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Temperature mediates continental-scale diversity
of microbes in forest soils
Jizhong Zhou1,2,3, Ye Deng2,4, Lina Shen2, Chongqing Wen2, Qingyun Yan2, Daliang Ning2, Yujia Qin2, Kai Xue2,

Liyou Wu2, Zhili He2, James W. Voordeckers2, Joy D. Van Nostrand2, Vanessa Buzzard5, Sean T. Michaletz5,

Brian J. Enquist5,6, Michael D. Weiser7, Michael Kaspari7,8, Robert Waide9, Yunfeng Yang1 & James H. Brown9

Climate warming is increasingly leading to marked changes in plant and animal biodiversity,

but it remains unclear how temperatures affect microbial biodiversity, particularly in terres-

trial soils. Here we show that, in accordance with metabolic theory of ecology,

taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better

predicted by variation in environmental temperature than pH. However, the rates of diversity

turnover across the global temperature gradients are substantially lower than those recorded

for trees and animals, suggesting that the diversity of plant, animal and soil microbial com-

munities show differential responses to climate change. To the best of our knowledge, this is

the first study demonstrating that the diversity of different microbial groups has significantly

lower rates of turnover across temperature gradients than other major taxa, which has

important implications for assessing the effects of human-caused changes in climate, land

use and other factors.
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C
limate change is the largest anthropogenic disturbance on
natural systems1,2, and predicting the response of the
biosphere to shifting climate is one of the most formidable

scientific and political challenges in the 21st century3,4. Since
1850, the Earth’s surface temperature has increased by 0.76 �C
and is expected to increase by another 1.1– 6.4 �C by the end of
this century2. As a result of climate warming, precipitation
patterns at regional and global scales are and will likely continue
to be altered. This magnitude of climatic change and its induced
extreme climatic events will profoundly affect ecosystem
functions and most likely reduce ecosystem services. Climate
change has profound and diverse effects on all levels of biological
organization from individual organisms to whole-biome levels5.
However, the lack of a general theoretical framework to
mechanistically and quantitatively link how variation in abiotic
environment will influence variation in ecological processes
across all taxa limits our ability to predict future impacts within
and across diverse taxa6.

Since temperature directly accelerates metabolic rates and
biochemical processes7,8, a promising framework for linking
abiotic environmental changes to communities is to assess how
temperature affects organismal metabolism and then influences
their ecology and evolution. The metabolic theory of ecology
(MTE)7,8 starts from first principles of biophysics to scale up the
kinetic effects of temperature on metabolism to rates of evolution,
community structure, gradients of diversity and ecosystem
processes9. In general, MTE predicts that the metabolism of
individuals, the population growth rate and the number of species
increase exponentially with the environmental temperature
(R / e� E=kT )7,10, where R is the rate of some process such as
metabolism, population growth or speciation, e is the base of the
natural logarithm, E is the ‘activation energy’ that characterizes
the temperature dependence of a given biological process, k is
Boltzmann’s constant and T is temperature in kelvin. Rates of
ecological and evolutionary processes, including rates of popul-
ation growth, species interactions, mutation and speciation, are all
predicted to have approximately the same exponential
temperature dependence as metabolic rate, with an ‘activation
energy’ of B0.65 eV, equivalent to a Q10 of B2.5 (ref. 10).

Because the changes in ecosystem process rates are ultimately
dependent on the changes in metabolic demands of individual
organisms, it is expected that temperature should have a
profound influence on ecological community structure, and
hence MTE should provide a powerful framework for predicting
the effects of climate warming on biodiversity and ecosystem
processes6,7,11. However, despite a decade of intensive research,
empirical11,12 and theoretical evaluations13 of MTE have
produced variable, but seemingly contradictory results9,14.
Further, most assessments of MTE predictions have focused on
plants and animals7. As a result, a recent paper has questioned its
theoretical foundations and empirical validity9. Clearly, to better
enable predictive power of the consequences of forthcoming
climate change across all domains of life, there is a strong need
for a more complete understanding of the relationships between
temperature, diversity and ecological processes in both macrobes
and microbes9.

Elucidating the drivers of how biological diversity varies over
space, time and environmental gradients remain as a central focus
in biodiversity science. It is well documented that the microbial
diversity under natural settings, particularly in soils, is extremely
high, but the mechanisms controlling such high diversity are
poorly understood15,16. Various studies of soil microbes suggest
that pH, rather than temperature, plays an important role in
shaping microbial community structure17–19. A recent study
demonstrated that the temperature drives continental-scale
distribution of two key cyanobacteria in topsoil20, implying that

the variation in temperature could underlie community-level
microbial diversity and distribution. However, the importance of
temperature in shaping microbial community structure in general
and the applicability of MTE to soil microbial communities
remain unknown. Therefore, in comparison with the known
temperature gradients in diversity across macrobes, we ask: (i)
does temperature play a major role in shaping continental-scale
soil microbial community diversity? and (ii) if so, can MTE be
used to predict the diversity patterns of the microbial
communities in the forest soils? To address these questions, we
used next-generation sequencing technology to analyse 126 soil
samples from forest sites of different latitudes in North America,
with a wide range of temperature gradient from alpine coniferous
forest in Colorado to evergreen tropical forest in Panama. Our
results indicate that the temperature is a primary driver in
shaping soil microbial community in the forest soils and
microbial groups has significantly lower rates of turnover across
the temperature gradients than plants.

Results
Site characteristics. To determine whether temperature is
important in controlling microbial community diversity as
predicted by MTE, we undertook a continental-scale survey of the
microbe diversity in soil samples from six forest sites in
North America, with both small (metres)- and large (thousand
kilometres)-scale spatial variations (Fig. 1). Since soil environ-
ment is highly heterogeneous, the detection of the effects of
environmental factors on microbial diversity could be masked.
We organized our sampling design to quantify the relative role of
small- and large-spatial scales. The distribution of microbial taxa
can be locally adapted to edaphic characteristics at the scale of
only a few metres21. Taken that high dispersal rates of microbes
may not trump local processes via mass effects22 and that the
local niche-based processes may play an important role in
determining the patterns of microbial species richness23, we
sampled microbial communities at multiple spatial scales. Thus,
different from several previous studies17–19, a total of 21 soil
samples from each forest site were collected at metre-scale using a
nested design (Fig. 1). Each sample consisted of nine soil cores
evenly collected from 1-m2 area (Fig. 1). As observed in previous
ecosystem diversity–stability studies24, such multiple replicate
sampling within a site enables us to better quantify the
temperature effects on microbial biodiversity across sites and
the role of local environmental heterogeneity. Further, nested
sampling within and between sites enables us to assess the relative
role of small-scale and large-scale processes in shaping the
variation in microbial diversity. Consequently, this trade-off in
sampling results in fewer among-site comparisons, but many
more samples within each site.

These six forested sites spanned the global range of mean
annual temperatures experienced by forested ecosystems (from
2.5 to 25.7 �C, and in latitude from 9–44� N (Supplementary
Table 1)). Other site characteristics such as annual mean
precipitation, soil types, soil moisture, average soil pH, soil total
carbon (C) and nitrogen (N) also spanned a large fraction of the
global range (Supplementary Table 1). In addition, substantial
differences were observed in plant types, from boreal to tropical
forest, and plant diversity (Supplementary Table 1). Pairwise
comparisons showed that there were strong correlations among
latitudes, annual mean temperature and annual precipitation
(Supplementary Table 2). Both plant richness and diversity
were positively correlated with annual mean temperature and
annual precipitation (Supplementary Table 2). However, such
covariations present difficulties in discerning the effects of single
environmental factors, such as temperature and pH on biological
communities (see below).
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Sequencing targets and statistics. To determine the biodiversity
of microbial communities, DNA was extracted and purified from
each soil sample, and three genes targeting different taxonomic
groups and with different taxonomic resolutions were amplified
and sequenced using Illumina MiSeq: (i) V4 region of the 16S
ribosomal RNA (rRNA) genes for bacteria and archaea; (ii)
internal transcribed spacer (ITS) between 5.8S and 28S rRNA
genes for fungi; and (iii) bacterial nitrogenase subunit H (nifH)
for nitrogen-fixing bacteria. Diversity of prokaryotic bacteria and
archaea is still being assessed, but increasingly being shown to be
enormous25. Among eukaryotic organisms, fungi rank second in
diversity after arthropods (insects). N fixation is critical in global
biogeochemical cycling in providing a major source of nutrients.
Since, N-fixing bacteria are only small components of soil
microbial communities (comprising perhaps o0.5% of the
genomes), surveying nifH provides higher resolution than the
16S rRNA genes used to assess the overall bacterial diversity.

An average of 64,000±18,000, 39,000±11,000 and
30,000±9,000 sequence reads per sample were obtained for
16S, ITS and nifH genes, respectively (Supplementary Table 3).
This level of sequencing appeared sufficient for estimating the
diversity of soil microbial communities sampled here, as indicated
by rarefaction curves that approached saturation at different
cutoffs for the three target genes (Supplementary Fig. 1).
Nonetheless, our analysis also indicated that we could have
missed the many rare genotypes that occur at all of our study sites
(Supplementary Fig. 1). The numbers of OTUs (operational
taxonomic units) estimated with these sequences were quite high
(Supplementary Table 4). For instance, with resampling, there
were B190,000 and 17,000 OTUs based on 16S and ITS
sequences, respectively, at 97% identity cutoff, and B87,000
OTUs based on nifH sequences at 95% identity cutoff.

Our numbers of OTUs varied considerably (1.3–2.4 times)
among these 126 samples based on different sequence similarity
thresholds (Supplementary Table 4). These results suggested that
the diversity of bacteria, archaea, fungi and N-fixing bacteria was
very high in these forest soils.

Temperature-dependent latitudinal diversity patterns.
Although the latitudinal diversity pattern, whereby species
diversity tends to decrease as latitude increases, is well
documented and intensively studied in plant and animal
ecology26, it is less clear whether microbes exhibit similar
latitudinal diversity gradients17,27. To determine the latitudinal
diversity patterns, the relationships between taxonomic diversity
and latitudes were examined. Both taxon richness and Shannon
diversity based on these three target genes were strongly
correlated with latitude (Supplementary Table 5), indicating
that the strong latitudinal diversity patterns exist for bacteria,
fungi and N-fixing bacteria.

Further statistical analysis revealed that the microbes in these
forest soils exhibited strong correlations with environmental
temperature (Fig. 2; r2¼ 0.40–0.63). The observed continental-
scale diversity patterns across the temperature gradient could also
reflect the influence of other environmental variables. Of all soil
and site variables examined, annual mean temperature, pH,
annual precipitation, and tree species richness were all correlated
with taxonomic diversity (taxon richness, Shannon diversity and
inverse Simpson diversity) and phylogenetic diversity (Faith D
and NRI, net relatedness index; Fig. 1; Supplementary Fig. 2;
Supplementary Table 6; Supplementary Table 7), indicating that
these factors could play important roles in shaping microbial
community diversity and structure. In most cases, variation in
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Figure 1 | Sampling strategy with nested design. Samples were taken from six forest sites from North America. At each site, 21 nested samples

were collected at distance of 1, 10, 50, 100 and 250 m. At each sample point (1� 1 m), nine soil cores were collected and composited for microbial

and soil analysis.
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mean annual temperature explained a greater proportion
of variation in microbial diversity, regardless of the
regression techniques applied (Fig. 2; Supplementary Table 6;
Supplementary Table 7). It should be noted that the effects of
temperature on microbial communities could be also exerted
indirectly through plants and precipitation because temperature
has strong correlations with plants and precipitation
(Supplementary Table 2). However, it is not possible to
disentangle the direct and indirect effects of temperature on
microbial communities because these factors are highly correlated
(Supplementary Table 2). One possible way to parse out the
indirect effects of plant diversity from direct effects of

temperature on microbial diversity is to examine ecosystems
along a temperature gradient, in which plant diversity is identical
or similar, although it is difficult to identify such ecosystems
under natural settings. In addition, assessing covariation between
temperature, precipitation, plant diversity and additional
variables, including pH, precipitation and their interactions
indicates that temperature still plays a primary role in predicting
variation in microbial diversity (Supplementary Table 8). The
addition of multiple covariates, in addition to temperature only
slightly improved the fraction of variation in taxon richness
explained, with higher r2 and lower Akaike information criterion
(AIC) (Supplementary Table 8). Together, these results suggest
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were summarized in Supplementary Table 6.
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that mean annual temperature plays a major role in shaping
variation in the composition and structure of these forest
microbial communities.

Previous studies of soil microbes suggest that pH, rather than
temperature, plays an important role in shaping community
structure17–19. To further assess the associations with
temperature and pH, we performed partial Mantel tests on the
soil variables selected by BIO-ENV28: temperature, pH, total C
and total N. Our results showed that all three genes had
considerably higher correlations with temperature than pH
(Table 1). Particularly, for 16S gene, correlations with
temperature (rM¼ 0.674) were more than three times as strong
as with pH (rM¼ 0.179; Table 1), indicating that temperature
played a more important role than pH in shaping bacterial
community structure. Collectively, all of our results point to
temperature, as the strongest correlate of taxon richness and
diversity of the forest soil microbial communities (bacteria, fungi,
and N fixers) as measured by these three genes.

Variation in temperature could affect the microbial biodiversity
through a variety of mechanisms. There are several distinct direct
and indirect mechanisms by which increasing temperature can
generate and maintain higher species diversity. First, the most
important direct mechanism is that higher temperatures lead to
higher rates of metabolism, growth rates and population doubling
times7. These biological rates set the pace of life and underlie
near all biological activities at all levels of biological
organization7,12,27,29. Second, in terrestrial environments, higher
temperatures are generally associated with higher rates of
ecosystem productivity and hence more species can be
supported7,12. Third, higher temperatures lead to more plant
species. Higher plant diversity could provide more substrates,
nutrients and/or physical attachments to microorganisms, and
thus higher microbial diversity30. Our data support such a
linkage, as we show strong significant correlations were observed
between microbial taxa richness and plant species richness
(r¼ 0.55–0.81). Fourth, temperature also affects species
interactions. Higher temperatures could lead to higher rates of
ecological interactions (for example, rates of parasitism, predation
and competition)7,31, which then differentially affects species
diversity. In addition, higher temperatures are associated with
high rates of evolutionary processes such as mutations and
speciation32,33. For instance, very strong positive correlations
have been noted between latitudinal diversity gradients and
speciation rates32, suggesting the importance of temperature
in generating species composition and structure. Finally,
temperature could interact with other environmental factors,
such as water availability, carbon and nutrient availability, and
pH to indirectly affect biodiversity. For instance, warmer
environments are often wetter, which is then associated with
higher primary production12. Higher temperatures cause faster
decompositions and hence affect the nutrient availability4,34,
which could support and maintain higher plant and microbial
diversity. Discerning these various temperature-dependent

mechanisms that can potentially shape microbial diversity is
very challenging, particularly under natural soil environmental
conditions.

Metabolic theory of ecology. To apply MTE more directly to our
data on forest soil microbial communities, we used the Chao1
estimator35 to quantify the diversity of microbes and used
Boltzmann–Arrhenius plots to assess the functional dependence
of diversity on temperature. The Chao1 estimator incorporates
the number of single gene copies in a sample to estimate the total
diversity, including rare genotypes that were not sampled.
Boltzmann–Arrhenius plots of the natural logarithm of
diversity as a linear function of inverse absolute temperature
(Fig. 3; Supplementary Fig. 3) highlight the exponential effects of
temperature: the slope of such plots with sign reversed gives
‘activation energy’ as a quantitative measure of temperature
dependence.

Three different commonly used statistical models29, that is, a
linear model11, a quadratic polynomial model36 and a piecewise
relationship model37, were used to estimate the relationships
between temperature and taxon richness. While there were no
differences between linear and quadratic models for both 16S and
ITS genes in terms of AIC, the linear model for nifH gene fit the
data better than the quadratic and piecewise relationship model
(Supplementary Table 9). Thus, the linear model was selected
in this study. Our statistical analyses identified strong Boltzmann
exponential relationships between the log-transformed Chao1-
estimated taxon richness from individual samples and the
reciprocal temperature (1/kT) for bacteria (Supplementary
Fig. 3A), fungi (Supplementary Fig. 3B); and N fixers
(Supplementary Fig. 3C). Temperature explained 42.0–65.1% (r2

values) of the variations in microbial diversity (Supplementary
Fig. 3), which are consistent with those observed in plant
communities12.

Next, to directly compare the estimated activation energies for
microbes and plants, the sequences from all 21 samples in a site
were pooled together and used for estimating the theoretical
Chao1. For the plant diversity data, because of the differences of
sampling strategies, richness data were only available for five
0.1-ha plots from each of the six sites. For microbes, in support of
predictions from MTE the Boltzmann (linear negative) relation-
ships between log-transformed Chao1-estimated taxon richness
from individual sites and the reciprocal temperature (1/kT) for
bacteria (Fig. 3a); fungi (Fig. 3b); and N fixers (Fig. 3c) explaining
between 72.7–91.8% of the variation in taxon richness (Fig. 3).
For plants, we also found a strong linear relationship (Fig. 3d;
r2¼ 0.919).

In this study, the estimated activation energies from the
Boltzmann–Arrhenius plots varied considerably among the
different genes. For instance, at the 97% taxa identity cutoff,
the fitted slopes revealed that the Ea values varied between
0.184–0.249 for 16S rRNA genes, 0.169–0.230 for ITS and
0.427–0.467 for nifH gene (Table 2). The higher Ea values for nifH

Table 1 | Partial Mantel test to evaluate the relative importance of soil and site variables in determining microbial community
structure.

Factors Control for 16S ITS nifH

rM P-value rM P-value rM P-value

Temperature Precipitation, pH, TN, TC 0.674 0.001 0.284 0.001 0.177 0.001
Precipitation Temperature, pH, TN, TC 0.565 0.001 0.324 0.001 0.299 0.001
pH Temperature, Precipitation, TN, TC 0.179 0.001 0.117 0.001 0.150 0.001
TN, TC Temperature, Precipitation, pH 0.003 0.423 0.298 0.001 0.273 0.001

Since, the relative roles of pH and temperature on controlling microbial communities are controversial, their values were particularly bolded in the table. TN, total nitrogen; TC, total carbon.
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is most likely due to higher taxonomic resolutions of this
functional gene marker compared with the ribosomal
phylogenetic gene markers. In comparisons of the same gene,
Ea values increased also with increased taxonomic/genetic
resolution as expected (Table 2). For instance, the slopes for
N-fixing bacteria increased from 0.411 to 0.467, when similarity
cutoffs increased from 95 to 97% (Table 2). The Ea values
determined were more or less consistent with that reported in
zooplankton (Ea¼ 0.26)38, but quite lower than that in
phytoplankton (Ea¼ 1.0)29.

Across all groups of microbes and at all levels of similarity
resolution, the temperature dependence of microbial diversity was
considerably less than that previously reported for plant and
animal species diversity. The steepest temperature dependence for
microbes at our study sites was Ea¼ 0.467 for N fixers using the
nifH gene at 97% similarity (Table 2). This is half of that for tree
species diversity at our same study sites (Ea¼ 1.030; Fig. 3d). The
magnitude of variation with temperature and latitude was also
considerably less than that reported for species diversity of most
invertebrates and vertebrates10. Our results support the emerging
generalization that the diversity of microbes and macrobes
increases exponentially with temperature, but there is no
‘canonical’ temperature dependence of species diversity12,36.

Our study suggests two alternatives, but not mutually exclusive,
hypotheses for the observed lower-temperature dependence
for diversity of forest soil microbes across the wide range of
environmental temperatures. On one hand, the measured
‘activation energies’ increase with the degree of taxonomic and
phylogenetic resolution. It is certain, from the number of
singleton OTUs in all of our samples and the current cutoffs at
95 and 97% identity, that we have sampled only a fraction of the
genotypes present in the soils at our study site. Consistent with
this hypothesis, we have shown that the apparent temperature
dependence of diversity increases with increased phylogenetic
resolution and sampling coverage. Fuhrman et al.27 analysed
geographic variation in diversity of marine planktonic bacteria,
and found a pattern with temperature and latitude generally
comparable to those reported here for terrestrial soil bacteria.
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Table 2 | Summary of activation energy (Ea).

Taxonomic
groups

Taxonomic
resolution (%)

Individual
samples*

Pooled richness
per sitew

r2 Ea r2 Ea

Bacteria (16S) 97 0.420 0.184 0.727 0.249
99 0.337 0.175 0.689 0.237

Fungi (ITS) 95 0.323 0.134 0.946 0.248
97 0.419 0.169 0.918 0.230

N fixers (nifH) 95 0.613 0.411 0.716 0.288
97 0.651 0.467 0.796 0.427

*Theoretical OTUs were estimated based on individual samples (126 samples) using Chao 1
estimator. Linear regressions were performed between natural log-transformed theoretical taxon
richness and the reciprocal temperature (1/kT).
wTheoretical OTUs were estimated based on individual sites by pooling all sequence reads
together from 21 samples, and then Chao 1 estimators for individual sites were derived from all
of the pooled sequence reads.
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It remains to be seen whether, with much more complete
sampling and higher resolution of genetic differences, the
temperature dependence of microbes would approach and
perhaps even exceed that of macroorganisms, that is, much
larger plants and animals. On the other hand, the observed
shallower temperature dependence of microbial diversity
compared with tree species diversity that we have obtained
across our sites may be due in part to the fact that microbe taxa
are more widely distributed than plants and animals. Wider
dispersal abilities could lead to lower spatial turnover rates among
different sites and communities23. Nevertheless, the addition of
more different forest sites sampled across different continents will
help assess whether the results observed here are applicable to
other ecosystems.

Discussion
Since temperature is a primary driver of all biological processes, it
is expected that temperature has important effects on ecological
patterns and processes7. While the importance of temperature in
controlling plant and animal communities is well documented,
little is known in microbial communities, especially in soil
environments. By examining 126 samples across a wide range of
temperatures, our results showed that environmental temperature
appeared to have a pervasive influence on variation in soil
microbial diversity. This is the first demonstration that
temperature plays a more primary role in shaping variation in
microbial diversity in the forest soils than other proposed
environmental drivers. This result is consistent with various
previous analyses in soils, which showed temperature plays
critical roles in controlling microbial growth and activities34.
Importantly, our results show that the temperature gradient for
microbes is not as steep as observed for macrobes. Microbial taxa
richness increase across the observed global temperature range at
a rate of 2–8 times lower than those observed for trees and many
other animals, implying that temperature differentially influences
species diversity in microbes and macrobes. Thus, while MTE
provides a powerful framework for predicting broad large-scale
biodiversity, further theoretical modelling development is needed
to account for the unique characteristics of microorganisms, for
example, extremely high diversity, large community size, high
abundance, low extinction rates and long-distance dispersal.

Our findings have important implications for understanding
and predicting ecological consequences of climate change. First,
if temperature drives the increase in microbial diversity, we see
from the tropics to an alpine forest, warming ecosystems should
often become more diverse and active27, with enhanced
processes—such as decomposition, nutrient cycling and carbon
sequestration—that depend on this diversity39. Such changes in
ecosystem function could, in turn, collectively shape feedbacks of
ecosystems to climate warming. Also, the simple temperature-
dependent Arrhenius relationships between temperature and
microbial biodiversity could provide a quantitative framework for
predicting how climate warming impacts diversity and ecosystem
processes, though other factors (for example, pH, plant diversity
and nutrient availability) should be incorporated into the
MTE-based models40 to improve predictive accuracy. In a
word, MTE-based kinetic models could provide powerful tools
for projecting the effects of current and future climate warming
on biodiversity and ecosystem processes6,7,11.

Methods
Site description and sampling. The following six forests long-term ecological
research were selected for this study (Supplementary Table 1). Five belonged to the
US National Science Foundation (NSF) long-term ecological research network:
Niwot, Andrews, Harvard, Coweeta and Luquillo. A sixth, Barro Colorado Island,
is administered by the Smithsonian institution. The selected sites provide variation

in ecosystem type from boreal to tropical forest, in average annual temperature
from 2.5 to 25.7 �C, and a rough gradient of latitude from 9–44� N (Supplementary
Table 1). Moreover, Luquillo and Barro Colorado Island are two tropical forests,
the former in the Carribean Sea, the other in the island of Panama. Hourly tem-
perature and annual precipitation data were collected through the nearest weather
stations on sites, and mean temperature and average annual precipitation were
calculated thereafter.

A nested sampling design was implemented to examine the microbial diversity
at each of six forest sites. At each site, we collected and homogenized nine surface
soil cores (B10-cm depth, Oakfield Apparatus Company model HA) from 21
individual square metre plots in the summer of 2002. The 21–1-m2 plots were laid
out in a cross pattern (Fig. 1), with plots adjacent to 1, 10, 50, 100 and 200 m in
each cardinal direction from a central 1-m2 plot. Soils were kept on ice in the field,
then at � 20 �C (LUQ, CWT, AND and NWT) or � 80 �C (BCI and HFR) until
shipped overnight on dry ice to the Institute for Environmental Genomics at the
University of Oklahoma.

Plant diversity. Plant species were surveyed by the Enquist lab using a modified
‘Gentry plot’ methodology whereby five 0.1-ha Gentry plots were established
within the 25-ha plot at each site. Each Gentry plot consisted of five 100� 2 m
transects separated by a distance of 8 m, so that each Gentry plot was located
within a 42� 100 m area. All plant stems 41-cm basal diameter that were rooted
within the transects were censused and identified to species. For plants that
extended outside of the transect boundaries, inclusion criteria varied by growth
form: trees were censused if the centre of their stem base fell within the transect
bounds, lianas were censused if rooted within the transect and hemiepiphytes were
censused if any part of the aerial root of rhizome fell within the transect. Stems
were tallied as separate individuals if they were not connected above ground or
below ground within B10 cm of the soil surface.

Soil chemistry. The soil moisture was measured by putting 1.5 g soil into 65 �C
oven until constant weight was reached. The percentage of weight loss after oven
dry to the original weight was calculated as soil moisture content (%). Soil pH was
measured in soil suspension with a soil:water ratio of 1:2.5 (weight:volume)
according to the standard protocol described previously41. The soil C and N
contents were measured by a LECO TruSpec Carbon and Nitrogen Analyzer
(LECO Corporation, St Joseph, MI) in the Soil, Water and Forage Analytical
Laboratory at the Oklahoma State University (Stillwater, OK). In the same
analytical laboratory, the soil NH4

þ , NO3
� contents extracted from soils with 1 M

KCl based on the standard protocol described previously42 and measured by Lachat
Quickchem 8500 series 2 instrument (Lachat, Loveland, CO).

DNA extraction. Soil DNA was extracted using the grinding SDS-based DNA
extraction method as previously described43. The quality was assessed based on
spectrometry absorbance at wavelengths of 230, 260 and 280 nm (ratios of
absorbance at 260/280 nm B1.8 and 260/230 nm 41.7) detected by a NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technologies). DNA concentration was
measured by PicoGreen using a FLUOstar OPTIMA fluorescence plate reader
(BMG LABTECH, Jena, Germany).

Amplicon sequencing. For 16S rRNA genes, the V4 region was amplified with the
primer pair 515F (50-GTGCCAGCMGCCGCGGTAA-30) and 806R (50- GGACT
ACHVGGGTWTCTAAT-30) combined with the Illumina adaptor sequence, a pad
and a linker of two bases, and a barcode sequences on the reverse primers. PCR
amplification was performed in 25 ml reactions containing 2.5 ml 10� AccuPrime
PCR buffer (including dNTPs) (Invitrogen, Grand Island, NY), 0.4 mM of both
forward and reverse primers, 10 ng of template DNA and 0.2 ml AccuPrime
High-Fidelity Taq Polymerase. Three replicates of amplifications were made for
each sample and mixed after PCR amplification to minimize potential biases from
amplification44. Thermal cycling conditions were as follows: initial denaturation at
94 �C for 1 min, followed by 30 cycles of 94 �C for 20 s, 53 �C for 25 s and 68 �C for
45 s, with final extension at 68 �C for 10 min

For nifH gene and fungal ITS sequencing, the phasing amplicon sequencing
approach was used45. For nifH, an amplicon of 302 bp (excluding the primers)
was targeted using the primers: Pol115F, TGCGAYCCSAARGCBGACTC and
Pol457R, ATSGCCATCATYTCRCCGGA. For fungal ITS, an amplicon of 309 bp
(not including the primers) in ITS2 region was targeted using the primers: gITS7F,
GTGARTCATCGARTCTTTG and ITS4R, TCCTCCGCTTATTGATATGC46.

A two-step PCR was performed for ITS and nifH amplicon sequencing to avoid
extra PCR bias that could be introduced by the added components in the long
primers used for PCR library preparation45. Phasing primers were designed and
used in the second step of the two-step PCR. Spacers of different length (0–7 bases)
were added between the sequencing primer and the target gene amplification to
randomize base position during sequencing45. To ensure that the total length of the
amplified sequences remain constant with the primer set used, the forward and
reverse primers were used in a complementary manner so that all of the extended
primer sets have exactly seven extra bases as the spacer for sequencing phase
shift45. Both forward and reverse phasing primers include the Illumina adaptor, the
Illumina sequencing primer, a spacer, and the target gene primer and a barcode
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of 12 bases in the reverse primer between the sequencing primer and the adaptor.
In the two-step PCR, the first round PCR was carried out in a 50 ml reaction
containing 5 ml 10� PCR buffer II (including dNTPs), 0.5 U high-fidelity
AccuPrimeTaq DNA polymerase (Life Technologies), 0.4 mM of both forward and
reverse target only primers and 10 ng soil DNA. Reactions were performed in
triplicate and the sample amplification program described above was used except
that only 10 cycles were performed, and the annealing temperature was 56 �C for
ITS and 62 �C for nifH. The triplicate products from the first round PCR were
combined, purified with an Agencourt AMPure XP kit (Beckman Coulter, Beverly,
MA, USA), eluted in 50ml water and aliquoted into three new PCR tubes
(15 ml each). The second round PCR used a 25 ml reaction containing 2.5 ml
10� PCR buffer II (including dNTPs), 0.25 U high-fidelity AccuPrime Taq DNA
polymerase (Life Technologies), 0.4 mM of both forward and reverse phasing
primers and 15 ml aliquot of the first round purified PCR product. The
amplifications were cycled 20 times following the above program. Positive PCR
products were confirmed by agarose gel electrophoresis. PCR products from
triplicate reactions were combined and quantified with PicoGreen.

PCR products from samples to be sequenced in the same MiSeq run (generally
3� 96¼ 288 samples) were pooled at equal molality. The pooled mixture was
purified with a QIAquick Gel Extraction kit (Qiagen Sciences, Germantown, MD,
USA) and re-quantified with PicoGreen. Sample libraries for sequencing were
prepared according to the MiSeq Reagent Kit Preparation Guide (Illumina, San
Diego, CA, USA) as described previously45,47. First, the combined sample library
was diluted to 2 nM. Then, sample denaturation was performed by mixing 10 ml of
the diluted library and 10 ml of 0.2 N fresh NaOH, and incubated 5 min at room
temperature. A measure of 980 ml of chilled Illumina HT1 buffer was added to the
denatured DNA and mixed to make a 20 pM library. Finally, the 20 pM library was
further adjusted to the desired concentration (B12 pM) for sequencing using
chilled HT1 buffer. The library for sequencing was mixed with a certain proportion
of a Phix library of the same concentration to achieve a 10% Phix spike.

A 300-cycle v1 (for 16S ribosomal DNA, rDNA) or 500-cycle v2 (for ITS or
nifH) MiSeq reagent cartridge (Illumina) was thawed for 1 h in a water bath,
inverted 10 times to mix the thawed reagents and stored at 4 �C for a short time
until use. For 16S rDNA sequencing, customized sequencing primers for forward,
reverse and index reads were added to the corresponding wells on the reagent
cartridge before being loaded as described previously47. Sequencing was performed
for 151, 12 and 151 cycles (for 16S rDNA), or 251, 12 and 251 cycles (for ITS and
nifH) for forward, index and reverse reads, respectively.

Sequence preprocessing. The raw reads of 16S, ITS and nifH genes were
collected in Miseq sequencing machine in fastq format. Their forward and reverse
directions, and barcodes were generated into separated files. First, the spiked PhiX
reads were removed by using BLAST against PhiX genome sequence in E value
o10� 5. Second, the reads were assigned to samples according to the barcodes
in the barcode file with up to one mismatch allowed. For both 16S and ITS,
forward and reverse reads of same sequence with at least 10 bp overlap and
o5% mismatches were combined, as single sequence by using FLASH program48,
while the minimum overlap length for nifH was set to 50 bp. Any joined sequences
with an ambiguous base, or o240 bp for 16S, o200 bp for ITS and o229 bp for
nifH were discarded. Besides, the Btrim program49 with threshold of QC 420 over
5-bp window size was used to further filter the unqualified sequences. Thereafter,
U-CHIME50 was used to remove chimeras by searching against green reference
data set51 for 16S data set, against UNITE/QIIME released ITS reference
(http://qiime.wordpress.com/2012/11/27/uniteqiime-12_11-its-reference-otus-now-
available-alpha-release/) for ITS data set and against nifH database released by
Zehr Laboratory (http://pmc.ucsc.edu/Bwwwzehr/research/database/) for nifH
data set.

OTUs were classified using UCLUST with different similarity levels52 for all
16S, ITS and nifH genes. Thereafter, the reads of OTUs were re-assigned back to
their samples and a big matrix with 126 samples as columns and all OTUs as rows
was generated for each data set. Since, reliable taxonomic assignments (OTU
annotations) for both ITS and nifH were still unavailable, we only got taxonomic
annotation for 16S data set through Ribosomal Database Project (RDP) classifier53

with minimal 50% confidence score. All of the sequences were also reanalyzed
using the recent program UPARSE, which was developed by the same author54.
The main differences of these two programs are the algorithms for read quality
filtering and the chimera filtering. For the 16S data, about five times of less OTUs
were obtained with UPARSE than UCLUST. Although the OTU numbers obtained
by these two programs were markedly different, but relationships between the OTU
richness, and climate and soil variables were not changed significantly (data not
shown), no matter what programs were used. Since, UPARSE requires good
reference database by using UPARSE-REF algorithm to remove chimeras, reliable
OTU classification could not be obtained with nifH data because of lack of
comprehensive reference database. Thus, to be consistent, all of the sequence
analysis results reported were based on UCLUST approach in this study.

Richness estimation and diversity calculation. In this study, we employed two
ways to measure the richness through OTU table. First, the number of species for

each sample was estimated by using Chao1 value35, that is,

Schao1 ¼ Sobs þ
f1ðf1 � 1Þ
2ðf2 þ 1Þ ð1Þ

where Sobs is the number of OTU observed in this sample and f1 and f2 are the
numbers of singleton and doubleton OTUs. For each sample, f1 and f2 were
counted through each column of OTU matrix. For each site, the abundance of
every OTU was summed by all 21 replicates and then Sobs, f1 and f2 were measured
through the pooled OTU abundances. Chao1 values represented the estimated
species richness in samples or sites. Another easier way to compare the richness of
different communities was to use observed richness through equal amount of
sampling size. We randomly picked up the sequences from larger samples until
they were reached the same size as the smallest sample. The minimum numbers
of resampled sequences were 25,901 for 16S rRNA, 13,688 for ITS and 16,000 for
nifH genes.

The taxonomic diversity in this study was measured by Shannon–Weaver index,
that is,

H0 ¼ �
X

pi ln pi ð2Þ

where pi is the proportion of the ith OTU abundance to total abundance in certain
sample. Unlike richness and Faith’s phylogenetic diversity, the Shannon index took
species abundance into account and thus it reflected both richness and abundance
distributions.

Another taxonomic diversity index is inverse Simpson index, that is,

1=l ¼ 1P
p2

i
ð3Þ

where pi is still the proportion of the ith OTU abundance to total abundance in
certain sample.

The phylogenetic diversity was measured by two approaches. The first is to use
Faith’s approach55, which is the sum of the total phylogenetic branch length of
detected OTUs in each sample. To calculate this, phylogenetic trees were firstly
generated for 16S, ITS and nifH data sets, respectively. For 16S genes, a
representative sequence was selected from each OTU. The selected representative
sequences were aligned using PyNAST56 against with GreenGene 16S Core
Set alignment. For ITS sequences, the selected OTU representative sequences were
self-aligned by MUSCLE alignment program57. For nifH sequences, the OTU
representative sequences were aligned using Mothur software58, with default kmer
searching option (http://www.mothur.org/wiki/Align.seqs). All of the trees were
constructed using by FastTree2 program59. After all trees were constructed, the
Faith’s phylogenetic diversity was calculated using Picante package in R60.

The second approach is based on NRI. NRI was calculated based on abundance-
weighted mean pairwise phylogenetic distance (MPD)61 and the manual of
Phylocom62:

Abundance weighted MPD ¼
PP

i4j dijxixjPP
i4j xixj

ð4Þ

NRI ¼ � 1�MPDobs �MPDnull

s:d:ðMPDnullÞ
ð5Þ

where dij is phylogenetic distance between observed taxa i and j, xi and xj are
relative abundances of taxa i and j, MPDobs is observed MPD, and MPDnull and
s.d.(MPDnull) are the mean and s.d. of MPD in the null communities. We used the
null model called phylogeny shuffle to generate 1,000 null communities as
described in Webb et al.62. The bigmemory63 and snow64 packages in R were used
to harness the large data sets when calculating NRI.

Statistical methods. Pearson correlations were used to reveal the linear
dependence between two variables and the correlations between microbial diversity
and sample traits. The significance of Pearson correlation is inferred through the
Student’s t-distribution with degrees of freedom n-2. Since, some environmental
variables had only single value for each site (for example, mean temperature,
annual precipitation and so on), to keep consistent, the mean values for all other
variables with multiple measurements (for example, pH, soil moisture total carbon
and total nitrogen) were obtained and used for subsequent statistical analysis.

The goodness of fit with linear and non-linear models was assessed by the
coefficient of determination (r2) and AIC. Coefficient of determination is
defined as,

r2 ¼ 1� SSres

SStot
ð6Þ

where SSres is the sum of squares of residuals and SStot is the total sum of squares.
Since the residuals can be considered as variance of the model’s errors, the term
SSres/SStot represents the unexplained proportion and thus r2 is the proportion of
the explained variance of the linear or non-linear model. Meanwhile, the AIC was
also used to determine which model fits best the experimental data:
AIC¼ � 2� ln(L)þ 2n, where L is the probability of the data given a model and n
is the number of parameters65. The smaller AIC value, the better model fits.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12083

8 NATURE COMMUNICATIONS | 7:12083 | DOI: 10.1038/ncomms12083 | www.nature.com/naturecommunications

http://qiime.wordpress.com/2012/11/27/uniteqiime-12_11-its-reference-otus-now-available-alpha-release/
http://qiime.wordpress.com/2012/11/27/uniteqiime-12_11-its-reference-otus-now-available-alpha-release/
http://pmc.ucsc.edu/~wwwzehr/research/database/
http://www.mothur.org/wiki/Align.seqs
http://www.nature.com/naturecommunications


Mantel test was used for testing correlations between two distance matrixes, and
partial Mantel were used to determine the contributions of various factors to
explain community variations. The significance of the test was measured by
random permutations66. For environmental variables, the best combination of
environmental variables was selected by BioENV with ranked correlations28.
The selected environmental variables were normalized to zero mean and one unit
s.d. The distances among samples were calculated based on Euclidean dissimilarity.
For community data sets, Bray–Curtis distance was used67. Partial Mantel tests
were performed in R using vegan package68.

Fittings of MTE. One of the major predictions of MTE is the number of
species increases exponentially with environmental temperature7. We tested this
hypothesis by using Chao1 estimated microbial species richness and annual
average temperatures across six sites. The linear model11 is,

ln Schao1ð Þ ¼ a�Ea�
1

kT
ð7Þ

where k is Boltzmann’s constant, T is absolute temperature in kelvin (K)7 and a is
the intercept of this linear model. The Ea also called as the activation energy that
equals the inverse number of slope in the linear regression.

Two other statistical models, a quadratic polynomial model36 and a piecewise
relationship model69, were also used for estimating the relationships between
temperature and taxon richness. Model selection was based on AIC, followed by
explained variance (r2) and parameter significance (P values). If the differences of
AIC values between two models are o2, these models are considered competitive29.

Data availability. The OTU tables of 16S, ITS and nifH sequences that support the
findings of this study are available in the institute website, http://ieg.ou.edu/
4download. The raw sequencing data have been deposited in the NCBI Sequence
Read Archive under accession code PRJNA308872.
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