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Abstract 

UCRL-18593 

For use in calculation of collective quadrupole phenomena we construct 

a modified quadrupole force, whose radial dependence is related to that of a 

Woods-Saxon well. Matrix elements and self-consistent interaction 

strengths are compared to those of the usual quadrupole force, which is based 

on a harmonic oscillator potential. 

t . 
Work performed under the auspices of the U. S. Atomic Energy Commission . 

ttOn leave from the Niels Bohr Institute, University of .Copenhagen, 

Copenhagen, Denmark. 
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1. Introduction 

In order to study the appropriateness of the pairing-plus-quadrupole 

interaction for the calculation of collective quadrupole levels, e.g. in the 

adiabatic approximation we here try to remedy the· obvious drawbacks of 

the usual quadrupole interaction, which were pointed out by Baranger arid 

2,7) Kumar . 

In sect. 2 we use a self-consistency argument to relate the radial 

form factor of an arbitrary multipole interaction to a given average potential. 

~n this way the form of the usual quadrupole force follows ·from the harmonic 

oscillator potential, whereas the self-consistency argument leading to the 

magnitude of the interaction is meaningless and has to be replaced by an 

estimate using a realistic density. Assuming instead a Woods-Saxon type 

average potential, one obtains a really self-consistent quadrupole interaction. 

We extend the argument to include also a spin-orbit term in the average 

potential. 

In sect. 3 this modified quadrupole interaction is compared with the 

usual one, and the renormalization problems arising in numerical calculations 

.areq.iscussed. 

" 

• 
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2. Self-consistent Multipole Force and Average Potential 

Let us first consider a separable multipole interaction in general, 

vCr_1Tl'~T2) = - XPT1(rl)PT2(r2) LY~l1(el¢l) Y)\jj(e 2¢2) 

11 

where (r8¢) are position coordinates and T is an isospin label giving the 

3-component (T = -1 for protons). Assuming the nuclear average potential in 

which a proton or a neutron will be moving to arise entirely ,from the two-body 

interaction, it has to satisfy 

where P±l is the neutron (proton) part of the density function 

p (r) 
. T-

Note that although we do not assume identity between the proton and neutron 

average fields, we have by (2.1) in fact assumed that the two-body inter-

action is isospin independent (which is the conventional choice in the type 

of application we are thinking about)1-3). 

We now impose a deformation of multipole order A on the system, 

assuming the surface to be of the form 

r = r' (1 + L 
]l 

(2.4) 
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with r' equal t.o the spherical radius R • 
o 

Provided now that the interaction 

(2.1) is of sufficiently short range, the surface will adjust itself completely 

to the shape of the average field, enabling us to relate the equipotential 

surfaces of the deformed average potential V 
1 

to the spherical average 

potential v
sph 

which was present before the interaction was switched on 
1 

(assuming A * 0), 

where the relation between (re~) and r' must be given by (2.4). If the 

deformation implied by applying the residual interaction is small, we may 

retain only the leading order term in a Taylor expansion of 

around the actual radius r at a given direction (8¢): 

avspli(r) 
= VSph(r) _ r _1"--:_··.,.... 

1 ar 
II 

Comparing (2.6) to (2.1) and (2.2) we get for A * 0 

aVsph(r) 
p) r) = r -1~a~r-

P (r') y (e'A-') p (r') dr' = 
. l' . All 't' 1'-

(2.8) 

which is unique up to the choice of a scale factor. Eq. (2.7) tells that 

P (r) does notdepehd on A. 
1 
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When the deformation parameters aA~ correspond to equilibrium, there is 

proportionality.between the average field V and the density distribution 
T 

implying in analogy to (2.6). 

psph(r) _ r 
dpsph(r) 

L * p (r)' T 
aA)J Y A 1./ e¢ ) = T- T dr 

)J 

Inserting (2.10) into (2.8) we get 

-[f~ 4 
dVsph(r) dpsph(r) 

dr J' T T 
X = r 

dr dr 

which is called the self-consistent value of the'coupling strength 

proportionality factors c can be found by integrating (2.9), 
T 

4. f VSPh(r) 2 
dr c - - r n N n 

- 4. f Vsph(r) 2 
dr c = r p Z P 

(2.10) 

(2.11) 

4 
X ) • The 

(2.12) 
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2.1. THE USUAL QUADRUPOLE FORCE (UQF) 

The standard choice for the spherical average potential
1

) has been 

the harmonic oscillator potential 

2 
(~) 

which leads to a quadrupole force (2.1) with A = 2 and the radial form factor 

(2.7) given by 

(2.14) 

As it is, however, nonsense to assume the proportionality (2.9) between (2.14) 

and the density, one usually rewrites (2.11) as a sum over all the particles 

in the system 

-1 1 
X = 4n 

and assume 

which implies 

-1 3 
X = 4n 

<[ 
k 

hw r 2 
o 0 A5/3 

b
2 

where RO = r Al/3 is the nuclear radius. 
0 

(2.15) 

(2.16) 

(2.17) 
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2.2. THE MODIFIED QUADRUPOLE FORCE (MQF) 

The modification of the quadrupole force which we are suggesting 

assumes the average potential to be of Woods-Saxon type5), including a 

Coulomb part and a spin-orbit part. The isospin dependence is chosen in 

accordance with the symmetry energy cohtribution to the nuclear binding 

energy 

where 

and 

1 .. 1 2 . = -2 (1 - T)Hc(r) + WT{f(r) - - v A (R x s) 

( .{.r-Ro} )-1 
f ( r) = 1 + exp -­

a 

HC(r) 
2 [ ! OCr ;. R ) + ....!. ( = zZe r c R c 

t . T 
W - Vo + VI T A 

2 so -

~- ;(R:Y)O(r<Rc) ] 2 
(2.20) 

(2.2l) 

(2.22) 

Here t is the isospin vector of the nucleon and T that of the remaining 

A nucleons which give rise to the average potential. The momentum and spin 

vectors of the nucleon are denoted R and ~, and the characteristic radii 

cif the nuclear mass and charge distributions are denoted R 
o 

and R . 
c 
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The factor (£ x x) . ~ in (2.18) reduces to 1 d 
~~ • s -- as long as the 
r -- dr 

system remains spherical. The presence of the spin-orbit term makes the form 

factor (2.7) state dependent, and the derivation given above in the main sect. 2 

is no longer valid. 

We shall for a while restrict ourselves to the case of axially symmetric 

deformations, following the argumentation of Chepurnov and NemirovkSy6), 

who point out that the e,xtra components of the spin-orbit term in (2.18) t) , 

which in a non-axially symmetric case would contribute to single-particle 

matrix elements, presumably are small. In terms of the unit vector n = ==B 

(cose coscp, cose sincp, - sine) perpendicular to r,., we can write the deformed 

field as 

where 

V (r) 
T-

~sph 
V 

T 

+ W v ,,2 S 
T so 

(2.23) 

'x [12 Y20(e,J,) d
2
f(r) ~. s _ ~ 15' cose sine(n x n) • S df(r)] 

'I' 2 - 2" 4TI ==B.I.:. ,- dr 
dr 

is the spin-orbit'independent part of The structure of 

the last term in (2.23) may better be 'understood by rewriting it in the form 

cose sine(~ x £) . s = £( -.£ Y (ecp) + 1) 
3r 15 20 

(2.24) 

t) The 3-components in a decomposition along the axes ~'E.e and E. cpo 

.. ' 
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The 3-axis is chosen along the symmetry axis, and the appearance in 

(2.24) of a non-invar.iant term just reflects the fact that with the assumption 

of axial symmetry also the 3...,.component of 12. x ~ will be a constant of motion. 

The procedure for extracting the ~uadrupole form factor analogous to 

(2.7) is now to pick up all terms proportional to Y20(8cp) , which gives 

P (r) 
T 

= 1 (1.- T) r aRc + W {r 
2 ar T 

af(r) ) 
ar 

af(r) 
ar 

1 2 --v A R, 
2 so s 

As on~y terms which are totally invariant remain, we shall assume that (2.25) 

is correct also for non-axial symmetric systems, i.e.,P (r) can be used in . T . 

the residual interaction (2.1). It should be noted that one would also 

arrive at the expression (2.25) if in (2.18) one replaced (12. x ~) • V by 

1 a ;- .& . ~ ar and treated (~.~) as an r-independent constant. Because of 

the presence .of the (~ . ~)-term, P (r) 
T 

is no longer a state-independent 

form factor, and the significant ~uantities will be the reduced single-particle 

matrix elements, 

·(illp (r)y (8cp)lIj ) 
T 2 

evaluated between the Woods-Saxon eigenstates of the spherical average 

(2.26) 

potendal (2.18). These matrix elements, which are the basic ingredients of .a 

microscopic calculation using an interaction of the type (2.1), will in sect. 

3 be compared to those of the UQF considered in subsect. 2.1, and the importance 

of using consistent wave functions in the evaluation of the matrix elements 

(2.26) will be stressed. 
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3. Comparison between UQF and MQF 

Expressing the single-particle wave functions
t ) in the helicity 

. 4) representatlon 

I n~jm > = 
1 
- Un. (r) 
r nNJ 

L' a(~jh)i) ~h (nh
h 
(- )n+l 

h 

one easily finds the reduced matrix elements of the quadrupole field (2.26) 

. 1 , 

~-vr; 
J~n+n 

< n~j lip y lin' ~'j' ) (_) 2 A A 

'T 2 - 47T j j' 

x ( 

j' j 

:) 
(3.2) 

< n~j Ipl n~j ) 
1 1 T 

2 2 

where j = (2j+l)1/2 and (abc) 
aBy is a 3-j symbol.' Fig. 1 gives for comparison 

the harmonic oscillator potential and the spin-orbit independent part of the 

Woods-Saxon potentials which are used in this section to illustrate the differ-

() 120, . 
ences. They correspond to pure neutron T = 1 wells for Sn, uSlng for 

the Woods-Saxon potential the parameters of table 1, assu.niing R = R o c 

The parameters of the harmonic oscillator potentials are then also fixed, 

since 

t) Phase convention: Un~j positive for r ~ O. 
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(4 2A 1/3y/2 b = r - (-) 
o 5 3 .• 

(3.3) 

and 
.1f 

11 w = 
0 

Mb
2 (3.4) 

Fig. 2 gives a few examples of the differences in single-particle wave 

functions for the two potentials, in particular, the difference in range for 

wave functions of levels close to the top of the Woods-Saxon potential. The 

problem of unbound states will be considered later in this section. 

In fig. 3 the radial functionsP(r) are given, for the MQF case 

only the spin-orbit independent part. However, the radial function multiplying 

the state-dependent matrix element of ~. s is also indicated. It is seen 

that the MQF t concentrates its effect at the surface of the nucleus· ), and. 

that the spin·-orbi t part tends to let the interaction take place a little 

outside or inside the surface, according to which one of the two spin-orbit 

partner levels is involved. 

In fig. 4 we compare reduced matrix elements of the type (3.2) for 

MQF and UQF, using in both cases either Woods-Saxon or harmonic oscillator 

wave functions in the evaluation. We can thereby test whether a restricted 

improvement of either only the wave functions or only the force would produce 

.. 
t)In this respect the MQF is much closer to the surface delta interaction8) than 

the UQF. Actually the radial dependence of the MQF equals that of the surface 

delta interaction for the diffuseness.§:. going to zero and no spin-orbit potential. 

Under these approximations the surface delta interaction simply equals the 

sum of the self-consistent multipole forces over all multipole orders. 
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the main difference between the two "natural" types of matrix elements, 

. which use consistent potential and wave function. This is seen not to be the 

case. In fact, the two steps of improvement go in opposite directions, and 

it is remarkable that the consistent use of MQF and Woods-Saxon wave 

functions give matrix elements which are much closer to those of UQF with 

harmonic oscillator wave functions than one might expect looking at the 

major differences in the potentials and wave functions exhibited in figs. 

1-3. In most cases the differences in magnitude are only a few percent, and 

only for one significant matrix element there is a difference of 35%. One 

important feature is that the matrix elements which were zero because of the 

selection rules associated with the harmonic oscillator are non-zero for 

the 
t 

MQF, for in~tance the matrix element between IP3/2 and 2f7/2 is 12.8 MeV). 

One observes through the shell structure an oscillatory behaviour of the 

difference between the MQF and the UQF matrix elements. For instance the 

matrix elements between levels just above the Fermi level (2d
3

/ 2 ) are iargest 

for the MQF, while those between levels just below the Fermi level are largest 

for the UQF. The gain by using MQF for levels close to the binding limit 

can directly be understood from figs. 1 and 3. 

t) ThO 0 hIll . 1 lS lS, owever, stil a rather sma matrlx e ement. As there was a 

free choice of scale for P(r), the significant number is X times the squared 

single particle matrix element, which in the case mentioned is only 4% of the 

same quantity for the strongest transition. 

.• 
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Fig. 5 is concernedviith the effect of the. spin-orbit part in the 

MQF, comparing the relevant matrix elements of fig. 4 with matrix elements 

calculated with the ~. s part left out of the MQF (yet the Woods-Saxon 

wave functions were not altered). The total difference conform with the sign 

change of (~ . s) going from one spin-orbit partner to the other, but the 

absolute differences are extremely small, supporting the argumentation for 

the approximate treatment of .the deformed spin~orbit potential presented in 

sect. 2 . 
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3.1. THE SELF-CONSISTENT COUPLING STRENGTH 

Formally, the self-consistent strength of theMQF may be expressed 

in analogy to (2.11) 

·x [f~ 
where the c is obtained by inserting (2.18) into (2.12). However. (~.1Je to 

T 

tbe spin-dependence of P 
T 

(2.25), it is convenient to use the eguivE.1ent 

form (2.15) and second quantization 

(3.6) 

where the expectation value of + a a has to be taken in a state with density 

distributions psph(r) corresponding to the spherical Woods-Saxon potential~ 
. T 

From the derivation of the MQF this is the state of the system when the 

quadrupole force is absent, i.e., the state in which particles occupy the 

lowest available Woods-Saxon orbits. AssUming these to be the states labelled 

K = (n~jm) in (3.6) we obtain 

x = 4rr [ 2: . < KI) a; (r;'T(rl) IK > r 
T,K occupled (3.7) 

= 4rr [.2: di < i I ~r (r3p~(r)) Ii> radial r 
l~F,T 

'"' I 

. 

..-
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where d. is the degree of filling for orbit i = (n.Q,j)(d. = 2j. + 1 except 
1 . 1 1 

for i·= iF) and the radial matrix elements are to be calculated with the 

radial Woods-Saxon wave functions u n.Cr} 
nlVJ 

signifies that .Q, . s has to be replaced by 

of C3.1}. The label i on 

0.5 [j.(j. + 1) - .Q,.(1. + 1) -
1 1 1 1 

0~75] in accordance with the discussion in sect. 2. 

In order to understand the importance of various contributions of X, 

we have also considered two. further approximations. One is to neglect the 

spin-orbit part of P , in which case (3.5) is a simple integral. 
T 

If we 

further neglect the Coulomb energy and the symmetry energy, we obtain a 

strength Xl, which only depends on A and thus may be compared with X
UQF 

of eq. (2.17). Carrying the integration only up to R , as it was done in 
o 

(2.16), we can evaluate the integral explicitly, obtaining 

\ 

The numerical value corresponds to the parameters listed in table 1. Using 

the same parameters (which imply b = Al / 6 

t we get ) from (2.17) 

-1 -1 
XUQF = 0.0702 A MeV .. 

and htu = 59.76 r-2 A-l / 3 MeV) 
o o· 

The two self-consistent strengths XMQF andX
UQF 

are compared in 

fig. 6. Further the full has been calculated in a number of cases, 

t . 
)Note that the present definition of X differs from the usual one bya 

2 factor of (htu ) . 
o 
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using eq. (3.7). The figure shows the general trends for nuclei close to the 

S-stability line. The inclusion of Coulomb effects and spin-orbit terms 

affects XMQF only by a few percent and the main reason for the difference 

bet·ween is the symmetry energy, which for regions with large 

neutron excess makes XMQF increase slower than -4/3 A . For the same reason 

X
MQF 

is almost constant through a series of isotopes. The gross picture is 

thus a"rough -4/3 
A dependence for nuclei at the S-stability line and no 

A-dependence for fixed 
-1 " 

Z, in contrast to the overall A dependence of XUQF ' 

It is not very easy tci test the predicted A-dependence of X against 

experimental evidence. This is due to the renormalization effects which have 

to be taken into account when truncating the single-particle basis. The UQF 

requires the discrete but infinite harmonic oscillator basis and the MQF 

requires continuum states in addition to the Woods-Saxon bound states. If 

enough levels are included to make the effect of the remaining levels structure-

less, a single renormalization factor will multiply the self-consistent X. 

This factor will however be A-dependent for convenient choices of the 

truncation and a further approximation in the type of many-body technique 

employed may be more or less justified for different nuclei. For instance a 

hypothetical RPA calculation using untruncated bases and the self-consistent 

X will presumably give reasonable fits to 2+ energies in regions with small 

quadrupole matrix elements and large gaps in the single-particle spectrum, 

but poor fits when leaving these regions. 

Another possible calculation aimed at deformed nuclei would use 

truncated bases and calculate the static deformation as function of X by a 

Hartree-Fock or Hartree-Bogoliubov method, iterating until the potential and 

• 
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wave function deformation become equal. This procedure will give the correct' 

self-consistent X corresponding to the truncated configuration space, 
'r, -

provided'that'dynamical effects can be neglected. This condition is similar 

to the one we' used to find the unrenormalized strength,but still not 

equivalent' since the proportionality between field and density may hold in 

the complete configuration space but not ,in the truncated one. 

'for' '150Sm 'and 1920s, Vie have performed such calculations including 

all bound VIoods;-Saxon:states above'2P3/2 for protons and above 2d
5

/ 2 for 

neutrons. Vie 'thereby 6bt~ined quadrupole strengths related to the self-

consistent X of eq. (2.7) qy X =1. 77 X s.c. 
for l50Sm and X = 1.60 X 

. for 1920s. 

s.c . 

The MQF self-consistent X values are supported by the comments 

7 ' -1 
of Barang"er and Kumar ) concerning the inappropriateness' of the A 

dependence and in particular favouring a slower A-dependence within major 

shells (or for a series of isotopes )', which they had to introduce in their 

UQF calculations2 ). 

A comparison of the self-consistent X with values which reproduce 

certain experimental data is of course fUrther affected by the possible 

insufficiency of the quadrupole force. 



\~' 

• 

~17- UCRL-18593 
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certain experimental data is of course further affected by the possible 

insufficiency of the quadrupole force . 
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3.2. THE ROLE OF THE CONTINUUM 

In conventional calculations with pai.ring and <luadrupole forces one 

confines the number of single .... particle levels employed to those close to 

the Fermi levels (usually not more than three major shells for each kind of 

particle). With the UQF one can hardly go further! and it may well be that even 

the calculations which do include three shells are unreliable,7) because of the 

obvious unrealistic features of the interaction implied between distant 

levels. It is also in the spirit of the pairing force with constant matrix 

elements that the non-zero strength must only apply within a certain subspace, 

and that all other matrix elements are zero. An enlargement of the number of 

configurations is on the other hand significant in connection with the UQF,which 

has infinite range. It has been suggested that already the .~ = 2 matrix 

elements are <luestionable, and the type of correlations implied by the inclusion 

of more than two major shells seems to be quite unrealistic 7 ). Since the MQF 

has a radial dependence peaked around the nuclear surface, one would guess that 

the inclusion of more levels, either far below the Fermi level or above it, 

reaching up in the continuum, would not change the correlations much, so that a 

truncation of the configuration space would be justified. Howev~r, the Woods-

Saxon wave functions do have tails reaching large radii, and further the peaking 

of the interaction at the surface does not apply to the Coulomb part, which in 

fact has a very long range. It is seen from fig. 4, that matrix elements involv-

ing levels far below the Fermi level are in general not smaller than those of 

the UQF, and although the matrix elements involving levels close to the 

continuum are considerably reduced, it is not clear whether this tendency will 

not be compensated by the increased level density in the continuum. In order 
.. ~. 

to estimate the magnitudes of matrix elements of the MQF involving continuum 

states, let us evaluate 



= 

+ 

L 
K 

M=m -m 
1 K 

L 
(n.tj ) b(;:mnd 

-19-

(n.tj )unbound 
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(3.10 ) 

for,a level 1 close to the Fermi level, leaving as unknown the sum involving 

b d t t F th f t " 120S "d' d 1" f" d un oun s a es. or e'case o· neu rons In n conSl ere ear ler we In 

for l=(lhll / 2 ) that (11~TfP211) =33.7, Lbound=14.1 and thus 

\' b d = 19.6, which is 1.4 times the bound state contribution. This L un oun . '. 

may be compared to the UQF, for which we get L b d = 21 - 10= 11, un oun 

i. e., 1. i times the !'bound" state contribution. The quoted numbers are 

of course not directly related to the renormalization factors multiplying' 

x , but the indication is that the renormalization will be larger when using 
s. c. 

MQF than for UQF. The relative larger importance of the continuum states for 

the MQF as compared to the UQF is in the example giveri here due to the 

selection rules valid for harmonic oscillator states and not for Woods-Saxon 

states. Considering a more physical sum rule than (3.10), one which contains 

an energy weighting similar to that of a strength function ,( the energy being 

in the denominator), it appears reasonable that the relative importance of 

unbound levels in MQF will be increased further since such levels are 

abundant at 10l{ unbound energies, whereas the corresponding levels in an 
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oscillator well are s'eparated by distances comparable to those between the 

lower levels. 

We thus. conclude, that although the Woods-Saxpn basis and the MQF 

matrix elements appear much more physical than the harmonic oscillator basis 

and the UQF matrfx el'ements, the problems. connected with renormalization 

are just as pertinent and one will in each concrete calculation have to 

consider whether the influence of the continuum can be simulated by a mere 

change of force strength X or not. 

Although the magnitudes of bound state matrix elements are not very 

di fferent in MQF and UQF, there can hardly be any similarity for matrix .. 

elements involving continuum (high-lying harmonic oscillator) states, so 

should an investigation of such contributions become necessary, only the 

MQF provides a physically acceptable basis. 

~f 

'-', 
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4. Conclusions 

We have proposed a modification of the Quadrupole interaction, which 

is based on a more consistent foundation as regards the choice of radial 

form factor. This improvement is dictated by the need to perform various 

types of many-body calculations, which uses basic configurations corresponding 

to several major shells, for which the Quadrupole matrix elements derived 

from the usual Quadrupole force suffer from conceptual inconsistency. 

It remains for reliable calculations of nuclear properties to decide, 

whether the-modified Quadrupole force can provide a satisfactory description 

of the currently available amount of experimental knowledge on collective 

Quadrupole type phenomena, in the same way as the usual quadrupole force in. 

simplified many-body calculations was able to reproduce the gross features of 

the information available some years ago. 

We would like to express our thanks and appreciation to Professors 

A. Bohr and B. Mottelson, who originally pointed out the importance of consider­

ing the proportionality of density and quadrupole field, and with whom we 

enjoyed enlightening discussions. 
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Table 1 . 

Parameters of the Woods-Saxon well. We used R 
o 

r 
o 

1.27 fm 

a 

0.67 fm 

v 
o 

-51.0 MeV 

= R ·c = r 
'0 

132.4 MeV 

UCRL--18593 

v so 

32.0 

• 
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Figure Captions 

Fig. 1. 
120 

The spin-orbit independent neutron Woods-Baxon well for Sn 

compared with the corresponding Ccfr. sect 3) harmonic oscillator well. 

The numbering of the Woods-Saxon single particle states will be used in 

following figures. Their spins will be given in the caption to fig. 4. 

Fig. 2. Examples of s.p. wave functions for Woods-Saxon (full) and harmonic 

oscillator (dashed) wells. The circled numbers correspond to fig. 1. 

Fig. 3. The spin-orbit independent part of the radial function per) of 

the modified quadrupole force (MQF) is shown as a solid line (a). The same 

for the usual quadrupole force (UQF) is shown by a dashed line (c), and 

the dotted line (b) gives the spin-orbit contributiori to per) in MQF 

divided by t· s (i.e. the factor multiplying this, operator). 

Fig. 4. Reduced single particle matr~ elements of the MQF or UQF 

quadrupole fields using harmonic oscillator (HO) or Woods-Saxon (SW) 

wave functions. The relevant s.p. levels are identified by numbers 

corresponding to the following orbits: 1 = ISl/2' 2 = IP3/2' 3 = IPl/2' 

4 = Id5/2 , 5 = 2s1/2 , 6 = Id3/2 , 7 = If7/2' 8 = 2P3/2' 9 = If5/2' 

10 = 2Pl/2' 11 = Ig9/2' 12 = 2d5/2 , 13 = Ig7/2' 14 = 3s1/2 , 15 = 2d3/2 , 

16 = Ihll/2 , 17 = 2f7/2' 18 = 3P3/2' 19 = 3Pl/2' 

Fig. 5. The differences between the full MQF matrix elements and those with 

the spin-orbit contribution left out, calculated with the same Woods-

Saxon wave functions. 

Fig. 6. Self-consistent quadrupole strength for UQF and MQF, the latte,r 

in two versions. One, (xMQF),neglects Coulomb, symmetry and spin-orbit terms 

in order to obtain a simple A-dependence, the other, (X
MQF

), includes these 

• 
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effects and is thus dependent on both Nand Z, for which reason 

we have only given the average dependence for nuclei at the S-stability 

line together with a few crossing lines indicating the N-dependence for 

fixed Z. 
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resulting from the use of any information, apparatus, method, or 
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