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Introduction

Virtually all of today’s approaches to artificial neural network
learning generalize considerably well if sufficiently many
training examples are available. However, they often work
poorly when training data is scarce. Various psychological
studies have illustrated that humans are able to generalize ac-
curately even when training data is extremely scarce. Often,
we generalize correctly from just a single training instance.
In order to do so, we appear to massively re-use knowledge
acquired in our previous lifetime.

Lifelong learning 1s a framework that addresses the issue
of knowledge re-use and inductive transfer in learning. In
lifelong learning, it is assumed that the learner faces an entire
family of learning tasks, not just a single one. When fac-
ing a new learning task, the learner may transfer knowledge
acquired in previous learning tasks to boost generalization.
Three questions are of fundamental importance for any ap-
proach to lifelong learning: The what that is being transfered,
the how it is being transferred, and the when it is that it is
being transferred.

Transfer

To successfully transfer knowledge across multiple learning
tasks, a learner must identify aspects that its past (and future)
learning tasks have in common. Recent research has produced
a variety of approaches that are capable of transferring knowl-
edge across multiple inductive learning tasks (see the survey
and references in (Thrun, 1996)). Different approaches differ

¢ in the way they generalize when facing the first learning
task, and

e in the way their generalization is affected when previously
learned knowledge 1s transferred.

Using object recognition from color camera images as an
example, a recent study compared a variety of lifelong learn-
ing with each other, and with the corresponding conventional
learning methods (Thrun, 1996). In particular, we examined
the generalization accuracy that was obtained after presenting
only asingle view of the target object (along with a counterex-
ample). The approaches that were capable of transferring
knowledge were also provided with views of five additional
objects. The idea was that those approaches could learn some
of the invariances in object recognition, and change the way
they generalize to incorporate these invariances.

The results are remarkable. Those approaches capable of
transferring knowledge
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error
~ Back-Propagation with
pre-learned invariances 25.2%
nearest neighbor with
pre-leamed distance metric 24 8%
neighbor neighbor with
pre-learned data representation | 25.6%

consistently outperformed those that were not:

Ermor
conventional Back-Propagation | 41.3%
conventional nearest neighbor | 39.6%
Shepard’s interpolation 39.6%

Mareover, the results seem to suggest that the generalization
error merely depends on the particular learning method (e.g.,
neural network vs. nearest neighbor). Instead, the fact that
knowledge is transferred from previous object recognition
tasks has the strongest impact on the result.

Selective Transfer

Obviously, in real life notevery learning task is equally related
to every other one. In the study above, we knew that all
learning tasks were related in the same way (they all were
object recognition tasks), so that all approaches could just
blindly transfer knowledge among all of them.

In a second study involving a variety of mobile robot per-
ception tasks (involving the recognition of people, landmarks,
locations, obstacles), we investigated the robustness of life-
long learning approaches with respect to un-related tasks
(Thrun & O’Sullivan, 1996). The results were not surprising:
In cases where all tasks were well-related, transferring knowl-
edge improved the generalization accuracy significantly, es-
pecially when training data was scarce:
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When, however, many tasks were unrelated, transfer did even

hurt the overall performance:
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These findings illustrate that blindly transferring knowledge
may be problematic in practice.

The TC algorithm transfers knowledge selectively (Thrun
& O’Sullivan, 1996). It does this by arranging learning tasks
into a hierarchy, based on their “relatedness,” Relatedness is
determined using statistical tests that empirically measure the
effectiveness of transfer. The following hierarchy
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has been obtained in the mobile robot perceptual domain. The
most notable result here is that different types of learning tasks
(namely: tasks involving people, door status, location, obsta-
cles) were grouped into different branches of the hierarchy.
In other words, the computer discovered the different types of
learning tasks.

The task hierarchy enables a learner to transfer knowledge
selectively, from the most appropriate class of previous learn-
ing tasks. The results,
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which are superior to those obtained with non-selective trans-

fer, illustrate the role of proper task selection in the transfer
of knowledge.

Learning To Act

The ideas presented here are also applicable to reinforcement
learning (Sutton, 1991). Reinforcement learning addresses
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the problem of learning to act from delayed reward. The
SKILLS algorithm (Thrun & Schwartz, 1996), a version of
reinforcement learning which selectively transfers knowledge
across different learning tasks, discovers partial action poli-
cies in multiple reinforcement learning tasks based upon a
minimum description length argument. These partial poli-
cies can be re-used as building blocks in other reinforcement
learning tasks.

Initial results, obtained for a simple grid-world scenario,
are encouraging:
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These curves illustrate that reinforcement learning converges
faster, if knowledge is transferred from previous learning tasks
(in this example: four tasks, two of which are actually related).

These findings are well in tune with results obtained with
different learning methods. For example, when training a mo-
bile robot to learn to navigate to a designated target object in an
in-door office environment, we also found that reinforcement
learning converges significantly faster when knowledge (in
this case: neural network action models) acquired in previous
learning tasks is being re-used (Thrun, 1996).

Conclusion

We draw three primary conclusions from this research: First,
transfer, if applied correctly, is very likely to improve the
results of learning, given that more than just a single learning
tasks is available. Second, the lifelong learning problem—
learning from many related tasks—is easier than the problem
of learning from a single task, despite the fact that lifelong
learning algorithms tend to be more complex. Third, since we
firmly believe that transfer plays an important role in human
learning, approaches that transfer knowledge among different
learning tasks appear to be cognitively more plausible than
approaches that do not.
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