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Abstract

BACKGROUND.—Psychiatric diagnosis and treatment have historically taken a symptom-

based approach, with less attention on identifying underlying symptom-producing mechanisms. 

Recent efforts have illuminated the extent to which different underlying circuitry can 

produce phenotypically similar symptomatology (e.g., psychosis in bipolar disorder vs. 

schizophrenia). Computational modeling makes it possible to identify and mathematically 

differentiate behaviorally unobservable, specific reinforcement learning differences in patients 

with schizophrenia versus other disorders, likely owing to a higher reliance on prediction error–

driven learning associated with basal ganglia and underreliance on explicit value representations 

associated with orbitofrontal cortex.

METHODS.—We used a well-established probabilistic reinforcement learning task to replicate 

those findings in individuals with schizophrenia both on (n = 120) and off (n = 44) antipsychotic 

medications and included a patient comparison group of bipolar patients with psychosis (n = 60) 

and healthy control subjects (n = 72).
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RESULTS.—Using accuracy, there was a main effect of group (F3,279 = 7.87, p < .001), such 

that all patient groups were less accurate than control subjects. Using computationally derived 

parameters, both medicated and unmediated individuals with schizophrenia, but not patients with 

bipolar disorder, demonstrated a reduced mixing parameter (F3,295 = 13.91, p < .001), indicating 

less dependence on learning explicit value representations as well as greater learning decay 

between training and test (F1,289 = 12.81, p < .001). Unmedicated patients with schizophrenia also 

showed greater decision noise (F3,295 = 2.67, p = .04).

CONCLUSIONS.—Both medicated and unmedicated patients showed overreliance on prediction 

error–driven learning as well as significantly higher noise and value-related memory decay, 

compared with the healthy control subjects and the patients with bipolar disorder. Additionally, 

the computational model parameters capturing these processes can significantly improve patient/

control classification, potentially providing useful diagnosis insight.

Schizophrenia (SZ) is a complex disorder comprising different classes of symptoms 

(positive: delusions, hallucinations; negative: lack of motivation, anhedonia) and associated 

cognitive deficits in learning, memory, and decision making (1–3). The heterogeneity in 

clinical presentation is so marked that the disease has been proposed to be not a singular 

disorder but a constellation of disorders sharing phenotypic features (4). The specific 

mechanisms underlying different symptom classes are as yet unclear, and the complexity of 

the disease leaves etiology, diagnosis, and outcome measurements challenging—particularly 

given the symptom overlap with other disorders, such as major depressive disorder [also 

characterized by motivation deficits (5)] or bipolar disorder (which can express with 

psychosis). Further, it is often difficult to differentiate behavioral deficits across disorders on 

a variety of cognitive tasks (6,7).

Recently, computational psychiatry has emerged as a bridge between clinical and theory-

driven approaches, using computational methods to classify and uncover patterns not 

observable from descriptive statistics and other conventional analysis approaches (8). For 

example, machine-learning algorithms have been tested on their ability to classify patients 

with SZ from healthy control subjects (HCs) (9). Computational modeling can identify 

distinct underlying mechanisms that produce similar observable behaviors [for instance, 

distinguishing among sources of decision noise—motor noise, random exploration, or 

directed exploration—that produce similar error responses but rely on different processes 

(10)], making it a useful tool for distinguishing subtle differences in the causes of or the way 

symptoms and deficits interact in SZ compared with other disorders.

Ample empirical and computational work on schizophrenia has focused dopamine circuitry 

abnormalities as a key mechanism underlying the disorder. Dopamine has been linked to 

both positive and negative SZ symptoms (11), with irregular dopamine release hypothesized 

to ascribe undue salience to irrelevant stimuli (leading, for instance, to the formation of 

delusions). Disrupted dopamine function has also been hypothesized to prevent appropriate 

learning from reward feedback, potentially causing negative symptoms (12). Although 

findings on specific domains (gains/losses) and impairment severity have been mixed (13), 

convincing evidence shows decreased ability for rapid behavioral adjustments [for instance, 

in extradimensional/intradimensional set-shifting tasks (14)] as well as impaired explicit 
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value representations (explicit knowledge about specific benefits, such as monetary reward, 

of different choice options) to guide decision making (15,16). Performance impairments in 

gradual, trial-by-trial learning have been more subtle, with evidence for spared prediction 

error (PE)–based learning (17) but differences in the ability to use PEs in positive-feedback 

(gain) and negative-feedback (loss) domains [an asymmetry specifically linked to high 

negative symptoms (18)].

Recent work explains these deficits as dysfunctions in frontostriatal circuitry, specifically 

in the interaction of two systems involved in value representation and reinforcement 

learning (RL): the orbitofrontal cortex (OFC), involved in mapping expected values and 

updating representations in response to feedback, and the basal ganglia (BG), involved in 

PE computations (13,16). This interaction dictates the amount to which decisions rely on 

explicit value representations (e.g., context-independent representations of the estimated 

reward associated with a stimulus) versus PE-based representations (e.g., context-dependent 

estimations of which stimulus provides more reward).

Using a probabilistic reward task and a computational model that allowed differentiating 

(OFC-driven) stimulus value representation from (BG-driven) PE-based action selection, 

Gold et al. (3) showed that SZ patients with high negative symptoms relied more heavily 

than HCs and patients with low negative symptoms on learning which actions avoided 

punishment but had difficulty representing positive expected values to guide novel choices. 

However, all patients in the study were on antipsychotic medication, leaving open the 

question of how/whether treatment [known to impact trial-by-trial learning via D2 blockade 

(19)] might shift the learning strategy.

The present study aimed to replicate these findings and test whether they hold in 

unmedicated patients and to examine to what extent medication impacts not only 

performance but also the underlying learning strategies. In the previous work above, 

RL-related effects were linked largely to negative symptoms [potentially because of 

motivational/reward sensitivity effects, as well as the fact that the standard antipsychotic 

medication asymmetrically impacts positive more than negative symptoms (20)]. We 

therefore also focused analyses on the negative symptom spectrum. We expected to find 

similar effects to Gold et al. (3) on deficits in explicit value representation, which we believe 

is as SZ-specific impairment driven by abnormalities in the interaction of the OFC-based 

and BG-based computations. To test this, we recruited a sample of patients with bipolar 

disorder (BI), who share some symptoms and cognitive deficits of SZ patients [such as 

impaired behavioral adjustments following changes in outcome contingencies (21) believed 

to also rely on reward processing abnormalities] but do not show similar RL impairments 

(22).

We employed computational modeling to gain further insight into underlying RL strategies 

and impairments and uncovered individual-specific parameters coding for learning, value 

representation, reward sensitivity, and decision noise. To test whether model-based 

differences reliably inform SZ-specific deficits, we compared how model parameters 

affected classification (compared with model-free measures) between patients and HCs and 

between different patients groups.
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METHODS AND MATERIALS

Participants and Clinical Assessment

Participants for the study were recruited as part of the Cognitive Neuroscience Test 

Reliability And Clinical Applications for Schizophrenia (CNTRACS) Consortium, which 

included five research sites (see the Supplement for details). Recruiting and informed 

consent procedures for each site were approved by each site’s institutional review board.

A masters-level clinician conducted or supervised diagnostic assessments that included the 

Structured Clinical Interview for DSM-IV-TR (23), 24-item Brief Psychiatric Rating Scale 

(24–27), Young Mania Rating Scale (28), Bipolar Depression Rating Scale (29), and Clinical 

Assessment Interview for Negative Symptoms (30). Analyses examining relationships to 

negative symptom severity used the motivation and pleasure subscale of Clinical Assessment 

Interview for Negative Symptoms. Analyses examining relationships to community function 

used the participant and informant versions of the Specific Levels of Functioning Scale 

(31). The groups were recruited to be as similar as possible on sex, age, race, and 

parental socioeconomic status, measured using the Hollingshead Index (32) as updated 

using occupational prestige ratings based on the 1989 general social survey (33). See the 

Supplement for details on exclusion criteria.

Procedural Task

We used the same probabilistic learning task as Gold et al. (3). Participants learned 

associations between eight different stimuli, a–h (natural landscapes) (Figure 1), and their 

associated monetary value.

For the learning phase (160 trials), participants were always presented the same pairings (ab, 

cd, ef, gh), in randomized order. For the transfer phase (72 trials), in addition to learned 

pairings, participants were shown novel pairings (e.g., ae). This allowed us to test to what 

extent individuals learned the specific value associated with a stimulus (e.g., a: $0.045, e: 

−$0.045), as opposed to simply learning the context-dependent action strategy (e.g., never 

choose b because b was always paired with a, and a was better).

Computational Model

We fit several RL models to participants’ data, varying model structure (Q-learning vs. 

actor-critic vs. mixed strategy) (see the Supplement for details). The best-fitting model 

was a variant of the hybrid model of Gold et al. (3), which assumed a mixed strategy in 

which “pure” basal ganglia–dependent learning (in the form of an actor-critic algorithm) is 

complemented by top-down representation of expected reward value for each choice (via 

Q-learning architecture). The present model included further updates to enhance fit and 

dissociate potential sources of variance in patient populations.

Actor-Critic Architecture.—The actor-critic component of the model computes expected 

values for each state and updates them at each time step based on observed PEs.
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In this architecture, the state refers to the subset of stimuli observed on a specific trial. In 

the learning phase, there are four possible states, one for each stimulus pair. ab (state 1), cd 
(state 2), ef (state 3), and gh (state 4). Each state is assigned the same initial value.

That value is updated by the critic component each time the participant observes that state, 

based on the reward and subsequent PE, as

V s, t + 1 = V s, t + αC ∗ PEt (1)

where αC is the critic learning rate determining how much the most recent observed 

outcome contributes to update the current estimate of state value (higher αC translates to 

larger updates), and PEt is the PE computed as PEt = outcomet – Vs,t.

This model chooses based on actor weights ws,a,t, which quantify the propensity toward 

an action under a specific state. There are two available actions in this scenario—choose 

stimulus 1 or choose stimulus 2—but their weights change depending on state (analogous, 

for instance, to the tendency to turn left or right depending on whether one is at one street 

corner or another).

When a given action leads to a positive outcome, the corresponding weight is augmented in 

proportion to the positive PE it generates, scaled by an actor learning rate αA:

W s, a, t + 1 = W s, a, t + αA ∗ PEt (2)

Thus, the actor selects actions based only on their relative winner status in the choice context 

(e.g., if stimulus a loses 10 points and b loses 2 points, b is the relative winner; similarly, 

if c rewards 2 points and d rewards 4 points, d is the winner. b and d have similar status in 

this type of strategy). Winner status is updated via reward prediction errors and not directly 

based on value. As per Gold et al. (3), actor weights are normalized on each trial, so their 

relative scale matches that of Q values (otherwise, actor weights grow without bound).

Q-learning Architecture.—The Q-learning component learns the expected reward value 

of each state-action pair and chooses based on these predicted rewards. Critically, as 

highlighted in (3,34), this strategy allows for differentiation between rewards that were 

generated from truly positive outcomes (in the gain conditions) versus those that merely 

resulted from avoidance of negative outcomes (in the loss conditions).

Q values update with each trial, based on a prediction error scaled by a learning rate:

Qa, t + 1 = Qa, t + αQ × outcomet − Qa, t (3)

Q values were initialized at zero (see the Supplement for details on model with nonzero 

initial values).

Mixed Strategy.—Gold et al. (3) and Hernaus et al. (34) reported that performance was 

best described by a mixture of actor-critic and Q-learning strategies. The actor weights and 

the Q-learning values are mixed into a hybrid value, scaled by a mixing factor c:
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Hs, a, t = ws, a, t × 1 − c + Qa, t × c (4)

This mixing factor is a quantitative indicator of the extent to which a participant relies 

on explicit value representations or simpler, PE-based computations. Higher values for 

c indicate a strategy more consistent with explicit representations (such as Q-learning); 

lower values indicate a strategy closer to action-value representations (such as actor-critic); 

critically, these strategies make different predictions under certain choice contexts.

In the present work, we included two additional parameters that accounted for variance 

independently from the relative contributions of actor-critic versus Q-learning. First, we 

included an irreducible-noise/epsilon parameter, ε, that accounts for overall response 

variability thought to be due to attentional lapses. This ε, generally part of the ε-greedy 

choice function in RL, implements the degree to which choice is reward-maximizing versus 

random between all available options and can be considered a random exploration parameter 

(e.g., choosing among the options that are not highest-reward, with equal probability). It can 

also be used to capture a proportion of trials that are not well explained by the model (for 

instance, due to lapses in attention). That is how we use it in the present model, in which 

the softmax parameter captures exploration; previous work (35) has shown an ε-softmax mix 

allows for better estimates of other model parameters when there are outlier choices.

Choice probabilities were computed via ε-softmax.

Pa, t = 1 − ε Softmaxa, t + ε × ut (5)

where Softmaxa, t = eB ∗ Hs, a, t

∑aeB ∗ Hs, a, t
, where temperature B determines how much value 

impacts choice probability, noise parameter ε determines value-based versus random choice, 

and ut is a uniform distribution across all available actions.

Second, we included a decay parameter quantifying forgetting of learned values between the 

training and test phases. Decayed values were adjusted as follows:

Qfin all = Qfin all × 1 − d + Qinit all × d (6)

where Qfin represents the final learned values, Qinit the original (uniform) value priors. Thus, 

between training and testing, values could decay back toward the original prior, allowing 

more recently seen stimuli a more accurate (updated) value representation, whereas stimuli 

seen more trials ago get noisier representations. This has been found to better account for 

memory and attentional effects (36).

Fitting Procedures and Model Comparison.—All models were fit using standard 

maximum likelihood procedures (see the Supplement for details on fitting procedure 

implementation and model comparison details).
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Data Analysis

We analyzed accuracy data (defined as choosing the more rewarding stimulus) from 

training and test phases. Participants were split into groups based on clinical diagnosis 

and medication status (HCs, BI, medicated SZ [SZON], and unmedicated SZ [SZOFF]), and 

task conditions were defined as gains (all stimuli associated with positive monetary rewards) 

or losses (all stimuli associated with monetary loss). Analyses of variance (ANOVAs) were 

conducted using SPSS Statistics (version 25; IBM Corp., Armonk, NY). Post hoc tests were 

conducted using Tukey’s honestly significant difference test.

RESULTS

There were 72 HCs, 60 individuals with BI with psychosis, 120 with SZ/schizoaffective 

disorder who were taking antipsychotic medications (SZON), and 44 with SZ/

schizoaffective disorder who had not taken antipsychotic medications for at least 1 month 

(SZOFF). Demographics and clinical characteristics for each group are presented in Table 

S1.

Learning

All participants learned to perform above chance (Figure 2), with a significant main effect of 

time on accuracy (moving time window of 20 trials [8] × group [4] × condition [4] mixed 

ANOVA; Hyunh-Feldt correction to account for sphericity violation; F5.1,1995 = 117.86, p < 

.001).

Although it is possible that some participants in all groups were still learning (see the 

Supplement for details on late-stage learning), the HCs reached higher accuracies on average 

by the end of training than all patients groups (F3,279 = 7.87, p < .001); no significant 

interaction between time step and group was observed (F33,3069 = 1.16, p = .238).

Test Phase

The test phase presented participants with both old pairings from the learning phase 

and novel stimulus pairings, requiring representation of absolute (not just relative, state-

dependent) stimulus value to make a correct choice. As previously found (3), the novel 

pairing, which required value comparison between the two best stimuli in different gains/

losses conditions (i.e., frequent winner [FW] associated with high chance of reward, vs. 

frequent loss avoider [FLA] associated with high chance of loss avoidance), proved more 

difficult than within-domain pairings (FW vs. infrequent winner [IW]) or the cross-domain 

FW versus frequent loser (FL) pairing.

We compared the FW-FLA condition with both FW-FL and FW-IW. Mixed group (4) by 

condition (2) ANOVA on average test phase accuracy revealed a significant main effect 

of condition in both cases (FW-FLA vs. FW-FL, F1,293 = 119.89, p < .001; FW-FLA vs. 

FW-IW, F1,293 = 69.58, p < .001), with average accuracy higher in FW-FL and FW-IW 

conditions than in FW-FLA (MFWvFLA = 0.62, SDFWvFLA = 0.254, MFWvIW = 0.831, 

SDFWvIW = 0.264, MFWvFL = 0.845, SDFWvFL = 0.249) (Figure 3A). There was no main 

effect of condition between FW-FL and the FW-IW (F1,293 = 1.96, p = .163).
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The FW-FLA condition also showed a significant main effect of group, with controls 

showing significantly higher accuracy than the SZOFF group (MHC = 0.645, SDHC = 0.30, 

MSZOFF = 0.545, SDSZOFF = 0.29, F3,296 = 2.85, p = .037).

We also observed differences on the learned (old) pairings, with a significant main effect 

of group (condition [2] by group [4] repeated measures ANOVA, F1,287 = 6084.43, p < 

.001), with Tukey’s test revealing that HCs had significantly higher accuracy than all patient 

groups (MHC – BI = 0.0701, p = .021; MHCSZOFF = 0.0798, p = .018; MHC – SZON = 0.1241, 

p < .01). No significant main effect of condition (F1,287 = 0.451, p = .502) and no interaction 

was observed (F3,287 = 1.745, p = .158) (Figure 4).

Model Fits

Figure 5A shows parameter fits. As previously found by Gold et al. (3), the mixing 

coefficient differs significantly by group (one-way ANOVA, F3,295 = 13.91, p < .001), with 

post hoc tests showing that HCs have significantly higher coefficients (MHC = 0.689, SDHC 

= 0.22) than SZON (MSZON = 0.478, SDSZON 0.21, p < .001) and SZOFF (MSZOFF 0.55, 

SDHC = 0.23, p = .013) groups. The bipolar group did not differ significantly from either SZ 

or HC.

The irreducible-noise parameter ε also showed a significant main effect of group (Figure 

5A) (F3,295 = 2.67, p = .04), with HCs significantly less noisy than the SZOFF group (MHC 

= 0.043, SDHC = 0.16, MSZOFF = 0.159, SDSZOFF = 0.29, p = .03). The decay parameter 

coding forgetting between training and test differed significantly between the two SZ groups 

and the two others groups (F1,289 = 12.81, p < .001), with higher decay rates in the SZ 

groups.

The softmax temperature parameter showed no significant effect of group; however, the 

recovery for this was less reliable than for the others (Supplement) (Figure 3), potentially 

because of collinearity between this parameter and others involved in the value function 

scaled by the softmax temperature (37) (see the Supplement for details of how temperature 

covaries with other parameters).

Test Phase

Model simulations showed that our model accurately captured behavior (Figure 3B), 

including the main effect of condition on accuracy between FW-FLA and the easier FW-IW 

and FW-FL conditions. This difference in accuracy between conditions was correlated with 

the mixing parameter (Figure 3C) (r2 = 0.45, p = .039) but not with the random noise 

parameter (Figure 3D) (r2 = 0.1, p = .088). The difference was not correlated with any other 

parameters.

Using Computational Modeling to Improve Classification—The utility of a model 

in computational psychiatry can be quantified by the degree to which key model parameters 

are diagnostic of clinical status with greater reliability than could be achieved from 

model-free performance measures. Highly accurate model-based classification can improve 

diagnosis, and knowing which parameters aid classification can shed light on underlying 

mechanisms in a way that raw-data measures cannot (9).
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We set up classifiers to predict group identity (HC, BI, SZON/OFF) based on either 

accuracy (a model-agnostic quantity) or fit model parameters. Classifiers were trained on 

four quantiles of data and tested on the remaining quantile (leave-one-out cross-validation); 

this process was iterated until all data had been used for testing, and the classifier accuracy 

measures were averaged.

We used precision-recall curves to quantify classifier performance. Precision (positive 

predictive value) refers to a classifier’s ability to correctly predict positive cases and avoid 

false positives. Recall (sensitivity) refers to the ability to predict true positives and not 

miss negatives. Precision-recall evaluates predictive success similarly to receiver operating 

characteristic curves but is more suitable for imbalanced class sets (17).

We trained model-based classifiers using all parameters as well as the most predictive 

parameters for group differences (the mix and noise described above). Model-agnostic 

classifiers used measures of accuracy across training and testing, including the most 

predictive ones for group differences (overall accuracy in training and testing, accuracy 

in the FW-FLA condition) as well as overall training/testing accuracies in early learning 

(first quarter) or late learning (fourth quarter).

Figure 6 shows classifiers predicting SZON versus HC, SZON versus BI, and SZON versus 

SZOFF. As expected, all methods (model-agnostic and model-based) performed best when 

classifying HCs from patients with SZ and were less effective classifying between patient 

groups. The model-agnostic, accuracy-based classifiers were most effective when including 

only late-stage learning, but they generally underperformed compared with the model-based 

classifiers (Figure 6B, D, F).

In the HC versus SZON case (Figure 6A, B), the best prediction was obtained using the 

hybrid mix and noise parameters to train the classifier; however, all model-based classifiers 

outperformed accuracy-based classification. Classification for BI versus SZON groups was 

not as accurate as HC versus SZON (Figure 6C, D) (MAUCHCvSZON = 0.776, SDHCvSZON = 

0.148, MAUCBIvSZON = 0.642, SDAUCBIvSZON = 0.12); however, both model-based and 

accuracy-based classifiers performed significantly better than chance, and using model 

parameters still improved classification over using only model-free measures (t17 = 4.23, 

p < .001).

The model-agnostic classifier mixing fourth-quarter learning across phases with FW-FLA 

accuracy performed close to the best model-based classifier in the HC versus SZON case 

(Figure 6B) (MMix + noise = 0.776, SDMix + noise = 0.148, MAcc4qmix = 0.728, SDAAcc4qmix = 

0.119). However, when classifying between patient groups, the best-performing model-based 

classifier was significantly better than the best-performing model-agnostic classifier (tBIvSZ 

= 3.0157, p = .012, tSZON-OFF = 3.242, p = .011).

Lastly, we examined whether parameters related to deficits in anhedonia/amotivation in 

patients. Higher decay was correlated with greater anhedonia/amotivation across all patients 

(r = 0.20, p = .003), with a similar association within the patients with SZ (r = 0.18, p = 

.027), though not within patients with BI (r = 0.10, p = .44). A lower mixing parameter was 

trend-level associated with greater anhedonia/amotivation among all patients (r = −0.13, p = 
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.06), but not within the SZ or BI groups individually (rSZ = −0.10, p = .21, rBI = −0.003, p = 

.98). See the Supplement for positive symptom analyses.

DISCUSSION

Our study replicates and extends previous work showing specific differences in RL in 

patients with SZ compared with controls and patients with BI. In line with Gold et al. (3), 

we found that a mixed strategy of BG-driven PE updating and OFC-driven explicit value 

representation best fitted choice data in the probabilistic selection task. SZON and SZOFF 

groups showed significantly lower mix parameters compared with HC and BI groups (Figure 

5A), indicating a maladaptive overreliance on PE-updating to the detriment of using value 

representations. This was confirmed by significantly lower accuracies in the test phase, when 

choosing stimuli associated with common positive outcomes (FW) over those associated 

with rare negative outcomes (FLA).

These findings provide an important replication of evidence for impairments in explicit 

value representation in SZ and significantly extend previous work to show that this holds 

true for both medicated and unmedicated patients with SZ but not for those with bipolar 

disorder. This suggests this pattern is not secondary to medication effects and provides initial 

evidence for specificity to nonaffective psychosis.

Two more parameters in our mixed model showed a significant group difference. The 

noise parameter, coding for non–exploration-directed response variability and thought to 

correspond to either internal neural variability (38) or perhaps suboptimal inference by the 

brain (39), was higher in both medicated and unmedicated patients with SZ than in controls. 

Random decision noise has been proposed to correspond to tonic levels of norepinephrine 

(40); although there is no clear link yet established, our findings are consistent with recent 

theories suggesting a link between overactive noradrenergic pathways and cortical dopamine 

dysregulation, leading to SZ-like behaviors (especially in the positive symptom domain— 

e.g., psychosis) (41–43).

Together with the correlations with anhedonia/amotivation, these mix parameter and noise 

results imply a maladaptive overreliance on BG-driven PE-based updating, with insufficient 

frontal contributions coding explicit value representation. This is consistent with accounts 

that link frontostriatal abnormalities and motivational deficits in SZ (44), suggesting altered 

involvement of ventral striatum and frontal areas (including ventromedial prefrontal cortex 

and OFC) in signaling the expected value of observed stimuli in gain and loss domains. 

We did not, however, find consistent gain/loss differences across SZ groups (potentially 

because of medication effects. Figure 4 shows a reversed trend in accuracy in gains vs. 

losses, depending on medication status), and the learning performance (including model-

based learning rates) did not offer clear evidence for impaired striatal contributions. Rather, 

gradual PE-based learning appeared relatively spared, although asymptotic learning, as has 

been reported previously (45), was more likely impaired; however, as discussed in Results 

and the Supplement, it is possible that some subjects did not reach asymptote, making it 

difficult to interpret this finding. This fits the reported mixed evidence regarding striatal 

learning in SZ and aligns our current results with the theory that striatally mediated RL 

Geana et al. Page 10

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms may be spared, while cortically mediated, more rapid, and explicit learning 

systems are impaired (46).

The other parameter found to vary between participants without SZ (including BI) and those 

with SZ was the between-phase decay on learned values. Both SZON and SZOFF groups 

showed significantly higher decay than the BI and control groups, indicating perhaps a 

deficit in working memory necessary for carrying over learned values from training to test 

phase. Previous work has found impairments in working memory contributions to learning 

in SZ (47,48), but results are mixed on the retention of information, with some studies 

finding intact retention from learning to test phase but impaired generalization to novel 

contexts (49). Our participants with SZ were less accurate than controls on both old and 

novel pairings in the test phase (Figure 4A), suggesting that the deficit does not lie solely 

in the generalization to novel contingencies that require explicit value representation but is 

likely compounded by other effects, such as memory decay (Figure 4B).

Model parameter fits suggest that this effect is likely a mix of impaired between-phase 

generalization and within-phase memory decay, as accuracy on the old pairings in the test 

phase correlated with both the decay and the mix parameter. However, our task was not 

designed to test working memory, and from the current structure, it is difficult to discern to 

what extent the difference in accuracy on old pairings is due to memory effects or deficits 

in value representation; furthermore, the decay was implemented in the winning model as 

occurring between the training and testing phase, and thus it precludes any conclusions on 

within-phase memory decay.

Although learning rate differences have been found in the literature (50,51), we saw 

no group differences here in model-based learning rates. There was also no significant 

difference in the softmax temperature quantifying sensitivity to value differences (although 

a trend existed, showing marginally lower softmax temperatures for SZ groups than for HC 

and BI), strengthening our hypothesis that learning deficits in SZ are more likely to stem 

from differences in value representation (and possibly generalization) than from different 

reward sensitivity.

The behavioral and computational results in the SZON and SZOFF groups hint at potentially 

distinct effects of medication on different aspects of learning. Although the overall 

accuracies did not differ [there is a trend toward higher accuracies in the unmedicated 

patients, consistent with previous findings on the effects of antipsychotics on gradual 

learning (21), but it is not significant], we did observe lower learning in the loss domain 

in medicated patients (Figure 4B). This was only significant in the test phase (although the 

same pattern is visible in the learning phase; in Figure 3B, the contrast is not significant). 

This effect could be due to a differential impact of medication on the underlying RL 

mechanism [for instance, antipsychotic medication has been found to increase sensitivity 

to losses but not gains, promoting maladaptively high negative learning rates and lose-shift 

strategies (52)] or on different encoding of gains and losses contingencies into long-term 

memory.
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Our present study does not allow us to differentiate the source of this finding, as 

pairwise contrasts in model parameters were not different between the two groups 

(Figure 5A). However, examining trending differences suggests a higher reliance on Q-

learning in the unmedicated group (as evidenced by higher mixing parameter and higher 

Q-learning rate) along with higher decision noise (via the noise parameter and lower 

temperature parameters). However, because of the imbalanced group sizes and other 

potential comorbidities in the unmedicated group, further work would be required to 

accurately specify the effect of different types of antipsychotic medication on Q-learning 

rate and value-based RL strategies.

Finding that model-based classification outperformed model-free (in this case, accuracy-

based) classification (Figure 6) is a promising step toward improved diagnosis and 

treatment. Often, the similarity in behavior performance measures—encountered in other 

cognitive tasks as well (6,7)— and the overlap in clinical symptoms between patients with 

BI and those with SZ (6,51) make diagnosis difficult and may play a role in the cases in 

which treatment is ineffective. The leading assessment measures (21) indicate that timeline 

and frequency of positive and negative symptoms also be taken into account (e.g., in the case 

of a patient presenting with symptoms of psychosis and mania, the initial classification may 

be schizoaffective disorder; if the psychosis symptoms disappear with time, the diagnosis 

may be reclassified as BI, while conversely, if mania symptoms disappear and psychosis 

becomes chronic, it is reclassified as SZ), leading to potential delay in accurate diagnosis.

In the present work, we classified using both model-agnostic, accuracy-based behavioral 

measures and model-based parameters and found that using parameters improved 

classification both between HCs and patients, and more importantly, between patients with 

BI and those with SZ. This result strengthens the existing evidence that computational 

methods may provide crucial insight into clinical practice (8,9,48).

The difference in performance between the best-performing accuracy-based classifier and 

the best-performing model-based classifier varied among the three group comparisons, 

with the lowest difference in the HC versus SZON comparison.This, along with the fact 

that the mixed, late-stage learning accuracy classifier performed similarly to the model-

based classifier for HCs versus SZON (Figure 6B), suggests that the advantage of model-

based classifiers is highest when behavioral or neuropsychological measures might not 

be sufficient for diagnosis, such as in the case of psychiatric disorders with overlapping 

symptoms (such as BI and SZ). This is consistent with previous findings in the literature on 

the utility of summary measures of overall intelligence and cognition in classifying patients 

from HCs (26) but the limited utility of these measures in the case of mixed patient groups 

(27).

The fact that combining three different measures of accuracy was required to come close 

to the performance of model-based classifiers is consistent with our rationale for using 

modeling—which is to access and quantify underlying cognitive processes that are difficult 

to extract from behavioral data alone. In the present case, using one single model parameter 

(the mix parameter) matched or outperformed a classifier using three carefully selected 

model-free measures. Thus, theoretically, model-agnostic classifiers could come even closer 
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to model-based ones, if we extracted and processed the data further and found other 

quantities that approximate underlying learning strategies (for instance, by further narrowing 

the trial types used to compute accuracy, or adding in further predictors such as time since 

that trial type was encountered). The difficulty lies in determining precisely which types 

of measures would be best fit for this—a difficulty resolved with computational modeling, 

which extracts quantities of interest in a straightforward, normative way

Finally, although these results stand as proof of concept for the utility of employing 

computational modeling, under the current framework, our model cannot prospectively 

predict diagnosis or dictate treatment; further work is required to build on this, toward 

more compelling applications. We hope that, particularly given the breadth of relatively 

easy-to-administer cognitive tasks available, using computational modeling to better pin 

down task strategies and their underlying mechanisms could be an accessible tool to assist 

psychiatric diagnosis and treatment.
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Figure 1. 
Reinforcement learning task [from Gold et al. (3)]. On every trial, participants were shown 

two stimuli and required to choose one so as to maximize reward (or, depending on the 

available stimuli, minimize loss). Each condition (gain or loss avoidance) had two possible 

pairs of stimuli. The figure shows one example pair from a gain trial [with a win (A) or not-

win (B) outcome] and one loss-avoidance trial [with an avoid-loss (C) or loss (D) outcome]. 

These stimuli could be associated with positive (e.g., winning $0.05) or negative (losing 

$0.05) value and had different probabilities of reward. The gain condition stimuli (a, b, c, 
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d) were always associated with positive reward, either high probability (frequent winner) or 

low probability (infrequent winner). The other four stimuli always yielded negative reward 

with high probability (frequent loser) or low probability (frequent loss avoider).
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Figure 2. 
Accuracy in the training phase. (A) Overall learning curves and (inline) average accuracy 

across the training phase. Green. healthy control (HC), red. bipolar disorder (BI), dark 

gray. unmedicated schizophrenia (SZOFF), light gray. medicated schizophrenia (SZON). (B) 
Average accuracy across learning phase trials. (C) Learning curves split by condition (gains 

[+] or losses [−]). (D) Average accuracy split by condition. Post hoc tests revealed that HCs 

had an average of 12.3% higher accuracy (p < .001) than the SZON group. None of the other 

contrasts were significant.
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Figure 3. 
Test phase performance for the participants (A, C, D) and the model simulations (B). (A) 
Average accuracy on the 72 trials of test phase, on three new stimulus pairing conditions 

(see text). (B) Model simulation results on same three new stimulus pairing conditions. (C) 
Significant positive correlation between hybrid mix parameter and performance differences 

on easy new condition (frequent winner [FW]-frequent loser [FL]) vs. hard new condition 

(FW-frequent loss avoider [FLA]). Each point represents the average value in a bin of size 

0.05. Blue line represents linear regression. (D) No correlation between noise parameter 

and performance. BI, bipolar disorder; HC, healthy control; IW, infrequent winner; Parm, 

parameter; SZOFF, unmedicated schizophrenia; SZON, medicated schizophrenia.
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Figure 4. 
Performance on learned (old) pairings in the testing phase. (A) Average accuracy on trials in 

which stimuli had been previously associated with rewards (ab, cd). (B) Average accuracy 

on trials in which stimuli had been previously associated with losses (ef, gh). (C–E) Average 

accuracy on the learned pairings correlates with decay, mix, and noise parameters. BI, 

bipolar disorder; HC, healthy control; Parm, parameter; SZOFF, unmedicated schizophrenia; 

SZON, medicated schizophrenia.
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Figure 5. 
Model parameters across groups (A–E) and model checks (F–I). (A) Hybrid mix parameter 

(determining the reliance on Q-learning strategy vs. actor-critic strategy) is highest in 

healthy control (HC) group and lowest in medicated schizophrenia (SZON) group. A value 

higher than 0.5 means higher reliance on Q-learning. Also shown are softmax temperature 

beta (B), noise parameter (D), memory decay (C), and initial Q values (E). (F–I) Model 

(blue lines) captures learning behavior in all four participant groups; shown here is training 

phase; parameters used to simulate model behavior are fit group parameters. BI, bipolar 

disorder; Parm, parameter; SZOFF, unmedicated schizophrenia.
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Figure 6. 
Classification results for model-based vs. model-agnostic (accuracy-based) classifiers. (A, 
B) Classifying healthy control subjects (HC) from medicated patients with schizophrenia 

(SZON). (C, D) Classifying patients with bipolar disorder (BI) vs. SZON. (E, F) Classifying 

unmedicated patients with schizophrenia (SZOFF) and SZON. (Left panels) Precision-recall 

curves for the best classifier in each group. (Right panels) Areas under the curve for the top 

three performing classifiers in each group. Red bars represent model-agnostic classifiers and 

black bars represent model-based classifiers. Parms, parameters.
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