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A general Hermitian scalar field, assumed to be an. operator-valued tempered distribution, is
considered. A theorem which relates certain complex Lorentz transformations to the TCP
transformation is stated and proved. With reference to this theorem, duality conditions are

considered, and it is shown that such conditions hold under various physically reasonable

assumptions about the field. A theorem analogous to Borchers' theorem on relatively local fields is
stated and proved. Local internal symmetries are discussed, and it is shown that any such symmetry
commutes with the Poincaré group and with the TC P transformation.

I. INTRODUCTION AND OUTLINE

The so-called duality condition in quantum field theory
and in the theory of algebras of local observables has
been discussed by many authors. !=% From these studies
it appears that it would be a desirable, if not essential,
" feature of a local theory that such a condition holds.
Very roughly stated the duality condition for a reglon R
in spacetime says that the set of all operators which .
commute with all operators locally associated with R is
equal to the set of all operators locally associated with
the causal complement of R. It was first shown by
Araki® that conditions of this nature do hold for a class
of suitably restricted regions R in the case of a free
Hermitian scalar field. .It is the purpose of this paper
to discuss the duality condition in quantum field theory
in the general case, i.e., without making the assump- -
tion that the field is free.

Our considerations are within the framework of con-
-ventional quantum field theory, as formulated by
Wightman and others, -1 we shall restrict our discus-
ston to the case of a single local Hermitian scalar field,
assumed to be an operator-valued tempered distribu-
tion, We will state the assumptions in some detail in-
Sec. II, in which we also explain the notation to be fol-
lowed. Our discussion can readily be extended to more

- general cases, but, in order to avoid complications’

- which might obscure the main line of argument, we pte-~
sent our ideas in what appears to us to be the simplest
possnble setting.

In Sec, Tl we consmer some 1mphcatlons of the

“spectral condition”, i, e., the assumption that the
spectrum of the 4-momentum operator P associated
with the translation subgroup of the Poincaré group is
contained in the closed forward light cone. We here re-
view some facts, by and large well known, which will
be of interest in the subsequent discussion, and we con-
sider a slightly modified version of a well-known theo—
rem of Reeh and Schlieder. ? :

' In Sec. IV we consider complex Lorentz transforma- .

tions, and a connection between these and the antiunitary.

inversion transformation (TCP-operation). Since the

" Hilbert space of physical states carries a strongly con-

_ tinucus unitary representation of the Poincaré group, it

a85 Journal of Mathematical Physics, Vol. 16, No. 4, April 1975

-follows that there exist dense sets of analytic vectors of
the associated Lie algebra and of sub-Lie algebras of
this Lie algebra. It is a characteristic feature of quan-
tum field theory that such sets of analytic vectors can
be constructed “naturally” in terms of suitable multi-
linear expressions in the fields and the vacuum state
vector . We shall in particular consider the following

" issue. Let Wy be the wedge-shaped region Wy={x|x?
> |x*1} in Minkowski space, and let Py(W5) be the poly- . -
nomial algebra generated by field operators averaged
with test functions with support in W,. Let V(es, ¢), ¢
real, denote the velocity transformation in the Poincaré
group whose action on Minkowski space is described by
the four X four matrix

10 o 0
o1 o o
0 0 cosh(t) sinh(?)
0 0 sinh{f) cosh(¢)

' Viey, 1) )

The set of all V(ey, £} is thus a one-parameter’

* Abelian group of velocity trans{ovmations in the 3-
‘direction which maps the wedge region W, onto itself,
To the element V{e;, t) corresponds the unitary operator -
U(V (e, t), 0) = exp(~itK,) on the Hilbert space, where
K, is ait (unbounded) self-adjoint operator, We shall
show that every vector X, with X & (W), is in the”
domain of the normal operators exp(-72K;) for the com- -

* plex variable z in the closed strip 7= Im(z) = 0. The

- vector-valued function exp(-izK;) XQ is a strongly con-
tinuous function of z on the above closed strip, and an
analytic function of z on the (open) interior of the strip.
We shall furthermore show that for any such vector .

exp(nK) XQ=JX*Q - @

where J is the antmmtary mvolutlon defined by
J=U(R(ey, 1), 000, T )

where R(e;, 7) is the rotation by angle 7 about the 3-axis
.[and U(R(e;, 7), 0) the corresponding unitary operator on
the Hilbert space], and where 8, is the TCP-operator.

The relation (2) is the main result of Sec. IV. It
holds, in fact, for a somewhat larger class of field | -
operators, as stated precisely in Theorem 1. A

Copyright © 1975 American Institute of Physics 985
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Section V is devoted to a discussion of some mathema-
tical questions relating to (2), We consider families of
operators which- satisfy the relation (2), and, in particu-

lar, we discuss the properties of any von Neumann alge- -

bra /]p,of bounded operators X which satisfy (2), and
Such'that furthermore JArd =A% . where Ay denotes the
commutant of 4. The main results, relative to the sub-
sequent discussion in Secs. VI and VII, are stated in

- Theorem 2 and Lemma 15. Our discussion is closely

related to a theory of Tomita!® on the structure of von
Neuwann algebras (and of modular Hilberi algebras),
and we discuss the connection, :

In Sec. VI we discuss a particular duality condition,
for the wedge region W, Let W, be the causal comple-
ment of W, i.e., the wedge region W, ={x|x% <~ [x*l},
and let P, (W) be the polynomial algebra generated by -
field operators averaged with test functions with support
in W;. We consider four particular conditions on the
quantum field under which the polynomial algebras
Po(Wy), respectively 0,(W.), of unbounded operators
define von Neumann algebras 4 (Wy), respectively 4(W;),
of bounded operators which can be regarded as locally
associated with the wedge regions Wy and W,, and we
prove that these von Neumann algebras satisfy the dual-
ity condition A(Wg)" =4(W.). We also show that the TCP-
symmetry of the field carries over to the system of
bounded local operators in the sense that JA (W) J
=4(W,.). These results are formulated in Theorems 3
and 4. '

Theorem 3 includes in particular the following re-
sult, which holds generally, i.e., without any addi-
tional assumption about the quantum field beyond the
minimum assumptions discussed in Sec. I, f X is a
bounded operator which commutes with all (linear) field
operators averaged with test functions with support in
W, and if Y is a bounded operator which commutes with
all field operators averaged with test functions with sup-
port in Wy, then X commutes with Y, This statement is

. analogous to a well-known theorem of Borchers on the

local nature of fields which are local relative to a local
irreducible field, !*

We have not solved the problem of whether the von
Neumann algebras (of bounded operators) associated -
with.wedge regions, or other reglong, always exist, and
we are thus forced to make additional assumptions,
which, however, are not unreasonable physically. This
question appears to be intimately related to the hitherto
unsolved problem of whether a sufficiently large set of
quantum field operators have local sélf-adjoint exten-
sions (within the framework of the customary minimal
assumptions of quantum field theory). We discuss the
notion of a local self-adjoint extension of the field, and
we shew that it implies the existence of a system of
local von Neumann algebras which satisfies the duality -
condition., We also show that the existence of such a
system follows from other conditions which appear to

' "be less restrictive than the condition that the field has

a local self-adjoint extension,

In See. VI we discuss the duality condition for a
particular set of bounded regions, namely the set of
all so-called double cones, The von Neumann algebras
associated with the bounded regions are constructed

986 4. Math. Phys., Vol. 16, No. 4, April 1976
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from the von Neumann algebras associated with the
wedge regions, We describe the properties of these
‘algebras in Theorems 5 and 6, and we show that the
duality condition for the algebras associated with the
wedge regions implies an appropriate duality condltxon
for the algebras associated with double.cones,

Finally, we consider the notion of a local internal
symmetry, and we prove (Theorem 7) that if the duality
condition holds for the wedge algebras, then every local
internal symmetry commutes with the Pomcare group,
and with the TCP-transformation,

1. BASIC ASSUMPTIONS DISCUSSION OF |
NOTATION

Minkowski space /) is parametrlzed by the customary
Cartesian coordinates x = (x!, %, x% x%), The Lorentz
“metric” is so defined that x.y =x%% - xlpl = x%y% - 33,
The elements. A =A (M, y) of the proper Poincaré group
L, are parametrized by a four-by-four Lorentz matrix
M, and a real 4-vector y, such that the image Ax of a
point x € /) under any A € Lo is given by Ax = A(M Yy)x
=Mx +y.

The Hilbert space /4 of physical states is assumed to
be separvable. It is assumed to carry a strongly contin-
uous unitary representation A — U(A) of the Poincaré
group L,. We write U(A(M,x))=U(M, x), and we employ

- the special notation T(x) =U(l,x) for the representatives

of the translation subgroup. The translations have the .
common spectral resolution

T()=UU,x) = [ explix-p)pldp) @

and it is assumed that the support of the spectral mea-
sure p is contained in the closed forward light cone 17,,
(in momentum space). This assumption about the sup-
port of u will be referred to as the ‘spectral condition”
in what foliows, R A

We assume the existence of a vacuum state, repre-
sented by the unit vector Q, uniquely characterized by
its invariance under all Poincaré translations: thus

um)e=q. -

We denote by D(R") the set of all complex-valued in-
finitely differentiable function of compact support on n-
dimensional Fuclidean space R", and we denote by §(R")
the space of test functions on R" in terms of which tem-
pered distributions are defined, The space §(R") is re-

garded as endowed witlt the particular topology appropri-
15

ate to the definition of tempered distributions, ** and we
employ the notation = S
S-limfe=0 @

to state that a sequence of test functions f, converges

to zero relative to this topology. We shall be concerned
with test functions on R*", where R*" is regarded as the
direct sum of an ordered n-tuplet of replicas of
Minkowski space, and the points of R'" are accordingly
parametrized by an ordered n-tuplet (xy,x,,...,%,) of
4-vectors x,. A specific interpretation of R* in this
manner is always understood, as reflected in the above
parametrization of the space. In accordance with the
above we define an action of L, on S(R'™) by

f(le""’ Xy) Af(x’.!f'_'_’xn)—f(A X1,...,A xn)- ' | (6) .

J.J. Bisognano and E.H, Wichmann -~ 986
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This mapping is continuous relative to the test
function space topology, and '
$-lim Af=f. ; o (7
CA=T v .
Throughout this paper it will be important to keep
track of the domains of unbounded operators, To deal
- effectively with such issues we shall frequently employ
the unorthodox notation (X, D) for an operator X defined
on a domain D, The adjoint of (X, D) is denoted (X, D)*
and if D(X*) is the domain of the adjoint we can write
(¢, D)* = (X*, D(X*)). If (X, D) is closable we write -
X, Dy** = (X**, D(X**)) for the closure. This notation is
. never employed for manifestly bounded operators, which
~ are regarded as defined on the entire Hilbert space.

We shall consider a theory of a single local Hermitian
scalar field ¢(x), assumed to be an operator-valued .
-tempered distribution. *~!1+1€ Such a theory is charac-
terized by the following features: .

(a) There exists a linear manifold Dy, dense in the . -
Hilbert space //, and an algebra /2(/) of operators
(X, D) defined on D;. The domain D, contains the vacu-
um state vector . For each n>1 there exists a linear
mapping of §(R*") into P(/). The image of any fe §(R%")
under this mapping is denoted zp{f} We note here that
<p{f} is the operator which is customanly defined sym-
- bolically by the integral at right in '

‘/’{f}=f(o)d4(xl) ceedlxg) flagy s,

The domain D, is precisely equal to P(M) 2, and the
algebra P(/)) is precisely equal to the linear span of
the identity operator I and the set of all operators <p{f}
ifeg (R"') and g€ § (R“”') and if ke 5 (R4™4m) is given
by

%) gle)e ol (®)

h(xlt LR txnyxn¢1, so. 9xmr;|)

) =f(x11-'v’xn)g(xmb---’xnm)f ‘ . (9) »

then

‘olftolgt=oln} on D,

We note that this is consxstent with the symbolic
deflmtxon in (8).

(b) Let (X, D;) ~ (X* D,) denote the antilinear involu-
tory mapping of 2(#) onto itself uniquely deterinlned by

(10

=1, ¥ =olr, (11)
_ where . o _ .
ff(xl’xb ‘e ,x,,) =f*(xm LR ,xz,xx) (12)

-for any fe §(R).

The domain D; is contained in the domam of the ad-
joint (X, D))* of every (X, Dx) € P(M), and

X', D1) =(X*,Dy)C (X, Dg) . (13a)
In particular, .
Qa{f }, Di)c (w{f}’ Dl) (13b)

Every operator (X,D;) € p(/n) is thus closable, and
(X', Dy) is the Hermitian conjugate of (X, Dy).

(¢) The domain Dl is invai-ia_nt uhder the Poingaré
group: U(A) Dy =Dy for all A € Ly, The action of L, by .

987 J. Math. Phys., Vol. 16, No. 4, April 1975 =

cg;xjuggtionnon P(M) (and hence the action of I, of the
Hilbert space #/) is uniquely determined by the condition

U elf}, D) U = (o{Af}, Dy) (14),

(d) The mapping f—~ ¢{f} is such that if {f,| f, € S(R™),
a=1,...,,%}is any sequence of test functions which
tends to zero in the sense of the test function space
topology, i.e., such that (5) holds, then-

- s-lim Xw{fa}w 0

for any (X, Dl) € P(M) and any pe Dy,

(e) Let R be any open subset of Minkowski space,” Let
P(R) denote the linear span of the identity operator I
and all operators (¢{f}, D;), where f& §(R") for some
n>1 and such that supp(f) c{(xy,...,x,) 1%, €R,
k=1,...,n}

Then, if Ry and R, are any two open subsets of

(15)

_Minkowski space which are spacelike separated [i.e.,

(x~9y)° (x y) <0 for any xcRI, y € R,], we have
[X,Y]9=0, all peD;,
for all X e P(R) and all Y € P(R,).

"Our purpose with the preceding account was to state
precisely what we assume, and not to formulate a mini-
mal set of postulates for field theory. It will be noted
that the conditions which we have stated are in fact not
all logically independent of each other. It should also be
noted that we do not assume anything beyond what is im- .
plied by the usual minimal assumptions for quantum
field theory. '

(16)

Since operatoré linear in the field will be of particu-
lar interest, we employ a special notation for the case
f& S(RY), namely,

olf1=olr}=J ., @) ) o).

For any open subset R of Minkowski space we denote
by 4(R) the polynomial algebra gencrated by the identity
I, and all operators (@[ f], D) such that supp(f) CR.
With reference to the definition of the algebra P(R) in

(17)

-(e) above, we'then have Py (R)C P(RYC P(/). We state

some well-known properties of these algebras as
follows.

 Lemma 1: (a) (Theorem of Reeh and Schlieder!?) Let
R be any open, nonempty subset of Minkowski space/}.

“Then J2,(R) Q is dense in the Hilbert space /.

(b) Let (X, D;) € P(R). Then there exists a sequence
of ‘operators {(X,, D,)| (Xa,Di)c Po(R), a=1,..., °°}
such that

s-11m YX =YXy (18)

for every Y& (/) and every €Dy,

(c) The linear manifold D, C D, defined as D, = po(/n)sz ;
is dense in the Hilbert space, and

(X, Dp* = (X, D)%, (X,Dp)**=(X, Dl)**? '
for every (X, Dj)e P(H). ’

‘Theé above is of interest W1th reference to other ap-
proaches to field theory, in _whxch the initial object of

(19)

JJ. Bi_sogrianp and E.H. Wichmann 987
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interest is ¢[f}, defined on D, and where the commu-

tation relation (16) is at first assumed only for opera-
tors X and Y of this special form, After the appropri-
ate extensions and constructions one arrives at the

' . equivalent of our formulation. We preferred to intro-

duce the domain D, immediately, and to regard all field
operators as defined on precisely D;. The symbols

X*, xX** and X', for (X, D)€ P(}), thus refer to the
ad]omt closure and Hermman conjugate defined rela-
tive to this domain. .

, Whereas the domains Dy and D; are Pomcaré invari-
ant, this is, of course, in general not the case for the
domain D{X*) of (X, D;)* and the domain D(X**) of

(X, D)**, We have the relations

(UMW) XUN)™, DY* = (UM X*UMR)!, UQA)D(XY)  (20a)

(UA)XTA)™, Dy)** = (UA)X**U(A)™, UM)DE*)). (20b)
. We finally note that it trivially follows from (13a)
that
(X',_Di)‘** = (X™**, D(X™**)) C (X, D;)* = (X*f: D(X*))g
: (21)

For a particular operator (X, D) equality obtains in
(21) above if and only if D is a core for (X, D;)*. [For
a Hermitian operator this means that (X, D,) is essen-
tially self-adjoint. ] In general discussions of field the-
ory no assumption is made about the possible existence
of a set of field operators for which (21) might hold as
an equality.

1. ABOUT SOME CONSEQUENCES OF THE
SPECTRAL CONDITION -

"It is well-known that the unitary representation x
— T(x) of the translation group can be extended to a
representation of the semigroup of all complex transla-
tions z =x +iy, with x and y real, yeV,, by

T(z)=f exp(iz PYuldip) =exp(iz - P) (22)
where the operator-valued function 7'(z) satisfies || T(2)l]
=1 and is a strongly continuous function of z on the
closed forward imaginary tube V,; ={z1Im(z) e V,}.
Furthermore, the function T(z) is analytic in the sense
of the uniform topology on the open forward imaginary
tube V,;, which implies in particular that the vector-
valued function T(z)y of z is strongly analytic on V;

- for any yE€H.

Let fe §(R%). We define a Fourier transform f of f
by : .

Fo1,... .0 : -
—f(,)d‘(x,) oo d4(xn)f(x1, ey %) exp( Z) PR ,). 23)

‘We con51der the following:

Lemma 2: Let z € V,,, i.e., z is any complex 4-vec-
tor in the closed forward imaginary tube. Then:

T(z)D,C D,. R (24)
If fe §(R*™) there exists an f,& §(R*) such that
fg(ph-o-’pn)=f(ph’°~-,pn)exp(iz' Qpr) : (253.)
988 ' J.Math. Phys., Vol. 16, No. 4, April 1975

2 | 2
for (py, ., p,,)c V,,, where v, is the subset of R'" de-

fined by
Vn={(ﬂt,.-.,bn)|§p,e?f,, k=1,...,n} - (25b)
r= .

and for every such f, we have o
Te)elrla=olra. o (25¢)

The above facts are well known, and we refer to the
monograph by Jost!? for a discussion of these and
related issues. Here we only note the following. It is a
consequence of the spectral condition that any vector
@£} only depends on the restriction of f to the set
V, defined in (25b), i. e., if f=0.0on V,, then the vector
vanishes. It is of interest to exhibit a particular func-
tion f, which satisfies (25a), and hence (25¢). Let ,(f)
be an infinitely differentiable function of ¢ on R! such
that 2,(¢) =1 for £> 0 and u,(¢) =0 for £ < — 1, We define
a function E(p;z) of the real 4-vector p and the com-
plex 4-vector z by :

E(p;z) =uy(p - plug(ph)expliz - p). (26)

This function satisfies E(p;z)=exp(iz-p) forpe v,.
It is easily seen that for any z € V,; the function E(p;z),
as a function of p, is included in § (RY. Furthermore,
if fe S(R“"), then the function f, with the Fourier
transform

FACTRRN =E(P;Z).7(P1) ceesba)y b= ‘.le,, @7

is, as é__function of (xy,...,%,), included in §(R*) for
any z € V,;. Now (25a) holds trivially, and it follows
that (25¢) holds.

‘The next l-emma can be regarded as a generalization
of the preceding lemma. -

Lemma 3: Let T, be the open tube region in 4n-
dimensional complex space C*", regarded as the direct
sum of n replicas of complex Minkowski space, which
is defined by '

CTa= gy sz |zee Vi, k=1,... 0 o (28)

Let {folfic S(RY), k=1,...,n} be any n-tuplet of test
functions. Then we have the {6llowing:

(a) The vector
(zb sasy zn)
=T(z) o[ il T 22}l f2]* + * T(z,.)fp[f..] ' (29)

is well defined (through successive left mu1t1p11cat10ns)
for all (z¢,...,z,)€ T, and v

3(?1,..,, n)'-‘P{f}Q) o . o (303.) _

where f=f(%(,...,%5;21,...,2,) is the function whose

. Fourier transform with respect to the variables

(Xgyeansxy) is g1ven by

Foue iz = fA00E(Spin) o

and where E( p,z) is the function defined in (26),

(b) The vector-valued function B(zy,...,2,) of -
(zy,...,2,) is strongly continuous on the closed tube

" T,, and analytic on the open tube T,.

J.J. Bisognano and E.H. Wichmann 988
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Proof: (1) The assertions in part (a) follow tnvmlly
from Lemma 2, by 1nduct10n on n,

{2) The proof that 8 is strongly continuous on T, re-
quires an examination of the function 7 given by (30b),
We regard this function as a vector-valued function on
T,, i.e., as a function of (z,,...,2,) with range in
‘$(R").. In view of the simple nature of the function
E(p;z), as given by (26), it is now easily shown that f
is continuous on 7T, in the sense of the test function
space topology; since this topology is invariant under
the Fourier transform the same holds for f, regarded
as an §(R*)-valued function on T,. It follows, in view
of the assumption expressed in (1 5), that 8 is strongly
~ continuous as asserted.

(3) Since 8 is strongly continuous on f‘,, it follows that

B is bounded on any closed polydisc contained in 7,, To -’
- show that B is analytic on T, it therefore suifices to

show that the function (5! B(zy, ..., 2,)) is analytic in
each complex 4-vector z, separately for each'n in a
dense set of vectors in the Hilbert space. We select D,
as the dense set and we then have, for k=1,...,n,
MBlzyy...,2,)) =1 T(2)E,), with &, &, independent of
2. This scalar product is trivially analytic for z,€ V,,,
which establishes the second assertion in part (b).

We are specifically interested in vectors of the form
shown in (29), but it is worth noting that the lemma has

' _an obvious generalization, in which the operators ¢[f,]

in (29) are replaced by arbitrary operators X, P(#).

‘We next consider an almost trivial extension of the
theorem of Reeh and Schlieder, 1? which will be needed
later, ‘

Lemma 4: Let {R,In=1, ...} be any set of open,
nonempty subsets of Minkowski space. For such a set,

and for any n=>1, let S, denote the linear span of all
vectors of the form

v=vlfilol Al - - wlf )0 ‘
with f, € S(RY), supp(f,) C Ry, for k=1,...,n.

Then the linear span of the vacuum vector  and the
union of all the linear manifolds S, is dense in the Hil-

(31)

bert space f/f,

This version differs from the origiml formulation

_only in the circumstance that the regions R, need not .~
all be the same. We feel justified in omitting the proof

since it requires only a very minor modification of the
proof in the case of equal regions,. as presented in the

monograph of Streater and Wightman, ** The lemma can
also easily be proved on the basis of Lemma 3.

- We next consider an interesting family of vector- ‘
valued functions on T, discussed by Jost. !°

Lemma 5: (a) For each n> 1, let E, be the set of all
Junctions f(xy,...,%n; 2¢,...,2,) defined for (x,...,x,)
€R"and (zy,...,2,) €T, and such that fe §(R*") and
such that the Fourier transform f of f relative to-the
variables: (xi, .. ,x,,) satisfies the condition

f(Pi,...,Pn,zl,.;., 2,) = exp( i azk-p,) (322)

for all (py,...,Pn) € Va, with V, defined as in (25b). The

set E, is nonempty, and it contains in particular the
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function f; defined in terms of its Fourier transform by '

}{)(pb ' .- !pm 21y '.‘ . ,Z;,) =kI;Il E(rzgipr;zk)

where the function E(p;z) is defined as in (26).

(32p)

. To the set E, corresponds a unique vector-valued
function ¢(zy,...,2,) on T,, defined by

¢lzy, ..., 2 = ol S}

where f is any element of E,.

(32c) |

.(b) The vector-valued function ¢(zy,...,2,) is strong-

1y continuous on T,

() Let {fxlf,€N(RY, k=1,...,n} be any n-tuplet of
test functions of compact support. Then for any

T2y, .52 €T,
f(é)d‘i(ﬁﬁ) tee d4("n)f1(x1)f2 (xg) =« « fulx,) _
X (zq + Xy, 29+ Xy Xy, 234 Xy = X, ey ZptXp—Xpy)
= T(Zi)(ﬂ[fi]T(Zz})(P[fz] - T(z) ol fal0 (33)

where the integral at left exists as a vector-valued
Riemann integral relative to the strong topology for /.

Proof: (1) The function f, trivially satisfies (32a).

. That it is included in §(R*), as a function of (x,...,%,),

for any (zy,...,2,) € Ty, follows readily from the fact
that E(p;z) € §(RY), for any z € V,;. That the vector at

,rlght in (32c) is the same for all f€ E, follows from the

fact that this vector depends only on the restriction of

f to V,. : .
(2) That the function ¢ is strongly continuous on T, is

easily established through an examination of the prop-

_erties of the function f;, as defined in (32b). The con-

{¢) For any (zy,...,2

siderations are the same as in the prQof of the strong
continuity of the vector B in Lemma 3, and in fact some-
what simpler since (2j,...,z2,) is now restri(,trxd to the

- open tube T',.

(3) The amsertion about the integral in (33) is now -
trivial, and the identity follows from a well-known con-
volution theorem for tempered distributions, ¥ We note
that the restriction that the functions f, be of compact
support is in fact unnecessary, but since we shall only
require the lemma as staled, we gelected this version
in order to make the matter completely trivial,

We conclude this section by a statement of some
well-known facts about the vector-valued functions ¢,
which will be of crucial 1mportance in our subsequent .
discussion, o

Lemma 6: (a) The vector-valued functibn ¢>(21., TeesZn),
defined as in Lemma 5 is an analytic function of
(21, ceey? n) on Tm

(b) For any element A= A(M x) of the Poincaré group
LO!
U(A)¢(21; .o 1zn) ¢(M21 +X, Mz2r MZ3, cvey MZ,,) (34)

z,) € T, the vector #(zy,...,2,) i
an analytic vector for the Lie algebra of the group
U(Lo)

. About the proof: A detailed proof of the assertion (a) '
based on an examination of the properties of the func-

J.J. Bisognano and E.H. Wichmann 989 .
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tion f, defined in (32b) is straightforward but somewhat
cumbersome, For this reason it might be worthwhile to
note that there is a simple proof based on Lemmas 3
and 5, as follows. Let g(x) /) (R%) be such that g(0) =1.
Let A>1, We construct the vector B(zy,...,2,; ) as in
{29), with' f,(x) =A% (xx), for k=1,...,n. This vector- -

_valued function of (z(,...,z,) is an analytic function of
these variables on T,, by Lemma 3. ‘It is easily seen,
in view of (33), and in view of the strong continuity of
¢ on T, that 8(z4,...,2,;)) tends to ¢(z(,...,2,) as A
tends to infinity, uniformly on any closed polydisc con-
tained in T,, and hence ¢ is analytlc on T,.

The assertion {b) of the lemma is trivial, and t_he
assertion (c) follows trivially from (a) and (b).

We finally note that the vector ¢ 'might be written as v
1.y 22) = QR1)PE 1+ 20) - @2y + 2+ +2)0 (35)

- This formula has a proper interpretation within dis-

 tribution theory, but it is here offered for heuristic

purposes only.

iv. COMPLEX LORENTZ TRANSFORMATIONS AND
THE INVERSION TRANSFORMATION

‘We define a “right wedge” Wy, and a “left wedge”
W, as the following open subsets of Minkowski space:

WR=.{".|_"'3> |24}, wo={x|*®<-|x¢|} (36)

"These two regions are bounded by two characteristic
.planes whose intersection is the 2-plane {x|x*=x*=0}.

For any subset R of Minkowski space /)f we define the

causal complement R° of R by

Re={x|(x~y)  (x—y) <0, allye R},

We note that with this definition Wg°= f{—’L and W,°¢
=Wpg, where the bar denotes the closure. We shall say
that Wy and W, form a complementary pair of wedges,
despite the fact that Wy is not precisely the causal
complement of W, within our definition of this notion, ¥

&)

To the pair of wedges Wy and W; corresponds a

four-dimensional subgroup L,(Wy) =L (W) of the group

VEM namely, the group of all Poincaré transformations

- which map Wy onfo Wy, and W, onto W, 1t is easily

S

seen that this subgroup containsg, and is generated by,
all translations in the 1- and 2-directions, all rotations

- about the 3-axis, and all velocity transformations

V(es, t) in the 3-direction. We consider the one-param-

- eter Abelian subgroup {V(e;, #)1#< R!} of these velocity

transformations, where V(ey, ) is.the four-by-four

- . Lorentz matrix given in (1) in Sec. L. To V(e;, t) cor-

responds the unitary operator U(V(e,, £),0), which we -

. shall also denote by the shorter symbol V(f), since it

will play an important role in our discussion. By

Stone’s theorem there exists a unique self-ad]mnt opera-.

tor (K3, Dy) such that
V(t)=U(V(e,, t), 0)=exp(- ZtKa)» all real £

We shall consider the analytic continuation of the
function V{(f) to the complex plane. It is well known that.

@ 8)

to any self-adjoint operator (K3, D) corresponds a

representation T— exp(-i7K;) = V{7) of the additive

j group of all complex numbers 7 by {in general unbound-
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- number, We shall write

I 4

ed) operators. These oper'ltors have the common spec-
tral resolution

»V(T)=eXp(—viTlK.3)=j\ exp(~irs)uk(ds) (39) -

where i is the spectral measure in the spectral
resolution of the operator (K, Dg), The domain of the
closed operators V{r) depends only on Im(7). Hence,
for any T=p+iX, with p, A real, let D,(2) be the linear
manifold such that the operator (V(7),Dy(3)) is closed
and normal. The domam D,(A) is given by

Dy(N) =1+ VEN)Y

for any real A,

(40)

Let A#0 be real, Then D,()\) is a core for all opera-
tors (V(7), D,(Im(7))) such that 0 <Im(7)/A<1. If
pe Dy(r), then the vector-valued function V(7)}¢ of 7 is
well defined, strongly continuous and bounded on the
closed strip 0 <Im(7)/A <1, and an analytic function of
"t on the interior of this strip.

Common cores exist for the operators V(7). For
later reference we state as a lemma some well-known
facts about a particular family of such cores.

* Lemma 7: (a) Let c(s)eH(RY), and let the bounded
operator c(K;) be defined by

cly) = [ c(s)uxds).
. Then c(K3)4 < D,(A) for all real A. The function
exp(~i7s)c(s) is also in /) (R!) for any complex 7, and
V(r)e (K5) = [ exp(~iTs)c(s)ux(ds). 42)

' The operator-valued function V(7)c(Kj) is a bounded
operator for every complex 7, and it is an entire analy-
tic function of 7 in the sense of the uniform topology.

(41)

~ (b) Let D be any dense linear manifold, and let the
linear manifold I, be defined by

D, =spanfc(K3)D]c(s) e H(RH} (43a)
Thenll)c is dense, and a cove for every operator
(V(1), D, (Im(1))}, i.e., D D, {Im(7)) and
(V(3), DY** = (V(7), Dy (Im(m)). (43b)
(c) 1t c(s) e (R'), then C(Kg) is also given by
c(iy) = [ atc#)vit) (44a)

where &(f) is the Fourier transform of c{s) defined by

=5 f ds exp(its)c(s). (44b)

We shall next consider the action of the complex vel-
ocity transformation V(1) on the vectors ¢(zq,...,z2,)
introduced in Lemma 5. We first note that the matrix-
valued function V(es, ¢), defined in (1) in Sec. I, is an
entire analytic function of £, Let z=x+7y, x and y real,
be any complex 4-vector, and let 7 be any complex

z(1)=V(e;, T)z (45a)

and"we then have, for T=i),

2LEN) =xt +iyl, 22(in) =22 +iy?,

"J.J. Bisognano and E.H. Wichmann 990



- =GN, ...,
-¢(Z(,. 4

vector ¢(zy,..
relation (46) holds for all A€ (- /2, 0).

‘inspection of the explicit formulas (45b),
" seen that if z =x +7y is a complex four-vector such that

. €D, the functionf,()\) (VEN ' plzy, ..

 the function f,(A) on N by fo(A) ={nl(z,GN),...
" ‘By Lemma 6 we have fi(}) =f,{1) for i in some real

-

Loy va 3y

3(17\) (x"cos(k) y sm(h))u(y cos(h)+x sin(2)),

i

(45b)

A(02) = (4 cos () — ¥ sin(W) +i(y* cos(n) + #° sin(V).

We have written the explicit transformation formulas

'in the above form because we are particularly interest-
ed in the case of a real'}, i.e.,
“imaginary velocity transformation. We can now state

the case of a pure

the following:

Lemma 8: Let (24,...,2,) be an n-tuplet of complex '
4-vectors z, =x, +1y,, where Xy, Vi, Teal, y,, =9,2=0,
¥t > 19,°), for k=1,. ‘

(@) Hx,€ Wq (e, x, >lx,,4l), for k=1,...,n, then
z,(iN) € T, for all x€ [0,7/2]. The vector
») is in the domain D,,(Tr/z), and

VEN (2, . . n) ¢>(zl(z>~)

for all A€ [0, 1r/2]
®) Ex,cW, (i.e., x2<—1x1), for k=1,...,n,

then (z,(22), .. “+Zn E\))e T, for all A€ [~7/2,0). The
., 2,) is in the domain D (- n/z), and the

Proof: (1) We consider the assertions in part (a). By
it is easily
then Im(z(ér))-€ V, for

y=92=0, y'> 193, and x3> |¥¢],

“all agfo, 71/_2]. Hence, in view of the stated conditions

on (zy,...,2,), we have (z,GN),...,2,())) €T, for all
A on the closed interval, with T} defined as in Lemma 3.

. Since T, is open there exists a connected open neighbor-

hood N (in'the complex A-plane) of the closed segment
{0, 7/2) such that (z,(i)),...,2,())e.T, for A€ N, and
hence the vector ¢(z,(ir),. .. ,2,())) is well defined for
A€ N, By Lemma 6 this vector, regarded as a function
of A, is an analytic function on N, '

(2) Let D, be defined as in (43a), with D= /. For any
2,0 18 an
entire analytic function of A, by Lemma 7. We define

s Z,,(i)\)».

neighborhood of A=0, and it follows that f;(3) =f,(A} on
N, Since this holds for any n€ D,, and since D, is a

- core for every (V(1), D,(Im(7)}), it follows tlmt

. ‘¢(21,...

z,) € Dy(Im(ir)) for Ae N, and that (46) holds
for all xe N, This proves the assertlons in part (a).

__ (3) The assertions in part (b) are proved in an entire-

1y analogous fashion.

* We next consider an involutory mappmg x— 9 % of
Minkowski ‘space onto itself, defmed by

9x%==Rleg,m)x or ¢ (!, %%, x ,x‘)-(x‘,xz, -x%, = x4 |
| ' @n

where R(e;, 7) denotes the rotation b'y angle 7 about the
3-axis. We see that ¢ maps Wy onto W, and the map-

‘ping can be descrxbed as a reflection in the common
“edge” {x1x3 =x¢

=0} of the pair of wedges Wy and Wy,
By inspection of (45b) we see that - :
g=Viegin) @
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and " thisgciré%mstance suggests the heuristic idea that
something akin to VEm)e(x)V(in)™ = ¢( ¢ x) might hold.
This formula is, of course, pure nonsense as it stands,
but in the following we shall establish some facts which
in a sense reflect the above heuristic idea.

‘Lemma 9: Let (xy,...,%,) be such that x, € Wy for
k=1,,..,n. Let v be the real forward timelike 4-vector

" with components v=(0,0,0,1), and let ¢ be a real

) e

_set of Wy, and let xy&

var iable Then

s-lim V(zw/2)¢(x1+ztv xq +itv, . ..,x"+ilv)

t =0+

=s-1im V(- z1r/2)¢(9x1 +ztv,g22 +itv,. .. ,gx,,ﬂ'tv)
t=0+ .

=¢(Z!.,¢..,Zn) o (49)
S ROV PR R 1 . . '
where z, = (x,°, x,°,ix,°, ix,%), for k=1,...,n.

Proof: By Lemma 8, part (a), we have, for t>0,

Vn/2)o(xy +ity, .. Barit) =0, .. 20 (50a)
~where » , _
2l =20(t) =2, ~(0,0,%,0), fork=1,.. (50D) .

Since (x,€ W, if x,€ Wy, we similarly have, by part

'(b) of Lemma 8, for any t> 0,

V(—m/2)¢(09x,+ztv, s % +itv) = ¢(z1, L2l

(50¢)

with S

2y —zk(t) -2, +(0,0,¢,0), fork=1,. (504)
We note that (z{,...,20)€T,, and (21 soes ,z,’,’) eT,

for all real t, and it follows from Lemma 5 tha} the vec-
tors at right in (502) and (50c) have well-defined strong
limits as { tends to zero. The equalities in (49) then
follow from (50b) and (504).

Lemma 10: Let R, be a boiinded, open, nonempty sub-
W W, be sach that (x - x) € W, for
all x& Ry, For any lnteger 1> 1 we define the set R, by

Ry={x+(-Ux|reR} (51)

{a) Then R,,C Wy for all n, and if n> k, then {(x'-x")
€ Wgfor all x'€ R,, 8" € R,. In particular, R, is space-
like separated from R, (l.e., R,CR°) if n#k,

(b Let {f,Ik=1,...,n} be an n—tuplet of test functlons
such that f, € S(R%) and supp(f,) CR,, for k=1,
Let f,’ denote the test function defined by f,,’ (x) fk( gx)
Let c(s)€D(R'). Then .

veme®olfloln) - elfle
=c(Ky) ol 1ol /1] + + o[ £150. o (52)

" Proof: (1) The assertions in part (a) are trivial, and
need not be proved here.

(2) Let v=(0,0,0,1). We consider the string of
equalities: :

Vin/2eE)olflolh] - olfle |
= s-hm V(in/2)c (Ko TGtv) o[ £,]T ztv)<p[ fg] - T(itv)

X. <p[f..]fz
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= S:E;In V(in/2)c(K;) ﬁ;),, d{y,) D d‘(‘nVé‘é‘x)f&z) I L) 2

X @ity +31, TV + X5 = X1, 1V + Xy — Xgy o oo, TO+ Xy = Xy y)

"f(,o)dd(xi) . d4(xnf1(xlf2(x2) 'fn(xn) .
Xs-llm Viin/2)c(K;) : '

X PEty + 20, TtV + X9 —~ X1, L0V + X3~ Xy, « o « 4 21V +x;, - Xnot)
* dd(xn)flj(xl)fzj(x2)i' * '.fnl(xn)
Xs-lim V(-in/2)c(K;)

X@@ty +20, 80 + x9 = x1, itV + x5 = X3, . .

IV t X — X y)
_ =s;}§m'V(- in/2)c (K3) T(itv) ' '
x o[’ 1TCt0) o[ £']- - - TGtv)o[ f,]2

=Vi~in/cE)olfi'lol ]~ olil2. 63

That the first member in (53) is equal to the second
member, and that the last member is equal to the next

to the last member, follows from Lemma 3 (i.e., from .

the strong continuity of the function there denoted B},
and from the fact that the operators V{in/2)c (K3) and
V(~in/2)c(K,) are bounded. That the second member is .
equal to the third member follows from the formula

- (33) in Lemma 5. In view of the properties of the inte-
grand in the third member which follow from the facts

" stated in Lemma 9, and from the nature of the functions
f3, it is permissible to let the bounded operator’
V(in/2)c(K,) act on the integrand, and to take the strong
limit before integration. We note that the relationships
between the supports of the function f,, as expressed in
the assertions (a) of the present lemma, are essential
at this step. Because of these relationships the argu-
ments of the function ¢ appearing in the integrand
satisfy the premises of Lemma 9, which is thus applica-

" ble. The third and the fourth members are thus equal,

In a similar fashion we conclude that the fifth and the
sixth members are equal. The equality of the fourth,
and the fifth members follows from Lemtna . (Note the
trivial change in integration variables),

" (3) We finally note that the vector in (53) is in the do-
main of (V(En/2), Dy(7/2)), and if we multiply the first
and the last members in the string by this operator we -
obtain (52). ’

It should be noted that the condition that the field be
local has played no roleé in our discussion so far, and in

- particular the formula (52) does not depend on the as-

sumption of locality. We shall now consider some addi-

- tional conclusions which can be drawn if we take into
account the locality condition (16),

From the work of Jost?? it is well known that in a
local field theory based on our general assumptions
there exists an antiunitary involution ©;, which can be
interpreted physically as an inversion transformation,
or TCP-transformation (with respect to the origin in
Minkowski space). This operator satisfies the conditions

©2=1, ©,Q=Q, ©UM,x)0,=UM,~-x), . (54a)

and
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§00l#)0, = 0(- %), . (54b)
where the last relation refers specxﬁcally to the case of
a Herm1t1an scalar field. :

We shall introduce another antiunitary involution J,
defined by

J=U(R(ey, 1), 0)0, =0, U(R(e;, m),0) . (55)

where, as before, R(e;, ) denotes the rotation by angle
m about the 3-axis. It is easily seen that

J=1, JQ=Q, JUM,x)J=U( 9Mq,gx) (56a)
where ¢ is defined in (47). Furthermore, JD{=Dy, and
Jo[f17=[f']* on D, ' ~ (56b)

o fbr any fe §(RY), and where f’(x)»:f(ﬂx).

We consider the third relation in (56a) for the case of
a (real) velocity transformation in the 3-direction. We
have’

JV@®J=V({), allrealt. — - | (57a)

From this relation, and from the fact that J is an
- antiunitary involution, we readily conclude that

IDy=Dy, J(Es Dl == (Ky Dy), ~ (570)
IDy(N) =Dy{= ), J(V(7), Dy = (V(1%), Dy~ 1)
(57¢c)

for any complex 7=p+i), p and A real,

As the formula (52) suggests, the complex velocity
transformations V{ir) and V(~in) will be of particular
interest. We shall employ the special notation

D,=Dy(1), D.=Dy(~m) (58)

for the domains of these operators, and (V(ir), D,) and
(V(-im),D.) are thus self-adjoint, We then have

D,=JD_=V(~imD_,, D._ =JD,=V@EmD,, (59a)

~and

J(V("'"): D»)J"‘ (_V(" iﬂ) ] D-)r
J(V(=in), D) =(V(n),D.). (59b) .~

The antiunitary involution J can be regarded as asso~-
clated with the pair of wedges W, and Wy, or, if we
like, with their common “edge,” whereas the involution

. 6, is associated with a point, the origin of Minkowski

space. J is the Hilbert space object corresponding to
the involution ¢ on Minkowski space, as revealed by
(56b). We note that if supp(f)C Wy, then supp(f/)c Wy,
and vice versa. Conjugation with J thus maps operators

" locally associated with the right wedge Wy into opera-

tors locally associated with the left wedge WL We also

note that

JUM=UM), alAeL(Wg), (60)

where Zo(WR) is the groﬁp of all Poincaré transforma-
tions which map Wy onfo Wp,

We shall next consider an extension of Lemma 10
which incorporates the condition that the field be local.

Lemma 11: Let {R;in=1,..., =} be a fixed set of

- bounded,. open, nonempty subsets of Wy, constructed as

4.4, Bisognano and E.H. Wichmana 992
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in Lemma 10, Let Q0 be the linear span of the identity
operator I and all operators (@, D;) of the form

. Q=elAlelf)---0lf] -~ . o (61)
where{fklk-l,

y ,n} is any n-tuplet of test functmns
such that f, € 5(R4) and supp(f,) CR,, for k=1,..
Then: ‘

(a) The linear mamfold D =0Q is dense in the Hilbert
space #/, and D,c—span{c(Ka)D lc(s)e DRV} is a core

~ for every operator (V(7), Dy(Im(7))).

‘() (@*,D)eQ if @,D)€Q.
(c) If (Q,Dl).c—:Q and c(s) € H(R!), then
VincEK)QR =c(K)IQ Q. .62
Proof: (1) The assertions (a) follow directly from

"Lemmas 4 and 7.

(2) The assertion (b) is trivial if Q is a multiple of L
I Q is of the special form (61) we have

=olfal- ol A" 1ol A1'] -

=olfi"lelA']--- o], (63)
where the second member is equal to the third in view of
the locality condition (16), and in view of the relation-
ships between the supports of the functions f,,, as stated
in part (a) of Lemma 10. Since (@*, D) = (@' Di), we see
that (Q*, Dy) €.

(3) The relation (62) is trivial if Q is a multiple of L
For Q of the special form (61) we have, in view of (63),

I = o f'lel ']+ - - ol f?]. (64)
Since Q*Q =Q'Q the relation (62) then follows from

(64) and from (52) in Lemma 10, This, in effect, proves
the assertion (c). .

To an n-tuplet (x4,...,%,) such that x, € R, for k
= 1, «..y 1, corresponds the n-tuplet (x|, x93 — %y,
= X354 Xp—Xaq), Which i8 a so-called Jost poin
We note here that there is a very close connection be-
tween our considerations and Jost’s beautiful proof of
the TCP-theorem. ¥ In a sense the key point is the fact

o

- that the complex Lorentz transformations V(e,,i)), for

Ar€ (0, ), map the wedge region Wy into the forward
imaginary tube V,;. This fact, and the associated con-

‘rection between complex Lorentz transformations and

the inversion transformation, were dlscovered by Jost,
and form the basis of his proof.

~ We are now in a position to state and prove the key
theorem. For the definition of the algebras P(Wg) and
P(W;) we refer to our general definition [in Sec. II,
immediately following Eq. (15)] of the algebra P(R), for
any open RC /). The algebra P(Wy), respectively the
algebra P(W;.), can be regarded as consisting of field
operators locally associated with the wedge reglon Wa,
respectively the region W,

Theorem 1: (a) The algebras (Wy) and P(W,) are *-

‘ algebras with the antﬂmear involution (X Dl) - {X*, D,).

They commute on Dy, i.e., . ‘
Ix, Y]zp=o ' o . (65)
for all p€ Dy and for all X & P(Wy), Y& P(W)).
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(b) The va_cuﬁm vector Q is cyclic and separating for
both P{Wg) and (W) ‘

{c) With V(t)= U(V(es, £),0) (a veloc1ty transformation

in the 3-direction),

VIOP(WR V() = P(Wy), V(t)P(WL)V(t)“=P(WL) (66) .

for all real {, and with J defined by (55),
IP(WR) = P(Wy). ' ‘ (67)
' (d) With D, and D_ defined as in (58),
PWRRcD, PW)RCD.. , (68a)
For any X & P(Wpg)

V{EmMXQ =JX*Q ‘ (68b)

and for any Y e (W) .
V(- imYQ=Jr*Q, - (68c)
(e) The condition
CeXQ=X*Q, all X P(Wg), (69a)

defines an antilinear operator (Cjy, P(We)), and the
condition .

C,YQ=Y*Q, all Y& P(W,),  (69b)
defines an antilinear operator (Cj, P(W;)R).
These two oberators satisfy the relations

(Cr, P(WRIQ)** = (Cy, P(W)Q)* = (JV(m), D.), (69¢)

(Cy, P(WLQY** = (Cr, P(WRQ* = (JV(-im),D.). (69d)

Proof: (1) The assertions (a) and (¢) are trivial, That
£ is a cyclic vector for the algebras follows from the
Reeh—Schlieder theorem. That Q is separating for
P(Wg) follows readily. from the commutation relation

. (65), and from the fact that Q is cyclic for P(W;). Ina

similar manner we conclude that 2 is separ ating for
P(Wg). 2

(2) We now consider the assertions (d) and {e). We
note that our formulation is tautological in the sense
that the assertions (d) are trivially implied by the as-
sertions. (e). We presented the malter in this manner
because we wanted the relations (6811) and (68¢) to stand
out as clearly as posslble :

For didactic reasons we shall first prove the asser-
tions (d), independently of the considerations in (e). Let
a set @ of operators, and a domain D, be constructed
exactly as in Lemma 11, We note that Q C 2(Wg).

Let @0, X P(Wp), and c(s)€/)(R!). We introduce

" the integral representation (44) of the operator C(Kg),

and we note that

c*(—Ky) = [ T dicx ) V(e) 3 (102)

where ¢(t) is given by (44b),
We consider the following string of equalities:
(XQ| ViEmc(K;)Q9) , ’
=(XQ|c(Ky)TQ*) =(XQ|Jc* (- K5)Q*R)
(e (- K@l axe)
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tor V()QTV (1)

g 0 v« 3 01 2
= _]_:dlE(t)(V(t)Q*V(t)"Q!(JXJ)Q) '
= [ Tarc X WxI Q| V(HQV()1Q)

=(IX*Q|c(K)QQ. (70b)
The first two members are equal in view of (62} in

Lemma 11. The equality of the second and the third

members follows from (57b), and since J is an anti-

. unitary involution these expressions are equal to the

fourth member, The equality of the fourth and {ifth
members follows from (70a). The integrands in the

fifth and sixth members are equal because the opera-

€ P(Wg) commutes with the operator

JXJ e P(W,) on Dy. The equality of the last two members
follows from (44a).

In view of the construction of the domain D,, we con-
clude from (70b) that if 7 is any vector in D, then

xe|vemm =@xe|n. (70c)

Since D, is a core for (V(iw),D,) (by Lemma 11}, it
follows from (70c) that XQ<€ D,, and that (68b) holds,

The relation (68c) and the second relation in {68a)

_ then follows trivially from (67) and (59b).

(3) The assertions (e) involve antilinear operators, -
and since the theory of such operators might appear
less familiar than the theory of linear operators we -
shall make a few remarks about the subject. Let (4,D,)
be an antilinear operator, defined on a dense domain

. ‘The adjoint {4, D,)* = (4*,D,*) of (A, D,) is defined as
follows. A vector 7 is in the domain D,* of the adjoint
if and only if there exists a vector ¢{n) such that (n|AE)
={¢1¢(n)) for every £ < D,. The operator A* on D,* is
then defined by A*n={(n), and it is also antilinear. The
operator (A, D,) is closable if and only if its adjoint is
densely defined, and if it is closable its closure
(A, D,)** is the adjoint of the adjoint (A*,D,*), The
properties of an antilinear operator (4,D,) can be con-
veniently studied in terms of the lineay operator
(L,D,) = A, D,)=dy(4, D,), where J, is an arbitrary
antiunitary operator. We then have (4, D,)* = (L*J,,
Jy'D(L*)). The operator {4, D,) is closable if and only
if (L,D,) is closable, and if it is closable, then (4,.D,)**
-J“(L D,)**. The well-known polar decomposition
theorem for linear operators has a counterpart for anti-

linear operators, as we easily see in view of the above.

We note that the formulas (69c) and (69d) explicitly de-

- scribe the polar decompositions of the adjoints and

closures of the “adjointing operators” Cprand Cj, de-
fined by (69a) and {69b).

- (4) After this digression we consider the assertions
(e) It follows at once from the definition {69a), and
from (68b) that

Vvim, D,)>(Cp, P(WR)Q), (T1a)

and if we ta.ke the closures of both members in (71a) we
obtain -

" (JVGn),D,) D (Cp, p(WR)'sz)** (71b)

since (V(in),D,) is. self—ad]omt and (JV(nr), D,) therefore -

is closed.

994 J. Math. Phys., Vol. 18, No. 4, April 1976

i

8

We shall now show that

(Cr, P(WRQ)** D (JV(ir), D,,). (71c)
Let 1 be any vector in the domain of {C g, P(W5) Q)*,
Let Q& Q, and c(s) cH(RY). We again introduce the in-
tegral representation (44) for the operator ¢(K3), and

we consider the string of equalities:

{Cr*n|cEs) QD

= [2 até)(Cyrnl Vi Q Vie)

= [Zatéevy @ vyt eln
=(c*(= K;) @*@ ) =(JV(im) c (i) Q).

The equality-of the second and third members follows -
from the fact that V{#) QV(£)"'Q is in the domain of the
antilinear operator (Cg, P(Wg)Q). The reasoning behind
the other steps is similar to the reasoning in (2) above,
In view of the construction of the domain D, the equah-

" ties (71d) imply (71c).

Since D,, is a core for (V(in), D,), we have

@V (im), D) = (JV@ET), D )** (71e)
and it follows from (71b) and (71e) that

(Cr, P(WQQY*=(IVGn), D). (719)
The analogous relation _

(Cy, P(W)Q)** = (JV(=in), D) (71g)

is most easily proved by considering the conjugation of

both members in (71f) by J. The remaining relations in

(69c) and (69d) follow trivially from (71f) and (71g), and

from the relation o
(IV(in), D,)* = (JV(~in), D).

This completes the proof of the theorem, We conclude
this section with soine remarks which we hope will
further clarify the situation, :

{71h)

Concerning the relations (69¢) and (69d) we note the

' following. If we are given two algebras, denoted (W)

and /3(“ ), which satisfy the conditions (a) and (b), and’
thie relation (67), of Theorem 1 (for some antiunitary
involutlon J), and if we defline the “adjointing operators”

Crand € by (69a) and (69b), then it can be shown that
these antilinear operators are closo.ble, and that

(€s, p(WL)ﬂ)* > (Ch, P(WR)Q)**

it cannot be concluded that the inclusion in

(72)

However,

_(72) can be replaced by equality. We can see this as

follows (within the framework of quantum field theory).
Suppose that the two algebras had been defined
“wrongly” in such a way *hat they were actually equal to
two algebras which in our notation are written as P(Wg),
respectively (W}), where W} =( Wy, and where W% is’

-a wedge properly included in Wy, and obtained from.

Wy through a translation. The conditions (a) and (b),
and the relation (67), of Theorem 1 would then be
satisfied, and the relation {72) would hold. The two

‘members in (72) are, however, not equal, because the

“wrong” algebras are “too small. ” It is significant that
the “wrong” algebras, constructed as above, also do not
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satisfy the relations (66), which say that the algebras -

. are invariant under all velocity transformations V().

", As the above considerations indicate, it is easy to

construct a large set of distincl closed extensions of

- (Cg, P(WR)R). Let Wy be any wedge obtained by a trans-

lation of Wy, and such that Wi D Wy We define the
operator (Cg, P(W2)R) in analogy with (69a), and we then
have (C%, P(WR) D (C g, P(WRR), with a corresponding
inclusion relation for the closures. It is ea511y seen that
the closures are distinct if Wg# We.

Lemma 11 states facts about the field operators which
are of erucial importance in the proof of Theorem 1.
However, if we consider the role played by this lemma
in the proof, it might seem miraculous that one can
draw general conclusions about all the operators in
P(Wg) from the properties of operators in a particular
set Q which are locally associated with a family of .
regions {R ln=1,... °°} which does not cover Wg. Now
it should be noted that the construction of the domain
D, involves operators in V(t)O V(t)!, for any real £, but
it is still the case that the set of regions { V{e;, t)R, l
n=1,...,%,t€ R!} does not cover Wy either. A closer
examination of this issue reveals that the “potency” o
the set Q ultimately depends on the geometrical fact
that if x is any point of Wy, then {V(e;, t)x|te R'}* = W,,
where the superscript cc denotes the causal complement
of the causal complement,

Finally, we note that since Q C P(Wp) it follows, in
view of (68b) in Theorem 1, that the factor c({K4) in both
members of (62) in Lemma 11 is in fact “unnecessary”:
The relation also makes sense if c(K;) is replaced by 1,
We introduced this factor in order to have simple proofs
of Lemmas 10 and 11,

V. ON SOME ALGEBRAIC QUESTIONS CONNECTED
WITH THEOREM 1,

This section is a mathematical preliminary to our
discussion of physical duality conditions in the next sec-
tion, The questions which we shall discuss are related
to the issues of Theorem 1, although one might say that

- we are here more concerned with the properties of the

triplet (R, J, K;) than with the quantum fields,

We shall first be concerned with the characterization

- .of operators in general (bounded or unbounded) which

satis{y relations such as (68b) and (68c) in Theorem 1,

_ Lemma 12: Let (/(Wp) be the set of all closable opera-
tors (X, D(X)) such that QCD(X) n D(X*), and such that
XQeD,and |

V(m)xsz JX*Q, - T (130)

Let [/(W,) be the set of all closable operators
(¥, D(Y)), such that QCD(Y)(‘! D(¥*), and such that

YQeD_and

V(-im¥YQ=JY*Q." : : Do (’f3b)"

Then:

(a) (X, DY = (X*, DX*)) & (W) it (X, DX)) € /(W)
and (¥, D(Y))* = (¥*, D(Y*)) € (/(W,) i (¥, D(Y)) € /(W)
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TUYWRT =U(Wy), YW =l (Wg), (74)

e, (X, D(X))CU(WR) if and only if (JXJ, JD(X))

ey (WL)
() ' _ -
VIO (WRVE) T =(/(Wg), VO (WIV(E)=((Wy)
‘ ' ' (75)
for all real ¢.

(d) Let //,{Wg) denote the set of all bounded opera.ltors
in //(Wg), and let (/,(W,) denote the set of all bounded
operators in {/(W.). Then

Ub(WR)Q :U(WR)Q =Dn Ub(WL)Q =U(WL)9 =D, (76)

' (e) The relation

(x*a|re) =(r*a|xe) . an

holds for all operators (X, D(X))e[/(WR), (v, D(Y))
el (W)

If a closable operator (X, D(X)) is such that @ € D(X)
N D(X*), then (X, D(X))< /(W) if and only if (77) holds
for all (Y,D(Y))e(/(W,).

If a closable operator (¥, D(Y)) is such that QED(Y)

- ND(Y*), then (Y, D(Y)) € //(W,) if and only if (77) holds

for all (X, D(X)) € {/(Wp).
® . o

PWe) (W), PW)CU(W). (78)

Proof: (1) The assertions (a) aﬁd (b) are trivial if we

take into account the relations (59a) and (59b), The as-
gertion (c) is completely trivial.

(2) We prove the assertions (d) by exhibiting explicit
mappings of D, into //,(Wy) and of D, into //,{W,). For
any £ D,, let the bounded operator Z,(£) be defined by

Cz®) = odal « [oavEme| (el o laxel.  (19)

If we note that (&) =(JV(in)£I1Q), we easily see that
the mapping £ — Z,(£) is a linear mapping of D, into
{1y(Wg) such that _ _

Z(£)Q=¢t, Z()*Q=JVEmE (79b)

This proves the equalities at left in (76). The equali-
ties at right in (76) are proved in a similar manner,
through a consxderatlon of the mapping n—' Z (m, - where
neD_and

z.m=|nXel + |a><qv<- imn| —(alm|axal. - (79c>

(3) We next consider the assertions (e) in the lemma.

| Let (X D(X)) e {/(Wg) and (¥, D(Y)) CU(WL) 1t follows

from the relations (73) that
<x*n| m) (VEMXQ| YR =(V(~ w)stzi YQ)
=(JXQ| V(- in)YQ) =(JXQ|JY*O)
-(Y*Q]XQ) ' {80)
wh1ch proves the formula (77) - '
(4) Now let (X, D(X)) be a closable operator such that
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(Y,D(Y)) €{/(W;) is, in view of part (d) of the lemma,
equivalent to the condition that

(X*Q|ny =(J V(= imn| X0 (81)
for every n€ D_. 1t is easily seen that Eq (81) is
equivalent to the equation

(I | TX*Q) =(VEm)In|XQ). (82)

~ Since JD_=D,, and since (V(in), D,) is self-adjoint,
we conclude that if (81), and hence (82), holds for every
ne€D_, then XQe D,, and (73a) holds ie., X, D{X)) is
in the set //(Wg).

In the same manner we prove the last assertion in
part (e). :

(5) The assertion (f) in the lemma is a paraphrase of
the assertions (d) in Theorem 1. This completes the
proof. :

It should be noted that the sets {/(Wg) and [/(W,) are
not algebras, and in fact not even linear manifolds. The
sets (/,(Wg) and {/,(W,) of bounded operators are not
algebras either, but linear manifolds which are easily
seen to be weakly closed, That an operator X is in-
cluded in one of the sets (/(Wg) or (/(W,) is, in a sense,

not a very restrictive condition: It is only a condition on

the vectors X and X*Q, We found it convenient to in-
troduce these sets since we will be dealing with opera-
tors which have properties such as those considered in
the lemma.

We next consider some criteria for operators to be in
these sets.

- Lemma 13 (a) Let (X, D(X)) be closable, and such
that Q € D(X) N D(X*), Then (X, D(X)) €//(W) if and only
if there exists a set (7 C{/(W,) such that span{(, &} is
a core for (V(-in), D.), and such that the relation

(X*Q|YQ) =(Y*Q|Xx0)
holds for all (¥, D(Y))&(}.

~ (b) Let (¥, D(Y)) be closable, and such that §e D(Y)
ND(Y*). Then (Y,D(Y)) €(/(W,) if and only if there
exists a set (5 C{/(W5) such that span {( R} is a core
for. (V(iw), D,), and such that the relation (83) holds for
all (X, D(X)) € g ,

(c) Let (X, D(X)) be closable, and such that Q¢ D(X)
- N D(X*), Then (X, D(X)) € //(W) if aud only if there
exists a set O, C{/(W,) such that span {0, 9} is dense
- in the Hilbert space #, and - .

(83)

V(t)QLV(t)‘i =01, all real ¢,

and such that the relatlon (83) holds for all (v, D(Y))
EQL 5 .

CoIn partlcular, «x, D(X)) CU(WR) if and only if (83)

- holds for every (Y, D) € /JO(WL) '

(d) Let (¥, D(Y)) be closable, and such that Qe D(Y) -
ND(Y*), Then (Y, D(Y)) €{/(W,) if and only if there
exists a set Q5 C{/(Wg) such that span{Q 0} is dense in

the Hilbert space 4, and _

VQRVE) =Qr, all real #, . (84b)
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Z 2
and such that the relahon (83) holds for all (X,D(X))
€Qr.
In particular, (Y,D(Y)) € //(W,) if and only if (83)
holds for every (X, D;)& PO(WR)

Proof: (1) We consider the assertion (a). In view of
the discussion in step (4) of the proof of the preceding
lemma, we can restate the condition on X as follows:
The relation (82) holds for all n in a core of {(V(-in), D).

" Now, if D’ is a core for (V(~im),D.), then JD’ is a core
for (V(in), D,), and we thus conclude, with reference to
(82), that XQ e D,, and tuat {73a) holds. In an analogous

“manner we prove the assertion (b) in the lemma.

(2) The premises in part (c) of the lemma can be
restated as follows: The relation

TV |IX*Q) =(VEmIV(E)n | X

holds for all r.eal t, and all 7 in the dense set D”
—span{QL Q). Let c(s) €H(RY). In view of (85a) and the
relations (44a) and (44b) we then have

(Je(K)n|Ix*)
= [ D dtE (I V(| IX*Q)
=/ dtc(t)(V(zn)JV(t)n|XQ) (V(zn)Jc(K3)n]XQ) (85b)

for all 7€ D", In view of Lemma 7 the set D/
=span{c(&;)nlc(s) €H(RY), ne D"} is a core for (V(-1in),
D)), and the equality of the first and fourth members
in (85b) then implies, and in step (1) above, that

X, DX)) e ({(Wg).

In particular, these con51derat10ns hold for the case
when 9 = Py (Wy).

The assertions (d) are proved in an analogous manner,

(85a) -

We shall next consider the situation which arises
when a subset of one of the sets //(Wg) or [/(W,) is an
algebra, The followmg lemma is a preliminary fm this
study,

Lemma 14: Let Xy, Xy € {{(Wg) be two hounded opera~-
tors with the property that

CXVX,* V(e (/(Wy), alireal t. (86)
Then -

Proof (1) Let Ye U,,(WL) The conditlon (86) then im-
plies that
(Y| X, V)X, *Q) =(V({E)X, V(z)-‘x,*sz | Y*oy (88a)

for all real £, After a sirﬁplé transformation of the right
member, on the basis of the relations (73a) and (’73b),
we obtain from (88a) the relation

(ve|x, V(t)XZ*SZ) =( V(- t-im)¥YQ| szirif(iy - HX, ).
| o (88b)

(2) In view of the properties of the exponential func-
- tion V(7) =exp(~i7K;) discussed in Sec. I (immediately
preceding Lemma 7), we note that the three vector-

valued functions of 7 given by .
X, V(1) X,*Q, JXZJ Vir - 1)X,9, {(89a) -
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-and
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V(= 7 ~im) YS# : (89b)

- are all well defined and strongly continuous on the

_ closed strip 0 < Im(7) <7 in the complex 7-plane. The

functions in (89a) are strongly analytic functions of 7 on
the corresponding open strip, and the function in (89b)
is a strongly analytic function of T on the open strip
0> Im(7*)>~ . It follows that the functlon f(7) defined
by

- A0 =(¥alx, V(r)xz* )

~{V(- T -i7)YQ [J}fzJV(in ~ X9

is confinuous on the closed strip 0 < Im{7) 7 and an
analytic function of 7 on the open strip 0 <Im(7) <#. By
(88b) we have f{¢)=0 for all real ¢, and it follows that

(89¢)

" f(1) =0 throughout the closed strip. In particular, we

have f(ir) =0, which, in view of (83c) and the relation
(73a), implies that

(YR | X JX,Q) L YQ|JX0TX, 9
for all Ye//,(W,). Since {/,(W.)S is dense in the Hilbert
space // by Lemma 12 the relation (87) follows.:

We shall now consider von Neumann algebras of
bounded operators. If 4 is any set of bounded operators
we denote the commutant of 4 by £, and we write 8" -
for (B')’.

Theorem 2: Let A xC(/(Wg) be 2 von Neumann algebra

~ such that 4 zQ is dense in the Hilbert space #/, and such

Az

that .
VIOARVEY1=A R, all real ¢, (90)

‘Let the von Neumann algebra 4 be deﬁned by AL
=J4 J. Then:

(a) :
AR=IA T =A LU W), |

Ar=dAd =ACl/(Wg). : v (01)
(b) The vector § is cyclic and separating for 4 p and

(c) For any real ¢, -
VIOALVE =4, S 92)

(d) The linear manifold 4 £ is a core for (V(in), D),
and hence also for the antilinear operator (JV(i7), D,),

'The linear manifold 4 . is a core for (V(~ir),D.), E

- and hence also for the antilinear operator (JV(-ir), D).

‘The linear manifold {4 2}n{4.9} is dense in the
Hilbert space //, and a core for the operators (V(ur), D)
and (V(-¢n),D.).

(¢) The von Neumann algebra A p is “maximat” in the

. sense that if 4 is any von Neumann algebra with Q as a -
separating vector, and such that 4;C4, and such that .

V(A V(t)-1 =4 for all real ¢, then 4 =4 . The algebra
Az is “minimal” in the sense that if 4 is a von Neumann

_algebra with Q2 as a cyclic vector, and such that 4 C A4,

~ and such that V(£)4 V()" =4 for all real ¢, then A=Az

' The algebra 4 ¢ is “maximal” and * mlmmal” in the ’
same sense. : :
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éﬁ 1:2 . i- ‘ : N 0 ]
- (1) The von Neumann algebra A 5 is also “maximal

'within {/(Wg)” in the sense that if 4 i8 any von Neumann -
algebra such that /4 ,C A4 C{/(Wz), then A4 =A g

The algebra 4, is “maximal within {/(W.)” in the
analogous sense, -’

P'roof: (1) We note that the premises of Lemma 14 are
satisfied by any two operators in 4. Let Xy, X,, X;€ 4 5.
In view of the 1emma we have the following strmg of
equalities:

TXpT X X5 = X X o T X, Q

= (XWX JX,R = X, I X X9, (93a)
Since, by the premises of the theorem,' the set
{X;91X;€4z} is dense in 4, we conclude that [(JX,J),
X,]=0, for any two X, X, €4 5, and hence we have
JA rJ C/] Re g
(2) The premises of part (d) of Lemma 13 are satis-
fied for any Y € A% with Qr=Ar, and it follows that 4%
Cl/(W.). In view of the conclusion in step (1) above we
thus have :

As =T CARCUYW,). (93b)

(3) Since A g% is dense, the set J/{;;m is also dense,
in view of (93b). The condition (90) implies that

VARV =A%, and hence that V(£)(J4 %)) V()™

=J4»J, for all real ¢, Since it follows from (93b) that
JA T < {{(Wy), we conclude, by the same reasoning as
in step (1) above, that

Ar=IARNT C AR =JA 1T =IA 5. (93¢c)

The relations (91) then follow trivially from (93b) and
(93c). From what has been said we also conclude that
(92) holds.

(4) We prove the assertions (d) on the basis of (92)
and (90). Let c(s)eH(RY), and let XeAg We define the
operator X, by

X,= [ T avnxvie (94a)
where ¢(¢) is given in (44b), We obviously have X, €45

. and furthermore

X Q=c(K)XQ,

We then conclude, in view of Lemma 7, that the
linear manifold D, ={X, Q21X € 44, c(s) € H(R))} is a core
for every operator (V(z), D,(Im(z))).

For every Y€/, and any c(s) €/)(R!), we define Y, ‘
by the integral at right in (94a), with X replaced by Y.
We then have ¥, 6,4 s and ,

(94Db)

Y, =c(&) V2= (VEncE)TTHNR (94c)

" where the second member is equal to the third in view

of (73b). Since JY*JE€ A, and since exp(sm)c(s) €/ (RY),

“we conclude that D, ={Y, Q1Y €4,,c(s) e)(R)}. Since

ARCD, and 4;RCD_, the assertions (d) now follow
trivially from the properties of the manifold D,.

_(5) The vector @ is a cyclic vector for A4 z by the

‘ premises, and also, trivially, a cyclic vector for 4;.

In view of (91) it follows that Q is a separatmg vector

. for bothAR and A4 .
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(6) We next consider the assertion in part (e) of the

theorem. If 4 is any von Neumann algebra with @ as a
separating vector, and such that 4 ,C4, and such that
V() A V()" =4 for all real ¢, then 4’ CA%LC(/(W;), and
Q is a cyclic vector for 4/, and hence for J4'J C{/(Wg).
Furthermore, V()4 'J)V(t)!=J4'J. The von Neumann
algebra J4'J thus satisfies the premises of the present
theorem, and it follows from the already established .
relations (91) that J4J =4, and from this relation it
readily follows that 4 =4, as asserted,

¥

Suppose now that 4 is a von Neumann algebra with Q'
as a cyclic vector, and such that 4/ €45, and such that
V()AV()™ =4 for all real ¢, Then 4 satisfies the
premises of the present theorem. In particular, 4 is
“maximal,” which implies. that 4 =4 ..

In a similar fashion we show that A is “maximal” . -
and “minimal,” »

(7) To prove the assertion (f) we consider the string
of equalities (93a). Suppose that X, X;&€ 4, and suppose
that X, is an element of a von Neumann algebra 4 .such
that /pCA C{{(Wg). It is easily seen that the premises
of Lemma 14 are satisfied by the pair of operators
(X1 X3) and X,, and also by the pair of operators X, and .
" Xp. It follows that the equalities in (93a) also hold in the
~ present case, and we conclude, as in step (1) of the
proof, that JX,J €A%, i.e., JJJCA% It follows that
ACJIAr=Ar, and hence we have 4 =45, as asserted.
~This completes the proof of the theorem.,

It should be noted that this theorem as such has little
to do with the quantum field. It is of physical interest
" only if the algebra A is in some sense “generated” by
field operators in P(Wg). We are not here asserting
that such an algebra 4z actually exists. This 1ssue will

" be discussed in the next section, -

At this point we wish to discuss the relationship be-
tween our consgiderations and the Tomita—Takesaki
theory of modular Hilbert algebras, %% Within the
framework of this theory one is able to draw some
highly interesting conclusions about the structure of
von Neumann algebras. The main theorem (from our
point of view) is due to Tomita, and we shall state the
facts in the following form.

Let 4 be a von Neumann algebra (of operators on a
- separable Hilbert space) which has a cyclic and separat-
ing vector @, and let 4’ denote its cominutant, Then
there exists a unique antiunitary involution J, and a
unique self-adjoint operator (X, DK), whlch satlsfy the
following conditions: '

(a) JR=Q, ReDg, KQ=0; _ (95a)'
o) JAT=A"; o - (95b)
() JDx=Dy, J(K,Dg)J=(-K,Dy); (95¢)
(@) exp(-itK)A exp(itK) =A, o

exp(-itK) A’ exp(tK) = A", (95d)

for all real ¢, and the one-parameter group of unitary '
operators exp(—itK) is thus, acting by conjugation, a
- group of automorphisms of 4 and of 4.

(e) X (C,AQ) is the antilinear operator defined by ..
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3 c‘z{;sz:a*a, Al Xed,

, (95¢)
then _ '
(Jexp(K), D,) = (C, AS)y** - (956)

where D, is the linear mamfold such that (exp(nK) D,)

'is self-adjoint.

'~ We note here that the operator exp(27K) is traditional-
ly denoted by A in papers on the subject: Our notation in
terms of the operator K is specific for this paper, and
motivated by our physical considerations,

The existing proofs of Tomita’s theorem can hardly

" be regarded as trivial. Given the von Neumann algebra

A and the cyclic and separating vector @, the operators
J and A {and also the operator K by 27K =1n(a)] are in

- fact determined through (95f), which describes the polar

decomposition of the closure of the antilinear operator

(C, 4%). With this construction it is easily shown that

the relations (952a) and (95¢) hold, but the relations

. (95b) and (95d) are entirely nontrivial. In this paper we
" do not depend on Tomita’s theorem, but we wanted to
. point out its. relevance to our discussion. In particular

our Theorem 2 is within the purview of the Tomita—
Takesaki theory. In a sense this theorem contains
nothing new, but we wanted to state the facts in this

" form for later reference, and also to prove these facts

in anselementary way directly from the particular set of
premises which arises naturally from our physical con-

‘siderations., In our case the existence of J and K is not

the issue since we are given the triplet (€, J, K;) to
start with, If we now compare the situation described in
Theorem 2 with the situation described in Tomita’s
theorem we see that our operators J and K =Kj; are
precisely the operators which in Tomita’s theorem are

- determined by the algebra A4 =4 p.

Let us also note here that there are similarities be-
tween our discussion of Lemmn 14 and Theorem 2, and
the work of Haag, Hugenholtz, and Winnink,?® and the
work of Kastler, Pool, and Thue Poulsen, ¥

" If we consider Theorem 1 we note some further
analogies with the Tomita—Takesaki theory, although it
should be noted that Theorem 1 concerns unbounded
operators, rather than bounded operators as in Tomita’s

theotemi, The deflnition (692) 18 thus analogous to the

definition (95e) above, ‘and the relation (89¢) is analo-
gous to (95f). The relation (67) has a tenuous connection

“with (95b), but it should be noted that it is not proper.

to regard the algebra P(W,) as the “commutant” of

"P(Wg): These algebras are rather analogous to some
-pair of algebras which generate the algebras 4 and 4’.

The connection between the duality condition in
quantum field theory and Tomita’s theorem has been
discussed previously by Eckmann and Osterwalder, in
their discussion of the duality condition for a free

field. " We shall comment further on this in Sec. VIL

"We conclude th1s secnon w1th an addendum to The-
orem 2.

Lemma 15: Let ,4 & be a von Neumann algebra which
satxsﬁes the premises of Theorem 2. ThenA R and 4z
-J,4 = —A r are factors.
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Proof: That the algebras 4 and /4 ; are factors means
that their centers are equal to the set {cI} of all com-
plex multipies of the identity. In the case at hand this
condition is equivalent to the statement 4z AL= LcI}

Let Z€A4rNA,. Since Z is then an element of the set
{(WRYN {f(Wy), it follows from (73a) and (73b) that

VEn)ZQ=JZ*Q=V(=i1)Z%. : (962)
This implies that V(ir)ZQ < D,, and that o
V(21i)ZQ =exp(2nK3)Z0=2Q, - - (96b)

which implies that Z is an eigenvéctor of Kj, with
eigenvalue 0. It is easily seen (and well known) that

" under our general assumptions about the nature of the

representation of L, carried by the Hilbert space #,
the only eigenvector of K is the vacuum vector &. It
- follows from the above that ZQ =c,” for some complex

.number ¢, and hence that Z =cl. This proves the lemma.

'VI. THE DUALITY CONDITION FOR THE WEDGE

~ REGIONS Wx AND W,

In this section we shall consider conditions under
which the operators in 2{Wj) “generate” a von Neumann
algebra /4  which satisfies the premises of Theorem 2.
The basic idea is very simple. We'try to construct 4z -
as the “commutant” of a suitable subset of operators in
P(W.). The execution of this idea is, however, beset
with “technical” difficulties which derive from the fact
that the operator in P(W.) are in general unbounded.
Furthermore; we are faced with the unfortunate situa~
tion that practically nothing is known about the nature
of these operators as mathematical objects, It is, for
instance, not known at present whether the field opera-
tors ¢[f], with f real, have any local self-adjoint ex- .
tensions in a sense which will be discussed later., In
our discussion we wish to avoid making assumptions
which might later turn out to be too restrictive., For
“this reason we do not try to define the algebra 45 in
terms of the commutant of all the operators in the set
P(W,.), but instead in terms of the commutant of the

field operators ¢[f], with supp(f)c W;.

We begin with some general considerations about the
commutant of a subset of 2{(#).

. Lenuna 16: Let 7 be a subset of P(/]), such that .
(X*,Dy)e ¥ for all (X,Dy)e 7. Let K, be the set of all
bounded operators @ such that

QD cDE), (X0 . (o7a)

for all apeD,, and all (X, D) e} Then:
@
QD(X**)CD(X**), [Q, x**Jy= 0 for all pe D(X**),
(97D)
Q*D(X*)CD(X*), [@*, X*]¢ 0 for all ¢ € D(X*),
R _ ) T (97¢)
for all (X,D) €. ' '
(b) The set K, is a weakly closed algebra. The set

As=K;NK*={Q1Q,9*<K,} is a2 von Neumann algebra,

This algebra is precisely equal to the set of all bounded.
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' operators @ such that

(X, D)**Q D Q(X, Dy)**, (X,D)*QDQ(X, Dy)* (98)
for all X, Dl) €7,

(c) If Gis any unitary operator such that GD; =D, and
G7G1 7, then G4,GCA,.

{d) Let ), be the polynomial algebra (on D;) gen-
erated by 7. Then

*p|QD (% |x0) | 09)
for any XCP,, any @ €4y, and any ¢, p € D;.

We omit the proofs since the above lemma is merely
a summary of trivial and well-known facts. That 4, is
a von Neumann algebra if all operators @ in this set
satisfies (98) was shown by von Neumann, *8 and the
conditions (98) correspond to his conditions that the
bounded operators @ and @* commute with the closable
operator (X, D,). We note here that X, need not be a
von Neumann algebra, i.e. , @* is not necessarily in-
cluded in K for every @ €K;. This circumstance
derives from the fact that the adjoints of the operators
in 7 are not necessarily included in the set-of all clo-
sures of the operators in 7. I it happens to be the case
that (X', D,)* = (X, D;)** for all (X,Dj)c 7, then K;=K}

=As

- We shall define the commutants of sets of field opera—
tors in terms of the conditions (98), and we are now
prepared to state a somewhat lengthy theorem concern- -
ing the commutants of field operators associated with
either one of the wedge regions W and W,.

Theovem 3: Let A4 ,(Wg) be the von Neumann algebra

. of all bounded operators @ such that

Qelf], DY** < (o[ f], D)**Q,
Qelf L DY* <ol f], D*Q
for all fe §{#* such that supp(r) c W,

Similarly, let 4.(W.) be the von Neumann algebra of -
all bounded operators @ such that (100) holds for all

(100)

- feS®Y such that supp(f) < Wp.

Then:
@
AWD ALY, AW AW Qo)
(b) |

Ao(We) = U(B(ey, 1), O (W)U (R ey, ), O

where R(ey, 7) denotes the rotation by angle « about the
1-axis. ,

(102a)

- Let o(Wy) be the semigroup of au elements in the
Poincaré group L, which map Wy into Wg, Similarly,

‘1et o(W,) ={A™1|A € (Wp)} be the semigroup of all ele-
" ments in the group L, which map W, into Wy. Then

UMA WU CA (Wg), all A€o(Wg), . (102b) -
and S . o
 UMALWDUN)ECAW), allAco(Wy).  (102¢)
. bThe set fo.(WR) =0(Wg)No(W,) is the group of all ele- . 2
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ments of L, which map Wg ontb W, and Wy, onto Wy,
and we have
UM)A. (Wn)U(A)'I =A(Wg)y, UMNA. (W’Jr,)U(l\)"1 =A(Wy)
(102d)

0o v o4

- forallAe fo(WR); In particular,
VOALWRVE =AWr), VIOALWIVEN' =A ._-(WL)

| (102e)
for all real .
©
AW =4 (W) (1021)
(d) The relations
x*o| Y =(r*o|Xp, all p,veD;, 103

hold for all X €4 (Wg) and all Y € P(W).

The relations (103) also hold for all X e /D(WR) and all
YeAc(WL)

v (e) With the notation in Lemmai 12 we have 4_(Wg)
- Cl/y(Wg) and A (W) C([/s(W.), and hence A, (WR)QCD.:
AW)Qc D, and

VEMXQ=JX*Q, all XA (Wy), - " (104a)
V(-in)YQ=JY*Q, all Ye4 (W;). (104b)

(f) ¥ it is the case, in addition, that 4 (Wg)Q is dense
in the Hilbert space //, then the algebra 4 =4 .(Wg)
satisfies all the premises of Theorem 2 and Lemma 15,
‘and, with reference to the notation in Theorem 2, 4,
=4.(W.). In particular, the algebras /. (W) and A4 (W)
are factors, and they satisfy the duality condition

AdWR =AW,

"Proof: (1) That 4,(Wz) and /4 (W) are indeed von
Neumann algebras follows from Lemma 16, We tem-
,porarily postpone the proof of the relations (101) (of
which either one implies the other), The asserlions (b)
and {(c) of the theorem are all trivial, We consgider the
assertions in part {(d). From Lemma 16 it follows that
(103) holds for all X €4 (W) andall Ye PolW). In view
of Lemma 1 these relations also hold for all Y& /7(W_L)
and all X €/ _(W3), as asserted. Analogous conaidera~
tions apply to the second assertion {d).

(105)

{(2) The assertions (e) now follow trivlal]y from Lem-
ma 13 and part (d) of the theorem {setting ¢=9p=8in
{(103)).

3) Having.established part (e) we conélude from
(102e) and (102f), on the basis of Lemma 14, that

- [x,¥je=0
for all X4, (W) and all Ye/] AWL).

 Let x€ Wy, and let X(x)= T(x)XT(x)-!. We then have
A, x) €0(Wy), i.e., A(I,x)WrC Wy, and hence X(x)
€A .(Wg) whenever X <4 (Wg). For any such X(x) the
' relation (106a) thus holds for any Ye/]c(WL), with X(x)
" substituted for X,

Let R=WaNA(L,x)W,.
- empty for any x € Wp. It is easily seen that if @ =[X(x),
Y], with X(x) and Y as above, then the conditions (100)

(106a) -

" This rggion is open and non-
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hold for any fe § (R% such that supp(f )CR By Lemma
16 we then conclude that :

(z,8][xXk), Y]Z,9) =(z2#2,9|[X(x), Y] =0 ' (106b)

for any 2y, Z, € P4(R). Since 2,(R)Q is dense it follows
that [X(x), Y]=0, for all x€ W5, Since the point x =0 is
on the boundary of W, and since X(x) is a strongly con-
tinuous function of x [in view of the strong continuity of
the function 7'(x)] we conclude that [X, ¥]=0. This
proves the assertions (a) of the Theorem.

(4) The assertions (f) follow trivially from Theorem
2 and Lemma 15. This completes the proof of the
theorem.

We note that the assertions (b) in the theorem cor-
respond to geometrical conditions which obviously have
to be satisfied if we wish to regard 4 (Wy) as locally as-
sociated with Wy and A4 (W) ds locally associated with -
W.. In a theory in which a physical TCP-operator

- exists, as is the case here, the condition (102f) must

also hold. The commutation relations implied by (101)
correspond to a minimal condition of “physical inde-
pendence” of the operators in 4 ,(Wg) from the opera--
tors in A4 .(W.). We note that the result (101) is analo-

~goustoa well-known theorem of Borchers concerning

the local nature of a field which is local relative to a
local irreducible field, ! The relations (103) in part (d)
are “commutation relations” between the bounded opera-
‘tors in the von Neumann algebras and the unbounded
operators m P(M) in a sense which is weaker than the
sense in which @ commutes with ¢[f] in (100). The
assertions (d) can be restated as follows®:

X(Y*,D,)C (Y, D,)*X , . (107a)
for all X€4,(Wz) and all Y& p(W,), and
| Y(X*, D (X, D)*Y (107b)

for all Y€/ ,(W,.) and all Xe p(Wy).

In the followihg we shall eall'a pair of von Neumann
algebras 4 (W) and 4(W.) a pair of local wedge-algebras
if and only if they satisfy all the relations (101)—(103)
which the algebras 4,(Wg) and 4,(W,) satisfy. It follows
that a palir of local wedge~algebras also satisfies the
relations (104), by the same reasoning as in the proof
of Theorem 3. Note that neither the duality condition
(105), nor the commutation relations (100), are implied

in the notion of a pair of local wedge~algebras.

With respect to the duality condition (105) the situation
is as follows, The algebras A (Wj) and 4 (W) are uni-

 quely determined by the field ¢(x), and it is then a

matter of “checking” whether these algebras are suffi-
ciently large in the sense that 4 (W)€ is dense in the

'Hilbert space //. We do not know at this time whether

A (W) is dense in general, i.e., with no additional
assumptions about the field. It seems to us that ina
physical theory described in terms of local observables
and a local quantum field ¢(x) it must be the case that

- there exists a von Neumann algebra A (Wpg), generated
" by the observables associated with the region Wg, and

similarly an algebra 4(W_), and such that these alge-
bras satisfy the conditions (a)-(d) in Theorem 3, In

R addition, we might require that the family of observables
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- associated with WR is sufficiently large so that 4 (Wg)Q

~ is dense in//. As an example of the kind of considera-
tions which are relevant here we refer to the work of
- Licht on “strict localization, 3 If the algebra 4 (Wg)
satisfies the above conditions, then 4 (Wg)<{/(Wg) and
the relation (104a) holds because 4 (W3) is a local wedge-
algebra, and since 4(Wg)8 is dense, it follows that the
duality condition A4 (Wg)’ =4 (W.) holds.

o t&'

" If it is the case that AlWg)S is dense we would define -

. the “algebra of observables” 4(Wpg} by 4(Wg) =4 (W),
~ with reference to the construction in Theorem 3. If
AWgRQ is not dense, the algebra 4 (Wy), if it exists,
- would have to be defined differently. One possibility is
the following. It might be the case that 4 (W3) could be
defined in a satisfactory manner as the commutant of
some other subset of O(W,) which is “better behaved”
than the set of operators ¢[f] in P(W;). Since we feel
that we have no basis for a rational choice we shall not
discuss this possibility. Another possibility is that '
there might exist, within the framework of the particu-
lar theory, natural extensions of the field operators
¢{f]. We could then try to define 4(Wj) as the com-
mutant of the extensions of the operators ¢{f] in (W),
if it so happens that 4 (Wg)2 is dense for this choice,
We shall consider a particular case of this situation
below. The general problem of how to define algebras
of bounded operators in terms of the unbounded field
operators has been discussed by many authors, and
~ what we say below is not particularly novel, 18 29=3

We shall now consider four particular conditions on
the quantum field which seem to us to be interesting to -
contemplate, Each one of these conditions guarantees
the existence of local von Neumann algebras which

_ satisfy the duality condmon (105) (for the wedge re-
gions Wy and Wp). -

Condition I: The linear manifold/,’c(WR)ﬂ is dense in
the Hilbert space //, where 4 (W) i3 the von Neumann
algebra constructed from the field as in Theorem 3, .

 Condition II: For any open nonempty subset R of
Minkowski space the linear manifold ( (R)Q is dense in

" the Hilbert space //, where (C(R) is the von Neumann
algebra_of all bounded operators @ such that

Qe[ 1, DY** < (o], DY)**Q.

 QUlf1 DY* < (olf), Dy)*@ (108)

" for all f& §(RY) such that supp(f)C (R)"' where Ry de-
notes the causal complement of the closure of R,

* Condition III: The quantum field ¢{x) has a local self- .

-adjoint extention in the following sense, To each f
€ S(RY corresponds a closed operator (@[], D(f))
such that:

(a) : . ‘
(@LF1, DUN* = @Lr*, D), (1092)
(@1, D(F)>(elf], Dy) (109b)

for all f€ §(R%). The operator (3[f]; D( f)) is thus self~
ad]omt if f is real.

“(b) If r(x) € S(RY 15 real “and if f(x) € 5 (RYH such that
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' _ Wedge—algebras, i.e,

425

' supp(r) C (supp(f))°, then

F@[f1, D) < (@], DU)F (110)

. for any spectral projection F of the self-adjoint opera—

tor (go[r] D(r)). .
{c) For any fe S(RY), AeL,,

U @LF], DUENUM) = (B[AF], DAF)). (11)
Condition 1V: Condition II holds, with
@71, D)= (el f], D)** (112)

for all fe S(RY).

The Condition II trivially implies. the Condition I,
and we have C(Wg) =4 (Wz), C(W;)=A4.W,). Both con-

. ditions thus imply the duality condition (105) for the
. wedge regions, We shall consider further 1mphcat10ns

of Condition II in the next section,

Condition I is (as far as we know) much stronger
than the condition that every operator (¢[f], D), with
fe€ §(RY and freal, has a self-adjoint extension, The
conditions (110) and (111) can be interpreted as the con-
ditions that the extension of the f1e1d is also a local
scalar field. Condition IV is the most restrictive of the
conditions. It, in effect, states that the quantum field
@(x) has a unique local, covanant self-adjoint exten-
sion, given by (112).

, Theo'rem 4: Condition OI is assumed, Let ,4(WR) be .
the set of all bounded operators @ such that :

Q@Lr1, DU <@L/, DR (113)

for all f& §(R*) such that supp(f)C W,. Let 4 (W,) be the
set of all bounded operators @ such that (113) holds for
all fe §(R*) such that supp(f) < Wy, Then:

(a) A (Wpy) and 4 (W) are von Neumann algebras with

- the vacuum vector £ as a cyclic and separating vector,

Both algebras are factors, and they satisfy the dualxty
condition

AWR) =A(W,). (114)

- (b) I A ,(Wg) and A .(W,) are defined as in Theorem 3,
then

)4 (W) A(WR), A. (WL)CA(“/L); (115).

. and equality obtains if and only if /] (Wg)S) is dense in'A,

(c) The algebras A (Wz) and A(W,) form a pair of local
, they satisfy all the conditions
(a)—(e) in Theorem 3 whlch the algebras ,4 (Wg) and

Ae (WL) satlsfy

(d) Let g (Wg) be the set of all spectral pro;ectlons
_of all operators (@[ f], D(f)), with f real, fe §(R*), and
supp(f) C Wp. Similarly, let G (W) be the set of all
spectral projections of all operators ([ f], D(f)) with
freal, fe S(RY), and supp(f) CW,. Then

AW =G (Wa)", AW)=G(Wy)". (116)

Proof: (1) We first note that in view of (109a) the set
A(Wg), as defined in terms of (113), is the commutant
of a set of operators which is closed under the forma-
tion of the adjoint, Hence 4 (W), and simllarly 74(W1,),

‘are von Neumann algebras.

' N J.J. Bisognano and E.H. Wichmann 1001



From the relatxon (111), which describes the action *
of the Poincaré group (by conjugation) on the extended
field, it trivially follows that the algebras 4(Wg) and

- A(W,) satisfy all the relations (102a)—(102e) in The-
orem 3, and, in particular,

VIOOA(Wx) Y(t)" =AWg), VAWV =4(Wy)

for all real ¢. Note, however, that the relation (102f) in
part (c) of Theorem 3 does not follow trivially from
(i11). '

(117)

@) Let ¥, o €Dy, and let fe 5(124), supp(f) W,, For

any X€/4(Wz) we have ‘
<¢|X<o[f}¢> @) BLF1 XY =(v| BUA*1xe)
(@l Xy (el 0] Xg).  (118a)

~ From the equality of the first and last members of -
(118a) it readily follows that the relations

x*p| Yo) =(¥*p|X$), all ¢, pe Dy,

hold for all X €,4(Wg) and all Y€ 2(W;). In a similar-
manner, we conclude that (118b) also hold for all -

-Xe P(Wg) and all YG/](WL) As in the proof of Theorem

3 we conclude that .
AW CUp(W), A(WL)cu,'(WL)

-(3) Trivially we have § (Wg)" CcA(Wg) and g (W)
CA(W.). We shall show that © is a cyclic vector of the
von Neumann algebra ¢ (Wg)".

Let {R,in=1,..., =} be a set of subsets of WR, con-
structed as in Lemma 10. Let {f.1k=1,...,n} be an n~
tuplet of 7eal test functions such that f,,e 5(124) and
supp(f,) C Ry, for k=1,...,n. In view of the nature of
the regions R, it follows that the self-adjoint operators -

(a[fk]yD(fh))) k=1)' "y

(i1sc)

Let F,()) be the spectral projection of (@[], D(f,)) cor~
responding to the interval (- A, 1), where A>0, and let

the bounded operator Q,(A) be given by Q,{0)=3[f,]F,(A),

for each k=1,...,n, We then have

FiNF(0) -+ - Fy el filelf]- - ol fa]0
=@ e Q"ma ‘ (1192)
and heiice ’
s-lim Qi(l)Qz(h)' < Qu(N) 0 = <P[f1]¢[f2]‘ . <p[f,.]a '(119b)v

The operators Q,(2) are all mcluded in g (WR)", and

- .since (119b) holds for any n> 0, and any choice of real
test functions, we conclude that g (WR)”Q QQ where
is defined as in Lemma 11. By Lemma 11 it then fol- -
lows that g(WR)"Q is dense m/{, and hence/](WR)Q is
also dense,

(4) It is trivially the case that V(t)g(WR)”V(t)‘1

=@ (Wg)” for all real {£. We now note that both 4(Wj).

- and G(Wg)" satisfy the premises of Theorem 2, with
Ar=A(Wg), or with 4 =G (Wg)”. It follows from this.
theorem, in view of G (Wg)" CA(Wp), that -

GO =AW =AW T=IG(W)'T. - (120a)

Similar considerations apply to 4 (W) and g (W,-,), and "
we thus estabhsh the relations (1 16) .
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(118b)

n, all commute with each other, -
.. in the sense that their spectral projectiotis comimute, ‘

3 '

J W"e'tnéally have g(Wﬂ)Cg(WL)' and hence q(W )

cG(W,)'. Similarly, g(WL)”c_g(Wq)', and it follows, .
in view of (120a), thaf G (Wg)" =JG (Wg)'J=G (W,)’, i.e.,

AWR) =34 (W), (1200)

which shows that J acts as asserted (and as expected) on
the algebras 4 (W3) and 4 (W), which have now been
shown to form a pair of local wedge-algebras. The

" duality condition (114) follows tr1v1ally from (120a) and

& 20b)

(5) It remains to prove the relations (115) Let X
eAWg), X.€A4.(Wg), and let fe S(RY), supp(f)c w,.
For any vectors ¢, ¥ D, we have :

(| XX, 00 £10) = (| Xo 11X, ) XU
' _=<wla;[f]XXa¢> =(| Bl *1*XX,0) _
=(P*Io|xx.¢) =(olf *Ip| XX.9). (1212)

From the equality of the first and the last members
of (121a) it readily follows that
(Y*QIXX Q) =(Q] XX, 79 (121D)

for any Y € Py(W,). By Lemma 13 we conclude that
XX e /{(Wg). .

Since X and X, are arbitrary elements of 4(Wpg) and

A Wg), and since V() A (WR)V(t)' =4 (W), we conclude

that XV(H)X*V(t)te U'(WR), The operators X and X, then
satisfy the premises of Lemma 14, and it follows that

X(IX N0 = (IX NXR, (121c)

for any X €4 (W) and any X, < 4 (Wp). Since 4(Wg)Q

is dense in the Hilbert space it follows, by the same
kind of reasoning as in step (1) of the proof of Theorem °
2, that [(JX_J),X]=0, which means that J4 (Wg)J
CA(Wg)'. In view of (120a) this implies the first rela-
tion (115). The second relation is obtained by conjug,at-
ing the first by J.

This completes the piroof of the theorem. We add a
corollary which describes the situation uwider Condition
IV. it is almost completely trivial in content,

Covollary to Theorem 4: Condition IV is assumed, .
and hence Condition III obtaing, The quantum field has
one and only one local self-adjoiut extension @(x), ,
namely, (@[f], D(f))=(e[f], D)** for all fe S(R*). The
domains Dy and Dy are cores for all operators

¢[f] Di) » and

(122)

Aplf L, D)* = (@[ f*], D)** = (w[f*) D(f*)).
‘With the notation in Theorems 3 and 4,
Ae (W) =;4 (Wa),- Ae (WL) =A(Wy), (123)

and all the conclusxons in these theorems. hold for the

- above algebras.

If we are allowed to speculate about the results in this
section, we wish to say that we are inclined to believe
that in a satisfactory local theory there ought to exist at

" least one field which satisfies Condition HOI, although

this does not seem to be necessary for the duality con-
dition to hold,. It is well known that the general condi- =
tions on the field which we stated in Sec. II have to be

" amended with some conditions which guarantee that the - .

J.J. Bisognano and E.H, Wichmann 1002
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theory really describes physical particles. In particular,
some kind of “dynamical principle” is sorely needed,

" It might, of course, be the case that Condition IIl is

0

already implied by the minimal assumptious in Sec, II,
but if this is not so we would like {0 believe that the

" condition at least holds in a properly amended theory,

We can imagine a situation in which the local self-ad-
joint extension of the field is unique, without D; being -
a core for the extensions of the individual field opera-
tors ¢[f). Condition IV might thus be unduly restrictive.
An even more restrictive condition, according to which
Q is an analytic vector for all Hermitian field operators
¢[f], has been discussed by Borchers and Zimmer-

- mann. 3'Such a condition cannot hold generally since it

‘is violated by Wick polynomials of free fields, but it is
conceivable that it could hold for one particular field in
a particular theory. (It is well known that it does hold

. for a free field.)

Let us finally remark that most of our considerations
up to this point also apply to a field theory in two~
dimensional spacetime, in view of the special geometric
properties of the wedge regions Wy and W,

VI, THE DUALITY CONDITION FOR A FAMILY OF
BOUNDED REGIONS; LOCAL INTERNAL SYMMETRIES

. The discussion in this section will be based on the
assumption that there exists a pair of local wedge-
algebras 4 (W) and 4 (W), which satxsfy the duality
‘condition 4 (Wg)’ =4{(Wy).

These algebras ‘thus in pa.rticular satisfy all the
conditions (a)—(e) in Theorem 3, which the algebras
AWg) and A4 (W) satisfy. :

The operators in the von Neumann algebra 4 (W) can
‘be regarded as “locally associated” with the region We -
The existence of the wedge-algebras does not, however,
guarantee (as far as we can see) that there exist non-

-trivial von Neumann algebras which can reasonably be

regarded as associated with bounded regions in space-
time. In a satisfactory theory of local observables we
would certainly require that there exists a sufficiently
large set of bounded (self-adjoint) operators which cor-
‘respond to measurements within some bounded regions
in spacetime. Condition I on the field, discussed in the
preceding section, would thus by itqelf appear too weak
for a satisfactory theory, although it does guarantee the
existence of the local wedge-algebras, As we shall

see, either one of our Conditions II—IV does imply the
existence of a set of truly “local” operators with rea-
sonable properties, We note here that our par ticular
conditions, although not physically unreasonable, are
mnevertheless quite arbitrary, We are not here asserting
that anyone of these conditions kas to hold, nor are we
asserting that they guarantee that the theory has a physi-
cal interpretation which is satisfactory in every ’
respect,

Let us now consider thé définition of von Neumann
algebras for other regions than the wedges Wy and W,.

- For any subset R of Minkowski space/} we denote by

AR the image of R under any element A of the Poincaré

- group L,. We define [/ as the set of all (open) wedge

regions bounded by two intersecting characteristic
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planes, i.e.,
W= {AWR|AL,,0} (124a)

For every We(j/ we define the von Neumann algebra
AW) by

Al Wn) UA)A (WR)U(A)'1 (124b)

.We note that this definition is consistent since we -

assumed that 4 (Wy) and A(WL) satlsfy the relations
(102a)—(102e) in Theorem 3.

all A€ L,

It is natural to define von Neumann algebras for a
‘suitable family of bounded regions in terms of intersec-
tions of the von Neumann algebras 4 (W). Since we hope
to discuss these issues elsewhere in greater detail,

- and within a more general framework, we shall here

restrict our considerations to a set of particularly sim-
ple bounded regions, namely, the so-called double
cones. For any two points x; and x, in Minkowski space
such that x, e V,(x;) [where V,(x,) is the forward light
cone with x, as apex], we defme the double cone. C n
=Clxy, %) by .. -

Clxy, 25) = V’(xi)ﬂ V.(xa), (1252)
where V_{x,) is the backward light cone with x, as apex,

The double cones so defined are thus open and non-
empty. We denote by /), the set of all double cones,

For any double cone C we define.a von Neumann alge-
bra B(C) by .

BEC) =n{qm{wey, woC}.

I_lere-(_? denotes the closure of C. We prefer to regard

(12 5b)

' R(C) as associated with the closed set C, and hence the

" above notation,

We shall next extend the domain of the mapping W
-/ (W) to include all open regions € which are the
causdl complements of closed double cones C. For any.
Cef), we define the von Neumann algebr d,/f}(( ) by

AC)={AW|wey, we e, (126)

We shall now state two thegréms about the properties
of the algebras which we have iniroduced above. The
conclusions i the first of thesé do not depend on the
duality condition, buf follow fairly trivially from the
relative locality of the wedge-algebras, and from the

“geometrical” condxtxons in parts (b) and (c) of
Theorem 3. -

Theorem 5: Let AWg) and A (W) be a pair of von
Neumann algebras such that

A(WR)CA(WL)' L1127
and o

A(Wg) =4 (W), . (128a) -

A(Wg) = UlR(eq, m), 0)A (WL )U(R(eq, 7), 01, (128b) .

UMA (WU CA(Ws), all Aeo(Wp), (128¢c)

where o(Wp) is the semigroup of all Poincaré trans-
formations which map Wy info Wp.

. Let 4(W) be defined by (124b), for any We(/. Let
B(C) be defined by (125b), and let 4(C®) be defined by

- J.J. Bisognano and E.H. Wichmann 1003
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‘1(126), for any double cone.C, Then:
@ .
AWBW) =UM)AWUQ)? (129a)
for all Wejy, all A€ Ly;
B =U@M)BOUN)?, (129b)
AC) =UM)ACHUA)YY, (129¢)
for all Cef),, all'A.efo.
() '
- A(G W) =dA (W), (130a)
B(Y 0)=JBEC), Al g C%)=J4 (C°)J - (130b)

for all We{{/, Ce/f)., and where ﬂ is given by (47).

“{c) _
if W, W,elf, Wow,,

AW DA (W), . (131a) -
- B©)28(Cy), AL)CACH (131b)
~ forall C,C; 5.0.; such that CO>C; (and hence C°cC3), .
“and . .‘
B(Ci) C/I(W) CA(CS) (131c)

for all Weyy, Cy, C€0)., such that Ciewe 5;.
{(d) The algebras 3(C) are local, in the sense that
ALY AL | (132a)
‘for any Cy, Cy€/),, such that.Ci c C§. Furthermore,
B€)YDAC) © (132b)
forany C€/),..: '

-(e) The mapping W4 (W) is continuous from the
: outszde in the sense that

Atw) = N{A(W) | Wy e, Wy w}
and it s continuous from the inside in the senaa'_that
AW ={4(wp|w ey, W cwh, (133b)

- The mapping c— B(C) is contmuous from the outside
in the sense that

B =04 Crep., Eccyh

» The mapping ce A (C°).1s continuous froni the mslde
- in the sense that

AC) ={4(CD]|C,ep,, C; 2 E} (1334)

Proof: (1) The assertions (a) and (b) are trivial. The
relation (131a) follows trivially from (128¢) and the def-

" inition {124b). The relations (131b) follow directly from n

the definitions (125b) and (126).

-' (2) We next consider the assertions in part (e) of the
theorem. To prove (133a) it clearly suffices to prove

" this relation for the special case of W= Wg. For this

case, let 4 denote the von Neumann algebra defined by
the right member in (133a). We obviously have 4 (Wz)
CA. Let x € Wy, We then have T(x)A4T(x)™ c4(Wg).
Since the function T(x) is strongly continuous, and since
. the point x =0 is included in Wg, we conclude that 4

; —A(WR) Hence (1333.) holds. -
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(133a)
~ be constructed as in Theorem 5.

(i3flc) :

L E% o "
£ 28

The relation (133b) follows readily from (1333:). The
relation (133c) follows from the definition (125b), and
the relation (133d) follows from (133b) and the defini-

" tion (126).

(3) The relation (131c) in part (b) of the theorem now
follows tr1v1ally, in view of (133a).-

(4) It remains to prove the assertions (d). Let C be a
double cone, and let W=AWj be any wedge such that
WcCe, Then CCAW,, and it follows from (127) and
(131c) that B(CY DA (AW.) DA (W). In view of the
definition (126) this implies the relation (132b). The
relation (132a) then follows trivially from (132b) and
(131c). This completes the proof of the theorem.

We note that the relations (131a) and (131b) are in

‘fact implied by the relations (133b)—(133d), and our

presentation is thus somewhat tautological. In view of
the relatlon (133a), which says that the wedge-algebras
are_ “continuous from the outside,” we might well write
B(W) =4 (W) for any wedge W, corresponding to the

idea that a wedge W is a limiting case of a double cone.
We note here that the algebra 4(C¢) need not be continu-
ous from the outside, and that the algebra 4(C) need
not be continuous from the inside, for any double cone
C. ' ' ' '

Theorem 6: Let A( W) and 4 (W) be a pair of von
Neumann algebras which satisfy all the premises of
Theorem 5, It is assumed that these algebras satxsfy
the duality condition
AW =AW, (134)

Furthermore, it is assumed that € is a cyclic and

‘separating vector for 4{Wg), and that 4(Wgz) C//(Wz),

where (/(Wg) is defined as in Lemma 12, and hence

VUmXK=JX*Q, all XA (Wp). (135)

Let the von Neumann algebras Al W), /{((_3"), and 3(C)’
Then:

(a) The algebras B(C) and 4 (C°) satisfy the duality
condition

BCY =A4(Co).

(b) If there exists a double cone C, such that 3(50)9 is ,
dense in the Hilbert space //, then

(136)

(137a) R

A(Ef):{g(@)lCegc,Ecaf ”

" for every C;€[),, and
A ={BACIA € Ty Ay WY, (1370)-
A€ ={BC)|AeLy,AC,cC5}” (137¢)

' for every Ci€/)., Wew I, furthermore, Coc Wg,
. then

A(Wg)= {V(t)B(Co)Vt)"IteR‘}"' (137a)

(c) If the quantum field satisfies Condition II, and if »
A{Wg) =A (Wg), with 4 (Wy) defined as in Theorem 3,

~ then the pair of von Neumann algebras 4 (Wz) and 4 (W.)
-=A(Wy)’ satisfies the premises of the present theorem.

The vector @ is a cyclic and separating vector for-

: every algebra B(C), and for every algebra. A (C‘) The

JJ. Bisdgnano and E.H.'Wichmann -~ 1004 v
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“-relation (137a) holds, and the relaticns (137b) and

(137¢) hold for every Cy€/)..

HC(R) is defined as in the statement of Condition II,
“then . .

 B@>C(C) o 138)

for all C €.
(d) If the quantum field satisfies Condition III, or

Condition 1V, then the pair of algebras 4(Wg) and 4 (WL),‘

defined as in Theorem 4, satisfies the premises of the

' present theorem, and & is a cyclic and separating

vectors for every algebra B(C), and for every algebra
A(C‘) The relations (137a)— (137d) hold as in (b) above,
for any Coefe.

Furthermore, if g(C) is the set of all spectral pro—

>]ect10ns of all operators (¢[f], D(f)), with f real,

fe S(RY, and supp(f)CC then, _
g(C)"CB(C) ' _ - (139)

and, for any C,; /),

ACp={g©)]|cep, i} ' (140)

Proof: (1) All the conclusions of Theorem 5 hold. The
duality condition (136) follows easily from the duality
condition A(W;) =4 (WR)’ for the wedge-algebras, if we
note that .

- AC)={AUW,)|A e L, AWgD T}

=(n{4w) |Ac L, AWDC}) =4(C), (141) '

where the equality of the first and the second members
follows from {(133d) in Theorem 5.

(2) We next consider the assertions (b), assuming -
now that a C; in /), exists, such that A(C))Q is dense,
Without loss of generality we can assume that C,CWpg,
Let 4 g be equal to the 7ght member in (137d). Then
is'a cyclic vector for the von Neumann algebra 4, and
it follows from the definition of this algebra that
V) ARV =4 for all teal {. Since, obviously, A
CA(WgR)C{{(Wg), we conclude that # , satisfies the
premises of Theorem 2, and it follows from that theo-
rem that 4 p=4(Wg). This proves the relation (137d).
The relations (137a)—(137¢) then follow trivnlly from
(137d).

(3) The assertions (c) are completely trivial, We now
consider the assertions (d). The crux of the matter is
that ¢ (C)"Q2 is dense for any double cone C. That this is -
so is established by the same kind of reasoning as in

_step (3) in the proof of Theorem 4, but with the modifi~

cation that for any integer > 0 the regions R,, %

=1,...,n, are selected as any set of » nonempty operi
sets in C such that the closures of any two of these re-
gions are spacelike separated. Having thus shown that

g (C)'Q is dense, we consider the case when the double

cone C satisfies Cc W, and we define a von Neumann
algebra 4, by :

Ax=IVOG OV |t < RY. (142)

The relation (139) is trivial, and we can now apply the -

reasoning in step (2) above to 4 5. We conclude that 4,
;A(WR), and from this the relation (140) follows readily.
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This completes the proof of the theorem.

We feel that it is entirely proper to call the condition
(136) a “duality condition,” at least in the case when
‘there exists a double cone C; such that B(CO)Q is dense
in the Hilbert space 4. In this case we have the follow-
ing situation. There exists a family of truly local opera-
tors, namely, the set of all the operators in all the
algebras B(C), which is sufficiently large such that the
local operators generate the algebras 4 (W) and 4(C°) in
the sense of (137a) and (137b). The algebra 4 (C¢) in
(136), which is associated with the unbounded region
C¢, is thus itself generated by “local observables,” and
this circumstance, in our opinion, adds luster to the
duality condition. As we have seen this situation ob-
tains if the field satisfies either one of Conditions I, i,
‘or IV,

It should be noted, however, that even if the field
satisfies Condition IV it is in general not the case that
B(C) =G (C)”, i.e., the local algebra [3’(C) need not be
generated by the spectral projections of the self-adjoint
operators (p[f], D(f)), with f real, fe §(RY), and
supp(f)C C. The duality condition in the case of a gen-
eralized free field has been studied by Landau, *% and
with reference to our discussion we can express the re-
sults as follows: For certain kinds of generalized free
fields we have 8(C)#((C)". Fora detailed discussion of-
this circumstance we refer to the work of Landau. The
algebra g (C)” generated by the generalized field alone
is thus “too small” to satisfy the duality condition. The
situation is, however, entirely different if instead we
consider the algebra generated (locally) by all the local
generalized free fields which are local relative to the
original field,

‘The duality condition for a free Hermitian scalar field
was first proved by Araki,? by an entirely different
method, The von Neuniann algebras generated by a free
field have been sludied extensively, & 72%3%3 1t jg well

" kriown that in this case the field operators' (o[ f], Dy),

with f real, fe ((RY), are all essentlally self-adjoint,
and our Condition IV obtains. TFurtherinore, it is the
“case that B(C) g(c)" for all double cones C, It should
here be noted that Araki’s proof of the duality condition,
as well as the subsequent modified proofs by Oster-
walder, ® Eckmann and Osterwalder, " and by Landau, ?
‘hold for more general regions than double cones and
wedges. The discussion in the work of Eckmann and
Osterwalder is based on Tomita’s theorem, but also on
the very special properties of a free field, and it is not
clear to us how the discussion could be generalized to
the case of an arbitrary field. We also do not know at
this time whether there is any simple “physical—
geometrical” interpretation of the Tomita operators J

. and V(im) for a double cone, or for a more general re-

gion, The remarkably simple interpretation of these

operators for the case of the wedge regions probably re- .
flects the very specxal geometric properties of the pair
Wg and WL‘

We shall conclude the present study with a discussion
by local internal symmetries. Such symmetries were
discussed by Landau and Wichmann, ¥ within the frame-
work of quantum field theory, and within the framework
of the theory of local systems of algebras, and it was

" ). Bisognano and E.H. Wichmann 1005



- core for the self-adjoint operator (V(ir),

N I e I
shown that a local internal symmetry, as defined in
that paper, commutes with all translations in the
Poincaré group. It was shown by Landau, * and by
Herbst, *7 that such symmetries also commute with the

" homogeneous Lorentz transformations under the addi-

tional assumption that asymptotic Fock spaces exist,
, that the theory has a sensible physical mterpreta.-

-tlon 1n terms of particle states.

The definition of a local internal _symmétry G in the

paper of Landau and Wichmann can be stated as follows,
_for the case of wedge regions: G is a unitary operator

such that

GR=4, G/](W)G" cA(WeY
for all We{/. It should be noted that no duality condi-
tion was assumed in the quoted work, and it seems to .
us that the above definition can then be criticized: In
particular, it could happen that the set of all sym-
metries so defined does not form a group. However,
the above definition is satisfactory if the duality cond1—
tion A4 ( W‘)' =A4 (W) holds, because it is then easy to show
that GA(W)G™1 =4 (W) for all We /. In particular, it
follows that the set of all local mternal symmetries
forms a group. :

In view of the above we shall here define a local - _‘
internal symmetry by replacing the second conclhtmn in
(143) by the condition that G4 (W)G™! —,4(W), for all W
€.

Theovem 7: Let 4(Wg) and 4(W_) be a pair of local

, 'Wedge algebras, which satisfy the general premises of
. Theorem 6, and let 4(W), 3(0), and ,4(0”) be defined as

in Theorems 5 and 6.

Let G be a unitary operator such that
GR=0, GAWIG=4(W), all Wely.
Then:

(a) The operator G 'commutes with the TCP-trans-
formation, and with all Poincarév transformations, 1, e.,

- 8,68, =G, UMGU(A)'=G, all Ae L, (145)
(b) For all double cones C, ‘
GAC)G=B(C), GACIG=A(Co). (146)

(c) The set of all unitary operators G which satisfy

" the conditions (144) forms a group; the group of all

local internal symmetries,

Proof: (1) The second con‘dition {144) holds in particu-
lar for W=Wj. The algebra 4 5 =4 (Ws) satisfies the
premises of Theorem 2, and in particular 4(Wg;)Q is a
D,). The con~ -
ditions (144) trivially imply that G-L4 (W) =4 (W)Q,

“-and it follows that 4(W3g)Q is also a core for the self-

adjoint operator (GV(in)G, G'D,). Let XeA( WR) We

~ then have -

V(En)GXQ =JCX*S = (JGT) V(z'1r)X Q (147a)

where the first two members are equal because GXG™!
€/4(Wg). We thus have

(G1V(in)G, AWR)D) = (GG (Viim), A (Wr)9).
" Since (G VMG, A(WR)Q) and (V(@n),4(Wp)Q) are

- essentially self-adjoint, and since G-JGJ is unitary, it
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(143)

(144)

(147b)

g

%)

follows, by the polar decomposition theorem, that
G'D,=D,, (V(in),D,) =(G'V(n)G,D,), and®®

JG=GJ, - (148a)

(2) The same considerations apply to the algebra 4 (W)
associated with any other wedge W=AWp, The Tomity

* operator “J” for the algebra 4 (A Wg) is UAWU(A)™, and

thus we have
UAJUAYIG = GUATUAY! - (148b)

for all A czo. In view of the third relation (56a) we
then have, after multiplication of both members in_
(148b) by J from the 1eft :

U(angA'i)c =GU(gAgA-1)_ (148c)

for all A € L,. It is easily seen that this implies that G
commutes with all U{A), and it then follows from (148a)
that G also commutes with ©,.

(3) The remaining statements in the theorem are com-
pletely trivial,

In conclusion let us state that the cons1derat1ons in
this section can be generalized to other families of
bounded regions. We chose to discuss these issues for
double cones only, in order to avoid geometrical com-
plications which might obscure the basically very sim-
ple mainline of argument :
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