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Abstract  16 

 The life history strategies of soil microbes determine their metabolic potential and their response to 17 

environmental changes. Yet they remain poorly understood.  Here we use shotgun metagenomes from 18 

terrestrial biomes to characterise overarching covariations of the genomic traits that captures dominant 19 

life history strategies in bacterial communities. The emerging patterns show a triangle of life history 20 

strategies shaped by two trait dimensions, supporting previous theoretical and isolate-based studies. The 21 

first dimension ranges from streamlined genomes with simple metabolisms to larger genomes and 22 
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expanded metabolic capacities. As metabolic capacities expand, bacteria communities increasingly 23 

differentiate along a second dimension that reflects a tradeoff between increasing capacities for 24 

environmental responsiveness or nutrient recycling. Random forest analyses shows that soil pH, C:N 25 

and precipitation patterns together drive the dominant life history strategy of soil bacteria communities 26 

and its biogeographic distribution. Our findings provide a trait-based framework to compare life history 27 

strategies of soil bacteria. 28 

Introduction 29 

Bacteria impact carbon (C) and nutrient cycling on a global scale1. Soil bacterial communities contain 30 

enormous, functionally uncharacterized genetic diversity2,3 that hinders progress in predicting soil 31 

microbial responses to global change4,5. One approach to describe functional biodiversity is to collapse 32 

its complexity into one or more dimensions that capture the dominant associations and trade-offs 33 

between traits6–10. This multivariate trait space - o or life history strategy scheme - provides a framework 34 

to compare broad organismal strategies6,8,10.  35 

While the trait dimensions shaping plant life history strategies is now well established6, trait 36 

associations for soil microorganisms remain less clear. Initially, studies applied the ‘Competitor’, ‘Stress 37 

tolerant’, and ‘Ruderal’ (CSR) strategies proposed for plants7 to soil bacteria 1,11. This scheme 38 

emphasises trade-offs often observed between traits related to maximizing resource capture 39 

(Competitor, C), persisting under low resource and stressful condition (Stress tolerant, S), and 40 

responding rapidly to exploit growing window between disturbances (Ruderals, R)1,7. Building on the 41 

CSR scheme, Malik et al. (2020)12 emphasised differences between microbial yield (Y), resource 42 

acquisition (A) and stress tolerance (S) traits as important for soil carbon cycling12. While these 43 

theoretical papers provide valuable hypotheses on which traits are probably central to soil microbial 44 

adaptation, no clear consensus has emerged on the trait dimensions that shape life history strategies of 45 

soil bacteria1,11,12 (Extended Data table 1). Recently, Westoby and co-workers (2021) analysed bacterial 46 

cultures isolated from diverse habitats for genomic and phenotypic traits13.  This analysis revealed a 47 
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primary dimension associated with metabolic versatility that was highly correlated with genome size. A 48 

secondary dimension separated differences in maximum growth rate and was correlated with variation 49 

in ribosomal gene copy number14. However, there is a lot of variation in how well bacterial cultures 50 

represent in situ community biodiversity15–17. Thus, it remains to be tested if the life history strategies 51 

of soil bacterial communities matches either the theoretical or culture-based predictions of key trait 52 

dimensions. 53 

One advantage of studying the traits of microorganisms over those of larger organisms is the 54 

ease of which collections of their traits can be measured on the community level. Community aggregated 55 

traits (CATs)18 represent the average functional profile of the community emerging from the 56 

combination of organisms’ traits and community composition (similar to the idea of community-57 

weighted means of traits proposed for plants)19,20. Hence, it is important to note, that while suggestive, 58 

such CAT patterns do not directly inform on the within-organism tradeoffs. Nevertheless, CATs 59 

described using metagenomic sequences offer a way to characterize shifts in the organismal strategies 60 

dominating bacterial communities in situ (eg. 21,22) and thus offer an approach to test theoretical life 61 

history strategy schemes to in situ microbial communities. In addition, information on the dominant 62 

strategy in a bacterial community might be used to predict the response to environmental changes of this 63 

key group for global biogeochemical cycles 4,18. Elucidating the trait dimensions that shape the dominant 64 

life history strategies of soil bacteria would thus provide a framework for comparing soil bacterial 65 

communities and developing generic predictions in soil microbial ecology14.  66 

 67 

In this study, we used a global dataset of soil metagenomic sequences from major biomes to quantify 68 

key trait dimensions of soil bacterial communities. We then identified primary environmental factors 69 

partitioning the trait dimensions and projected the global biogeography. Finally, we compared the 70 

emergent life history strategies with theoretical and culture-based predictions.   71 

Results 72 
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The trait dimensions of soil bacterial communities 73 

Using a multi-table co-inertia analysis (MCOA), we found that two dimensions captured half of the 74 

overall variation in metagenomic community aggregated traits (CATs). MCOA1 and MCOA 2 captured 75 

29% and 21% of metagenomic trait variation (Figure 1 and Extended Data Figure 1), while MCOA 3 76 

and MCOA4 explained 16% and 10% of this variation, respectively (Extended Data Figure 1 and 2). 77 

The MCOA revealed the most important associations between traits (Figure 1-2) including traits 78 

previously associated with life history strategies (Figure 1-3).  79 

Average genome size had the highest contribution to MCOA1 (Figure 1A) with a R² of 0.64 for the 80 

positive correlation between average genome size and MCOA1 (Extended Data Figure 3A). Mapping 81 

coverage decreased along this dimension (Extended Data Figure 4). The lower end of this dimension 82 

was characterised by bacterial communities with higher relative abundance of genes for primary 83 

metabolism (ie. essential process for survival and growth) and C acquisition machinery (Figure 1).  In 84 

these communities, carbon acquisition enzymes involved in depolymerization of oligosaccharides were 85 

favored over enzymes targeting polysaccharides. This oligosaccharide-degradation enzyme class was 86 

dominated by the beta-glucosidases GH1, GH2 and GH3 CAZy families. Finally, chaperones were 87 

overrepresented. Thus, the lower end of MCOA1 were defined by communities with a streamlined 88 

metabolism (Figure 2). 89 

The upper end of MCOA1 defined bacterial communities with a large genome and more complex 90 

metabolism and resource acquisition strategies (Figure 1-2). The enriched genes allowed for degradation 91 

of complex polysaccharides from fungi, animals and plant lignin. There was also a gene 92 

overrepresentation for direct plant pathogenic interactions and negative interactions with other 93 

microorganisms. Finally, communities carried a higher proportion of genes encoding for EPS 94 

production, Dormancy and Sporulation, membrane, and DNA repair (Figure 1-2). These functions were 95 

generally present in lower relative abundance in communities with small genomes at the opposite end 96 
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of MCOA1. Thus, the first trait dimension captured functional variation associated with genome size 97 

and expanded metabolic capacities (Figure 2).  98 

Bacterial communities differentiated along a second dimension (MCOA2) but only when they increased 99 

their metabolic capacities along the first trait dimension (MCOA1), shaping a triangle (Figure 2). This 100 

distribution indicated that bacteria communities with low metabolic capacities and small average 101 

genome size are constrained along the second dimension. The MCOA2 separated communities 102 

according to genomic traits for environmental responsiveness and nutrient recycling (Figure 2). 103 

Communities associated with the lower end of MCOA2 were enriched in mineral and organic N and P 104 

assimilation genes (Figure 1-2). Furthermore, there were also higher relative frequencies of genes 105 

encoding for bacterial necromass degradation including peptidoglycan. Communities at the upper end 106 

of MCOA2 were defined by an ability to respond to a complex set of environmental cues. This was 107 

manifested by an increased presence of genes encoding for activity regulation, resistance to 108 

environmental stress, foraging of beneficial conditions, fast growth (rrn copy), and building and 109 

repairing the cell membrane (Figure 1-2). The communities were also enriched in genes encoding for 110 

carbohydrates metabolism of simple substrates like starch, glycogen, and oligosaccharides. Thus, the 111 

second trait dimension captured a gradient in the average environmental responsiveness that was 112 

positively associated with a specialisation in simple carbon substrate metabolism and negatively with 113 

nutrient assimilation and recycling capacities (Figure 2). 114 

Drivers of the trait dimensions  115 

Using random forest analyses, we next found that common soil environmental factors distributed the 116 

soil bacterial community along global trait dimensions. Random forest models based on soil pH, 117 

precipitation and C:N could predict most of the variation in MCOA1 and MCOA2  with a R² of 0.80 118 

and 0.58, respectively (Extended Data Figure 5). Mean decrease in mean square error (%MSE) and R 119 

squared calculated based on a ten-fold cross-validation of the random forests indicated that soil pH and 120 

annual precipitation are the most important predictors for both MCOA1 and MCOA2. However, the two 121 

dimensions showed different response patterns to these variables, with MCOA1 decreasing with soil pH 122 
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but increasing with annual precipitation whereas MCOA2 decreased with both soil pH and annual 123 

precipitation, leading to unique position along MCOA1 and MCOA2 depending on the combination of 124 

pH and annual precipitation (Figure 3-4). MCOA1 and MCOA2 were also driven by precipitation 125 

seasonality whereas soil C:N controls only MCOA1 (Figure 3-4, Extended Data Figure 5). Next, we 126 

projected the global variation in the trait dimensions using these random forests (Figure 4 B and D) and 127 

global soil and climate databases.  It is worth noting that this broad spatial resolution map, using 128 

averaged conditions across large spatial units, showed high consistency with values observed locally in 129 

our samples (Extended Data Figure 6). Thus, the identified trait dimensions showed a clear global 130 

biogeography. 131 

The first trait dimension (MCOA1) mainly separated arid, alkaline regions from more acidic and wet 132 

ones. More precisely, bacterial communities characterised by a small genome size (i.e., low MCOA1 133 

value) were enriched under neutral to alkaline pH, low C:N, low annual precipitation but high 134 

precipitation seasonality (Figure 4A). Conversely, communities with larger genome sizes (high MCOA1 135 

value), were found in more acidic soils as well as soil with higher C:N and climate with elevated stable 136 

precipitation (Figure 4A). Globally, these environmental controls predicted low MCOA1 coordinates (< 137 

-1) under arid and semi-arid climates at tropical and subtropical latitude as well as in the steppe zones 138 

of central Asia and North America (Figure 4B). Conversely, high MCOA1 coordinates (>1) were seen 139 

in equatorial forests as well as some temperate zones in northern Europe, Western Canada, New Zealand 140 

and south Chile. Steep MCOA1 gradients were estimated to occur in regions separating arid and wet 141 

zones and medium coordinates (-1 < MCOA dimension 1 < 1) also covered most of temperate and high 142 

latitudinal regions (Figure 4B).   143 

The second trait dimension (MCOA2) separated regions with high but stable precipitation from places 144 

with more seasonal climate and extremely acidic soils. The lower end of MCOA2 covered most high 145 

precipitation regions (>2500mm) including equatorial zones of South-America and Asia and wet Europe 146 

and North America temperate zones. Medium-high coordinates (0< MCOA2 < 1) covered most of the 147 

globe, characterising all tropical-dry, semi-arid and subarctic regions. The projection of this dimension 148 
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(Figure 4D) predicts very high coordinates (MCOA2 >1) under limited regions of subtropical and high 149 

latitudes combining low annual precipitation (<1000mm) and very acidic pH (<4).  150 

Finally, we found that trait differences (defined based on euclidian distances along the two first 151 

dimensions of the MCOA) were significantly correlated with Unifrac phylogenetic distances (R²=0.32, 152 

Extended Data Figure 7). Communities with average genome size below its median values depicted a 153 

correlation between trait and phylogenetic distances significantly steeper (slope difference: p= 0.00116) 154 

and tighter (R²=0.46) compared to communities with larger genomes (R²=0.15, Extended Data Figure 155 

7).  156 

Discussion  157 

Our study describes two dominant dimensions of community aggregated traits variation across soil 158 

bacteria communities (Figure 2-3). In this trait space, communities are constrained in a triangle of three 159 

opposing life history strategies: low metabolic capacities; metabolic capacities expanded for 160 

environmental responsiveness; metabolic capacities expanded for nutrient recycling. These life history 161 

strategies incorporates traits previously identified as CSR strategies1,11,12 (Extended Data Table 1). 162 

Moreover, it fits into a triangle like the original CSR model7,23 (Figure 2-3) which suggests that the 163 

constraints on bacterial strategies might scale up to community level. Also consistent with CSR theory, 164 

both trait dimensions of our study capture competitor traits that tradeoff with traits of the other strategies.  165 

However, while one strategy generally dominates the traits of each end of the trait dimensions, our 166 

aggregated profiles often combine traits that had been associated with different strategies. In particular, 167 

one or more stress tolerance traits are part of all profiles (Figure 2-3). We hypothesise that these 168 

combinations indicate either that the communities are composed of taxa with different strategies or that 169 

the majority of bacteria living in soil need stress tolerant traits to survive in this challenging 170 

environment.  171 

Bacteria with streamlined metabolism dominate the low end of the metabolic capacity dimension. The 172 

genomic traits of these bacterial communities with small average genome size have only few matches 173 
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with previous description of stress tolerance strategy (Extended Data Table 1)1,11,12. However, the clear 174 

association to arid biomes that we observed suggests that the streamlined bacteria are associated with 175 

stress tolerance strategy. This is consistent with recent studies showing that genome streamlining can 176 

play a role in adaptation to environmental stressful conditions (eg.24,25). In particular, Liu et al. (2023) 177 

used a joint species distribution model to show that soil bacteria with small genomes are selected under 178 

arid environments, as seen here. Moreover, these streamlined communities were associated with some 179 

low environmental constraints on resource acquisition (low soil C:N and pH near neutrality as observed 180 

in 26) that might also reduce fitness benefits for gaining new capabilities27. Thus, genome streamlining 181 

and associated change in gene frequency might be central in the soil bacteria stress tolerance, especially 182 

in arid biomes.  183 

Cells with larger genomes and a more complex metabolism dominate the other end of the metabolic 184 

capacity dimension. The associated variation in the functional gene frequency that we observed is also 185 

consistent with previous studies reporting that genome expansion in free-living bacteria is driven by 186 

gene additions encoding for new metabolic capabilities or regulation14,28. Large genomes, high catabolic 187 

diversity, and antibiotic resistance genes observed for this life history strategy were previously attributed 188 

to a competitor strategy (Extended Data Table 1)1,11. This supports the idea that complex substrates 189 

acquisition is a key trait of competitors as suggested by Malik et al. (2020). Consistent with competitor 190 

traits, these attributes are favoured under stable and wet climates, that reduce the benefits of desiccation 191 

stress traits and possibly leading to intense resource competition7. We also detected an enrichment in 192 

traits associated with sporulation and exopolysaccharides production, two traits often associated with 193 

stress tolerance or ruderality (Extended Data Table 1) that might also improve tolerance to antimicrobial 194 

compounds or nutritional constraints for such competitor profile29,30. Together, the first trait dimension 195 

appears to represent a gradient from stress tolerant communities with small genomes to communities 196 

dominated by bacteria with increased metabolic capacities associated with other strategies, especially 197 

competitors. 198 
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When average genome size increases, bacteria communities differentiate along the second dimension 199 

with opposing profiles of either increased capacities for environmental responsiveness or for nutrient 200 

recycling. At the high end of this dimension, communities with high environmental responsiveness 201 

shared numerous genomic features tied to both the ruderal and stress tolerant strategies (Extended Data 202 

Table 1). This includes traits to resist stress, sensing favourable environmental conditions, activate fast 203 

growth, and C acquisition. The reduced and fluctuating precipitation patterns associated with this profile 204 

are also consistent with original descriptions of these strategies1,7.  At the opposite end of this second 205 

dimension, bacteria specialised in nutrient recycling show a resource acquisition strategy with a high 206 

number of transporters and bacterial biomass (Peptidoglycan) recycling and a higher investment towards 207 

nitrogen and phosphorus metabolism compared to carbon metabolism. Microbial mineralisation activity 208 

and biomass turnover release nutrients and necromass into soil that this profile seems optimised to 209 

recycle. Such traits might reflect a strategy that emphasises resource use efficiency and increased 210 

competitiveness for nutrients11,12. Further, the environmental parameters associated with this life history 211 

strategy (medium-low pH, high precipitation and low seasonality) are the most favourable for resource 212 

acquisition31, biomass turnover and yield32,33, reinforcing potential selection for competitor traits7. In 213 

summary, the second trait dimension reflects communities with increased metabolic capacities 214 

associated with either a combination of stress tolerance and ruderal traits that maximise their 215 

responsiveness or a reinforcement of competitor traits that favour nutrient recycling. 216 

Overall, our dimension of metabolic capacities matches the versatility dimension described by Westoby 217 

et al. (2021) across cultured bacterial taxa, with both studies supporting that genome size plays a central 218 

role in differentiating bacteria strategies. Our dimension opposing environmental responsiveness and 219 

nutrient recycling also shows some consistencies with the second trait-dimension described by Westoby 220 

et al. (2021) capturing a rate-yield tradeoff, with rrn copy number as principal trait. Indeed, as discussed 221 

above, the traits of the nutrient recycling profile might favour growth yield, and high environmental 222 

responsiveness is associated with higher rrn copy number. However, these variations of rrn copy 223 

numbers have only a limited importance in the second trait dimension of our study, contrasting with the 224 
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observations of Westoby et al. (2021) for cultured bacteria from diverse habitats. This could be 225 

explained by the constraint range of this trait in soil. Indeed, variation in average rrn copy number 226 

observed across communities in our study is highly constrained (1 to 1.5 copies, Extended Data Figure 227 

3). These observations are consistent with Gao and Wu (2018) reporting that most soil bacteria have 228 

less than 2 rrn copies, whereas bacteria from other environments can have up to 15 copies34. Further, 229 

variation in the average rrn copy number of whole communities will be more constrained than variation 230 

across individual isolates within the community; indeed, some bacteria with more copies might be 231 

present in the soil community, with their populations increasing during resource flushes (eg.35). In the 232 

oligotrophic environment of soil, our results suggest that increased capacity to recycle resources 233 

efficiently, to sense favourable conditions and to survive or escape stressful ones represent more 234 

common adaptations for bacteria than growing more rapidly. Investigating the variation of these traits 235 

across taxa in soil and their distribution within communities represents a challenging, but fascinating 236 

perspective to disentangle how the trait dimensions across taxa scales up to the community level. 237 

Overall, life history strategies of soil bacteria that we described using aggregated traits at the community 238 

level show some important consistencies with life history strategies described across bacterial taxa from 239 

various habitats, but also highlights some specificities and challenges associated with soil environment. 240 

Soil bacteria remain poorly characterised with a limited number of reference genomes and gene 241 

functional characterization36,37. This reduces annotation coverage of metagenomic data and can limit 242 

analysis conclusions. In our study, the proportion of reads annotated (between 5 and 15% depending on 243 

the database) were in the range of what is commonly obtained from soil metagenomes38. Our usage of 244 

stringent quality filtering criteria in the annotation2 also reduced the annotation coverage but increased 245 

annotation confidence. Finally, the proportion of unannotated reads is increased by the sequencing error 246 

and our usage of short read sequencing technology and read-based profiling (as opposed to assembly 247 

based profiling with better annotation but very limited representativity of the community). Our 248 

annotation coverage also showed a decrease with genome sizes, as reported across taxa36,37. However, 249 

unannotated genes likely belong to accessory genes and not to core metabolism that are well represented 250 
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in current databases37. Thus, we can expect that increased annotation of large genomes would have 251 

accentuated evidence for our conclusion that our first trait dimension captured an increase in metabolic 252 

capacities. Overall, our trait dimensions are expected to capture at least the functional variations 253 

associated with core metabolism and provide some first elements about functional genes associated with 254 

expansion of metabolic capacities. 255 

We showed that communities with similar life history strategies tend to be phylogenetically closer, 256 

supporting a certain phylogenetic conservatism of the genomic traits shaping life history strategies39. 257 

However, this relationship weakens as genome size and metabolic capacities expand (Expended Data 258 

Fig 7). This suggests that metabolic expansion during different evolutionary histories can converge to 259 

similar life history strategy40. Hence, phylogenetic distance become a poorer predictor of difference in 260 

life history strategies for soil bacterial communities with large genomes. 261 

The biogeography of dominant life history strategies in soil bacterial communities is mainly driven by 262 

the combinations of soil pH and precipitation patterns across the globe. These environmental factors 263 

impact stress and competition intensity for soil bacteria, either through direct effect on their physiology 264 

and interaction41–43 or indirectly through their modification of abiotic (eg. solubilization of toxic ions 265 

Al3+) and biotic (eg. plant and fungal communities) characteristics of the ecosystem44–46. The 266 

environmental distribution of the life history strategies suggests that bacteria expand their metabolic 267 

capacities to deal with conditions associated with increasing soil acidity and annual precipitation until a 268 

certain level (Figure 3). Then, expansion of metabolic capacities increases either environmental 269 

responsiveness to survive under more extreme pH and fluctuating precipitation or nutrient recycling to 270 

be competitive under higher precipitation levels. These global effects of pH and precipitation are 271 

consistent with previous studies of soil bacteria biogeography3,26,47 and provide some new information 272 

on the traits associated with these environmental factors. 273 

Our global projection (Figure 3B and D) aims at giving a picture of the general biogeographic patterns 274 

in the functional profiles of soil bacterial communities. However, it is important to note that 275 
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transposition of our trait dimensions at local scale will need further investigation. Values predicted for 276 

these broad resolution maps can be dissociated from the local situation if its conditions highly differ 277 

from the regional mean (Sup Figure 8) and should be used with caution. Despite outstanding issues that 278 

remain open, our study demonstrates how metagenomic approaches can provide substantial advance in 279 

our understanding of microbial community functioning. Altogether, our results suggest that land use and 280 

climate changes impacting soil pH and precipitation gradients at biogeographic scale might be central 281 

in shaping future functional potential of soil bacterial communities and thus global biogeochemical 282 

cycles. 283 

Methods 284 

Soil sampling and characteristics 285 

We analysed a global dataset of 128 metagenomes each from unique soil samples distributed across 286 

continents and latitude (Extended Data Figure 8)2. We selected this dataset for our analysis because of 287 

its coverage and its use of a highly standardised protocol that: 1) sampled top-soils in spatially 288 

independent sites across the globe selected to represent all the most important vegetation types; 2) 289 

analysed soil chemistry and metagenomes2. All samples were processed using similar standardised 290 

protocols for their chemistry (carbon, nitrogen, phosphorus content and pHH20) and metagenome (See2) 291 

for protocol details). We checked the global environmental coverage by comparing variation of the main 292 

environmental variables (mean annual temperature (MAT), mean annual precipitation (MAP), soil pH 293 

and net primary productivity (NPP)) in our dataset with global variation from the Atlas of the Biosphere 294 

(https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php). This showed an almost complete global 295 

coverage, with only extreme MAT of very high latitude (below -11.33°C) and Sahelian Africa (above 296 

MAT 27.97°C) as well as very high pH (higher than 7.76) characterising some parts of North Africa, 297 

West Asia and Himalaya missing in our dataset (Extended Data Figure 8). As far as we know, when we 298 

conducted this analysis, this dataset was the only available with such precise characterization of soil 299 

environment done on the same sample as shotgun metagenomic analysis, making this dataset the most 300 
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robust for our objective to assess environmental drivers of metagenomic profiles. Nevertheless, potential 301 

to extend environmental range by adding all (excluding agricultural and contaminated) soil 302 

metagenomes available (accession date January 28 2021) from the main sequence repositories MG-303 

RAST48 and IMG:M49   was also tested. This indicated that adding these data would not have extended 304 

environmental range (excepted a few samples from very cold sites with mean annual temperature lower 305 

than -11.5°C available on MG-RAST) and this would have greatly decreased precision of soil properties 306 

characterization (Extended Data Figure 9). 307 

Metagenomic and amplicon sequencing data  308 

DNA extraction, sequencing (Illumina with RTA Version 1.18.54 and bcl2fastq v1.8.4), trimming and 309 

mapping approaches are detailed in Bahram et al. (2018). In this study, four community aggregated trait 310 

databases were built, corresponding to metagenomic reads mapping on different functional annotation 311 

systems by Bahram et al. (2018). An additional database was made for this study with genomic traits 312 

previously associated with bacterial life history strategies (See details below). Data from 16S rRNA 313 

gene amplicon sequencing were also used to characterise phylogenetic distances between bacterial 314 

communities using the Unifrac metric50 315 

Bacterial community aggregated trait calculation  316 

Bahram et al. (2018) mapped reads to the functional databases (KEGG, eggNOG and CAZy). Data were 317 

aggregated at the (1) pathway (KEGG), (2) functional categories (eggNOG) levels, (3) SEED functional 318 

modules and (4). Glycolysis Hydrolases (GH) and Auxiliary Activities (AA) gene families from 319 

CAZy51. All read mapping was done competitively against both prokaryotic and eukaryotic functional 320 

databases and best bit score in the alignment and the taxonomic annotation was used to retrieve only 321 

reads annotated as bacteria. 322 

We used output data from these four annotation processes to provide complementary classification of 323 

functional genes (e.g. eggNOG categories include Motility, Cell envelopes and Defense which are not 324 

included in SEED whereas SEED classes include Dormancy and Sporulation, Stress response, 325 
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Virulence, Carbon, Nitrogen and Phosphorus metabolism which are not included in eggNOG). The 326 

eggNOG annotation also differed from KEGG and SEED in the construction of orthologous groups with 327 

eggNOG using non-supervised construction increasing coverage whereas KEGG used supervised 328 

construction increasing annotation robustness. To obtain a more precise picture of C acquisition strategy, 329 

the CAZy annotated reads abundance were aggregated on the basis of their targeted substrates 330 

(Cellulose, Chitin, Glucan, Lignin, Peptidoglycan, Starch/Glycogen, Xylan, Other Animal 331 

Polysaccharides, Other Plant Polysaccharides, Oligosaccharides) using a curated database 332 

(Supplementary Table 2) based on previous works52–54. After mapping, the relative abundance of each 333 

gene (or aggregated group of genes) was normalised by the total number of bacteria-reads annotated for 334 

this sample on the same database. Such normalisation corrects for variation between samples in the 335 

quantity of annotated reads and avoids biases induced by contamination and sequencing error55. The 336 

obtained relative abundances inform on the relative importance of a gene (or gene group) compared to 337 

all the other annotated functions. 338 

Life history trait calculation 339 

An additional database was built with genomic traits previously associated with bacteria life history 340 

strategies (Extended Data Table 1). For this database, nine life history traits were calculated. Seven traits 341 

were calculated by summing the relative abundances of genes associated with Sigma factor56, 342 

Exopolysaccharides (EPS)57, Chaperons12,58, Chemotaxis, and Osmolytes59–62, antibiotic resistance and 343 

carbohydrates degradation enzymes (CAZyme). In addition, average genome size was calculated using 344 

MicrobeCensus63 and rrn copy number using the method described in 64. All sequences were used as 345 

input for average genome size and rrn copy number, after a verification that eukaryotic sequences were 346 

negligible (less than 2% of annotated reads for all databases verified for all samples) and therefore, that 347 

the samples mostly captured bacteria.  348 

Statistical analysis 349 



 

 

15 

To identify the multivariate axes that best explain the global scale variation in metagenomic community 350 

aggregated traits of soil bacteria, we used a multi-table co-inertia analysis (MCOA), an exploratory 351 

analysis that leverages together the information from the 5 databases (genomic traits, eggNOG 352 

categories, SEED modules, KEGG pathway, CAZy types). This method identifies co-relationships 353 

between the different databases and uses a covariance optimization criterion to summarise in a common 354 

structure the information shared by multiple multivariate (eg. omic) tables65–67. All variables (CATs) 355 

were log transformed (log X +1) before the analysis to improve normality67  and standardised to a mean 356 

of zero and a variance of 1. The R package ade4 was used for the MOCA analysis68. 357 

Sample coordinates on the first and second dimension of the MCOA were extracted and used as latent 358 

variables representing bacterial community positions in the global trait space. Random forest models 359 

were then used to identify predictors of these coordinates among potential environmental drivers, which 360 

were the soil properties measured on the same sample as metagenome (see Soil sampling and 361 

characteristics) and climatic variables extracted from Worldclim2 : BIO1 = Annual Mean Temperature, 362 

BIO4 = Temperature Seasonality (standard deviation), BIO12 = Annual Precipitation and BIO15 = 363 

Precipitation Seasonality (standard deviation). First, we verified that all selected environmental drivers 364 

had spearman correlation coefficients lower than 0.7 to mitigate collinearity problems as recommended 365 

in 69. Second, a variable selection process was carried out using the method implemented in the VSURF 366 

R package70. The number of predictors randomly tested at each node of the random forest tree (mtry) 367 

was optimised based on randomForest’s tuneRF algorithm and the number of trees set to 1000. Third, 368 

the random forest models selected following the VSURF selection process were trained using ten-fold 369 

cross-validation (100 repetitions) implemented in the caret package71 and model performance was 370 

assessed based on Root Mean Square Error (RMSE) and R squared. Finally, random forest predictive 371 

models were used to project a broad resolution map of trait dimension global biogeography using 372 

environmental maps (1600x1200 pixel) as predictors. For this projection, we used the the latest map 373 

(June 2022) released by ISRIC's World Soil Information Service 374 

(https://files.isric.org/soilgrids/latest/data_aggregated/) based on SoilGrids version 2.072. Worldclim2 375 

https://files.isric.org/soilgrids/latest/data_aggregated/
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(https://www.worldclim.org/) was used for climatic variables. The raster R package was used for the 376 

spatial predication and projection. To validate the relevance of this broad resolution map to represent 377 

average local values, we tested the correlation between local observations and the predicted value of the 378 

cell in which the local observation was done. 379 

Finally, we tested the relationship between phylogenetic composition of the bacterial communities and 380 

their positions in the MCOA trait space using linear correlation between Euclidean distances along the 381 

two first dimensions of the MCOA and Unifrac phylogenetic distance.  The influence of average genome 382 

size on this relationship was then assessed by comparing the correlation coefficients for communities 383 

below and above the median average genome size in the dataset. 384 

Data availability 385 

The five CAT databases used to build the trait dimensions and the associated environmental variables 386 

are available on figshare repository : https://doi.org/10.6084/m9.figshare.22620025 All the original 387 

sequences are available in the European Bioinformatics Institute Sequence Read Archive database: 388 

soil metagenomes, accession numbers PRJEB18701 (ERP020652), 16S metabarcoding sequences, 389 

accession numbers PRJEB19856 (ERP021922). 390 

Code availability 391 

Access to the code used in the analyses done for this research is available by request to the 392 

corresponding author.  393 
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 413 

Figure 1. Global trait dimensions of soil bacteria metagenomes. Variable contributions to the multiple 414 

co-inertia analysis (MCOA) summarising in a common structure (MCOA dimensions 1 and 2) the 415 

information shared by 5 community aggregated trait (CAT) databases (Life history trait, CAZy, 416 

eggNOG, SEED and KEGG). Only the most important variables with significant correlation (p<0.001) 417 

with each dimension are reported in this figure. a and b panels present variable contributions to MCOA 418 
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Dimension 1 and 2 respectively. Bar colours indicate the direction of the associations between the 419 

variable and the MCOA dimensions.  420 

 421 

Figure 2. The global life history strategies of soil bacteria communities. Two-dimensional trait space 422 

from a MCOA depicting trait associations across soil bacteria communities, with traits inferred from 423 

enriched genes in bacteria metagenomes. Dots represent the positions of the 128 bacterial communities 424 

used in this study along these two dimensions. In the trait lists, letters in brackets represent how CSR 425 

(Competitors, Stress tolerant, Ruderal) and YAS (High Yield, resource Acquisition, Stress tolerance) 426 

strategies have been associated with these traits in previous theoretical works (Extended Data Table1).  427 
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 428 

Figure 3. Hypothesised role of competitor (C), Ruderal (R) and Stress tolerant (S) traits in shaping the 429 

life history strategy observed at the community level and associated environmental gradients. Details 430 

of CSR traits association are provided in Figure 1 and 2. S, S’ and S’’, represent the different S traits 431 

associated with each dimension and detailed in Figure 1 and 2.  432 
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 433 

Figure 4. Environmental control and global scale projection of bacterial communities’ coordinates 434 

along MCOA dimension 1 and 2. a and c, random forest partial dependence plots describing 435 

relationships between bacterial communities’ coordinates along MCOA dimension 1 (a) and 2 (c) and 436 

their most significant environmental predictors (Extended Data Figure 5). b and d, random forest 437 
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predictions for MCOA dimension 1 (b) and 2 (d) projected across the globe using broad resolution map 438 

of mean soil and climate conditions (1600x1200 pixel), with land out of the dataset range in grey. Colour 439 

bars represent the predicted coordinates along MCOA dimension 1 (b) and MCOA dimension 2 (d). 440 

SoilGrids version 2.0 was used for soil properties and Worldclim2 for climate variables. Accuracy of 441 

the prediction was verified by ten-fold cross-validation of the random forest (Extended Data Figure 5) 442 

and by comparing the predicted values of the broad resolution projection with local observations 443 

(Extended Data Figure 6). 444 

 445 
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Extended Data 608 

Extended Data Table 1. Life history traits used in this study. Traits were selected based on their previous 609 

association with CSR (‘Competitor’, ‘Stress tolerant’, and ‘Ruderal’) strategies by Fierer (2017) [1] or 610 

Krause et al. (2014) [2] or YAS strategies (“Yield”,”Resource acquisition”, and “Stress tolerant”) by 611 

Malik et al. (2020) [3]. Cells associated with CSR and YAS have been greyed based on the strategy to 612 

facilitate comparisons between references. Same gray has been used for C and A, and for R and Y 613 

strategies as they have some important theoretical linkages (Malik et al. 2020).614 
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Life history traits Associated metagenomic community aggregated traits used in this study CSR [1] CSR [2] YAS [3] 

Amino acid, fatty acid and nucleotide 
synthesis [3] 

> eggNOG category, KEGG pathway and SEED modules associated with amino acid, lipid and nucleotide metabolism     Y 

Chaperons [3] > Chaperons genes : GroEL (COG0459), dnaK (COG0443) and dnaJ (COG0484) (Malik et al. 2020, Finn et al. 2020)     S 

Siderophores [1,3] > KEGG pathway "Metallic cation iron siderophore and vitamin B12 transport system " C   A 

Oligosaccharides degradation enzymes > Genes associated with Oligosaccharides degradation among other GH and AA genes       
Carbohydrate central metabolism [3] > KEGG pathway "Central_carbohydrate_metabolism"     Y 

Primary metabolism 
> eggNOG categories : F-Nucleotide transport and metabolism, J-Translation and ribosomes, D-Cell cycling, E-Amino acid transport and metabolism, H-Coenzyme transport 
and metabolism and A-RNA processing and modification, SEED modules : DNA and protein metabolisms. KEGG pathways: Purine, Cysteine, Methionine, Arginine, Proline 
and Lysine metabolism, Proteosome, cofactors and vitamins metabolisms and Ribosome, Aminoacyl tRNA, RNA and DNA polymerase and Nucleotide sugars 

      

Genome size [1,2] > Average genome size (Nayfach and Pollard 2015) C R   
Complex polymers degradation 
enzymes [3] 

> Genes associated with Lignin degradation among other GH and AA genes     A 

Fungal biomass degradation enzymes > Genes associated with Chitin and Glucan degradation among other GH and AA genes       
Antibiotic [1,2] > Antibiotic Resistance Genes C C   
Pathogenic interactions with plants > SEED module : Virulence       
Sporulation [1,2] > SEED module "Dormancy_and_Sporulation" R S   
EPS [1,2,3] > EPS genes : WcaB (COG1596), WcaF (COG0110), Wza (COG1596), KpsE and RkpR(COG3524) and wcaK(COG2327) (Cania et al. 2020) S S S 

Membrane synthesis and repair [3] > eggNOG categories : L-Replication, recombination & repairs, M-Cell wall, membrane and envelope, KEGG pathways : Lipid and lipopolysaccharide metabolism     S 

rRNA gene copies [1,2] > Average rRNA copy number (Pereira-Flores et al. 2019) R C   
Motility [2,3] > eggNOG category : "N-Motility"   R A 

Chemotaxis [2,3] 
> Genes associated with chemotaxis : CheA ( COG0643), CheY (COG0784), CheW (COG0835), CheB (COG2201), CheX (COG1406), CheD (COG1871), Methyl-accepting 
chemotaxis proteins (COG0840, COG1352)   R A 

Sigma factor [3] > σ factor genes : σD, σS and σH (COG0568), σF and σB (COG1191), σN (COG1508) and extracytoplasmic function σ factors (COG1595) (Chávez et al. 2020)     S 

Osmolytes [3] > Genes associated with Trehalose and glycine betaine (Malik et al. 2020, Sharma et al. 2020, Suriaty Yaakop et al. 2016, Bochet al. 1996, Wargo et al. 2013)     S 

Exoenzymes (All) [2,3] > GH and AA genes in global metabolism   S A 

Bacterial biomass degradation enzyme > Genes associated with Peptidoglycan degradation       
Uptake system [2,3] > KEGG pathway and SEED modules associated with transport systems   S A 
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 616 

 617 

Extended Data Figure 1. Stress plot representing the % of variation of the global dataset captured by 618 

each dimension of the MCOA 619 
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 620 

Extended Data Figure 2. Variable contributions to the third trait dimension of the multiple co-inertia 621 

analysis (MCOA). The MCOA summarizes in a common structure the information shared by 5 622 

community aggregated trait (CAT) databases (Genomic trait, CAZy, eggNOG, SEED and KEGG). Only 623 

the most important variables with significant correlation (p<0.001) with each dimension are reported 624 

in this figure.  625 
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 626 

Extended Data Figure 3. Correlations between genomic traits and coordinates along dimensions 1 and 627 

2 of the MCOA. The P value indicates the significance of the regression slope obtained using a t-test.  628 

Shade represents the estimated 95% confidence interval. Color gradients follow MCOA dimensions and 629 

match with figure 1 and 3 in the main text. 630 

a. b.

c. d.



 

 

 

4 

631 

Extended Data Figure 4. Correlations between MCOA dimensions (MCOA1 and MCOA2) and mapping 632 

coverages on the 3 general databases (eggNOG, KEGG, SEED) used in this study. The P value indicates 633 

the significance of the regression slope obtained using a t-test.   634 

  635 
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 636 

Extended Data Figure 5. Environmental drivers of the bacterial community trait dimensions. 637 

Environmental variable importances are represented as the mean decrease in mean square error 638 

(%MSE) and R squared in random forest models predicting MCOA Dimension 1 (a) and 2 (b). Bar 639 

colours indicate which end of the dimension (Figure 1 and 3) is positively correlated with the variable. 640 
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 642 

Extended Data Figure 6. Correlations between local trait dimension observations and global spatial 643 

prediction. Correlations between local observations of bacterial community positions along the first 644 

and second trait dimensions from the MCOA (Figure 1-2) and the predicted value of the global map cell 645 

(Figure 4) corresponding to where the local observations have been done. Dashed line represents a 1:1 646 

correlation. The P value indicates the significance of the regression slope obtained using a t-test.  Shade 647 

represents the estimated 95% confidence interval. Color gradients follow MCOA dimension and match 648 

with figure 1,2 and 4 in the main text. 649 

MCOA1 MCOA 2
P=2.31e-15, R²=0.39P<2e-16, R²=0.45
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 650 

 651 

Extended Data Figure 7. Correlation between phylogenetic distance (Unifrac metric) and functional 652 
distance (Euclidian distance in MCOA space using coordinates of the two principal dimensions). 653 
Correlation for all samples (a) and restricted to samples with average genome size below (b) and 654 
above (c) its median value in the dataset. The P value indicates the significance of the regression slope 655 
obtained using a t-test.   656 

 657 

a.

b. c.
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 658 

Extended Data Figure 8. Dataset distribution and environmental coverage. a. Sample localisations and 659 

associated biomes b-c. Comparison between global range of environmental variables from the Atlas of 660 

the Biosphere (b) and the environmental coverage of dataset (n=128) used in this study (c). Boxplot 661 

elements: Center line=median; box limits=upper and lower quartiles; whiskers=1.5x interquartile 662 

range; points=outliers. World map was done with rnaturalearth R package 663 

(https://github.com/ropensci/rnaturalearth). 664 
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 665 

Extended Data Figure 9.  Environmental coverage comparison between the database used in this study 666 

from Barham et al. (2018) and databases from the main metagenomes repositories (MG-RAST and 667 
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IMG:M). N corresponds to the number of metagenomes available in each database. MAT=Mean Annual 668 

Temperature, AP=Annual Precipitation. Boxplot elements: Center line=median; box limits=upper and 669 

lower quartiles; whiskers=1.5x interquartile range; points=outliers. 670 




