	To	 quantitate	 GFP	 expression	 using	 this	 rapid-cell	 deformation	 technique,	 flow	

cytometry	was	used	to	monitor	the	transfection	from	24	-	72	h.	Flow	cytometry	plots	are	

shown	in	Figure	IV.3,	where	we	achieved	a	maximum	transfection	of	~40%	GFP	expression	

with	two	different	GFP	plasmids,	driven	by	either	the	CMV-	(Figure	IV.3C)	or	MNDU3-EGFP	

promotor	 (Appendix,	 Figure	 IV.7C).	 The	 24	–	72	h	 time	 course	 for	 CMV-EGFP	

(MNDU3-EGFP)	transfected	Jurkat	cells	are	shown	in	Figure	IV.3C	(Appendix,	Figure	IV.7C)	

and	its	corresponding	histogram	overlay	in	Figure	IV.3E	(Appendix,	Figure	IV.7E).	An	overlay	

histogram	of	GFP	fluorescence	of	Jurkat	wild-type,	Jurkat	EGFP-EGFR,	and	the	transfected	

Jurkat	cells	with	CMV-EGFP	(MNDU3-EGFP)	at	72	h	are	shown	in	Figure	IV.3D	(Appendix,	

Figure	 IV.7D).	 The	 average	 transfection	 efficiency	 was	 ~15-20%	 for	 both	 the	 CMV-	 and	

MNDU3-GFP	plasmids	(Figure	IV.4A).	In	comparison	to	electroporation	of	these	model	cell	

lines,	where	up	to	~80%	transfection	is	observed	(Chapter	III,	Appendix,	Figure	III.10),	we	

can	achieve	moderate	transfection	using	this	simple	and	cheap	system.	

	 Additionally,	 ddPCR	 was	 used	 to	 verify	 the	 messenger	 RNA	 (mRNA)	 level	 of	 the	

transformed	cells.	Detection	of	mRNA	was	used	as	a	tertiary	assay	to	assess	if	the	DNA	was	

delivered	to	the	nucleus	of	the	cells.	Using	ddPCR,	we	confirmed	the	successful	delivery	of	

the	two	GFP	plasmids	to	Jurkat	cells	(Figure	IV.4B).	Additionally,	we	were	also	able	to	achieve	

delivery	of	a	MNDU3-CD19	expressing	CAR	to	Jurkat	cells	detected	via	ddPCR	(Figure	IV.5).	

In	each	of	these	cases,	we	were	able	to	observe	a	significant	difference	in	the	copy/µL	values	

compared	to	the	negative	control,	which	ran	the	cells	through	the	vacuum	filter	membrane	

without	any	added	DNA	(Figure	IV.4B	and	Figure	IV.5).	
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 Maximum	 green	 fluorescent	 protein	 (GFP)	 expression	 from	 Jurkat	 cells	
24	–	72	h	after	transfection	via	the	vacuum	filtration	gene	delivery	system	using	commercial	
poly(ethylene	 terephthalate)	 cell	 culture	 filters	 inserts	 (8	 µm	pore	 size).	 Flow	 cytometry	
plots	showing	GFP	expression	of	(A)	Jurkat	wild-type	(negative	control),	(B)	Jurkat	enhanced	
GFP	 (EGFP)	 -epidermal	 growth	 factor	 receptor	 (EGFR)	 cell	 line	 (positive	 control),	 and	
(C)	Jurkat	cells	that	were	immediately	exposed	to	a	CMV	(cytomegalovirus)	-EGFP	plasmid	
at	 24-	 (left),	 48-	 (middle),	 and	 72-h	 (right)	 time	 points.	 (D)	Histogram	 overlay	 of	 Jurkat	
wild-type,	Jurkat	EGFP-EGFR,	and	transfected	Jurkat	cells	at	72	h.	(E)	Histogram	overlay	of	
transfected	Jurkat	cells	at	24	h,	48	h,	and	72	h.	
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 Average	 green	 fluorescent	 protein	 (GFP)	 expression	 using	 the	 vacuum	
filtration	system.	Either	a	CMV-	(cytomegalovirus)	or	MNDU3-EGFP	plasmid	was	delivered	
to	Jurkat	cells	via	the	vacuum	filtration	platform	using	a	commercial	porous	culture	insert	
membrane	 with	 8	µm	 pores.	 Jurkat	 cells	 passed	 through	 the	 filter	 membrane	 with	
0.1	mg/mL	of	a	plasmid	encoding	for	a	CMV-	or	MNDU3-GFP	and	analyzed	via	flow	cytometry	
and	digital	droplet	polymerase	chain	reaction	(ddPCR).	Average	GFP	expression	via	(A)	flow	
cytometry	and	(B)	corresponding	ddPCR	results.	
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 Digital	droplet	polymerase	chain	reaction	(ddPCR)	results.	A	MNDU3-CD19	
expressing	 chimeric	antigen	receptor	 (CAR)	plasmid	was	delivered	 to	 Jurkat	 cells	via	 the	
gene	delivery	platform	using	a	commercial	porous	culture	insert	membrane	with	8	µm	pores.	
Jurkat	cells	passed	through	the	filter	membrane	with	0.2	mg/mL	of	a	plasmid	encoding	for	a	
MNDU3-CD19	CAR	and	analyzed	with	digital	droplet	polymerase	 chain	 reaction.	The	 “No	
Plasmid”	bars	are	on	the	order	of	the	lines	of	the	x-axis.	
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IV.C. Conclusions	and	Prospects	

	 We	developed	a	system	to	deform	cells	rapidly	to	enable	the	intracellular	delivery	of	

biomolecular	cargo	using	scalable,	economical,	and	easy-to-use	materials.	Using	this	simple,	

tabletop	system,	we	were	able	to	deliver	GFP	and	a	CD19	expressing	CAR	plasmid	to	model	

T	 cell	 lines	 with	 an	 average	 viability	 of	 ~80%	 and	 average	 transfection	 efficiency	 of	

~15-20%.	 The	 key	 benefit	 of	 this	 facile	 vacuum	 filtration	 system	 is	 that	 we	 can	 attain	

moderate	transfection	and	favorable	cell	viability,	compared	to	electroporation	(Chapter	III,	

Appendix,	 Figure	 III.10),	 with	 a	 method	 that	 does	 not	 require	 expensive	 materials	 or	

specialized	 fabrication	 tools.	Moreover,	we	 have	 the	 potential	 to	 process	 billions	 of	 cells	

within	a	few	minutes	efficiently,	easily,	and	safely.	Additionally,	this	technique	could	also	be	

used	to	select	smaller	and/or	younger	populations	of	cells,	which	may	yield	a	more	durable	

therapeutic	 response	when	 deployed	 clinically.72	 These	 systems,	made	 from	 commercial	

filters	and	materials,	will	enable	new	opportunities	in	the	development	of	gene	and	cellular	

therapies	for	a	wide	variety	of	disease	treatments.	

IV.D. Materials	and	Methods	

IV.D.1. Jurkat	Cell	Culture	

	 Jurkat	cells	(ATCC,	Manassas,	VA,	USA)	were	cultured	in	the	Roswell	Park	Memorial	

Institute	 (RPMI)	 1640	 medium	 (Invitrogen,	 Darmstadt,	 Germany)	 containing	 10%	 fetal	

bovine	 serum	 (FBS)	 (R10	 medium)	 (Invitrogen,	 Darmstadt,	 Germany)	 and	 100	 IU/mL	

penicillin/streptomycin	(Thermo	Fisher	Scientific,	Waltham,	MA,	USA)	in	5%	CO2	at	37	°C.	
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IV.D.2. Vectors	

	 Construction	of	the	pCCL-MNDU3-EGFP	(7411	bp)	has	been	described	previously.73	

The	pCMV-EGFP	(4479	bp)	was	purchased	from	Addgene	(Plasmid	#11153,	Cambridge,	MA,	

USA).	 The	 vector	 construct	 for	 huEGFRt	 combined	with	 an	 anti-CD19	 second-generation	

chimeric	antigen	receptor	with	the	CD28	costimulatory	molecule	and	CD3zchain	(8657	bp)	

were	developed	as	previously	described74,75	and	generously	provided	by	Stephen	Forman	

(City	of	Hope,	Duarte,	CA).	The	DNA	plasmids	were	 isolated	 from	E.	coli	using	PureLink™	

HiPure	 Plasmid	 MaxiPrep	 kits	 (Invitrogen,	 Darmstadt,	 Germany)	 according	 to	 the	

manufacture’s	guidelines.	

IV.D.3. Transfection	Methods	

IV.D.3.a. Vacuum	Filtration	Apparatus	for	Rapid	Cell	Deformation	

	 The	 vacuum	 filtration	 system	was	made	 by	 placing	 two	 15	mL	 conical	 centrifuge	

tubes	 (Thermo	 Fisher	 Scientific,	 Waltham,	 MA,	 USA)	 together,	 where	 the	 top	 one	 was	

punctured	right	below	where	the	bottom	tube	seals	and	the	bottom	tube	was	punctured	at	

the	bottom,	which	was	subsequently	 connected	 to	 the	house	vacuum	 line	 (Figure	 IV.1A).	

Falcon™	cell	culture	inserts	with	8-micron	pores	(Corning,	Corning,	NY,	USA)	were	placed	in	

the	first	tube	with	cells,	at	a	density	of	4	–	8	million	cells	per	150	µL,	in	RPMI	media	without	

FBS	with	the	vacuum	on	(Figure	IV.1A).	Once	the	Jurkat	cells	were	rapidly	deformed	through	

the	 inserts,	 the	 permeabilized	 cells	 were	 incubated	 with	 either	 a	 GFP	 or	 a	 CD19	 CAR	

expressing	 plasmid	 for	 10-15	 min	 with	 a	 plasmid	 concentration	 of	 0.1–0.2	mg/mL	

(Figure	IV.1A).	 For	 the	 EGFP	 delivery,	 a	 1%	 Pluronic	 F-68	 (Thermo	 Fisher	 Scientific,	

Waltham,	MA,	USA)	solution	was	added	to	the	plasmid	before	incubating	the	cells	post-cell	

deformation.	 After	 incubating	 the	 cells	 in	 plasmid,	 they	were	 transferred	 to	 a	well	 plate	
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(Corning,	Corning,	NY,	USA)	to	maintain	a	density	of	500-800K	cells	per	mL	for	24	-	72	h	and	

subsequently	characterized.	

IV.D.4. Characterization	

IV.D.4.a. Cell	Fixing	for	Post-Analysis	

	 After	 cells	 were	 counted,	 they	 were	 fixed	 for	 post-analysis	 with	 fluorescence	

microscopy	and	flow	cytometry	at	24-,	48-,	and	72-h	time	points.	Using	a	1:1	dilution	with	

trypan	blue	(Invitrogen,	Darmstadt,	Germany),	cells	were	counted	and	their	viability	was	

accessed	using	the	Countess™	Automated	Cell	Counter	(Invitrogen,	Darmstadt,	Germany).	

Cells	were	fixed	after	the	viability	and	cell	counts	were	taken,	where	cells	were	pelleted	and	

resuspended	 in	phosphate-buffered	saline	(PBS)	(Thermo	Fisher	Scientific,	Waltham,	MA,	

USA)	with	2.5%	FBS	and	fixation	using	BD	stabilizing	fixative	(BD	Biosciences,	NJ,	USA).	

IV.D.4.b. Fluorescence	Microscopy	

	 Cells	 were	 pelleted	 and	 resuspended	 in	 PBS	 with	 2.5%	 FBS	 and	 fixation	 using	

BD	stabilizing	fixative	(BD	Biosciences,	NJ,	USA).	The	fixed	cells	were	either	directly	mounted	

or	 mixed	 in	 a	 3:1	 ratio	 with	 ProLong™	 Diamond	 Antifade	 Mountant	 with	 DAPI	

(4’,6-diamidino-2-phenylindole)	(Invitrogen,	Darmstadt,	Germany)	onto	clean	microscope	

glass	 slides	 (VWR	 International,	 Radnor,	 PA,	 USA)	 and	 sealed	 with	 a	 coverslip	 (Fisher	

Scientific,	Hampton,	NH,	USA).	Images	were	taken	with	the	Zeiss	M2	Imager	with	Apotome	2	

and	 Zen	Blue	 software	 (Zeiss,	 Oberkochen,	 Germany)	with	 the	DAPI	 fluorescent	 channel	

(exposure	 time	 =	 100	ms)	 and	 the	 GFP	 fluorescent	 channel	 (exposure	 time	 =	 350	ms).	

Brightfield	 images	 were	 taken	 with	 the	 Zeiss	 AxioImager	 fluorescence	 microscope	 with	

AxioVision	(Zeiss,	Oberkochen,	Germany).	All	post-analysis	and	image	processing	were	done	

with	Fiji	(ImageJ).	
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IV.D.4.c. Flow	Cytometry	

	 All	 flow	 cytometry	 measurements	 were	 processed	 by	 a	 Fortessa	 cytometer	

(BD	Biosciences,	NJ,	USA)	and	data	analyses	performed	using	BD	FACS	Diva	Software	6.1	

(BD	Biosciences,	NJ,	USA).	The	presence	of	GFP	was	detected	through	flow	cytometry,	where	

the	GFP	expression	was	assessed	by	washing	in	PBS	with	2.5%	FBS	and	fixation	using	BD	

stabilizing	fixative	(BD	Biosciences,	NJ,	USA)	as	described	previously.76	All	experiments	with	

determinations	of	geometric	MFI	were	performed	using	the	same	protocol,	 fluorochrome	

voltages,	and	cytometer.	

IV.D.4.d. Digital	Droplet	Polymerase	Chain	Reaction	

	 Extraction	of	RNA	and	reverse	transcription	was	first	performed	before	ddPCR	after	

collecting	cells.	First,	~5	x	105	cells	were	pelleted	and	resuspended	in	100	µL	of	lyses	buffer	

from	 RNeasy	 Plus	 Mini	 Kit	 (Qiagen,	 Hilden,	 Germany).	 Total	 RNA	 was	 extracted	 from	

collecting	 cells	 with	 spin-columns	 (RNeasy	 Plus	 Mini	 Kit;	 Qiagen,	 Hilden,	 Germany)	 and	

follow	 the	 manufacturer’s	 protocol.	 RNA	 quality	 was	 determined	 using	 nanodrop	

spectrophotometer	(Thermo	Fisher	Scientific,	Waltham,	MA,	USA).	All	of	the	RNA	samples	

used	for	the	study	were	pure	(A260/A280	≥	1.9;	A260/A230	≥	2).	Then,	200	ng	of	RNA	was	

subjected	for	reverse	transcription	in	50	µL	of	reaction	using	M-MLV	reverse	transcriptase	

(Thermo	 Fisher	 Scientific,	 Waltham,	 MA,	 USA)	 and	 random	 hexamers	 (Thermo	 Fisher	

Scientific,	Waltham,	MA,	USA).	The	reactions	were	carried	on	at	37	°C	for	50	min	and	stopped	

by	incubation	at	70	°C	for	15	min.	

	 Digital	droplet	PCR	was	performed	with	QX200	Droplet	Digital	PCR	System	(Bio-Rad,	

Hercules,	CA,	USA),	according	to	the	manufacturer's	protocol	and	the	work	of	McDermott	

et	al.77	Briefly,	each	of	the	20	µL	reactions	contained	1×	EvaGreen	ddPCR	Supermix	(Bio-Rad,	
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Hercules,	 CA,	 USA),	 250	nM	 gene-specific	 primers	 and	 2	µL	 of	 the	 cDNA	 sample.	 The	

following	 primers	 for	 CD19RCD28MZ	were	 designed	with	Vector	NTI	 software:	 forward:	

5’-	CCTGGTGAAGGGCTTCTACC	-3’	and	reverse:	5’-	CGGAGCAGCTAAAGACGTTG	-3’	 (179	bp	

amplicon).	 Primers	 targeting	 GFP	 were	 designed	 based	 on	 work	 previously	 reported.78	

Human	beta	actin	(SKU#	10031258)	primers	as	the	internal	control	(Bio-Rad,	Hercules,	CA,	

USA).	Each	reaction	was	mixed	with	70	µL	of	Droplet	Generation	Oil	(Bio-Rad,	Hercules,	CA,	

USA),	 partitioned	 into	 14,000-17,000	 droplets	 in	 QX200	 Droplet	 Generator	 (Bio-Rad,	

Hercules,	 CA,	 USA),	 transferred	 to	 96-well	 plates	 (Bio-Rad,	 Hercules,	 CA,	 USA)	 and	 heat	

sealed	with	foil	by	PXTM	PCR	Plate	Sealer	(Bio-Rad,	Hercules,	CA,	USA).	The	PCR	reactions	

were	 performed	 in	 a	 T100TM	 Thermal	 Cycler	 (Bio-Rad,	 Hercules,	 CA,	 USA)	 with	 the	

following	 cycling	 conditions:	 1×	(95	°C	 for	 5	min),	 40×	(95	°C	 for	 30	s,	 60	°C	 for	 1	min),	

1×	(4°C	for	5	min,	90	°C	for	5	min)	with	2	°C/s	ramp	rate,	hold	at	4	°C.	Immediately	following	

end-point	amplification,	the	fluorescence	intensity	of	individual	droplets	was	measured	with	

the	 QX200	 Droplet	 Reader	 (Bio-Rad,	 Hercules,	 CA,	 USA).	 After	 data	 acquisition,	 the	 data	

analysis	was	performed	with	QuantaSoft	droplet	 reader	 software	 (Bio-Rad,	Hercules,	CA,	

USA).	Examine	the	manually	thresholding	applied	to	the	1-D	amplitude	data.	The	absolute	

transcript	levels	reported	were	copies/µL	of	the	final	1x	ddPCR	reaction.	

IV.D.5. Statistical	Analysis	

	 Statistical	analysis	was	performed	using	Graph	Pad	Prism	6.01	(GraphPad	Software,	

Irvine,	CA,	USA).	All	data	were	expressed	as	mean	±	standard	deviation	(s.d.).	Analysis	of	

variance	(ANOVA)	was	used	for	multiple	comparison.	P	<	0.05	was	considered	statistically	

significant.	
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IV.E. Appendix	

IV.E.1. Fluorescence	Microscope	Images	

	 Fluorescence	microscope	images	for	24	–	72	h	time	points	for	delivery	of	CMV-EGFP	

plasmids	to	Jurkat	cells	with	the	vacuum	filtration	system	(Figure	IV.6).	

IV.E.2. Flow	Cytometry	

	 The	 maximum	 transfection	 of	 the	 Jurkat	 cells	 with	 the	 MNDU3-EGFP	 plasmid	 is	

~40%.	A	representative	flow	cytometry	plot	is	shown	in	Figure	IV.7C	for	MNDU3-EGFP	with	

corresponding	 histogram	 plots	 for	 each	 time	 point	 (Figure	 IV.7E).	 Jurkat	 wild-type	

(Figure	IV.7A)	 serves	 as	 a	 negative	 control,	 showing	 no	 significant	 fluorescence,	 and	 the	

Jurkat	EGFP-EGFR	(Figure	IV.7B)	cell	line,	the	positive	control	showing	GFP	expression,	is	

shown	as	well	as	an	overlay	of	their	histograms	in	comparison	to	the	72-h	time	point	of	the	

MNDU3-EGFP	transfected	cells	(Figure	IV.7D).	
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 Fluorescence	microscope	images	of	green	fluorescent	protein	(GFP)	(left)	and	
DAPI	(a	nuclear	counterstain)	(middle)	channels	as	well	as	their	merged	channels	(right).	
Images	of	CMV	(cytomegalovirus)	-EGFP	transfected	Jurkat	cells	at	(A)	24	h,	(B)	48	h,	and	
(C)	72	 h	 after	 vacuum	 filtration	 using	 commercial	 porous	 culture	 insert	membrane	with	
8	µm	 pores.	 Jurkat	 cells	 were	 incubated	 with	 0.1	 mg/mL	 of	 the	 CMV-EGFP	 plasmid.	
Scale	bars	=	20	µm.	

	

	 	

24 h 

48 h 

72 h 

GFP DAPI GFP 
DAPI 

GFP DAPI GFP 
DAPI 

GFP DAPI GFP 
DAPI 



 

	 160	

	

 Maximum	 green	 fluorescent	 protein	 (GFP)	 expression	 from	 Jurkat	 cells	
24	–	72	h	after	transfection	via	the	vacuum	filtration	gene	delivery	system	using	commercial	
poly(ethylene	 terephthalate)	 cell	 culture	 filters	 inserts	 (8	 µm	pore	 size).	 Flow	 cytometry	
plots	showing	GFP	expression	of	(A)	Jurkat	wild-type	(negative	control),	(B)	Jurkat	enhanced	
GFP	 (EGFP)	 -epidermal	 growth	 factor	 receptor	 (EGFR)	 cell	 line	 (positive	 control),	 and	
(C)	Jurkat	cells	that	were	immediately	exposed	to	a	MNDU3-EGFP	plasmid	at	24-	(left),	48-	
(middle),	 and	 72-h	 (right)	 time	 points.	 (D)	Histogram	overlay	 of	 Jurkat	wild-type,	 Jurkat	
EGFP-EGFR,	and	transfected	Jurkat	cells	at	72	h.	(E)	Histogram	overlay	of	transfected	Jurkat	
cells	at	24	h,	48	h,	and	72	h.	
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V.A. Summary 

 In the preceding chapters, I detailed how our group can leverage surface-interface 

interactions to direct and to control assemblies for a variety of applications, from controlling 

liquid crystal alignment on gold surfaces (Chapter II)1 to coating pores of devices with 

bioinspired chemistries to minimize biofouling (Chapter III). Moreover, in Chapters III 

and IV, used economical materials to develop a cost-effective delivery method that can be 

used for bimolecular cargo to model T lymphocyte cells in a safe and efficient manner for 

emerging gene-therapy and cancer immunotherapy methods. 

V.A.1. Surface Dipole Control of Liquid Crystals 

 Using carboranethiol and -dithiol monolayers on gold surfaces, we were able to 

demonstrate that surface dipoles have a profound effect on how adsorbates, namely liquid 

crystals, interact and align on the surface. These self-assembled monolayer surfaces offer 

several advantages over traditional alkanethiol SAMs in that they assemble with the same 

tilt, geometry, and lattice on Au{111} surfaces. We observed that the 5CB LCs, possessing a 

positive dielectric anisotropy (∆ε), aligned parallel to the oblique gold deposition direction 

(Au�����⃑ ) by M1, O1, and 1O2 SAMs, which have dipole moments orientated towards the surface 

(Figure I.4).1 However, SAMs composed of M9, O9, and 9O12 isomers, which have dipole 

moments orientated away from the surface, aligned 5CB perpendicular to the Au�����⃑ .1 The MBBA 

LCs, which have a negative ∆ε, aligned similarly to the 5CB LCs, suggesting that LC alignment 

on these surfaces is not merely a result of dipolar field coupling, but is a result of a more 

complex mechanism involving intermolecular dispersion forces.1 To quantify SAM-LC 

interaction strengths, the surface anchoring energies of 5CB on SAMs composed of isomers 

with dipoles oriented away from (O9 and 9O12) and toward (M1 and O1) the substrate were 
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measured to be ~7 µJ∙m-2 and ~14 µJ∙m-2, respectively,1 which exceed values reported for 

other SAM surfaces (<6 µJ∙m-2).2 These data suggest a dependence on the polarity of the 

carboranethiol dipole component normal to the surface provide insight into how 

intermolecular interactions at surfaces and their influence on the physical properties of 

surfaces can be tuned to engineer assemblies.1,3–7 These results were described in detail in 

Chapter II and published in the Journal of the American Chemical Society.1 

V.A.1.a. Future Directions of Nanoscale Control of Assemblies on Surfaces 

 The capabilities of these carboranethiol SAMs as electronic surface coatings has only 

begun to be explored.1,3,4,8,9 Another area of interest for these carboranethiol and -dithiol 

isomers is in the growth of ferroelectric crystals, where tuning the surface dipole is 

advantageous. Ferroelectric materials are applied routinely in data storage and sensing 

technologies, but further research is required to understand how to control crystallization 

of these materials.10–12 Our group has previously investigated how ferroelectric materials 

can be probed and switched at the nanoscale and their strong dependence on polarity and 

surface charge.13–15 To test how these surface dipoles influence and can be used to control 

other molecular assemblies on surfaces, the crystal growth, polarization, and switching 

properties of ferroelectric polymers can be studied using carboranethiol and –dithiol SAMs 

on Au surfaces to extend this work. 

V.A.2. Rapid Cell Deformation Devices and Intracellular Cargo Delivery 

 Our group has taken first steps to applying our surface science capabilities to a new 

field, where we are developing innovative approaches and devices to deliver gene and 

cellular therapies to cells. With my project, we have been able to demonstrate the use of 

commercial materials to rapidly deform cells and the application of promising slippery 



 

171 
 

liquid-infused porous surfaces (SLIPS) -modified materials that enable increased throughput 

and a cost-effective method for the generation of gene and cellular immunotherapies. In 

proof-of-concept experiments, expression plasmids encoding for green fluorescent protein 

(Chapter III and Chapter IV) and/or CD19 chimeric antigen receptor (Chapter IV) constructs 

were delivered to Jurkat cells, which serve as a model T lymphocyte line. Cells were 

processed by applying either positive or negative differential pressure to direct cells to pass 

through membrane materials that have been SLIPS-modified or untreated. The SLIPS-

modified membranes are able to recover 25–50% more cells compared to unmodified filters. 

Additionally, with the vacuum filtration systems, we can achieve up to 40% transfection 

efficiency without compromising the viability or proliferative capacity of the Jurkat cells. Our 

investigations into applying these device made from commercial materials for delivering 

biomolecular cargo to cells was described in detail in Chapters III and IV. 

V.A.2.a. Future Directions of Rapid Cell Deformation for Gene Editing ex Vivo 

 An interesting feature of the vacuum filtration system is that it can potentially be used 

to select for younger and smaller cells during processing, potentially biasing the population 

to express plasmid cargo longer and more efficiently. Current HSCT-based therapeutic 

strategies are more effective when more homogenous cell products are utilized.16 Ultimately, 

an unintended advantage enabled by these materials is the capability to select for 

populations of cells that are more potent and more readily transfected, which perhaps could 

lead to more effective transplanted products.16 Our next steps will focus on validating these 

methods in primary cell lines (hematopoietic stem cells and T cells) and to evaluate the cell 

populations we recover from these devices. 



 

172 
 

 Our overarching goal is to develop and to validate microfluidic devices with 

constrictions that are coated with SLIPS to enable scalable, sustainable, and high-throughput 

transfection of cell products, targeting the modification of a billion cells within an hour 

(Figure I.8). These nanosystems represent our group’s first steps toward the development 

of tools and methods that target the robust generation of homogenous therapeutic cell 

products. We ultimately wish to apply these methods for mimicking the hematopoietic stem 

cell niche where current culturing technologies fail to achieve long term maintenance and 

expansion of HSCs in vitro.17 The capability to control the physical and chemical properties 

at the surfaces of engineered materials would pave the way to establishing these artificial 

stem cell niches.18 

 

Figure V.1. Schematic illustrating the delivery of biomolecules for gene-editing 
applications to target cells temporarily permeabilized after passing through slippery liquid-
infused porous surfaces (SLIPS)-coated constrictions in channels of a microfluidic device.   
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