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‘Abstract
For use in calculation of collective quadrupdle'phenoména we construct
& modified quadrupole force, whose radial dependence isvrelated to that of a
 Woods-Saxon well. Matrix elements and self-consistent interactioh
strengths are.¢ompared to those of the usual quadrupole force, which is based
on a harmonicvoécillator‘potential. N
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1. Introduction
In order to étudy the appropriateness of the pairing-plus—-quadrupole - v

interaction for the éalculation of collective quadrupole levels, e.g. in the

«

adiabatic approximation we heré try to remédy thé-obvious drawbacks'of
- the usual quadrupole interaction, whichvwére pointed out by Baranger aﬁd
2,7). '

In sect. 2 we use a self-consistency argument to relate the radial
form factor of an arbitrary multipolelinteraction to a given avérage potential.
In this way the form of the usual.quadrﬁpole force follows frém the harmonic
oscillator potential, whereas the sélf—consistency’argument ieading té the
‘a mégnitude of the interactiop is meaninéless and has to be replaced by an
estimate using a realiétic density. Assuming instead a Wobds—Saxon tyﬁe
average potential, one obtéins a really self-consistent quadrupole interaction.
'u'We'extend the afgument to include also a spin—orbit term in fhe average
R potential.

In ééct;,3 this modified quddfupole intéractién is compared with the
usual one, and‘thevrenormalization’probléms arising in numerical calculations

are -discussed. -
~N
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. 2. Self-consistent Multipole Force and Average Potential

Let us_first consider a separable multipole interaction in generél,

Ty m) = X Py () B () ) TL(000)) 1y (050,) 5 (21
‘ . E y ) -

where (rf¢) are position coordinates anavnT_ is an isospin label giving the

- 3-component (T = -1 .for'protOns). Assuming the nuclear average potential in

'which a proton or a neutron will be moving to arise entirelylfrom the two-body

intéraction,[it'has to satisfy

v.(x) = Z f V(rt,z't') og.(_i:")- ar'. | (2.2)
T! - . ] ‘ A

where p+l is the neutron (proton) part of the density function

p(z) = Z p(z)  _- o . - (2.3)

T

Note that although we do not assume.idenfity befwéen the proton and neﬁtron

. avérage fields, we haﬁe by (2.1) in fact assumed fhaﬁ the two-body inter—
'.action is isospin independent (which is the conventional choice in the type -
of application we are thinking about)l—s). |

We now impose a deformation of multipoie order A on the system,

assuming the surface to be of the form

r = r' (1+ EE: aAu Y;u(8¢) ) - - _ (2.4)
I .
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with 1r' equal to the spherical radius RO. Provided now that the interaction

(2.1) is of sufficiently short range, the surface will adjust‘itself completely

to the shape of the average field, enabling us to relate‘the:equipotential
surfaces of the deformed average poténtial VT to the spherical average

potential Viph which was present before the interaction was switched on

(assuming X # 0),
VT(r6¢) = Viph(r')- ‘ : ’ v (2.5)

where the relation between (r0¢) and r' must be given by (2.4). If the
deformation implied by gpplying'the residual interaction is small, we may
retain only the leading order term in a Taylor expansion of Viph(r‘)»
around the actual radigs r at a giﬁen direction (6¢):
: sphy . E
L VIR () .
sph/_y _ Sph N L 2: . ¥ A
v (r') v (r) v , % YAU(9¢) . (2.6)
' - u . .

Comparing (2.6) to (2.1) and (2.2) we get for X # 0

o VPR (1) v o _ ,
P(r)=r —m— L - =D

Xf Z ,Pf'(r',) qu(e'd") Pz ar' = aku L (2.8)
. T' . o .

which is unique up to the choice of a scale factor. Eq. (2.7) tells that

PT(r) .does not depend on A.

("»
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When the deformation pafameters akﬁ correspond to equilibrium, there is

_ proportionality between the. average fieldv‘VT ‘and the density distribution

V(r) =c plr) . | K - | (2.9)

implying in analogy to (2.6)

orlz) = oPF(x) - x —Fpe ) o Y;p(ed))v : (2.10)
| | g |

Inserting (2.10) into (2.8) we get

X avjph(r) spiPh(r) | 1 | -
Z T A - . dr : ' (2.11)

which is called the self—consistent value of the'coupling strength X h). The

proportionality factors c, can be found by integrating (2.9),

_ b  Sph 2
c, =~y Vn (r) r~ ar ,
_ . (2.12)
c. = - hm VSPh(r)'r2 dr

P Z P
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2.1. THE USUAL QUADRUPOLE FORCE.(UQF)

The standard choice for the spherical average potentiall) has been

the harmonic oscilliator potential

' 2
VPR (1) =-12-th (%) . S ' (2.13)

which leads to a gquadrupole force (2.1) with A = 2 and the radial form factor

(2.7) given by

P(r) =ho (5) - o S (2.14)

" As it is, however, nonsense to assume the proportionality (2.9) between (2.1k)
and the density, one_usuallyrréwrites (2.11) as a sum over all the particles

in the system

11 5 [ 4 pySPR . | -
cer < D2 (ArER)> e
. Tk . k E v
ana assume o . ’ _ : R
2 _3,5/3 .2 . ' .
\ _ < }: rk> =5AT T | _ (2.16)
k : - '
which implies

hw r
-1 _3 o 5/3
X Thr 2 AT | (2.17)

O M

where RO = roAl/3 is the nuclear radius.
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2.2. THE MODIFIED QUADRUPOLE FORCE (MQF)
The modification of the quadrupole force which we are suggesting

assumes the average potential to be of Woods-Saxon types), inecluding a

.Coulomb part and a spin-orbit part. The isospin'dependence is chosen in

accordance with the symmetry energy contribution to the nuclear binding

energy
/Sph L, N _1 2 <) .
voir) =5 (1 f)HC(r) + WT{f(r)r -5 Ve (g xs) - Vr(r)} (2.
wherev
o -r~R -1
f(r) ={ 1+ exp ao s _ (2
o ol o (s 1 <N\ o,
= = > = 2. = X . )
Hc(r) zZe - S(r ch) * 3 ( >~ %l R S{r < Rc) (2
(] C '
and
t I
W=V, o+ V= R (2.
A= —3-(1 + A'l) . ' o ' S (e,

18)

-19)

20)

21)

22)

Here 1t is the isospin vector of the nucleon and T that of the remaining

A nucieons which give rise to the average potential. The momentum and spin

vectors of the nucleon are denoted p and s, and the characteristic radii

of the nuclear mass and charge distributions are denoted Ro and Rc.
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The factor (p x x) - V in (2.18) reduces.to %-&;'_§_5§- as long as the
system remains sphérical. Thé préséncé of thé spin-orbit term makes'the form
factor (2.7) state dependent, and thé dérivation given above in the main sect. 2
is no longer wvalid.

We éhall for a while rest?ict oursélvés tp the casé of axiglly symmetric
deformations, foilbwing the afgumentation of Chepurnov and Nemirovksy ),
who point out that the extra components of the spin—orbif term.in (2.18)+),
which in a non—axially symmetric caée'would contribute to single—particle
matrix elements; presumably are small.  In terms of the unit vector ny =
(cosQ cos¢, cosb sing, - sinB) perpendicular to  gj.we can write the deformed

field as

S sph aviph( ) ' 2 .,
V(x) = VIPR(r) - BY,(89) r e W v_ AT B
| , | (2.23)
- 125
1 3%t(x) o . 3 / . of(r)
x [ > 20(6¢) arz_ f— cosb sinB(n ng Xp) s - ]

where giph is the SPin—orbit<independen£ @art of Viph. The .structure of

the last term in (2.23) may better be understood by rewriting it in the form -

cosb sinB(Q_6 X E)"-g_ /£;‘< /,1 Yoo (6¢) + > - \,hg lo(e¢)(E.x.§)3 :

(2.24)

) The 3-components in a decomposition along the‘axes. n. g and g¢.
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The 3-axis is éhdsen along fhé symmetry axis, and the appearance in
(2.2&)'df a non-invariant ferm just.reflects thé fact fhat with the éssumption
of axial symmétry also the 3-component of é_x x will bé‘a constant of motion.

'The procedure for eXtracting_the quadrupole form factor analogous to

(2.7) is now to pick up all terms proportional to Y20(6¢), which gives

JHe : Bf(r)' 1 CE
(1-1)r or * WT r\,ar - 2'vsox &5 =R

PT(r)'%

(2.25)

As only terms which are totally invariant remain, we.shallﬂassume that (2.25)
 is qorrect alsé for non-axial symﬁetric systems, i.e.,>PT(f) can be used in
the.residual interaction (2.1);‘ It should be noted‘thaf one would also |
varrive ét the expression (2.25)-if in (2.18) one replaced (p X s) + V by

%’ L - i'ggv and treated (& - é) bas an r-independent constant. Because of
the presencé.of the (& - E)—term, PT(r) is no longer a state—indepéndent

form factor, and the significant quahtities will be the reduced single-particle

matrix elements,
il (r)y,(60)05) -, | | o (2.26)

evaluated betWeeﬁ the Woods—Sakon éigenstates of the sphefical average

pétentiél (2.18). rThesé matrix elements, Whiéh.arevthe basic ingfediehts of a.
microscopic calculation using én interaction of'the.fype (2.1), will in sect.

3 be compared to those of the UQF cénsidered in subsect. 2.1, and the imbortanée

of using consistent wave functidns in the evaluation of the matrix elements

(2.26) will be stressed.
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3. Comparison between UQF and MQF
Expressing the single-particle wave functionsT) in the helicity

representation )

ntgn > = fy, ) (B33 Y alemdl @, (P (3.1)
g -

one easily finds the reduced matrix elements of the quadrupole field (2.26)

§ Slp AR, = 2— (. T A
(nQJ.PTYgﬂn 23" i (‘) 33
e - _ (3.2)
x (n23|P_|nej >
T
1_1 4
2 2
where -3 = (2j.+1)l/2 and (abC) is a 3-j symbol. Fig. 1 gives for comparison

aBy

the harmonic oscillator potential and the spinéorbit independent part of the

Woods—-Saxon potentials which are used in this section to illustrate the differ—
ences. They éorrespond to pure neutron (fv= 1) wells for 120Sn,'using for
the Woods-Saxon potential the parameters of table 1, assumiﬁg RO = Rc = rOAl/3

The parameters of the harmonic oscillator potentials are then also fixed,

since

+) Phase convention: uh%j positive for r - O.
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1/3\ 1/2
v=r | £ (-%3\').' ] (3.3)
and
wo = &;g e . ‘ | (3.k4)

.Fig: 2 gives a few exaﬁpies of the differehces in single-particle wave
functions fof the two botentials,.in.pa?ticular, the difference in range for
wave,functions of levels cloee tc the.top of tﬁe Woods-Saxon potential. The
.pfoblem of unbound etates will Bevconsidered later in this section.

In fig. 3tthe_radial functions P(r) are given, fcr the MQF case
oniy the spin-ofbit'independent‘part. _However, the radiel function multiplying
the etate—dependent matrix element of % - s is also indicated. It is seen
- that the MQF concentrates its effect at the surfece of the nucleusf),.and.
that the sbinmorbit part tends to let the interaction take_place a little
"outside or inside the surface, according to which one-of'the two epin—orbit
partner levels is involﬁed.

In fig. 4 we compare redﬁced-matrix elements of the type_(3.2) for
 MQF and UQF, using in coth cases either Woods;Saxon or harﬁohic oscillator
wave functions in the evaluation. We can thereby test whether a restricted'

improvement of either only the wave functions or only the force would produce

)In this respect the MQF is much closer to the surface delta interaction8) than

* the UQF. - Actually the radial dependence cf the MQF equals that of the’surface
-delta interaction for the diffuseness a going tc.zero and no spin-orbit potential.
Under these approximations the surface delta interaction simply equals the

sum of the self-consistent multipole forces over all multipcle orders.
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the main diffefence between the two "natural types of matrix éiements,
"which use.consistent poténtial and wavé function. This is séén not to be the
case. In fact,'thé two steps of improvément go in opposite diréctions; and
it is remarkable that the consistent use of MQF and Woods-Saxon wave
fgnctions give matrix eléménts which4aré much closer to those of UQF  with
harmonic oscillator wave functions than one might expect looking at the

major differences in the potenfials and wave functions exhibited in figs.
1-3. In most cases the differences in magnitude are only a few percent, and
only for one significant matrix element there is a difference of 35%. Oﬁe
important feature is that the matrix elements which were zero.because of the

selection rules associated with the harmonic oscillator are non-zero for

.i.

the MQF, fof ingtance the‘matrix element between lp3/2.and 2f7/2 is 12;8 MeV ).r
One observes through the shell structure an oscillaﬂory behaviour of the
difference between the MQF and the .UQF matrix eleménts. For ihstance the
matrix elements between levels just above the Fermi level (2ds/2)>are lérgéét.
for the VMQF, while those between levels just below the Fermi level are largest
for the UQF. The gain by using MQF vfor levels close to the binding limit

can directly be understood from figs. 1 and 3.

T) This is, however, still a rather small matrix element. As there was a
- free choice of scale for P(r), the significant number is X times the squared

single particle matrix element, which in the case mentioned is only 4% of the

same quantity for the strongest transition.
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Fig. 5 is concerned with the effect of the spin-érbit p#rt in the

- MQF, coﬁparing the réleyant.matrii_élements of fig. 4 with matrixvelements
caleulated with the &;'.§_ part‘léft'dﬁt of the MQF (yet the Woods-Saxon
‘wave functions were nét alteréd). »The total differénce ébnform with.the sign
chéngé of <&:' §;) going from_on¢ spin-orbit partnér fo the other, but the.
absolute‘differenqes.ére éxfremely,small, _Supppfting the argumentation for
 the aﬁprOXimate treétment of the deformed spin;orbit §otential presented in

 sect. 2. o



Tipen ~ UCRL-18593

3.1. THE SELF-CONSISTENT COUPLING. STRENGTH

Formally, the self-consistent strength of the MQF may be expressed

in analogy to (2.11)

-1 '
o1 2 2 :
]’Z;;O’T(r)) r° dar o | (3.5)
T ) ’

where the c. is obtéinedbby inserting (2.18) into (2.12). However, ¢ue to’

the spin-dependence of PT (2.25), it is convenient to use the equivelent

form (2.15) and second quantization

o L <o

B + . .
. where the expectation value of a a has to be taken in a state with density

_1__3
28

= o
K><a';aK>_ - (3.6)

distributions piph(r) corresponding to the spheficél_Woods—Saxon potential.
From the derivatioh of the MQF thié_is the state of the system when fhe
qgadrupole force is absent, i.e}, the state in which particles occupyithe
lowest availablé Woods-=Saxon orbits. Assuming these to be the states_labelled

kK = (njm) in (3.6) we obtain

cn [ Y <

T,K occupied

. —
b ZE—J a,<:::i
i

i<iF,T

; ™ (r P (r))

>
-1
l:::>radial ?

(3.7)_

it

%;-(r3Pi(r))

/./
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where 4, is the degree of filling for orbit i = (n%j)(di = 2j, + 1 except
for ‘i'= iF) and the_radial matrix elements are to be caiculated with the
radial Woods-Saxon wave functions unzj(r) of (3.1). The label i on Pi

‘signifies_that Zb- s has to be replaced by 0.5 [J (3 3 +1) - 2i(2i +1) -

0.75] in accordance with the dlscus51on in sect 2.

In order to understand the‘importance'of various cOntributiOns of ¥,

we have also. cons1dered two. further approx1matlons One is to neglect the

”spln-orblt part of P ,» in Wthh case (3.5) is a simple 1ntegral If we

further neglect the Coulomb energy and the symmetry energy, we obtain a

strength X'; which onlyvdepends on A and thus mey be compared with XUQF

~of ‘eq. (2.17). Carrylng the 1ntegrat10n only up to R s as it was done in

(2.16), we can evaluate ‘the 1ntegral exp11c1tly, obtaining

- §%§£§- "3 o M3 vt L (3.8)
oo ) - :

. ) N

The numerical value corresponds to the parameters listed in table 1. Using

1/6

~ the same parameters (which imply b = A and’ hwo = 59.76 r 2 A_;/3 MeV)
" we getT) from (2.17)
= o.ot02 A7 Mevt L | (3.9)

Xuqr

The two self-consistent strengths dre‘compared in

1 ,
| Xgr 274 Xygr
fig. 6. Further the full XMQF has been calculated in a number of caees,

)Note that the present definition of X differsyfrom the usual one by a

factor of (hwo)g..
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using eq. (3.7). The figure shows the géneral trends for nuclei close to the
B-stability line. The iﬁclusion of Coulomb effects and spin-orbit terms

affects only by a few percent and the main reason for the difference

XMQF
between XMQF and XMQF is the symmetry energy, which for regions with large
| 4/3 |

neutron excess makes increase slower than A For the same reason

XM
is almost constant through a series of isotopes. The gross picture. is

4/3

XMgF
thus a rough A~

dependence for nuclei at the B-stability line and ﬁo
A-dependence for fixedv.Z, in contrast to thé overall A—l dependence of 'XﬁQF;

It is not very easy £6 test the prédicted A—dépendence bf X against
experimental e#idence. This is due to the renormalization effécts which have
to be taken into.account when truhcating the single-particle basis. The UQF
requires the discrete but infinite harmonic ascillatér basis and the MQF
requires continUum states in éddition to the Woods-Saxon bound stateé. If
enough levels are included to make the effect df the remaining levels structure-
less, a single renormalization factor will multiply.the self-consistent ¥.
This factor will héwe&er be A—depéndént for convenient:choiées of the |
truncation and a further approximation in the tYpe bf‘many;body techniqﬁe
employed may be more or less Justified for different nucleil. For instaﬁcé a
hypofhetical RPA calculation using untruncatéd basés and the self—consistent
X .will presumably give reasonable fits to 2+ energies in regioﬂs with small

quadrupolevmatrix elements and 1argé gaps in the single-particle spectrum,

but poor fits when leaVing these regions.

Another possible calculation aimed at deformed nuclei would use

truncated bases and calculate the static deformation as function of X by a

Hartree-Fock or Hartree-Bogoliubov method, iterating until the potential and
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wave function defdrmation become equal. 'This procedure will give the correct-

self-consistent x' corresponding tovthe truncated configuration space,

provided‘that‘dynamical effects can bé'neglécted. This'condition_is similar

. to the one we used to find the unrenormalized strength, but still not

'equivalent‘since'the prbportionality between field and dénsity may hold in

the complete cOnfigurétion spacé but not.in the truncated one. -

We have performed such calcﬁlations for 150 192

~ 7 Bm and

Os,'including

for

_ , 5/2
heutrcns.’_We‘theréby'ébtéined quadrupole strengths related to the self-

1505m ana x = 1.60 Xg

all bound'ondSTSaXOnfstates_abovef2§3/2 for protons and above 2d

192

.for Os.

The MQF self-consistent X values are-supported by'the comments
A . _ . . N _

dependence and in particular favourihg a slower A-dependence within major

shells (or for a.ééries of isotopes), which they had to introduce in their

UQF calculationsg).

~

A comparison of the self-consistent X with values which reproduce

certain experimental data is of coﬁrse fufther affected by the possible

insufficiency of the quadrupole force.
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Call bound.WoodSTSaxon states abbve12p3/2.for protons and abové 2d

'of:Baranger-andeumar
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wave function deformation become equal. ‘This procedure will give the correct:
self-consistent X corresponding to the truncated configuration space,

providéd‘that dynamical effects can Bé'neglected.'_This condition‘is similar

~ to the one we used to find. the unrenormalized strength, but still not

equivalent since'the proportionality between field and dénsity may hold in

the complete cbnfiguration spacé but not .in the truncated one.

150

We have performed such calculations for “"Sm and 19203, including

for

, ‘ v 5/2
neutrons._VWe thereby obtained quadrupole strengths related to the self-

consistent X of eq. (2.7) by ¥ = 1.77 Xg o fof'150

for 19205;

Sm and ¥ = 1.60')(S

The MQF self-consistent X values are supported by the comnents

T

concerning the inappropriateness of‘the A‘l

dependence and in pérticular~favouring a slower A—dependence within major

shells (or for a series of isotopes); which they had to introduce in their

UQF calculationsz).

A comparisonlof'the.self—consiStent X with values which reproducé

~

’éertaiﬁ~experimental data is of course further affected by fhe possible

v insufficlency of the quadrupole fofce.
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3.2. THE ROLE OF THE CONTINUUM |
In convenﬁional»cqlculafiqns with pairing and quadrupole:férces one
confines the number of singlé~particlévlévéls émployed to thoéé.closé to
. the Fermi levels.(uSually not'moré than thréé majér shells for éach kind of
particle). With the UQF.one can'hafdly go.further, and it may well be that even
| the calculatidhs which do inélydé thréé shélls afe unreliableT) because of.the
obviousvunrealistic features of the interaction implied between distant
ievels. It ié also in the spirit of the pairing force with_gonstant matrix»
elements‘thatbthe non-zero sfréngth mﬁst only apply within a certain subspace,
and that all éther matrii elements-arevzéro. Aﬁ enlargement of fhe number of
configuraﬁions is on the other hand significant in conngctibn With the UQF, which
has infinite range. It ﬁas been suggested that aiready thé 3Aﬁ = 2 matrix
elements éfe‘questiOnable, and the type of correlations imblied by the inclusion
of more than twé major shells seéms~to be quite unrealistic7). Since the MQF
has a radial dependence peaked around the nuélear surface, one would guess that
the inclusion.of:more\levels; eithér far beléﬁ the Fermi level or above it,
“reaching up in the COnfinugm;_would notfqhange the correlations.ﬁuCh, so that a
truncatibn 6f'the éonfiguration épace wbuldvﬁe Justified. ‘Howevgr, the Wpods—
. Baxon wave functions do have tails reaching large radii, and further the peaking -
of the interaction at the surface does not apply to the Coulomb part, whicH in
fact has é very long range. It is seen from fig. 4, that matrix elements involv—
ing levels fa?vbelow the Fermi level are in genersal not smaller than thosevof:
‘the UQF, and although the'matfix'élements invol&ing levels close to the
contimium are considerably reaﬁced, it ié.not cléar whether this fendency will
not be compensated 5y thé_inqreaséd level denSity‘in the continuum. In order
to eétimatétthe magnitudes vamatrix elements of the MQF iﬁVolvigg contipuum

states, let us evaluate
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Z PGy, (2) k) 2

K

| <1~|ﬂ—15;;(r)»2|1_>‘ :

M=m1--m|< :
(3.10) -

}{: (2j1+l)—l<nllljluP(r)Y2(;)"n£j y 2
(nfJ )bound e . ’

* Z (2341 K e IR(e)(R)Ingy ) F
~ (n%J)unbound ' '

for.a level 1 close to the Férmi”level,_leaving as unknown the sum involving
unbound states. For the:case of neutrons in 1208n considered earlier we find

for 1= (1h, ) that -(1|§E-P |1 ) = 33.7, zz: = 14.1 and thus

bound .

E: "= 19.6, which is 1.h times the bound state contribution. This
unbound : . .

=21 - 10 = 11,

may be compared to the UQF,'for which we get Ezzunbound =

i.e.,ll.l times the "bound" state contribution. The quoted numbers are
of‘course not directly relafed to the_renormaiization_factors multipiying'
Xs.c.’ but the>indication is that the renormalizaﬁion Wi;l be larger when using
MQF than for UQF. The relative largér importance of thé continuum states for

the MQF 'as compared to the UQF is in the example givén here due to the

selection rules valid. for hafmonic oscillator states and not for Woods-Saxon

states. Considering a more physical sum rule than (3.;0), one which contains

- an energy weighting similar to-that of & strength function (the energy'being

in the denominator), it appears reasonable that the relative importance of

unbound levels in MQF will be increased further sinde such levels are

© abundant at low unbound energies, whereas the corresponding levels in an
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oscillatqr well afe sééaiated by.distances‘comparable to those between the
lover levels. = . ' ' ' : .
We‘thusicénciudg, that although,thé Woods-Saxon basis and the MQF
T "
matrix elémentsbappear much'more physical than the harmbnic oscillator basis
band thé UQF"matrik éléments,‘ﬁhe probléms,connectéd with renormalization
are juét és pertinent aﬁa one will in eachlcénérete calculation have to

bconsider whether the influence of the continuum can be simulated by a mere

change of force strength X or not.

Although thé maénitudésvof'bound state matrix elements are not very
' differehf in MQF and UuQr, thefe can hardly be any similarity for matrix
elements_involving continuum (high-lying harmonic oécillatbr) states, so
should én‘inveétigation bf such contriﬁutions become necessary, only the

MQF provides a physically acceptable basis.
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L. \Coﬁclusions
We have.proposéd a'quification of the quadrupole interaction, which
. is basea on é mére‘consistént fauﬁdation as.régards thé'choicé of radial
*vform factor. This improvement is dictated b& the néed to perform various
types of many-body calcﬁlétions, which uses bagic configurations corresponding
to several ﬁajbr éhellé,vfoi Which'thé quadrupole matrix elements derived
hfromﬁfﬁe uéuai quadrupolevforéé sufférvfrém conceptual inconsistency.

It réhains for reliablé calculations.of nuélear properties to decide,
whether the modified quadrupoie force can provide a satisfactory description
of the cufrently available amount of experimental knowledge on collective
quadrupole tYpe phenomena, in-the.same ﬁay as the usual guadrupole force in.
simplified many—body caléulationé was able to reproduce the gross features of
the infofmation availéble some feérs'ago.

We would like to express our thanks and appregiation to Professors
A.'Bohr'ande. Mottelson, who originally innted out the importance of consider-
ing the proporﬁionality of density and quadrupole field; and wifh whom we

enjoyed enlightening discussions.
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Table 1
Parameters of the Woods-Saxon well. We used Ro =R = r, Al/3.
r a Vv Vv v v
o] 0 1 . . 80
~-51.0 MeV 132.4 Mev : 32.0

1.27 fm

"0.67 fm
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Figure Captions -
120

. 1. The spin-orbit independent neutron Woods—Saxon well for- Sn ' »

comparéd withvthe'corrésponding (cfr._sécﬁ 3) harmonic oscillator’weil.
The;numbering of'thé Wodds—Saion singlé partiélé statés will bé used in
following figures. Their spins will bé'givén in thé caption to fig. L.

2. Examples of s.p. Wavé functions for Woods—Saxoﬁ (full) and harﬁonic
oscillator (dashed) wells. Thé ciréléd numbers correspond to fig. 1.

3. The spin-orbit independent part of thé radial function P(r) of
the modified_quadrupéle force (MQF) is sﬁown as a solid line (a). The same
for the usual quadrupole force (UQF) is shown by.a dashéd line (ec), and 
the dotted line (b) gives the spin-orbit contribution to P(r) in MQF
divided by 2L - §; (i.e. the factér multiplying this,operatof).

4, Reduced single particle matrix elements of the MQF or UQF

‘quadrupole fields using harmonic oscillator (HO) or Woods-Saxon (SW)

wave functions. The relevant s:p. levels are identified by numbers .
correspondlng\to the following orbits: 1 = 151/2’ 2 = lp3/2, 3= lpl/g,
L = ld5/2, 5 = 251/2, 6 = 1d3/2, T = 1f7/2, 8‘= 2p3/2, 9 = ;fs/g,

10 = 2pl/2, 11 = lg9/2,.12v= 2d5/2? 13 = 1g7/2, i = 381/27 ;5 =-2d3/2,

5. The différences between the full MQF matrix elements and those with
the spin-orbit contribution left out, calcilated with the same Woods-
Saxon Wavevfuhctions. |
- 6. Self-consistent quadrupole stréngth'for UQF - and MQF, the latter

in two versions. One, ), neglects Coulomb, symmetry and spin-orbit terms

1
(XMQF
), includes these

in order to obtain a simple A—dependénce, the other, (XMQF
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effects and is thus dependent on both N and Z, for which reason

we have only given the average dependence for nuclei at the B-stability

iine together with a few crossing lines indicating the N~dependence for

fixed %.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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