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Factors Influencing Background
Incidence Rate Calculation:
Systematic Empirical Evaluation
Across an International Network of
Observational Databases
Anna Ostropolets1†, Xintong Li2†, Rupa Makadia3, Gowtham Rao3, Peter R. Rijnbeek4,
Talita Duarte-Salles5, Anthony G. Sena3,4, Azza Shaoibi 3, Marc A. Suchard6,7,
Patrick B. Ryan1,3, Daniel Prieto-Alhambra2 and George Hripcsak1,8*

1Columbia University Medical Center, New York, NY, United States, 2Centre for Statistics in Medicine, NDORMS, University of
Oxford, Oxford, United Kingdom, 3Janssen Research and Development, Titusville, NJ, United States, 4Department of Medical
Informatics, Erasmus University Medical Center, Rotterdam, Netherlands, 5Fundacio Institut Universitari per a la Recerca a
L’Atencio Primaria de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain, 6Department of Biostatistics, Fielding School of
Public Health, University of California, Los Angeles, Los Angeles, CA, United States, 7Department of Human Genetics, David
Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States, 8New York-
Presbyterian Hospital, New York, NY, United States

Objective: Background incidence rates are routinely used in safety studies to evaluate an
association of an exposure and outcome. Systematic research on sensitivity of rates to the
choice of the study parameters is lacking.

Materials and Methods: We used 12 data sources to systematically examine the
influence of age, race, sex, database, time-at-risk, season and year, prior observation
and clean window on incidence rates using 15 adverse events of special interest for
COVID-19 vaccines as an example. For binary comparisons we calculated incidence rate
ratios and performed random-effect meta-analysis.

Results: We observed a wide variation of background rates that goes well beyond age
and database effects previously observed. While rates vary up to a factor of 1,000 across
age groups, even after adjusting for age and sex, the study showed residual bias due to the
other parameters. Rates were highly influenced by the choice of anchoring (e.g., health
visit, vaccination, or arbitrary date) for the time-at-risk start. Anchoring on a healthcare
encounter yielded higher incidence comparing to a random date, especially for short time-
at-risk. Incidence rates were highly influenced by the choice of the database (varying by up
to a factor of 100), clean window choice and time-at-risk duration, and less so by secular or
seasonal trends.

Conclusion: Comparing background to observed rates requires appropriate adjustment
and careful time-at-risk start and duration choice. Results should be interpreted in the
context of study parameter choices.
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INTRODUCTION

Observational healthcare data can enable large-scale medical
product safety monitoring by detecting a possible rise in the
incidence of adverse events following exposure. One approach
commonly used in vaccine surveillance is to compare the
observed incidence of adverse events following vaccination
with the background incidence in the target population (Black
et al., 2009). It requires accurate capture of baseline incidence
rates (IRs) which becomes especially relevant for safety
monitoring in new patient populations or mass preventative
measures such as vaccination campaigns (Black et al., 2009;
Spronk et al., 2019). While baseline IRs are commonly
calculated in observational studies, there is insufficient
empirical study of factors influencing incidence estimation and
the magnitude of such influence, which may lead to biased
inference about vaccine or drug safety.

There is no common framework to assess baseline IRs in drug
safety and effectiveness studies, which results in high
heterogeneity of IRs in most of the meta-analyses of IRs
(Susantitaphong et al., 2013; Umasunthar et al., 2013; Hirsch
et al., 2016; Dasgupta et al., 2020). Many safety studies rely on the
same data source to estimate both the background and observed
incidence (Spronk et al., 2019). They hypothesize that the target
population used to estimate the background incidence is
generalizable to the patients exposed. Nevertheless,
retrospective observational studies are oftentimes performed
on data sources that capture heterogeneous populations. It is
unclear to what extent such populations can serve as a proxy for a
counterfactual of the exposed population and whether such
deviation between the comparator and that counterfactual
represents a potential bias.

Patient characteristics such as age (Lin et al., 2011; Sejvar et al.,
2011; Dodd et al., 2018; Willame et al., 2021), sex (Linn et al.,
1996; Hanratty, 2000; Gracia Gutiérrez et al., 2020; Willame et al.,
2021), race (Kanaya et al., 2011; Idrees et al., 2018; Huang et al.,
2020), patient location (Linn et al., 1996; Dodd et al., 2018; Idrees
et al., 2018; Marty et al., 2018) and primary healthcare institution
(Beghi et al., 2011; Lin et al., 2011; Cologne et al., 2019; Willame
et al., 2021) have been shown to have an impact on the IRs. For
example, the studies reported up to a 10-fold difference in IRs of
adverse events in different age groups (Black et al., 2009), up to a
20-fold difference in IRs across different data sources (Willame
et al., 2021). Nevertheless, the influence of patient characteristics
has not been studied systematically.

There is also a lack of research on the impact of time-at-risk
(TAR) start and duration choice on baseline IRs. While the TAR
start and duration for the intervention group is usually based on
the pharmacokinetics and pharmacodynamics of the drug, they
are often compared to long times-at-risk in the baseline
population, and the impact of this choice is unclear. Another
gap in research is related to the starting point used to estimate
baseline IRs. Most of the studies use an arbitrary calendar date for
time-at-risk start, which can be the date patients satisfy the
inclusion criteria or start of the year for annual IRs. On the
other hand, anchoring (i.e., indexing) time-at-risk intervals on a
healthcare encounter may be associated with observing more

adverse events due to the impact of administered drugs or
detection bias.

With the ongoing COVID-19 vaccination campaign, several
regulatory bodies have published protocols to assess background
rates, which differ in data sources used, requirements for prior
observation periods, anchoring date and outcome definitions
(European Network of Centres for Pharmacoepidemiology and
Phamacovigilance, 2020; Food and Drug Administration and
Center for Biologics Evaluation and Research (CBER)
Biologics Effectiveness and Safety (BEST) Initiative, 2020).
Recent papers on estimating background rates of adverse
events of interest for COVID-19 vaccine also used
heterogeneous definitions and settings (Black et al., 2021; Burn
et al., 2021; Nasreen et al., 2021, 19). Such discrepancies may
result in producing different incidence rates and obscure their
interpretation. We previously reported high variation in
background rates of adverse events of special interest across
age and gender (Li et al., 2021). In this paper, we
systematically analyze the parameters influencing background
rate estimation and discuss implications for interpreting
incidence rates using the incidence rates for adverse events of
special interest for COVID-19 vaccines as an example.

MATERIALS AND METHODS

Our primary research question was: “How does the selection of
analysis parameter choices (such as target population, anchoring
event, time-at-risk, and data source) influence baseline incidence
rate estimation?” To address it, we identified the set of choices
related to each part of the incidence rate estimation (Figure 1)
and specified experiments to estimate the sensitivity to those
parameter choices.

Data Sources
We conducted the experiment on 12 data sources
(Supplementary Table S1), including sources with different
data source provenance (administrative claims data, electronic
health record data), origin (the US, Australia, Germany, France,
Japan, the United Kingdom ), and representing different
populations [privately insured employed patients in IBM
MarketScan Commercial Claims (CCAE) or patients with
limited income in IBM MarketScan Multi-state Medicaid
(MDCD)].

Phenotype Development
We used the outcomes (Supplementary Table S2) outlined in the
“Background Rates of Adverse Events of Special Interest for
COVID-19 Vaccine Safety Monitoring” protocol published by
Food and Drug Administration Center for Biologics Evaluation
and Research (Food and Drug Administration and Center for
Biologics Evaluation and Research (CBER) Biologics
Effectiveness and Safety (BEST) Initiative, 2020). The details of
phenotype development were described elsewhere (Li et al.,
2021).

Briefly, we followed OHDSI phenotype development and
evaluation pipeline to translate and expand the phenotype
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definitions from the above-mentioned protocol to ensure that the
clinical codes cover US and non-US data sources. This was done
through translating the source codes to the standard
representation in the OMOP Standardized Vocabularies
(SNOMED, RxNorm and LOINC codes) and iteratively
expanding the code sets using the data on code utilization in
the OHDSI Network using OHDSI tool PHenotype Observed
Entity Baseline Endorsements (PHOEBE) (PHOEBE, 2022). We
systematically examined each cohort to assess patients’
characteristics such as demographics, baseline co-morbidities,
drug use, procedures and health utilization as well as the actual
codes found in the data triggering the various rules in the cohort
definitions using CohortDiagnostics (CohortDiagnostics, 2022).

We did not examine phenotypes requiring an inpatient
encounter on the outpatient data sources (IQVIA Australia,
IQVIA Germany, IQVIA France, ICPI Netherlands). We also
excluded the phenotypes that did not yield patients on given data
sources, as well as age strata less than 55 years for MDCR. Results
for transverse myelitis in JMDC and narcolepsy in Optum EHR
were removed due to failed cohort diagnostics.

Target Population
The base population was the patients observed in the database at
any time during 2017–2019 with at least 365 days of prior
observation. We also selected several subgroups of interest for
COVID-19 vaccine based on health state and behavior (Figure 1).
For patients with a well visit, the latter was defined as a healthcare
encounter associated with CPT4 codes representing well visits. A
chronic condition visit was defined as a healthcare encounter with
at least one condition diagnostic code associated with a higher

risk of complications as defined by CDC (Supplementary Table
S2). Pregnancy episodes were constructed using a published
algorithm (Matcho et al., 2018). The populations were further
stratified on age (0–5, 6–17, 18–35, 36–55, 56–64, 65–74, 74–85,
>85), sex (male, female) and race (White, Black). Race was
extracted from the patients’ electronic health record (CUMC
EHR and Optum EHR) or commercial claims (Optum SES) for
whom a race field was populated.

Time-at-Risk
We anchored the time-at-risk on a random date, health care visit,
well visit or influenza vaccination, and we applied several time-at-
risk interval durations (Figure 1). We studied years 2017, 2018,
2019 and 2020 separately, and we studied seasonal intervals as
dates 1/1–3/31, 4/1–6/30, 7/1–9/30 and 10/1–12/31 in each year.
We also compared the COVID-19 pandemic (4/1/2020–9/31/
2020), to the same period in 2019.

Sensitivity Experiment
We performed calculations for each combination of outcome,
target population and time-at-risk. We calculated incidence rate
as the ratio of the number of cases to the total person-time the
population was at risk (from cohort start date to the end of time-
at-risk period, occurrence of an outcome or loss to follow-up
whichever comes first).

To make comparisons between the incidence rates observed
under different analysis settings, incidence rate ratios (IRR) were
computed, holding all parameters constant except for the target
parameter of interest. Comparisons using IRR included: male
versus female patients, White versus Black patients, no ‘at risk’

FIGURE 1 | Baseline incidence rate calculation and its elements.
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comorbid condition versus ≥ 1 “at risk” comorbid condition,
outcome-specific clean window (minimum time between
outcome occurrences to be considered separate events) versus
no prior events as well as comparisons of different years and
seasons. For all incidence rate ratios, we conducted random-
effects model meta-analyses to generate age-adjusted and
unadjusted pooled IRRs and 95% confidence intervals across
data sources using R package metafor version 2.4
(Viechtbauer, 2010). Heterogeneity was assessed using the I2

index (Huedo-Medina et al., 2006). Detailed descriptions of
analysis parameters for each experiment and result can be
found on GitHub (Covid-19 Vaccine AESI Incidence
Characterization protocol, 2021).

RESULTS

The number of included patients varied from 252,212 in IQVIA
Australia to 40,955,085 in OPTUM EHR with the proportion of
female patients from 45.0% in JMDC to 59.5% in CUMC
(Supplementary Table S3). The data sources covered all age
groups except for patients over 75 in CCAE and patients under 65
in MDCR with patients aged 35–54 years being the most
common group.

As expected, the incidence rates of the outcomes displayed a
very wide range. When calculated for all age groups, target
populations and anchoring events, IRs of outcomes showed
more than 100,000-fold differences (Figure 2).

FIGURE 2 | Estimated incidence rates for adverse events of interest across all (A) target populations, (B) time-at-risk intervals and (C) age groups. A dot represents
one incidence rate estimate.
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Patient Characteristics
Age was the main contributor to the heterogeneity shown in
Figure 3, with rates varying by up to a factor of 1,000 across
age groups within one database. The effect of age was
observed consistently across all data sources and
outcomes, which highlights the extreme sensitivity of the
incidence rate estimation to the age distribution of the
measured population.

For sex, the IRR of incidence rates in males compared to
females ranged from 0.76 to 2.17 and was statistically significant
in 10 of 15 (Supplementary Table S4). The direction generally
matched the literature: transverse myelitis was more common in
females, cardiovascular conditions and appendicitis were more
common in males.

For most of the conditions, race did not have a substantial
effect on incidence rates (Supplementary Table S4 and
Supplementary Figure S2, range 0.67–1.49). Disseminated
intravascular coagulation, myocarditis, non-hemorrhagic stroke
and pulmonary embolism were diagnosed more often in Black
patients and appendicitis and Guillain-Barre syndrome were
diagnosed more often in White patients.

Figure 3 also shows the database variation. Differences of a
factor of 10 were common, especially for rare disorders like
disseminated intravascular coagulation or transverse myelitis.
Generally, these disorders had higher incidence in the non-US
data sources compared to the US data sources. Notably,
disseminated intravascular coagulation had a higher incidence
in Japan. All age-sex population strata showed at least 40%
heterogeneity by I2 in strata- and outcome-specific meta-analyses.

Patients with chronic conditions had significantly higher rates
of all outcomes when compared to the group of patients with no
chronic conditions (pooled IRR 2.16, 95% CI 1.91–2.44). Prior
influenza vaccination was also associated with higher incidence
compared to the general population (pooled IRR 1.41, 95% CI
1.30–1.54, Supplementary Table S10 and Supplementary
Figure S8).

Time-at-Risk
When adjusted for age, anchoring was the second-largest effect,
where anchoring on a visit versus anchoring on January 1st for a
short time-at-risk (2 days) was associated with up to a 100-fold
increase in incidence (pooled IRR 26.8 (95% CI 21.9-32.8)). The

FIGURE 3 | Incidence rates in age groups in 2017–2019 in patients entering on January 1 with a 365 days time-at-risk and 365 days of pre-entry observation
period. Outcomes were arranged by maximum incidence per age stratum from the most common to the least common.
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effect was attenuated for longer times at risk (Figure 4): for
example, IRR for 1–28 days was 1.4 (95% CI 1.3-1.5,
Supplementary Table S5).

Additionally, we found that when anchoring on a visit, the
incidence rates for a 1–365 days time-at-risk were lower than in
the group of patients with a visit in the next year anchored on
January 1st. This may be explained by the fact that anchoring on a
visit excludes the day of the visit from time-at-risk, while time-at-
risk for anchoring on January 1st includes the days of subsequent
visits. Including day 0 in time-at-risk mitigates this difference
(Supplementary Table S5).

We observed similar trends for anchoring on a well visit or an
influenza vaccination with the pooled IRR 1.21 (95% CI 1.11-
1.31) and 1.17 (95% CI 1.11-1.22) respectively (Supplementary
Tables S5,S6, Supplementary Figures S4,S5). Notably, incidence
of Guillain-Barre syndrome was significantly increased when
anchoring on an influenza vaccination and was less influenced
by anchoring on a well visit or a random visit.

Time-at-risk duration influenced incidence only when we
anchored on an event. When anchoring on January 1st,
comparing the time-at-risk for 1 day versus 365 days showed
consistently little effect across all outcomes with the pooled IRR
across databases and outcomes of 1.0 (95% CI 0.93-1.08).

We observed seasonal trends for anaphylaxis, appendicitis,
acute myocardial infarction, strokes and Guillain-Barre
syndrome (Supplementary Figure S6 and Supplementary

Table S8). We also found a decrease in IRs in some of the
data sources in 2020 compared to 2019–2017 (Supplementary
Figure S7 and Supplementary Table S9).

Incident Cases
In this study, we defined incident cases as those that occurred for
the first time in a given window. An alternative approach—using
all patient history to identify incident cases—produced
consistently smaller incidence rates for all outcomes with the
pooled IRR of 0.83 (95% CI 0.79–0.87). Notably, IRRs for
narcolepsy and Guillain-Barre syndrome were significantly
smaller (IRR 0.69 (95% CI 0.65-0.74) and IRR 0.59 (95% CI
0.48-0.71) respectively, Supplementary Table S11 and
Supplementary Figure S9).

This observation was supported by modestly lower incidence
when requiring patients to have prior observation (pooled IRR
0.94 (95% CI 0.9–0.99)). While this trend was not observed for all
outcomes, narcolepsy, Guillain-Barre syndrome and myocarditis
again were greatly impacted (Supplementary Table S11 and
Supplementary Figure S9).

DISCUSSION

In this study, we observed a wide variation of incidence rates
depending on the study parameters. Population characteristics

FIGURE 4 |Comparison of anchoring on a random visit versus anchoring on January 1st in patients with a visit in the next year for time-at-risk 1–28, 1–42, 1–90 and
1–365 days, incidence rate ratio.
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had the largest impact. Even after adjusting for age and sex, the
study showed variation due to the other parameters. Anchoring
on any type of healthcare encounter yielded higher incidence
when compared to anchoring on a random date, especially for the
short time-at-risk. Duration of time-at-risk intervals showed
higher rates with shorter intervals. When incident cases were
defined using all patient history as opposed to pre-defined clean
windows, observed incidence rates were higher.

Post-marketing safety surveillance aims at monitoring
previously unrecognized serious events following medical
product exposure. Active surveillance is especially relevant in
the context of COVID-19 vaccination, where large populations
are being exposed in a relatively short duration, heightening the
need to detect a possible rise in the incidence of adverse events in
a timely manner. As observed rates of events are compared to the
background incidence in a population assessing causality requires
accurate identification of background rates (Black et al., 2009;
Spronk et al., 2019), which, in turn, depends on study parameter
choices. In any observed vs. expected comparison, the
comparator serves as a proxy for a counterfactual of the
exposed population—what would have happened to those
same individuals had they not been exposed—and any
deviation between the comparator and that counterfactual
represents a potential bias. In the context of safety studies,
some of the above-mentioned factors can be adjusted for in
the analysis, while others have to be accounted for in study design.

Population at Risk: Age, Sex, Race
Age and sex are the key characteristics previously shown to
influence IRs (Sejvar et al., 2011; Fairweather et al., 2013;
Koopman et al., 2013; Hense et al., 2014; Barker-Collo et al.,
2015; Dodd et al., 2018; Wang et al., 2019; Li et al., 2021; Willame
et al., 2021). Our study systematically explores them and shows
the extreme size of the age effect in all outcomes and data sources.
Therefore, one must perform age and sex adjustment when
comparing background and observed rates.

Database Effects
The large effect of data source choice is likely a combination of
actual population differences—age, sex, race, acuity, differences
in genetics and environmental exposure—as well as differences in
measurement, such as collection via administrative claims versus
electronic health records. Some data sources may be appropriate
only for certain conditions due to their population characteristics.
For example, MDCR contains patients over 65 years old, which
makes it a poor choice for studying pediatric conditions. Data
sources that reflect only some aspects of care (such as outpatient
data sources like IQVIA Australia or IQVIA Germany) may yield
different rates for conditions that commonly require
hospitalization. The differences suggest that, where possible,
background rates should be calculated in the database where
the surveillance will be done. Where this is not possible, a broad
range of databases should be used and, based on a random-effects
meta-analysis, prediction intervals should be calculated for the
incidence rates. We demonstrate our prediction intervals in
Supplementary Table S12.

Large Effect of Anchoring on Health
Encounters
Anchoring was the second most important parameter to be
accounted for, at least at the shortest time-at-risk. Its influence
was not quantified before and, surprisingly, was present for both
random and well visits.

When studying background incidence in the context of
COVID-19 vaccination (in cohort or self-controlled studies),
estimation of IRs of events following vaccination is anchored
on the date of vaccination. To appropriately compare it to the
background rates, one has to make an assumption of the type of
encounter that represents the vaccination best. For example, in a
wide population that receives the vaccine based on availability, a
random date may be a good approximation for the date of
vaccination. On the other hand, vaccination date in patients
receiving vaccine upon hospital discharge or in nursing homes
may represent a strong anchor with the effect like or even greater
than anchoring on a random visit. This is especially relevant for
outcomes like anaphylaxis with short times-at-risk.

Influenza vaccinationmay serve as another proxy for COVID-19
vaccination, in terms of defining an anchoring event. But the
population that receives an influenza vaccine in healthcare
institutions may be different from those who receive it in
pharmacies (Drozd et al., 2017). It may explain why we observed
higher incidence of conditions in patients with prior influenza
vaccine as vaccination in this case may be indicative of co-
morbid conditions.

Muted Seasonal Effect and Small Annual
Increase
While previous research emphasized the influence of season on IRs
(Marrero et al., 2016), we observed that seasons had a minor effect on
incidence. The direction of difference we observed generally matched
the literature (Nagarajan et al., 2017; Dodd et al., 2018; Chaaban et al.,
2019; Tschöpe et al., 2021). Temporal trends weremoderate: incidence
rates slightly increase from 2017 to 2019, which may correspond to
better diagnosis or changes in coding practices. That agrees with the
findings in the literature for encephalomyelitis, hemorrhagic stroke,
anaphylaxis, narcolepsy, Bell’s palsy (Kadambari et al., 2014; Katan
and Luft, 2018; Chaaban et al., 2019; Hamedani et al., 2021; Lee and
Kim, 2021; Willame et al., 2021).

Incident Cases
The strategy for selecting a clean window (minimum time
between outcomes) consistently influences background rates.
Lower incidence of chronic conditions or conditions that are
likely to occur once (such as appendicitis) when using narrow
clean windows reflects potential index event misclassification. It is
possible that such patients are captured later in the course of the
disease, which requires thoughtful examination of the patient
history to determine the true condition start date.

Using a requirement of prior observation ensures that patients
were actively observed in the data source. In this study, we found
that such a requirement did not produce a difference in IRs when
compared to the broad population. On the other hand, it
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potentially reduces index event misclassification as more
information about the patient is captured.

LIMITATIONS

Due to observational nature of the study, the data sources may not
have complete capture of patient conditions. While our phenotype
algorithms may be subject to measurement error, such error in
unlikely to be differential. As the goal of the study was not to
establish causality but to estimate sensitivity of incidence rates,
phenotype measurement error or partial data capture should not
influence the results of the study. As race is available only in three
US data sources, our findings regarding race influence may not be
generalizable to other data sources or populations. Additionally, in
the data sources we extracted the race from, the latter is ambiguous
due the different setting, the person collecting it, and the reason for
the collection. Differences in incidence of adverse events of interest
in different races may be attributable to differences in healthcare
utilization, clinical presentation and health state awareness rather
than a true difference in incidence.

CONCLUSION

Accurate estimation of background rates is essential for their use in
safety or effectiveness studies. Background incidence rates are highly
sensitive to demographic characteristics of population, so estimation
requires age, sex, and potentially other adjustments, and they would
best be performed within the same database. Even when adjusted for
these factors, incidence rates are highly influenced by the choice of the
time-at-risk start date or event. When comparing background rates to
estimated incidence rates, onemust examine if the choice of anchoring
is compatible between groups. If anchored, short time-at-risk intervals
are associated with higher incidence, so the choice of time-at-risk
requires thoughtful analysis. Similarly, the choice of clean window for
defining incidence cases results in different incident rates. Finally, the
choice of year and season may influence rates, albeit the influence is
not prominent compared to the other factors.
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