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Abstract
The combination of the radio tracking of the MESSENGER spacecraft and Earth-based

radar measurements of the planet’s spin state gives three fundamental quantities for the
determination of the interior structure of Mercury: mean density ρ, moment of inertia C, and
moment of inertia of the outer solid shell Cm. This work focuses on the additional information
that can be gained by a determination of the change in gravitational potential due to planetary
tides, as parametrized by the tidal potential Love number k2.We investigate the tidal response
for sets of interior models that are compatible with the available constraints (ρ, C, and Cm).
We show that the tidal response correlates with the size of the liquid core and the mean
density of material below the outer solid shell, and that it is affected by the rheology of the
outer solid shell of the planet, which depends on its temperature and mineralogy. For a mantle
grain size of 1 cm, we calculate that the tidal k2 of Mercury is in the range 0.45 to 0.52. Some
of the current models for the interior structure of Mercury are compatible with the existence
of a solid FeS layer at the top of the core. Such a layer, if present, would increase the tidal
response of the planet.

1 Introduction
In the absence of an in situ geophysical network, what we know of the interior of Mercury is based on
a combination of Earth-based observations, spacecraft exploration, and theoretical insight. Earth-
based radar observations provide measurements of the obliquity of Mercury and the amplitude of
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its forced libration (Margot et al., 2007, 2012). Through radio tracking of the MErcury Surface,
Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, the gravitational
field of the planet has been determined (Smith et al., 2012). Given that Mercury is in a Cassini
state (Colombo, 1966; Peale, 1969), the spin parameters (obliquity θ and angle of libration γ),
when combined with the second harmonic degree components of the gravity field (J2 and C22),
provide two important integral constraints for the interior of Mercury, the moment of inertia C
(Peale, 1969) and, in the presence of a global liquid layer, the moment of inertia of the outer solid
shell Cm (Peale, 1976). These two moments, along with the mean density ρ, are three constraints
that any model of the interior of Mercury must satisfy (Hauck et al., 2013).

The measurement of the deformation of a planet due to periodic tidal forcing can be used to
place additional bounds on the interior structure, because the tidal response is a function of the
density, rigidity, and viscosity of the subsurface materials. This property has been applied in the
past to support the hypothesis of a liquid core in Venus (Konopliv and Yoder , 1996) and a global
liquid ocean in Titan (Iess et al., 2012). Yoder et al. (2003) used the measurement of the tides
to reveal the liquid state of the Martian core and to estimate its radius. It is interesting to note
that the interior structures of Venus and Mars are currently less well-characterized than that of
Mercury, since for Mars the moment of inertia of the outer solid shell is not known, and for Venus
only the mean density and k2 tidal deformation are known, but no moment of inertia information
is available.

The motivation for this paper is to explore the information that can be gained about the interior
of Mercury by the combination of the determinations of ρ, C, and Cm with the measurement of
k2, which will indicate the 88-day annual tidal k2.

We model the tidal response of Mercury for a range of interior structures that are compatible
with the mean density ρ and the moments of inertia C and Cm (Hauck et al., 2013). The formalism
that we employ is described in section 2, and section 3 describes the interior models that we use and
the assumptions that we make in the evaluation of the tidal response. The rheology of the outer
solid shell is discussed in section 4. The results of our simulations are presented in section 5 (the
minor effects of the properties of the inner core on the tidal response are explored in Appendix A).
We discuss the implications of the detection of the tidal response for the physical characterization
of the interior of Mercury in section 6.

2 Planetary Tidal Deformation
Mercury’s solar tides are caused by the difference in the gravitational attraction of the Sun across
the planet. Denoting the mass of the Sun by MS, the expression for the solar tide-generating
potential Φ at a point P inside the planet is

Φ =
GMS

d
=
GMS

rS

[
∞∑
n=2

(
r′

rS

)n

Pn (cosψP)

]
=
∞∑
n=2

Φn, (1)

where the summation follows from the expansion for (1/d) , and d is the distance between P
and the Sun (e.g., Arfken and Weber , 2005). The angle ψP is the angle between r′ and rS, the
distances from the center of mass of the body to P and to the Sun, respectively. Pn indicates the
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Legendre polynomial of degree n. G is the gravitational constant. We introduce Φn to highlight
the dependence of Φ on the nth power of the factor (r′/rS)� 1. For a point on the surface, we set
r′ = RM, the radius of Mercury, and rS equal to aM, the semimajor axis of Mercury’s orbit, and
we can express the largest component of the potential as gζP2(cosψP), where g = (GMM/R

2
M) is

the gravitational acceleration at the surface, MM is the mass of Mercury, ζP2(cosψP) is the height
of the equilibrium tide (Murray and Dermott , 1999), and where

ζ =
MS

MM

(
RM

aM

)3

RM. (2)

Among the terrestrial planets ζ is the largest for Mercury, with a value of ∼ 1.10 m (for comparison
ζVenus ∼ 0.43 m, ζEarth ∼ 0.16 m, and ζMars ∼ 0.03 m).

The harmonic expansion of the tide-generating potential in equation (1) can be used to identify
all the different tidal components (in period and amplitude) generated by the Sun at Mercury (Van
Hoolst and Jacobs , 2003). The largest component has a timescale equal to the orbital period of
Mercury around the Sun (∼ 88 days). This annual tidal perturbation periodically modifies the
shape of Mercury, and thus the distribution of matter inside the planet, with an accompanying
modification of its gravitational field. This modification is parameterized with the potential Love
number k2, which relates the additional potential φ2t due to the deformation of the planet to the
tide-generating potential Φ2 due to the Sun:

φ2t = k2 (ω) Φ2. (3)

The subscript 2 indicates that the main deformation is generated by the largest term of the
expansion, which corresponds to n = 2. The frequency ω indicates that the response of the body,
described by k2, depends on the period (i.e., frequency) of the applied forcing, which for the case
considered here is the 88-day-period solar tide.

The study of the deformation of a planet under the perturbation of an external potential requires
the solution of the equations of motion inside the body. Using a spherical harmonic decomposition
in latitude and longitude, we transform these three second-order ordinary differential equations
into six first-order linear differential equations in radius (Alterman et al., 1959). The motion is
controlled both by material stresses (elastic or viscoelastic) and gravitational forces, the latter
originating from a gravitational potential that is the sum of the self-gravitation of the planet and
the external tidal potential. The framework for the solution is formally the same both for elastic
rheologies and for viscoelastic rheologies, thanks to the correspondence principle (Biot , 1954).
The results presented in the following sections are obtained by modeling Mercury as a series of
homogeneous incompressible layers. Each layer is characterized by thickness, density, rigidity, and
viscosity (Wolf , 1994). In evaluating the tidal response, we use the formalism developed by Moore
and Schubert (2000).

The possible values for the k2 of a planet range between 0 for a perfectly rigid body that does
not deform, and 1.5, the value for a homogeneous fluid body (for these idealized bodies the limits
are independent of the forcing frequency). Values for k2 have been determined for Venus (Konopliv
and Yoder , 1996), the Moon (Konopliv et al., 2013; Lemoine et al., 2013), Mars (Konopliv et al.,
2011), and Titan (Iess et al., 2012). The k2 of the Moon is uncertain at the ∼ 0.5% level, a result
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of the high-quality data obtained with the Gravity Recovery and Interior Laboratory (GRAIL)
mission (Zuber et al., 2013). For Mars the estimate is uncertain at the ∼ 5% level, a result obtained
by combining data from a large number of spacecraft missions, including a lander and two years
of tracking data from the low-altitude, nearly circular orbital phase of the Mars Reconnaissance
Orbiter. For Venus and Titan the estimates have an uncertainty & 10%. A numerical simulation of
the determination of Mercury’s k2 with BepiColombo, the future dual orbiter mission to Mercury by
the European Space Agency and the Japan Aerospace Exploration Agency, indicates an expected
accuracy of ∼ 1% (Milani et al., 2001). This figure represents a lower bound for MESSENGER,
because its eccentric orbit makes the detection of k2 more challenging. The uncertainty on the
determination of the k2 of Mercury as obtained from MESSENGER is expected to be ∼ 10%
(Mazarico et al., 2014).

2.1 Rheological Models of the Interior

The mantle of Earth responds elastically on the short timescales associated with the waves gener-
ated by earthquakes but flows like a fluid on the geologically long timescales of mantle convection.
The Maxwell rheological model is the simplest model that captures this short- and long-timescale
behavior. It is completely defined by two parameters, the unrelaxed (infinite-frequency) rigidity
µU and the dynamic viscosity ν. The Maxwell time, defined as

τM =
ν

µU

, (4)

is a timescale that separates the elastic regime (forcing period� τM) from the fluid regime (forcing
period� τM). This simple rheological model is sufficiently accurate for the crust, which is cold and
responds elastically, and the liquid core, which has zero rigidity and therefore a fluid response. The
inner core, if present, has a negligible effect on the tidal response (Appendix A), so for simplicity
we use a Maxwell model to describe its rheology. Nevertheless the Maxwell model does not provide
a good fit to laboratory and field data in the low-frequency seismological range, and thus it should
not be used to model the response of the mantle at tidal frequencies (e.g., Efroimsky and Lainey ,
2007; Nimmo et al., 2012).

Jackson et al. (2010) explored three different parameterizations (Burgers, extended Burgers,
and Andrade pseudo-period) to fit torsional oscillation data from a set of melt-free olivine samples.
Both the Burgers models and the Andrade model provide a good fit for the low-frequency data.
The small number of parameters required for the Andrade model makes it more attractive to model
the rheology of Mercury, for which we lack any ground-truth data. Note, however, that both the
Burgers models and the Andrade model have not been tested at periods longer than 103 s, so
when applied to the study of planetary tidal deformation (period > 106 s) they both need to be
extrapolated (for an application of the extended Burgers model to the mantle of the Moon and
Mars see Nimmo et al. (2012) and Nimmo and Faul (2013), respectively).

We report here the expressions for the real and imaginary part of the dynamic compliance J(ω)
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for the Andrade-pseudoperiod model, as described by Jackson et al. (2010):

JR(ω) =
1

µU

{
1 + β∗Γ(1 + n)ω−n cos

(nπ
2

)}
, (5)

JI(ω) =
1

µU

{
β∗Γ(1 + n)ω−n sin

(nπ
2

)
+

1

ωτM

}
(6)

The unrelaxed rigidity is µU and β∗ = βµU. The coefficient β, along with n, appear in the expression
of the Andrade creep J(t) = 1/µU +βtn + t/ν, where Γ is the gamma function and τM the Maxwell
time. The frequency ω is obtained from ω = 2π/XB, where XB is the pseudo-period master
variable introduced by Jackson et al. (2010):

XB = T0

(
d

dR

)−m
exp

[(
−EB

R

)(
1

T
− 1

TR

)]
exp

[(
−V
R

)(
P

T
− PR

TR

)]
, (7)

which takes into account the effects of pressure P , temperature T, and grain-size d. The subscript
R indicates reference value. T0 is the forcing period (for Mercury ∼ 88 days). The exponent m
characterizes the dependence on the grain size, which in principle can be different for anelastic
processes (ma) and for viscous relaxation (mv). We tested that at the frequency of the Mercury
tide, the effect is minor, and we assumed ma = mv = m. The other quantities are defined in Table
1. The dynamic compliance was evaluated by setting the value of τM in equation (6) equal to the
reference value reported by Jackson et al. (2010, Table 2, τMR = 105.3 s), and including the effects
of T, P, and d through the pseudo-period master variable defined in equation (7). The dynamic
compliance is related to the inverse quality factor Q−1 and the rigidity µ by

Q−1(ω) =
JI(ω)

JR(ω)
, (8)

µ(ω) =
[
J2
R(ω) + J2

I (ω)
]−1/2

. (9)

To illustrate the importance of choosing a realistic rheological model, in Figure 1 we show how
the rigidity of a material with µU = 65 GPa varies as a function of the forcing frequency for two
temperatures, at a pressure of 5.5 GPa, representative of conditions at the base of the mantle of
Mercury (Hauck et al., 2013). Both the Maxwell rheological model and the Andrade model are
plotted. They both predict a fluid response (i.e., zero rigidity) at high temperatures and/or long
forcing frequencies, but the Maxwell model underestimates non-elastic effects at forcing periods
that are shorter than the Maxwell time. This effect is particularly relevant for Mercury, for which
the core-mantle boundary temperature may be above 1600 K (Rivoldini and Van Hoolst , 2013;
Tosi et al., 2013).

3 Methods
Throughout this work (except section 3.1) we use models compatible with the available constraints,
i.e., mean density ρ, moment of inertia C, and moment of inertia of the solid outer shell Cm
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Figure 1: Comparison of the Andrade (solid lines) and Maxwell (dashed lines) rheological models
at a pressure of 5.5 GPa for two different temperatures, T = 1400 K (red) and T = 1800 K (green).
The solid colored vertical lines represent the Maxwell times. The dash-dotted line indicates the
forcing frequency of Mercury’s tide. Note that at T = 1800 K the Maxwell model over-estimates
the rigidity at the tidal frequency by about 35% compared with the Andrade model. The unrelaxed
modulus used in these example is 65 GPa.

(section 1). By compatible we mean that the distributions of ρ, C, and Cm in the set of interior
models considered here are approximately Gaussian with means and standard deviations that
match the nominal values of the observables and their one-standard-deviation errors. The mean
density ρ has a Gaussian distribution with mean and standard deviation equal to 5430 kg/m3 and
10 kg/m3, respectively. For C and Cm, we choose Gaussian distributions with means and standard
deviations defined by the observed values and errors reported by Margot et al. (2012). Accordingly
C/MMR

2
M = 0.346± 0.014 and Cm/C = 0.431± 0.025 (Margot et al., 2012).

The small abundance of Fe and relatively large abundance of S at the surface of Mercury imply
strongly reducing conditions within the planet (Nittler et al., 2011). Under these conditions both
silicon and sulfur likely partitioned into the core during Mercury’s formation and differentiation
(Hauck et al., 2013). Of the five compositional models for the interior of Mercury analyzed by
Hauck et al. (2013), we focus on two sets that have a Si-bearing core, because they are consistent
with the inferred reducing conditions. The major difference between the two sets is the presence
or absence of a solid FeS layer at the top of the core. We label these two sets the FeS-set and
NoFeS-set, respectively.
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Table 1: Rheological Models for the Interior of Mercurya.

Layer Model Parameter Definition Value Notes
Crust Maxwell Section 4.3

µU Unrelaxed rigidity 55 GPa
ν Dynamic viscosity 1023 Pa s

Mantle Andradeb Section 2.1
µU Unrelaxed rigidity 59− 71 GPa Section 4.2
Tb Mantle basal temperaturec 1600− 1850 K Section 3.2
n Andrade creep coefficient 0.3
β∗ Andrade creep parameter 0.02
PR Reference pressure 0.2 GPa
TR Reference temperature 1173 K
dR Reference grain-size 3.1 µm
d Grain size 1mm− 1cm
m Grain size exponent 1.31
V Activation volume 10−5 m3mol−1
EB Activation energy 303× 103 kJ mol−1

FeS Andraded Section 4.4
Outer core Maxwell Section 2.1

µU Unrelaxed rigidity 0 Gpa
ν Dynamic viscosity 0 Pa s

Inner core Maxwell Appendix A
µU Unrelaxed rigidity 1011 GPa
ν Dynamic viscosity 1020 Pa s

a The models are introduced in Section 2.1
b The fixed parameters of the Andrade model are based on the results of Jackson et al. (2010).
c Here we report Tb because the temperature T in equation (7) depends on the temperature
profile, which is controlled by Tb.

d The FeS layer is assumed to have the same rheology as that of the base of the mantle.

The possible presence of an FeS layer was initially predicated on the basis of the inferred highly
reducing conditions and the then-best estimate of the high mean density of the outer solid shell
(Smith et al., 2012). Improved values of the obliquity θ (Margot et al., 2012) led to a revised value
for the mean density of the outer solid shell (Hauck et al., 2013) and made the density argument for
the presence of the FeS layer less compelling. Nevertheless, the geochemical argument supporting
the presence of the FeS layer is still valid (Hauck et al., 2013), and a conductive layer above
the convective liquid core is one of the possible explanations for Mercury’s weak magnetic field
(Christensen, 2006; Anderson et al., 2012).
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Figure 2: Effect of the radial density profile on the magnitude of k2. For each of a set of 100 models,
the value of k2 has been calculated both for the ∼1000-layer version (k2(M)) and for the 5-layer
version (k2(Av)). (Bottom) The ratio of the two determinations, which in most cases is within 2%
of unity. The models used for this plot are constrained only by the mean density of Mercury.

3.1 Radial Density Profile

The radial density profiles that we used as input (Hauck et al., 2013) are given as series of constant-
property layers, going from the center to the surface. The crust, mantle, and FeS layer are modeled
as constant-density shells. This simplification is justified by the small thickness of the outer solid
shell of Mercury and by the relatively low surface gravitational acceleration but does not affect
the characterization of the interior of the planet on the basis of the measured values of ρ, C, and
Cm (Hauck et al., 2013). The core (inner+outer) is represented with ∼ 1000 layers in order to
take into account the effects of self-compression and temperature in the equation of state for core
materials, as was done by Hauck et al. (2013). However, the Love number k2 is a global parameter,
summarizing the response of the planet to tidal forcing, and it is not very sensitive to the fine
density structure. We verified that k2 calculations can be performed accurately with simplified, 4-
or 5-layer models instead of the original ∼ 1000-layer models. In order to establish this point, we
used a random sample of 100 models drawn from the FeS-set and constrained only by the mean
density ρ of Mercury. For this test we did not apply the moment of inertia constraints (C and
Cm), as this allowed us to explore a larger parameter space and resulted in a more robust test.
For each one of the 100 models we computed an averaged version, characterized by five constant-
density layers. Computed k2 values for the ∼1000-layer models and the corresponding 5-layer
models are shown in the top panel of Figure 2. Their ratio (Figure 2, bottom panel) indicates that
errors introduced by using the simplified models are . 2%. In view of this result and of the ∼ 10%
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Figure 3: Temperature (solid line) as a function of depth for a model with a 2020-km radius core
and a 50-km-thick crust. The values for the heat production rate in the crust and mantle are
indicated. The dots represent the midpoint of each mantle sublayer, for which the temperature
and pressure are used to derive a rheology for the sublayer. The peridotite solidus of Hirschmann
(2000) is also shown.

expected accuracy of MESSENGER’s k2 determination (section 2), in what follows we show results
obtained with the simplified 4- or 5-layer models. This approach reduces the computational cost
by ∼ three orders of magnitude.

3.2 Pressure and Temperature Profiles in the Mantle

To calculate a rheological profile for the mantle of Mercury with the Andrade rheological model
described in Section 2.1, the pressure and temperature as a function of depth must be calculated.

At the radius r in the mantle the pressure is simply obtained as an overburden load P (r) =
g[ρchc + ρmhm(r)], where the subscripts “c" and “m" refer to the crust and mantle, respectively. hc
is the crustal thickness, and hm(r) is the thickness of the mantle above r (i.e., r+hm(r)+hc = RM).

We obtained the temperature profile by solving the static heat conduction equation with heat
sources in spherical coordinates (e.g., Turcotte and Schubert , 2002) in the mantle and crust:

k
1

r2
d

dr

(
r2
dT

dr

)
+ ρH = 0. (10)

In equation (10) k is the thermal conductivity, ρ is the density, and H is the heat production rate.
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We assumed a homogeneous distribution of heat sources in the crust and in the mantle. The
distribution in the crust might be exponential as in the crust of the Earth, but we verified that this
would only marginally affect the deep-mantle temperature profile. The value of H at the surface,
H0, has been inferred from MESSENGER measurements and is equal to H0 = 2.2× 10−11 W kg−1

(Peplowski et al., 2011). We adopted the surface value H0 for the heat production rate in the
crust, Hc = H0. For the distribution of heat sources in the mantle we used Hm = H0/2.5, which
is compatible with the enrichment factor derived by Tosi et al. (2013). The value of k is set to 3.3
Wm−1K−1.

As boundary conditions we applied the surface temperature TS and the temperature at the
base of the mantle Tb. TS is set to 440 K, a value obtained with a simple equilibrium temperature
calculation. Therefore in our models the temperature profile is controlled by the temperature Tb.
There are currently few constraints on Tb, but two independent sets of workers (Rivoldini and
Van Hoolst , 2013; Tosi et al., 2013) point to the range 1600-1900 K. We defined two end-members
profiles: a cold mantle with Tb = 1600 K, and a hot mantle with Tb = 1850 K. We consider
Tb = 1850 K as our hot mantle case, since, from the peridotite solidus of Hirschmann (2000),
Tb = 1900 K would result in partial melting at the base of the mantle (Figure 3). We did not
consider in this work the presence of partial melting.

The rheological models described in section 2.1 strongly depend on the temperature. Our end-
member temperature profiles are obtained under the assumption of a conductive mantle. This
assumption is consistent with the results of Tosi et al. (2013), which indicate that the mantle
of Mercury is most likely conductive at the present time. Nevertheless, a present-day convective
mantle is not excluded (Michel et al., 2013; Tosi et al., 2013). A convective mantle for the Tb =
1850 K case would result in partial melting (Figure 3). A convective profile with Tb = 1600 K would
be more dissipative and deformable than the conductive case (since in the convective envelope the
temperature is approximately constant and equal to Tb), but this effect is similar to a conductive
case with a higher Tb. Our two end-member temperature profiles thus capture the possible effects
of temperature variations in the mantle of Mercury, under the assumption that there is no partial
melting in the mantle.

To model the rheology of the mantle as a function of depth, we divided it into sublayers. Starting
from the core-mantle boundary, we divided the mantle in 40-km-thick sublayers, as illustrated in
Figure 3. For each sublayer the pressure and the temperature at the midpoint were calculated.
The complex compliance for each sublayer was obtained with equations (5) and (6) of Section
2.1. The rigidity was calculated with equation (9). The viscosity is then given by the expression
ν = 1/(JIω). It is the viscosity of a Maxwell model with the same complex compliance, i.e., with
the same rheology. The value of rigidity and viscosity so calculated were taken as representative
of the full sublayer.

The Andrade rheological model has been successfully applied to the description of dissipation
in rocks, ices, and metals (i.e., Efroimsky , 2012, and references therein). The model described in
Section 2.1 currently represents the best available Andrade model parameterization that incorpo-
rates the effects of temperature, pressure, and grain size on the rheology. However the parameters
that are kept fixed in the model (listed in Table 1) are based on laboratory data on olivine (Jackson
et al., 2010). In what follows we apply the Andrade model of Section 2.1 to different mineralogical
models for the mantle of Mercury. We thus assume that the fixed parameters of olivine can be
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.
Table 2: Minerals Relevant to the Mantle and Crust of Mercury

Abbr. ρ0 µ0 µ′P |0 µ′T |0
kg/m3 GPa GPa/K

Garnet Grt 3565+760χFe 92+7χFe 1.4 -0.010
Orthopyroxene Opx 3194+799χFe 78+10χFe 1.6 -0.012
Clinopyroxene Cpx 3277+380χFe 67-6χFe 1.7 -0.010

Quartz Qtz 2650 44.5 0.4 -0.001
Spinel Spl 3580+700χFe 108-24χFe 0.5 -0.009

Plagioclase Pl 2750 40.4 2.5 -0.002
Merwinite Mw 3330 81 1.4 -0.014
Olivine Ol 3222+1182χFe 81-31χFe 1.4 -0.014

Notes: Abbr. denotes mineral abbreviation (Siivola and Schmid , 2007). A subscript “0"
indicates standard ambient temperature and pressure (298 K, 105 Pa). Density is ρ. µ, µ′P, and
µ′T are the rigidity and its pressure and temperature derivatives, respectively. χFe is the mole
fraction of iron. Data in this table are taken from the compilations of Sobolev and Babeyko
(1994), Vacher et al. (1998), Cammarano et al. (2003), Verhoeven et al. (2005), and Rivoldini
et al. (2009).

applied to other minerals. This assumption is not strictly correct, especially for mantle models
in which olivine is not the dominant phase, but the broad applicability of the Andrade model to
describe materials as chemically and physically different as ices and silicates indicates that the
model we use should provide a good description of the rheology of silicate minerals.

4 Assessment of the Rheology of the Outer Solid Shell
The unrelaxed rigidity is a parameter required to characterize the rheology and thus the response
to the tidal forcing. Different minerals have different rigidity values, so the mineral assemblages
of the mantle and crust determine their rigidities. In this section we assess the impact of the
composition on the rigidity of the mantle and the crust. Table 2 contains data for minerals that
are be used below in modeling the rigidity of the mantle and crust of Mercury. In addition, we
describe our assumptions in modeling the response of the FeS layer.

4.1 Mineralogical Models for the Mantle

For the mineralogy of the mantle, we use the works of Rivoldini et al. (2009) and Malavergne
et al. (2010) as references. Malavergne et al. (2010) calculated the expected mineralogy of the
mantle of Mercury as a function of pressure, given two different assumed bulk compositions for the
whole planet, an enstatite chondrite (EH) and a Bencubbin-like chondrite (CB). The EH chondrite
provides a good compositional and mineralogical match to the data of the X-Ray Spectrometer
(XRS) on MESSENGER (Weider et al., 2012), which are compatible with the data from the
Gamma-Ray Spectrometer (GRS) (Evans et al., 2012). The XRS and the GRS are sensitive to the
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top tens of micrometers and centimeters of near-surface material, respectively, and the consistency
between the results of the two instruments indicates that the top tens of centimeters of Mercury’s
regolith are vertically homogeneous (Evans et al., 2012). Despite the apparent good agreement
between XRS and GRS results and enstatite chondrite compositions, the metal fraction in EH
chondrites is lower than the bulk value for Mercury. The CB chondrites analyzed by Malavergne
et al. (2010) have a higher metallic component, and thus might represent another possible building
block for Mercury. Rivoldini et al. (2009) calculated the expected mineralogy for a set of five
models of the mantle of Mercury. These included: an enstatite chondrite model (EC), similar to
the EH case of Malavergne et al. (2010); a model in which the building blocks for Mercury are
matched compositionally by the chondrules of two metal-rich chondrites (MC) (Taylor and Scott ,
2005); a model based on fractionation processes in the solar nebula (MA) (Morgan and Anders ,
1980); the refractory-volatile model (TS) of Taylor and Scott (2005); and the evaporation model
of Fegley and Cameron (1987). The latter is not consistent with the high abundance of sulfur,
potassium, and sodium in Mercury’s surface materials (Nittler et al., 2011; Peplowski et al., 2011;
Evans et al., 2012). We used the composition of these six models to estimate a range for the
rigidity of the mantle of Mercury. The mineralogical composition of these models is listed in Table
3.

4.2 Rigidity of the Mantle

MESSENGER confirmed that the surface of Mercury has an extremely low iron abundance (Nittler
et al., 2011; Evans et al., 2012) and showed that a substantial fraction of the surface is volcanic
in origin (Denevi et al., 2013). The low surface abundance of FeO is an indication that the source
regions of volcanic material are also FeO poor, since FeO does not undergo major fractionation
during partial melting (Taylor and Scott , 2005). However, under the highly reducing conditions
inferred for Mercury, part of the iron in the silicate shell is present as sulfides and metal (Zolotov
et al., 2013). In calculating the rigidity of the mantle, we assume that the silicate minerals contain
no iron. In other words we assume that χFe = 0 in Table 2. The effects of small amounts of iron-
rich minerals are small compared with the uncertainties introduced by the unknown mineralogy
of the mantle of Mercury. It should be noted, however, that at least for olivine the rheological
properties show a strong dependence on the iron content (Zhao et al., 2009).

For each mineralogical model of the mantle in Table 3 we calculate the composite rigidity at the
reference conditions of TR = 1173 K and PR = 0.2 GPa, required for the Andrade model [equation
(7)]. First, for each mineral the rigidity at TR and PR is obtained from the parameters in Table 2
with the expression

µU(TR, PR) =

[
µ0 + (T − TR)

dµ

dT
+ (P − PR)

dµ

dP

]
. (11)

The composite rigidity is obtained with Hill’s expression, which is an average between the Reuss
and the Voigt rigidities (Watt et al., 1976). Table 3 lists the composite rigidities so derived for the
mantle models. The range is 59− 71 GPa.
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Table 3: Models for the Mantle of Mercury.

Model Grt Opx Cpx Qtz Spl Pl Mw Ol µc (GPa)
CB – 66 4 22 4 4 – – 59
EH – 78 2 8 – 12 – – 65
MA 23 32 15 – – – – 30 69
TS 25 – – – 8 – 2 65 71
MC 15 50 9 – – – – 26 68
EC 1 75 7 17 – – – – 60

Notes: Two capital letters identify the model (details in section 4.1). CB and EH: Malavergne
et al. (2010). MA: Morgan and Anders (1980). TS and MC: Taylor and Scott (2005). EC:
Wasson (1988). The central part of the table gives the mineralogical content in terms of the
vol.% of its components (after Malavergne et al. (2010) and Rivoldini et al. (2009)). Mineral
abbreviations are defined in Table 2. A dash indicates that the mineral is absent. The composite
rigidity µc is evaluated as the Hill rigidity at T = 1173 K and P = 0.2 GPa.

Table 4: Composition and Rigidity of the Crust of Mercury.

Model Ol Opx Pl Spl Qz µc (GPa)
SP 2 44 26 6 22 53-58
SPNa 8 30 57 5 – 51-53

IcP-HCT 2 59 29 1 9 57-60

Notes: “Model" column: SP stands for smooth plains, and IcP-HCT stands for intercrater
plains and heavily cratered terrain. SPNa takes into account the difference that might arise
with a different Na abundance (see Stockstill-Cahill et al., 2012). The central part of the table
gives the mineralogical composition in weight percent. In the last column the composite rigidity
is calculated with Hill’s expression. The range in µc for each model is given by the different
amounts of end-members (i.e., forsterite and fayalite in the olivine solid-solution series).

4.3 Rigidity and Viscosity of the Crust

The surface of Mercury presents a compositional and morphological dichotomy between the younger
smooth plains (SP) and the older intercrater plains and heavily cratered terrain (IcP-HCT) (Pe-
plowski et al., 2011; Weider et al., 2012). The majority of the SP, which cover ∼ 27% of the
surface of Mercury, are volcanic in origin (Denevi et al., 2013). From the surface compositional
data returned by MESSENGER, Stockstill-Cahill et al. (2012) modeled the expected mineralogy
of the IcP-HCT and the northern volcanic plains (NVP). The NVP are a large contiguous area of
volcanic smooth plains (Head et al., 2011) that show similar composition to other smooth plains
(i.e., Caloris basin interior) (Weider et al., 2012). Therefore the mineralogy of the NVP can be
taken as representative of other smooth plains areas. The results of Stockstill-Cahill et al. (2012)
are summarized in Table 4. The table also includes the mineralogy for smooth plains when the ef-
fect of uncertainties in the Na abundance are taken into account (SPNa). These three mineralogies
are used to estimate the rigidity of the crust of Mercury.

Variations in the temperature and pressure of the crust with depth have negligible effects on
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the rigidities of the individual minerals. Therefore the composite rigidity is obtained with Hill’s
expression using µ0 (Table 2) as the rigidity for each mineral.

The range in crustal rigidity is 51 − 60 GPa, and will likely encompass the actual rigidity of
the crust if the IcP-HCT represents the older crust and the SP are representative of the younger
crust produced by the most recent widespread episodes of partial melting of the mantle. We use
the central value of 55 GPa as the rigidity of the crust. Its viscosity is set at 1023 Pa s. This choice
is not critical since the crust is cold and responds elastically at the forcing frequency of the tide.

4.4 Rheology of the FeS layer

The procedure used to calculate the rigidity of the mantle minerals cannot be used for the FeS layer
because of a lack of laboratory data. At the relevant pressures and temperatures of the outer core
of Mercury, the FeS would be in the FeS V phase (Fei et al., 1995). For FeS V the bulk modulus
and its pressure and temperature derivatives have been measured (Urakawa et al., 2004). There is
no rigidity determination, however. Even the rigidity of troilite (or FeS I, the phase at standard
pressure and temperature) has never been measured (Hofmeister and Mao, 2003). Nevertheless,
an argument illustrated by Hofmeister and Mao (2003, see their Figure 7) sets µFeS I = 31.5 GPa.
From the phase diagram of FeS (Fei et al., 1995), the conditions at the base of the mantle (P ∼ 5.5
GPa) are close to the melting curve for FeS V. The corresponding homologous temperature TH,
the ratio of the temperature of the material to the solidus temperature, is TH > 0.85. It is often
assumed that the viscosity is proportional to the exponential of the inverse of the homologous
temperature (e.g., Borch and Green II , 1987). Therefore the viscosity of the FeS layer at the top
of the core would be close to the low viscosity of the melt. These considerations indicate that the
FeS layer, if present, is weak.

We consider the effects of the FeS layer only in the cold-mantle case (Tb = 1600 K), since for
higher temperatures the FeS would be liquid (see the phase diagram in Fei et al., 1995). We
assume that the FeS will have the same rheological properties as the base of the mantle. This
assumption is conservative because at T = 1600 K the TH of FeS is larger than TH of the silicates
and, from the value of µFeS I, the unrelaxed rigidity of FeS V is likely to be smaller than that for
the silicates.

5 Results: Tidal Response and Interior Properties
The results illustrated below show that models of Mercury with a liquid outer core have k2 & 0.3.
For a completely solid model of Mercury (i.e., a model devoid of a liquid outer core), the value of k2
would be reduced by approximately an order of magnitude. Given this variation in the magnitude
of k2 between a completely solid interior and one with a liquid (outer) core, a measurement of the
tidal response would provide a confirmation of the presence of a liquid (outer) core. Its existence
has already been inferred from Earth-based radar measurements (Margot et al., 2007) and also from
the interpretation of the magnetic field detected by the MESSENGER Magnetometer (Anderson
et al., 2012). Therefore the results presented below focus on the models of Mercury with a liquid
(outer) core that have been described in section 3.
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Figure 4: k2 as a function of the radius of the liquid core for the NoFeS set. For these data
the temperature at the base of the core is Tb = 1725 K and the mantle unrelaxed rigidity is
µU = 65 GPa. Left: Colors indicate the mean density of material below the outer solid shell
(OSS). The arrows indicate how the data points would shift with a change in the rheological
properties of the OSS. Right: Same as for the left panel, but here colors indicate the mean density
of the OSS.

5.1 The Main Parameters Controlling the Tidal Deformation

The tidal response of Mercury is largely controlled by the strength and thickness of the outer
solid shell (OSS), much like the similar case for Europa’s ice shell (Moore and Schubert , 2000).
This result is a consequence of the presence of a liquid (outer) core, which decouples the shell
from the deformation of the deeper interior. Due to the combined mass and moments of inertia
constraints, the thickness of the OSS depends on the density of the core. This outcome is shown
in the left panel of Figure 4, where the tradeoff between core density and liquid core radius (i.e.,
OSS thickness) is seen in the color scale that strongly correlates both with the radius of the liquid
core and k2. For these models, µU = 65 GPa and Tb = 1725 K. A modification of the rheological
properties of the OSS, through a variation of the temperature at the base of the mantle Tb and/or
of the unrelaxed rigidity µU, would modify the response as indicated by the arrows in the figure.
Note, however, that there is only a weak dependence on the density of the OSS itself, as seen in the
right panel of Figure 4, where the colors show the density of the OSS and span nearly the entire
range of the response. The small effects of a solid inner core on the tidal response are discussed in
Appendix A.

The same set of models used in Figure 4 are shown in Figure 5 in the form of a plot showing
how the compatible models (section 3) are distributed. The availability for Mercury of the three
constraints ρ, C, and Cm results in a distribution of the data that is relatively narrow, which makes
the determination of k2 in principle very useful. It has the potential for improving the determination
of the location of the radius of the outer liquid core and the mean density of the material below
the outer solid shell, and of providing insights into the rheological properties (temperature and
rigidity) of the outer solid shell. This improved knowledge will depend both on the precision of
the k2 determination and on the effects of the uncertainties in the temperature and rigidity of the
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Figure 5: Same data as in Figure 4, here plotted using the normalized population based on the C
and Cm determinations.

outer solid shell.

5.2 Effects of the Mantle Rheology on the Tidal Response

In our models the rheology of the outer shell is controlled by the temperature at the base of the
mantle Tb and the unrelaxed rigidity of the mantle µU. Figure 6 illustrates the effects on the tidal
response of a variation in Tb between 1600 K and 1850 K. For this case we assumed an unrelaxed
mantle rigidity of µU = 65 GPa. As expected, on the basis of the influence of temperature on
rheology (Figure 1), a higher Tb corresponds to a weaker outer solid shell, which in turn has a
larger tidal response. In terms of the central values of the model populations, k2 varies in the
range 0.47− 0.50.

Basal mantle temperature and unrelaxed rigidity have similar, if opposite, effects on the tidal
response, which is enhanced by a higher Tb and/or lower µU and is diminished by a lower Tb
and/or higher µU. Therefore, there is a tradeoff between these two parameters. The full range of
tidal responses for the NoFeS models is illustrated in Figure 7. The variation in k2 is in the range
0.45−0.52, the former value corresponding to the stiff mantle (Tb = 1600 K and µU = 71 GPa) and
the latter to the weak mantle (Tb = 1850 K and µU = 59 GPa). The values of µU that we use, 59
GPa and 71 GPa, represent the largest and smallest values derived from the mantle mineralogies
analyzed in section 4.1 and listed in Table 3.

A solid FeS layer can exist only in the Tb = 1600 K case (Section 4.4). Under the assumptions
for the rheology of solid FeS at the base of the mantle of Mercury described in Section 4.4, we

16



Figure 6: Effect of the mantle basal temperature on the tidal response. Predicted values of k2 for
models with unrelaxed rigidity µU = 65 GPa and two different values of temperature at the base
of the mantle Tb = 1600 K (dark blue) and Tb = 1850 K (brown). Left: k2 as a function of the
radius of the liquid core. Right: histogram of k2 for the two sets of models.
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Figure 7: Predicted values of k2 for the two end-member NoFeS sets of models. Golden: weak
outer solid shell with mantle basal temperature Tb = 1850 K and unrelaxed rigidity µU = 59 GPa.
Indigo: stiff outer solid shell with Tb = 1600 K and µU = 71 GPa. Left: k2 as a function of the
radius of the liquid core. Right: histogram of k2 for the two sets of models.
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Figure 8: Effect of a solid FeS layer on the tidal response. Predicted values of k2 for models with
mantle basal temperature Tb = 1600 K and unrelaxed mantle rigidity µU = 65 GPa, with (green)
and without (dark blue) an FeS layer at the base of the mantle. Left: k2 as a function of the radius
of the liquid core. Right: histogram of k2 for the two sets of models.
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Figure 9: Predicted values of k2 for two sets of NoFeS models with the same mantle basal tem-
perature Tb = 1725 K and the same mantle unrelaxed rigidity µU = 59 GPa. The two sets differ
in the assumed mantle grain size d. Blue: d = 1 cm. Orange: d = 1 mm. Left: k2 as a function of
the radius of the liquid core. Right: histogram of k2 for the two sets of models.
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tested for the effect of the presence of an FeS layer on the tidal response for the case of Tb = 1600
K. Results are shown in Figure 8. The effect of the weak FeS layer is to increase the tidal response.
In other words, it has the same effect as a higher Tb or a lower µU. In terms of the central k2 values
of the model populations, the presence of the FeS layer increases the tidal response by ∼ 6%.

The models presented are for a mantle grain size d = 1 cm. A smaller grain size, d = 1 mm,
corresponds to a more dissipative rheology, which induces a larger tidal response. This effect is
illustrated in Figure 9 . The effect is substantial, since in this case k2 varies between 0.48 and 0.52,
a larger range than the one resulting from the variation of Tb illustrated in Figure 6.

6 Summary and Conclusions
We performed simulations of the tidal response of Mercury, as parameterized by the tidal Love
number k2, for two sets of models of Mercury that are compatible with the currently available
constraints on the interior structure of the planet, i.e., the mean density ρ, the moment of inertia
C, and the moment of inertia of the outer solid shell Cm. The two sets of models differ in the
presence or absence of a solid FeS layer at the top of the core (section 3). The response of the
materials is modeled with viscoelastic rheologies (section 2.1). The Maxwell rheological model
is used for the crust, the liquid outer core, and the solid inner core. The Andrade rheological
model is used for the mantle, where the high temperature and relatively low pressure induce large
non-elastic effects (Figure 1 and Table 1). For the FeS layer we assumed an Andrade rheology that
matches the basal mantle layer. We investigated the effects on the tidal response of the unknown
mantle mineralogy (which determines the unrelaxed rigidity µU), temperature profile in the outer
solid shell (controlled by the mantle basal temperature Tb), and mantle grain size.

The main findings of the paper can be summarized as follows:

1. The presence of a liquid outer core makes the value of k2 dependent mainly on three param-
eters: the radius of the liquid core (Figure 5), the mean density of material below the outer
solid shell (Figure 4, left panel), and the rheology of the outer solid shell (Figures 6 to 9).
Since the first two have been determined with a precision of better than 5% from ρ, C, and
Cm (Hauck et al., 2013; Rivoldini and Van Hoolst , 2013), a measurement of k2 is informative
with regard to the rheology of the outer solid shell;

2. With available estimates for the temperature at the base of the mantle Tb (Rivoldini and
Van Hoolst , 2013; Tosi et al., 2013), for an unrelaxed rigidity µU of the mantle appropriate
for mineralogical models compatible with MESSENGER observations (Table 3), and with a
mantle grain size d = 1 cm, we find that for the NoFeS-set k2 varies in the range 0.45− 0.52.
This range is expressed in terms of the central values of the model populations shown in
the right panel of Figure 7 and corresponds to models with (Tb, µU) = (1600 K, 71 GPa) and
(Tb, µU) = (1850 K, 59 GPa), respectively. An order of magnitude reduction in the grain size
would result in a & 10% increase in the tidal response (Figure 9);

3. The presence of a solid FeS layer is possible only if Tb . 1600 K (Section 4.4). Its effect
is to increase the tidal response by ∼ 6% (Figure 8). This result is obtained under the
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conservative assumption that the FeS layer has the same rheological properties as the base
of the mantle (Section 4.4). The solid FeS may be weaker, in which case its effect would be
larger than the estimate shown in Figure 8.

The possibility of improving our understanding of the interior of Mercury through the interpre-
tation of a measurement of k2 depends on the precision of the determination obtained by the radio
tracking of the MESSENGER spacecraft (or BepiColombo in the future), and on the uncertainties
in the parameters that affect the tidal response of the planet.

As mentioned in section 2, the highly eccentric orbit of MESSENGER makes the determination
of k2 very challenging. Nevertheless, there are indications that the solution will converge to a value
of ∼ 0.45± 0.05 (Mazarico et al., 2014). If confirmed, such a result would fall in the lower range
of our model responses. With the preliminary estimate of k2 = 0.45, Figures 6 to 8 suggest that
a cold mantle model, without an FeS layer, is preferred. For the results presented in these figures
a mantle grain size d = 1 cm was assumed, a value compatible with the estimated grain size for
the mantles of the Moon and Mars (Nimmo et al., 2012; Nimmo and Faul , 2013). A smaller grain
size would result in an increased tidal deformation (Figure 9) and would strengthen the preference
for a cold mantle model, without and FeS layer. Nevertheless, the uncertainties associated both
with the k2 determination and with the modeled distributions are too large to make a conclusive
statement.

Future improvements in the interpretation of k2 can be expected. Our modeling of the tidal
response would benefit from improvements in the mineralogical models of the silicate part (which
would reduce the range in the unrelaxed rigidity µU). No meteorites from Mercury have yet been
identified, and there are currently no plans for a lander or sample return mission to Mercury, so
improvements in compositional models will be based on additional remote sensing measurements,
cosmochemical analogues, experimental petrological observations (e.g., McCoy et al., 1999; Char-
lier et al., 2013), and numerical simulations (e.g., Stockstill-Cahill et al., 2012). Updates in the
estimates of the amount of global contraction of Mercury will inform thermal history models, which
in turn put constraints on the basal mantle temperature (e.g., Tosi et al., 2013).

A Effect of the Inner Core on the Tidal Response
The effect of the inner core density on the magnitude of k2 is shown in Figure 10. The relatively
weak trend indicates that the Love number k2 is not very sensitive to the density of the inner core.
A similar plot for k2 as a function of the ratio of the inner core radius, ric, to the radius of the
outer core, roc, is shown in the bottom panel of Figure 11. The results show that k2 is independent
of the ratio of inner-core radius to outer-core radius as long as the inner core is sufficiently small.
The lack of shear strength of the liquid of the outer core increases the tidal response and makes it
independent of the size of the inner core, as long as the radius ratio is .0.6.

Similarly, variations in the viscosity and rigidity of the inner core affect the value of k2 only for
those models that have a large inner core. Less than 20% of the models have a large inner core
with ric/roc > 0.6 as shown by the cumulative histogram in the top panel of Figure 11. A very
large inner core may be detectable, because it would modify the libration of Mercury (?) at a level
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Figure 10: k2 as a function of the inner core density. Blue and red points correspond to models
with and without an FeS layer at the top of the core, respectively.

that is comparable to the current observational accuracy of the libration measurements (Margot
et al., 2012).
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Figure 11: (Top) Cumulative histogram of the ratio of the inner core radius ric to the liquid outer
core radius roc. More than 80% of the models have ric/roc < 0.6. (Bottom) k2 as a function of the
inner core radius expressed in units of outer core radius. Blue and red points correspond to models
with and without an FeS layer at the top of the core, respectively. Points with an abscissa close
to one correspond to models for which the outer liquid core is very thin. Models in which the core
is completely solid have k2 values that are smaller by approximately an order of magnitude (not
shown).
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