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EPIGRAPH

Human beings are not born once and for all
on the day their mothers give birth to them,
but ... life obliges them over and over again
to give birth to themselves.

Gabriel Garćıa Marquéz

Five minutes are enough to dream a whole life,
that is how relative time is.

Mario Benedetti

Utopia is on the horizon.
I move two steps closer;
it moves two steps further away.
I walk another ten steps and the horizon runs ten steps further away.
As much as I may walk, I’ll never reach it.
So what’s the point of utopia?
The point is this: to keep walking.

Fernando Birri
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The implementation of advanced optimization-based control strategies in complex

engineering systems promises significant improvements in efficiency and performance.

However, the practical implementation of these strategies often faces substantial challenges,

including distributed implementation requirements, nonlinear dynamics, system uncer-

tainties, and insufficient robustness margins. This dissertation addresses these challenges

through the lens of hybrid dynamical systems, developing robust and efficient control

algorithms for a diverse range of applications. Our research explores four key areas,

each offering distinct advantages for various scenarios: momentum-based methods for
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distributed optimization and real-time decision-making, nonsmooth approaches for fixed

and finite-time stability, time-varying methods for prescribed-time convergence, and global

optimization on manifolds.

In the domain of distributed optimization and real-time decision-making, we intro-

duce novel hybrid momentum-based algorithms that overcome the limitations of related

purely continuous-time approaches used in optimization, and extend their applicability

to both potential and nonpotential game settings. These methods provide accelerated

convergence rates over traditional gradient-based approaches, and are particularly effective

in scenarios with low curvature.

Complementing this work, we investigate nonsmooth dynamics for fixed and finite-

time stability. While momentum methods excel under certain conditions, nonsmooth

approaches offer the potential for guaranteed convergence within a finite time, independent

of initial conditions. Our approach applies both momentum-based and nonsmooth methods

to practical problems such as traffic congestion management and accelerated learning,

offering a comprehensive comparison of their respective strengths across different scenarios.

Our research extends to time-varying methods, utilizing suitable dynamic gains

to shape the transient behavior of hybrid systems with preexisting uniform asymptotic

stability properties. By interconnecting these dynamic gains with the original system,

we obtain, in particular, prescribed-time stability results, guaranteeing convergence to a

compact set within a user-defined finite time that is independent of initial conditions and

problem parameters. We demonstrate the effectiveness of this method in complex scenarios,

including systems with intermittent feedback, by applying it to switching systems with

resets.

We address the challenge of global optimization on compact manifolds using gradient-

free dynamics. Our approach overcomes topological obstacles that typically preclude the

implementation of smooth, nonsmooth, and even time-varying techniques in these spaces.

By harnessing the flexibility of hybrid systems, we develop mechanisms that not only
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render the manifold forward invariant but also have provable nonzero robustness margins

for global optimization.

Finally, we address the challenge of robust global stabilization of Kapitza’s pendu-

lum’s naturally unstable upright position. We propose a novel hybrid control approach

that leverages multiple oscillating directions to achieve global asymptotic stability. This

method overcomes the limitations of traditional smooth control techniques in address-

ing the pendulum’s complex dynamics, demonstrating the power of hybrid systems in

stabilizing counterintuitive nonlinear phenomena.

Throughout this dissertation, we employ tools from hybrid systems theory and

Lyapunov stability analysis to provide rigorous convergence guarantees. Our theoretical

results are substantiated by extensive numerical simulations, demonstrating the efficacy of

the proposed methods across various engineering domains.
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Introduction

The implementation of advanced optimization-based control strategies in complex

engineering systems promises significant improvements in efficiency and performance.

However, the practical implementation of these strategies often faces substantial challenges,

including distributed implementation requirements, nonlinear dynamics, system uncer-

tainties, and insufficient robustness margins. This dissertation addresses these challenges

through the lens of hybrid dynamical systems, developing robust and efficient control

algorithms for a diverse range of applications.

The increasing complexity of modern engineering systems, from power grids [12] to

autonomous vehicles [13], demands sophisticated control strategies that can handle multiple

objectives, constraints, and uncertainties. Optimization-based control has emerged as

a powerful paradigm for addressing these challenges [14, 15]. This approach combines

the rigor of mathematical optimization with the practical constraints and objectives of

control systems, enabling the design of controllers that can handle multi-objective criteria,

system constraints, and uncertainties. As control systems become increasingly distributed,

large-scale, and operating in uncertain environments, new challenges arise that require

innovative approaches.

Traditional centralized control methods often fall short in these scenarios due

to communication limitations, scalability issues, and the need for real-time adaptation.

Moreover, the presence of nonlinearities, coupled dynamics, and time-varying parameters

further complicates the design and analysis of effective control strategies. The transition
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from theory to practice in optimization-based control often encounters obstacles that limit

the effectiveness of these methods in real-world scenarios. These include computational

complexity and real-time implementation constraints, robustness issues in the presence

of model uncertainties and disturbances, challenges in distributed implementation and

coordination, difficulties in guaranteeing global convergence (especially in non-convex

settings), and the need for fast adaptation and convergence in time-critical applications.

This dissertation aims to address these challenges by developing a comprehensive

framework that leverages the power of hybrid dynamical systems. Hybrid systems, which

combine continuous-time and discrete-time dynamics, offer a flexible and powerful modeling

paradigm that can capture complex behaviors and enable innovative control strategies

[16]. By exploiting the interplay between continuous and discrete dynamics, we develop

algorithms that achieve superior performance, robustness, and convergence properties

compared to traditional approaches.

The overarching goal of this dissertation is to develop a comprehensive framework

for addressing the challenges in implementing optimization-based control strategies. Specif-

ically, we aim to develop robust and efficient algorithms for distributed optimization and

real-time decision-making, design control strategies that achieve fixed-time and finite-time

stability, create methods for prescribed-time convergence in complex systems, and solve

global optimization problems on manifolds with provable robustness guarantees.

To achieve these objectives, our research explores four key areas, each offering

distinct advantages for various scenarios:

Momentum-Based Methods

Momentum-based methods have gained significant attention in optimization and

control due to their ability to accelerate convergence over traditional gradient-based

approaches [17, 18, 19]. However, their application in distributed and noncooperative

settings, where individual agents aim to individually optimize their local cost functions,

2



presents unique challenges. To address these challenges, in Chapter 2, we begin by

exploring the foundations and limitations of Nesterov’s Ordinary Differential Equation

(ODE), a continuous-time analog of Nesterov’s accelerated gradient method [20]. We

identify robustness limitations and challenges in distributed real-time decision-making and

nonpotential settings. Chapter 3 introduces hybrid dynamics to overcome these robustness

limitations, presenting an accelerated continuous-time approximate dynamic programming

approach using data-assisted hybrid control. Chapters 4 and 5 extend these concepts to

distributed settings, addressing both potential and nonpotential scenarios. We develop

momentum-based algorithms for transactive control in congestion games, distributed

consensus optimization, and Nash-set seeking in nonpotential games.

Non-Lipschitz Methods for Fixed and Finite-Time Stability

Non-Lipschitz methods offer powerful tools for achieving fixed and finite-time

convergence in control systems. In this part, we focus on two main applications: traffic

congestion management and accelerated concurrent learning.

Chapter 6 develops data-driven hybrid dynamics and non-Lipschitz ODEs for

accelerated concurrent learning. We propose novel algorithms that achieve finite-time and

fixed-time convergence in parameter estimation problems while relaxing persistence of

excitation requirements. These methods include:

1. Hybrid momentum-based algorithms with periodic and adaptive restarting

2. Finite-time concurrent learning dynamics

3. Fixed-time concurrent learning dynamics

Our analysis employs tools from Lyapunov theory and hybrid systems to establish rigorous

stability and convergence guarantees. These non-Lipschitz methods complement the

momentum-based approaches, offering additional tools for achieving rapid and guaranteed

convergence in optimization-based control problems.
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Chapter 7 introduces high-performance optimal incentive-seeking controllers for

transactive control in traffic congestion. We present three variants:

1. A gradient-based controller

2. A hybrid momentum-based controller

3. A fixed-time controller

These approaches leverage non-Lipschitz dynamics to achieve rapid convergence to optimal

incentives while guaranteeing closed-loop stability.

Time-Varying Methods

Time-varying methods provide powerful tools for shaping the transient behavior

of dynamical systems and achieving prescribed-time stability. In this part, we explore

these concepts in the context of hybrid and switching systems. Chapter 8 presents a

framework for asymptotic-behavior shaping in hybrid dynamic inclusions using dynamic

gains. We demonstrate applications in accelerating gradient flows and hybrid dynamics

with momentum. Chapter 9 develops a comprehensive theory of prescribed-time stability in

switching systems with resets, using a hybrid dynamical systems approach. We introduce

novel concepts such as blow-up average dwell-time conditions and explore applications in

control and decision-making with intermittent feedback.

Global Asymptotic Guarantees via Hybrid Dynamical Systems

Achieving global asymptotic stability guarantees is crucial in many control and

optimization problems, particularly when dealing with nonconvex landscapes or topological

constraints. Chapter 10 addresses this challenge by introducing robust global optimization

techniques for smooth compact manifolds using hybrid gradient-free dynamics. This

approach overcomes topological obstructions that prevent global convergence using smooth

ODEs, with applications in various domains including robotics and attitude control.
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Chapter 11 examines Kapitza’s pendulum, a classic nonlinear system exhibiting

counterintuitive behavior where rapid pivot oscillations render the typically unstable

inverted position locally asymptotically stable. We address the unique challenges posed

by this system, particularly the topological obstructions preventing global asymptotic

stability under traditional smooth control methods. By exploring the mathematical

foundations and extending the analysis to arbitrary oscillation directions, we propose a

novel approach combining multiple oscillating directions with a carefully designed hybrid

dynamical system. This strategy demonstrates the power of hybrid control in addressing

limitations of nonlinear systems and provides insights into stabilizing systems with intrinsic

topological constraints.

Throughout this dissertation, we emphasize the importance of rigorous stability

analysis and performance guarantees. Our approach integrates tools from optimization

theory, control theory, and dynamical systems to develop algorithms that are both theo-

retically sound and practically implementable. This work aims to bridge the gap between

theoretical advancements and practical applications, addressing the challenges posed by

complex, uncertain, and distributed environments.

To establish a solid foundation for the subsequent technical discussions, the next

chapter provides a comprehensive introduction to the fundamental concepts and notation

of hybrid dynamical systems. This chapter presents essential preliminaries, including

formal definitions, solution concepts, and stability notions, which are extensively utilized

in the analysis and design of the algorithms presented in later chapters.
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Chapter 1

Preliminaries on Hybrid Dynamical Systems

This chapter introduces the fundamental concepts and notations used throughout

this dissertation, with a focus on hybrid dynamical systems. We begin by establishing the

mathematical notation and definitions for sets, functions, and stability notions that form

the foundation of our work. The chapter then delves into the formal framework of hybrid

dynamical systems, presenting their basic structure and solution concepts. We discuss

various formulations of HDS, including those with time-varying flows and external inputs,

which are crucial for modeling the algorithms developed in subsequent chapters. Finally,

we introduce key stability and convergence notions for HDS, ranging from uniform global

asymptotic stability to semi-global practical stability. These concepts are essential for

analyzing the performance and robustness of the optimization-based control algorithms

presented in this thesis.

Notation

The set of (nonnegative) real numbers is denoted as (R≥0) R. The set of (nonneg-

ative) integers is denoted as (Z≥0) Z. Given a closed set A ⊂ Rn, and a column vector

x ∈ Rn, we define |x|A := infy∈A |x−y|, where | · | denotes the standard norm in Rn. Unless

stated otherwise, we assume all vectors are column vectors. If xi ∈ Rni for i ∈ {1, . . . , k}

are vectors, we use (x1, . . . , xk) ∈ Rn1 × · · · × Rnk to denote their concatenation, i.e.,

(x1, x2, · · ·xk) := [x⊤1 , x
⊤
2 , · · ·x⊤k ]⊤. We use S1 ⊂ R2 to denote the unit circle centered at
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the origin, Tm := S1 × S1 × . . . S1

︸ ︷︷ ︸
m times

. We use B to denote a closed unit ball of appropriate

dimension, ρB to denote a closed ball of radius ρ > 0, and X + ρB to denote the union of

all sets obtained by taking a closed ball of radius ρ around each point in the set X .

A map f : Rm → Rn is said to be Ck for k ∈ N≥0 if it is k-times continuously

differentiable with locally Lipschitz derivatives. We use ∂f
∂x

to denote the Jacobian of a

continuously differentiable function f : Rm ∋ x→ f(x) ∈ Rn. When n = 1, we use ∇f to

denote the gradient of f and define
(
∂f
∂x
(x)
)⊤

= ∇f(x) for all x ∈ Rn.

A set-valued mapping M : Rm ⇒ Rn is outer semi-continuous (OSC) at x ∈ Rm

if for all sequences xi → x and yi ∈ M(xi) such that yi → y we have that y ∈ M(x).

A set-valued mapping M : Rm ⇒ Rn is locally bounded (LB) at x ∈ Rm if there exists

a neighborhood Ux of x such that M(Ux) ⊂ Rn is bounded. Given a set X ⊂ Rm the

mapping M is said to be OSC and LB relative to X if the set-valued mapping from Rm to

Rn defined by M(x) for x ∈ X and ∅ for x /∈ X is OSC and LB at each x ∈ X . We use

co X to denote the closed convex hull of X , X to denote the closure of X , and int(X ) to

denote its topological interior.

A function σL : R≥0 → R≥0 is of class L, i.e., σL ∈ L, if: (i) it is continuous, (ii)

non-increasing, and (iii) converging to zero as its argument grows unbounded. A function

α : R≥0 → R≥0 is of class K, i.e., α ∈ K, if: (i) it is continuous, (ii) zero at zero, and (iii)

strictly increasing. A function α̃ : R≥0 → R≥0 is of class K∞, i.e., α̃ ∈ K∞, if α̃ ∈ K and

α̃ grows unbounded as its argument grows unbounded. A function β : R≥0 × R≥0 → R≥0

is said to be of class KL, i.e., β ∈ KL if: (i) it is of class K in its first argument; (ii) it is

of class L in its second argument. Given a compact set A ⊂ Rn, a function γ : Rn → R≥0

is said to be positive semi-definite with respect to A if γ(A) = {0} and γ(x) ≥ 0 for all

x ∈ Rn \ A, and we write γ ∈ PsD(A). If, additionally, γ(x) > 0 for all x ∈ Rn \ A, then

we say that γ is positive definite with respect to A, and we write γ ∈ PD(A). For the

case when A = 0, we simply write γ ∈ PsD and γ ∈ PD.
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Hybrid Dynamical Systems

In this dissertation, we will model our algorithms as Hybrid Dynamical Systems

with time-varying flows, of the form (see [16]):

x ∈ C, ẋ ∈ F (x), (1.1a)

x ∈ D, x+ ∈ G(x), (1.1b)

where x ∈ Rn is the main state of the system, s is an auxiliary state used to model

the evolution of the continuous time, F : R≥0 × Rn ⇒ Rn is called the flow map, and

G : Rn ⇒ Rn is called the jump map. The sets C and D, called the flow set and the

jump set, respectively, condition the points in Rn where the system can flow or jump

via equations (1.1a) or (1.1b), respectively. In this way, the HDS can be represented by

the notation H := (C,F,D,G). Systems of the form (1.1) can be seen as generalizations

of purely continuous-time systems (D = ∅) and purely discrete-time systems (C = ∅).

Solutions to HDS of the form (1.1) are parameterized by both a continuous-time index

t ∈ R≥0, which increases continuously during flows, and a discrete-time index j ∈ Z≥0,

which increments by one during jumps. Thus, the notation ẋ in (1.1a) represents the

derivative dx(t,j)
dt

; and x+ in (1.1b) represents the value of x after an instantaneous jump,

i.e., x(t, j + 1). Naturally, solutions (x, s) : dom(x, s) → Rn to (1.1) are defined on hybrid

time domains.

Definition 1.1. (Hybrid Time Domains) A set E ⊂ R≥0 × Z≥0 is called a

compact hybrid time domain if E = ∪J−1
j=0 ([tj, tj+1], j) for some finite sequence

of times 0 = t0 ≤ t1 . . . ≤ tJ . The set E is a HTD if for all (T, J) ∈ E,

E ∩ ([0, T ] × {0, . . . , J}) is a compact HTD. Given a HTD E, we use suptE :=

sup {t ∈ R≥0 : ∃ j ∈ Z≥0, such that (t, j) ∈ E} .
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Given a HTD E, we use

suptE := sup {t ∈ R≥0 : ∃ j ∈ Z≥0, such that (t, j) ∈ E}

supjE := sup {j ∈ Z≥0 : ∃ t ∈ R≥0, such that (t, j) ∈ E} .

Also, we let sup E := (suptE, supjE), and length(E) := suptE + supjE.

Definition 1.2. (Hybrid Arc) A hybrid arc consists of a hybrid time domain,

denoted by dom(z), and a function z : dom(z) → Rn, such that z(·, j) is locally

absolutely continuous on Ij := {t : (t, j) ∈ dom(z)} for each j ∈ Z≥0 such that Ij

has nonempty interior.

Given a hybrid system H, its solutions are hybrid arcs z that adhere to specific

conditions determined by the hybrid time domain dom(z) and the data of the hybrid

system (C,F,D,G).

Definition 1.3. (Solutions to Hybrid Systems) [16, Def. 2.6] A hybrid arc z is a

solution to the hybrid dynamical system H in (1.3) if z(0, 0) ∈ C ∪D and

1) For all j ∈ Z≥0 such that Ij = {t : (t, j) ∈ dom(z)} has nonempty interior

x(t, j) ∈ C for all t ∈ intIj, and ż(t, j) ∈ F (z(t, j)) for almost all t ∈ Ij;

2) for all (t, j) ∈ dom(z) such that (t, j+1) ∈ dom(z), z(t, j) ∈ D, and z(t, j+1) ∈

G(x(t, j)).

A solution to the hybrid dynamical system H is said to be maximal if there does

not exist another solution z̃ to H such that dom(z) ⊂ dom(z̃) and z(t, j) = z̃(t, j) for all

(t, j) ∈ dom(z). We use SH(A) to denote the set of all maximal solutions x to H with

x(0, 0) ∈ A ⊂ Rn. To simplify notation, when A = {x0}, we write SH(x0). If not set A is

mentioned, x ∈ SH means that x is a maximal solution to H. A solution z to H is said to
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be complete if dom(z) is unbounded.

In some cases, our models will explicitly depend on time. To study these scenarios,

we can incorporate an additional auxiliary state s ∈ R≥0 to represent the time variable.

This modification alters the dynamics in (1.1) as follows:

(x, s) ∈ C × R≥0, ẋ ∈ F (x, s), ṡ = 1, (1.2a)

(x, s) ∈ D × R≥0, x+ ∈ G(x), s+ = s, (1.2b)

In this formulation, the continuous state s represents time, which increases at a constant

rate during flows and remains unchanged during jumps.

Now, to analyze the influence of external disturbances or inputs on the system

dynamics, we can extend our hybrid dynamical system model. This extension leads to the

following formulation:

(x, u) ∈ C̃ := C × Rm, ẋ ∈ F (x, u), (1.3a)

(x, u) ∈ D̃ := D × Rm, x+ ∈ G(x, u), (1.3b)

where u represents the input or disturbance, which can affect both the flow and jump

dynamics. The following definition is borrowed from [21].

Definition 1.4. A hybrid signal is a function defined on a HTD. A hybrid signal

u : dom(u) → Rn is called a hybrid input if u(·, j) is Lebesgue measurable and locally

essentially bounded for each j. A hybrid signal x : dom(x) → Rn is called a hybrid

arc if x(·, j) is locally absolutely continuous for each j such that the interval Ij := {t :

(t, j) ∈ dom(x)} has nonempty interior. A hybrid arc x : dom(x) → Rn and a hybrid

input u : dom(u) → Rn form a solution pair (x, u) to (1.3) if dom(x) = dom(u),

(x(0, 0), u(0, 0)) ∈ C̃ ∪ D̃, and:
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1. For all j ∈ Z≥0 such that Ij has nonempty interior, and for almost all t ∈ Ij,

(z(t, j), u(t, j)) ∈ C̃ and ẋ(t, j) ∈ F (x(t, j), u(t, j)).

2. For all (t, j) ∈ dom(z) such that (t, j + 1) ∈ dom(x), (x(t, j), u(t, j)) ∈ D̃ and

x(t, j + 1) ∈ G(x(t, j)).

A hybrid solution pair (x, u) is said to be maximal if it cannot be further extended.

A hybrid solution pair (x, u) is said to be complete if length dom(z) = ∞. This does not

necessarily imply that suptdom(z) = ∞, or that supjdom(z) = ∞, although at least one

of these two conditions should hold when z is complete. To simplify notation, in this

dissertation we use |u|(t,j) = sup(0,0)≤(t̃,j̃)≤(t,j)
(t,j)∈dom(z)

∣∣u(t̃, j̃)
∣∣, and we use |u|∞ to denote |u|(t,j)

when t+ j → ∞.

Stability and Convergence Notions

To model the different convergence properties of our algorithms, we make use of

class KL functions β, which are continuous functions that satisfy limr→0+ β(r, ν) = 0

for each fixed ν ∈ R≥0, limν→∞ β(r, ν) = 0 for each fixed r ∈ R≥0, and which are non-

decreasing in its first argument, and non-increasing in the second argument. Class KL

functions are standard in the feedback control; see [22, 16]. Moreover, these functions can

model different types of convergence properties depending on the structure of β.

Definition 1.5. Let A ⊂ Rn be a closed set, and suppose every solution of (1.1)

satisfies |x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), ∀ (t, j) ∈ dom(x). Then, the set A is said

to be:

(a) Uniformly Globally Asymptotically Stable (UGAS) if β is of class KL.

(b) Uniformly Globally Exponentially Stable (UGES) if β(r, s) = c1re
−c2s, c1, c2 >

0.
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(c) Uniformly Globally Finite-time Stable (UGFS) if it is UGAS and there exists

a continuous function T : R≥0 → R≥0 such that lims→T (r) β(r, s) = 0.

(d) Uniformly Globally Fixed-time Stable (UGFXS) if it is UGFS and there exists

T ∗ > 0 such that T (r) < T ∗ for all r ∈ R≥0.

Note that all the properties listed in Definition 1.5 are stronger than standard

convergence notions used in offline optimization or estimation algorithms. In particular,

UGAS implies not only convergence in the standard limiting sense, but also uniform global

stability (in the sense of Lyapunov) and uniform global attractivity.

We will also consider ε-parameterized HDS of the form:

x ∈ Cε, ẋ = Fε(x), and x ∈ Dε, x
+ ∈ Gε(x), (1.4)

where ε > 0. For these systems we will study semi-global practical stability properties as

ε→ 0+.

Definition 1.6. The compact set A ⊂ C ∪D is said to be Semi-Globally Practically

Asymptotically Stable (SGP-AS) as ε→ 0+ for system (1.4) if ∃ β ∈ KL such that

for each pair δ>ν>0 there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) every solution of

(1.4) with |x(0, 0)|A ≤ δ satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + ν, (1.5)

∀ (t, j) ∈ dom(x). When the function β has an exponential form, we say that A is

semi-globally practically exponentially stable (SGP-ES).
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Part I

Momentum-Based Methods
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Chapter 2

Nesterov’s ODE: Foundations and Theory

The quest for efficient optimization algorithms has been a driving force in mathe-

matical research for decades. Among the significant advancements in this field, Nesterov’s

accelerated gradient method, introduced by Yurii Nesterov in 1983 [20], stands out as a

landmark achievement. This method revolutionized the approach to first-order optimiza-

tion by achieving an optimal convergence rate of O(1/k2) for smooth convex problems,

where k is the number of iterations, significantly outperforming the O(1/k) rate of standard

gradient descent.

In recent years, there has been a renewed interest in understanding the fundamental

principles behind Nesterov’s acceleration. This research has led to the formulation of

Nesterov’s method as a continuous-time dynamical system, known as Nesterov’s ODE

(Ordinary Differential Equation) [17]. This continuous-time perspective has provided new

insights into the acceleration phenomenon and has become a staple for the theoretical

study of momentum-based algorithms.

Nesterov’s ODE is a second-order differential equation that can be viewed as the

continuous-time limit of Nesterov’s accelerated gradient method:

z̈ +
3

t
ż + c∇f(z) = 0 (2.1)

where z ∈ Rn is the main state, f : Rn → Rn is an objective function to be minimized,
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∇f is its gradient, and c > 0 is a tunable gain. This ODE encapsulates the key features

of Nesterov’s acceleration: the presence of a velocity term ż, which provides momentum,

and a time-dependent damping coefficient 3
t
, which gradually reduces the influence of the

momentum as time increases. The interplay between momentum and dynamic damping

leads to the following theorem which characterizes accelerated rates of convergence under

Nesterov’s ODE towards the solution of the optimization problem characterized by f [17].

Theorem 2.1. (Convergence Rate of Nesterov’s ODE) For a convex function f

with L-Lipschitz continuous gradient, every solution x to Nesterov’s ODE satisfies:

f(z(t))− f(z⋆) ≤ O
(
1

t2

)
(2.2)

where z⋆ is a minimizer of f .

The convergence result of Theorem 2.1 establishes a powerful link between Nesterov’s

ODE and its discrete-time counterpart by mirroring the optimal O(1/k2) convergence rate

of Nesterov’s accelerated gradient method. This parallel in convergence behavior opens up

new avenues for analysis and algorithm design in optimization theory. By recasting the

accelerated gradient method in a continuous-time framework with matching convergence

properties, researchers can leverage sophisticated tools from dynamical systems theory to

gain deeper insights into the acceleration phenomenon. This theoretical understanding

has catalyzed the development of improved discrete-time algorithms and more nuanced

continuous-time models. For example, high-resolution ODEs proposed in [23] offer a

more detailed characterization of the optimization process, leading to refined acceleration

techniques.

The impact of Nesterov’s ODE extends far beyond its immediate application in

centralized optimization. It has found applications in various fields, serving as a theoretical

foundation in machine learning [18], control theory [24, 25], and distributed optimization
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[26]. In machine learning, for example, the ODE perspective has led to new insights into

the behavior of neural network training algorithms.Researchers have also developed several

extensions to Nesterov’s ODE to address different optimization scenarios. Modifications to

the damping term have led to new families of accelerated methods [27], while adaptations

to stochastic settings have broadened the applicability of the ODE framework [28]. These

extensions demonstrate the flexibility and generality of the continuous-time approach to

acceleration.

Despite these advancements and extensions, Nesterov’s ODE remains one of the

fundamental models for understanding acceleration in optimization. Its elegance and

simplicity make it an ideal starting point for more sophisticated techniques, and its core

principles continue to guide research in accelerated optimization methods.

While Nesterov’s ODE offers significant acceleration in centralized optimization,

its extension to control and decision-making contexts introduces several fundamental chal-

lenges. The following section explores three key limitations that arise when implementing

Nesterov’s method: lack of robustness guarantees, coordination constraints with multiple

timers, and instability in nonpotential settings where the driving term ∇f(z) in (2.1) is

replaced by a vector field G(z) that cannot be expressed as the gradient of a potential

function f . Each of these issues poses unique obstacles to the effective application of

Nesterov-like methods in distributed optimization and game-theoretic scenarios.

2.1 Robustness Limitations

A primary concern when implementing Nesterov’s method is its lack of robustness.

This issue becomes particularly evident when the system is subjected to small perturbations

or noise, which are inevitable in practical implementations. To illustrate this issue, we

consider the following example:
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Example 2.1. (Instability Under Small Disturbances) Consider the problem of

minimizing a quadratic cost function f whose gradient satisfies

∇f(z) =




10 −5

−5 10


 z +



−250

−150


 . (2.3)

The function f is strongly convex and its unique minimizer is given by

z⋆ =
1

3



130

110


 .

Additionally, since the gradient ∇f in (2.3) is Lipschitz, Theorem 2.1 allows us to

conclude that every solution z to the ODE (2.1) converges to the minimizer z⋆.

However, when the ODE is implemented with a perturbed gradient ∇f(z) + e(t),

where e(t) is an arbitrarily small bounded disturbance, highly oscillatory and unstable

behavior emerges, as shown in Figure 2.1 (blue line). Indeed, as shown in [29, Thm.1],

in this case there exists no KL function β such that the solutions of the perturbed

ODE satisfy the bound:

|z(t)− z⋆| ≤ β(|z(0)− z⋆|, t) + ν, (2.4)

for all (t) ∈ dom(z).

The absence of a KL bound creates significant challenges when integrating Nes-

terov’s method into larger control systems. In real-world applications, optimization

algorithms often interact with various components of a control stack, such as state estima-

tors or adaptive controllers. These interactions can introduce minor but persistent errors

into the optimization process. The sensitivity of Nesterov’s ODE to such perturbations

complicates the task of ensuring stable performance in interconnected systems. Moreover,
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Figure 2.1. Trajectories of Nesterov’s ODE with and without perturbation ε(t) on
the gradient ∇f(z). Instability emerges with a periodic perturbation satisfying |ε(t)| ≤√
2× 10−1 for all t.

this robustness issue impedes the direct application of singular perturbation and averaging

techniques, which typically require “reduced” or “average” systems with stability properties

characterized by KL bounds [30]. These techniques play a crucial role in analyzing and

designing complex control structures with multiple time scales.

To address these robustness concerns, researchers have investigated “restarting”

heuristics in momentum-based optimization algorithms. Studies on restarting mechanisms

have been conducted in both discrete-time [27, 31] and continuous-time settings [32, 27].

A significant advancement in this field was the development of a class of hybrid dynamical

systems that incorporate discrete-time resets into continuous-time momentum methods

[24]. This approach leverages the framework of hybrid dynamical systems [33] to provide

a theoretical foundation for analyzing accelerated optimization algorithms with resets.

These systems can induce uniform asymptotic stability properties, effectively mitigating

the robustness issues inherent in the original Nesterov ODE.

A crucial element in these hybrid dynamics is the isntroduction of a timer state τ

with its own dynamics, which replaces the time variable t in the dynamic damping coefficient

3/t that multiplies ż in Nesterov’s ODE. This results in the following continuous-time
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system:

z̈ +
3

τ
ż + c∇f(z) = 0, τ̇ = 1,

where τ ∈ [T0,∞) is a timer state used to represent the evolution of time t in the original

Nesterov’s ODE (2.1), and T0 > 0 is a tunable parameter. The state τ is periodically reset

when it reaches an upper bound T > 0, following the rule:

τ = T =⇒ τ+ = T0, (2.5)

where T > T0 > 0. This mechanism increases the damping effect after the reset, aiming to

prevent the accumulation of errors that could lead to instability. Figure 2.1 (black line)

illustrates the effect of implementing these resetting dynamics on Nesterov’s ODE in the

context of Example 2.1. The figure demonstrates that incorporating resets restores the

stability and convergence properties of the algorithm, even in the presence of disturbances.

In Chapter 3, we will further formalize this type of hybrid dynamics and explore resetting

the velocity ẋ based on the monotonicity properties of the gradient ∇f(x).

2.2 Coordination Limitations for

Distributed Implementation

While resets offer a promising solution to robustness issues of Nesterov’s ODE in

centralized settings, their extension to distributed environments presents new challenges.

In distributed settings, a fundamental limitations is the existence of local timers τi for each

agent i ∈ V := {1, 2, · · · , N}. This localization introduces the challenge of coordinating

resets for these timer variables τi across the network.

Agents typically have limited access to global information and restricted communi-

cation capabilities, complicating the synchronization of timer resets. As we shall see below,
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without proper coordination, asynchronous resets of τi may disrupt the system’s conver-

gence and stability. The resulting inconsistencies in dynamic damping coefficients 3/τi

across players can lead to varying convergence rates and directions, potentially causing sub-

optimal solutions or instability. These coordination challenges extend beyond distributed

optimization problems. They are particularly relevant in the broader context of games,

where agents, or players, may have conflicting objectives and incomplete information about

the global state.

To understand these coordination challenges in the context of games, in this

dissertation, we consider noncooperative games with N ∈ Z≥2 players, where each player

i can control its own action qi, and has access to the actions qj of neighboring players

j ∈ Ni := {j ∈ V : (i, j) ∈ E}. The connection between neighboring players in the

game is characterized by a directed, connected, and time-invariant graph G = {E ,V},

where V = {1, 2, . . . , n} is the set of players and E is the set of edges between players.

We use L to denote the in-Laplacian matrix of the graph G. The main goal of each

player i is to minimize its own cost function ϕi : Rn → R by controlling its own action

qi ∈ Rn. We assume that the costs ϕi are twice continuously differentiable, and we use

q = (q1, q2, . . . , qn) ∈ RnN to denote the overall vector of actions of the game. We also use

denote as q−i ∈ Rn(N−1) the vector of all actions with the action of player i removed. Within

this setting, a Nash equilibrium (NE) is defined as a point z⋆ = (z⋆1 , z
⋆
2 . . . , z

⋆
N) ∈ RNn

that satisfies:

ϕi(z
⋆
i , z

⋆
−i) = inf

zi∈R
ϕi(zi, z

⋆
−i), ∀ i ∈ V . (2.6)

In other words, at a Nash equilibrium, no player can unilaterally improve their cost by

changing their action. To characterize infinitesimal deviations in the actions of the players

qi and their effect in the cost functions ϕi, when the cost functions are differentiable, it is
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useful to introduce the pseudogradient vector of the game G : RNn → RNn [34, Eq. (3.9)]:

G(z) =
(
∂ϕ1(z)

∂z1
,
∂ϕ2(z)

∂z2
, . . . ,

∂ϕn(z)

∂zn

)
. (2.7)

In the special case where there exists a potential function P : RNn → R such that

G(z) = ∇P(z), the game receives the name of potential game. In this case, finding the

Nash Equilibrium of the the game essentially reduces to minimizing the cost function

P(z) of a distributed optimization problem. By using this connection, we propose a

natural extension of Nesterov’s ODE (2.1) to the case of noncooperative games where we

replace the gradient ∇f with the pseudogradient vector of the game G. The extension, of

course, needs to consider the distributed nature of the problem, where the computational

capabilities of the players are not necessarily collocated, and where the assumption of a

single timer variable τ for the overall system becomes unrealistic. Specifically, we consider

the following continuous-time Nash Equilibrium seeking dynamics describing the evolution

of the action of the ith player zi ∈ Rn:

z̈i +
3

τi
żi + c · ∂ϕi(z)

∂zi
= 0, τ̇i = 1, ∀i ∈ V . (2.8)

The overall dynamics, describing the evolution of the action profile z = (z1, z2, · · · , zN) ∈

RNn, can then be expressed as

z̈ +
3

2
T −1ż + c · G(z) = 0, τ̇ = 1N . (2.9)

where the matrix T ∈ RN×N is defined as T := diag(τ1, τ2, · · · , τN)⊗ In.

With the introduction of new timer variables τi, corresponding resetting rules of the

from (2.5) might be implemented by each player, with the objective of inducing robustness

guarantees into the momentum-based Nash equilibrium seeking mechanism. However, as

the following example illustrates, if these resets are not coordinated, i.e., if they are not
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guaranteed to occur simultaneously, prohibitively slow converges rates might emerge.

Example 2.2. (Slow Convergence with Uncoordinated Resets) Consider the mo-

mentum based dynamics in (2.8) in a potential game with N = 30 players, and with

a strongly convex potential function f whose strong convexity constant is κ = 0.01.

Each player i ∈ V implements the dynamics in (2.8) with ϕi = f for all i ∈ V.

Players reset (τi, ẋi) every 25 seconds in their local time frame, using τ+i = 0.1 and

(ẋi)
+ = 0. Despite theoretical guarantees of fast convergence for this reset strategy

in centralized settings [24, 25], the distributed implementation with uncoordinated

resets leads to significantly slower convergence compared to standard pseudogradient

flows of the form ż = −G(z), as shown in Figure 2.2 (blue line).

This example demonstrates how uncoordinated resets can negate the acceleration

benefits of Nesterov’s method, even in potential games where a global optimization

perspective is applicable. The asynchronous nature of resets across different players

can lead to conflicting updates, effectively slowing down the overall convergence process.

The challenge lies in maintaining accelerated convergence while ensuring sufficiently

coordinated resets across the network, all without resorting to centralized control. This

introduces additional complexity in the analysis and design of distributed algorithms,

requiring different mathematical tools to prove stability and convergence properties for

these hybrid systems that combine continuous-time dynamics with discrete-time resets.

We comprehensively study the use of these tools in the context of transactive control in

congestion games in Section 4.4, distributed consensus-based optimization in Section 4.5,

and Nash Equilibrium seeking in Section 5.1.
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Figure 2.2. Centralized vs non-coordinated resets in a potential-game with κ = 0.01, ℓ =
100 and N = 30. The insets show the evolution of the states τi with and without
coordination mechanisms.

2.3 Limitations in Settings with Non-Symmetric

Jacobian

While the challenges of implementing Nesterov-like methods in distributed settings

are significant even when studying Nash-equilibrium seeking in potential games, the

situation becomes more complex when dealing with scenarios where the vector field G

in (2.9) does not admit a symmetric Jacobian, i.e., when there exists x ∈ RNn such that

∂
∂x
G(x) ̸=

(
∂
∂x
G(x)

)⊤
. In the context of games, this means that each player’s objective

function ϕi cannot be derived from a single global potential f , leading to what is known

as a non-potential game. A critical limitation in non-potential games is that Nash-set

seeking dynamics of the form ẋ = −G(x), or those taking the form in (2.9), can no longer

be interpreted as optimization dynamics on a common landscape. Consequently, many

techniques from optimization theory may not apply directly. The following example
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Figure 2.3. Lack of convergence of trajectories of (2.1) in a the non-potential game of
Example 2.3 with κ = 0.02, ℓ = 0.0214, n = 30, T0 = 0.1, T = 3.74.

illustrates how momentum-based acceleration techniques that are effective for potential

games can lead to instability in settings where G does not admit a symmetric Jacobian.

Example 2.3. (Lack of Convergence in Non-Potential Games) Consider a non-

potential game with N = 30 players, characterized by the pseudogradient

G(z) = Az + b, (2.10)

with z = (z1, z2, . . . , zN ) with zi ∈ R, A ≠ A⊤, and 1
2
(A+A⊤) ⪰ κIN , where κ = 0.02,

and b = 0. This game belongs to a class of games known as strongly monotone

quadratic games, which have been extensively studied in the literature [34, 35]. For

such games, the standard pseudogradient flow ẋ = −G(x) guarantees exponential

convergence to the unique Nash equilibrium [35].

Figure 2.3 illustrates two different implementations. The blue line represents a

trajectory generated by the standard pseudogradient flow using the pseudogradient

in (2.10). The red line depicts a trajectory produced by system (2.9) using the same
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pseudogradient G. While the standard pseudogradient flow converges, system (2.9)

generates divergent trajectories. This divergence occurs even when all timers are

initially synchronized (τ(0) = T01N for T0 > 0) and resets are implemented (τ+i = T0

whenever τi = T ) every 25 seconds.

While Example 2.3 demonstrates that instability persists even with infrequent

resets, Chapter 5 will reveal that implementing sufficiently frequent resets can enhance

convergence and restore stability in nonpotential games.

Before presenting a solution for the cases with non-symmetric Jacobians in Chapter 5,

we will first explore approaches to address the existing challenges of Nesterov’s ODE in

Chapters 3 and 4 in centralized settings and potential games. Our focus there will be on

developing hybrid mechanisms that provide robustness, stability, and acceleration. These

approaches will aim to strike a balance between harnessing the benefits of momentum and

ensuring stability by employing reset policies tailored to the specific structure of the game

under consideration.
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Chapter 3

Overcoming Robustness Limitations via Hybrid Dynamics

3.1 Hybrid Momentum-Based Mechanisms for

Robust Centralized Optimization

To tackle the robustness issues of Nesterov’s ODE, we begin by considering the

hybrid dynamical system introduced in [24], which combines continuous-time dynamics

of the form (2.1) with discrete-time resets in a centralized setting. To this end, we first

introduce the change of coordinates

q = z, p =
t

2
ż + z, (3.1)

which transforms Nesterov’s ODE in (2.1) into the following form:

ẋ =




q̇

ṗ

τ̇




= F0(x) :=




2τ−1(p− q)

−2kτ∇f(q)

η



, (3.2a)

where x := (q, p, τ) ∈ R2n+1, k = c
4
, c > 0 is as definied in (2.1), and where we have let the

rate of change of τ be a tunable parameter η > 0 to broaden the flexibility of the approach.

To incorporate resets/restarts into these dynamics, the continuous-time dynamics in (3.2a)
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are only allowed to flow when z ∈ C1, with the flow set C1 defined as follows:

C1 = {(q, p, τ) ∈ R2n+1 : τ ∈ [T0, T ]}, (3.2b)

where T > T0 > 0 are resetting parameters that condition the frequency of resets. The

discrete-time dynamics modeling the reset/restarts are given by

x+ =




q+

p+

τ+




= G0(x) :=




q

αp+ (1− α)q

T0



, (3.2c)

where α ∈ {0, 1} models a resetting policy whose value is chosen depending on the

convexity properties of the function f . The choice α = 0 leads to resets of the form p+ = q,

which corresponds to (ẋ)+ = 0 for the original Nesterov’s ODE. On the other hand, α = 1

corresponds to keeping p constant during reset events. The discrete-time dynamics (3.2c)

are implemented whenever x belongs to the jump set

D0 = {(q, p, τ) ∈ R2n+1 : τ = T}. (3.2d)

The data introduced in (3.2) defines the hybrid dynamical system

H0 = (C0, F0, D0, G0) (3.3)

conforming to the general structure outlined in (1.1). The following theorem characterizes

the stability properties of a suitable compact set A0 under the hybrid dynamical system

H0, in cases where the cost function f is either convex or strongly convex [25, Thm. 1]:
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Theorem 3.1. (Uniform Asymptotic Stability of the Regularized Nesterov’s ODE)

Consider the hybrid dynamical system H0 = (C0, F0, D0, G0) defined by (3.2). Let

f : Rn → R be a continuously differentiable cost/potential function and define the

compact set

A0 := {(q, p, τ) ∈ R2n+1 : p = q = q⋆, τ ∈ [T0, T ]}, (3.4)

where q⋆ is a minimizer of f . Then:

a) If f is convex, the set A0 is UGAS for H0. Moreover, any maximal solution

z = (q, p, τ) to H0 satisfies the following bound:

f(q(t, j))− f(q⋆) ≤ cj
τ(t, j)2

, (3.5)

for all (t, j) ∈ dom(z), where {cj}∞j=1 > 0 is a sequence of monotonously

decreasing positive constants satisfying cj → 0.

b) If f is κ-strongly convex, ∇f is ℓ-globally Lipschitz, and the resetting parame-

ters (T0, T ) satisfy

T 2 − T 2
0 ≥ 1

2kκ
,

then A0 is UGES for H0.

This theorem establishes both the stability of the hybrid system and its convergence

rates. For convex functions, it achieves a semi-accelerated O(1/τ(t, j)2) convergence rate

during intervals of flow, matching the performance of Nesterov’s accelerated method in

the initial interval. For strongly convex functions, it guarantees exponential convergence.

Furthermore, since F0 and G0 are continuous, and C0 and D0 are closed, it follows
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Figure 3.1. Trajectories of Nesterov’s ODE, in the same scenario of Example Example
2.1, with and without resets under a periodic perturbation ε(t) on the gradient ∇f(z)
satisfying |ε(t)| ≤

√
2× 10−1 for all t.

that H0 is well-posed as defined in [33, Ch. 6]. By applying [33, Theorem 7.21], this

well-posedness property of the HDS H0, combined with the uniform stability results

from Theorem 3.1, leads to the following corollary. This corollary directly addresses the

robustness issues of Nesterov’s ODE outlined in Section 2.1.

Lemma 3.1. Let e : R≥0 → R2n+1 be a measurable function satisfying supt≥0 |e(t)| ≤

ē, with ē > 0. Then, under conditions the conditions of Theorem 3.1-a) and Theorem

3.1-b), the dynamics

z + e ∈ C0, ż ∈ F0(z + e) + e, (3.6a)

z + e ∈ D0, z+ ∈ G0(z + e) + e, (3.6b)

render the set A semi-globally practically asymptotically stable as ē→ 0+.

The result of Lemma 3.1 addresses the robustness issues of Nesterov’s ODE in

centralized settings, as outlined in Chapter 2. To demonstrate this, we incorporate resets
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into Nesterov’s ODE using an auxiliary timer variable τ̃ . We initialize τ̃ with T0 = 0.1 and

reset it every 4.9 time units. Simulating the same scenario presented in Example 2.1, we

obtain the results shown in Figure 3.1. As observed, the incorporation of suitable resets

restores the system’s stability in the presence of disturbances. The next section employs

the hybrid dynamics defined in (3.2) for the accelerated convergence of the weights of

suitable neural networks in the context of adaptive dynamic programming.

3.2 Accelerated Continuous-Time Reinforcement

Learning via Data-Assisted Hybrid Control

Recent technological advances in computation and sensing have incentivized the

development and implementation of data-assisted feedback control techniques previously

deemed intractable due to their computational complexity. Among these techniques,

reinforcement learning (RL) has emerged as a practically viable tool with remarkable

degrees of success in robotics [36], autonomous driving [13], water-distribution systems

[37], among other cyber-physical applications, see [38]. These types of algorithms, are part

of a large landscape of adaptive systems that aim to control a plant while simultaneously

optimizing a performance index in a model-free way, with closed-loop stability guarantees.

In this section, we focus on a particular class of infinite horizon RL problems

from the perspective of approximate optimal control and approximate adaptive dynamic

programming (AADP). Specifically, we study the optimal control problem for nonlinear

continuous-time and control-affine deterministic plants, interconnected with approximate

adaptive optimal controllers [39] in an actor-critic configuration. These types of adaptive

controllers aim to find, in real time, the solution to the Hamilton-Jacobi-Bellman (HJB)

equation by measuring the output of the nonlinear dynamical system while making use of

two approximation structures:

• a critic, used to estimate the optimal value function of the optimal control problem,
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and

• an actor, used to estimate the optimal feedback controller.

Our goal is to design online adaptive dynamics for the real-time tuning of the aforemen-

tioned structures, while simultaneously achieving closed-loop stability and high transient

performance. To achieve this, and motivated by the widespread usage of momentum-based

gradient dynamics in practical RL settings [40], we study continuous-time actor-critic

dynamics inspired by a class of ordinary differential equations (ODEs) that can be seen as

continuous-time counterparts of Nesterov’s accelerated optimization algorithm [19]. Such

types of algorithms have gained popularity in optimization and related fields due to the fact

that they can minimize smooth convex functions at a rate of order O(1/t2) [18]. The main

source for the acceleration property in these ODEs comes from the addition of momentum

to gradient-based dynamics, in conjunction with a vanishing dynamic damping coefficient.

However, as recently shown in [25] and [29], the non-uniform convergence properties that

emerge in these types of dynamics complicates their use in feedback systems with plant

dynamics in the loop. in this chapter, we overcome these challenges by incorporating resets

into the proposed momentum-based algorithms, similar to restarting heuristics studied in

the machine learning literature, see [17] and [31]. Our resulting actor-critic controller is

naturally modeled by a hybrid dynamical system that incorporates continuous-time and

discrete-time dynamics, which we analyze using tools from [33].

A traditional assumption in the literature of continuous-time actor-critic RL is that

the regressors used in the parameterizations satisfy a persistence of excitation condition

along the trajectories of the plant. However, in practice, this condition can be difficult

to verify a priori. To circumvent this issue, in this chapter we consider a data-assisted

approach, where a finite amount of past “sufficiently rich” recorded data is used to

guarantee asymptotic learning in the closed-loop system. As a consequence, the resulting

data-assisted hybrid control algorithm concurrently uses real-time and recorded data,
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similar in spirit to concurrent-learning (CL) techniques [41]. By using Lyapunov-based

tools for hybrid dynamical systems, we analyze the interconnection of an actor-critic

neural-network (NN) controller and the nonlinear plant, establishing that the trajectories

of the closed-loop system remain ultimately bounded around the origin of the plant and the

optimal actor and critic NN parameters. Since the resulting closed-loop system has suitable

regularity properties in terms of continuity of the dynamics, our stability results are in fact

robust with respect to arbitrarily small additive disturbances that can be adversarial in

nature, or that can arise due to numerical implementations. To the best knowledge of the

authors, these are the first theoretical stability guarantees of continuous-time accelerated

actor-critic algorithms for neural network-based adaptive dynamic programming controllers

in nonlinear deterministic settings.

The Time-Invariant Hamilton-Jacobi-Bellman Equation

Consider a control-affine nonlinear dynamical plant

ẋ = f(x) + g(x)u, (3.7)

where x ∈ Rn is the state of the system, u ∈ U ⊂ Rm is the input, and f : Rn → Rn and

g : Rn → Rn×m are locally Lipschitz functions. Our goal is to design a stable algorithm able

to find –in real time– a control law u∗ that minimizes the cost functional V : Rn×UV → R

given by:

V (x0, u) :=

∫ ∞

0

r
(
x
(
τ
)
, u (x(τ))

)
dτ, (3.8)

where x
(
t
)
represents a solution to (3.7) from the initial condition x(0) = x0, that results

from implementing a feedback law u, belonging to a class of admissible control laws UV
characterized as follows:
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Definition 3.1. [42, Definition 1] Given the dynamical system in (3.7), a feedback

control u : Rn → Rm is admissible with respect to the cost functional V in (3.8) if

• u is continuous,

• u renders system (3.7) UAS,

• V (x0, u) <∞ for all x0 ∈ Rn. □

We denote the set of admissible feedback laws as UV .

In (3.8), we consider cost functions r : Rn × Rm → R of the form r(x, u) :=

Q(x) + R(u), where the state-cost is given by Q(x) := x⊤Πxx with Πx ≻ 0, and the

control-cost is given by R(u) := u⊤Πuu with Πu ≻ 0. To find the optimal control law that

minimizes (3.8), we study the Hamiltonian function H : Rn × Rm × Rn → R related to

(3.7) and (3.8), given by

H(x, u,∇V ) := ∇V ⊤(f(x) + g(x)u) +Q(x) +R(u). (3.9)

Using (3.9), a necessary optimality condition for u∗ is given by Pontryagin’s maximum

principle [43]:

u∗(x) = argmin
u∈UV

H(x, u,∇V ∗) =⇒ u∗(x) = −1

2
Π−1
u g(x)⊤∇V ∗(x), (3.10)

where V ∗ represents the optimal value function:

V ∗(x) := inf
u∈UV

V (x, u(·))

On the other hand, under the assumption that V ∗ is continuously differentiable, the

optimal value function can be shown to satisfy the Hamilton-Jacobi-Bellman equation [39,

33



Ch. 1.4]:

∂V ∗

∂t
= −H(x, u∗,∇V ∗) ∀x ∈ Rn.

Since the functional in (3.8) does not have an explicit dependence on t, it follows that

∂V ∗
∂t

= 0, and hence H(x, u∗,∇V ∗) = 0, meaning that for all x ∈ Rn, the following holds:

∇V ∗⊤(f(x) + g(x)u∗(x)
)
+Q(x) +R

(
u∗(x)

)
= 0. (3.11)

The time-invariant Hamilton-Jacobi-Bellman equation in (3.11), enables a state-dependent

characterization of optimality. Therefore, by using the optimal control law in (3.10), and

assuming that the system dynamics (3.7) are known, the form (3.11) could be leveraged

to find V ∗. Unfortunately, finding an explicit closed-form expression for V ∗, and thus

for the optimal control law, is, in general, an intractable problem. However, the utility

of (3.11) is not completely lost. As we shall show in the following sections, online and

historical “measurements” of (3.11) can be leveraged in real time to estimate the optimal

control law u∗ while concurrently rendering a neighborhood of the origin of system (3.7)

asymptotically stable.

Data-Assisted Critic Dynamics

To leverage the form of (3.11), we consider the following parameterization of the

optimal value function V ∗(x):

V ∗(x) = θ∗
⊤
c ϕc(x) + ϵc(x) ∀x ∈ K, (3.12)

where K ⊂ Rn is a compact set, θ∗c ∈ Rlc , ϕc : Rn → Rlc is a vector of continuously

differentiable basis functions, and ϵc : Rn → R is the approximation error. The parame-

terization (3.12) is always possible on compact sets due to the continuity properties of V

and the universal approximation theorem [44]. This parametrization results in an optimal
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Hamiltonian of the form H∗
p := H(x, u∗, ∂ϕc

∂x

⊤
θ∗c +∇ϵc) given by:

H∗
p (x) = θ∗

⊤
c ψ(x, u∗(x)) +Q(x) +R (u∗(x)) +∇ϵc(x)⊤ (f(x) + g(x)u∗(x)) , (3.13)

where we defined ψ : Rn × Rm → Rlc as:

ψ(x, u) :=
∂ϕc(x)

∂x
(f(x) + g(x)u) . (3.14)

We note that the explicit dependence of ψ : Rn×Rm → Rlc on the control action u, defined

in (3.14), is a fundamental departure from the previous approaches studied in the context

of concurrent learning (CL) NN actor-critic controllers, such as those considered in [45] and

[46]. In particular, we note that in the context of CL the data used to estimate the optimal

value function V ∗ is generated from measurements of the optimal Hamiltonian which,

by definition, incorporates the optimal control law u∗. Hence, the need to include u as

part of the regressor vectors ψ becomes crucial; this dependence characterizes how far our

recorded measurements of a Hamiltonian are from the optimal Hamiltonian H∗
p . Indeed,

this distance will explicitly emerge in our convergence and stability analysis. Naturally,

the dependence of (3.14) on u will impose stronger conditions on the recorded data needed

to estimate V ∗.

Assuming we have access to ϕc, we can define a critic neural network as:

V̂ (x) := θ⊤c ϕc(x), ∀x ∈ K, (3.15)

which will serve as an approximation of the optimal value function V ∗ in (3.12). This

critic NN results in an estimated Hamiltonian:

H
(
x, u,∇V̂

)
:= θ⊤c ψ (x, u) +Q(x) +R(u), (3.16)
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which we will use to design the update dynamics of the critic parameters θc. In particular,

our goal is to use previously recorded data from trajectories of the plant to ensure

asymptotic stability of the set of optimal critic parameters {θ∗c}, while simultaneously

enabling the incorporation of instantaneous measurements from the plant. To achieve this

goal, we will assume enough “richness” properties in the recorded data, a notion that is

captured by a relaxed (and finite-time) version of persistence of excitation (PE); see [41]

and [47].

Assumption 3.1. Let {ψ (xk, u
∗(xk))}Nk=1 be a sequence of recorded data, and

define:

Λ :=
N∑

k=1

Ψ(xk, u
∗(xk))Ψ(xk, u

∗(xk))
⊤, Ψ(x, u) :=

ψ(x, u)

1 + ψ(x, u)⊤ψ(x, u)
. (3.17)

There exists λ ∈ R>0 such that Λ ⪰ λIn, i.e., the data is λ-sufficiently-rich (λ-SR). □

Remark 3.1. In this section, we study reinforcement learning dynamics that do

not make explicit usage of exploration signals with standard PE properties, which

can be difficult to guarantee in practice. Instead, we assume access to samples

obtained by observing the action of optimal values u∗(xk) acting on the plant.

Note however that this does not imply knowledge of the optimal control policy as

a whole, but only of a finite number of demonstrations from an “expert” policy.

Similar requirements commonly arise in the literature of imitation learning, or inverse

reinforcement learning, and have been recently shown in practice to reduce the

exploratory requirements of online reinforcement learning algorithms, with mild

assumptions in the sampling of the demonstrations. For recent discussions on these

topics in the discrete-time stochastic reinforcement learning setting we refer the

reader to [48] and [49].
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Now, we consider the instantaneous and data-dependent errors of the estimated

Hamiltonian with respect to the optimal one:

ei (θc, x, u) := H
(
x, u,∇V̂

)
−H (x, u∗(x),∇V ∗)

= θ⊤c ψ (x, u) +Q(x) +R (u) ,

edk(θc) := H
(
xk, u

∗(xk),∇V̂
)
−H (xk, u

∗(xk),∇V ∗)

= θ⊤c ψ (xk, u
∗(xk)) +Q(xk) +R (u∗(xk)) ,

where we used the fact that H (x, u∗(x),∇V ∗) = 0. Moreover, we define the joint

instantaneous and data-dependent error as:

e (θc, x, u) :=
1

2

(
ρi

ei (x, θc, u)
2

(
1 + |ψ(x, u)|2

)2 + ρd

N∑

k=1

edk(θc)
2

(
1 + |ψ (xk, u∗(xk))|2

)2

)
, (3.18)

where ρi ∈ R≥0 and ρd ∈ R>0 are tunable gains. Since we are interested in designing

real-time training dynamics for the estimation of the optimal parameters θ∗c , we compute

the the gradient of (3.18) with respect to θc as follows:

∇θce(θc, x, u) = ρi

(
Ψ(x, u)Ψ(x, u)⊤θc +

ψ(x, u) [Q(x) +R(u)]

(1 + ψ(x, u)⊤ψ(x, u))2

)

+ ρd


Λθc +

N∑

k=1

ψ(xk, u
∗(xk)) [Q(xk) +R (u∗(xk))](

1 + ψ (xk, u∗(xk))
⊤ ψ (xk, u∗(xk))

)2


 , (3.19)

where Λ and Ψ are defined in Assumption 3.1.

The “propagated” error to the HJB equation that results from the approximate parametriza-

tion of V ∗ in (3.12), is given by:

ϵHJB(x) := H(x, u∗(x),∇V ∗)−H

(
x, u∗,

∂ϕc(x)

∂x

⊤
θ∗c

)
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= −∇ϵ⊤c (x)
(
f(x) + g(x)u∗(x)

)
. (3.20)

The following assumption is standard, and it is satisfied when the involved functions are

continuous and K is compact.

Assumption 3.2. There exist ϕc, dϕc, ϵc, dϵc, ϵHJB, g ∈ R>0 such that

|ϕc(x)| ≤ ϕc,

∣∣∣∣
∂ϕc(x)

∂x

∣∣∣∣ ≤ dϕc, |ϵc(x)| ≤ ϵc,

|∇ϵc(x)| ≤ dϵc, |ϵHJB(x)| ≤ ϵHJB, |g(x)| ≤ g ∀x ∈ K,

where K is the same set considered in (3.12). □

Critic Dynamics via Data-Driven Hybrid Momentum-Based Control

To design fast asymptotically stable dynamics for the estimate θc, we propose a

new class of momentum-based critic dynamics inspired by accelerated gradient flows with

restarting mechanisms, such as those studied in [19] and [31]. Specifically, we consider

the following hybrid dynamics with a similar structure to the HDS (3.2), now with state

y := (θc, p, τ) and data defined by:

Cc
0 :=

{
y ∈ R2lc+1 : τ ∈ [T0, T ]

}
, F c

0 (y, x, u) :=




2
τ
(p− θc)

−2kc∇θce(θc, x, u)

1
2



, (3.21a)

Dc
0 :=

{
y ∈ R2lc+1 : τ = T

}
, Gc

0(y) :=




θc

θc

T0



, (3.21b)

where kc ∈ R>0 is a tunable gain, and (p, τ) are auxiliary states that are periodically reset

every time τ = T via the jump map (3.21b), with ∞ > T > T0 > 0. The dynamical
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system in (3.21) flows in continuous time according to (3.21a) whenever the timer variable

τ is in [T0, T ]. As soon as τ hits T , the algorithm (3.21) resets the timer variable to T0, as

well as the momentum variable p to θc, while leaving θc unaffected. Accordingly, after the

first reset, the system exhibits periodic resets every ∆T = 2(T −T0) intervals of time. The

following assumption provides data-dependent tuning guidelines for the resetting frequency

of the timer variable τ , which will be leveraged in our stability results.

Assumption 3.3. The tunable parameters (T0, T, kc, ρi, ρd) satisfy 2ρdλ > ρi and

T 2
0 +

1

2kcλρd
< T 2 <

8ρdλ

kcρ2i
, (3.22)

where λ is the level of richness of the recorderd data defined in Assumption 3.1. □

For system (3.21), we study stability properties with respect to the compact set:

Ac := Aθc,p × [T0, T ], (3.23a)

Aθc,p :=
{
(θc, p) ∈ R2lc : pc = θc, θc = θ∗c

}
. (3.23b)

The following theorem is the first main result of this paper. All the proofs are presented

in Appendix A.1.

Theorem 3.2. Given a number lc of basis functions ϕc parametrizing the critic

NN, and a compact set K ⊂ Rn, suppose that Assumptions 3.1, 3.2 and 3.3 are

satisfied. Then, there exists (κ, c) ∈ R>0 × R>0 and class-K∞ functions γ1 and γ2,

such that for every solution y = (θc, p, τ) to (3.21) with initial condition y(0, 0) =

(θc(0, 0), p(0, 0), τ(0, 0)), and using the control policy u(·) ∈ UV on the plant, the

critic parameters θc satisfy

|θc(t, j)− θ∗c | ≤ κe−c(t+j)|y(0, 0)|Ac + γ2 (|ũ(x(t, j))|) + γ1(ϵHJB), (3.24)
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Figure 3.2. Proposed Hybrid Momentum Based Dynamics for the training of the Critic
subsystem

where ũ(x(t, j)) := u(x(t, j))− u∗(x(t, j)), for all (t, j) ∈ dom (y) □

The presence of a residual optimal-control mismatch term in (3.24) of the form

γ2(|u(x)− u∗(x)|), represents a crucial difference with respect to previous CL adaptive

dynamic approaches, such as those studied in [45] and [39, Ch. 4 ]. This term is a direct

byproduct of our definition of ψ in (3.14), its dependence on the control action u, and

its appearance in the error gradient (3.19). In principle, the emergence of this term in

Theorem 1 is agnostic to the particular gradient-based update dynamics for the critic NN,

regardless of the inclusion or not of momentum. Since γ2 ∈ K, the larger the difference

between the nominal input u and the optimal feedback law u∗, the greater the residual

error in the convergence of θc. In particular, the bound (3.24) describes a semi-global

practical input-to-state stability property that, to the best knowledge of the authors, is

novel in the context of CL-based RL. In the next section we will show that the residual

error γ2(|ũ|) can be removed by incorporating an additional actor NN in the system.
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Remark 3.2. In contrast to standard data-driven gradient-descent dynamics for

the estimation of the optimal value function V ∗, which can achieve exponential rates

of convergence proportional to λ (cf. [46, 41]), under the assumptions of Theorem

3.2 the critic update dynamics (3.21) can achieve exponential convergence with rates

proportional to
√
λ. As shown in [25], momentum-based dynamics of this form can

achieve these rates using the restarting parameter

T = T ∗ := e

√
1

2kcρdλ
+ T 2

0 . (3.25)

This property is particularly useful in settings where the level of richness of the

data-set is limited, i.e., when λ≪ 1, which is common in practical applications.

Theorem 3.2 guarantees exponential convergence to a neighborhood of the optimal

parameters {θ∗c} that define the optimal value function V ∗. Consequently, by continuity,

and on compact sets, V̂ would converge to an ϵ-approximation of V ∗, which can be

leveraged by the control law (3.10) to stabilize system (3.7). However, as noted in [50],

implementing only critic structures for the control of nonlinear dynamical systems of the

form (3.7) can lead to poor closed-loop transient performance. To tackle this issue, we

consider an auxiliary dynamical system, called the actor, which will serve as an estimator

of the optimal controller that acts on the plant.

Actor Dynamics

Using the optimal value parametrization described in Section 3.2 the optimal control

law can written as:

u∗(x) = −1

2
Π−1
u g(x)⊤

[
∂ϕc(x)

∂x

⊤
θ∗c +∇ϵc(x)

]
, ∀x ∈ K. (3.26)
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Figure 3.3. Actor Subsystem

Therefore, using ∂ϕc(x)
∂x

and g(x) we can implement an actor neural-network given by:

û(x) = ω(x)⊤θu, (3.27)

where ω : Rn → Rlc×m is defined as:

ω(x) := −1

2

∂ϕc(x)

∂x
g(x)Π−1

u . (3.28)

To guarantee convergence of û to u∗, we design update dynamics for θu ∈ Rlc based on

the minimization of the error:

ε(x, θc, θu) :=
1

2

[
α1
εa(x, θc, θu)

⊤εa(x, θc, θu)

1 + Tr{ω(x)⊤ω(x)} + α2εb(θc, θu)
⊤εb(θc, θu)

]
,

εa(x, θc, θu) := û(x)− ω(x)⊤θc = ω(x)⊤ (θu − θc) ,

εb(θc, θu) := θu − θc, (3.29)

which satisfies:

∇θuε(x, θc, θu) = Ω(x)(θu − θc),
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where

Ω(x) := α1
ω(x)ω(x)⊤

1 + Tr{ω(x)⊤ω(x)} + α2I ∈ Rlc×lc ∀x ∈ Rn. (3.30)

Based on these definitions, we consider the following gradient-descent dynamics for the

actor neural-network:

θ̇u = Fu(θu, x, θc) := −ku∇θuε(x, θc, θu), (3.31)

where ku ∈ R>0 is a tunable gain. A scheme representing these update dynamics is shown

in Figure 3.3.

Momentum-Based Actor-Critic Feedback System

Consider the closed-loop, shown in Figure 3.4, resulting from the interconnection

between the plant (3.7), the critic update dynamics (3.21), the actor update dynamics

(3.31) and the feedback law in (3.27), and given by:

ẋ = f(x) + g(x)û(x), x+ = x, (3.32a)

ẏ = F c
0 (y, x, û(x)), y+ = Gc

0(y), (3.32b)

θ̇u = Fu(θu, x, θc), θ+u = θu, (3.32c)

and with flow set and jump set given by Cadp
0 = Rn ×Cc

0 ×Rlc and Dadp
0 = Rn ×Dc

0 ×Rlc

respectively, where Cc
0 and Dc

0 are as defined in (3.21). Let z := (x, y, θu) be the overall

state of the closed-loop system, and define:

A := {0} × Ac × {θ∗c} .

The following is the main result of this paper.
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Figure 3.4. Diagram of the closed-loop system

Theorem 3.3. Given the vector of basis functions ϕc : Rn → Rlc parametrizing

the critic NN and a compact set Kz := K ×Ky ×Kθ ⊂ Rn × R2lc+1 × Rlc , where

K is given as in (3.12), suppose that Assumption 3.1-3.3 are satisfied. Then,

there exists β ∈ KL, γ ∈ K and tunable parameters (ρi, ρd, kc, ku, α1, α2), such

that for every solution z = (x, y, θu) to the closed-loop system (3.32), with initial

condition z(0, 0) = (x(0, 0), y(0, 0), θu(0, 0)) ∈ Kz, there exists T̃ > 0 such that for

all (t, j) ∈ dom(z):

|z(t, j)|A ≤ β(|z(0, 0)|A, t+ j) + γ(
∣∣(ϵHJB, dϵc

)∣∣) + ν,

for all 0 ≤ t+ j ≤ T̃ , and

|z(t, j)|A ≤ γ(
∣∣(ϵHJB, dϵc

)∣∣) + ν, ∀ T̃ ≤ t+ j,

for some ν > 0 constant. □

Theorem 3.3 establishes asymptotic convergence to a neighborhood of the compact

set A as
(
ϵHJB, dϵc

)
→ 0 from any compact set Kz modulo some error ν, under a suitable
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Figure 3.5. Convergence of the weights of the critic’s (left) and actor’s (right) networks
to the optimal values.

choice of tunable parameters. To the best knowledge of the authors this is the first

result providing stability certificates for continuous-time actor-critic reinforcement learning

using recorded data and accelerated value-function estimation dynamics with momentum.

In addition, since the resulting closed-loop system in (3.32) is given by a well-posed

hybrid system, the stability results are robust with respect to arbitrarily small additive

disturbances on the states and dynamics [33, Ch. 7]; see Lemma 3.1.

Numerical Example: To illustrate our theoretical results we study the following

nonlinear control-affine plant:

ẋ = f(x) + g(x)u, (3.33a)

f(x) =




−x1 + x2

−1
2

(
x1 − x2

(
1− cos(2x1 + 2)2

))

 , (3.33b)

g(x) :=




0

cos(2x1) + 2


 , (3.33c)

with local state and control costs given by Q(x) = x⊤x and R(u) = u2 [46]. The optimal

value function for this setting is given by V ∗(x) = 1
2
x21 + x22 with optimal control law given
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by u∗(x) = −(cos(2x1)+2)x2. Using this information, we choose ϕc(x) = (x21, x1x2, x
2
2), and

we implement the prescribed hybrid momentum-based dynamics in (3.21) for the update

of the critic neural network, and the update dynamics for the actor described in (3.31).

We obtain the results shown in Figure 3.5 with x(0, 0) = (−10, 10), θc(0, 0) = (1, 1, 1) and

θu ∈ [0, 1]3. We compare the results with the case in which the critic neural-network is

updated with the gradient-descent dynamics of [45], and where the sufficiently rich data is

a set of 16 data points obtained by sampling the dynamics (3.33) in a grid around the

origin of size 4× 4. In our simulations we use T0 = 0.1, T = 5.5 for the momentum-based

dynamics in (3.21). These particular values are obtained by using the level of richness λ of

the data-set, and the inequalities in (3.22) in order to ensure compliance with Assumption

3.3. For both reinforcement learning dynamics we use kc = 1, ku = 1, ρd = 1 and ρi = 1. As

shown in the figure both update dynamics are able to converge to {θ∗c}, with θ∗c = (1/2, 0, 1)

describing the optimal value function V ∗. However, the hybrid-based dynamics are able to

significantly improve the transient performance of the learning mechanism.1

We conclude this section by noting that, while the results presented in this chapter

address the robustness issues of Nesterov’s ODE in centralized settings via the incorporation

of resets on the timer state τ , extending them to distributed settings introduces new

challenges in coordinating those resets across agents.
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1The code used to implement this simulation can be found in the following reposi-
tory: https://github.com/deot95/Accelerated-Continuous-Time-Approximate-Dynamic-Programming-
through-Data-Assisted-Hybrid-Control
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Chapter 4

Distributed Momentum-Based Dynamics in Potential Games

The limitations of Nesterov’s ODE discussed in the previous chapter necessitate

an alternative set of tools for applying momentum-based dynamics of the form (2.1) in

control and distributed decision-making contexts. This chapter introduces a class of

hybrid dynamical systems incorporating distributed and coordinated restarting/resetting

mechanisms. These systems are specifically designed to address the challenges of robustness

and coordination in potential games and distributed optimization problems discussed in

Chapter 2, Sections 2.1 and 2.2. The discussion and proposed solutions for problems

arising in nonpotential settings are deferred to Chapter 5.

4.1 A Robust Coordination Mechanism for

Distributed Resets

To overcome the limitations of momentum-based dynamics of the form (2.8) in

distributed decision-making, we first employ the change of coordinates introduced in (3.1)

and incorporate resets to the individual dynamics of players presented in the distributed

noncooperative game formulation of Section 2.2. This transformation yields the following
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continuous-time dynamics for player i ∈ V = {1, 2, · · · , N}:

τi ∈ [T0, T ) =⇒




q̇i

ṗi

τ̇i




= Fi(xi) :=




2
τi
(pi − qi)

−2kτi∇qiϕi(q)

η



, (4.1)

where xi = (qi, pi, τi) ∈ R2n+1, k = c
4
, and c > 0 is as defined in (2.8). By introducing

individual resets to obtain nonzero robustness margins, we obtain the following discrete-

time dynamics for agent i ∈ V :

τi = T =⇒




q+i

p+i

τ+i




= Ri(x) :=




qi

αipi + (1− αi)qi

T0



. (4.2)

In (4.2), the parameters αi ∈ {0, 1} model the different individual reset policies of the

players. Assuming access to Oracles that provide real-time evaluations of the gradient

∇qiϕi(q), players can implement the hybrid dynamics (4.1)-(4.2) in a fully decentralized

fashion by running their own timers τi to enable the flows in (4.1) and trigger the jumps in

(4.2). However, as demonstrated in Example 2.2 in Chapter 2, lack of coordination between

player resets can hinder the acceleration properties expected from using momentum, even

in potential games when all players implement the same reset policy αi.

To address this issue, we endow each player with a distributed hybrid coordination

mechanism for the resets. The coordination mechanism is implemented in a distributed

fashion, with each player j ∈ V using a set-valued coordination mapping Cj : R≥0 ⇒ R≥0,

defined as

Cj(τj) :=





T if τj ∈ (T0 + rj, T ]

{T0, T} if τj = T0 + rj

T0 if τj ∈ [T0, T0 + rj)

, (4.3)
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where the individual parameter rj > 0 satisfies

rj ∈
(
0,
T − T0
N

)
∀j ∈ V . (4.4)

Using Cj , the coordination mechanism functions as follows: whenever the timer of player i

satisfies τi = T , two events occur:

1. Player i ∈ V resets its own state xi = (qi, pi, τi) ∈ R2n+1 using the dynamics (4.2),

and

2. Player i sends a pulse to its neighbors j ∈ Ni, who then update their state xj =

(qj, pj, τj) as follows:

q+j = qj, p+j = pj, τ+j ∈ Cj(τj). (4.5)

Since player i can only signal its neighbors, the remaining players j /∈ Ni maintain their

states constant after these two events, i.e., x+j = xj, for all j /∈ Ni.

The combination of continuous-time dynamics with momentum (4.1), and the

set-valued discrete-time dynamics that model the coordinated resets leads to a HDS of

the form (1.1), where multiple resets can happen simultaneously (in the continuous-time

domain) when more than two players satisfy the condition τi = T . To ensure that this

system has suitable robustness properties we need to guarantee that small disturbances in

the states, including in τi, do not lead to drastic changes in the behavior of the players.

This property can be asserted by working with well-posed HDS in the sense of [16, Ch.

7]. Roughly speaking, for a HDS to be well-posed, a suitable (graphically) convergent

sequence of solutions of the overall system must also converge (in a graphical sense) to

another solution of the hybrid system. In the context of (4.1)-(4.5), we need to guarantee,

among others, that for each τ0 ∈ [T0, T ], and each graphically convergent sequence of
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solutions {τk}k∈N with individual components τi,k satisfying

0 ≤ τ1,k(0, 0) ≤ . . . ≤ τN,k(0, 0) < τ0, ∀ k ∈ N, (4.6)

and

lim
k→∞

τ1,k(0, 0) = . . . = lim
k→∞

τN,k(0, 0) = τ0, (4.7)

the sequence {τk}k∈N must converge (graphically) to a function τ̃ that is also a solution

starting from the initial condition τ̃1(0, 0) = τ̃2(0, 0) = . . . = τ̃N(0, 0) = τ0. Thus, when

τ0 = T , the above conditions imply that players will reset their timers τi,k sequentially with

smaller and smaller times between resets as k → ∞. It follows that in the limit, resets

must also be sequential with no time between resets. Since the sequence is determined

by the initial conditions, a well-posed model of the coordination mechanism must take

into account every possible order of sequential resets of the timers τi. In other words, if

multiple players simultaneously satisfy the condition τi = T , then we need to consider all

possible sequential resets induced by such players. As discussed in [51], this behavior is

unavoidable in well-posed multi-agent HDS with decentralized discrete-time dynamics.

Following the above discussion, we construct a suitable jump map and a jump set

that implement the overall coordination mechanism, including the individual reset policies

αi ∈ {0, 1}. Specifically, we introduce a new set-valued mapping G0 : R2nN+N ⇒ R2nN+N ,

which is defined to be non-empty only when τi = T and τj ∈ [T0, T ) with j ̸= i, for each

i ∈ V , and has elements given by

G0(x) :=
{
(v1, v2, v3) ∈ RnN × RnN × RN : (v1,i, v2,i, v3,i) = Ri(xi),

v1,j = qj, v2,j = pj, v3,j ∈ Cj(τj), ∀ j ∈ Ni,

vj = xj,∀ j /∈ Ni

}
, (4.8)
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where x := (x1, x2, · · · , xN), (qi, pi, τi) = xi ∈ R2n+1, and where the reset map Ri and the

coordination mapping Cj are defined in (4.2) and (4.3), respectively. The reset mechanisms

of the players make use of three positive tunable parameters (η, T0, T ), which satisfy

0 < T0 < T and 0 < η ≤ 1
2
, and which are selected a priori by the system designer.

4.2 Hybrid Momentum-Based Nash-Set Seeking

Dynamics

Using the construction of G0 in (4.8), we define the jump map of the overall hybrid

system as

x+ ∈ G1(x) := G0(z), (4.9a)

where G0 is the outer-semicontinuous hull of G0, [52, pp. 154], i.e., the unique set-valued

mapping that satisfies graph(G1) = cl(graph(G0)). By construction, the mapping G1 is

locally bounded and outer-semicontinuous in Rn×Rn× [T0, T ]
N . Additionally, it preserves

the sparsity properties of the graph G and guarantees that any pair of resets of the

form (4.2) occur sequentially, thus satisfying conditions (4.6)-(4.7). Thus, using the jump

map (4.9a), we can now define the hybrid momentum-based Nash-Set-Seeking (HM-NSS)

dynamics

H1 := (C1, F1, D1, G1), (4.9b)

with overall state x = (p, q, τ) ∈ R2nN+N , and jump map given by




q̇

ṗ

τ̇




= F1(x) =




2T −1(p− q)

−2kT G(q)

η1N



, (4.9c)
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Figure 4.1. Representation of the Lyapunov function used in proof of Lemma B.5

where p := (p1, p2, . . . , pN), τ := (τ1, τ2, . . . , τN) ∈ RN , G : RnN → RNn denotes the

pseudogradient of a game, and

T := diag (τ ⊗ 1n) . (4.9d)

The flow set C1 is defined as:

C1 :=
{
x = (q, p, τ) ∈ RnN × RnN × RN : τ ∈ [T0, T ]

N
}
, (4.9e)

the jump map G1 is given by (4.9a), and the jump set is

D1 :=
{
x = (q, p, τ) ∈ RnN × RnN × RN : x ∈ C1, max

i∈V
τi = T

}
. (4.9f)

Under suitable regularity assumptions on the pseudogradient G, and by construction of

the HDS H1, we can establish the following lemma. This lemma outlines key regularity

properties of the HDS and demonstrates fixed-time synchronization of the timers τi in the

system, provided we can rule out finite escape times. To prove the synchronization result,
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we employ a Lyapunov function V defined on a circle formed by identifying the endpoints

of the interval [T0, T ] by considering the infimum of arc lengths touching all timers τi

(Figure 4.1). For a complete proof and detailed analysis, see Appendices B.1 and B.3.

Lemma 4.1. Assume that the pseudogradient G is continuous. Then:

1) The HDS H1 is well-posed in the sense of [16, Def. 6.29].

2) If, additionally, G is ℓ-Lipschitz continuous, then every maximal solution of H1

is complete, and there are at most N jumps in any continuous time interval

of length (T − T0)/η. Furthermore, for each solution x = (q, p, τ) and for all

(t, j) ∈ dom (x) satisfying t+j ≥ (T −T0)/η+N , it follows that τ(t, j) ∈ Async,

where the compact set Async is defined as follows:

Async :=
(
{T0, T}N

)
∪ (1N · [T0, T ]) . (4.10)

Figure 4.2 illustrates a block-diagram representation of the hybrid dynamics for each

player. These dynamics, and closely related modifications, will be employed throughout

the rest of the chapter in several contexts, including Distributed Nash Equilibrium Seeking,

Congestion games, and Distributed Consensus-Based Optimization.

4.3 Nash Equilibrium Seeking in Potential Games

The study of equilibria in noncooperative multi-agent systems has garnered signif-

icant attention due to its wide-ranging applications in engineering and socio-economic

contexts, from optimizing resource allocation in communication networks [53] to managing

energy markets [54]. Among the various notions of equilibria related to game-theoretic

models, the Nash equilibrium (NE), introduced in [55], has become ubiquitous in many

engineering and socio-technical systems, such as transportation networks and energy

markets. Recall from Section 2.2 that a NE is defined as an action profile q∗ ∈ RnN that
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Figure 4.2. Scheme of Individual hybrid momentum-based distributed dynamics dynamics.
Periodic coordinated resets restart the state pi and the timer τi.

satisfies

ϕi(q
∗
i , q

∗
−i) = inf

qi∈Rn
ϕi(qi, q

∗
−i), ∀ i ∈ V . (4.11)

where ϕi : Rn → R denotes the cost function of player i ∈ V := {1, 2, · · · , N}, in a

noncooperative game with N players. To converge to this equilibrium, researchers have

developed a variety of deterministic and stochastic Nash set seeking (NES) algorithms

over the past decades [56, 57, 58, 59, 34, 60, 61, 62].

Potential games [63] have emerged as a particularly tractable and insightful class

of game-theoretic models, offering a unique bridge between game theory and optimization

theory [64]. These games are characterized by the existence of a global potential function

that encapsulates the incentives of all players, thereby aligning individual strategic choices

with the optimization of a collective objective [65]. The defining feature of potential games

is the existence of a function P : RnN → R such that for all players i ∈ V and all strategy

profiles q = (q1, q2, · · · , qN) ∈ RnN :

∂P (q)

∂qi
=
∂ϕi(q)

∂qi
, (4.12)
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where ϕi : Rn → R is the cost function for player i. This structure implies that the

pseudogradient of the game is equal to the gradient of the potential function, i.e., ∇P (q) =

G(q). Consequently, the problem of finding Nash equilibria in potential games can be

recast as an optimization problem, allowing researchers to leverage powerful tools from

optimization theory.

In the context of game-theoretic control system design, many results in the literature

are inspired by or related to the time-invariant pseudogradient (PSG) flows studied by

Rosen in [34, Eq. (3.9)], which take the form q̇ = −G(q). In potential games, PSG flows

are equivalent to gradient descent on the potential function, inheriting its convergence

properties. For general convex potential functions, these flows converge to Nash equilibria

at a rate of O(1/t). In the case of strongly convex potential functions, convergence

accelerates to an exponential rate of O(e−κt), where κ denotes the strong convexity of the

potential function P .

Despite these guarantees, PSG flows can exhibit slow convergence in practice,

particularly when the potential function has shallow curvature. Motivated by this limitation

and leveraging promising results from centralized optimization, in this section we present

theoretical certificates demonstrating that the hybrid dynamical system H1, introduced in

(4.9), can efficiently and robustly find the set of Nash equilibria ANE.

For a potential game with a convex potential function P : RnN → R and pseudo-

gradient G, it follows that q∗ is a NE if and only if G(q∗) = 0 [66, Prop. 2.1]. Formally, we

define the set of Nash equilibria as:

ANE := {q ∈ RnN : G(q∗) = 0}. (4.13)

We study the stability and convergence properties of the HDS H1 with respect to a compact

set A, which includes both the Nash equilibria and the synchronization of the timer states
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τi. This set is defined as:

A := Aqp ×Async, (4.14)

where

Aqp := {(q, p) ∈ R2nN : p = q, q ∈ ANE}, (4.15)

and Async is as defined in (4.10).

The following theorem presents the main result of this section, establishing uniform

asymptotic stability of and accelerated convergence towards the set A defined in (4.14)

under the hybrid dynamical system H1; the proof is presented in Appendix B.1. These

results demonstrate the efficacy of our proposed approach in addressing the limitations

of traditional PSG flows studied by Rosen in [34], as well as those of decentralized

implementations of Nesterov’s ODE that do not incorporate distributed and coordinated

resets.

Theorem 4.1. Let P be the potential function of a potential game with pseudo-

gradient G. Assume that that P is convex and radially unbounded, and that G

is ℓ-Lipschitz continuous, and consider the HDS H1 in (4.9) with k = 1 and the

resetting parameters 0 < T0 < T satisfying

T 2 − T 2
0 >

ρJ
2

· (1− α) , (4.16)

where α := min{αi}i∈V , and αi ∈ {0, 1} denotes the individual resetting policy of

agent i as defined in (4.2).

(i1) If α = (α1, α2, · · · , αN ) = 1N and ρJ ≥ 0 then the set A is UGAS. Additionally,

for any solution x = (q, p, τ) of the HDS H1, during flows, the potential function
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satisfies the bound

P (q(t, j))− P (ANE) ≤
cj

τ 2i (t, j)
, for all i ∈ V , (4.17)

all (t, j) ∈ dom (x) satisfying t+ j ≥ (T − T0)/η +N , and where {cj}∞j=0 is a

sequence of monotonically decreasing positive numbers that depends on x(0, 0)

and satisfies cj → 0+.

(i2) If α = (α1, α2, · · · , αN) ∈ {0, 1}N , P is κ-strongly convex and ρJ = κ−1, then

the set A is UGES, and there exists λ > 0 such that for each compact set

K0 ⊂ C1∪D1 there existsM0 > 0 such that for all solutions x with x(0, 0) ∈ K0,

and for all (t, j) ∈ dom(x) the following bound holds:

|q(t, j)− q∗| ≤M0e
−λ(t+j). (4.18)

(i3) If α = (α1, α2, · · · , αN) = 0N , P is κ-strongly convex and ρJ = κ−1, then the

set A is UGES, and for each compact set K0 ⊂ C1 ∪D1 there exists M0 > 0

such that all solutions x with x(0, 0) ∈ K0, and for all (t, j) ∈ dom (x) the

following bound holds:

|q(t, j)− q∗| ≤ T

T0

√
ℓ

κ
(1− γ(ρJ))

ζ(j)/2M0,

where ζ(j) := max{0, ⌊ j−N
N

⌋} and

γ(ρJ) :=

(
1− T 2

0

T 2
− ρJ

2T 2

)
(4.19)

satisfies γ(ρJ) ∈ (0, 1).

The results of Theorem 4.1 establish robust NSS for H1 in potential games with
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convex and strongly convex potential functions. Similar to the centralized case in Chapter

3, and unlike Nesterov’s ODE, for the hybrid dynamics H1 there exists a class KL function

β such that a bound of the form (10.9) holds under small bounded additive disturbances

on the dynamics. This effectively rules out the instability under disturbances presented

in Chapter 2, Section 2.1. The bounds of Theorem 4.1 also establish suitable semi-

acceleration properties in both monotone and strongly monotone games. Such bounds

will eventually hold since the UGAS result also implies that for all times (t, j) such that

t + j ≤ (T − T0)/η + N , the trajectories remain (uniformly) bounded, and Lemma 4.1

guarantees completeness of solutions. Specifically, solutions of H1 exhibit a “transient

phase”, where the momentum coefficients synchronize to each other, followed by a “semi-

acceleration phase” where the system behaves as having one global momentum coefficient

coordinating the overall network. Figures 4.3 and 4.4 illustrate the advantages of the

hybrid NES dynamics H1 in potential games compared to a decentralized implementation

of Nesterov’s ODE (see (2.8)) that does not implement the robust coordinated resetting

mechanism incorporated in H1.

Remark 4.1. When all players implement the reset protocol αi = 1, item (i1)

establishes a semi-acceleration property of order O(1/τ 2) that holds during intervals

of flow happening with hybrid times (t, j) ∈ dom (x) satisfying t+j ≥ (T−T0)/η+N .

Since such intervals of flows have a length proportional to T − T0, they can be made

arbitrarily large by increasing T . Moreover, if all players initialize their coefficients as

τi(0, 0) = T0, then during the first interval of flow we have that P (q(t, 0))−P (q∗) ≤ d0
t2
,

for all (t, 0) ∈ dom(x), where d0 > 0 is fully determined by the initial conditions

of the system and the properties of G. To the best knowledge of the authors, the

result of Theorem 4.1-(i1) is the first in the literature that establishes UGAS and this

type of acceleration property in distributed NES dynamics. Centralized convergence

results without resets were recently studied independently in [67].
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Figure 4.3. Instability of (2.1) in when using perturbed gradients. The instability can
be removed by incorporating resets, which generate the stable trajectories shown in black.

Remark 4.2. For potential games with κ-strongly-convex potential function P , the

reset policy αi = 0, ∀i ∈ V, guarantees exponential NSS with rate of convergence

dictated by 1 − γ (κ−1). In this case, by borrowing results from the literature

on centralized accelerated optimization [25, 31], we can consider a “quasi-optimal”

restarting parameter T = e
√

1
2κ

+ T 2
0 , which guarantees exponential convergence of

order O(e−
√
κt) whenever T0 ≪ 1. Finally, the result of item (i2) shows that the

stability and convergence properties of H1 are robust to heterogeneous reset policies

in the game.

The analysis presented in this and the subsequent sections for potential games

establishes a robust foundation for addressing complex multi-agent optimization scenarios

with momentum-based methods. In the following sections, we demonstrate the versatility

of our approach by presenting specializations and closely related hybrid mechanisms to
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Figure 4.4. Coordinated vs non-coordinated resets in a quadratic κ-strongly monotone
potential-game with κ = 0.01, ℓ = 100 and n = 30. The insets show the evolution of the
states τi with and without coordination mechanisms.

H1 in the context of congestion games and Consensus-Based Optimization over networks.

These applications illustrate the broad applicability of our method in diverse distributed

decision-making scenarios.

Building upon this foundation, Chapter 5 extends these concepts to non-potential

games and network settings. There, we tackle more challenging problems, including those

involving partial information and model-free learning. This progression from potential

games to more complex scenarios underscores the scalability and adaptability of our hybrid

dynamical systems approach in solving a wide range of distributed optimization problems.

4.4 Transactive Control in Congestion Games

In recent years, there has been a growing interest in the study of decentralized

resource allocation problems with competitive users in large-scale network systems, in-
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cluding transportation networks, power grids, and the internet [68, 69, 70]. The growth

in the scale of such networks difficulties the implementation of centralized solutions to

problems that involve trade-offs between social system-level efficiency and selfish individual

performance. Many efforts have been devoted to address these issues, and to the design of

localized control laws that ensure desirable global system performance under the presence

of self-interested agents [71, 72, 73, 74]. Game theory provides a collection of mathematical

tools that are instrumental for the analysis and design of such systems [75, 69, 76, 77].

In games, self-interested rational decision-makers are usually referred to as players with

a strategy set, or resource set, and an individual payoff function. Players often use a

distributed learning algorithm to iteratively update their actions until convergence to a

suitable equilibrium point is achieved. The most common equilibrium of interest is the

so-called Nash Equilibrium (NE) [75], which describes a profile of actions where players

have no unilateral incentive to deviate. However, it is well-known that while NEs can

provide a notion of individual optimality for the players, they can lead to poor social

outcomes as measured by networked-wide welfare functions. Therefore, to maximize the

performance of multi-agent engineering systems controlled via local feedback laws, it is

essential to align the emerging Nash equilibria with the socially optimal point of the

system. In the static scenario (i.e., no iterative learning dynamics), this methodology is

referred to in the literature as mechanism design [76, 78].

In this section, we focus on a particular class of games referred to as congestion

games, where a fixed amount of resources must be allocated among n different strategies,

and the payoff related to each strategy depends on the total allocation. In such types

of games, the notion of Nash flow, or Wardrop equilibria, has been used to characterize

resource allocations that are optimal from the individual strategy point of view. However,

since Wardrop equilibria might not be socially optimal, social planners are faced with the

challenge of designing suitable incentives (e.g., tolls in transportation systems, prices in

power systems, etc) such that the emerging Nash flows are also socially optimal. To solve
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this challenge, different types of dynamic pricing algorithms have been considered in the

literature [79, 80, 81, 82, 83]. To guarantee that the system continuously operates at its

optimal point, pricing algorithms must react quickly to changes in traffic demand, weather

conditions, road accidents, etc. This adaptability requirement, similar to the “alertness”

property of feedback control systems, has motivated the development of different recursive

algorithms that iteratively update the incentives as the system operates [84, 85, 86, 87,

88, 89].

Recently, the work in [90] introduced a class of decentralized gradient-based pricing

dynamics (G-PD) that achieve global convergence to socially optimal incentives in a class

of affine congestion games. As shown in [90], these distributed welfare gradient dynamics

guarantee exponential convergence, with a rate of convergence of order O(κ), where κ

defines the strong monotonicity properties of the flow map. However, this convergence rate

can be quite slow in problems where κ≪ 1. In such situations, one may hypothesize that

momentum-based dynamics that incorporate momentum might achieve a better transient

performance compared to first-order gradient-based algorithms.

To study this hypothesis we consider a congestion game [91] with N possible

strategies, where i ∈ V := {1, . . . , N} denotes the ith strategy of the game. Additionally,

we assign to each strategy i a node in a graph G = (V , E), where E is the set of edges or

links. We let zi ∈ [0, 1] be the proportion of a fixed resource that is allocated to the ith

strategy. The vector of allocations is then defined as z := (z1, . . . , zN), which belongs to

the simplex

∆ = {z ∈ RN : 1⊤
Nz = 1, zi ≥ 0}.

Moreover, we consider that each strategy has an associated cost of the form:

c̃i(zi, qi) = ci(zi) + δ · qi, (4.20)
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with (zi, qi) ∈ ∆× R, and where ci represents the incentive-free cost of choosing strategy

i, the scalar qi ∈ R denotes an external incentive input, and δ ∈ R>0 is a sensitivity

parameter. We define the vector of incentives as q := (q1, · · · , qN) ∈ RN , and we use

c̃(z, q) = (c̃1(z1, q1), . . . , c̃N(zN , qN)) to denote the vector of costs of the congestion game

under the influence of the external input q. Under suitable monotonicity properties on the

cost functions, congestion games are potential games with potential function [92, Sec 2.4]

Pq(z) =
N∑

i=1

∫ zi

0

c̃i(ζ, qi)dζ. (4.21)

For every fixed exogenous value q ∈ RN , a Nash flow of the congestion game corresponds to

a particular resource allocation zfq ∈ ∆ that minimizes Pq. Hence, by the KKT conditions,

a Nash flow must satisfy

−c̃i
(
zfi,q, q

)
+ µ+ λi = 0 ∀i ∈ V (4.22a)

zfq ∈ ∆, λiz
Nf
i,q = 0, λi ≥ 0 ∀i ∈ V . (4.22b)

In general, Nash flows might not be socially optimal. To formally quantify the social

optimality of a given allocation z, the concept of social welfare is introduced.

Social welfare: The social welfare is defined as:

W (z) := −
N∑

i=1

ci(zi)zi. (4.23)

Consequently, a socially optimal flow z∗ corresponds to the social state that maximizes

(4.23). Thus, by the KKT conditions, z∗ satisfies:

− ∂ci
∂zi

(z∗)z∗i − ci(z
∗
i ) + µ̃− λ̃i = 0, ∀i ∈ V , (4.24a)

z∗ ∈ ∆, λ̃iz
∗
i = 0, λ̃i ≥ 0, ∀i ∈ V . (4.24b)
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We design a class of dynamic pricing mechanism to render Nash flows socially optimal

with better transient-performance. To this end, we consider a subclass of congestion games

that satisfy the following assumption.

Assumption 4.1. For the congestion game with N ∈ Z≥1 strategies, the following

conditions are satisfied:

(i1) Affine costs: There exists a positive definite diagonal matrix A ∈ RN×N and

b ∈ RN such that c(z) = Az + b for all z ∈ RN .

(i2) Full utilization: For every incentive q ∈ RN , the corresponding Nash flow

zfq ∈ relint(∆), i.e,
(
zfq
)
i
̸= 0 for all i ∈ V .

Remark 4.3. While Assumption 4.1 is conservative, affine congestion games are

commonly found in various societal systems, including parallel network routing and

traffic problems [78]. Moreover, since sets of incentives are bounded in most practical

applications, it is reasonable to assume that every strategy i ∈ V will receive a

positive allocation, resulting in the full utilization scenario.

Assumption 4.1 ensures the strong convexity of the potential function in (4.21),

which implies that conditions (4.22) hold for a unique Nash Flow zfq for every q ∈ RN . We

refer to the mapping O(q) := zfq as the oracle mapping. The following lemma provides a

characterization of the oracle mapping for the types of games that satisfy Assumption 4.1.

All proofs are presented in Appendix B.2.

Lemma 4.2. Under Assumption 4.1 the oracle mapping O(·) satisfies:

O(q) = −Q(b+ δ · q) + α, (4.25)
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where

α :=
A−11N

1⊤
NA

−11N
,

and where Q ∈ RN×N is the Laplacian matrix of a graph with adjacency matrix

A :=
A−11N1

⊤
nA

−1

1⊤
NA

−11N
,

that is

Q :=

(
I − A−1 1N1

⊤
N

1⊤
NA

−11N

)
A−1. (4.26)

We assume that the dynamics describing the convergence to the Nash flow under

a given incentive q are instantaneous, and therefore can be omitted. This assumption

can be justified using singular perturbation techniques for multi-time scale dynamical

systems, see Section placeholder. Now, note that Assumption 4.1-(i1) guarantees strong

concavity of the welfare function W , which implies that the system of equations (4.24) are

satisfied for a unique socially optimal flow z∗. However, according to the following lemma,

the incentives q that generate this resource allocation state may not be unique, see also

[78, 90].

Lemma 4.3. Suppose that Assumption 4.1 holds. Then, the set of incentives that

generate socially optimal Nash flows via the costs (4.20) is given by

Aq := {q ∈ RN : q = q∗ + µ1N , µ ∈ R}, (4.27)

where q∗ = −b
2δ
.
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Momentum-Based Dynamics for Congestion Games

To control the incentives, we assume that the dynamic pricing mechanism has

access to on-the-fly measurements of the information tuple

I := {O(q), c (O(q)) ,
∂c

∂z
O(q)},

where O(·) was defined in (4.25). Due to the large-scale nature of congestion games, it may

not be practical to measure I centrally. Instead, we assume that each node i has access

to its own information and to the information of the neighboring nodes characterized by

the communication graph G. In this way, each node will implement individual dynamics

based on the received information to influence the Nash Flow of the congestion game. To

simplify our presentation, we make the following assumption on the graph G. However,

we stress that this assumption can be relaxed.

Assumption 4.2. G is connected and undirected.

For games satisfying Assumption 4.1 and a graph satisfying Assumption 4.2, the

work in [90] introduced the so-called distributed welfare-gradient dynamics, given by

q̇ = γLGO(q), (4.28)

where γ > 0 is a scalar gain, and where G : RN → RN and GO : RN → RN are defined as:

G(z) := c(z) +
∂c(z)

∂z
z (4.29)

GO(q) := (G ◦ O) (q). (4.30)

As shown in [90], these dynamics render the set Aq exponentially stable. However, in some

cases, the exponential convergence can be prohibitively slow since it is dictated by the
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strong monotonicity constant of the mapping q 7→ LGO(q). To address this issue, and to

achieve better transient performance in a decentralized fashion, we use dynamics of the

form (4.9) specialized to the setting of congestion games.

The resulting dynamics, which we denote with the name high-order pricing dynamics

(HOPD), take inspiration from the hybrid dynamical system presented in (4.9), and are

described by a hybrid dynamical system with data

HHOPD
1 := (CHOPD

1 , FHOPD
1 , DHOPD

1 , GHOPD
1 ), (4.31)

and state x = (q, p, τ) ∈ R3N , where p ∈ RN is a momentum state, and τ ∈ RN corresponds

to a set of timers {τi}i∈V which coordinate the evolution of the distributed dynamics.

Specifically, the flow map FHOPD
1 of the proposed HOPD is given by




q̇

ṗ

τ̇




= FHOPD
1 (x) =




2T −1(p− q)

2γLT GO(q)

1
2
1N



, (4.32)

where γ ∈ R>0 is again a tunable gain, and T := diag(τ). Note that the p-dynamics

maintain the sparsity of the communication infrastructure imposed by the graph G.

The flow set CHOPD
1 is defined as

CHOPD
1 :=Rn × ker (L)⊥ × [T0, T ]

N , (4.33)

where (T0, T ) are tunable parameters which satisfy T > T0 > 0. The proposed HOPD
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algorithm employs individual restarting mechanisms given by

τi = T =⇒




q+i

p+i

τ+i




=RHOPD
i (xi) :=




pi

pi

T0



, (4.34)

where xi = (qi, pi, τi) ∈ R3. While a fully decentralized implementation of these dynamics

might seem appealing due to its simplicity, as demonstrated in Chapter 2, Section 2.2,

ensuring coordinated and synchronized restarting is crucial to achieve good transient

performance and to fully exploit the advantages of incorporating momentum. To achieve

this coordinated behavior we implement the distributed coordination map G1 defined

in (4.9a), with the local restarting mechanism (4.2) replaced by (4.34). We denote the

resulting distributed coordination map by GHOPD
1 .

Finally, the jump set is defined as

DHOPD
1 := RN × ker (L)⊥ ×Dτ , (4.35)

where

Dτ :=

{
τ ∈ RN : max

i∈V
τi = T

}
. (4.36)

The following Lemma characterizes the synchronization certificates for the timer variable

τ under the HOPD.

Lemma 4.4. Let

Aτ := [T0, T ]1N ∪
(
{T0, T}N

)
(4.37)

represent the set of points in the set [T0, T ]
N where the timer variables are synchro-

nized with a common value in (T0, T ), and, where the value of the timers can only

differ from each other during jumps by taking values in the set {T0, T}. Then, the
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HDS HHOPD
1 renders the set

Async := ker (L)⊥ × ker (L)⊥ × Aτ , (4.38)

UGFxS with convergence bound T ∗ := 2 (T − T0) +N .

By leveraging Lemma 4.4, the following theorem, corresponding to the main result

of this section, characterizes stability certificates for the the hybrid dynamics HHOPD
1 with

respect to the set Aq defined in (4.27).

Theorem 4.2. Suppose that Assumption 4.1 is satisfied, and assume that the

tunable parameters (T0, T ) satisfy

T 2 − T 2
0 >

1

2σ2 (L) γδ
, (4.39)

where σ2(L) is the minimum non-zero singular value of the laplacian matrix of the

graph L. Then, the set

A :=
{
(q, p, τ) ∈ R3N : p = q, q ∈ Aq, τ ∈ Aτ

}
, (4.40)

is UGES under the HDS HHOPD
1 . Additionally, for every i ∈ V , and for all solutions

x, the following bound holds during flows:

|q(t, j)|2Aq ≤
T

T0

√
σN(L)
σ2(L)

(1− η)j̃/2M0,

where M0 is a constant that depends on the initial conditions, j̃ := max{0, ⌊ j−N
N

⌋},

σN(L) is the maximum singular value of the laplacian matrix L, and

η := 1− T 2
0

T 2
− 1

2T 2γδσ2 (L)
.
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Remark 4.4. Theorem 4.2 guarantees exponential stability of Aq with convergence

rate conditioned by 1− η. By following similar ideas to the literature on centralized

accelerated optimization [25, 28, 93, 94], we can find a “quasi-optimal” restarting

parameter T = e
√

1
2γδσ2(L) + T 2

0 , which guarantees exponential convergence of order

O
(
e−

√
σ2(L)

)
as T0 → 0+.

The key technical elements of the HOPD that allow us to achieve the result of

Theorem 4.2 are the resets and the coordination of the resetting timers τi. Indeed, as

shown in [25] for centralized optimization problems, when high-order dynamics implement

vanishing damping, the resulting stability properties can be lost under arbitrarily small

disturbances. On the other hand, the incorporation of resets induces suitable uniformity

properties in the convergence, which in turn, guarantees a minimum margin of robustness

against additive disturbances [33, Ch.7]. Moreover, the reset condition (4.39) permits to

leverage the decrease of a suitable Lyapunov function during resets in order to achieve

accelerated convergence of order O(σ2 (L)), which is particularly advantageous when

σ2 (L) ≪ 1.

Finally, we note that this result relies on achieving fixed-time synchronization

of the resetting timers τi via the coordination map (4.3). Without such a coordination

mechanism, the performance of the HOPD can be substantially inferior when compared to

traditional gradient-based algorithms.

Numerical Example

We illustrate our results with a simple numerical example. We consider a total

resource of 1 that needs to be allocated among 4 different nodes, i.e., V := {1, 2, 3, 4}. The

matrices and parameters that describe the payoffs of the underlying game are:

A = 2I4, b = 14, γ = 0.1, δ = 1.
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Figure 4.5. Evolution of the incentives over time using a ring communication graph.

We first simulate the G-PD of [90] and the HOPD using a communication graph charac-

terized by a ring. Next we consider three different scenarios for the HOPD: (a) First, we

consider the situation where the HOPD are implemented without resets. (b) Second, we

implement the HOPD with uncoordinated resets; (c) Finally, we implement the complete

HOPD with coordinated resets. All the results are presented in Figure 4.5, which shows

the evolution in time of the squared error of the incentive q. As observed, the HOPD with

coordinated resets generate substantially better performance compared to the standard

G-PD of [90], achieving the same “steady state” error in half of the time. In this case, the

restarting frequency of the HOPD was selected to be 4s. Another important observation

from our numerical experiments is that using HOPD with uncoordinated resets generates

substantially worse performance compared to the standard first-order G-PD. This poor

performance is shown in the black curve of Figure 4.5. This observation highlights the

role of coordination whenever dynamics with momentum and resets are implemented

in multi-agent systems. Finally, we repeat our numerical example in a system with a

communication graph characterized by a path. The results are presented in Figure 4.7.

The restarting frequency was selected as 8s. As it can be observed, the graph’s structure
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Figure 4.6. Coordinated (left) vs Uncoordinated (right) Resetting Timers in the HOPD.

Figure 4.7. Evolution of the incentives over time using a line communication graph.

affects the transient performance of the HOPD. In particular, in this case the difference

between the performance of the first-order G-PD dynamics and the HOPD algorithm is

more pronounced.

In this section, we have specialized the dynamics in (4.9) to the case of games

via a suitable modification of the HDS H1 that leverages the structure of a subclass of

congestion games. This specialization leads to a class of high-order pricing dynamics for

the solution of dynamic incentive problems in congestion games under a full utilization

assumption. The dynamics incorporate momentum and, when combined with coordinated

resets, can achieve better transient performance compared to first-order Welfare gradient
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dynamics.

4.5 Accelerated Consensus-Based Optimization

In this section, we study hybrid mechanisms of the form (4.9) for the accelerated,

efficient and robust solution of accelerated distributed optimization problems over network

systems characterized by connected and undirected graphs G := (V , E), where V =

{1, 2, . . . , N} is the set of nodes, and E ⊂ V × V is the set of edges. We consider the

setting where each node i has a local function fi : Rn → R, and the network cooperates to

find a common point ζ∗ ∈ Rn that minimizes a global function defined as the summation

of the local costs. This distributed optimization problem can be written as

min
z1,z2,...,zn∈Rn

N∑

i=1

fi(zi), s.t. zi = zj, ∀ i, j ∈ V , (4.41)

which is also known in the literature as the consensus-optimization problem [95], and

which has been shown to be relevant for several engineering applications in areas such

as power systems, transportation systems, water distribution systems, and distributed

network control, see [96] and references therein.

Discrete-time and continuous-time approaches to solve problem (4.41) have been

extensively studied using gradient descent and Newton-based dynamics in [97], [98],

primal-dual dynamics [99], and projected dynamics [100], to name just a few. However, a

persistent challenge in the solution of problem (4.41) is to achieve fast rates of convergence

without sacrificing essential robustness properties of the algorithms. As recently shown in

[24, 29], this task is not trivial given that certain classes of accelerated continuous-time

algorithms, such as Nesterov’s ODE [19, 101, 18], can be destabilized under arbitrarily

small disturbances on the states or gradients. Since these disturbances are unavoidable in

practice, there is an urgent need for the development of robust, accelerated and distributed

algorithms for the solution of problem (4.41).
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In the literature of accelerated centralized optimization, one of the approaches that

has received significant attention during the last years is the incorporation of restarting

techniques. As a mater of fact, as shown in [19],[31], [25], [29], and [102], accelerated

algorithms with restarting techniques can achieve exponential convergence rates in strongly

convex optimization problems without having perfect knowledge of the condition number

of the cost function. Moreover, restarting can also be used to induce suitable robustness

properties in the Nesterov’s ODE, provided the combination of the continuous-time

dynamics and the discrete-time dynamics is carefully carried out [24]. While these ideas

have been explored and validated in centralized optimization problems, as mentioned in

[103], it remains an open question whether or not similar techniques could be pursued for

distributed optimization problems of the form (4.41). As we will show in this chapter, the

answer to this question turns out to be positive.

In this section, we formulate and analyze the robust and distributed restarting-

based accelerated dynamics for the solution of network optimization problems of the form

(4.41). Since our restarting dynamics combine continuous-time dynamics and discrete-time

dynamics, they are modeled as set-valued hybrid dynamical systems [33], for which stability,

convergence, and robustness properties can be established using Lyapunov functions and

the hybrid invariance principle. The construction of this hybrid system is not trivial due to

the distributed nature of the system, which allows for multiple discrete-time updates in the

network happening simultaneously in the standard time domain. In contrast to existing

results that use projections or primal-dual approaches, we follow a complete dual approach

that allows us to recast problem (4.41) as an unconstrained optimization problem with a

suitable Laplacian-dependent structure on the dynamics of the momentum variables [103].

This reformulation, allows us to establish sufficient graph-dependent restarting conditions

for the solution of the primal problem.
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Momentum-Based Dynamics with Distributed Restarting

To solve problem (4.41), let z = (z1, z2, · · · , zn) be the concatenation of the local

decision variables of the nodes of the network G. Define the global cost function F (z) :=
∑N

i=1 fi(zi), and let L := L ⊗ In ∈ RnN × RnN , where L is the Laplacian matrix of the

graph G. We will make the following assumption on Problem (4.41):

Assumption 4.3. The local cost functions fi are Ck and µi-strongly convex, i.e., there

exists µi > 0 such that for any x, y ∈ Rn, fi(y) ≥ fi(x)+∇fi(x)⊤(y−x)+ µi
2
|y−x|2.

The graph G is undirected, connected, and time-invariant.

By Assumption 4.3, the extended Laplacian matrix L satisfies L = L⊤, ker(L) =

span(1nN), and ker(L)⊥ =
{
z ∈ RnN : 1⊤

nNz = 0
}
. Thus, we can write Problem (4.41) as

min
z∈RnN

F (z), s.t. Lz = 0nN , (4.42)

where F is also µ̄-strongly convex with µ̄ := mini∈V µi. When the local gradients ∇fi
are also globally Li-Lipschitz (a condition that we do not necessarily assume), the global

gradient ∇F is globally L̄-Lipschitz with L̄ = maxi∈V Li.

To solve problem (4.42), we consider its dual problem:

min
q∈RnN

ϕ(q), with ϕ(q) := max
z∈RnN

{⟨Lq, z⟩ − F (z)}, (4.43)

which, as shown in [103], has zero duality gap under Assumption 4.3. By defining the

mapping h : RnN → RnN as h(u) := argmaxz∈RnN {⟨u, z⟩ − F (z)}, the gradient of the

dual function ϕ can be computed as follows

∇ϕ(q) = Lh
(
Lq
)
. (4.44)

75



Figure 4.8. Diagram of the approach used to solve the Consensus-Based Optimization
problem

Let L2 := L⊤L, and denote as λ+min(L2) the smallest positive eigenvalue of L2, and λmax(L2)

as its largest eigenvalue. The next lemma follows directly from the results in [103].

Lemma 4.5. The function ϕ is convex. Moreover, if F is µ̄-strongly convex

and k-th continuously differentiable at the point z := h(Lx), then ϕ is also k-th

continuously differentiable at x, and∇ϕ is globally ℓϕ-Lipschitz with ℓϕ = λmax(L2)/µ̄.

If, additionally, ∇F is globally L̄-Lipschitz, then ϕ is also µϕ-strongly convex on

ker(L)⊥, with µϕ = λ+min(L2)/L̄.

Let Aϕ ⊂ RnN be the set of solutions of Problem (4.43) subject to q ∈ ker(L)⊥,

i.e., the set defined as

Aϕ :=

{
q ∈ ker(L)⊥ ⊂ RnN : ϕ(q) = min

q̃∈RnN
ϕ(q)

}
. (4.45)

By Lemma 4.5, if ∇F is not globally Lipschitz, the set Aϕ may not necessarily be bounded.

Therefore, we will make the following technical assumption on ϕ.
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Assumption 4.4. The level sets of the dual function ϕ with domain restricted to

ker(L)⊥ are bounded.

Finally, when ∇F is also globally L̄-Lipschitz, we define the condition numbers of

L2, and F , respectively, as κL2 := λmax(L2)/λ+min(L2), and κF := L̄/µ̄. These condition

numbers will play an important role in the linear convergence properties of our algorithms.

Figure 4.8 illustrates our approach to Problem (4.41). We leverage the dual problem

formulation (4.43) and gradient computation (4.44) to develop an algorithm using hybrid

momentum-based dynamics similar to (4.9). This algorithm constructs dynamics for the

dual variable x ∈ RnN to solve the consensus-optimization problem. We recover the primal

variable z by using the map h as follows:

z = h(Lq) = argmax
ẑ∈RnN

⟨Lq, ẑ⟩ − F (ẑ). (4.46)

Hybrid Dynamics with Distributed Restarting

We solve Problem (4.43) by considering a class of algorithms termed Hybrid

Accelerated Restarting Distributed Dynamics (HARDD) with data

HHARDD
1 := (CHARDD

1 , FHARDD
1 , DHARDD

1 , GHARDD
1 ). (4.47)

To define these dynamics, each node i ∈ V is endowed with three local states (qi, pi, τi),

where qi, pi ∈ Rn, and τi ∈ R is a local timer. The overall network has states x :=

(q1, q2, · · · , qN) ∈ RnN , p := (p1, p2, · · · , pN) ∈ RnN , and τ := (τ1, τ2, . . . , τN) ∈ RN . Using

p := (x, y, τ), and building upon the momentum-based HDS H1 in (4.9), we formulate the
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continuous-time dynamics of the algorithms as

ẋ =




2T −1(p− q)

−2γΨ(τ, q)

1
2
1N




(4.48)

where γ ∈ R>0 is a tunable gain, T := diag(τ ⊗ 1n), and Ψ : Rn × RnN → RnN is a

mapping to be defined below. The dynamics (4.48) are allowed to evolve in the flow set:

x ∈ CHARDD
1 := RnN × ker(L)⊥ × [T0, T ]

N , (4.49)

where T0 > 0 and T > 0 are tunable parameters. The proposed HARDD employ individual

restarting mechanisms of the form

τi = T =⇒




q+i

p+i

τ+i




= RHARDD
i (pi) =




(1− α)qi + αpi

yi

T0



, (4.50)

where α ∈ {0, 1} represents the resetting policy of the overall system, and xi = (qi, pi, τi) ∈

R2n+1. To achieve a suitable coordination of the individual restarting mechanisms and

enable full exploitation of the the advantages of incorporating momentum, we implement

the distributed coordination map G1 defined in (4.9a), with the local restarting mechanism

(4.2) replaced by (4.34). We denote the resulting distributed coordination map by GHARDD
1 .

The corresponding discrete-time dynamics x+ ∈ GHARDD
1 (x) are allowed to evolve in the

jump set

DHARDD
1 := RnN × ker(L)⊥ ×Dτ , (4.51)
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where Dτ is again given by

Dτ :=

{
τ ∈ RN : max

i∈V
τi = T

}
. (4.52)

The constant α in (4.50) characterizes two different restarting algorithms: If ∇F is globally

Lipschitz, then α = 1; otherwise, α = 0. We define the mapping Ψ : Rn × RnN → RnN in

(4.48) as follows:

Ψ(τ, q) := L · T · h
(
Lq
)
. (4.53)

The map Ψ(τ, q) preserves the sparsity properties of the graph because the computation

h(Lx) can be carried out locally by each node, and the matrix T = diag(τ), τ ∈ RN

is diagonal. Thus, the complete vector field FHARDD
1 in (4.48) can be computed in a

distributed way.

Remark 4.5. Previous implementations similar to HARDD, without resets, relied on

a centralized scalar timer τ that grows unbounded [104]. As discussed in Chapter 2,

Section 2.1, such dynamics cannot guarantee UGAS of the set Aϕ due to vanishing

damping terms, making them susceptible to destabilizing disturbances.

When resets are implemented but not properly coordinated in distributed systems,

as elaborated in Chapter 2, Section 2.2, prohibitively slow convergence may emerge.

For distributed Consensus-Based Optimization, given the structure of problem (4.43),

these issues are further amplified. Without robust coordination of individual resets,

the algorithm may exhibit unstable behavior, as we illustrate below in Figure 4.10.

Our HARDD approach utilizes Ψ as defined in (4.53), where in general Ψ(q, τ) ̸=

T ∇ϕ(q) due to non-commutativity of L and T . This distinction, together with the

incorporation of distributed and coordinated restarting mechanisms, enables the

robust and distributed implementation of the HARDD algorithm in the dual domain.
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We are now ready to present the main result of this section, which establishes

tuning guidelines for the HDS HHARDD
1 , expressed in terms of the parameters of the

primal Problem (4.41). In particular, we consider the following conditions on the tunable

parameters (γ, T0, T ):

αT0 <
1

2

√
µ̄

γλmax(L2)
, (4.54a)

T >
(
(2κFκL2)

α
2

)
T0, (4.54b)

where α ∈ {0, 1} denotes the resetting policy of the system. We state the stability

properties of the HARDD dynamics with respect to the compact set

A := Aq,p ×Aτ , (4.55)

where the sets Aq,p and Aτ are defined as follows:

Aq,p : =
{
q, p ∈ RnN : p = q, q ∈ Aϕ

}
,

Aτ : = [T0, T ] · 1N ∪ {T0, T}N .

Note that the set Aτ describes a “synchronization” condition. We will also use F ∗ := F (z∗)

to denote the optimal value of Problem (4.42), where z∗ := 1n⊗ ζ∗ ∈ RnN , and ζ∗ ∈ Rn is

the unique solution of the primal Problem (4.41). All proofs are presented in Appendix

B.3.

Theorem 4.3. Suppose that Assumptions 4.3 and 4.4 hold, and let the parameters

(γ, T0, T ) satisfy (4.54). Then, the following properties hold:

(P1) Every solution p of the HDS HHARDD
1 has an unbounded time domain and it

is uniformly non-Zeno with at most N jumps in any time interval of length
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2(T − T0).

(P2) Every solution p of the HDS HHARDD
1 satisfies |τ(t, j)|Aτ = 0 for all (t, j) ∈

dom(p) satisfying t+ j ≥ N + 2(T − T0).

(P3) The compact set A defined in (4.55) is UGAS.

Additionally, for each compact set of initial conditions K0 ⊂ CHARDD
1 ∪DHARDD

1 , and

every solution x = (q, p, τ) to the HDS HHARDD
1 satisfying x(0, 0) ∈ K0, the following

bounds hold for the primal hybrid arc z(t, j) = h(Lq(t, j)):

(P4) If α = 1, there exists c0, λ0 > 0 such that F (z(t, j))− F ∗ ≤ c0e
−λ0(t+j), for all

(t, j) ∈ dom(p).

(P5) If α = 0, τ(0, 0) ∈ Aτ , and x(0, 0) ∈ ker(L)⊥, then F (z(t, j))−F ∗ ≤ cj
τi(t, j)

, for

all i ∈ V , and all (t, j) ∈ dom(p), where {cj}∞j=0 is a monotonically decreasing

sequence of positive numbers.

To the knowledge of the authors, Theorem 4.3 provides the first network-dependent

restarting conditions in the literature of accelerated distributed optimization over networks.

The conditions in (4.54) show the dependence of the restarting parameters 0 < T0 < T

on the condition numbers of the primal cost function F , the graph G. Note that these

conditions can always be satisfied by taking T sufficiently large, and T0 sufficiently small.

However, as stated in property (P2), the larger T −T0 is selected, the longer it will take the

network to synchronize the timers. Property (P5) recovers the result of [104] which uses a

centralized timer, and Property (P4) establishes linear convergence when the gradient of

the primal function is globally Lipschitz. Note that when α = 0, the conditions in (4.54)

are directly satisfied with T > T0 > 0.
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Figure 4.9. (Left) Evolution in time of the sub-optimality measure, and (Right) evolution
in time of the consensus distance for different algorithms and/or initializations.

Remark 4.6. (Nonzero Robustness Margins) Since the HARDD algorithms are

modeled by a well-posed HDS HHARDD
1 , property (P3) will be preserved, in a semi-

global practical way, under arbitrarily small (possibly time-varying) perturbations

on the states and dynamics of the algorithm. This property, which follows by [33,

Lemma 7.20], is fundamental for feedback control applications where measurement

disturbances are unavoidable.

Numerical Examples

We apply the HARDD algorithm with α = 1 to solve a distributed linear regression

problem over a network. The problem is specified by:

min
z∈RnN

1

2nl

n∑

i=1

∥Hizi − bi∥, s.t. Lz = 0nN , (4.56)

where Hi ∈ Rl×n and bi ∈ Rl contain the data, l is the number of data points available

per node/agent and n is the dimension of such data points. We implement the HARDD

algorithm by discretizing the flows using a Runge-Kutta method of 4-th order (RK4) with

step-size dt = 1× 10−3.

As shown in [105], this discretization method preserves the main convergence

82



properties of well-posed hybrid dynamics, provided the step size is sufficiently small.

Indeed, as shown in [104], RK4 can also preserve acceleration. Figure 4.9 presents the

numerical results when implementing the discretization on a ring graph and with γ = 1/4,

T = 35.1, T0 = 0.1, N = 5, n = 8, and l = 10. The data is generated by sampling

from a normal distribution with mean 1.5 and standard deviation 31. In the figure, the

blue trajectory corresponds to the HARDD dynamics with synchronous initialization, i.e.,

τi = T0 = 0.1 for all i ∈ V . As expected, this initialization exhibits the best behavior. The

green line indicates the behavior of the HARDD dynamics with asynchronous initialization

of the timers. After the synchronization event |τ |Aτ = 0 occurs, the sub-optimality

measure decreases rapidly. For the sake of comparison, we also show the solutions obtained

without incorporating the restarting mechanism (purple line), with individual restarting

and no coordination between nodes/agents (red line), and using the standard synchronous

distributed gradient descent [97]. Finally, we note that the red trajectories (restarting

with no coordination) exhibit the worst behavior. Figure 4.10 illustrates the importance

of coordination in the restarting mechanism; in this case without coordination the dual

variables do not converge. The purple trajectory (no restarting) is slow compared to the

green trajectory, and arbitrarily small disturbances can destabilize this algorithm, as we

show in the example below.

Now, we compare the HARDD algorithm with and without restarting in order

to stress the importance that this mechanism has in the robustness properties of the

algorithm. To do so, we first note that for the dynamics with no restarting there are no

convergence guarantees. However, even if these dynamics do converge, they will suffer from

the same limitation of Nesterov’s ODE due to the unbounded growth of the timers τi, i.e.,

they will have zero margins of robustness with respect to arbitrarily small perturbations.

To explicitly show this behavior, we consider the Consensus-Based Optimization problem

1The code used to generate the figures in this section can be found in https://github.com/deot95/
HARDD
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Figure 4.10. Evolution in time of the dual-variables for the HARDD algorithm with and
without coordination.

with cost function

F (z) =
2∑

i=1

fi(zi) =
1

2
z⊤z, z ∈ R2×2,

N = 2, and n = 2. The associated dual optimization problem is given by ϕ(q) = 1
2
q⊤L2q,

where L = L⊗ In ∈ R4×4 is the communication matrix of the 2-agent system. We simulate

the HARDD algorithm with ε-perturbed measurements of the state, i.e., with

Ψ(τ, q) = LD(τ ⊗ 1p)h
(
L
(
x+ ε(t)

))
, (4.57)

where supt≥0 |ε(t)| = 0.001 and ε(t) ∈ ker(L)⊥ for all t ≥ 0. In particular, we consider the

following disturbance:

ε(t) = 0.001ϵ(t)[1, 1,−1,−1]⊤, (4.58)

where ϵ : R≥0 → R is a square periodic signal with unitary amplitude and period equal to

1× 104. For the case when T − T0 = ∞, (the same setup that generates the purple line in

Figure 4.9) the effect of the disturbance ε induces the instability shown in Figure 4.11-(a).

Conversely, when the restarting is activated, we obtain the robust stable behavior shown

in Figure 4.11-(b).
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Figure 4.11. (Blue) Instability of the optimization dynamics under disturbance ε(t)
when no restarting is implemented, i.e., T − T0 = ∞. As observed, the trajectories of the
system diverge. (Orange) Robust asymptotic stability under the same disturbance ε(t)
with the HARDD algorithm and T − T0 = 35.

In this chapter, we introduced hybrid dynamical systems that model distributed

momentum-based dynamics with coordinated resets. This approach addresses the robust-

ness and coordination challenges that momentum-based dynamics with vanishing damping

coefficients face in potential games and distributed optimization settings. We applied our

method to two key areas: momentum-based transactive control in congestion games and

distributed Consensus-Based Optimization over networks. Our approach demonstrated

improved performance and robustness compared to traditional gradient-based methods, as

supported by theoretical stability guarantees and numerical examples.

The next chapter will explore the adaptation of these hybrid momentum-based

dynamics to nonpotential games, as well as their application in a subclass of distributed

learning problems with asymmetric communication constraints. As explained in Chapter

2, Section 2.3, in these settings, dynamics without resets may fail to provide suitable

convergence properties, highlighting the importance of our hybrid approach.
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Chapter 5

Distributed Momentum-Based Dynamics in Settings with

Non-Symmetric Jacobian

Building upon our exploration of Momentum-Based Nash Set Seeking dynamics in

potential games, we now turn our attention to the more complex domain of non-potential

games. The absence of a potential function that establishes a common cost landscape for

the players in these games introduces unique challenges that require careful consideration

and preclude the direct application of results from the optimization literature. This

fundamental difference necessitates a reevaluation of Nash Set Seeking (NSS) strategies

and presents new obstacles, particularly in distributed and model-free settings.

Indeed, the incorporation of momentum with time-varying damping, as introduced in

equation (2.8) and explained in Chapter 2, offers both opportunities and risks when applied

to non-potential games. In Chapters 3 and 4, we demonstrated suitable acceleration and

stability properties of the hybrid momentum-based mechanisms in approximate dynamic

programming, potential games, congestion games, and distributed consensus optimization.

However, as detailed in Chapter 2 (Section 2.3), their direct application to non-potential

settings can lead to instabilities. These instabilities persist even with the introduction of

slow resets, highlighting the limitations of straightforward adaptations of these methods

to non-potential settings.

Despite these challenges, the use of resets in momentum-based dynamics with time-

varying damping is not entirely precluded in non-potential games. While the aforementioned
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features might suggest that momentum-based dynamics are problematic for games, it so

happens that distributed implementations of Nesterov’s ODE can, in fact, be employed

to efficiently and robustly find Nash Equilibria (NE) in a decentralized manner. This

is achievable when these dynamics are combined with suitable distributed discrete-time

dynamics that persistently reset some of the players’ states in a coordinated fashion.

However, in contrast to optimization problems [19, 31, 25], for general (non-potential)

noncooperative games, the frequency of the resets must occur within a specific frequency

band to simultaneously achieve stability and acceleration.

5.1 Momentum-Based Nash Set-Seeking over Net-

works via Multi-Time Scale Hybrid Dynamic

Inclusions

In game-theoretic control system design, recent approaches for non-potential games

have aimed to incorporate momentum with time-varying damping in the dynamics for Nash

set seeking (NSS). However, these methods have not fully addressed their applicability

to distributed setups. Some studies have examined momentum-based dynamics with

maximally monotone operators G via Yosida regularizations [106]. Yet, these approaches

typically rely on centralized computations or global information, rendering them unsuitable

for distributed implementations where players have limited information.

The derivation of stability and robustness guarantees for momentum-based dynamics

in non-potential games is a crucial step that extends beyond mere theoretical exploration.

It represents a fundamental milestone in the formulation of extended Nash set seeking (NSS)

algorithms with additional mechanisms. For instance, in the context of pseudogradient

(PSG) flows, stability and convergence results in potential games have been instrumental

in designing extended NSS algorithms. These algorithms integrate additional mechanisms

based on fast consensus dynamics [62, 107], projections [35], inertia [108], proportional

feedback terms [60], tracking terms [109], and adaptive dynamics [110]. The recent work
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in [67] and its references provide further insights into these developments. While these

results have significantly advanced the design of NSS dynamics, existing approaches still

suffer from fundamental transient limitations inherited from PSG flows. These limitations

are particularly pronounced in games where the pseudogradient has shallow monotonicity

properties.

To address these challenges, we focus on providing stability and robustness certifi-

cates for momentum-based dynamics in the context of non-potential games. In particular,

we examine dynamics of the form:

q̇ =
2

τ
(p− q), ṗ = −2τG(q), τ̇ = η, (5.1)

where τ(0) = T0 ≥ 0 and η > 0. As demonstrated in Chapter 2, these dynamics are related

to Nesterov’s ODE describing the evolution of a state x, when G is a gradient operator,

and via the transformation q = x, p = τ
2
ẋ+ x.

As we have illustrated in Chapter 3 and 4 , using this type of dynamics with

properly implemented distributed and coordinated resets offers a promising alternative to

traditional approaches in potential games. Building upon these insights, we now seek to

extend this framework to non-potential games. This approach has the potential to yield

improved convergence rates compared to pseudogradient (PSG) flows, while retaining the

flexibility to incorporate additional mechanisms crucial for real-world applications.

However, extending these benefits to non-potential games presents new challenges

and raises two critical questions:

1) Is it possible to adapt systems of the form (5.1) to provide robust and efficient

solutions for NSS problems in non-potential games when G is the pseudogradient

map of a non-potential game?

2) Can these dynamics be extended effectively to network games and model-free settings
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without sacrificing stability or convergence guarantees?

In this section, we provide answers to the above questions by using the hybrid

dynamical system H1 formulated in Chapter 4 (Section 4.2). In particular, the following

original contributions constitute the main results of this section:

i) We establish robust asymptotic stability properties for the hybrid dynamical system H1 in

the context of non-cooperative and nonpotential games with N players. This analysis leads

to the first Nash Set Seeking (NSS) algorithms with continuous-time dynamic momentum

and robust asymptotic stability guarantees in such games. The structure of the resulting

algorithms incorporates three key elements:

a) A class of distributed continuous-time pseudogradient-based dynamics with time-

varying momentum coefficients, inspired by (5.1), which forms the flow map of

H1;

b) Distributed periodic discrete-time resets implemented by the players, which are

captured in the jump map of H1 and incorporate heterogeneous reset policies allowing

players to decide whether or not to restart their own momentum;

c) A robust set-valued distributed coordination mechanism that synchronizes the re-

set times of the players to induce suitable system-wide acceleration properties,

represented in the flow and jump sets of H1.

ii) To accommodate situations where players do not have access to full-information

Oracles that provide evaluations of their pseudogradients, we introduce a new distributed

momentum-based hybrid NSS algorithm for games with partial information, where players

leverage communication with neighbors to estimate their actions on-the-fly in order to

obtain gradient evaluations from the Oracle. The design of these dynamics follows similar

multi-time scale ideas used for ODEs in the literature [107], but which are not directly

applicable to systems of the form (5.1). Indeed, unlike existing results based on fast
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consensus dynamics and “reduced” pseudogradient flows, our reduced dynamics are hybrid

and set-valued, which prevents the direct application of standard singular perturbation

tools for ODEs.

iii) We present payoff-based versions of all our hybrid NSS algorithms, suitable for model-

free learning in non-cooperative games where players have access only to measurements

of their cost. These dynamics exploit recent tools developed in the context of averaging-

based hybrid extremum seeking control [111, 25], and their analyses is fundamentally

different from other model-free non-hybrid algorithms studied in the literature, e.g. [35,

112, 113]. In particular, the dynamics considered in this chapter have set-valued jump

maps that lead to non-unique solutions with non-trivial hybrid time domains having

multiple simultaneous jumps in the standard continuous time domain, a behavior that is

unavoidable in decentralized multi-agent HDS. We also show that these adaptive dynamics

can approximately recover the acceleration properties of the model-based algorithms.

To our best knowledge, the algorithms of this section (model-based, partial-

information, and model-free) are the first in the literature that implement dynamic

momentum and distributed restarting techniques in N -player noncooperative games.

Problem Formulation

In this chapter, we consider noncooperative games with N ∈ Z≥2 players, where

each player i can control its own action qi, and has access to the actions qj of neighboring

players j ∈ Ni := {j ∈ V : (i, j) ∈ E}, who are characterized by an undirected, connected,

and time-invariant graph G = {E ,V}, where V = {1, 2, . . . , N} is the set of players and

E is the set of edges between players. We use L to denote the Laplacian matrix of the

graph G. The main goal of each player i is to minimize its own cost function ϕi : Rn → R

by controlling its own action qi. We assume that the costs ϕi are twice continuously

differentiable, and we use q = (q1, q2, . . . , qN) to denote the overall vector of actions of

the game. We also use denote as q−i the vector of all actions with the action of player i
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removed. We use G to denote the pseudogradient of the game, where

q 7→ G(q) :=
(
∂ϕ1(q)

∂q1
,
∂ϕ2(q)

∂q2
, . . . ,

∂ϕN(q)

∂qN

)
∈ RnN . (5.2)

Following standard assumptions in the literature of fast NES [58, 60] and accelerated

optimization [19, 101, 114, 115, 116, 25, 4], in this chapter we will work with the following

assumptions.

Assumption 5.1. The mapping G is ℓ-globally Lipschitz, i.e., there exists a constant

ℓ > 0 such that |G(q)− G(q′)| ≤ ℓ|q − q′|, for all q, q′ ∈ RnN .

Assumption 5.2. The mapping G is 1/ℓ-cocoercive, i.e., there exists ℓ such that
(
G(q) − G(q′)

)⊤
(q − q′) ≥ 1

ℓ
|G(q) − G(q′)|2 for all q, q′ ∈ RnN . Moreover, the map

q 7→ |G(q)|2 is radially unbounded.

The first property of Assumption 5.2 implies Assumption 5.1 via direct application

of the Cauchy–Schwarz inequality. However, the converse is not necessarily true in

non-potential games [117]. We will also use the following definition to characterize the

monotonicity properties of the games.

Definition 5.1. A game with pseudogradient G is said to be:

1. monotone if it satisfies
(
G(q)− G(q′)

)⊤
(q − q′) ≥ 0, for all q, q′ ∈ RnN .

2. strictly monotone if it satisfies
(
G(q)−G(q′)

)⊤
(q− q′) > 0, for all q ̸= q′ ∈ RnN .

3. κ-strongly monotone with κ > 0, if it satisfies
(
G(q)−G(q′)

)⊤
(q−q′) ≥ κ|q−q′|2,

for all q, q′ ∈ RnN .

4. κ-strongly monotone quadratic if it is a κ-strongly monotone game with G(q) =

Aq + b for some A ∈ Rn×n and b ∈ Rn.
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Monotone, strictly and κ-strongly monotone games that are also potential games will

be referred to as monotone potential games, strongly monotone potential games and

κ-strongly monotone potential games, respectively. Their monotonicity properties

are defined by G.

Remark 5.1. Cocoercive mappings are monotone but not necessarily strongly

monotone. However, games that are κ-strongly monotone and ℓ-Lipschitz are also

κ/ℓ2-cocoercive [117, Prop. 2.1].

Strict monotonicity of G implies that there is exactly one Nash equilibirium, if

it exists. For κ-strongly monotone games and monotone potential games, existence is

always guaranteed [118, Thm. 2.3.3]. In some cases, we will also work with the following

assumption.

Assumption 5.3. The function ϕi : R → R is radially unbounded in qi for ever

q−i ∈ Rn(N−1) and all i ∈ V .

Building upon the regularity properties established for the pseudogradient G and

the individual cost functions ϕi of the game, we now turn our attention to analyzing the

stability properties of the hybrid momentum-based Nash-Set-Seeking (HM-NSS) dynamics

H1, introduced in Chapter 4 (Section 4.2). To facilitate our analysis, we will restate

the definition of H1, highlighting its structure and key components. The system H1 is

characterized by an overall state x = (p, q, τ) ∈ RnN × RnN × RN and is described by the

following hybrid dynamic inclusion:
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H1 :





x ∈ C1 ẋ = F1(x) =




2T −1(p− q)

−2kT G(q)

η1N




x ∈ D1 x+ ∈ G1(x)

, (5.3a)

where 0 < η ≤ 1/2, T := diag (τ ⊗ 1n). The flow set C1 is defined as:

C1 :=
{
x = (q, p, τ) ∈ RnN × RnN × RN : τ ∈ [T0, T ]

N
}
, (5.3b)

and the jump set is

D1 :=
{
x = (q, p, τ) ∈ RnN × RnN × RN : x ∈ C1, max

i∈V
τi = T

}
. (5.3c)

To ensure the robustness and well-posedness of the hybrid system, we construct the jump

map G1(x) by taking the outer-semicontinuous hull of an intermediate set-valued mapping

G0. We derive this mapping G0 : R2nN+N ⇒ R2nN+N from the individual resetting map

Ri and the coordination mechanism Cj , and design it to be non-empty only under specific

conditions, namely when τi = T and τj ∈ [T0, T ) with j ̸= i, for each i ∈ V. When these

conditions are met, G0 is defined as follows:

G0(x) :=
{
(v1, v2, v3) ∈ RnN × RnN × RN : (v1,i, v2,i, v3,i) = Ri(xi),

v1,j = qj, v2,j = pj, v3,j ∈ Cj(τj), ∀ j ∈ Ni,

vj = xj,∀ j /∈ Ni

}
, (5.3d)
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where x := (x1, x2, · · · , xN), (qi, pi, τi) = xi ∈ R2n+1, and Ri and Cj are defined as:

Ri(xi) =




qi

αipi + (1− αi)qi

T0



, (5.3e)

and

Cj(τj) :=





T if τj ∈ (T0 + rj, T ]

{T0, T} if τj = T0 + rj

T0 if τj ∈ [T0, T0 + rj)

, (5.3f)

with αi ∈ {0, 1} for all i ∈ V , and rj ∈ (0, T−T0
N

) for all j ∈ V .

The qualitative behavior of system H1 will depend on the choice of parameters

(η, T, T0), which characterize the frequency and the minimum and maximum values of the

momentum coefficient τ . Different choices of (η, T, T0) will lead to different reset conditions

(RCs). These RCs will be defined in terms of the following condition numbers of the game,

the reset mechanism, and the graph, respectively:

σϕ :=
ℓ

κ
, σr :=

T

T0
, σL =

λmax(L)
λ2(L)

, (5.4)

where ℓ is given by Assumptions 5.1 or 5.2, κ is given in Definition 5.1, and λ2(L), λmax(L)

are the smallest positive and the largest eigenvalues, respectively, of the Laplacian L.

5.1.1 Nash Equilibrium Seeking in Non-Potential Games

We study the stability and convergence properties of the dynamics H1 with respect

to the compact set

A := Apq ×Async, (5.5a)
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where

Async :=
(
1N [T0, T ]

N
)
∪ {T0, T}N (5.5b)

Aqp := {(q, p) ∈ R2n : p = q, q ∈ ANE}, (5.5c)

and ANE denotes the set of points q∗ ∈ RnN satisfying

ϕi(q
∗
i , q

∗
−i) = inf

qi∈Rn
ϕi(qi, q

∗
−i), ∀ i ∈ V = {1, 2, · · · , N} , (5.5d)

i.e., the set of Nash equilibria of the game.

Remark 5.2. Given a monotone game with pseudogradient G, it follows that q∗ is

a NE if and only if G(q∗) = 0 [66, Prop. 2.1]. Then, we can formally define ANE as

follows:

ANE := {q ∈ RnN : G(q∗) = 0}. (5.5e)

The first RC that we consider is given by

T 2 − T 2
0 >

ρJ
2

· (1− α) , (RC1)

where ρJ ∈ R≥0 is a parameter to be determined and α = mini∈V αi. This condition will

regulate how frequently players reset their states. Finally, we also introduce the constant

γ(ρJ) :=

(
1− 1

σ2
r

− ρJ
2T 2

)
. (5.6)

where σr is defined in (5.4). This quantity will be instrumental to characterize the rates

of convergence towards A.

In contrast to the analysis presented in Chapter 4 (4.3), when a potential function

does not exist the analysis of the HDS H1 is more challenging. In this case, we now
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introduce the following state-dependent matrix parameterized by (ρF , δ) ∈ R>0 × R≥0:

Mδ(q, ρF ) := IN − Sδ (q, ρF )Sδ (q, ρF )⊤ , (5.7)

with Sδ : RnN × R>0 → RnN×nN given by the scaled matrix

Sδ(q, ρF ) := χ(ρF , δ)
1
2

(
ρF InN − ∂G(q)

)
,

where ∂G is the Jacobian of G, i.e. ∂G
∂q
, and where the mapping χ : R>0 × R≥0 → R>0 is

given by

χ(ρF , δ) =
T 2

1− δT 2
· 1

ρF (1− η)− δρ2F
,

which is defined for all arguments such that δ2T 2 < 1 and 1 − η > δρF . We use the

following definition to extend [119, Def. 4.1.2] to matrices of the form (5.7).

Definition 5.2. The matrix-valued function q 7→ Sδ(q, ρF ) is said to be ρF -Globally

Contractive
(
ρF -GC

)
if Mδ(q, ρF ) ≻ 0 for all q /∈ ANE.

Note that when Mδ ≻ 0, the coefficient χ characterizes the level of contraction of

Sδ. Indeed, Mδ ≻ 0 if and only if

1

χ(ρF , δ)
≥ σmax

(
ρF In − ∂G(q)

)2
, (5.8)

where σmax(·) is the maximum singular value of its argument [120, Thm. 7.7.2]. Using the

definition of χ, and inequality (5.8), it can be observed that in order to ensure that Sδ is

ρF -GC for some pair (δ, ρF ), the resetting parameter T cannot be chosen arbitrarily large.

Example 4 illustrates this point.
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Example 5.1. Consider a κ-strongly monotone quadratic game with κ = 6, and

G(q) =




6 1.5

−1.5 6


 (q − q∗) , (5.9)

where q∗ = (2,−2). First, let δ = 0, and note that for this game M0(q, ρF ) =

D (m0(ρF )12) ∈ R2×2, where

m0(ρF ) = 1− T 24(ρF − 12)ρF + 153

4(1− η)ρF
.

Notice that 4(ρF − 12)ρF + 153 > 0 for all ρF ∈ R>0, and recall that η ≤ 1
2
by

assumption. Thus, for all ρF > 0 there exists T ∈ R>0 such that M0(q, ρF ) ≻ 0 for

all T ∈ (0, T ), and M0(q, ρF ) ⪯ 0 for T ≥ T . Similarly, when δ > 0 we have that if

Sδ is ρF -GC, then S0 is also ρF -GC. Thus, we can conclude that for every ρF and

δ ≥ 0 there exists T such that Sδ is not ρF -GC for any T ≥ T .

Using the global contractivity property of Definition 5.2, we have the following

result for non-potential games.

Theorem 5.1. Let G describe a strictly monotone game, and suppose that Assump-

tions 5.2 and 5.3 hold. Consider the HDS H1 under (RC1) with ρJ ≥ 0 and with

reset policy α := (α1, α2, . . . , αN) = 1n. If S0 is ℓ-GC then the set A is UGAS, for

every i ∈ V , and for all solutions x the following bound holds during flows

|G(q(t, j))|2 ≤ c̃j
τ 2i (t, j)

, (5.10)

for all (t, j) ∈ dom (x) such that

t+ j ≥ (T − T0)/η +N =: T ∗, (5.11)
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Figure 5.1. Phase plane plots showing the trajectories of the actions resulting from the
HM-NSS dynamics in a non-potential 2-player κ-strongly monotone quadratic game with
κ = 6, ℓ = 6.2 and τ(0, 0) = 0.1 · 12.

and where {c̃j} → 0+ is a sequence of positive and monotonically decreasing numbers

parameterized by x(0, 0).

Unlike the results of Theorem 4.1, in non-potential games the ρF -global-contractivity

of Sδ plays a fundamental role in the stability analysis of H1. In particular, the ℓ-GC

property of Sδ will guarantee a suitable dissipativity property during flows via Lyapunov-

based tools. While in Theorem 2 this is only a sufficient condition, the plots of Figure

5.1 indicate that keeping T “sufficiently small” is also a necessary condition to preserve

stability in non-potential games. In this figure, we show the phase plane of solutions to

H1 with different values of T , in a game G given by (5.9). It can be observed in the left

plots that if T is not small, divergent trajectories emerge. As shown in the right plots, the

instability is removed by implementing sufficiently frequent resets.

Next, we provide a sufficient reset condition that guarantees that S0 is ℓ-GC in any

cocoercive strictly monotone game.

Lemma 5.1. Suppose that Assumption 5.2 holds, and G describes a strictly

monotone game. Let (η, T, ℓ) satisfy the scalar inequality:

0 < T 2 <
1− η

2ℓ
. (RC2)
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Figure 5.2. Distance to the Nash Equilibrium for trajectories resulting from the HM-NSS
dynamics in 5-player κ-strongly monotone quadratic games with κ = 0.099, and different
condition numbers σϕ.

Then, S0 is ℓ-GC.

We now turn our attention to games that are κ-strongly monotone and ℓ-Lipschitz.

For these games, we ask that the contractivity properties of Sδ hold with δ > 0, and that

(RC1) holds with a particular value of ρJ . We recall that the condition numbers (σϕ, σr)

are defined in (5.4).

Theorem 5.2. Suppose that Assumption 5.1 holds and let G describe a κ-strongly

monotone game. Consider the HDS H1 under (RC1), and suppose that Sδ is (σϕℓ)-GC

with 0 < δ < (1− η)/(σϕℓ). Then, the following holds:

(i4) If α = (α1, α2, . . . , αN ) ∈ {0, 1}n and ρJ = 0, then A is UGES, and there exists

λ > 0 such that for each compact set K ⊂ C1 ∪D1 there exists M0 > 0 such

that for all solutions x, with x(0, 0) ∈ K0, the bound (4.18) holds.

(i5) If α = 0n and ρJ = σ2
ϕκ

−1, then A is UGES and for each compact set

K0 ⊂ C1∪D1 there existsM0 > 0 such that for all solutions x, with x(0, 0) ∈ K0,

and for all (t, j) ∈ dom (x), the following bound holds:

|q(t, j)− q∗| ≤ σrσϕ (1− γ (ρJ))
α(j)
2 M0,

where α(j) := max{0, ⌊ j−N
N

⌋}, and γ (ρJ) ∈ (0, 1).
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Before commenting on the implications of Theorem 5.2, we present a reset condition

for κ-strongly monotone games that is analogous to the one of Lemma 5.1.

Lemma 5.2. Suppose that Assumption 5.1 holds and that G describes a κ-strongly

monotone game. Let (η, T, σϕℓ) satisfy the scalar inequality:

0 < T 2 <
1− η − δσϕℓ

σϕℓ− κ+ δ(1− η − δσϕℓ)
, (RC3)

with 0 ≤ δ < (1− η)/(σϕℓ). Then Sδ is (σϕℓ)-GC.

Similar to (RC2), the reset condition (RC3) imposes an upper bound on the lengths

of the intervals of flow of the HDS H1, now modulated by the condition number σϕ and

the Lipschtiz constant ℓ.

Remark 5.3. When ρJ = σ2
ϕκ

−1, the conjunction of (RC1) and (RC3) imposes upper

and lower bounds for the reset times of the HDS H1 for all times (t, j) ∈ dom (x)

such that t+ j ≥ (T − T0)/η +N . This result is in contrast to potential games (and

standard convex optimization problems) with periodic restarting where only a lower

bound between resets is usually needed to achieve exponential convergence [31, 25].

Instead, Theorem 5.2 suggests that resets must occur in a particular frequency band:

they should not occur too frequently (i.e., T should not be too small) such that (RC1)

holds and the distance |q − q∗| shrinks by a constant quantity after each interval of

flow; however, resets should also happen frequently enough (i.e., T should not be

too large) such that Sδ remains (σϕℓ)-GC. Whenever a resetting time T is in such

frequency band, i.e., whenever it satisfies (RC1) and (RC3), or (RC1) and ρF -global

contractivity of Sδ, we say that the T is feasible.

The next lemma provides a sufficient condition to guarantee feasibility of the reset
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conditions of Theorem 5.2.

Lemma 5.3. For any κ > 0, η ≤ 1/2 and σϕ such that σ4
ϕ − σ2

ϕ < 2(1− η), there

exists (T, T0) such that (RC1) and (RC3) simultaneously hold with ρJ = σ2
ϕκ

−1,

provided that δ is sufficiently small.

In Theorem 5.2, the restarting policy α = 0n leads to exponential NSS with rate

of convergence characterized by (1 − γ(σ2
ϕ/κ)). For this coefficient, one can choose a

“quasi-optimal” restarting parameter T to induce an acceleration-like property in κ-strongly

monotone games:

Lemma 5.4. Under the Assumptions of Theorem 5.2-(i5), and for any ν > 0, the

choice T = T opt := eσϕ

√
1
2κ

+
T 2
0

σ2
ϕ
guarantees that |q(t, j)− q∗| ≤ ν for all t ≥ tνopt ,

where

toptν =
1

η

(
eσϕ

√
1

2κ
+

T 2
0

σ2
ϕ

− T0

)
ln

(
σϕσrM0

ν

)
,

and M0 is a constant that depends on |q(0, 0)− q∗|. Moreover, the convergence is of

order O(e−
√
κ/σϕ) as T0 → 0+.

Remark 5.4. The result of Lemma 5.4 showcases the exponential bound induced by

the HM-NSS dynamics: as σϕ → 1, the convergence is of order O(e−
√
κt), which is

advantageous in games with low curvature and moderate condition number, see Figure

2.3. However, as σϕ increases, the theoretical convergence bound deteriorates. In

Figure 5.2, we confirm this fact by implementing the HM-NSS in different κ-strongly

non-potential monotone quadratic games with low curvature (κ≪ 1) and different

condition numbers σϕ ∈ {1.011, 1.517, 12.140}. For these games, we compare two

resetting times: 1) T = T opt, which is only feasible for σℓ = 1.011, and 2) T = T ,
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Figure 5.3. Convergence of trajectories of (2.1) in a the non-potential game of Example
2.3 with κ = 0.02, ℓ = 0.0214, n = 30, T0 = 0.1, T = 3.74. The black line shows the
trajectory of a hybrid mechanisms implementing coordinated resets with T = T opt

where T is the biggest resetting time found to guarantee that Sδ is (σϕℓ)-GC, with

δ > 0 approaching to 0, and is feasible for all σℓ. Experimentally, we observe that

performance deteriorates slower when using T instead of T opt, and acceleration can

be achieved for a wider range of values of σℓ. However, when T = T opt is not feasible

we cannot use the results of Theorem 5.2 to guarantee stability certificates under the

implementation of the HM-NSS dynamics. Whether or not a small condition number

is a necessary condition to achieve acceleration in games remains an open question.

It is possible to find additional conditions on the game and the parameters of H1

to guarantee that T opt satisfies (RC1) and (RC3), i.e., that is feasible. However, such

conditions are rather involved and unintuitive. Yet, as we show in Figure 5.3, where we

revisit the nonpotential game of Example 2.3, the quasi-optimal restarting T opt can be

verified to be feasible, both enabling the recovery of stability as well as ensuring suitable

transient performance. We also note that, based on numerical experiments, our theoretical

bound is conservative.
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Remark 5.5. The stability results of Theorem 3-(i3) are obtained by guaranteeing

strong-decrease of a suitably chosen Lyapunov function Ṽ during flows and jumps of

the HM-NSS dynamics. In Figure 5.4 we show the value of Ṽ for different trajectories

resulting from the HM-NSS dynamics in the same κ-strongly monotone games studied

in Remark 5.4, and using the resetting time T opt of Lemma 5.4. As seen in the figure,

the Lyapunov function does not exhibit strong decrease during flows

(
with sign

(
˙̃V
)

changing multiple times

)
for the non-feasible values of T opt, which correspond to

the condition numbers σϕ = 1.157 and σϕ = 12.140. However, the function does

experience an overall decrease during the simulation time due to the strong decrease

enforced through the jumps of the hybrid dynamics. Experimentally, we observe that

to obtain better transient performance (with T s that are outside the feasible set), one

could allow the Lyapunov function to increase during flows, provided this increase

is compensated via jumps. This indicates interesting opportunities to attain even

better behavior via adaptive resetting policies that reset whenever the Lyapunov

function increases. However, the development of those techniques in a distributed

way is challenging and falls out of the scope of the current paper.

We finish this section with a result for quadratic games.

Proposition 5.1. Suppose that Assumption 5.1 holds and G describes a κ-strongly

monotone quadratic game. Consider the hybrid dynamics H1 under the reset

condition (RC1) with ρJ = κ−1 and reset policy α = 0n. If Sδ is κ-GC, then A is

UGES, and for each compact set K0 ⊂ C1 ∪D1 there exists M0 > 0 such that all

solutions x with x(0, 0) ∈ K0 satisfy

|q(t, j)− q∗| ≤ σr
√
σϕ
(
1− γ

(
κ−1
))α(j)

2 M0,
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Figure 5.4. Lyapunov function Ṽ (x) for trajectories resulting from the HM-NSS in
5-player κ-strongly monotone quadratic games with κ = 0.009, and different condition
numbers σϕ. In all the cases the dynamics are implemented with the resetting period
T = T op presented in Lemma 5.4.

where α(j) := max{0, ⌊ j−N
N

⌋}, and γ (κ−1) ∈ (0, 1).

It is not difficult to show that the assumptions of Proposition 5.1 can be satisfied

when T0 is sufficiently small and σϕ <
√
2. However, it is also not difficult to find games for

which this condition is violated, yet (RC1) holds and Sδ is still κ-GC. In fact, for quadratic

games, condition (5.7) simplifies to 0 ≺ In − k1(κIn − A)(κIn − A)⊤, with k1 =
T 2

κ(1−η) .

Remark 5.6. For some games, a potential function P might be available but its

gradient ∇P might only be monotone if a suitable vector of weights ω ∈ Rn is chosen

so that diag(ω)∇P is strictly or κ-strongly monotone. In such cases, the results of

Theorem 4.1 are not applicable, but those of Theorems 5.1 and 5.2 hold provided that

G := diag(ω)∇P satisfies the suitable assumptions on its continuity and contractivity

of Sδ. Such weighted potential games have been recently studied in [121] in the

context of congestion games.
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5.1.2 Hybrid Momentum-Based NSS with Partial Information

In the previous section, we assumed that each player i had access to an individual

Oracle able to generate measurements of the partial gradient
∂ϕi(·)
∂qi

at the overall state q

of the game. In this section, we now relax this assumption by considering Oracles that

provide evaluations of the partial derivatives. In this case, to carry out the gradient

evaluations each player needs to estimate the actions of the other players by extending the

hybrid dynamics H1. To simplify our exposition, in the following sections we assume that

the actions qi are scalars, i.e., that n = 1. However, all our results also hold for vectorial

actions by using suitable Kronecker products.

Individual Multi-Time Scale Hybrid Dynamics

To achieve distributed NSS over graphs with partial information, we proceed to

endow each player i ∈ V with an auxiliary state ei that serves as an individual estimation

of the actions of the other players:

ei := (ei1, e
i
2, . . . , qi, . . . , e

i
n−1, e

i
N) ∈ RN . (5.12)

Since players do not need to estimate their own action, it is also convenient to introduce

the auxiliary state ei−i ∈ RN−1 which contains the same entries of ei with the exception of

qi, which is removed. Using this notation, we now assume that each player i has access to

individual gradient Oracles characterized by mappings of the form (qi, e
i
−i) 7→ Ĝi(qi, ei−i),

which satisfy Ĝi(qi, q−i) = ∂ϕi(q)
∂qi

. Following similar notation used in the literature [107],

we define the matrices

Qi :=




I(i−1) 0(i−1)×1 0(i−1)×(N−i)

0(N−i)×(i−1) 0(N−i)×1 I(N−i)


 ,

Pi :=
[
01×(i−1) 1 01×(N−i)

]
.
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By using these definitions, each player i now implements the following accelerated aug-

mented continuous-time NSS dynamics:




q̇i

ṗi

τ̇i

ėi−i




=




2
τi
(pi − qi) + Pi

∑
j∈Ni(e

i − ej)

−2τiĜi(qi, ei−i)

η

−1
ε
Qi

∑
j∈Ni(e

i − ej)



, (5.13)

where ε > 0 is a new tunable parameter. These dynamics are implemented whenever the

state τi satisfies τi ∈ [T0, T ). The momentum-based dynamics (5.13) implement a dynamic

consensus mechanism with state ei−i. This mechanism uses a high gain 1
ε
to induce a

time-scale separation in the flows of the hybrid algorithm. In particular, if the states ei

were to instantaneously achieve their steady state value, the flows (5.13) would reduced to

the flows (4.9c).

When players are uncoordinated, the individual resets are triggered by the condition

τi = T , and are given by

x+i = Ri(xi), ei+−i = ei−i, (5.14)

where Ri is defined in (5.3e). However, lack of coordination between resets can induced

the same issues discussed in Chapter 2 (Section 2.2). To avoid this, we will incorporate

the hybrid coordinated restarting mechanism described in (5.3). Figure 5.5 shows a

block-diagram representation of the multi-time scale hybrid dynamics of each player.

Well-Posed Coordinated Hybrid System with Partial Information

To write the coordinated HDS in vectorial form, we introduce the matrices Q :=

D(Qi) ∈ R(N2−N)×N2
and P := D(Pi) ∈ RN×N2

, and note that q = Pe ∈ RN2−N . Addition-

ally, we define the state q̂ := Qe, such that using PP⊤ = IN , QQ⊤ = IN2−N , and PQ⊤ =

0, we can write e = ψ(q, q̂) := P⊤q+Q⊤q̂, where e =
(
e1, · · · , eN

)
, and express the overall
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Figure 5.5. Scheme of Individual HM-NSS dynamics for games with partial information.
Consensus dynamics are implemented to estimate the actions of other players.

hybrid NSS dynamics as a HDS with state (x, q̂), where x := (q, p, τ) ∈ R3N , and data

H2 = (C2, F2, D2, G2). The flows are given by




q̇

ṗ

τ̇

˙̂q




=F2(x, q̂):=




2T −1(p− q)− PLψ(q, q̂)

−2T Ĝ(ψ(q, q̂))

η1N

−1
ε
QLψ(q, q̂)



, (5.15)

where L := L⊗In denotes the communication matrix of the graph G. The continuous-time

dynamics in (5.15) are allowed to evolve whenever (x, q̂) belongs to the flow set:

C2 :=
{
(x, q̂) ∈ RN2+2N : q ∈ RN , p ∈ RN ,

τ ∈ [T0, T ]
N , q̂ ∈ RN2−N

}
. (5.16)

On the other hand, the jump set is defined as:

D2 :=
{
(x, q̂) ∈ RN2+2N : x ∈ C, max

i∈V
τi = T

}
, (5.17)
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and the discrete-time dynamics of the algorithm are given by:

(x+, q̂+) ∈ G2(x, q̂) := G1(q, p, τ)× {q̂}, (5.18)

where G1 is defined as in (5.3). Thus, the jump map affects only the momentum coefficients

τ and the state p via the reset policy α = (α1, α2, . . . , αN). Similar to Lemma 4.1, the

next lemma follows directly by construction of the HDS.

Lemma 5.5. For the HDS H2 := (C2, F2, D2, G2), all the properties of Lemma 4.1

still hold.

We will study the stability properties of the HDS H2 with respect to the following

compact set:

AG := A× {Q(1N ⊗ q∗)}, (5.19)

where A was defined in (5.5). In this case, we will use the following restricted reverse-

Lipschitz assumption, also used in [122] for optimization, and in [123] for NES with static

inertia.

Assumption 5.4. There exists ζ > 0 such that |G(q)− G(q∗)| ≥ ζ|q − q∗|, for all

q ∈ RN .

Next, we have the following result, which leverages items (i1)-(i5) of Theorems

5.1-5.3.

Theorem 5.3. Let G describe a strictly monotone game. Suppose that Assumptions

5.2, 5.3 and 5.4 hold, and consider the HDS H2 under (RC1). If Sδ is ℓ−GC with

0 < δ < (1− η)/ℓ, then under any of the conditions (i1)-(i5) the following holds:
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a) For all ε ∈ (0, ε∗δ), the set AG is UGAS. Here ε∗ is given by

ε∗δ :=
1

2σL
√
N


1 + σ2

r

max
{

1
T 2 + 4 ℓ

Tλmax(L) , 2 + 2 ℓ
Tλmax(L)

}

δmin {1, ζ2}




−1

. (5.20)

b) For each (t̂, ĵ, ν) ∈ R3
>0 and each compact set Kx ×Kq̂ ⊂ C2 ∪D2, there exists

ε∗∗ such that for each ε ∈ (0, ε∗∗) and each solution of H2 with x(0, 0) ∈ Kx

and q̂(0, 0) ∈ Kq̂, there exists a solution x̃ of system H1 with x̃ ∈ Kx such that

x and x̃ are (t̂, ĵ, ν)-close.

Item (a) of Theorem 5.3 establishes robust stability and convergence properties for

the hybrid NSS dynamics H2. On the other hand, item (b) establishes that on compact

sets of initial conditions and on compact time domains, the trajectories x will behave as

the trajectories of the “full-information” system H1 as ε→ 0+ in (5.15). In particular, by

combining items (a) and (b), we recover the convergence bounds of Theorems4.1, 5.1, and

5.2, now in a semi-global practical sense as ε→ 0+. This behavior is illustrated in Figure

5.6, which shows the trajectories q and q̂ in a κ-strongly monotone game. As it can be

observed, the solutions of H2 approximate the solutions of H1 as ε→ 0+.

Remark 5.7. Assumption 5.4 always holds for κ-strongly monotone games with

ζ = κ. Hence, for these games one can compute an alternative expression of ε∗δ

by substituting Assumptions 5.2-5.4 in Theorem 5.3 by Assumption 5.1 when Sδ
is (σϕℓ)-GC. Moreover, to guarantee that Sδ is ℓ-GC, required in Theorem 5.3, a

suitable upper bound for T can be obtained by mirroring the derivations of Lemma

5.2, which we omit here due to space limitations.

To our best knowledge, Theorem 5.3 is the first result in the literature that

establishes robust convergence and stability properties for decentralized momentum-based
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Figure 5.6. Trajectories of actions q and estimates q̂ in a non-potential κ-strongly
monotone quadratic game with N = 30, κ = 0.01, ℓ = 0.1, τs(0, 0) = 0.1 · 1N , and
ε = 5× 10−3. The inset shows the distance to the NE.

NSS algorithms over graphs. Note that the stable incorporation of the multiple-time

scale consensus mechanism is enabled by the use of resets, since otherwise no KL bound

(or strong Lyapunov function) would exist for the slow dynamics (also called “reduced

dynamics” in the singular perturbation literature [22, Ch. 11]) of the flows, which are

precisely given by (5.1).

5.1.3 Model-Free NSS with Momentum

In the previous sections, we studied algorithms that made use of gradient Oracles

with full or partial information. In this section, we dispense with this assumption by

designing accelerated model-free hybrid NSS dynamics, suitable for applications where

players have access only to real-time measurements of the signals that correspond to their

cost functions ϕi (e.g., the difference between the individual cost and revenue in a market),

which are generated by the game. Such payoff-based algorithms can be designed using

tools recently developed in the context of hybrid equilibrium seeking control [111, 25].

To achieve model-free NSS, each player i generates an individual probing signal
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t 7→ µi(t), obtained as the solution of a dynamic oscillator with state µi := (µ̃i, µ̂i) ∈ R2,

evolving on the unit circle S1 according to

µ̇i =
1

εp
Ωiµi, µi ∈ S1, Ωi := 2πςi




0 1

−1 0


 , (5.21)

where εp and ςi are positive tunable parameters. Note that S1 is forward invariant under

the dynamics of µi. Using this probing signal, each player implements the flows:




q̇i

ṗi

τ̇i




=




2
τi
(pi − qi)

− 4
εa
τiϕi(q + εaµ̃)e

⊤
1 µi

η



, (5.22)

where µ = (µ1, µ2, . . . , µn) ∈ R2N , and where µ̃ is the vector that contains the odd

components of µ. The dynamics (5.22) use real-time measurements of the cost ϕi, and are

implemented whenever τi ∈ [T0, T ). Conversely, when τi = T and players are uncoordinated,

they reset their states according to the dynamics x+i = Ri(xi), µ+
i = µi, where Ri is

defined as in (5.3). The constant εa > 0 is also a tunable parameter.

We impose the following assumption on the parameters ςi of (5.21), which is

standard in the averaging-based NES literature [35, 124, 113, 112].

Assumption 5.5. For all i, ςi is a positive rational number, ςi ̸= ςj , ςi ̸= 2ςj , ςi ̸= 3ςj ,

for all i ̸= j ∈ V .

As in the model-based case, an uncoordinated implementation of the model-free

hybrid dynamics can be detrimental to the stability and/or transient performance of the

algorithm. Thus, we incorporate the hybrid coordination mechanism described in (5.3) to

coordinate the resets of the players. Using the set-valued coordination mechanism, the
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overall discrete-time dynamics of the algorithm are modeled by the difference inclusion

(x+, µ+) ∈ G3(x, µ) := G1(x)× {µ}, (5.23)

where G1 is given by (4.9a). This jump map will preserve the sequential nature of

the resets needed to guarantee a well-posed HDS that satisfies (4.6) and (4.7). Using

ϕ̄ := (ϕ1, ϕ2, . . . , ϕN ), the continuous-time dynamics of the model-free hybrid NSS algorithm

can be written in vector form as:




q̇

ṗ

τ̇

µ̇




= F3(x, µ) :=




2T −1(p− q)

− 4
εa
T ϕ̄(q + εaµ̃)µ̃

η

1
εp
D(Ri)µ



, (5.24)

and the flow and jump sets are defined as:

C3 := C1 × TN and D3 := D1 × TN . (5.25)

Figure 5.7 shows a scheme of the proposed model-free NSS dynamics.

Semi-Global Practical Stability Results

The data H3 = (C3, F3, D3, G3) defines the third hybrid NSS dynamics considered

in this chapter. The stability and convergence properties of H3 are given in the following

theorem, which also leverages items (i1)-(i5) of Theorems 1-3.

Theorem 5.4. Let G describe a strictly monotone game, and consider the HDS H3

under (RC1). Then, under any of the conditions (i1)-(i5) the following holds:

a) The set A× TN is SGPAS as (εp, εa) → 0+.
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Figure 5.7. Scheme of Individual Model-Free HM-NSS dynamics with real-time measure-
ments of the cost.

b) For each (t̂, ĵ, ν) ∈ R3 and each compact set Kx ⊂ C1 ∪ D1, ∃ ε∗a > 0 s.t.

∀ εa ∈ (0, ε∗a) ∃ ε∗p > 0 s.t. ∀ εp ∈ (0, ε∗p), and for each trajectory x of system

H3 with x(0, 0) ∈ Kx there exists a solution x̃ of system H1 such that x and x̃

are (t̂, ĵ, ν)-close.

Similar to Theorem 5.3, the result of Theorem 5.4 establishes two key properties:

First, for any desired precision ν > 0, and any compact set of initial conditions Kx, every

solution of the HDS H3 initialized in Kx will satisfy a bound of the form1

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) +
ν

2
, (5.26)

with β ∈ KL, provided the parameters εa and εp are selected sufficiently small. Moreover,

item (b) implies that by selecting εa and εp sufficiently small, the trajectories x of H3 will

recover all the fast convergence bounds established in Theorems 3.3, 5.2, modulo a small

residual error and on compact sets.

1We note that |µ(t, j)|Tn = 0 for all (t, j) in the domain of the solutions.
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Figure 5.8. Trajectories of H1 and H3 in a non-potential κ-strongly monotone quadratic
game with κ = 0.197, ℓ = 0.2 and n = 10.

Remark 5.8. The model-free dynamics H3 are based on averaging theory for

(perturbed) hybrid systems [30, 25]. In particular, as εa, εp → 0+ the trajectories of

H3 behave as their average hybrid dynamics (modulo a small perturbation), which

are precisely given by H1. Both dynamics are set-valued, which differs from existing

results in the literature of model-free Nash seeking [35]. Figure 5.8 shows a numerical

experiment in a κ-strongly monotone quadratic game where a solution of H3 is

compared to a solution of the model-free dynamics of [35].

We finish this section by commenting on the extensions of system H3 to applications

where players could have access to an individual “Black-Box Oracle” that allows them

to evaluate (as opposed to measure) their local cost ϕi at their current state qi, using

estimations of the actions of the other players (in a similar spirit as in Section 5.1.2) and

without knowledge of the mathematical form of ϕi (e.g., using dynamic simulators). In

this case, we can follow the same approach of Section 5.1.2, incorporating an auxiliary
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estimation state q̂. In this, the vectorial hybrid system H4 = (C4, F4, D4, G4) will have

flow map given by




q̇

ṗ

τ̇

µ̇

˙̂q




= F4(ζ) :=




2T −1(p− q)− PLψ(q, q̂)

− 4
εa
T ϕ̄(ψ(q + εaµ̃, q̂))µ̃

η

1
εp
D(Ri)µ

− 1
εc
QLψ(q, q̂)




, (5.27)

jump map G4(x, µ, q̂) := G1(x)×{µ}×{q̂}, flow set C4 := C1×Tn×RN2−N and jump set

D4 := D1 × Tn × RN2−N . For this hybrid system, a result like Theorem 5.4-(a) also holds,

now with respect to the set A × Tn × {Q(1n ⊗ q∗)} and as (εp, εa, εc) → 0+. Similarly,

a result like Theorem 5.4-(b) holds by noting that the average hybrid dynamics of H4

are precisely given by the HDS H2 (modulo a small perturbation on the gradient), whose

robust stability properties were already established in Section 5.1.2. Thus, we can follow

exactly the same steps of the proof of Theorem 5.3 to obtain an equivalent result.

In this section we introduced a class of Nash set-seeking algorithms with dynamic

momentum for the efficient solution of non-cooperative games with finitely many players.

The algorithms are modeled by hybrid dynamical systems that incorporate continuous-time

dynamics with momentum and discrete-time coordinated resets. We developed model-

based algorithms, as well as algorithms suitable for games with partial information and

model-free settings where players have access only to measurements of their cost. In

each case, we established robust stability and accelerated convergence properties using

multi-time scale techniques for hybrid dynamical systems.

In the next section, we study how dynamics of the form (5.1) can be applied

in decentralized concurrent learning scenarios, where we consider a network of agents

collaborating to learn a common model of a scalar signal, by exchanging information via a
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graph G = (V , E) using a consensus mechanism. In this context, the map G in (5.1) takes

the form of a vector field A(t)q + Lq, where A(t) is a symmetric matrix incorporating

the agents’ individual learning processes, and L = L ⊗ In, with L being the Laplacian

matrix of G, encapsulates the network topology and governs inter-agent information flow.

While A(t) is symmetric, L typically is not, especially for graphs with directed edges. This

asymmetry precludes the existence of a potential function for the entire system, paralleling

our earlier discussion of nonpotential games. As our analysis will reveal, this characteristic

can induce instability when reset mechanisms are implemented infrequently. However,

stability can be restored by increasing the frequency of these resets.

5.2 Decentralized Concurrent Learning with Coor-

dinated Momentum and Restart

Concurrent Learning (CL) techniques have emerged as powerful data-driven tools

for designing estimation and learning dynamics in a wide range of applications where

persistence of excitation (PE) conditions are either impractical or infeasible [125, 45]. These

techniques have demonstrated their utility in diverse fields, including parameter estimation

in batteries [6], exoskeleton robotic systems [126, 127], mobile robots and aerial vehicles

[128], extremum seeking algorithms [129], and reinforcement learning controllers [2, 41].

In these applications, extensive datasets containing historical recorded measurements

of the relevant system signals are often available and can be leveraged for estimation

purposes. When these datasets are “sufficiently rich”, they can be seamlessly integrated

into dynamic estimation algorithms, enabling (uniform) exponential convergence to the

unknown parameters even in the absence of PE conditions.

However, relaxations of PE conditions can lead to suboptimal transient performance,

particularly in terms of slow convergence rates that depend on the “level of richness” of

the dataset used by the algorithm. Since datasets readily available in applications may
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exhibit prohibitively small levels of richness, there is a growing need for the development of

enhanced CL techniques that can accelerate the convergence rate of the estimation dynamics

while maintaining the desirable stability and robustness properties. One promising direction

to alleviate the slow convergence issue in decision-making algorithms is the incorporation

of momentum with dynamic damping, see [6, 130, 131]. For single-agent gradient-based

dynamics with momentum, the use of decreasing damping has been shown to play a

crucial role in inducing favorable acceleration properties [132, 17, 18, 133]. However, it

has also been shown that stability bounds in terms of KL functions may not exist for

such systems unless the damping coefficients are persistently exciting [29, Thm. 2], a

condition that precludes vanishing coefficients. Furthermore, it is well-known that, without

proper tuning, the use of momentum can lead to undesirable oscillations [93]. To address

potential instability issues and to eliminate oscillatory behaviors, restart mechanisms

that reset the momentum have been developed for single-agent systems using adaptive

[93, 134] and periodic policies (usually called “scheduled”) with carefully selected restarting

frequencies [17, 25, 135, 93]. Recent works have also investigated the development of similar

momentum-based algorithms in multi-agent systems, including distributed continuous-

time heavy-ball dynamics with constant damping [136], limiting equations of stochastic

recursive algorithms as multi-agent flows with momentum [137], and decision-making

algorithms with momentum for high-order multi-agent systems [138, 1, 139]. However,

existing approaches have primarily focused on undirected network topologies. Additionally,

the incorporation of momentum and restarting mechanisms in decentralized concurrent

learning algorithms has remained unexplored. Such algorithms are essential when a network

of agents seeks to collaboratively and efficiently learn a common model by sharing local

estimates with neighboring agents, without revealing their private data. Applications of

these algorithms span various domains, including source seeking in autonomous mobile

robots [140], adaptive formation control of robotic teams [141], and cooperative adaptive

control [142].
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Motivated by the previous background, in this section we study the synthesis and

analysis of decentralized concurrent learning dynamics with momentum and restart for

general directed graphs. In particular, we consider a model that extends the centralized

dynamics studied in [17, 18], and [25] to cases where each agent implements its own restart

policy and shares information only with neighbors characterized by the topology of the

communication graph. To assess the impact of the topology of the graph on the stability

properties of the dynamics, we exploit analytical tools from graph theory [143] and hybrid

dynamical system’s theory [33]. Using these tools, this section presents the following

primary contributions:

(1) We first introduce a class of multi-agent concurrent learning (CL) algorithms

that incorporate momentum and a restarting mechanism coordinated by a centralized

resetting state. We demonstrate that if: (a) the graph is strongly connected, (b) the

overall data collected by the agents satisfies a “cooperative richness condition,” and (c)

the restarting frequency exceeds a certain threshold that encodes the “asymmetry” of

the communication graph, then the resulting error estimation dynamics are input-to-

state stable [144] with respect to measurement noise and model error approximations.

Furthermore, the convergence is exponential with rates assignable via the restarting period.

These results are presented in Theorem 5.5.

(2) Next, by leveraging the robustness properties of the dynamics, we interconnect

the momentum-based concurrent learning algorithms with a fully decentralized coordinated

restarting mechanism, enabling a complete decentralized implementation. The resulting

dynamical systems are also globally stable and exhibit convergence rates consistent with

Theorem 5.5, following an initial synchronization phase of the restarting times. These

results are presented in Theorem 5.6.

(3) Finally, we present three applications of the proposed momentum-based CL

algorithms with restart within the context of data-enabled control: (a) cooperative

parameter estimation without persistently exciting regressors in networks where nodes
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have private data with heterogeneous informativity properties; (b) data-enabled cooperative

model-reference adaptive control; (c) data-enabled cooperative feedback-optimization. By

employing (hybrid) Lyapunov-based techniques, we show that the resulting closed-loop

systems exhibit favorable stability and convergence properties, which are also illustrated

via numerical examples.

Problem Formulation

We consider a decentralized learning problem in a multi-agent system (MAS), where

a group of N ∈ Z≥2 agents seeks to collaboratively estimate a common model characterized

by a parameter θ⋆ ∈ Rn. The agents share information with each other via a directed

communication network modeled by a strongly connected digraph G = {V , E}, where

V := {1, 2, . . . , N} is the set of nodes, and E is the set of edges. We denote by (i, j) ∈ E

a directed edge from node i to node j, we call node i an in-neighbor of node j, and we

call node j an out-neighbor of node i. We consider digraphs that do not have self-arcs.

A weighted Laplacian matrix L = [lij] ∈ RN×N associated with G satisfies the following:

the off-diagonal entries are such that lij < 0 if (i, j) is an edge, and lij = 0 otherwise;

the diagonal entries lii are determined such that every row of L sums to zero, and all

its nonzero eigenvalues have positive real part [143, Lemma 6.5]. A digraph is strongly

connected if for any two distinct nodes i and j, there is a path from i to j. The Laplacian

matrix of a strongly connected digraph satisfies rank(L) = N − 1 [143, Ch. 6]. We assume

that each agent i ∈ V has access to both real-time and past recorded measurements of a

signal of the form

ψ⋆i (t, di(t)) = ϕi(t)
⊤θ⋆ + di(t), (5.28)

where di ∈ R represents an unknown and possibly time-varying disturbance, and ϕi :

R≥0 → Rn represents a regressor function (or basis functions), which is assumed to be
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continuous, uniformly bounded, and known to the ith agent. These assumptions are typical

in parameter estimation problems in the context of single-agent [41, 130, 6, 6, 45] and

distributed CL [129, 142].

Model Description and Key Assumptions

The main idea behind Concurrent Learning (CL) is to use both real-time and past

recorded measurements of ψ⋆i in (5.28) to recursively estimate the unknown parameter

θ⋆. This approach is particularly useful in situations where the regressors t 7→ ϕi(t) are

not persistently exciting [41], that is, when there are no constants T,m > 0 such that
∫ t+T
t

ϕi(s)ϕi(s)
⊤ds ≥ mIn, for all t > 0 and all i ∈ V. To address this limitation by

leveraging each agent i’s access to past recorded measurements of ψ⋆i , this paper introduces

a decentralized momentum-based concurrent learning (DMCL) algorithm to estimate θ⋆.

In this algorithm, each agent i ∈ V maintains its own individual estimate of θ⋆i , denoted

as θi ∈ Rn, which is updated according to the following dynamics:

θ̇i(t) =
2

τi(t)
(pi(t)− θi(t)), τ̇i(t) ∈ [0, ω], ∀ i ∈ V , (5.29)

where τi is a dynamic, non-decreasing coefficient, with rate of growth upper bounded by

ω > 0, and which satisfies

τi(t) ∈ [T0, T ], ∀ t ∈ R≥0, T > T0 > 0,

where (T, T0) are tunable parameters. The auxiliary state pi ∈ Rn captures the incorpora-

tion of momentum, and it satisfies

ṗi(t) = −2τi(t)

(
Λi (θi(t), νi(t), t, υi) + kc

∑

j∈V
aji (θi(t)− θj(t))

)
, (5.30)
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where kc > 0 is a tunable gain, Λi is a suitable mapping described below, and aji is the

jith entry of the adjacency matrix of the graph G modeling the flow of information betwen

agent i and its neighbors. The key components of the DMCL dynamics are explained

below:

a) In (5.30), the function Λi has the general form

Λi(θi, νi, t, υi) = ktΨi (θi, t, υi) + krΦi(θi, νi), (5.31)

where kr > 0 and kt ≥ 0 are tunable constants.

b) In (5.31), the function Ψi is given by

Ψi(θi, t, υi(t)) := ϕi(t)
(
ψ̂i(θi, t)− ψ⋆i (t, υi(t))

)
, (5.32)

and it incorporates the real-time information available to the ith agent, where ψ⋆i is

given by (5.28), ψ̂i(θi, t) := ϕi(t)
⊤θi, and υi(t) := di(t) is the time-varying disturbance

in (5.28).

c) The function Φi in (5.31) is given by

Φi(θi, νi) :=

k̄i∑

k=1

ϕi(ti,k)
(
ψ̂i(θi, ti,k)−ψ⋆i (ti,k, νi,k)

)
, (5.33)

and it incorporates past recorded measurements of the signal ψ⋆i in (5.28) and the

regressor ϕi, obtained at a sequence of times {ti,k}k̄ik=1, where k̄i ∈ Z≥1 is the number

of measurements recorded by agent i, and where νi,k := di(ti,k) captures the persistent

disturbances occurring during data collection in (5.28), which are stored in the vector

νi := (νi,1, νi,2, . . . , νi,ki) ∈ Rki .

d) The last term in the dynamics of pi captures the exchange of information between
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agent i and its neighbors. Note that, in general, we have aij ̸= aji because the graph

G can be directed.

To study the DMCL dynamics, the data matrix associated to the ith agent is defined as

follows:

∆i :=

k̄i∑

ki=1

ϕ(ti,k)ϕ(ti,k)
⊤ ∈ Rn×n. (5.34)

Instead of assuming that every matrix ∆i is positive definite, as in standard single-agent

concurrent learning (CL) [41], we will assume a weaker “cooperative” richness condition

on the overall data of the network [145, Def. 2].

Assumption 5.6. There exists a constant α > 0, such that

N∑

i=1

∆i ⪰ αIn. (5.35)

Moreover, the graph G is strongly connected.

If (5.35) holds, the data {∆i}i∈V is said to be cooperatively sufficiently rich (CSR).

Remark 5.9. Assumption 5.6 allows for some agents to have uninformative data

(e.g., ϕi(ti,k) = 0) provided other agent’s data is sufficiently rich to satisfy (5.35),

see also [146]. This is an important relaxation for large-scale MAS where, unlike

standard centraCL [41], it might be unreasonable to assume that every agent’s data

satisfies ∆i ≻ 0. Moreover, note that in the DMCL dynamics, agents do not share

their data with other agents in the network. In fact, only the local estimates θi

are shared with the neighboring agents. This prevents the direct solution of the

estimation problem using “single-shot” techniques and instead necessitates recursive

algorithms that converge to θ⋆ while preserving the privacy of individual data.
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Connections to Momentum-Based Dynamics in Potential Settings

The form of the DMCL dynamics is closely related to the accelerated gradient flows

with momentum studied in [17, 147, 18, 1], which have the general form

ẋ1(t) =
2

τc(t)
(x2(t)− x1(t)), (5.36a)

ẋ2(t) = −2τc(t)∇f(x1(t)), (5.36b)

and where f is a suitable convex cost function and τc : R≥0 → R>0 is a time-varying

coefficient. Indeed, using the vectors θ := (θ1, θ2, . . . , θN), p := (p1, p2, . . . , pN), the

parameter error coordinates θ̃ := θ − 1N ⊗ θ⋆, p̃ := p− 1N ⊗ θ⋆, and the Laplacian matrix

of the graph L, the DMCL dynamics with a centralized coefficient τ = τ1 = . . . = τN can

be written as the following dynamical system:




˙̃θ

˙̃p


 = F̂(θ̃, p̃, τ, t), (5.37)

where F̂ is given by

F̂(θ̃, p̃, τ, t)=




2

τ
(p̃− θ̃)

−2τ (ktA(t)+kr∆+kcL) θ̃ +U(t)


 . (5.38)

In (5.38), L := L ⊗ In, A and ∆ are the block-diagonal matrices

A(t) := diag
({
ϕ1(t)ϕ1(t)

⊤, . . . , ϕN(t)ϕN(t)
⊤}) ,

∆ := diag







k̄1∑

k=1

ϕ1(t1,k)ϕ
⊤
1 (t1,k), . . . ,

k̄N∑

k=1

ϕN(tN,k)ϕ
⊤
N(tN,k)






 ,

124



and U is given by

U(t) :=




−2τktϕ1(t)υ1(t) + kc
∑k̄1

k=1 ϕ1(t1,k)ν1,k
...

−2τktϕN(t)υN(t) + kc
∑k̄N

k=1 ϕN(tN,k)νN,k



. (5.39)

However, while similar decentralized algorithms have been studied in [138, 1, 139], the

DMCL dynamics do not describe a standard gradient flow with momentum due to the

lack of symmetry on L, i.e., the right-hand side of (5.38) cannot be expressed as the

gradient of a potential function, a property that usually plays a crucial role in the stability

properties of momentum-based dynamics. The following example highlights some of the

challenges that can arise when momentum is used and the multi-agent system (MAS) has

a communication topology characterized by a directed graph.

Example 5.2. Consider a multi-agent system with three agents, i.e., V = {1, 2, 3}.

We let kt = 0 and di = 0, and for simplicity we assume that all agents use the

same coefficient τc = τ1 = τ2 = τ3, with τ(0) = T0, ω = 1/2, T0 = 0.1, T = 200.

We consider regressors ϕi(t) = (1, 10e−it, 100e−2it) with collected data satisfying

Assumption 5.6, and the parameter θ⋆ = (1,−2, 1). The DMCL dynamics are

implemented using τ̇c = ω until τc = T , at which point τ̇c is set to zero. This

selection satisfies (5.29) and keeps τ bounded in the set [T0, T ]. The left plot of

Figure 5.9 shows the evolution in time (in logarithmic scale) of the estimation error

θ̃ = θ − 1N ⊗ θ⋆ when the graph G is fully connected. As observed, the estimation

error converges to zero, which is consistent with the stability results of [17, Thm. 3]

and the fact that in this case, the DMCL dynamics describe an accelerated gradient

system, similar to (5.36). Now, suppose that the communication graph is a directed

cycle graph, as shown in the inset of the center plot of Figure 5.9. In this case, the

same DMCL algorithm ceases to be a momentum-based gradient flow and it exhibits
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Figure 5.9. Solutions to DMCL without restart can exhibit stability in symmetric graphs
(left) and instability in asymmetric graphs (center) when τ is sufficiently large. Stability
in asymmetric graphs is recovered by employing a suitable coordinated restart mechanism
(right).

the instability shown in the plot. In particular, the asymmetric component of L now

induces instability when τ becomes “sufficiently large”, at approximately t ≈ 25s,

which corresponds to τ ≈ 12.5. The right plot, however, reveals a promising solution

to the instability issue in asymmetric graphs. In particular, stability can be restored

by implementing a well-designed coordinated restart mechanism that accounts for

the graph’s asymmetry. The details of this mechanism will be elaborated upon in

the following sections.

DMCL with Coordinated Restart

To address the instability observed in Example 5.2, while simultaneously inducing

suitable convergence rates achieved via momentum, we incorporate restart mechanisms

into the algorithm (5.29)-(5.30). These mechanisms persistently reset the momentum θ̇i

and the dynamic coefficients τi whenever they exceed a carefully selected upper bound T .

The resets are performed according to the following discrete-time updates:

θ+i = θi, p+i = pi + ηi(θi − pi), τ+i = T0, ∀ i ∈ V , (5.40)

where ηi ∈ {0, 1} is a pre-defined parameter indicating the restart policy of agent i. Similar

resets have been shown to reduce oscillations in single-agent momentum-based algorithms

[17, 93] and enhance their stability properties in the presence of persistent disturbances [25].
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Note that the policy ηi = 1 implies p+i = θi, which in turn implies θ̇+i = 0 in (5.29), that

is, the momentum state of agent i is reset to zero. On the other hand, the choice ηi = 0

only resets the coefficients τ while keeping the momentum states constant during resets,

thus emulating a heavy-ball system with a “persistently exciting” damping coefficient

[29]. For multi-agent systems with undirected graphs, similar restart mechanisms of the

form (5.40) have been studied in [139, 1]. However, the effectiveness of restarting in the

context of multi-agent systems with directed graphs has remained largely unexplored, and,

as suggested by Example 5.2, the extension is non-trivial.

Remark 5.10. The behavior observed in the center plot of Figure 5.9 clearly

shows that a “slow” restart frequency (i.e., allowing T to be arbitrarily large) does

not achieve stable parameter estimation, as the trajectories of the system initially

approach the true parameter, but eventually diverge around t ≈ 25s. Conversely, a

very “fast” restart frequency might reduce the effectiveness of using momentum with

dynamic damping, as it would keep T and pi approximately constant. Alternatively,

the right plot of Figure 5.9 demonstrates the emerging behavior of the DMCL

algorithm when restarts are implemented by each node of the network under a

“suitable” frequency and in a coordinated manner. In this case, the dynamics exhibit

fast linear convergence to the true parameter, with a convergence rate tunable

via the parameter T . While similar phenomena have been recently observed in

game-theoretic problems [1], the use of momentum and restart in decentralized CL

problems, and its dependence on the system’s data, graph topology, and perturbed

models (5.28), have remained largely unexplored.

The previous observations motivate the main research problem that we study in

this section:
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Problem 5.1. Characterize the restart mechanisms that: a) robustly stabilize the

DMCL algorithm in directed networks; b) achieve ISS with respect to the disturbances

di in (5.28); c) induce network-wide acceleration properties in the MAS.

To tackle Problem 1, we first consider a centralized restart mechanism that makes

use of a common state τc ∈ R>0 that satisfies τ̇c ∈ [0, ω]. This “centralized” restarting state

will initially simplify the analysis, and it will be removed in the subsequent subsections

to encompass decentralized implementations. For the purpose of analysis, we also use an

auxiliary state s ∈ R≥0 with dynamics ṡ = 1 to model any explicit dependence on time t.

Centralized Restart: Hybrid Systems Model

When using a common coefficient τc ∈ R>0 to coordinate the restart of the DMCL

algorithm, the resulting dynamical system can be modeled by the following differential

inclusion, in vectorial form, with overall state yc := (θ, p, τc, s):

ẏc∈Fc(yc, u) :=




2

τc
(p− θ)

−2τcΛ(θ, s, u)

[0, ω]

1




. (5.41)

In (5.41), the state yc evolves in the flow set Cc × R≥0, with input u := (υ, ν) ∈ RN+k̄,

where the vectors υ and ν are defined as

υ := (υ1, υ2, . . . , υN) ∈ RN , ν := (ν1, ν2, . . . , νN) ∈ Rk̄,

where k̄ :=
∑

i∈V ki. The function Λ is given by

Λ(θ, s, u) := ktΨ(θ, s, υ) + krΦ(θ, ν) + kcLθ, (5.42)
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and the functions Ψ and Φ are defined as

Ψ(θ, s, υ) := (Ψ1(θ1, s, υ1), . . . ,ΨN(θN , s, υN)) (5.43a)

Φ(θ, ν) := (Φ1(θ1, ν1), . . . ,ΦN(θN , νN)), (5.43b)

where the functions Φi,Ψi were defined in (5.32)-(5.33) for all i ∈ V. Since the vectors θ

and p are both allowed to evolve in RnN , while τc ∈ [T0, T ], the set Cc is defined as:

Cc := RnN × RnN × [T0, T ], (5.44)

Therefore, the overall flows of the system have the form (1.3a), and are given by

(yc, u) ∈ (Cc × R≥0)× RN+k̄, ẏc ∈ Fc(yc, u).

To incorporate the restarts (5.40) into the DMCL algorithm, each time the condition

τc = T is satisfied, the state τc is allowed to be reset to T0, while the states (θi, pi) are

updated as in (5.40). Therefore, using

Rη := diag(η)⊗ In, (5.45)

with η = (η1, η2, . . . , ηN), the discrete-time updates of the state yc of the hybrid system

can be written in vectorial form as

y+c = (θ+, p+, τ+c , s
+) = Ĝc(yc) = (θ, p+Rη(θ−p), T0, s) (5.46)

which are executed whenever (θ, p, τc, s) ∈ Dc × R≥0, where

Dc := RnN × RnN × {T}. (5.47)
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Therefore, the overall discrete-time dynamics of the system (which do not depend on the

input u) with state yc, have the form (1.3b), and are given by

(yc, u) ∈ (Dc × R≥0)× RN+k̄, y+c = Gc(yc) := Ĝc(yc)×{s}. (5.48)

By combining (5.41) and (5.48), the DMCL algorithm with centralized restart can be

viewed as a HDS of the form (1.1), with data

Hc := (Cc × R≥0,Fc,Dc × R≥0,Gc, u). (5.49)

Note that in this centralized HDS the jump set (5.47) only imposes conditions on the

state τc. Namely, a restart is enabled whenever τc = T . If, at this time, a restart is not

executed, solutions can only continue evolving by flowing using τ̇c = 0, i.e., keeping τc = T

constant for all time until a reset is executed. If τ̇(t) = constant ∈ (0, ω] for all time,

then the HDS would model a DMCL algorithm with scheduled periodic restart, where the

time between two consecutive restarts is (T − T0)(constant)
−1. However, the differential

inclusion in (5.41) also allows us to consider scenarios where τ̇ is not constant but rather is

any absolutely continuous function (between restarts) satisfying τ̇ ∈ [0, ω], which includes

functions that remain constant for arbitrarily long periods of time.

Before presenting our first main result, we introduce two technical propositions

that play important roles in our results. All the proofs are presented in Appendix C.2.

Proposition 5.2. Suppose that Assumption 5.6 holds. Then, there exists a unit

vector q ∈ RN such that:

a) The entries qi of q satisfy:

σQ := max
i∈V

qi ≥ min
i∈V

qi := σQ > 0. (5.50)
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b) q⊤L = 0 and QL+ L⊤Q ⪰ 0 with Q := diag(q).

c) The function Λ in (5.42) with kt = 0 and ν = 0 can be decomposed as follows:

krΦ(θ, 0) + kcLθ = Q−1 (Σ+Ω) θ̃, (5.51)

where Q := Q⊗ In, θ̃ := θ − 1N ⊗ θ⋆,

Σ := krQ∆+
kc
2

(
QL+L⊤Q

)
(5.52a)

Ω :=
kc
2

(
QL−L⊤Q

)
, (5.52b)

and ∆ := diag ({∆1,∆2, . . . ,∆N}), where ∆i is given by (5.34).

d) There exists a class-K∞ function χ(·) such that

[
Ω+ ktÃ(t)

][
Ω+ ktÃ(t)

]⊤
⪯ (σ2

Ω + χ(kt)
2)INn, (5.53)

∀ t ≥ 0, where Ã(t) := QA(t) and σΩ is the largest singular value of Ω.

Remark 5.11. By construction, if the Laplacian L is symmetric, then σ2
Ω = 0.

However, if L is asymmetric, then in general we have σ2
Ω ̸= 0. For the purpose

of illustration, Figure 5.10 presents four examples of different graphs G and their

corresponding numerical values of σ2
Ω.

Proposition 5.3. Suppose that Assumption 5.6 holds; then, there exist σΣ ≥ σΣ > 0

such that

σΣINn ⪰ Σ ⪰ σΣINn, (5.54)

where Σ is given by (5.52a).
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σ2
Ω = 0.18 σ2

Ω = 0.11 σ2
Ω = 0.24 σ2

Ω = 0.0

Figure 5.10. Parameter σ2
Ω for strongly connected graphs with binary adjacency matrices

and varying degrees of symmetry.

5.2.1 Input-to-State Stability of the Centralized Model Hc

With Propositions 5.2-5.3 at hand, we are now ready to present the first main

result of this paper, which provides conditions to stabilize the DMCL algorithm using a

coordinating centralized state τc. In particular, we study the stability properties of Hc

with respect to the closed set Ac := Aθp × [T0, T ]× R≥0, where

Aθp := {1N ⊗ θ⋆} × {1N ⊗ θ⋆}, (5.55)

which precisely describes the situation where all agent’s estimates θi are equal to the true

parameter θ∗.

Theorem 5.5. Suppose that Assumption 5.6 holds, and let the constants (σQ, σQ,

σ2
Ω, σΣ) be given by Proposition 5.2. If the restart parameters (ω, T0, T ) satisfy

ω ∈ (0, 1) and

(
1

2

σQ

σΣ

+T 2
0

) 1
2

=: T < T < T :=

(
σQ(1−ω)σΣ

σ2
Ω + χ(kt)2

) 1
2

, (5.56)

then the following hold:

a) For any restart policy η ∈ {0, 1}N the HDS Hc renders the set Ac ISS with

respect to the input u.
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b) If ηi = 1 for all i ∈ V, and τ̇c := ω, then, for every initial condition y0 :=

yc(0, 0) ∈ (Cc ∪Dc)× R≥0, every solution-input pair (yc, u) of Hc, and every

(tj, j) ∈ dom(yc) with tj := min{t : (t, j) ∈ dom(yc)}, the sampled sequence of

estimates θ(tj, j) satisfies

|θ(tj, j)− 1N ⊗ θ⋆|2 ≤ k1 · µj|y0|2Ac + k2|u|2(tj ,j), (5.57)

where k1, k2 > 0, and µ(T ) := (T/T )2 ∈ (0, 1).

The main result of Theorem 5.5 reveals the impact of the asymmetry of G on the

resetting parameter T . In particular, the following observations are in order:

(1) When L is symmetric (i.e., σ2
Ω = 0) and the DMCL dynamics do not use real-time

data (i.e., kt = 0), condition (5.56) reduces to T < T <∞, which can always be satisfied

using any positive constant T , recovering the results of [25, Thm. 2] in the context of

standard optimization.

(2) In general, the more “informative” is the collective data in the overall system (i.e., the

larger is α in (5.35)), the larger the parameter σΣ will be, thus providing more flexibility

to increase the upper bound T .

(3) The ISS result implies that the trajectories of the algorithm will converge to a

neighborhood of the true parameter θ⋆, where the size of the neighborhood shrinks

as the disturbances di shrink in (5.28). When di = 0, the result establishes asymptotic

convergence to the true parameter.

(4) In item (b), the assignment τ̇c := ω induces periodic resets in the system, where the

time between consecutive resets is (T − T0)ω
−1. Moreover, the policy choice ηi = 1 implies

that all agents reset their momentum. In this case, the rate of convergence between reset

times is explicitly characterized by a contraction coefficient µ(T ), which can be tuned

to improve performance and reduce oscillations. In particular, following similar steps
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as in the centralized case [25], the “optimal” value of T that minimizes the contraction

coefficient µ(T ) over a given window of time can be computed as T ∗ = e
(
σQ

2σΣ
+ T 2

0

) 1
2
.

(5) Lastly, when u ≡ 0, the convergence bound (5.57) characterizes the “accelerated”

convergence properties of Hc towards the true model θ⋆.

Remark 5.12. The upper bound in (5.56) reveals an interesting trade-off between

the choice of T and ω. Specifically, larger values of ω in (5.41) (indicating a more

aggressive decreasing damping during flows) leads to more conservative values of T

(indicating more frequent resets) to maintain stability.

Next, the following corollary leverages the expression of T ∗ to obtain convergence

bounds that parallel those obtained for centralized single-agent systems [25].

Corollary 5.1. Suppose that all the assumptions of Theorem 5.5 hold with T = T ∗,

τ̇c = ω and u ≡ 0; then, (5.57) holds with k2 = 0, and for each ε > 0 we have

|θ(tj, j)− 1N ⊗ θ⋆|2 ≤ ε for all tj > t∗j , where t
∗
j :=

1
2ω

(T ∗ − T0) log
(

1
ε
c
c
|y0|2A

)
.

The bound in Corollary 5.1 implies that, as T0→0+, the convergence of θi towards

θ∗ is of order O
(
e−

√
σΣ/σQ

)
, for all i ∈ V . We complete this section with a corollary for

the case η = 0, which guarantees the ISS properties of Hc, but not convergence bounds of

the form (5.57).

Corollary 5.2. Suppose that Assumption 5.6 holds, ηi = 0 for all i ∈ V , ω ∈ (0, 1),

and T0 < T < T, with T as defined in (5.56). Then, the HDS Hc renders the set Ac

ISS.

The resetting bounds of Theorem 5.5 and Corollary 5.2 only provide sufficient

conditions for ISS (with exponential convergence rates). It remains an open question how

to obtain tight bounds on (T0, T ) that are also necessary for stability. We do not further
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pursue these questions in this chapter.

5.2.2 Decentralized Momentum-Based Concurrent Learning

Since a central coordinator with state τc might not exist in large-scale networks,

in this section, we study decentralized restart strategies based on each agent i ∈ V

implementing an individual dynamic coefficient τi with initial conditions τi(0, 0) ∈ [T0, T ],

which might not be synchronized a priori, namely, τi(0, 0) ̸= τj(0, 0), for some i, j ∈ V . To

simplify our discussion, we assume that ηi = 1 and τ̇i = ω ∈ (0, 1) for all i ∈ V , and that

kt = 0, which allows us to remove the auxiliary state variable s and its associated dynamics.

However, all our results can be extended to the case when time-varying regressors are

included.

When each agent implements its own coefficient τi, the continuous-time DMCL

dynamics (5.41) become

(x, u) ∈ C× RN+k̄, ẋ = F(x, u) :=




2T −1(p− θ)

−2T (krΦ(θ, u) + kcLθ)

ω1N



, (5.58)

where the main state is now x = (θ, p, τ) ∈ RNn × RNn × RN , T := diag(τ ⊗ 1n),

τ = (τ1, τ2, . . . , τN), Φ is given by (5.43b), and the flow set is now given by

C := RN × RN × [T0, T ]
N . (5.59)

In this case, restarts of the form (5.40) with ηi = 1 occur whenever at least one of the

agents satisfies the condition τi = T . This behavior can be modeled by the following jump

set:

D =

{
x ∈ C : max

i∈V
τi = T

}
. (5.60)
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However, note that this approach would lead to uncoordinated restarts of the individual

dynamics of the agents across the system. For example, for any time window [T0, T ], one

can select N equidistant initial conditions τi(0, 0) ∈ [T0, T ], where i ∈ {1, 2, . . . , N}, which

result in solutions experiencing N restarts during this time window, each restart separated

by intervals of flow of length T−T0
N

. Therefore, as N → ∞, asynchronous restarts would

occur more often, hindering the advantages of incorporating momentum into the flows of

the algorithm to accelerate the overall system.

To address this issue, and inspired by the synchronization algorithms of [148], we

integrate the restart dynamics (5.40) of each agent with a decentralized coordination

mechanism for the states τi. Specifically, each agent i ∈ V performs individual restarts of

the form (5.40) when τi = T . However, the agents also implement the following additional

discrete-time updates whenever their neighbors j ∈ Ni satisfy the condition τj = T :

τ+i ∈ Ri(τi) :=





T0 if τi ∈ [T0, ri)

{T0, T} if τi = ri

T if τi ∈ (ri, T ]

, (5.61)

where ri > 0 is a tunable parameter that partitions the interval [T0, T ] of each agent.

Note that in (5.61), the update rule is set-valued whenever τi = ri, and in this case, the

parameter τi can be updated either as τ+i = T0 or τ+i = T . By studying this set-valued

rule, we can establish suitable robustness properties concerning potential disturbances that

might slightly perturb τi near the point ri ∈ [T0, T ]. This ensures that such perturbations

will not significantly alter the system’s behavior.

To incorporate the additional discrete-time updates (5.61) into the overall jump

map of the system, we consider the following set-valued mapping:

Gd(x) :=
{
(θ̂, p̂, τ̂) ∈ R(2n+1)N : θ̂ = θ, p̂i = pi, τ̂i = T0,

τj ∈ Rj(τj), p̂j = pj , ∀j ∈ Ni,
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p̂k = pk, τ̂k = τk ∀k ̸= i ̸= j
}
,

which is defined to be non-empty if and only if τi = T and τj ∈ [0, T ). In words, the

mapping Gd(x) captures the resets of the individual states (θi, pi, τi) ∈ R2n+1 of agent i

via (5.40), and also the updates of its neighbors j ∈ Ni via (5.61). The overall jump-map

of the multi-agent hybrid system can then be defined using the outer-semicontinuous hull

of Gd
2, which is denoted as Gd, leading to the overall discrete-time dynamics

(x, u) ∈ D× RN+k̄, x+ ∈ G(x) := Gd(x). (5.62)

Note that system (5.62) preserves the sparsity property of the graph G.

The decentralized continuous-time dynamics (5.58) and the decentralized discrete-

time dynamics (5.62) comprise the overall DMCL algorithm with restarts studied in this

chapter. This algorithm is fully modeled by the HDS

H := (C,F,D,G). (5.63)

The following theorem provides a decentralized version of Theorem 5.5. In this case, stability

of τ is studied with respect to the “synchronized” set Async := ([T0, T ] · 1N) ∪ {T0, T}N ,

and the stability properties of the overall state x are studied with respect to the compact

set

A := Aθp ×Async. (5.64)

For simplicity, we state the result for the case u = 0, but we also comment on the robustness

properties of the dynamics.

2The outer-semicontinuous hull of a set-valued mapping G : Rn ⇒ Rn is the unique set-valued mapping
Ḡ : Rn ⇒ Rn satisfying graph(Ḡ) = cl(graph(G)), where cl(·) stands for the closure.
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Figure 5.11. Left: Trajectories of H when G is fully connected. Right: Trajectories of H
when G is a cycle. Here, θ̃ = θ − 1N ⊗ θ⋆

Theorem 5.6. Consider the HDS H given by (5.63), and suppose that Assumption

5.6 holds and that:

a) The parameters (T0, T ) satisfy (5.56).

b) The constants {ri}i∈V satisfy T0 < ri < T0 +
(T−T0)
N−1

Then, the set A := Aθp×Async is UGES for H, and there exists a time t∗ ∈
[
0, 2T−T0

ω

)

such that for every solution x of H and every (t, j) ∈ dom(y) such that t+j ≥ t∗+2N ,

the bound (5.57) holds.

Remark 5.13. (Nominal Robustness) Since the hybrid system H is nominally

well-posed in the sense of [33, Ch. 6], the UGES properties of the DMCL algorithm

are preserved, in a semi-global practical sense, under arbitrarily small additive

perturbations on states and dynamics. This property is crucial for the use of H in

practical applications where dynamic disturbances are unavoidable, such as those in

(5.28).
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Remark 5.14. (Strong Robustness via ISS) The techniques employed to proof

Theorem 5.6 can be further utilized to obtain ISS of H provided that u originates

from a dynamical system evolving in a compact set. We omit this extension due to

space constraints.

Remark 5.15. Since system H has no finite-escape times due to the global Lipschitz

property of F in C, it follows that the stability results of Corollary 5.2 also extend

to H with ηi = 0 for all i, recovering the convergence result of Theorem 5.5 after an

initial finite synchronization phase.

To the best of the author’s knowledge, Theorems 5.5-5.6 and the respective corol-

laries, are the first stability results for momentum-based CL algorithms implemented in

multi-agent systems with general directed graphs. We note that in the literature of central-

ized CL, other accelerated algorithms have been studied using finite-time and fixed-time

stability tools in [6, 149, 150]. However, as shown in the comparison presented in [6], when

the “level of richness” of the data (i.e., α in Assumption 1) is “low”, momentum-based

methods can achieve competitive transient performance compared to other first-order

non-smooth techniques. For decentralized problems defined over networks, we are not

aware of finite-time or fixed-time CL algorithms that are stable under Assumption 5.6. A

natural progression for future research involves developing such algorithms and comparing

them with the DMCL algorithms proposed in this chapter.

5.2.3 Applications in Estimation, Control, and Model-free
Feedback Optimization

In this section, we apply the DMCL algorithm with restart in three different

applications.
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Hybrid Cooperative Identification Over Digraphs

First, we validate Theorem 5.6 in an cooperative estimation problem defined in

a multi-agent system with N = 5, n = 3, and ψi(s) = (10e−is − 1)2, for all i ∈ V. To

implement the DMCL algorithm with coordinated restarts, we parameterize ψi(·) using the

regressor ϕi(s) := (1, 10e−is, 100e−2is) and θ⋆ = (1,−2, 1). To satisfy Assumption 5.6 with

α = 5.5, each agent records five measurements of ψi. We implement the hybrid system

H and plot the resulting trajectories of the estimation error in the left plot of Figure

5.11, using kr = 80, kc = 0.08, and a fully connected graph. We also show with dashed

lines the trajectory obtained when using the first-order decentralized CL dynamics of

[129]. Since the graph is symmetric, in this case T can be selected arbitrarily large to tune

the convergence rate of the dynamics (see inequality (5.56)). The simulations start from

a non-synchronized initial condition τ(0, 0) ̸= τ015 and rapidly achieve synchronization.

Trajectories related to different choices of T are also shown to illustrate the impact of

the restart period on the convergence rate. Next, we let G be a cycle digraph, for which

σ2
Ω = 0.18. The resetting parameter T is selected to satisfy inequality (5.56), and the

resulting trajectories are shown in the right plot of Figure 5.11. In this case, the best

transient performance is obtained as T approaches the upper bound T.

Data-Enabled Hybrid Cooperative MRAC

A key advantage of the robust stability results presented in Theorems 1 and 2,

is that the DMCL dynamics can be interconnected with other systems for the solution

of feedback control problems. To illustrate this application, we consider a multi-agent

dynamical system, where each agent has individual dynamics of the form:

χ̇i = Aiχi +Biui +Biψ̃i(θ
⋆, χi), χi ∈ Rn, ui ∈ Rm, (5.65)
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where ψ̃i(θ
⋆, χ) = ϕi (χ)

⊤ θ⋆ models structured uncertainty parameterized by a common

vector θ⋆, and an individual regressor ϕi that is known by each agent i. The agent’s goal is

to be able to asymptotically track a common bounded reference r despite the uncertainty

in their model.

Two-Time Scale Hybrid Dynamics: To solve the tracking problem we use

a two-time scale approach. First, we introduce a reference model χ̇r = Arχr + Brr,

where Ar is assumed to be Hurwitz. Following the ideas of [41], each agent implements

a model-reference adaptive control (MRAC) law that incorporates three elements: (1)

an adaptive component uai(θi, χi) = ϕi(χi)
⊤θi, where θi is the individual estimate of θ⋆;

(2) a state-feedback component usi(χi, χr) = −K(χi − χr); and (3) a feed-forward term

ufi designed such that Biufi(χr) = (Ar − Ai)χr +Brr; see Figure 5.12 for an illustration

of the control law. Using ui(θi, χi, χr) = usi(χi, χr) + ufi(χr)− uai(θi, χi), and the error

coordinates ei = χi − χr, the error dynamics for agent i become:

ėi = Amiei +Bi

(
ψ̃i(θ

⋆, ei + χr)− uai(θi, ei + χr)
)
, (5.66)

where Ami := Ai−BiK, for all i. We make the assumption that system (5.66) has no finite
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escape times from all initial conditions, and that Assumption 5.6 holds. To cooperatively

estimate θ, we interconnect (5.66) with the DMCL algorith with restart given by (5.63),

with flow map

x ∈ C, ẋ = kaF(x, 0), (5.67)

where the pair (C,F) is given by (5.58), and where ka > 0 is a tunable parameter.

To study the stability of the interconnected system, we first assume the existence

of a centralized timer τc that coordinates the resets, with dynamics τ̇c = ω ∈ (0, 1).

We interpret the closed-loop system as a two-time scale hybrid dynamical system with

the DMCL algorithm having continuous-time dynamics operating in a faster time scale

compared to (5.66). Since Am is Hurwitz, for each Q ≻ 0 there exists P ≻ 0 such that

A⊤
mP + PAm = −Q, i.e., system (5.66) is UGES when θi = θ. Similarly, by Theorem

5.5, the momentum-based hybrid dynamics Hc render the set Ac UGES via a Lyapunov

function V . We can then study the interconnection of both systems using the Lyapunov

function V1 = 0.5Ṽ (e) + 0.5V (x), with Ṽ (e) = e⊤Pe, and V constructed as in Section

C.2. Indeed, from the proof of Theorem 5.5 in Section C.2, the change of V1 after a jump

satisfies ∆V1 := V1(e
+, x+)− V1(e, x) = ∆V (x) ≤ 0 because e+ = e. On the other hand,

during flows of the closed-loop system, the time derivative of V1 satisfies

V̇1 = −e⊤Qe− 0.5kV (yc) + e⊤Qϕ(χ(t))⊤θ

≤ −λmin(Q)|e|2 − ka|yc|2Ac + kϕ|e||y|A,

where we used the quadratic lower bounds of V , and the boundedness of the regressors

to obtain kϕ > 0. From here, the result follows by completing squares and taking ka

sufficiently large such that V̇ < 0 using standard arguments for two-time scale systems [22,

Ch. 11.5]. Since ∆V ≤ 0, the jumps are periodic, and V1 has quadratic upper and lower

bounds, we obtain UGES of the set A1 = {0}×Ac, where Ac is defined right before (5.55).
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The stability properties for the decentralized case follow now by leveraging the absence of

finite escape times, and by using the reduction principle as in the proof of Theorem 5.6.

Numerical Example

To illustrate the previous result, we consider a multi-agent system with N = 5

agents, where the communication graph G is a directed cycle graph, see the inset in Figure

5.12. We consider open-loop unstable individual dynamics characterized by matrices

Ai = E12 ∈ R2×2, Bi =
(
0, 2i−1

2i

)
, and the parameterized uncertainty ψ̃i(χi) = ϕi(χi)

⊤θ,

with θ = (−1, 1, 0.5) and ϕi(χi) = (sin (χ1,i) , |χ2,i|χ2,i, e
χ2,iχ1,i), for all i ∈ V. For the

MRAC controllers, we consider a second order reference model with natural frequency

and damping ratio equal to 1, a state-feedback gain K = (1, 1), and a feed-forward term

ufi (χr) = − 2i
2i−1

(
1⊤
2 χr − r

)
, for all i ∈ V. Each agent records two measurements of ψ̃i

and χi at times ti,k ∈ {0, 1.5}. The corresponding data matrices ∆i are not individually

rich, which precludes the direct application of standard CL techniques [41] or “one-shot”

methods. However, the collective data satisfies the CSR condition in Assumption 5.6 with

α = 0.9. To regulate the state χi to zero, we choose r = 0, kr = 1, kt = 0, kc = 0.1, ka = 3,

T0 = 0.1, and T = 5. We let each agent implement an MRAC controller interconnected

with the hybrid dynamics H and show the resulting trajectories in Figure 5.12. As

observed, the DMCL algorithm with restart yields better transient performance compared

to traditional first-order cooperative approaches without momentum [129]. Note that these

results are obtained using decentralized recorded (i.e., batch) data, as opposed to real-time

PE data. The latter might require potentially extreme transient excursions of some states

whenever the parameter estimation is accelerated, which is a well-known challenge in

real-time adaptive control, see [151].
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Figure 5.13. Left: Scheme of the ith agent’s dynamics in the data-enabled hybrid
cooperative feedback optimization dynamics. Right: Trajectories of the vehicles. The
arrows represent the edges of G. The final positions of the vehicles are represented by
stars.

Data-Enabled Hybrid Cooperative Feedback Optimization

Consider a multi-agent system with dynamics

χ̇i = Pi(χi, ui), yi = hi(χi, ui), (5.68)

where χi ∈ Rn is the state, ui ∈ Ui ⊂ R is the input, and yi ∈ R is the output. The set

Ui is assumed to be compact and convex for all i ∈ V. We consider the setting where

agents seek to cooperatively find, in real-time and in a model-free manner, an optimal

input u∗ that maximizes their individual outputs at steady state. This scenario describes a

classic data-enabled model-free feedback optimization or extremum-seeking problem [129].

To guarantee that this problem is well-posed, the function P := P1 × P2 × . . . × PN is

assumed to be globally Lipschitz in both arguments, and we also assume there exists a

smooth function u 7→ m(u) = m1(u1)×m2(u2)× . . .×mN(uN), such that for each fixed

u ∈ U := U1 ×U2 × . . .×UN ⊂ RN , the system χ̇ = P(χ, u) renders the equilibrium point

χ⋆ = m(u) UGES, uniformly on u. Since the function m(·) describes the steady-state
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input-to-state mapping of (5.68), the optimization problem that each agent i seeks to

solve can be written as

max
ui∈Ui

Ji(ui) := hi(mi(ui), ui), (5.69)

where the response maps Ji are assumed to be unknown, continuously differentiable,

strongly concave, common across the network; and parametrizable as Ji(ui) = ϕi(ui)
⊤θ⋆,

for all ui ∈ Ui, where ϕi is a known continuous and bounded regressor. Functions

that satisfy these conditions are common in source seeking problems, where a group of

mobile robots seeks to cooperatively find the maximizer of a common potential field using

intensity measurements, see [129]. In the more general case, we note that, by the universal

approximation property of smooth functions, the above assumption on J always holds on

compact sets, modulo a small residual error that is also bounded on compact sets. In this

case (i.e., non-zero approximation error), our result still holds but now in a “semi-global

practical” sense, provided that the bound on the residual approximation error is sufficiently

small, a property that can always be achieved by increasing the complexity (i.e., number

of basis functions, etc) of the approximator.

Three-Time Scale Hybrid Dynamics: To solve the model-free feedback

optimization problem using recorded data that is distributed among the agents, we use a

three-time scale approach. Let u⋆ = (u⋆1, u
⋆
2, . . . , u

⋆
N) be the vector whose entries are the

solutions to the N optimization problems defined in (5.69). To steer u towards u∗, we

consider the following feedback optimization dynamics for each agent i:

u̇i = −εuui + εuPUi
(
ui +Dϕi(ui)

⊤θi
)
, ∀ i ∈ V , (5.70)

where Dϕi(ui) is the Jacobian matrix of ϕi(ui), the function PUi(·) is the Euclidean

projection on the set Ui, εu > 0 is a tunable parameter, and θi is the individual estimate of

θ⋆, which will be recursively updated using the DMCL algorithm with restart, modeled by
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the hybrid system H; refer to Figure 5.13 for an illustration of the overall control scheme.

To study the stability properties of the closed-loop system, we modeled the overall

dynamics as a three-time scale system, where the plant dynamics (5.68) operate at a

faster time scale, the DMCL dynamics with restart operate in a medium time scale, and

the optimization dynamics (5.70) operate at the slowest time scale. Such time scale

separation can be induced by an appropriate tuning of the gains εu in (5.70) and ka

in (5.67). By the stability assumptions on the plant dynamics (5.68), and by using a

standard converse Lyapunov theorem [22, Thm. 4.14], there exists a Lyapunov function

V1 : RnN → R, and constants ci > 0, for i ∈ {1, 2, 3, 4}, such that c1|χ − m(u)|2 ≤

V1(χ) ≤ c2|χ −m(u)|2, ⟨∇V1(χ), P (χ, u)⟩ ≤ −c3V1(χ), and |∇V1(χ)| ≤ c4|χ −m(u)| for

all χ ∈ Rn and u ∈ U . Similarly, by the proof of Theorem 5.5, and since the HDS H

satisfies the hybrid basic conditions [33, Ch.6], there exists a quadratic Lyapunov function

V that decreases exponentially fast during flows and jumps of H, provided that the data

matrices {∆i}i∈V are CSR. Additionally, since the static-map (5.69) is strongly concave,

the optimization dynamics (5.70) with θi = θ⋆ reduced to a projected gradient flow that

renders UGES the point u⋆i via the quadratic Lyapunov function V2 =
1
2
|ui − u∗i |2, which

satisfies V̇2 ≤ −γ2V2 [152, Thm. 3]. Using these individual quadratic-type Lyapunov

functions, and the global Lipschitz properties of the vector fields (5.68), (5.67), and (5.70),

we can now use the Lyapunov function V̂ = V + V1 + V2 to establish exponential stability

of the closed-loop system by following, recursively, the exact same steps of [22, Ch. 11.5],

and using sufficiently small gains εu and ka.

Numerical Example: Consider a multi-vehicle system with N = 5 vehicles,

seeking to collaboratively locate the source of a potential field that is only accessible

via intensity measurements. The vehicles share information via a communication graph

G characterized again by a cycle. We assume the plant dynamics (5.68) have the form

Pi = Aiχi + Biui with matrices Ai = −iI2, Bi = iI2, and quadratic output yi =

χ⊤
i Qiχi + w⊤

i χi + di where Qi = −I2, wi = (−8.1,−5.88), and di = −25 for all i ∈ V.
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The sets Ui are given by Ui = ξi + 2B where ξi = R(2πi/N)(1, 0), with R(α) being the

standard 2× 2 matrix that rotates a vector by an angle α. In this case, the steady-state

input-to-output map (5.69) reduces to Ji(ui) = −|ui|2 + w⊤
i ui + di, and each agent uses

the vector of basis functions ϕi(ui) =
(
u2i,1, ui,1, u

2
i,2, ui,2, ui,1ui,2, 1

)
, where the parameter

θ⋆ = (−1,−8.09,−1,−5.88, 0,−25) is assumed to be unknown. To implement the DMCL

dynamics with restart, each agent has access to only two points of data {ui,k, yi,k}2k=1. In

this way, while the individual data is not persistently exciting for each agent, the collective

data satisfies Assumption 5.6 with α = 0.75. Using these data and the parameters

kr = 1, kt = 0, kc = 0.1, ka = 0.1, εu = 0.01, T0 = 0.1, and T = 5, we simulate the closed-

loop system comprised of the plant dynamics, the optimization dynamics in (5.70), and the

hybrid dynamics H. Figure 5.13 shows the resulting trajectories of the vehicles, converging

to the maximizers of Ji in Ui. Figure 5.14 shows the evolution in time of the parameter

estimation error and the control signals. It can be observed that, given the low richness of

the collected data (small α), the proposed decentralized concurrent learning algorithm

with momentum achieves faster convergence compared to the first-order cooperative

estimation approach of [129]. In this section, we explored decentralized concurrent learning

dynamics with momentum and coordinated resetting for multi-agent systems over directed
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graphs. The proposed approach utilizes intermittent coordinated resets to enable collective

convergence to a common parameter estimate, even with asymmetric information flow.

Using Lyapunov theory for hybrid systems, we established input-to-state stability properties

for the momentum-based dynamics, subject to a cooperative richness condition on the

data matrices and a topology-dependent lower bound on the resetting frequency. We

demonstrated the effectiveness of the proposed dynamics in cooperative adaptive control,

showcasing their advantages in accelerated convergence and enhanced transient behavior

compared to first-order adaptation algorithms. Future research directions will investigate

state-dependent resets and stability results for multi-agent systems with cooperative

persistently exciting regressors using averaging theory for hybrid systems following the

ideas of [153, Ex. 6.3].
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Chapter 6

Data-Driven Hybrid Dynamics and Nonsmooth ODEs for

Accelerated Concurrent Learning

We study efficient algorithms for online parameter estimation problems which can

be cast as uncertain linear parametric models of the form

y(t) = ϕ(t)⊤θ∗, (6.1)

where y : R≥0 → R is a measurable signal, ϕ : R≥0 → Rn is a uniformly bounded

vector-valued regressor function, and θ∗ ∈ Rn is an unknown parameter that we want to

estimate. This problem plays an important role in different areas, such as adaptive control

[154], model-free optimization of dynamical systems [155], and reinforcement learning

[156], to name just a few. To achieve online parameter estimation with convergence and

robustness certificates, different feedback-based algorithms have been proposed during

the last three decades; see [157, 158, 159]. It is well-known that most of the adaptive

estimation dynamics that achieve uniform convergence to the true parameter θ∗ require a

persistence of excitation (PE) condition in the regressor ϕ, of the form

∫ t+T

t

ϕ(s)ϕ(s)⊤ds ≻ υI, ∀ t ≥ t0, where T, υ > 0. (6.2)
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Indeed, in several adaptive estimation dynamics the PE condition has been shown to be

sufficient and necessary to achieve (uniform) exponential convergence. This includes, the

so-called gradient method [160]:

˙̂
θ = −σϕ(t)

(
ϕ(t)⊤θ̂ − y(t)

)
, σ ∈ R>0, (6.3)

which has been widely used in academic and industrial applications. To relax the PE

condition, the works [161], [162], and [163] introduced a class of concurrent learning

(CL) adaptive dynamics that incorporate a sequence of recorded data {ϕ(tk)}Nk=1 that is

“sufficiently rich”, resulting in a data-driven ordinary differential equation (DD-ODE) of

the form

˙̂
θ = −σϕ(t)

(
ϕ(t)⊤θ̂ − y(t)

)
− ρ

N∑

k=1

ϕ(tk)
(
ϕ(tk)

⊤θ̂ − y(tk)
)
, (6.4)

where σ ∈ R≥0 and ρ ∈ R>0 are tunable gains. These types of algorithms have been

extended in several directions to develop PE-free adaptive dynamics in the context of

model-reference adaptive control [161], reinforcement learning [164], extremum seeking

control [155], and general networked estimation problems [146], to name just a few examples.

However, by removing (or relaxing) the PE condition, these types of data-driven algorithms

can also suffer from poor transient performance in terms of slow rates of convergence,

especially when the matrix of recorded data is ill-conditioned. This behavior stems from

the fact that systems of the form (6.3) or (6.4) can be cast as time-varying gradient flows

for which the Hessian matrix might be degenerate whenever the PE condition is relaxed.

Indeed, the slow learning rates that may emerge in CL have limited its application in

practical engineering problems that require fast adaptation and/or estimation.

Motivated by this background, in this report we introduce a novel class of concurrent

learning algorithms able to achieve acceleration and/or fixed-time convergence properties.

The dynamics make use of different types of regularization mechanisms that have been
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explored during the last years to design optimization algorithms and feedback controllers

with high-transient performance, but which have never been studied in the context of

CL. Given that the proposed dynamics are non-smooth, they are modeled either as

non-Lipschitz ODEs [22] or as hybrid dynamical systems [33]. For these systems, we

exploit hybrid Lyapunov-based methods to establish suitable stability and convergence

properties. Additionally, taking inspiration from machine-learning setups, we study a

couple of numerical examples to illustrate the performance of our algorithms. As evidenced

by the numerical experiments, the proposed fast algorithms significantly outperform the

standard CL dynamics in terms of transient performance and steady state error.

Accelerated Adaptive Concurrent Learning Dynamics

To describe the dynamics considered in this chapter, for the estimation of θ∗ in

(6.1), let the mappings A : R≥0 × Rn → Rn and B : Rn → Rn be defined as

A(s, θ̂) :=
ϕ(s)

(1 + ϕ(s)⊤ϕ(s))2
(ϕ(s)⊤θ̂ − y(s)), (6.5a)

and B(θ̂) :=
N∑

k=1

ϕ(tk)

(1 + ϕ(tk)⊤ϕ(tk))
2

(
ϕ(tk)

⊤θ̂ − y(tk)
)
. (6.5b)

Using (6.5) and (6.1), the DD-ODE (6.4) can be written as a time-invariant dynamical

system of the form

(θ̂, s) ∈ Rn × R≥0,
˙̂
θ = −σA(s, θ̂)− ρB(θ̂), ṡ = 1. (6.6)

Taking system (6.6) as a benchmark, we will construct four different data-driven CL dy-

namics that will achieve (uniform) global asymptotic convergence, exponential convergence,

finite-time convergence, and fixed-time convergence, respectively, to the true parameter

A0 := {θ∗}. The convergence of these dynamics will depend on the “richness” properties of

the available recorded data, a notion that is captured by a finite-time version of persistence
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of excitation; see [47].

Assumption 6.1. Let {ϕ(tk)}Nk=1 be a sequence of recorded data. Then, the matrix

D := [ϕ(t1), ϕ(t2), · · · , ϕ(tN)] ∈ Rn×N

satisfies rank(D) = n.

Sequences of data satisfying Assumption 6.1 are said to be sufficiently-rich (SR).

The following lemma provides an equivalent (and instrumental) characterization of SR

data.

Lemma 6.1. Let {ϕ(tk)}Nk=1 be a sequence of recorded data, and let P :=
∑N

k=1
ϕ(tk)ϕ(tk)

⊤

(1+ϕ(tk)⊤ϕ(tk))
2 . Then {ϕ(tk)}Nk=1 is SR if and only if there exists γ ∈ R>0

such that P ⪰ γIn.

We call the constant γ the level of richness of the data {ϕ(tk)}Nk=1. Additionally,

for ease of presentation, we introduce the mappings Ψ : R≥0 → Rn and Ω : R≥0 → Rn×n

Ψ(s) :=
ϕ(s)

1 + ϕ(s)⊤ϕ(s)
,

Ω(s) := σΨ(s)Ψ(s)⊤ + ρP,

such that σA(s, θ̂) + ρB(θ̂) = Ω(s)θ̃, where

θ̃ := θ̂ − θ∗.

The following Lemma characterizing bounds for the matrix Ω, will be instrumental for

the main stability and convergence proofs of the algorithms. All proofs are presented in

Appendix D.
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Lemma 6.2. If the data is SR and the regressor vectors are uniformly bounded,

then there exist κ ∈ R>0 and K ∈ R>0 such that

κIn ⪯ Ω(s) ⪯ KIn ∀s ∈ R>0

6.1 Data-Driven Accelerated Hybrid Dynamics

with Periodic Restarting

The first dynamical system that we consider is inspired by Nesterov’s ODEs

studied in the context of accelerated optimization; see [19] and [18]. Such algorithms can

induce suitable acceleration properties by incorporating dynamic momentum, emulating

in continuous time the acceleration properties of Nesterov’s accelerated optimization

algorithm; see [165]. However, unlike the results of [19] and [18], in the setting of CL

we are also interested in establishing suitable robustness properties that are relevant in

applications where noisy measurements are unavoidable. Such robustness properties can

be obtained by endowing the dynamics with discrete-time restarting mechanisms that

persistently reset the momentum coefficient/state of the dynamics. The combination

of continuous-time and discrete-time dynamics leads to a hybrid regularization of the

Nesterov’s discrete-time algorithm which, for time-invariant problems, has been modeled

as a HDS in [29], [166], and [4]. Based on this setting, the hybrid accelerated concurrent

learning (HACL) dynamics that we consider in this chapter are modeled by a HDS with

state x := (θ̂, p, τ), where θ̂ is the estimation state, p ∈ Rn is the momentum state, and

τ ∈ R>0 is a resetting state. The dynamics are given by

C :=
{
x ∈ R2n+2 : τ ∈ [T0, T ]

}
,




˙̂
θ

ṗ

τ̇

ṡ




= F (x, s) :=




2
τ

(
p− θ̂

)

−2kτ
(
σA(s, θ̂) + ρB(θ̂)

)

1
2

1




,

(6.7a)
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D :=
{
x ∈ R2n+2 : τ = T

}
,




θ̂+

p+

τ+

s+




= G(x) :=




θ̂

(1− q)p+ qθ̂

T0

s




, (6.7b)

where k ∈ R>0 is a tunable gain, ∞ > T > T0 > 0 are tunable parameters that describe

how frequently the algorithm resets, and q ∈ {0, 1} is a Boolean variable that characterizes

the resetting policy of the algorithm. In particular, when q = 0 the HACL only resets

the coefficient τ , whereas when q = 1 the algorithm also resets the momentum state p.

By construction, the discrete-time updates of the system are periodic and separated by

intervals of flow of duration 2(T − T0). To guarantee suitable convergence properties, we

will impose the following “data-driven” condition on the parameters (T0, T ) and the gains

(k, ρ).

Assumption 6.2. The tunable parameters (T0, T, k, ρ) satisfy T
2
0 + 1

2kγρ
< T 2 < 8ργ

kσ2

where γ ∈ R>0 is given by Lemma 6.1.

Remark 6.1. Note that, for all (T0, T ) ∈ R>0×R>0, there exists (ρ
∗, σ∗) ∈ R>0×R>0

such that, for all ρ ≥ ρ∗ and σ ≤ σ∗, the condition on the tunable parameters of

Assumption 6.2 holds.

The following theorem, which is the first main result of this chapter, characterizes

the convergence properties of the HACL dynamics.

Theorem 6.1. Suppose that Assumptions 6.1 and 6.2 hold. Then, every maximal

solution of system (6.7) has an unbounded time domain, and the closed set A :=

A0×A0× [T0, T ]×R≥0 is UGAS. Moreover, for each compact set of initial conditions

K ⊂ C ∪D, the following convergence properties hold for all (t, j) ∈ dom(x, s):

(a) If q = 0, then for each j ∈ Z≥0 there exists a monotonically decreasing and
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convergent to 0 sequence βj ∈ R>0, such that each trajectory of the system

satisfies the bound

|θ̃(t, j)|2 ≤ βj
kρτ(t, j)2

. (6.8)

for all (t, j) ∈ dom(x).

(b) If q = 1, the set A is UGES, and each trajectory of the system satisfies the

bound

|θ̃(t, j)| ≤ k0γ̃
j|θ̃(0, 0)|, (6.9)

for all (t, j) ∈ dom(x), and where γ̃ =

√
1

kρT 2

(
1
2γ

+ kρT 2
0

)
∈ (0, 1), k0 =

T
T0
.

The result of Theorem 6.1 establishes two main convergence properties: item (a)

establishes that the estimation error decreases at a rate of approximately O(1/τ 2) during

flows, where τ increases linearly with time. On the other hand, item (b) establishes

exponential convergence with a convergence rate adjustable via the values of (T0, T, k, ρ).

In this case, information-rich data sets (γ ≫ 1) lead to faster rates of convergence. Optimal

restarting periods, similar to those studied in [31] and [25], can also be derived for system

(6.7).

6.2 Data-Driven Accelerated Hybrid Dynamics

with Adaptive Restarting

The HACL dynamics (6.7) implement a periodic restarting mechanism that is

coordinated by the state τ . In this subsection, we now consider an alternative approach

based on adaptive restarting, where the momentum state is reset whenever a certain

state-dependent condition is satisfied. Such type of mechanisms have been studied in the

optimization literature; see [19], [31], [167]. However, in the context of CL, these types

of mechanisms have remained mostly unexplored. To study this case, we introduce the
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function

H(θ̂, p) =
|θ̃|2P
2

+
1

2
|p|2,

where | · |P : Rn → R≥0 is a data-induced norm defined as |u|2P := u⊤Pu for all u ∈ Rn,

with P as defined in Lemma 6.1. We then consider the Hybrid Hamiltonian Concurrent

Learning (HHCL) algorithm, with x = (θ̂, p, τ) ∈ Rn × Rn × R≥0, and dynamics given by

x ∈ C := C0 × [0, T ],




˙̂
θ

ṗ

τ̇




=




0 kρIp 0

−kρIp 0 0

0 0 1







∂H

∂θ̂

∂H
∂p

1



, (6.10a)

x ∈ D := (C0 × {T}) ∪ (D0 × [0, T ]) ,




θ̂+

p+

τ+




=




Ip 0 0

0 0 0

0 0 0







θ̂

p

τ



, (6.10b)

where T := nπ
2kρ

√
γ
, γ is the level of richness of the data, and where

C0 :=
{
(θ̂, p) : ⟨B(θ̂), p⟩ ≤ 0

}
,

D0 :=

{
(θ̂, p) : ⟨B(θ̂), p⟩ = 0 & |p|2 ≥

∣∣∣B(θ̂)
∣∣∣
2

/λ

}
,

with λ ≥ λmax(P ). Given that ∂H

∂θ̂
= B(θ̂) and ∂H

∂p
= p, the construction of the sets C0

and D0 indicate that system (6.10) is allowed to flow whenever there is no increase in the

potential energy of the data-induced Hamiltonian function H.

Remark 6.2. The role of the timer τ in system (6.10) is to guarantee the existence

of an initial reset after an interval of flow of duration T > 0. Once this reset has

occurred, the update p+ = 0 will guarantee that the next reset of the system will

happen before τ = T , i.e., due to the condition |p|2 ≥
∣∣∣B(θ̂)

∣∣∣
2

/λ for all x ∈ D.
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Such types of bounds on the reset times have also been used in [167] for standard

optimization problems. However, in the context of CL, their application is new. In

particular, note that the parameter T in the jump set D is now data-dependent.

The following theorem is the second main result of this chapter.

Theorem 6.2. Suppose that Assumption 6.1 holds. Then, system (6.10) renders the

set AH = A0×{0}× [0, T ] UGES, and every solution has an unbounded time-domain

satisfies the bound

|θ̃(t, j)| ≤
√

2c0
γ

min
{
1, e−

α
2
(t−T̃ )

}
|θ̃(0, 0)| (6.11)

for all (t, j) ∈ dom(x), where α = 1
T
ln
(
1 + γ

λ̄

)
, T̃ = 2T and c0 > 0.

6.3 Finite-Time and Fixed-Time CL Dynamics

While the hybrid CL dynamics (6.7) and (6.10) can induce sublinear and linear

convergence rates, the convergence properties of the algorithms are still of asymptotic

nature, i.e., θ(t) → θ∗ only as t→ ∞. In this subsection, we consider a different class of

learning dynamics able to achieve exact convergence to the true parameter θ∗ in a finite

amount of time. Moreover, in some cases this finite time can be upper bounded by a

constant independent of the initial conditions of the estimate θ̂, which leads to fixed-time

convergence guarantees.

In particular, to achieve finite time convergence we consider the Finite-Time

Concurrent Learning (FTCL) dynamics modeled by the following non-smooth DD-ODE

with s ∈ R≥0:

θ̂ ∈ C := Rn,
˙̂
θ = −kσA(s, θ̂) + ρB(θ̂)

|B(θ̂)| 12
, ṡ = 1, (6.12)
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where (k, σ, ρ) ∈ R>0 × R≥0 × R>0 are tunable gains, where the pair (A,B) is defined in

(6.5), and where we let
˙̂
θ := 0 at θ̂ = θ∗. In order to provide global convergence guarantees,

we first proceed to prove that the vector field describing the FTCL dynamics only vanishes

when the estimate is equal to the true parameter vector.

Lemma 6.3. If the data is SR, then:

a) B(θ̂) = 0 ⇐⇒ θ̂ = θ∗.

b) For any σ ∈ R≥0, for the FTCL dynamics we have that
˙̂
θ = 0 ⇐⇒ θ̂ = θ∗.

Now, we show that the defined vector field is everywhere continuous, and hence,

that the existence of solutions for the FTCL dynamics is guaranteed. To do so, we first

introduce the following Lemma.

Lemma 6.4. If the data is SR, then:

a) limθ̂→θ∗
B(θ̂)

|B(θ̂)|a = 0 and limθ̂→θ∗
A(s,θ̂)

|B(θ̂)|a = 0 ∀a ∈ (0, 1).

b) The vector field defining the FTCL dynamics is everywhere continuous.

For the FTCL dynamics we establish the following stability result, which is the

third main contribution of the paper.

Theorem 6.3. Suppose that Assumption 6.1 holds. Then, system (6.12) renders

the set A0 × R≥0 UGFTS, every solution has an unbounded time domain, and the

settling time function satisfies

T (θ̂(0)) ≤ 2

kγρ
λ1/2max(P )

√
|θ̂(0)− θ∗|.

The result of Theorem 6.3 guarantees that θ̂(t) = θ∗ for all t ≥ T (θ̂(0)), where

T (θ̂(0)) depends on the initial conditions of the estimate θ̂(0), as well as the level of
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richness γ of the data. To remove the dependence on θ̂(0) we can further consider a class of

Fixed-Time Concurrent Learning (FXCL) dynamics, modeled by the following nonsmooth

DD-ODE:

θ̂ ∈ C := Rn,
˙̂
θ = −kσA(s, θ̂) + ρB(θ̂)

|B(θ̂)|a
− k

σA(s, θ̂) + ρB(θ̂)

|B(θ̂)|−a
, ṡ = 1, (6.13)

where (k, σ, ρ) ∈ R>0 × R≥0 × R>0 are tunable gains, a ∈ (0, 1) is a tunable exponent,

and where we let
˙̂
θ := 0 at θ̂ = θ∗. Uniqueness of the equilibrium point θ∗ for the FXCL

dynamics follows a similar argument to the one presented in the proof of Lemma 6.4.

Moreover, we note that system (6.13) is not Lipschitz continuous, however, as we next

prove, it is everywhere continuous in θ̂, and thus, existence of solutions is guaranteed.

Lemma 6.5. If the data is SR, the vector field defining the FXCL dynamics is

everywhere continuous.

The following theorem is the fourth main result of this chapter.

Theorem 6.4. Suppose that Assumption 6.1 holds. Then, system (6.13) renders

UGFXS the set A0 × R≥0 with T ∗ = π
2aγρk

√
λamax(P )

γa
, and every solution has an

unbounded time-domain.

Remark 6.3. Note that the fixed-time T ∗ is independent of the initial estimate θ̂(0),

but dependent on the level of richness of the data of the regressor, i.e., dependend

on γ > 0.

The results of Theorems 6.1-6.4 establish new convergence bounds for CL algorithms

that explicitly show the dependence on the richness of the data, i.e., the constant γ. In

particular, while the standard CL dynamics of [161] achieve exponential convergence with

rate of convergence proportional to the level or richness of the matrix P (cf. Lemma

6.1), under suitable tuning of the restarting parameters the data-driven hybrid dynamics

160



introduced in this chapter can achieve rates of convergence proportional to the squared

root of the level of richness of the matrix P , see [24], [167] and [25]. This acceleration

property is induced by the addition of momentum to the dynamics, and the design of the

flow set and the jump set. Similarly, for the non-smooth DD-ODES (6.12) and (6.13),

our results establish finite and fixed-time convergence bounds that are similar to those

obtained in [168] for adaptive model-free optimization, but which are new in the context

of CL, with an explicit characterization of the convergence time in terms of the level of

richness of the data. Finally, note that for applications where γ is small the bound (6.8)

establishes a desirable “semi-acceleration” property for estimation problems that lead to

convex optimization problems that are not necessarily strongly convex.

Numerical Experiments

In this section, we study numerical examples to illustrate the practical advantages

of the proposed algorithms. First, inspired by [161], we consider the problem of estimating

the weights of a Radial Basis Function (RBF) Neural Network with one neuron and one

bias term:

y(t) = 40e−|ω(t)−π
2 |2 + 20.

Consequently, for the different CL dynamics we choose the regressor vector

ϕ(ω) =




1

e−|ω−π
2 |2


 ,

such that the parameter vector to be estimated is given by θ∗ = [20, 40]⊤. In order to

gather data we consider the following probing signal

ω(t) = 3π sin(0.1t)− π,
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Figure 6.1. Comparison between the proposed algorithms and the DD-ODE (6.6), for
the estimation of the weights of a RBF with one neuron and one bias term. All the
algorithms are tested with σ = 0, ρ = 1, k = 1 and taking the initial estimate θ̂(0, 0)
equal to (−30,−30).

and use it to construct a sequence of recorded data {ϕ(tk)}Nk=1 of length N = 5. We verify

that the selected data is SR by computing the matrix P , as defined in Lemma 6.1, and

finding that it has level of richness γ = 0.1044. Using this data, we compare the proposed

algorithms and show the results in Figure 6.1. As depicted in the figure, the introduced

algorithms significantly outperform the standard CL dynamics in terms of asymptotic

convergence to zero steady-state estimation error. Specifically, we find that both the HHCL

and the FXCL trajectories converge to the true parameter in fixed-time, and note that,

in spite of rendering the set A = {θ∗} uniformly-globally-finite-time-stable, the FTCL

dynamics can suffer from worse transient performance than the standard CL. Now, we

consider the problem of estimating the unknown coefficients of a cost function with known

functional form. This setup takes inspiration from settings that arise in model-based

machine-learning, where a training phase is carried out offline by sampling information
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from a model of the environment that has been learnt beforehand. In particular, we study

a cost function that depends on a state z ∈ R2 as follows:

f(z) = z⊤Uz + vz + w,

where

U =




6 2.5

2.5 4


 , v =



3

2


 , w = 1.

Hence, we take as the regressor vector

ϕ(z) = [z21 , z1z2, z
2
2 , z1, z2, 1]

⊤,

such that the true parameter vector is given by

θ∗ = [6, 5, 4, 3, 2, 1].

We take N = 150 measurements from the cost function f by making use of the probing

signal

z(t) = 4



sin(0.1t)

cos(0.1t)


− 2



1

1


 ,

and obtain a matrix P from the recorded data with level of richness γ = 1.011. Under this

setup, we compare our algorithms and show the results in Figure 6.2. As shown in the

figure, the FXCL dynamics still outperforms the standard CL dynamics. However, and in

contrast to the previous numerical example, where γ < 1, we find that the difference in

performance between the standard CL dynamics and the momentum-based algorithms,
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Figure 6.2. Comparison between the proposed algorithms and the DD-ODE (6.6), for
the estimation of a cost function. All the algorithms are tested with σ = 0, ρ = 1, k = 1
and taking the initial estimate θ̂(0, 0) equal to )− 30, 30,−30, 30,−30, 30).

HACL and HHCL, is reduced. Indeed, since the convergence under the standard CL

dynamics depends proportionally on the level of richness γ, while the hybrid dynamics

achieve rates proportional to the square root of γ, the benefit of using momentum for

faster-convergence is not as evident when γ takes values above 1. However, as suggested

by the number of data points used for this case, attaining such high level of richness in

the recorded data often requires more measurements or a more thorough excitation of the

measurable signal, which in practice could be too prohibitive for the implementation of

the algorithms.

In this chapter, we introduced a new class of concurrent learning algorithms with

acceleration and finite/fixed-time convergence properties. The algorithms are suitable for

identification and parameter estimation problems that arise in the context of adaptive

control, model-free optimization, and reinforcement learning. The proposed algorithms
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are modeled as non-smooth ODEs or hybrid dynamical systems, for which suitable

stability, convergence, and robustness properties can be established via Lyapunov-based

tools and invariance principles. We illustrated the advantages of the methods via two

numerical examples and showed the benefits of using the newly proposed algorithms by

contrasting their performance with the standard concurrent learning dynamics. The usage

of momentum for accelerated parameter estimation is found to be highly beneficial when

the recorded data has low levels of richness; scenario that can arise when only a few data

points are available for the algorithms.
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Chapter 7

High-Performance Optimal Incentive-Seeking in Transactive

Control for Traffic Congestion

The increase of population density in urban and sub-urban areas has triggered a

significant growth of traffic congestion throughout the world, greatly affecting the commute

of the public, as well as the expedited delivery of goods. For example, only in 2019, and

solely in New York City, the economic losses induced by congestion climbed to $11 billion

USD. Moreover, commute times have significantly increased during the last years, forcing

drivers to spend, on average, 41 hours per year in congested traffic during morning (6

am to 9 am) and afternoon (3 pm to 6pm) peak travel times [169]. This problem is only

expected to worsen during the next years, to the point that by the end of 2022 traffic

congestion will cost $74 billion USD to the economy of the United States. To tackle this

challenge, cities throughout the world are developing and implementing automated control

and optimization algorithms that can guarantee an optimal operation of the transportation

infrastructure at all times. Examples include smart traffic light systems [170], dynamic

pricing [171, 90], ride-sharing services [172], etc. Among these mechanisms, dynamic

pricing has emerged as a promising technology to minimize congestion in dense cities such

as London [80, 81], Milan [82], and New York [83]. The goal of dynamic pricing is to induce

“optimal” traffic flows that optimize a particular performance measure in the network by

adaptively adjusting tolls or incentives [79] based on the current state of the roads. To

guarantee that the transportation system continuously operates at its optimal point, pricing
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algorithms must react quickly to changes in the traffic demand, weather conditions, road

accidents, etc. This adaptability requirement has motivated the development of different

recursive algorithms for optimal tolling computation, e.g., [84, 85, 86, 87]. Nevertheless,

most existing pricing approaches are implemented based on (quasi) static lookup tables

instead of real-time feedback traffic measurements, and therefore, under the presence of

unexpected accidents or events in the system, are susceptible to generate sub-optimal

or even “perverse” tolls that could exacerbate the very problems they were intended to

solve [171]. Other recent approaches have relied on socio-technical models that aim to

capture decision-making maps of drivers from recorded data; see [173]. In [174], [175] and

[176], the authors studied PID controllers to manage the operation of lanes in highway

systems. In [177] Hamilton-Jacobi-Bellman equations were solved for the optimal control

of high-occupancy toll lanes, and adaptive algorithms based on linear parametrizations

and welfare gradient dynamics were studied in [111]. A class of model-based saddle-flow

dynamics were also recently studied in [178] in the context of ramp metering control. For

a recent review of transactive control for dynamic pricing see [179].

In this chapter, we depart from the traditional model-based approaches studied

in the setting of transactive control, and instead, we introduce a new class of model-free

optimal incentive seeking controllers that can rapidly learn optimal incentives (e.g., tolls)

using only output measurements from the transportation systems, guaranteeing closed-loop

stability at all times. Specifically, motivated by recent advances in non-smooth and hybrid

extremum seeking control [25, 180], we introduce three incentive-seeking controllers (ISC)

for model-free optimal price seeking in dynamic pricing: a smooth ISC that emulates the

performance of a gradient-flow in the slowest time scale; a non-smooth ISC that emulates

the behavior of fixed-time gradient flows in the slowest time scale; and a hybrid ISC

that leverages momentum to improve transient performance in the slowest time scale.

Each of the three controllers are interconnected with the dynamics of the highway, which

incorporate socio-technical dynamics as well as traffic flows. Even though the controllers
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Figure 7.1. A closed-loop interconnection between an Incentive Seeking Controlller (ISC)
and a highway system. The ISC will be designed to minimize in rel time a performance
function defined by an external supervisor.

are agnostic to the traffic model, we establish practical asymptotic stability results for the

resulting closed-loop system, and we numerically show that the non-smooth and hybrid

ISCs can significantly outperform the smooth ISC in terms of transient performance under

enough time scale separation in the closed-loop system.

Problem Statement

Consider a general highway network system modeled by a dynamical system of the

form

θ̇ =
1

ε0
Π(θ, u), y = h(θ), (7.1)

where ε0 determines the time scale of the dynamics, θ ∈ Rn is the state of the highway,

which can include the density of the cars per unit of length in a given lane, u ∈ Rm denotes

exogenous incentives which can influence the behavior of highway users (e.g., tolls), and

y ∈ Rp represents measurements that can be obtained from the highway state via the

output map h : Rn → Rp. Assume that an external supervisor or social planner provides a

performance index φ : Rp × Rm → R, which depends on the inputs and outputs of (7.1).

Our goal is to design feedback mechanisms able to find in real-time the optimal incentives

that minimize the function φ(y, u) at steady state. In particular, we consider closed-loop
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systems with the structure shown in Figure 7.1, where the Incentive Seeking Controller

(ISC) uses only real-time output measurements of the performance index. The controller

should be designed so that it can find the “optimal” incentives while preserving closed-loop

stability at all times. In the following sections, we formalize each of the components

illustrated in the scheme of Figure 7.1.

Traffic in Highway Networks: Socio-Tehcnical Models

The performance of transportation systems is not solely dependent on their physical

infrastructure, but also on their user behavior [78]. Indeed, in much of the literature that

studies the modeling of dynamics in highway networks, the overall structure consists of a

socio-technical model that combines a driver behavioral model and a traffic flow model;

see [179, 181, 111]. In this work, we follow a similar approach and we assume that the

socio-technical and traffic flow models can be lumped together leading to highway network

dynamics described by ODEs of the form (7.1). Additionally, we make use of the following

regularity assumption.

Assumption 7.1. The map Π(·, ·) in (7.1) is locally Lipschitz. Moreover, there

exists a compact set Λ̃θ := λθB ⊂ Rn with λθ ∈ R>0, a closed set Λ̃u = Λ̂u + B

where Λ̂u ⊂ Rm, and a steady-state map ℓ : Rm → Rn that is continuous and

locally bounded relative to Λ̃u, such that for each η > 0 the compact set Mη :=
{
(θ, u) : θ = ℓ(u), u ∈ Λ̃u ∩ ηB, θ ∈ Λ̃θ

}
is UAS for the HDS Hol := (Λ̃θ × (Λ̃u ∩

ηB), ε−1
0 Π× {0} , ∅, ∅) with state (θ, u).

In words, Assumption 1 guarantees that the highway dynamics are well-posed and

stable with respect to external incentives u, and that the steady-state value of the traffic

state is parameterized by u via the map ℓ. This assumption is standard (see [111], [87],

and [84]), and it is reasonable for many socio-technical models where external incentives u

determine the steady state equilibrium of the system.
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Figure 7.2. Scheme of segment with parallel lanes: the GP lane, and the Express lane.

Socio-Technical Model

To illustrate the advantages of the proposed ISC dynamics, we consider socio-

technical models with a similar structure to the one described in [173]. In particular, we

study the socio-technical model of a highway segment where drivers can choose between

two parallel lanes: the general-purpose (GP) lane, which is uncharged, and the Express

lane. Some of the motivations for choosing the Express lane include a faster travel time

compared to the GP lane, as well as an expected reduced congestion. Prices (i.e., tolls) or

subsidies can be assigned for the utilization of the Express lane depending on the traffic

conditions. The model we consider focuses on the description of the average traffic density

in the Express lane ρ, and the input flow of vehicles to the Express lane qEL. Figure

7.2 shows a scheme representing the segment with the two parallel lanes: This model is

divided into three main components:

a) The driver behavioral model: Each driver makes decisions based on the perceived costs

of choosing either of the lanes. Some of the possible elements that can be included

in these costs are travel times in the lanes, congestion, road conditions, among

other quantities estimated by the drivers. To capture these scenarios, we model the
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costs by locally Lipschtiz functions cEL(qEL, ρ, u) and cGP(qEL, ρ) associated with the

Express lane and the GP lane respectively, where the input u ∈ R≥0 represents the

tolls used to incentivize or to discourage the highway users from using the Express

Lane.

Naturally, the response of the individual drivers to the costs extends to the macro-

scopic level, concurrently affecting the input flow of vehicles to the Express Lane

qEL. In general, the drivers require a minimum transient time to adjust to changes

in the marginal cost, which for instance could be induced by changes in the tolls. To

account for this dynamic response, we model the dynamics of the macroscopic driver

behavior as an ODE of the form

q̇EL = Φ(qEL, ρ, u), qEL ∈ [0, Q], (7.2)

where Φ : [0, Q]× R× R → R is a locally Lipschitz function that implicitly depends

on the marginal cost of choosing the EL. With (7.2), we are able to capture a variety

of social dynamics including, among others, evolutionary population dynamics whose

stability properties have been recently studied in the literature, c.f. [84].

b) Equilibrium model: The equilibrium model describes the resulting average velocity

in the Express lane as a function of the average traffic density ρ. In this chapter, we

use a mollified version of the average velocity model presented in [173] and described

by

v(ρ) =
vfree − vjam

1 + exp
(

4
ρjam−ρcritical

(
ρ− ρjam+ρcritical

2

)) + vjam, (7.3)

where vfree, vjam are constants that represent the top speed and the jam vehicle speed

in the Express lane, ρcritical denotes the average density below which the speed of the

vehicles is expected to be close to vfree, and where ρjam is the average vehicle density

above which a traffic jam occurs in the Express lane. Consequently, these constants
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satisfy the relations: vfree > vjam and ρcritical < ρjam.

c) The traffic flow model: This model represents the dynamics of the average traffic

density ρ of the Express lane, measured in vehicles per unit of length, as a function

of the incoming rate of flow qEL and the average velocity of the Express lane v. It is

given by

ρ̇ =
1

L

(
qEL − v(ρ)ρ

)
, (7.4)

where L ∈ R>0 represents the length of the highway segment under study.

By putting together the driver behavioral model and the traffic flow model, the dynamics

of the average density in the express lane can be written in compact form as:

θ̇ =
1

ε0
Π(θ, u):=




kmΦ (qEL, ρ, u)

kρ

(
qEL − v(ρ)ρ

)
/L


 , y = h(θ) (7.5)

where θ := (qEL, ρ), and h(θ) := ρ. The ratio between the constants km and kρ in (7.5),

dictates how fast the driver decisions occur in comparison with the overall traffic flow

evolution described by ρ. In some cases, depending on the particular properties of the

highway segment and the population of drivers, it might be the case that km/kρ ≫ 1. For

such scenarios, the relation between the driver response and the associated macroscopic

behavior, captured by qEL, can be simplified as a static map that depends on the marginal

cost of choosing the Express lane:

qEL(ρ, u) = λ(c̃EL(ρ, u)− c̃GP(ρ))Q, (7.6)

where λ : R → [0, 1] is a locally Lipschitz function that represents the traffic entering

into the Express lane as a fraction of the total incoming traffic Q, which we measure in

number of vehicles per amount of time, and where c̃EL and c̃GP are locally Lipschitz costs.
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When using relations of the form (7.6), the socio-technical dynamics of (7.5) is simplified

as follows:

ρ̇ =
kρ
L

(qEL(ρ, u)− v(ρ)ρ) , y = ρ. (7.7)

Note that (7.5) and (7.7) are particular cases of the ODE in (7.1). For specific realizations

of socio-technical models using static and dynamic formulations of the form (7.5) and

(7.7), we refer the reader to Section 7.3.

Performance Indices

Depending on the objectives of the social planner, different performance indices

can be considered for the purpose of real-time optimization. We will consider families of

performance indices that satisfy the following assumption:

Assumption 7.2. Suppose that Assumption 7.1 holds, and let φ̃(u) := φ(h(ℓ(u)), u).

The function φ̃ : Rm → R is continuously differentiable, strictly convex in Λ̃u, and

its gradient is Lipschitz in Λ̃u.

Sometimes, we will also use the following assumption:

Assumption 7.3. There exists κ > 0 such that φ̃(·) is κ-strongly convex in Λ̃u and

its gradient is Lipschitz in Λ̃u.

The above assumptions will guarantee enough regularity in the incentive-seeking

problem, e.g., continuity of the cost and its gradient, the existence of finite optimal

incentives, and sufficient monotonicity in the response map of the system. A particular

example of a performance index satisfying Assumptions 7.2 and 7.3, and that penalizes

the deviation of the current vehicle-density ρ from a desired operation point ρref provided

by the external supervisor, is given by

φref(θ, u) = |ρ− ρref|2. (7.8)
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Figure 7.3. Gradient Based Incentive Seeking Control

Performance indices of the form (7.8) can be used by social planners who seek to improve

traffic conditions, irrespective of the toll values needed to achieve such end. Among others,

performance indices that explicitely depend on the toll prices u can also be considered

for situations in which the Express lane manager seeks profit maximization. In most of

the cases, we will only require that Assumptions 7.2 or 7.3 hold in a neighborhood of the

minimizer of φ̃.

Incentive Seeking Feedback Schemes

In this section, we introduce three different ISC algorithms able to guarantee

convergence and stability of the set A0 := {(θ, u) ∈ Λ̃θ× Λ̃u : θ = ℓ(u), u = argminu φ̃(u)},

where Λu and Λ̃θ are compact sets, ℓ is given in Assumption 7.1, and φ̃ is as in Assumption

7.2. The ISCs make use of small exploration signals injected into the transportation

dynamics for the purpose of real-time learning. These signals are generated by dynamic

oscillators of the form:

µ̇ =
1

εp
Ωµ, µ ∈ Tm, (7.9)
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where εp ∈ R>0 is a tunable parameter, and the matrix Ω ∈ R2m×2m is a block diagonal

matrix with blocks given by Ωi = 2π




0 ωi

−ωi 0


, with ωi ∈ R>0 and for i = {1, · · · , n}.

We use ω := (ω1, · · · , ωn) to denote the vector of frequencies of the signals, and we consider

ISCs that generate incentives u of the form

u = û+ εaµ̂, (7.10)

where µ̂ = (µ1, µ3, · · · , µ2n−1) represents the odd components of µ, and û is the nominal

incentive generated by each particular algorithm. We will impose the following assumption

on ω.

Assumption 7.4. The dithering frequencies ωi satisfy: 1) ωi > 0 is a rational number

for all i, and 2) there are no repeated dither frequencies, i.e., i ̸= j =⇒ ωi ̸= ωj and

ωi ̸= 2ωj.

Assumption (7.4) guarantees orthogonality conditions for the dither signals used

by the ISCs to update the incentives u. These conditions will enable real-time learning in

the closed-loop system via averaging theory.

7.1 Gradient Based Incentive Seeking Control

We first consider a smooth ISC, denoted GISC, presented in Figure 7.3, which

generates the nominal incentive û via the following differential equation:




˙̂u

µ̇


 = F1(x1) :=



−kφ(y, u)M(µ)

1
εp
Ωµ


 , x1 ∈ Rm × Tm, (7.11)

where x1 := (û, µ), and M(µ) = 2
εa
µ̂. The controller (7.11) is based on smooth extremum-

seeking controllers [182], which aim to emulate gradient flows whenever the highway
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Figure 7.4. Hybrid Momentum Based Incentive Seeking Control

dynamics (7.1) are neglected. The controller makes use of direct measurements of the

perfomance index φ(y, u), and therefore it is agnostic to the dynamics of the transportation

system. In the context of traffic congestion, related dynamics have been studied in [111]

for adaptive pricing in affine congestion games, [183] for highways with bottlenecks, and

in [184] via simulations for congestion lanes. The following theorem shows that (7.11) is a

suitable controller to learn optimal incentives in transportation systems with socio-technical

dynamics in the loop. All proofs are presented in Appendix E.

Theorem 7.1. Suppose that Assumptions 7.1, 7.2 (or 7.3) and 7.4 hold. Then, the

closed-loop system corresponding to Figure 7.1 with ISC given by (7.11), renders

PAS the set A1 := A0 × Tm as (ε0, εp, εa) → 0+.

While the ISC (7.11) can achieve optimal incentive seeking, as (ε0, εp, εa) → 0+

the rate of convergence achieved by this controller emulates the convergence rate of a
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gradient descent flow, which is either of order O(1/t) or O(e−κt), where κ is given by

Assumption 7.3 (note that Assumption 7.3 implies Assumption 7.2). In Section 5, we will

show that the steady-state performance function related to the socio-technical model of

the traffic network can have drastically different “slopes” near the optimal point, including

cases where κ ≪ 1. These “flat” regions can drastically deteriorate the performance of

controllers that seek to emulate traditional gradient flows, e.g., system (7.11). To achieve

better transient performance in this scenario, we now consider a class of hybrid dynamics

that use momentum.

7.2 Hybrid Momentum-Based Incentive Seeking

Control

To achieve better transient performance compared to (7.11), we now consider the

hybrid ISC shown in Figure 7.4, which has continuous-time and discrete-time dynamics

given by:




˙̂u

ṗ

τ̇

µ̇




= F2(x2) :=




2
τ
(p− û)

−2kτφ(y, u)M(µ)

1
2

1
εp
Ωµ



, (7.12a)

x2 ∈ C2 :=
{
x2 ∈ R2m+1 × Tm : τ ∈ [T0, T ]

}
, (7.12b)




û+

p+

τ+

µ+




= G2(x2) :=




û

σp+ (1− σ)q

T0

µ



, (7.12c)

x2 ∈ D2 :=
{
x ∈ R2m+1 × Tm : τ = T

}
, (7.12d)
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where x2 := (û, p, τ, µ), k ∈ R>0 is a tunable gain. This controller resets the states p

and τ via (7.12c) every time the timer τ satisfies τ = T . The constants 0 < T0 < T are

tunable parameters that characterize the frequency of the resets. The parameter σ ∈ {0, 1}

describes the resetting policy for the state p. Namely, when σ = 1, we have that p+ = p,

while σ = 0 leads to p+ = q.

In contrast to (7.11), as (εp, εa, ε0) → 0+ the hybrid ISC (7.12) will emulate the

behavior of a regularized version of Nesterov’s accelerated ODE with momentum [19], given

by ü+ 3
t
u̇+∇φ̃(u) = 0, which achieves rates of convergence of order O(1/t2) in convex

functions, or O(e−
√
κt) with suitable resets corresponding to σ = 0 in (7.12c). These resets

are similar in spirit to “restarting” techniques used in the literature of machine learning

[31]. In the context of model-free feedback control, the resets guarantee enough regularity

and robustness in the controller so that it can be interconnected with a dynamical plant

in the loop [25]. Thus, the hybrid controller is also able to achieve incentive seeking.

Theorem 7.2. Suppose that Assumptions 7.1, 7.2 (or 7.3) and 7.4 hold. are satisfied.

Then, the closed-loop system corresponding to Figure 7.1 with ISC given by (7.12),

renders PAS the set A2 := {(θ, û, p, τ) : (θ, û) ∈ A0, p = û, τ ∈ [T0, T ]} × Tm as

(ε0, εp, εa) → 0+.

The key advantage of the ISC (7.12) is the incorporation of dynamic momentum

via the states (p, τ), as well as periodic resets with frequency dependent on the pair (T0, T ).

Note that “optimal” restarting frequencies can be used as in [25] to avoid oscillations in the

control action induced by the presence of momentum. It is well-known that momentum-

based optimization algorithms can significantly improve the transient performance in

problems where the cost φ̃ exhibits shallow convexity properties (e.g., κ≪ 1). As shown

later in Section 7.3, this will be the case under certain operation conditions of the highway

networks.

On the other hand, when the steady state performance function φ̃ is strongly convex
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Figure 7.5. Fixed-Time Incentive Seeking Control

and its curvature is not necessarily small, one might wonder if it is possible to achieve

better transient performance using non-smooth re-scaled gradient-based dynamics. We

investigate this scenario in Section 4.3.

7.3 Fixed-Time Incentive Seeking Control

We now consider the fixed-time ISC (FxISC) presented in Figure 7.5 and described

by the following dynamics:




˙̂u

ξ̇

µ̇




= F3(x3) :=




−k
(

ξ

|ξ|α +
ξ

|ξ|−α
)

1
εf
(−ξ + φ(y, u)M(µ))

1
εp
Ωµ




(7.13)

where x3 := (û, ξ, µ), and α ∈ (0, 1) is a tunable exponent, and where the right hand

side of u̇ is defined to be zero whenever ξ = 0. In this controller, we have incorporated
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a low-pass filter with state ξ and gain ε−1
f , and the nominal incentive û is generated by

a combination of sub-linear and super-linear feedback parametrized by the constant α.

Note that the vector field (7.13) is continuous but not Lipschitz continuous at ξ = 0. The

controller is designed to emulate the performance of fixed-time gradient flows [185, 180] as

(ε0, εa, εp, εf ) → 0+. This non-smooth ISC also achieves optimal incentive seeking, but it

requires (regional) strong convexity of φ̃.

Theorem 7.3. Suppose that Assumptions 7.1, 7.3 and 7.4 hold. Then, the closed-

loop system corresponding to Figure 7.1 with ISC given by (7.13), renders PAS the

set A3 := A0 × {0} × Tm as (ε0, εp, εa, εf ) → 0+.

In contrast to (7.11) and (7.12), as (ε0, εp, εa, εf ) → 0+, the nonsmooth ISC (7.13)

emulates the behavior of gradient flows able to converge to the optimal incentive before

a fixed time T ∗ = π
2kακ

, where (α, k) are tunable parameters of the controller, and κ is

given by Assumption 7.3. Such type of behavior cannot be obtained using smooth (i.e.,

Lipschitz continuous) ISCs.

Numerical Examples

In this section, we consider particular realizations of the model introduced in

Section 7, as well as numerical examples of the proposed ISCs. Fast Driver Behavior

We first consider a scenario where the driver dynamics are qualitatively faster than the

average traffic dynamics. Specifically, we borrow the parameters and structure used in

[174], based on traffic data of the first dynamic-pricing toll system implemented in the

United States: the MnPASS. Thus, the costs of choosing the Express or GP lanes are

given by: cEL (ρ, u) = a L
v(ρ)

+ bu + γEL, and cGP = a L
v(ρ)

δ + γGP, where
L
v(ρ)

represents

the estimated travel time on the Express lane, γEL, γGP ∈ R are offsets used to represent

unobservable quantities, a, b are positive weights, and where δ ≥ 1 models the fact that

the travel time through the GP lane is assumed to be longer or equal than the one of the
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Figure 7.6. Evaluation of viability conditions for highway system with fast driver behavior
and static input flow map qEL.

Express lane. On the other hand, the macroscopic driver behavior is assumed to have the

form:

qEL(ρ, u) =
Q

1 + exp (cEL(ρ, u)− cGP(ρ))
, (7.14)

which is a logistic function of the marginal cost of choosing the Express lane over the GP

lane. The choice of static map in (7.14) implies that whenever the perceived cost cEL of

choosing the Express lane is lower than the cost cGP of choosing the GP lane, the input

flow of vehicles to the Express lane will increase. Moreover, we note that an equal inflow

of vehicles to the Express and GP lanes is achieved when the marginal cost is equal to zero.

To simulate the ISCs we use the parameters a = 0.334, b = 0.335, γEL = 1.71781, γGP =

0, vjam = 5[mph], vfree = 65[mph], ρjam = 80[veh/mi], ρcritical = 25[veh/mi] and L = 0.7[mi].

To establish a reference density that guarantees free-flow conditions v(ρref) ≈ vfree with a

moderate occupation of the lane so that the system is not underutilized, we consider the

reference seeking performance index φref given in (7.8), with ρref = 0.8ρcritical = 20 [veh/mi].

Furthermore, we fix the demand to be Q = 2170 vehicles per hour and set τ̃ = 3. Using

these parameters, we conduct a numerical study that verifies that Assumptions 7.1-7.3

are satisfied: First, we plot in Figure 7.6 the vector field (7.5) for different values of
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Figure 7.7. Suitability of performance index φref and response map ℓ(·) for the ISC
dynamics presented in this chapter.

u ∈ Λu := [−40, 40] and with ρ = θ ∈ [0, 150]. By arguing graphically, we note that there

exists a compact set (interval) Λρ := [0, 50], such that restricted to values (ρ, u) ∈ Λρ×Λu,

for each u there exists a unique asymptotically stable equilibrium ρ∗(u) ∈ Λ. Therefore,

we can define the function ℓ : Λu → R as ℓ(u) = ρ∗(u), which is shown in Figure 7.7.

Since Π in (7.7) is locally Lipschitz, the previous arguments imply that the socio-

technical model of Section 7, with the particular parameters listed above, satisfy the

conditions of Assumption 7.1. On the other hand, φref satisfies Assumptions 7.2 and

7.3 by construction and the convexity of φ̃(u) = φ(ℓ(u), u) in Λu. Following the closed-

loop structure of Figure 7.1, we implement the different ISCs introduced in Section 7

interconnected with the highway dynamics of (7.7). For all the controllers, we set k = 1 and

use the dithering frequency ω = 1. In the case of the hybrid ISC we choose σ = 0, T0 = 0.1

and T = 20. For the non-smooth ISC we use α = 0.5. We simulate the trajectories of the

closed-loop systems using εf = 1, εa = 0.1, and εp = 0.01. These parameters guarantee

enough time-scale separation between the different elements of the controller, and also

between the controller and the highway-dynamics. We uniformly sample 60 different
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Figure 7.8. Trajectories corresponding to 60 different initial conditions of the average
density ρ sampled uniformly between ρ(0) = 4 and ρ(0) = 30 vehicles per mile. The inset
shows the MSE as a function of time of the 60 trajectories.

initial conditions for ρ between 4 and 30. We use the initial incentive u(0) = 1, and

we plot the resulting trajectories in Figure 7.8. Additionally, we compute and plot the

mean squared error (MSE) MSE(t) = 1
60

∑60
i=1 |ρi(t)− ρref|2, where ρi corresponds to the

trajectory resulting from the i-th initial condition. As shown in the figure, the hybrid

and non-smooth ISCs significantly outperform the smooth ISC algorithm (7.11). Note

that the hybrid algorithm (7.12) generates the typical oscillatory behavior observed in

momentum-based algorithms when the damping is sufficiently small. Note also that the

hybrid controller seems to generate better transient performance compared to (7.13), since

in certain cases it generates a smaller overshoot. The inset of Figure 7.8 shows that the

control signals converge to a small neighborhood of the optimal incentive. Finally, we note

that all the ISCs studied in this chapter are well-posed by construction, and therefore they

are robust with respect to small bounded additive disturbances acting on the states and

dynamics [33, Thm. 7.21]. Moreover, their model-free nature allows them to retain their

stability and convergence properties when the parameters of the highway change (slowly)

over time. For example, Figure 7.9 shows the impact of variations on the parameter γEL.
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Figure 7.9. Distribution of the mean of the time-averaged MSE for different values of
γEL sampled uniformly within 15% of its nominal value.

Here, we sampled uniformly 20 different values of γEL with a maximum variation of 15%

with respect to the nominal value 1.71781, and we simulated the closed-loop dynamics for

each one of the ISCs. For each value of γEL we computed the mean of the time-average

MSE, tMSE := 1
tf

∫ tf
0

MSE(τ)dτ , where tf = 225[min] is the final time of a simulation run,

over 5 trajectories obtained by choosing different initial conditions for ρ on the range [4, 30].

As seen in Figure 7.9, the results are consistent with the previous results shown in Figure

7.8. Dynamics for Macroscopic Driver Behavior When the macroscopic driver behavior

and the average vehicle density evolve in similar time scales, the dynamics capturing the

driver’s response due to changes in the incentives need to be considered in the closed-loop

system. In this case, we consider the following dynamics to describe the evolution of qEL:

q̇EL = Ψ(qEL, u) := −
(
cEL(qEL, u)− cGP (qEL)

)
, (7.15)

meaning that the rate of change of the input flow of vehicles to the Express lane is directly

determined by the marginal cost of choosing that lane over the GP lane. Consequently,

when the perceived cost cEL of choosing the Express lane is lower than the cost cGP of

choosing the GP lane, the rate of growth will be instantaneously positive, thus increasing
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Figure 7.10. Evaluation of the viability conditions for highway system with dynamics
describing the macroscopic driver behavior, based on the phase plane of the system.

the input flow of vehicles to the Express lane. We considered the marginal cost

cEL(qEL, u)− cGP(qEL) =

(
qEL −

Q

2

)
+ ãu,

where ã > 0. For our simulations we use ã = 100 and the same values of vjam, vfree,

ρjam, ρcritical, Q and ρref considered in Section 7.3. To study the stability properties of

the equilibrium points of the highway dynamics, we analyze the phase planes associated

to system (7.5) using Φ = Ψ, km = 1, kρ = 1, and u ∈ Λu = [−40, 40], and shown

in Figure 7.10 for three particular values of u. In all cases, there exists a compact set

Λθ ⊂ [0, 160] × [0, Q], such that for each u there exists a unique asymptotically stable

equilibrium θ∗(u) ∈ Λθ. The same property was numerically confirmed to hold for every

u ∈ Λu by studying the phase plane plots associated to equally spaced inputs taken from

Λu, and using continuity of (7.5). Therefore, we can define a response function ℓ̃ : Λu → R2

by letting ℓ̃(u) = θ∗(u). The remaining conditions of Assumption 7.1, and Assumptions

7.2 and 7.3 are verified to hold by following analogous graphical arguments to the ones

described in Section 7.3. Indeed, Figure 7.11 shows the corresponding plots describing

the response function ℓ̃ and the performance index φref

(
ℓ̃(u), u

)
. In this case, we focus

our attention on the two ISCs that showed the best performance in Section 7.3, and

implement the closed-loop structure of Figure 7.1 using the GISC and HMISC. For both
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Figure 7.11. Suitability of performance index φref and response map ℓ̃ for the ISC with
highway model including dynamics for the macroscopic driver behavior. The inset shows
the response function ℓ̃ projected in the phase plane ρ vs. qEL for values of u ∈ [−40, 40].

controllers we set ε0 = 0.1, εµ = 0.01, εa = 0.001, k = 0.01, and ω = 1. For the HMISC,

we chose σ = 1, T0 = 0.01 and T = 0.5. The control parameters are selected to guarantee

enough time-scale separation between the different elements of the controller and the

highway-dynamics. As seen in Figure 7.12, where we plotted the MSE corresponding to

20 different trajectories satisfying u(0) = 1 and qEL(0) = Q/3, the HMISC outperforms

the GISC, although in a mildly less dominant fashion to what was observed in Section 7.3.

This reduction in the performance gap between the GISC and the HMISC, can be mainly

attributed to the fact that, in this setup, the strong convexity parameter is relatively high,

meaning that the transient performance increase attained via momentum-based dynamics

is not as evident as when the costs exhibit shallow convexity properties. Finally, we note

that in all our numerical experiments the ISCs were tuned to guarantee that the drivers

have enough time to react to changes on the incentives induced by the exploratory signal

µ̃ used by the controllers. This behavior is needed to guarantee real-time learning via
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Figure 7.12. Trajectories resulting from the application of the GISC and HMISC to the
highway model with dynamics for the macroscopic driver behavior, and corresponding to
20 different initial conditions of the average density ρ sampled uniformly between ρ(0) = 10
and ρ(0) = 30 vehicles per mile. The inset shows the MSE as a function of time of the 20
trajectories.

feedback measurements of the output of the highway network, and it has also been studied

in algorithms based on adaptive control [111] and reinforcement learning [186], to name

just a few. Potential extensions that could relax these real-time exploration requirements

might be studied in the future by incorporating historical data into the controllers, which

can be periodically updated during days or weeks to retain sub-optimality of the incentives.

Such controllers will naturally be modeled as hybrid dynamical systems. In this chapter

we introduced a new class of incentive-seeking controllers (ISCs) that can learn optimal

incentives using only output measurements from traffic in transportation systems, while

simultaneously guaranteeing closed-loop stability. We illustrated the benefits of the

proposed controllers via numerical experiments in a socio-technical model of a highway

system with managed lanes, including the advantages of using nonsmooth and hybrid

controllers. The algorithms are agnostic to the exact model of the highway, and robust to

small additive disturbances. Future research directions will focus on incorporating past

recorded data to minimize real-time exploration in the controllers.
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Chapter 8

Dynamic Gains for Asymptotic-Behavior Shaping in

Hybrid Dynamic Inclusions

The ability to control the convergence rate to equilibrium points or optimal solu-

tions is critical across many applications of dynamical systems theory and optimization

algorithms. In machine learning, faster convergence can accelerate training of deep neural

networks. For embedded control systems, it enables more responsive and robust perfor-

mance. In computational sciences, it facilitates solving complex simulations and design

problems orders of magnitude quicker.

To address the slow asymptotic convergence of traditional methods, significant

recent research efforts have explored alternative dynamical systems formulations aimed

at achieving faster transient performance. These approaches span momentum-based

dynamics [19, 18] that incorporate inertia effects, finite-time stability techniques [187],

hyperexponential stability methods [188], and fixed-time stability formulations [189, 190]

where the convergence time is uniformly bounded for all initial conditions. Within this

line of work, prescribed-time stability has gained increasing attention over the past five

years [191, 192, 193, 194, 195, 196]. This form of stability guarantees convergence to the

desired target set within a pre-specified time interval, regardless of the initial conditions

and parameters of the problem.

The state-of-the-art prescribed-time stability approaches rely on incorporating

time-varying or non-Lipschitz vector fields that exhibit finite-time blow-up behavior to
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drive the system to equilibrium before the prescribed convergence time. A viewpoint

recently explored by the authors for prescribed-time stability of switched systems [9] is to

achieve this blow-up effect via a cascade interconnection between an exogenous dynamical

system governing the evolution of a dynamic gain and a time-invariant dynamical system

with suitable stability properties for the target set. This interconnection technique for

inducing pre-established time specifications has been also studied in the context of adaptive

control for parameter estimation [197]. However, it has not been comprehensively analyzed

for general nonlinear and hybrid dynamical systems combining continuous and discrete

behaviors.

This chapter aims to fill this gap by presenting a unifying framework to analytically

shape the asymptotic behavior of nonlinear dynamical systems. Our approach hinges

on the design of a suitable exosystem that governs the evolution of a dynamic gain.

By analyzing the continuous-time deformations that the flow of this system induces on

hybrid time domains, we provide sufficient conditions that ensure the original system’s

stability properties, without the dynamic gain, are transferable under the continuous-time

deformation to the full interconnected dynamics. We develop these results by leveraging

tools from hybrid dynamical systems theory [33], and formulating an appropriate bijective

map that relates the solution sets between the original and cascade systems.

This formulation enables addressing a wide array of time deformations: from simple

constant rescaling of time to prescribed-time scalings. Our framework can accommodate

systems with hybrid dynamics arising from logic-based switched controllers, state resets,

and other discrete-time behaviors coupled with physical dynamics. By providing a unified

analysis of the interconnection structures across different classes of dynamic gains and

system models this work contributes to the understanding of achievable asymptotic

behaviors in dynamical systems.
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8.1 Motivational Example

We begin by presenting a motivating example that highlights the key ideas and

challenges explored in this chapter. Consider a cost function f(x) = x4

4
, and its associated

gradient-flow dynamics

dx̂

ds
= −∇f(x̂) = −x̂3. (8.1)

By the method of separation of variables, the unique solution to (8.1) is given by

x̂(s) =
x0√

2x20s+ 1
∀x0 ∈ R.

It follows that the value of the cost function along the trajectories of the gradient flow

system (8.1) satisfies

f(x(s)) =
|x0|4

4 (2x20s+ 1)
2 , ∀ s ≥ 0. (8.2)

To improve over the convergence rate of equation (8.2), we consider the case where the

gradient flow dynamics in (8.1) are interconnected in a cascade configuration with a

dynamic gain µ with dynamics dµ
dt

= 1. The set of feasible initial conditions is assumed to

satisfy µ(0) = µ0 ∈ [1,∞), and the interconnected system can be written as the HDS

dx

dt
= −µ · ∇f(x), dµ

dt
= 1, (x, µ) ∈ R× [1,∞). (8.3)

Since the dynamics of µ are independent of those of the state x, we can first solve for µ to

obtain that µ(t) = t+ µ0, µ0 ∈ [1,∞). Replacing this result in (8.3) yields

dx

dt
= −(t+ µ0)x

3.

192



This is a separable ODE, which results in the following solution:

x(t) =
x0√

2x20
(
t2

2
+ µ0t

)
+ 1

, (8.4)

for all t ≥ 0, and the corresponding value of the cost function is:

f(x(t)) =
|x0|4

4
(
2x20

(
t2

2
+ µ0t

)
+ 1
)2 . (8.5)

Note that, the improved convergence bound in (8.5) can be obtained from the bound

(8.2) by substituting the time variable s with t and then transforming it under the

diffeomorphism Dµ0(t) =
(t+µ0)2

2
− µ20

2
. This diffeomorphism satisfies d2

dt2
Dµ0(t) = 1, which

is the flow map for µ in (8.3).

The above motivating example illustrates that by interconnecting a gradient system

with a dynamic gain, the convergence rate can be significantly improved from O(1/t2)

to O(1/t4). However, this improvement was contingent upon obtaining the closed-form

solution for the state trajectory under interconnected dynamics. For general nonlinear

systems where such closed-form solutions are unavailable, it remains unclear what conditions

would permit the application of a similar interconnection procedure to achieve faster

convergence rates. Additionally, the example only addressed a continuous-time dynamical

system, while many applications involve systems with hybrid dynamics. Consequently,

two fundamental questions arise:

1. What are the conditions on the original system’s dynamics that allow for the

application of the interconnection procedure and enable an improvement in the

convergence bounds?

2. Can similar improvements be expected when interconnecting systems with hybrid

dynamics?
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Figure 8.1. Scheme of the cascade interconnection between hybrid dynamics and gain
dynamics

To address both questions, we consider a class of dynamical systems arising from the cascade

interconnection of a target system exhibiting continuous-time and discrete-time dynamics,

and a continuous-time dynamical system that governs the evolution of a dynamic gain.

This interconnection idea is shown in Figure 8.1. We model the resulting interconnection

as a hybrid dynamical system with state z := (x, µ) ∈ Rn ×Xµ, where Xµ := [1,∞). The

hybrid dynamics are characterized by the following data:

z ∈ Cx ×Xµ,
dz

dt
∈ µFx(x)× {Fµ(µ)}, (8.6a)

z ∈ Dx ×Xµ, z+ ∈ G(x)× {µ}, (8.6b)

where Cx, Dx ⊆ Rn. We refer to the HDS (8.6) as the nominal HDS and denote it with H.

The primary objective of this chapter is to certify the stability properties of a suitable

closed set A ⊂ Rn under the nominal HDS H, by deriving them from the stability of

A under a target HDS Ĥ. The target system has state ẑ = (x̂, µ̂) and is defined by the

following data:

z ∈ Cx ×Xµ,
dẑ

ds
∈ Fx(x̂)×

{
1

µ̂
Fµ(µ̂)

}
, (8.7a)

z ∈ Dx ×Xµ, ẑ+ ∈ G(x̂)× {µ̂}. (8.7b)
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To obtain our results, the following assumption will play a key role.

Assumption 8.1. a) For every µ̂0 ∈ Xµ, there exists a unique and complete solution

to the gain ODE dµ̂
ds

= 1
µ̂
Fµ(µ̂).

b) For each c ∈ Xµ there exists an order preserving diffeomorphism Dc : Tc → R≥0,

where Tc ⊆ R≥0 and min Tc = 0, satisfying Dc(0) = 0 for all c ∈ Xµ and:

d

dt
Dµ0(t) = (µ̂ ◦ Dµ0) (t), ∀t ∈ Tµ0 , µ0 ∈ Xµ, (8.8)

where µ̂ is the unique solution to the gain ODE.

Assumption 8.1 restricts the type of dynamic gains we consider for our approach to

those compatible with suitable deformations of the continuous-time domain, as character-

ized by the parameterized diffeomorphisms Dc. Alternatively, this constraint allows us to

first consider a time-domain specification characterized by a diffeomorphism Dc, such as

the accelerated convergence presented in the example of Section 8.1, and then encode it in

the dynamical system governing the evolution of the dynamic gain µ. Below, we present

several examples illustrating different dynamic gains, their associated flow-maps Fµ, and

the respective diffeomorphisms Dc satisfying Assumption 8.1.

Example 8.1. a) Linear : Let, Fµ(µ) = 0. Then, the diffeomorphism Dc(t) := ct,

with c ∈ Xµ, satisfies the matching equation (8.8) with Tc = R≥0. This type

of diffeomorphism is ubiquitous in the singular-perturbation literature where

constant parameters are used to induce sufficient time-scale separations in

multi-time scale systems, for instance [22, Ch. 11].

b) Monomial : Let Fµ(µ) = (p− 1)µ
p−2
p−1 , p > 1. The unique solution to the gain
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ODE dµ̂
ds

= (p− 1)µ̂
1

1−p , µ̂ ∈ Xµ, is given by

µ̂(s) =
(
µ

p
p−1

0 + s · p
) p−1

p

, µ̂0 ∈ Xµ.

Then the map Dc : R≥0 → R≥0:

Dc(t) :=

(
t+ c

1
p−1

)p
− c

p
p−1

p
, c ∈ Xµ,

satisfies the matching equation (8.8) with Tc := R≥0.

c) Exponential : Let Fµ(µ) = µ. The unique solution to the gain ODE ˙̂u = 1, û ∈

Xµ is given by: û(s) = s+ u0. Then, the map Dc : R≥0 → R≥0 defined as

Dc(t) := cet − c, c ∈ Xµ,

satisfies the matching equitation (8.8) with Tc = R≥0.

d) Prescribed-Time: Let Fµ(µ) =
µ2

Υ
, Υ > 0. The unique solution to the gain

ODE dµ̂
ds

= µ̂/Υ is given by

µ̂(s) = µ̂0e
s
Υ .

Then, the map Dc : Tc := [0,Υ/c) → R≥0 defined as

Dc(t) := Υ ln

(
Υ

Υ− ct

)
, c ∈ Xµ,

satisfies the matching equation (8.8) with Tc := [0,Υ/c). dynamic gains

characterized by a finite-escape time Tµ0 := Υ/µ0 > 0 which evolve according

to the flow-map Fµ(µ) = µ2/Υ have recently gained widespread adoption in

196



the context of prescribed-time regulation of dynamical systems [191]. In this

context, the term Tµ0 receives the connotation of the prescribed-time.

To leverage the deformations of time-domains induced by the dynamic gains with

dynamics satisfying Assumption 8.1, we ask for every solution of the target dynamical

system to have hybrid time domains with unbounded continuous time.

Assumption 8.2. Every solution ẑ ∈ SĤ satisfies suptdom(ẑ) = ∞.

Using the above assumptions and exploiting the cascade interconnection structure

of the HDS H, we can obtain the following result, whose proof is provided in Appendix F.

Lemma 8.1. Suppose Assumptions 8.1 and 8.2 are satisfied, and let Dc := Dc×idZ≥0

for all c ∈ Xµ. Then, the map

W : SĤ −→ SH (8.9a)

ẑ = (x̂, µ̂) 7−→ ẑ ◦ Dµ̂(0,0), (8.9b)

is a bijection between maximal solution sets. Moreover, dom (W(ẑ)) =

D−1
µ̂(0,0) (dom(ẑ)) for every ẑ ∈ SĤ.

Equipped with the preceding Lemma, we now present our main result, establishing

a connection between the stability properties of the target hybrid dynamical system Ĥ

and the nominal hybrid dynamical system H.

Theorem 8.1. Let A0 := A × Xµ, with A ⊂ Rn a closed set, and suppose that

Assumptions 8.1 and 8.2 are satisfied. Assume that A0 is UGAS for Ĥ. Then, for
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every z0 = (x0, µ0) ∈ (Cx ∪Dx)×Xµ, and every z ∈ SH(z0) it follows that

|z(t, j)|A0 ≤ β(|z0|A0 ,Dµ0(t), j),

for all (t, j) ∈ dom(z).

Remark 8.1. When the function β ∈ KL takes an exponential form, and the

dynamic gain dynamics follow the structure given in Examples 8.1a)-c), Theorem

8.1 certifies that the nominal system exhibits hyperexponential stability properties

in the sense defined by [188]. Conversely, if the gain dynamics are specified as in

Example 8.1d), then Theorem 8.1 recovers the prescribed-time stability results via

flows studied in [9] for hybrid systems, and in [198] for ODEs.

8.2 Applications

This section showcases Theorem 8.1 through two optimization examples. For each

example, we establish the stability properties of a compact set under a target hybrid

dynamical system. Then we leverage the results of the theorem to certify the stability of

the same set for the nominal dynamics.

8.2.1 Acceleration of Gradient Flows

Let f ∈ C1(Rn) be a strictly convex and radially unbounded function. Consider

the nominal HDS denoted as Hg, with continuous-time dynamics

dx

dt
= −µ∇f(x), dµ

dt
= Fµ(µ), (x, µ) ∈ Rn ×Xµ, (8.10)

where we suppose that the map Fµ satisfies Assumption 8.1, and with no discrete-time

evolution, i.e., with D = ∅.
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We establish the stability of the compact set A := {x⋆} for Hg, where x
⋆ is the

unique minimizer of f . We begin by considering the target HDS Ĥg with continuous-time

evolution:

dx̂

ds
= −∇f(x̂), dµ̂

ds
=

1

µ̂
Fµ(µ̂), ẑ = (x̂, µ̂) ∈ Rn ×Xµ,

and no discrete-time dynamics. We assume that the ODE dµ̂
ds

satisfies Assumption

8.1. Next, we augment the system with a timer state τ̂ which has dynamics dτ̂
ds

= 1,

τ̂ ∈ R≥0. We denote the resulting HDS as Ĥτ , and study the stability properties of the

set A0 × R≥0, A0 := A×Xµ. To this end, consider the candidate Lyapunov function

V (ẑ, τ̂) = τ̂(f(x̂)− f ⋆) +
1

2
|x̂|2A,

where f ⋆ := f(x⋆). Note that V (ẑ, τ̂) ≥ 0 for all (ẑ, τ̂) ∈ Rn×Xµ×R≥0. Additionally, the

continuous-time derivative of V along the trajectories of Ĥτ is given by:

d

ds
V (ẑ, τ̂) = ⟨τ̂∇f(x̂) + (x̂− x⋆), −∇f(x̂)⟩

+ ⟨f(x̂)− f ⋆, 1⟩

= −
(
f ⋆ − [f(x̂) + ⟨∇f(x̂), x⋆ − x̂⟩]

)

− τ̂ |∇f(x̂)|2. (8.11)

Letting df (x
⋆, x) := f ⋆ − [f(x̂) + ⟨∇f(x̂), x⋆ − x̂⟩], by the strict convexity of f , it follows

that df (x
⋆, x) > 0 for all x̂ ∈ Rn \ A, and that df (x

⋆, x) = 0 and ∇f(x̂) = 0 if and only if

x̂ ∈ A. From (8.11), we obtain that there exists ρc ∈ PD such that:

d

ds
V (ẑ, τ̂) = −ρc (|x̂|A) = −ρc(|(ẑ, τ̂)|A0×R≥0

), (8.12)
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for all (ẑ, τ̂) ∈ Rn ×Xµ × R≥0, and where in the last equality we have used the fact that

|(µ̂, τ̂)|Xµ×R≥0
= 0 for all (µ̂, τ̂) ∈ Xµ × R≥0. By [199, Theorem 3.19.3a)], this implies that

there exists βg ∈ KL such that A0 ×R≥0 is βg-UGAS for Hτ̂ . Additionally, since for every

solution (ẑ, τ̂) ∈ SĤτ
it follows that |τ̂(s)|R≥0

= 0 for all s ∈ dom(ẑ, τ̂) = R≥0, we obtain

that A0 is βg-UGAS for Ĥg. Furthermore, for any such solution (ẑ, τ̂), by using (8.12), we

obtain:

d

ds
V (ẑ(s), τ̂(s)) = −ρc (|x̂(s)|A) ,

for every s ∈ R≥0. Integrating both sides and using the definition of V yields

τ̂(s)(f(x̂(s))− f ⋆) +
1

2
|x̂(s)|2A = V0 −

∫ s

0

ρc(|x(s̃)|A)ds̃,

where V0 := V (z0, τ0) and (z0, τ0) := (ẑ(0), τ̂(0)). Then, using the positive definiteness of

ρc together with the fact that τ̂(s) = τ0 + s, it follows that the following bound is satisfied:

f(x̂(s))− f ⋆ ≤ V0
s+ τ̂0

≤ V0
s
, (8.13)

for any s ∈ R≥0. Leveraging these results, together with Lemma 8.1 and Theorem 8.1,

obtains the following proposition, whose proof is presented in Appendix F.

Proposition 8.1. There exists βg ∈ KL such that for any (x0, µ0) ∈ Rn ×Xµ and

any solution (x, µ) to the accelerated gradient flow dynamics (8.10), the following

bound holds

|x(t)− x⋆| ≤ βg(|x0 − x⋆|,Dµ0(t)), (8.14)

for all t ∈ dom((x, µ)), where Dµ0 is as defined in Assumption 8.1. Moreover, for any
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such solution, the sub-optimality measure f(·)− f ⋆ satisfies

f(x(t))− f ⋆ ≤ c0
Dµ0(t)

, (8.15)

where c0 ∈ R≥0 is a constant that depends on the initial condition x0.

Remark 8.2. Proposition 8.1 extends the results of the example in Section 8.1 to

encompass strictly convex functions, and arbitrary dynamic gains with dynamics

satisfying Assumption 8.1. In particular, if Fµ is chosen as in Example 8.1-d), i.e.,

if we let Fµ(µ) =
µ2

Υ
, the gradient flow dynamics with dynamic gain described in

(8.10) achieve convergence of the function f(x(t)) to the optimal value f ⋆ within

prescribed-time Tµ0 = µ0/Υ, adjustable to the user preference by the choice of Υ > 0.

8.2.2 Acceleration of Hybrid Dynamics with Momentum

In cases where the convex function f in the previous section has low curvature,

the accelerated gradient flow dynamics in (8.10) might still suffer from poor transient

performance. In the case where µ ≡ 1 and Fµ(µ) = 0, this issue has been alleviated in the

existing literature by the use of momentum-based dynamics, see [19],[18],[24]. Inspired by

these approaches, in this section we consider a momentum-based nominal HDS, denoted

as Hm. This HDS has state z := (x, µ), where x := (x1, x2, x3) ∈ Rn × Rn × [T , T ], and

continuous-time dynamics1:




ẋ1

ẋ2

ẋ3




= µ · Fm(x) := µ




2
x3
(x2 − x1)

−2x3∇f(x1)
1
2



, µ̇ = Fµ(µ),

1Here ẋi stands for
dxi

dt .
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allowed to evolve whenever z ∈ Cm × Xµ, where the map Fµ is assumed to satisfy

Assumption 8.1, Cm := Rn × Rn × [T , T ], and T > T > 0 are tunable parameters. The

discrete-time dynamics of the nominal HDS Hm evolve according to




x+1

x+2

x+3




= Gm(x) :=




x1

x1

0



, (8.16)

whenever z ∈ Dm×Xµ, where Dm := Rn×Rn×{1}. The momentum-based HDS Hm with

µ ≡ 1 and Fµ(µ) was introduced in [24, Eq. (8)] as an alternative able to overcome the

lack of uniformity in the convergence properties under Nesterov’s ODE to the minimizer of

the cost function x⋆. As shown in [29, Rmk. 2], such lack of uniformity in the attractivity

of A precludes establishing UGAS bounds which are of critical interest for the robust

implementation of the optimization dynamics when only noisy measurements or estimates

of the gradient ∇f are available.

Indeed, using the results of [24, Theorem 3.1], we can obtain the UGAS of the set

A0 := A×Xµ,where A := {x⋆} × {x⋆} × [T , T ],

for the target HDS Ĥm, which is of the from in (8.7) with Fx = Fm, Cx = Cm, and

Dx = Dm. This fact, together with Lemma 8.1 and Theorem 8.1, allows us to obtain the

following proposition, whose detailed proof is presented in Appendix F.

Proposition 8.2. There exists a function βm ∈ KLL such that for any (x0, µ0) ∈

Rn ×Xµ and any solution (x, µ) to the HDS Hm, the following bound holds

|x|A ≤ βm(|x0|A,Dµ0(t), j), (8.17)
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Figure 8.2. Trajectories of solutions to the gradient-flow dynamics with dynamic gain
Hg and the momentum-based dynamics with resets Hm, under different parameterizations
of the gain flow maps Fµ.

for all (t, j) ∈ dom((x, µ)), where Dµ0 is as defined in Assumption 8.1. Moreover,

any such solution induces the following bound:

f(x1(t, j))− f ⋆ ≤ cj
(Dµ0(t)− tj)

2
, (8.18)

where tj := min{t : (t, j) ∈ dom((x, µ))}, and {cj}∞j=1 is a sequence of monotonously

decreasing positive constants.

Now, we illustrate the results of Propositions 8.1 and 8.2 by considering the strictly

convex cost function f ∈ C1(R3)

f(x) =
1

400
|x− x⋆|4,

where x⋆ = (π, 2π, 3π). We simulate the trajectories resulting from the hybrid dynamical

systems Hg (gradient flow with dynamic gain) and Hm (momentum-based dynamics with

resets), using realizations of each gain flow map presented in Example 8.1. For Hg, the

gradient flow dynamics are implemented with initial conditions x0 = (100, 100, 100) and

µ0 = 1. The momentum-based system Hm is implemented with reset parameters T = 0.01

and T = 3.5, and initial conditions x1(0, 0) = x2(0, 0) = x0, x3(0, 0) = T , and µ0 = 1.

The resulting trajectories of the suboptimality measure f(t) − f ∗ are shown in
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Figure 8.2, verifying the theoretical bounds derived in Propositions 8.2 and 8.1. As

illustrated, incorporating momentum and resets can improve convergence to the cost

function minimizer compared to the gradient flow, regardless of the chosen dynamic gain

dynamics. However, suitable reset parameters T and T must be selected in advance.

As the time deformation induced by the gain flow map transitions from constant

rescaling (leftmost plot) to prescribed-time scaling (rightmost plot), the frequency of resets

naturally increases. This occurs because the state x3 responsible for triggering resets is

scaled by the dynamic gain, while the reset threshold T remains constant. This empirical

evidence indicates that tuning reset or switching parameters with dynamic gains generally

requires accounting for the time-domain deformation induced by the gain flow mappings.

Recent work by the authors in [9] explored this direction by introducing blow-up

average-activation time and blow-up average-dwell time conditions for prescribed-time

regulation of switched systems. These conditions account for the finite escape times of the

dynamic gains employed in prescribed-time stability approaches for switched systems.

This chapter presented a framework to systematically shape the asymptotic conver-

gence behavior of nonlinear dynamical systems, including hybrid systems with combined

continuous and discrete dynamics. The key idea was to interconnect the original system

with an exogenous dynamic gain designed to induce continuous deformations of the hybrid

time domains. By modeling these dynamic gains as dynamical systems and analyzing the

diffeomorphisms induced by their flows, we provided sufficient conditions to ensure that

a target system’s stability properties transfer through the time deformation to the full

interconnected dynamics. This formulation enables realizing a diverse range of asymptotic

behaviors via time deformations, ranging from constant to prescribed-time scalings. The

theory established lays foundations for new techniques to accelerate optimization solvers,

enforce real-time control performance, and improve computational efficiency in applica-

tions involving nonlinear dynamical systems. Future research directions include extending

our approach to the cases where input-to-state, local, semiglobal, and practical stability
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certificates are available for the target system.
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Chapter 9

Prescribed-Time Stability in Switching Systems with Resets: A

Hybrid Dynamical Systems Approach

Recent advances in nonlinear control analysis and design [191, 192, 194, 195]

have reinvigorated the concept of Prescribed-Time Stability (PT-S), leading to successful

applications across various domains, including nonlinear regulation [191, 192], adaptive

control [194], systems with delays [200], partial differential equations [201], and stochastic

systems [202]. In contrast to asymptotic or exponential stability, the PT-S property

guarantees that the system’s trajectories will converge to the desired compact set within a

predetermined time, regardless of the initial conditions. As such, achieving this property

requires either time-varying or non-Lipschitz vector fields in the dynamics of the system.

Non-Lipschitz autonomous systems that achieve convergence to the point (or set) of

interest before a fixed time have been studied in [203, 189, 190]. The state of the art of this

property, usually called “fixed-time” (FxT) stability, was recently reviewed in [198], with

some recent applications in certain classes of hybrid systems under homogeneity conditions

[204, 205], continuous-time systems in canonical forms with switching gains [206], and

non-switching impulsive systems [207]. In contrast to this line of research, this chapter we

study systems that achieve convergence to the target before a prescribed time using the

“time-varying gain approach” introduced for ODEs in [191], usually refereed to as “prescribe-

time control”. This method has a long history in optimal control and tactical missile

guidance systems [208], and it has recently gained renewed attention due to breakthroughs
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in the design and analysis of nonlinear and adaptive controllers in continuous-time systems

with finite-time convergence properties. For a recent survey, see [198] and recent works on

adaptive systems [191, 192, 194, 195, 196], PDEs [201, 209, 200, 210], and systems with

delays [211, 212]. Since this control approach uses “blow-up” gains over bounded time

domains, the solutions of these systems are also defined only over finite-time intervals.

For comprehensive discussions on practical applications, strategies to extend the solution

domains, and the advantages and limitations of PT control, we refer the reader to recent

works [192, 196, 191, 198, 213].

While the study of Prescribed-Time stability properties in continuous-time systems

modeled as ordinary differential equations (ODEs) has seen significant progress, PT-S

tools for hybrid dynamical systems (HDS) have remained mostly unexplored. For example,

switching systems with time-varying gains were studied in [214] using a common Lyapunov

function. Similarly, stable controllers that deactivate, or “clip,” the high gains before the

prescribed time is reached were also discussed in [215]. However, such results consider only

one vector field during the convergence phase, and the switching rules can lead to HDS

that are not well-posed in the sense of [33]. To the best of our knowledge, general results

on PT-S for switching and HDS, similar to those existing for asymptotic or exponential

stabilization [216], are still absent in the literature. Since switching and hybrid controllers

have been shown to provide powerful solutions to complex control [199, 217], optimization

[4, 218], and learning problems [111], there is a clear need for the development of PT-S

tools that enable the analysis and design of new algorithms able to simultaneously leverage

the advantages of both PT-S and hybrid control.

In this chapter, we address this problem by showing that the PT-S property can be

naturally incorporated into a class of HDS that model nonlinear switching systems with

resets, allowing the switching signals to incorporate the dynamic effects of time-varying

gains, while preserving the structure of the hybrid arcs associated to the solutions of the

system. Specifically, the main contributions of this chapter are as follows:
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(a) First, we introduce a class of switching signals that preserve the Prescribed-Time

Stability (PT-S) property in systems switching between a finite number of PT-S vector

fields with exogenous inputs and state resets. To derive these conditions, we reformulate

the overall switching system as a hybrid dynamical system (HDS) with dynamic gains that

induce appropriate time dilation and contraction in the hybrid time domains of its solutions.

By leveraging Lyapunov-based constructions for a suitably normalized HDS evolving on a

hybrid dilated time-scale, we show that the original system is PT-Stable, provided the

switching signal satisfies a novel “blow-up” average dwell-time (BU-ADT) condition. This

condition allows (but does not impose) a non-linear increase in the number of jumps

and switches as the total flow time in the system approaches the prescribed convergence

time. To study the effect of exogenous inputs and/or disturbances in the system, we

establish results via ISS-like bounds “with the convergence property”, paralleling those in

the literature on PT-S for ODEs [191, Def. 2]. However, unlike the existing results for

ODEs, our convergence bounds, presented in Theorem 1, are written in “hybrid time” and

highlight the potentially (asymptotically) stabilizing effect of the resets, as well as the

order of the dynamics generating the “blow-up” gains. To our knowledge, this is the first

result connecting the existing tools on Prescribed-Time Stability for ODEs [191] with the

setting of HDS [33].

(b) Next, we incorporate unstable modes into the switching systems, and we

characterize a novel “blow-up” average-activation-time (BU-AAT) condition on the amount

of time that the system can spend on the unstable modes while preserving the PT-S

property. In our model, the unstable modes are also allowed to have “blow-up” time-

varying gains with finite-escape times, as well as exogenous inputs and/or disturbances. To

study this setting, we construct a HDS with time-ratio monitors, similar in spirit to those

considered in [111, 216, 219], but incorporating the blow-up gains into their dynamics,

enabling faster switching between the stable and unstable modes as the total amount of

flow time in the system approaches the prescribed time. A Lyapunov-based construction
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on a dilated-time scale, and a contraction argument on the hybrid time domains, are used

to establish in Theorem 9.2 a PT-ISS-like result for switched systems with stable and

unstable modes.

(c) To illustrate the applicability of our model and results, we synthesize two

different PT-Stable algorithms for the solution of different control and decision-making

problems with prescribed-time convergence requirements. First, in Proposition 9.3 we

consider the problem of PT regulation of input-affine systems under intermittent feedback,

and we propose a new feedback law that extends the results of [191] to plants modeled as

switching systems. Finally, we consider the problem of prescribed-time Nash equilibrium

seeking in games with switching payoffs via hybrid algorithms with resets. We show in

Proposition 9.4 that such algorithms fit into our model and can be studied using the

analytical tools presented in the paper.

Switching Systems

In this chapter, we consider switching systems with inputs, with the general form

ẋ = f̃σ(t)(x, u, t), where x0 ∈ Rn is the initial condition, x ∈ Rn is the main state,

u : R≥0 → Rm is an exogenous input assumed to be continuous and bounded, and

σ : R≥0 → Q is a right-continuous, piecewise constant, signal that maps the current

time t to a finite set of modes Q = {1, 2, . . . , q}, where q ∈ Z≥1. For each q ∈ Q,

f̃q : Rn × Rm × R≥0 → Rn is assumed to be continuous with respect to all arguments.

Following the notation of [216], we use S to denote the set of all right-continuous, piecewise

constant, signals from R≥0 to Q, with a locally finite number of discontinuities. Such

functions are referred to as switching signals. For each signal σ ∈ S, we also define the

collection of switching instants W(σ) := {t ≥ 0 : σ(t) ̸= σ(t−)}. In this way, the switching

system of interest evolves according to

ẋ(t) = f̃σ(t)(x, u, t), ∀ t /∈ W(σ), (9.1)
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where the solutions x to (9.1) are understood in the Caratheodory sense over any interval

[ta, tb) where σ is constant. During switching times t ∈ W(σ), we allow “jumps” in the

state x via mode-dependent reset maps of the form

x(t) = Rσ(t−)(x(t
−)), ∀ t ∈ W(σ), (9.2)

where the function Rq : Rn → Rn is assumed to be continuous for each q ∈ Q. Throughout

the paper, we will refer to switching systems of the form (9.1)-(9.2) as R-Switching systems.

Remark 9.1. By taking Rq equal to the identity map, system (9.1)-(9.2) recovers a

standard switching system [217]. However, other choices of reset maps open the door

to study PT-S results in reset control systems [220] (such as impulsive systems by

taking Q = {1}) as well as more general switched reset controllers (when |Q| > 1),

see [216]. It is also possible to consider discontinuous functions f̃q, Rq by working

with their corresponding Krasovskii regularizations [33, Def. 4.13]. However, for the

sake of clarity, we focus on R-switching systems with continuous maps f̃q and Rq.

9.1 PT-ISS in Hybrid Dynamical Systems

Motivated by the PT-S property studied for ODEs [191, 192, 194, 195, 200], and

before specializing our results to R-switching systems of the form (9.1)-(9.2), in this section

we introduce PT-S properties for general HDS with inputs. In particular, we consider

systems with state z = (ψ, µk) ∈ Rn × R≥1, set C given by:

C := ΨC × R≥1, (9.3a)
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and flow-map defined as:

ż =




ψ̇

µ̇k


 ∈ F (z, u) :=




µk · FΨ(ψ, µk, u),

k

T
µ
1+ 1

k
k


 , (9.3b)

where T > 0 and k ≥ 1 are tunable parameters, and FΨ : Rn × R≥1 × Rm ⇒ Rn is a

set-valued mapping that we will specify below. The set D is given by

D = ΨD × R≥1, (9.3c)

and the jump map is given by:

z+ =




ψ+

µ+
k


 ∈ G(z) :=




GΨ(ψ)

µk


 , (9.3d)

where GΨ : Rn ⇒ Rn is also to be specified. We denote the HDS with data given by

(9.3) as H. It is assumed that this system satisfies the following standad hybrid basic

conditions [33, Assumption 6.5]. These conditions are standard in the hybrid dynamical

systems literature [21], and they will be satisfied by construction later when we specialize

the results of this section to R-Switching systems with unstable and stable modes.

Assumption 9.1. The sets ΨC ,ΨD ⊂ Rn are closed. The set-valued maps FΨ and

GΨ are OSC and LB with respect to ΨC , and ΨD, respectively; and FΨ is convex for

all (ψ, µk, u) ∈ ΨC × R≥1 × Rm.

Remark 9.2. By Definition 1.4, solutions to (1.3) are required to satisfy dom(z) =

dom(u). To establish this correspondence, we obtain the input u in (1.3) from u in

(9.1) using (with some abuse of notation) u(t, j) = u(t) during flows for each fixed j,

and by keeping u constant during the jumps (1.3b).

211



Since in (9.3b) the dynamics of µk are independent of ψ, system (9.3) has a

cascade structure. However, for system (9.3) the dynamics of ψ will mostly determine the

structure of the HTDs of the solutions z, e.g., purely continuous, purely discrete, eventually

continuous, etc. To study PT-S properties, in this chapter we consider signals µk generated

by (9.3b), exhibiting finite escape times that are “controlled” by the parameters (T, k)

and by µk(0). This property can be established for the dynamics of µk in (9.3b) by direct

integration, and it is formalized in Lemma 9.1. The proof is presented in Appendix G.

Lemma 9.1. Let k ≥ 1, and consider the “blow-up” (BU)-ODE µ̇k =
k
T
µ
1+ 1

k
k with

µk(0) = µ0 ∈ R≥1. Then, its unique solution satisfies:

µk(t) =
T k

(ΥT,k − t)k
≥ 1, ∀ t ∈ [0,ΥT,k), (9.4)

where ΥT,k := Tµ
− 1
k

0 .

For each k ≥ 1, µk(·) is continuous in its domain, strictly increasing, and satisfies

limt→ΥT,k µk(t) = ∞. Hence, the next lemma follows directly by the definition of solutions

to HDS.

Lemma 9.2. (Bounded Flow-Time) Let z be a maximal solution to H. Then, the

HTD of z satisfies supt(dom(z)) ≤ ΥT,k.

Lemma 9.2 states that the total amount of flow-time of every solution of H will be

upper bounded by ΥT,k. We will refer to this quantity as the prescribed time (PT), and we

emphasize its dependency on the initial value µ0 and the constants (T, k). In the literature

on PT-S in continuous-time, µ0 is usually equal to one. However, we will consider any

µ0 ∈ R≥1.

A useful property of the BU-ODE studied in Lemma 9.1, is that, when normalized
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by µk, the resulting ODE has solutions that are complete and lower bounded by 1. The

following Lemma is also proved in Appendix G.

Lemma 9.3. Let k ≥ 1, and consider the normalized-by-µk BU-ODE dµ̂k
ds

= k
T
µ̂

1
k
k

with µ̂k(0) = µ0 ∈ R≥1, evolving in the s-time scale. Then, its unique solution

satisfies: (a) For k = 1: µ̂k(s) = µ0e
s
T ≥ 1 for all s ≥ 0; (b) For k > 1: µ̂k(s) =(

(k−1)
T

s+ µ
k−1
k

0

) k
k−1 ≥ 1, for all s ≥ 0.

9.1.1 Time-Scaling of Hybrid Time Domains

The signals µk generated by the dynamics (9.3b) will be used to define a suitable

dilation and contraction on the HTD of the solutions to H. To do this, for each (T, k) ∈

R>0 × R≥1, and 1 ≤ a ≤ b, let the function ωk : R≥1 × R≥1 → R≥0 be defined as

ωk(b, a) :=
T

k

(
bρ(k) − aρ(k)

ρ(k)

)
, ∀ k > 1, (9.5)

and ω1(b, a) := limk→1+ ωk(b, a), where ρ(k) :=
k−1
k
. The following proposition states some

important properties of ωk(·, ·) when evaluated along µk. All the proofs are presented in

Appendix G.

Proposition 9.1. Let (T, k) ∈ R>0 × R≥1, µk be given by (9.4), and let Tk :

[0,ΥT,k) → R≥0 be the function

Tk(t) := ωk(µk(t), µk(0)), ∀ t ∈ [0,ΥT,k). (9.6)

Then, Tk(·) satisfies the following properties:

(P1) limt→ΥT,k Tk(t) = ∞.
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(P2) For any pair t2, t1 ∈ [0,ΥT,k) such that t2 ≥ t1:

Tk(t2)− Tk(t1) = ωk(µk(t2), µk(t1)).

(P3) For all t ∈ [0,ΥT,k), we have

dTk(t)
dt

= µk(t), Tk(0) = 0. (9.7)

(P4) For all t ∈ [0,ΥT,k), Tk has a well-defined inverse T −1
k : R≥0 → R≥0, which is

given by

T −1
k (s)=ΥT,k

(
1−
(
1+

(k − 1)s

ΥT,kµ0

) 1
1−k
)
, k > 1, (9.8)

and by T −1
1 (s) = limk→1+ T −1

k (s).

(P5) For all s ∈ R≥0, T −1
k satisfies

d

ds
T −1
k (s) =

1

µk
(
T −1
k (s)

) , T −1
k (0) = 0. (9.9)

(P6) limT→∞ Tk(t) = µ
k−1

k2

0 t for k > 1, and limT→∞ T1(t) = µ0t for all t ≥ 0.

Remark 9.3. To contextualize Proposition 9.1, consider the special case k = 1,

which is commonly used in the literature on PT-control of ODEs [191, 192]. In this

case, Proposition 9.1 yields the following “standard” mappings:

T −1
1 (s) = ΥT,1

(
1− e−

1
T
s
)
, ∀ s ∈ R≥0, (9.10a)

T1(t) = T

(
ln

(
µ1(t)

µ1(0)

))
, ∀ t ∈ [0,ΥT,1). (9.10b)
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Indeed, note that (9.8) can be written as: T −1
k (s) = ΥT,1

(
1−

(
1 + s

n(k)T

)−n(k))
,

with n(k) = 1
k−1

. Using e
s
T = limn→∞

(
1 + s

nT

)n
and the fact that n → ∞ when

k → 1+, we obtain (9.10a). Similarly, using limρ→0
µρ1−1

ρ
= ln(µ1), and the fact that

ρ(k) → 0 if and only if k → 1, (9.10b) follows directly from (9.5) and the definition

of ω1 by applying the product law for limits.

The properties established in Proposition 9.1 are used to derive the following result,

which provides a suitable dilation/contraction of the HTDs of H with data defined by

(9.3) when analyzed in a different hybrid time scale (s, j) induced by the transformation

s = Tk(t), see Figure 9.1. Note that, since µk does not change during the jumps (9.3d),

when evaluating (9.6) along (hybrid) solutions of µk generated by (9.3c) we can omit the

dependence of Tk on j.

Figure 9.1. Dilation and contraction of hybrid time domains and hybrid arcs. The
structure of the hybrid time domain E in the (t, j)-time scale is preserved under the
diffeomorphism Tk × id in the (s, j)-time scale.
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Proposition 9.2. (Dilation and Contraction of HTD) Let (T, µ0, k) ∈ R>0 ×R≥1 ×

R≥1, and Tk be given by (9.6). Consider the following HDS, denoted by Ĥ, evolving

on the (s, j)-hybrid time scale, with state ẑ = (ψ̂, µ̂k) and input û:

(ẑ, û) ∈ C̃ = C × Rm, ˙̂zs ∈
1

µ̂k
F (ẑ, û). (9.11a)

(ẑ, û) ∈ D̃ = D × Rm, ẑ+ ∈ G(ẑ). (9.11b)

where (C̃, F, D̃, G) in (9.11) are the same as in (9.3), and where ˙̂zs :=
d
ds
ẑ.

a) If (ẑ, û) is a maximal solution pair of Ĥ from the initial condition z0, then

the pair of hybrid signals defined as (z(t, j), u(t, j)) := (ẑ(s, j), û(s, j)), for all

(s, j) ∈ dom(ẑ), is also a maximal solution pair of H from the initial condition

z0 via the time dilation s = Tk(t).

b) If (z, u) is a maximal solution pair of H from the initial condition z0, then

the pair of hybrid signals defined as (ẑ(s, j), û(s, j)) := (z(t, j), u(t, j)) for all

(t, j) ∈ dom(z), is also a maximal solution pair of Ĥ from the initial condition

z0 via the time contraction t = T −1
k (s).

Remark 9.4. Proposition 9.2 establishes a relationship between the solutions of the

HDS H in the (t, j) time scale, and the solutions of Ĥ in the (s, j) time scale via the

family of k-parameterized dilations s = Tk(t) and contractions T −1
k (s). In particular,

the function Tk : [0,ΥT,k) → R≥0 will define a diffeomorphism that preserves the

structure of the HTD of the hybrid arcs of Ĥ. This observation is central to our

analysis, as it enables us to conduct the stability analysis of the original HDS H by

first studying the qualitative behavior of the solutions of system Ĥ. In particular,

note that Ĥ has a flow map that is normalized by µ̂k, which removes the finite escape

times in µ̂k (c.f., Lemma 9.3). This normalized HDS can be viewed as a “target”
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system that can be first designed and studied using the extensive set of tools available

in the literature on HDS [33, 199].

Remark 9.5. Using (9.4) with k > 1, Tk can be written as

Tk(t) =
Tµ

k−1
k

0

k − 1


 T k−1

(
T − tµ

1
k
0

)k−1
− 1


 , ∀ t ∈ [0,ΥT,k), (9.12)

which recovers the common dilation used for ODEs when µ0 = 1, see [191]. Other

types of transformations are presented in [195] for the study of finite-time control of

ODEs. Proposition 9.2 provides an extension of these results to hybrid systems.

Remark 9.6. Analyses of HDS based on the time scaling of the flow map are not

new, and they have been extensively explored in the context of singular perturbations

[221, 30] and averaging theory [222, 111]. However, in contrast to (9.12), the time

scaling in those scenarios is usually linear.

9.1.2 PT-S via Flows in HDS

Since solutions to system H, whose data is described by (9.3), can only flow for a

total amount of time upper bounded by ΥT,k, in this chapter we are interested in regulating

the state z to a general closed set A, as t→ ΥT,k (or before ΥT,k), where

A = Aψ × R≥1, (9.13)

and where Aψ is an application-dependent compact set. For systems with inputs, the

following definition aims to capture this property, which makes use of the transformation

Tk defined in (9.6), and which extends [191, Def. 1] from ODEs to HDS.

217



Definition 9.1. Let A be given by (9.13), where Aψ ⊂ Rn is compact. The set

A is said to be Prescribed-Time Input-to-State Stable via Flows (PT-ISSF) for the

HDS H if there exists β ∈ KLL and γ ∈ K such that for every z(0, 0) ∈ C ∪D, all

solutions z satisfy:

|z(t, j)|A ≤ β
(
|z(0, 0)|A, Tk(t), j

)
+ γ

(
|u|(t,j)

)
, (9.14)

for all (t, j) ∈ dom(z). If (9.14) holds with u ≡ 0, the set A is said to be Prescribed-

Time Stable via Flows (PT-SF).

In some cases, it might be possible to completely suppress the residual effect of

the input u in the bound (9.14) via PT feedback. This property, termed PT-ISS with

Convergence in [191, Def. 1], can also be obtained in hybrid systems:

Definition 9.2. Let A be given by (9.13), where Aψ ⊂ Rn is compact. The set

A is said to be Prescribed-Time Input-to-State Stable with Convergence via Flows

(PT-ISS-CF) for the HDS H if there exists β ∈ KLL, γ ∈ K, and βc ∈ KL such that

for every z(0, 0) ∈ C ∪D, all solutions z satisfy:

|z(t, j)|A ≤ βc
(
β (|z(0, 0)|A, Tk(t), j) + γ

(
|u|(t,j)

)
, Tk(t)

)
, (9.15)

for all (t, j) ∈ dom(z).

Remark 9.7. (On the use of KLL functions) The use of KLL functions in Definitions

9.1 and 9.2 enable us to differentiate convergence behaviors in the continuous-time

domain from those in the discrete-time domain. This type of comparison function is

common in the analysis of HDS with inputs [21]. Additionally, since by construction

|z(t, j)|A = |ψ(t, j)|Aψ for all (t, j) ∈ dom(z) (because |µk(t, j)|R≥1
= 0), we can
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equivalently express the bounds (9.14)-(9.15) with z replaced by ψ, and A replaced

by Aψ.

Remark 9.8. (On the lack of uniformity with respect to µ0) Definitions 9.1 and 9.2

extend Prescribed-Time Stability (PT-S) notions, studied in the literature of ODEs,

[191, Def. 1] to hybrid systems. The KLL function β and the KL function βc in

the bounds (9.14) and (9.15) are independent of the initial conditions on z = (ψ, µ).

However, as defined in (9.6), the diffeomorphism Tk clearly depends on the initial

value of µk via (9.6), which parameterizes the prescribed time ΥT,k. Yet, the bounds

(9.14) and (9.15) are uniform across the initial conditions of ψ, which is the main

state of interest in the system.

The following example, which follows as a particular case of the main results in the

next section, illustrates the previous discussions:

Example 9.1. Consider the HDS H with k = 1, T = 1, ψ = (x, τ), FΨ =

{−x + u} × {1}, GΨ = {1
2
x} × {0}, ΨC = Rn × [0, 1], ΨD = Rn × {1}, and u is

continuous and bounded. Then, every solution z = (x, τ, µ1) satisfies the following

bound (see proof of Theorem 9.1):

|ψ(t, j)|Aψ ≤ k1e
−k2T1(t) (e−k3(T1(t)+j)|ψ(0, 0)|Aψ + k4|u|(t,j)

)
,

where ki > 0 and Aψ = {0} × [0, 1], for all (t, j) ∈ dom(z). Moreover, using (9.10b),

the above bound can be written as:

|ψ(t, j)|Aψ ≤ µ1(0, 0)
α1

µ1(t, j)α2

(
e−qj

µ1(t, j)α3
|ψ(0, 0)|Aψ + α4 · |u|(t,j)

)
,

where αi > 0, µ1(0, 0) = µ0 ≥ 1, and for all (t, j) ∈ dom(z). It follows that

lim(t,j)∈dom(z),t→Υ1,1 ψ(t, j) = 0.
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It is important to note that, unlike ODEs, for HDS the existence of bounds of the

form (9.14)-(9.15) does not necessarily guarantee that the internal state ψ will converge

to Aψ as t→ ΥT,k, for any ΥT,k > 0, even if u ≡ 0 and z is complete. The following scalar

example illustrates this scenario.

Example 9.2. Consider the HDS H with k = 1, main state ψ ∈ R, functions

FΨ = {−ψ}, GΨ = 1
2
ψ, and sets ΨC = (−∞,−1] ∪ [1,∞), and ΨD = [−1, 1]. For

this system, we can study stability of ψ with respect to the set Aψ = {0}. For any

initial condition to H, z(0, 0) = (ψ0, µ0), satisfying |ψ0| > 1 and µ0 = 1, the unique

maximal solution to the HDS satisfies ψ(t, 0) = ψ0

(
T−t
T

)T
, for all (t, j) ∈ [0, t′]×{0},

where t′ = T (1− |ψ0|−
1
T ), and ψ(t, j) =

(
1
2

)j
ψ(t′, 0), for all (t, j) ∈ ⋃j∈Z≥1

{t′}×{j}.

It follows that ψ(t, j) → Aψ only as j → ∞. Yet, every solution of the HDS satisfies

(9.14) with u = 0. This follows by a direct application of item (a) of Proposition 9.2,

the result of [223, Thm. 1], and item (b) of Proposition 9.2, in that order.

The previous example shows that bounds of the form (9.14) or (9.15) only guarantee

PT-S-like behaviors via the flows of the HDS. Therefore, to emulate the existing PT-S

bounds obtained for ODEs [191, 192], the “target” HDS Ĥ in (9.11) must generate maximal

solutions with hybrid time domains E satisfying suptE = ∞, such as those in Example 9.1.

In general, this is not possible whenever C = ∅, or whenever Ĥ has eventually discrete,

Zeno, or purely discrete solutions. However, as shown in the next section, for R-Switching

systems, discrete solutions can be ruled out by designing appropriate switching signals

generated by hybrid automatons that additionally exploit the “blow-up” nature of the

functions µk.

9.2 PT-ISS in R-Switching Systems

In this section, we apply Proposition 9.2 to study a class of R-switching systems
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(9.1)-(9.2) characterized by the following dynamics:

ẋ = µk(t) · fσ(t)(x, µk(t), u, τ), t /∈ W(σ), (9.16a)

x(t) = Rσ(t−)

(
x(t−)

)
, t ∈ W(σ). (9.16b)

For generality, in (9.16a) we allow fσ to depend on µk and also on a signal τ that is

generated by the following hybrid dynamics

τ̇ ∈
[
0,
µk(t)

τd

]
, t /∈ W(σ), (9.17a)

τ+ = τ − 1, t ∈ W(σ), (9.17b)

where µk is given by (9.4) and τd > 0. To contextualize this model, some remarks are in

order.

Remark 9.9. When µk ≡ 1, Rσ = id(·), and fσ does not depend on τ and u,

equation (9.16) coincides with the conventional nonlinear switching systems examined

in [224, 225]. On the other hand, when fσ depends on u, (9.16a) captures nonlinear

switching systems with inputs, similar to those studied [226, 216].

Remark 9.10. When µk ≡ 1 and fσ depends on τ , system (9.16) describes a class

of τ -parameterized nonlinear switching systems. In this class, τ is not necessarily

constant throughout time, and the function t 7→ τ(t) may not be differentiable or

even continuous. Such models emerge in, for example, a class of time-triggered reset

systems [25, 1] suitable for optimization and learning problems; see also Section 9.3.2

for a specific application.

Remark 9.11. In many applications, the system of interest might not match

the exact form of (9.16). This is often the case in PT-regulation and feedback
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control of affine dynamical systems with non-zero drift, where multiplying the entire

vector fields by the gain µk is not feasible. However, as shown later in Section 9.3,

appropriate feedback design or variable transformation can reformulate these systems

into the form (9.16).

To have a well-posed system, we make the following regularity assumption on

system (9.16a):

Assumption 9.2. For each q ∈ Q, fq : Rn × R≥1 × Rm × R≥0 → Rn is locally

Lipschitz, Rq : Rn → Rn is continuous, and u : R≥0 → Rm is continuous and

bounded.

We consider R-switching systems (9.16) with a mix of stable and unstable modes.

We denote the set of stable modes as Qs and the set of unstable modes as Qu, such that

Qs ∪ Qu = Q and Qu ∩ Qs = ∅. To leverage this partition and derive prescribed-time

stability results, we proceed to introduce specific stability assumptions for our “target”

HDS Ĥ defined in (9.11). Central to these assumptions is the role of a function ∆(µ̂k)

that characterizes the effect of the time-varying gain µ̂k on the input u in (9.16). In

our subsequent analysis, we focus on three specific cases: ∆(µ̂k) = 0, ∆(µ̂k) = 1, and

∆(µ̂k) = µ̂−ℓ
k with ℓ > 0.

Assumption 9.3. There exist τd ∈ R>0, N0 ∈ R≥1, smooth functions Vq̂ : Rn ×

R≥0 → R≥0, where q̂ ∈ Q, and constants cq̂,i > 0, i ∈ {1, 2, 3, 4, 5}, p > 0, such that:

a) For all (x̂, τ̂ , q̂) ∈ Rn × [0, N0]×Q:

cq,1|x̂|p ≤ Vq̂(x̂, τ̂) ≤ cq,2|x̂|p. (9.18a)

b) For all (x̂, τ̂ , q̂, µ̂k, η) ∈ Rn × [0, N0]×Qs × R≥1 × [0, τ−1
d ] and for all u ∈ Rm,
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we have:

〈
∇Vq̂(x̂, τ̂),



fq̂(x̂, µ̂k, u, τ̂)

η



〉

≤ −cq̂,3Vq̂(x̂, τ̂) + cq̂,4∆(µ̂k)|u|p. (9.18b)

c) For all (x̂, τ̂ , q̂, µ̂k, η) ∈ Rn × [0, N0]×Qu × R≥1 × [0, τ−1
d ] and for all u ∈ Rm,

we have:

〈
∇Vq̂(x̂, τ̂),



fq̂(x̂, µ̂k, u, τ̂)

η



〉

≤ cq,5Vq̂(x̂, τ̂) + cq̂,4∆(µ̂k)|u|p. (9.18c)

d) For all (x̂, τ̂) ∈ Rn × [1, N0] and ô, q̂ ∈ Q such that q̂ ̸= ô:

Vq̂(Rô(x̂), τ̂ − 1) ≤ χVô(x̂, τ̂), (9.18d)

where χ > 0.

Remark 9.12. Inequalities (9.18a)-(9.18b) are common in the context of exponential

stability in continuous-time and hybrid systems. For the case when the vector field fq

in (9.16a) does not depend on τ , the function Vq̂ can also be taken to be independent

of τ̂ . This is the most common situation in switching systems and systems with

resets. An example where fq does depend on τ will be studied in Section 9.3.2.

Remark 9.13. Inequality (9.18b) in item (b) gives a standard decrease condition on

the Lyapunov functions Vq̂, for each stable mode q̂ ∈ Qs, and up to a neighborhood

of the origin, whose size is parameterized by ∆(µ̂k)|u|p. When ∆(µ̂k) = 0, and by

[223, Thm. 1], conditions (9.18a)-(9.18b) imply that each mode q̂ ∈ Qs renders the

origin exponentially stable in the dilated time scale s = Tk(t) (see Proposition 9.2).
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When ∆(µ̂k) = 1, and by [21, Prop. 1], conditions (9.18a)-(9.18b) imply that each

mode q̂ ∈ Qs renders the origin ISS with exponential decay in the dilated time scale.

The case ∆(µ̂k) = µ̂−ℓ
k , with ℓ > 0, will emerge in the context of PT-regulation where

convergence bounds of the form (9.15) are sought-after. An example in this direction

is presented in Section 9.3.

Remark 9.14. Inequality (9.18c) in item (c) rules out finite escape times for

the unstable modes q̂ ∈ Qu. Similar assumptions are considered in the context of

asymptotic/exponential stability in switching systems [226, 111]. When Qu = ∅ (i.e.,

there are no unstable modes), item (c) holds vacuously.

Remark 9.15. Inequality (9.18d) in item (d) considers the effect of the resets on

the Lyapunov functions related to each of the modes. Usually (e.g., in standard

switching systems) Rq̂ = id(·) and Vq̂ is independent of τ̂ , and in this case, inequality

(9.18d) holds trivially with χ = 1. When Vq̂ is independent of τ̂ but Rq̂ ̸= id(·), item

(d) recovers the main assumptions of [216].

9.2.1 Blow-Up Average Dwell-Time Conditions

To achieve asymptotic stability in systems switching between a finite number of

stable modes, it is common to assume that for all times t2 ≥ t1 ≥ 0, the switching signal

σ satisfies an average dwell-time (ADT) condition of the form:

N(t2, t1) ≤
1

τd
(t2 − t1) +N0, (9.19)

where N(t2, t1) is the number of switches of σ in the interval (t1, t2], τd > 0 is called the

dwell-time, and N0 ≥ 1 is the chatter bound, see [224, 225], [33, Ch. 2.4]. However, unlike

asymptotic convergence results, PT-S properties are defined only over the finite interval

[0,ΥT,k). Therefore, we consider switching signals defined on similar intervals, which are
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Figure 9.2. BUk-ADT condition (9.20) for k ∈ {1, 2, 3, 4}. Left: When µ0 = 1, T = 10,
and t1 = 0, there exists a single common terminal time T = ΥT,k for all k. Right: When
µ0 = 2, T = 10, and t1 = 0, the dependence of ΥT,k on µ0 (see Proposition 9.1) leads to
the emergence of three distinct terminal times.

additionally allowed to have a switching frequency that becomes unbounded as t→ ΥT,k.

Definition 9.3. Let µk be given by (9.4). A switching signal σ : [0,ΥT,k) → Q is

said to satisfy the blow-up average dwell-time condition of order k (BUk-ADT) if

there exist N0 ≥ 1 and τd > 0 such that for all t2, t1 ∈ dom(σ):

N(t2, t1) ≤
1

τd
ωk (µk(t2), µk(t1)) +N0, (9.20)

where ωk(·, ·) is given by (9.5). We use ΣBUk-ADT(τd, N0, T, µ0) to denote the family

of such signals.

Figure 9.2 illustrates the BUk-ADT condition by comparing various bounds derived

from (9.20) (plotted on a logarithmic scale) as functions of ∆ = t2 − t1, with t1 = 0,

and for different values of k ∈ Z≥1, with µ0 = 1 (left plot) and µ0 = 2 (right plot). The

standard ADT bound (9.19) is also shown in color purple. Unlike the ADT bound, the

BUk-ADT bound grows to infinity as ∆ → ΥT,k, allowing an increasing number of switches

as t→ ΥT,k. However, in any compact sub-interval of [0,ΥT,k) the allowable number of

switches is bounded. The following lemma shows that switching signals satisfying the

ADT condition (9.19) also satisfy the BUk-ADT condition (9.20) when their domain is
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appropriately restricted. The implication follows directly because the right-hand side of

(9.19) can be upper-bounded by the right-hand side of (9.20). The proof is presented in

Appendix G.

Lemma 9.4. Let T > 0, µ0 ≥ 1, and σ be a switching signal satisfying the ADT

condition (9.19) with τd > 0 and N0 ≥ 1. Then, σ(t) satisfies the BUk-ADT condition

(9.20) for all k ∈ Z≥1 and all 0 ≤ t1 ≤ t2 < ΥT,k, with the same τd, N0.

Next, we present a lemma that provides an equivalent formulation of the BUk-ADT

condition, as well as its limiting behavior when the prescribed-time ΥT,k goes to infinity.

The proof is presented in Appendix G.

Lemma 9.5. The following holds:

a) If k = 1, then (9.20) is equivalent to

N(t2, t1) ≤
T

τd
ln

(
ΥT,1 − t1
ΥT,1 − t2

)
+N0. (9.21)

b) If k ∈ Z>1, then (9.20) is equivalent to

N(t2, t1) ≤
γk(t1, t2)

τd

(
(t2−t1) +

k−1∑

ℓ=2

c̃ℓ,k
(
tℓ2 − tℓ1

)
)

+N0,

where c̃ℓ,k := (−1)ℓ+1 bk,l
k−1

Υ1−ℓ
T,k , bk,l =

(k−1)!
ℓ!(k−ℓ−1)!

and

γk(t1, t2) := µ0

(
Υ2
T,k

(ΥT,k − t2) (ΥT,k − t1)

)k−1

.

c) For all k ∈ Z≥1 and all t2 ≥ t1 ≥ 0 the bound (9.20) satisfies

lim
T→∞

1

τd
ωk (µk(t2), µk(t1)) +N0 =

µ0

τd
(t2 − t1) +N0,
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thus recovering the ADT condition (9.19) when µ0 = 1.

9.2.2 PT-ISS in R-Switching Systems with Stable Modes

When all the modes fq are stable, i.e., Qu = ∅ and Q = Qs, we can study PT-S

properties of (9.16) by considering switching signals that satisfy the BUk-ADT bound. In

this case, the R-Switching system (9.16) can be analyzed by considering the HDS H with

data (9.3), state ψ = (x, τ, q) ∈ Rn+2, and

FΨ(ψ, µk, u) := {fq(x, µk, u, τ)} ×
[
0,

1

τd

]
× {0}, (9.22a)

GΨ(ψ, u) := {Rq(x)} × {τ − 1} × Qs\{q}, (9.22b)

ΨC = Rn × [0, N0]×Qs, ΨD = Rn × [1, N0]×Qs. (9.22c)

As established in the next lemma, there is a close connection between the HTDs of the

solutions of system H with data (9.22), and the signals σ that satisfy the BUk-ADT

condition.

Lemma 9.6. Let (FΨ, GΨ,ΨC ,ΨD) be given by (9.22a)-(9.22c), and consider the

HDS H under Assumptions 9.2 and 9.3. Then, Assumption 9.1 holds, and:

a) For every maximal solution z and for any pair (t1, j1), (t2, j2) ∈ dom(z), with

t2 > t1, inequality (9.20) holds with N(t2, t1) = j2 − j1.

b) For every HTD satisfying property (a), there exists a solution z of the HDS H

having the said HTD.

One of the main consequences of the equivalence established in Lemma 9.6 is that

analyzing the stability properties of the R-switching system (9.16) under the family of

switching signals ΣBU-ADT(τd, N0, T, µ0) is equivalent to examining the stability properties
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of the HDS H with (FΨ, GΨ,ΨC ,ΨD) defined by (9.22a)-(9.22c). In this case, we can

study the stability properties of this HDS with respect to the set A given by (9.13), where

Aψ is the following compact set

Aψ = {0} × [0, N0]×Qs. (9.23)

The following Theorem is the first main result of this chapter.

Theorem 9.1. Let N0 ≥ 1, Qs ̸= ∅, Qu = ∅, and consider the HDS H with

(FΨ, GΨ,ΨC ,ΨD) given by (9.22a)-(9.22c). Suppose that Assumptions 9.2-9.3 hold,

and

τd >
ln(r)

minq∈Q cq,3
, (9.24)

where r := max{1, χ}, and χ > 0 is given in Assumption 9.3. For each (T, k) ∈

R>0 × R≥1, the following holds:

a) If ∆(µk) = 0, then the set A is PT-SF for H.

b) If ∆(µk) = 1, then the set A is PT-ISSF for H.

c) If ∆(µk) = µ−ℓ
k , then for any ℓ > 0 the set A is PT-ISS-CF for H.

The following Corollary covers the case k = 1, which is the most common in the

literature of PT-S [191, 215].

Corollary 9.1. Suppose that all the assumptions of Theorem 9.1 hold, and that

k = 1. Then, for every solution z = (x, τ, q, µk) to H, and all (t, j) ∈ dom(z), the

state x satisfies the following properties:
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1. If (9.18b) holds with ∆(µ1) = 0 or ∆(µ1) = 1, then

|x(t, j)| ≤ κ1

(
µ0

µ1(t, j)

)κ2T
e−κ2j|x(0, 0)|+ κ3∆|u|(t,j), (9.25)

where κi > 0 for i ∈ {1, 2, 3}.

2. If (9.18b) holds with ∆(µ1) = µ−ℓ
1 , then:

|x(t, j)| ≤ α1µ
α2
0

µ1(t, j)α3

(
e−α4j

µ1(t, j)α5
|x(0, 0)|+ α6|u|(t,j)

)
, (9.26)

where αi > 0 for i ∈ {1, 2, . . . , 6}.

9.2.3 PT-ISS in R-Switching Systems with Unstable Modes

We now consider the scenario where some of the modes fq in (9.16) are unstable,

i.e., Qu ̸= ∅ and Q = Qs ∪ Qu. To study this case, we introduce a blow-up average

activation-time (BUk-AAT) condition on the amount of time that the unstable modes can

remain active in any sub-interval of [0,ΥT,k).

Definition 9.4. A switching signal σ : [0,ΥT,k) → Q is said to satisfy the blow-up

average activation-time condition of order k (BUk-AAT) if there exist T0 > 0 and

τa > 1 such that for each pair of times t2, t1 ∈ dom(σ):

∫ t2

t1

µk(t) · IQu(σ(t))dt ≤
1

τa
ωk (µk(t2), µk(t1)) + T0, (9.27)

where µk is given by (9.4). We denote the family of such signals as

ΣBUk-AAT(Qu, τa, T0, T, µ0).
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Remark 9.16. For asymptotic and exponential stability results in switching systems

with both stable and unstable modes [226, 111, 216], it is common to restrict the

family of admissible switching signals to those that satisfy the ADT condition (G.6)

and the following average activation-time (AAT) condition:

∫ t2

t1

IQu(σ(t))dt ≤
1

τa
(t2 − t1) + T0, (9.28)

where τa > 1, and T0 > 0. This bound can be recovered from (9.27) by taking the

limit as T → ∞ in both sides of (9.27) and using µ0 = 1. Also, note that for k = 1,

the BU1-AAT condition reduces to:

∫ t2

t1

IQu(σ(t))
ΥT,1 − t

dt ≤ 1

τa
ln

(
T − t1µ0

T − t2µ0

)
+ T0.

Similar bounds can be obtained for k ∈ Z≥2 using (9.4).

Figure 9.3 compares the BUk-AAT bounds and the traditional AAT bound (9.28).

The left plot shows the left-hand side of (9.27) for different values of k, under a particular

switching signal σ that switches between one stable mode and one unstable mode. The

classic AAT bound is shown in purple color. The right plot shows (9.27) for k = 1 and

different values of τa.

To study the PT-S properties of the R-Switching system (9.16) when Q contains

unstable modes, we now consider the HDS H with state ψ = (x, τ, ρ, q) ∈ Rn+3, set-valued

mappings:

FΨ := {fq(x, µk, u, τ)}×
[
0,

1

τd

]
×
([

0,
1

τa

]
− IQu(q)

)
× {0}, (9.29a)

GΨ := {Rq(x)} × {τ − 1} × {ρ} × Q\{q}, (9.29b)

230



0 2 4 6 8 10
∆ = t2 − t1

10−3

10−2

10−1

100

101

102

103
∫ t

1
+

∆

t 1
µ
k
(t

)I
Q
u
(σ

(t
))
d
t

Qu = {2}
Qs = {1}

0 10t
1

2

σ(t)

k = 1

k = 2

k = 3

k = 4

µ(t) = µ0

Figure 9.3. Functions appearing in the BUk-AAT condition (9.27) using the switching
signal σ(·) (see inset), T = 10, and µ0 = 1.

and sets:

ΨC = Rn × [0, N0]× [0, T0]×Q, (9.29c)

ΨD = Rn × [1, N0]× [0, T0]×Q. (9.29d)

There is a close connection between the hybrid time domains of the solutions generated by

the HDS H with data (9.29), and the switching signals that simultaneously satisfy (9.20)

and (9.27).

Lemma 9.7. Let (FΨ, GΨ,ΨC ,ΨD) be given by (9.29a)-(9.29c), and consider the

HDS H given by (9.3), under Assumption 9.2-9.3. Then, Assumption 9.1 holds, and:

a) For every maximal solution z to H and for any pair (t1, j1), (t2, j2) ∈ dom(z),

with t2 > t1, inequality (9.20) holds with N(t2, t1) = j2 − j1, and inequality

(9.27) holds with σ(t) = q(t, j(t)), where j(t) := min{j ∈ Z≥0 : (t, j) ∈

dom(z)}.

b) For every HTD satisfying property (a), there exists a solution z of H having

the said HTD.

Similar to Lemma 9.6, the result of Lemma 9.7 enables the study of the stability
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properties of the R-Switching system (9.16), under switching signals σ satisfying (9.20) and

(9.27), by studying the stability properties of the HDS (G.11). In this case, we consider

the set A given by (9.13), where Aψ is now given by

Aψ = {0} × [0, N0]× [0, T0]×Q. (9.30)

The next theorem is the second main result of this chapter.

Theorem 9.2. Let N0 ≥ 1, T0 > 0, Qu ≠ ∅, Qs ̸= ∅, and consider the HDS H given

by (9.3) with (FΨ, GΨ,ΨC ,ΨD) given by (9.29a)-(9.29c). Suppose that Assumptions

9.2-9.3 hold, and that

1 >
1

c3τd
ln(r) +

1

τa

(
1 +

c5
c3

)
, (9.31)

where r = max{1, χ}, χ > 0 is given in Assumption 9.3, c3 = minp∈Q cq,3, and

c5 = maxp∈Q cq,5. For each (T, k) ∈ R>0 × R≥1 the following holds:

a) If ∆(µk) ≜ 0, then the set A is PT-SF.

b) If ∆(µk) ≜ 1, then the set A is PT-ISSF.

c) If ∆(µk) ≜ µ−ℓ
k , ℓ > 0, then the set A is PT-ISS-CF.

Remark 9.17. (Switching with Non-PT Unstable Modes) It is reasonable to consider

a situation where the unstable modes in (9.16a) do not have time-varying gains,

i.e., µk ≡ 1 when q ∈ Qu. In particular, consider a system switching between the

following two families of systems:

ẋ = µkfq(x), q ∈ Qs, and ẋ = fp(x), p ∈ Qu,

where the modes in Qs satisfy (9.18b), and the modes in Qu satisfy (9.18c) with
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u ≡ 0. Following the same approach of Theorem 9.2, and operating in the s-time

scale for the flows, we now obtain the following two type of modes:

˙̂xs = fq(x̂), q ∈ Qs, and ˙̂xs =
1

µ̂k
fp(x), p ∈ Qu.

For this system, the same Lyapunov-based analysis can be applied as in the proof

of Theorem 9.2 to obtain the bound (G.15) for all q ∈ Qs. On the other hand, for

q ∈ Qu, we now obtain ⟨∇W2(ẑ), ˙̂zs⟩ ≤ − (c3 − δ)W2(ẑ)− c5

(
1− 1

µ̂k

)
W2(ẑ). Note

that 1 − 1
µ̂k

≥ 0 since µ̂k ≥ 1 by Lemma 9.3. This implies that ⟨∇W2(ẑ), ˙̂zs⟩ ≤

− (c3 − δ)W2(ẑ). From here, the proofs follow the same steps as in the proof of

Theorem 9.2.

Remark 9.18. While all our results assumed that the resets (9.16b) were stabilizing,

or at least, not destabilizing, it is possible to extend Theorems 9.1-9.2 to cases

where the resets are destabilizing, provided the flows of the HDS are “sufficiently”

frequent compared to the jumps. In this case, stability can be established by a simple

modification of the Lyapunov functions used to study the target systems Ĥ as in [33,

Prop. 3.29].

We conclude this section by noting that, with some additional effort, the stability

results of Theorems 9.1-9.2 could be extended to systems for which Lyapunov functions

with monomial bounds do not exist. While this represents an interesting research direction,

such characterizations are beyond the scope of this chapter and could be more appropriately

studied in the future within the context of integral-ISS, as described in [216]. For our

applications of interest, discussed in the next section, as well as others not detailed

here due to space constraints (e.g., concurrent learning [161], extremum seeking [196],

feedback-optimization), Assumption 9.3 is typically satisfied.
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9.3 Applications to PT-Control and PT-Decision

Making

This section presents two applications that illustrate our main results. Throughout

this section, the state q and the blow-up gain µk are assumed to follow the hybrid dynamics

H defined in (9.3), with data given by (9.22) or (9.29). Since practical implementations of

PT-Stable algorithms typically involve early terminations to avoid numerical instabilities,

as well as techniques such as clipping and saturation [192, 196, 198], for all our numerical

simulations we employ a fourth-order Runge-Kutta method with fixed time step δt = 10−6

and we saturate the blow-up gain µk at 1× 103.

9.3.1 PT-Regulation with Intermittent Feedback

Consider a switched input-affine system with intermittent feedback, of the form:

ẋ = dq(x) + IQs (q) bq(x)uq(x, µk), (9.32)

where x ∈ Rn, q ∈ Q = Qs ∪ Qu is a logic state and Qu ̸= ∅. The blow-up gain

µk is as defined in (9.4), dq(x) ∈ Rn and bq(x) ∈ Rn×n denote mode-dependent drift

and input vector fields, respectively, uq : Rn × R≥1 → Rn is the control input, and

IQs(q), is an indicator function representing the intermittent nature of the feedback. Such

input-affine switching systems model diverse phenomena, ranging from gene regulatory

networks in biology [227] to hybrid locomotion in robotics [228]. Incorporating intermittent

feedback enhances the practical relevance of these models by addressing challenges such as

limited sensor availability, and adversarial operating environments. The implementation

of prescribed time controllers proves crucial in scenarios demanding strict time constraints

thereby extending the applicability of these models to time-sensitive applications.

We assume that bq(·) and dq(·) are unknown locally Lipschitz functions, which
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satisfy the following properties:

|dq(x)| ≤ dq(x), ∀ q ∈ Q, x ∈ Rn,

bq(x) + bq(x)
⊤ ⪰ ϵIn, ∀ q ∈ Qs, x ∈ Rn,

where ϵ > 0, and dq(x) > 0 is a known scalar-valued function assumed to be continuous

for all x ∈ Rn and all q ∈ Q. We also assume that dq(x) is ℓq-globally Lipschitz for all

q ∈ Qu. To regulate the state x to the origin in a prescribed time, we consider the following

switching feedback-law:

uq(x, µk) = −µk
(
ηq + δqdq(x)

2
)
x, (9.33)

with δq > 0 and ηq > 0 and k ≥ 2. The closed-loop system has the form of the HDS H

with data (9.29) and continuous-time dynamics of x given by:

ẋ = µk(t)fσ(t)(x, µk), (9.34)

where, for every q ∈ Q, fq : Rn × R≥1 → Rn
≥0 is given by

fq(x, µk) := −IQs (q)
(
ηq + δqψq(x)

2
)
bq(x)x+

1

µk
dq(x).

The following proposition extends the results of [191, Sec. 3] to the scenario where the

system switches between multiple stable and unstable modes:

Proposition 9.3. There exists τd > 0 and τa > 0 such that the set Aψ × R≥1 is

PT-ISS-CF for the closed-loop system, where Aψ is as given in (9.30). Additionally,

the switching feedback-law uq is bounded over the continuous-time interval [0,ΥT,k)

and converges to 0 as t→ ΥT,k.
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No Feedback

Prescribed-Time

Exponential

Figure 9.4. Comparison between controller with Exponential convergences and PT-
Regulation with intermittent feedback. Left: Trajectory of system’s state norm plotted
in logarithmic scale. Center: Trajectories of the switching feedback law uq. Right:
Trajectories of the switching signal σ (top), the dwell-time state τ (middle), and the
monitor state ρ (bottom) for the PT-Regulation mechanism with intermittent feedback.

To illustrate Proposition 9.3 with a numerical example, consider Qs = {1, 2},

Qu = {3}, and x ∈ R. Let dq(x) = q tanh(x), bq(x) = 1, ∀q ∈ Q, and consider the

control-law uq(x, t) = −µ2(t)(1+ q|x|2)x. Then, all the conditions to apply Proposition 9.3

are satisfied. We numerically verify the PT-ISS-CF property by using a switching signal

σ ∈ ΣBU-ADT(τd, N0, T, µ0)∩ΣBU-AAT(Qu, τa, T0, T, µ0) with τa = 2, τd = 1, T = 10, T0 = 2,

and N0 = 1.5. Figure 9.4 displays the trajectories of the norm of the state x plotted in

logarithmic scale, the switching feedback-law uq, the switching signal σ, and the associated

average dwell-time and average activation time states τ and ρ. As shown in the figure, the

state x and the switching feedback-law uq rapidly approach zero as t→ ΥT,1 and converge

faster than using a switching feedback with static gains (for exponential convergence).

The overshoot occur when the system is in one of the modes without feedback.

9.3.2 PT-Decision-Making in Switching Games

Consider a non-cooperative game with n ∈ Z≥2 players [190], where the cost

functions defining the game are allowed to switch in time. Specifically, for each i ∈

V = {1, 2, · · · , n}, the ith player has an associated mode-dependent and continuously

differentiable cost function ϕiq : Rn → R, where q ∈ Q. We refer to the qth game as the

game with the set of cost functions
{
ϕiq
}
i∈V . The action of the ith player is denoted by

236



xi1 ∈ R, and the action profile of the game is given by the vector x1 := (x11, x
2
1, . . . , x

n
1 ) ∈ Rn.

The goal of the players is to converge to the unique common Nash equilibrium (NE) of

the games [35, 190], defined as the vector x̃ ∈ Rn that satisfies:

ϕiq
(
x̃i, x̃−i

)
= inf

xi1∈R
ϕiq
(
xi1, x̃

−i) , ∀i ∈ V ,

for all q ∈ Q, where x−i1 ∈ Rn−1 denotes the vector that contains all actions except those

of player i. To study this problem, let Gq : Rn → Rn denote the pseudo-gradient of the qth

game, which is given by:

Gq(x1) :=
(
∂ϕ1

q

∂x11
,
∂ϕ2

q

∂x21
, . . . ,

∂ϕnq
∂xn1

,

)
.

For all q ∈ Q, we assume that there exists κq > 0 and ℓq > 0 such that Gq is a κq-strongly

monotone and ℓq-globally Lipschitz mapping. These properties are common in NE seeking

problems and they guarantee the existence and uniqueness of the NE x̃ [190]. To efficiently

achieve convergence to the NE in a prescribed time, we introduce PT high-order NE-seeking

dynamics with momentum and resets (PT-NESmr). The proposed algorithm is modeled

as a HDS H with data (9.22) and maps fq and Rq defined as follows:

fq(x, τ) =




2

η(τ)
(x2−x1)

−2η(τ)Gq(x1)


 , Rq(x) =



x1

x1


 , (9.35)

where x := (x1, x2) ∈ R2n, and x2 := (x12, x
2
2, . . . , x

n
2 ) ∈ Rn, and where η : [0, N0] → [η, η]

is an affine bounded mapping defined as:

η(τ) := τ

(
η − η

)

N0

+ η (9.36)
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PT-NESmr
PT-PSG

Exponential-PSG

not strongly monotone

Figure 9.5. Comparison between Pseudo-Gradient Flow (PSG) with exponential conver-
gence and PT Nash-Equilibrium Seeking in a Switching Game. Left: Trajectory of the
errors to the NE generated by the PT-NESmr, the PT-PSG, and the Exponential PSG
dynamics. Right: Trajectories of the switching signal σ(t) (top), the dwell-time state τ
(middle), and the monitor state ρ(t) (bottom) for the PT-NESmr dynamics.

with η > η > 0 being tunable parameters. In the context of asymptotic convergence,

mappings of the form (9.35), which incorporate momentum (via the state x2) and resets

(via the update x+2 = x1), have been recently shown to improve the transient performance

of NE-seeking dynamics in (stable) strongly monotone games [1]. To further make the

convergence time independent of both the initial conditions and of the monotonicity

properties of the game, we study convergence to the NE in prescribed-time.

For every q ∈ Q, let σq > 0 be such that σmax (I − ∂Gq(x)) ≤ σq for all x ∈ R,

with σmax(·) denoting the maximum singular value of its argument. Such σq always exists

since the pseudo-gradient Gq is assumed to be globally Lipschitz for all q ∈ Q. We make

the following assumption on the parameters of the game and the selection of the tunable

parameters in (9.35)-(9.36).

Assumption 9.4. (Tuning Guidelines) There exist 0 ≤ η ≤ η, δη > 0, and δd > 0

satisfying δη + δd := δ ∈ (0, 1) and:

η2 ≤ δη
minq∈Q ζq

(maxq∈Q σq)
2 ,

1

τd
≤ δd

N0

η − η
min
q∈Q

ζq, (9.37)
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for some τd > 0 and N0 ≥ 1, where ζq := κq/ℓ
2
q.

The stability properties of the states x1, x2 are studied with respect to the following

set

Ax := {x̃} × {x̃} ⊂ Rn × Rn. (9.38)

The following proposition establishes PT-SF of the set Ax under the PT-NESmr dynamics.

Proposition 9.4. Suppose that Assumption 9.4 is satisfied. Then, the PT-NESmr

dynamics render the set Ax × [0, N0]×Q× R≥1 PT-SF, provided

τd >
max

{
3, 2

(
1
κ2

+ η2
)}

ln (r)

4ην
, (9.39)

where ν = (1−δd−δη)σ2

δη(1−δd)ζ+σ2 , σ := maxq∈Q σq, ζ := minq∈Q ζq, and r =

max
{
1, ℓ

2

κ2
η(N0−1)2

η(1)2
+ 1

2κ2η(1)2

}
.

Remark 9.19. (PT-NESmr with non-monotone Gq) Unlike [1], the results of

Proposition 9.4 can be directly extended to switching games where some modes lack

strong monotonicity in their pseudo-gradients. In this case, we can use the HDS

H with data (9.29) and leverage Theorem 9.2, paralleling the approach followed

in Section V.A to study unstable plants. In this case, we obtain conditions on τd

and τa in H, characterizing admissible switching signals under which PT-NESmr

dynamics attain prescribed-time stability. This broadens PT-NESmr’s applicability

to switching games with temporary loss of strong monotonicity.

To illustrate the previous discussion, let Q = {1, 2, 3} and Gq(x1) = ϑAq(x1 − x̃),

with x̃ = (1, 1), A1 = [6,−1.5;−1.5, 6], A2 = [8,−2; 2, 8], A3 = [4, 6; 5; 2], and ϑ = 5×10−2.

The pseudo-gradient Gq(·) is κq-strongly monotone only for q ∈ {1, 2} =: Qs and ℓq-globally
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Lipschitz for all q ∈ Q. Using k = 1, τd = τa = 2.5, N0 = 1.75, T0 = 2 we simulate the

system using a switching signal σ ∈ ΣBU-ADT(τd, N0, T, µ0) with T = 10. We compare our

results with the continuous-time prescribed-time pseudo-gradient-flows (PT-PSG), recently

introduced in [229], and given by ẋ1 = µ1(t)Gσ(t)(x1). The resulting trajectories are shown

in Figure 9.5. As shown in the figure, under the PT-NESmr and the PT-PSG dynamics, the

state x1 rapidly approaches zero as t→ ΥT,1 and converges faster than using the standard

pseudo-gradient flows with exponential convergence guarantees (Exponential-PSG). Also,

note that the synergistic incorporation of momentum, resets, and PT techniques leads

to an improvement compared to the continuous-time PT-PSG algorithm under the same

switching signal. The overshoots occur when the Nash-equilibrium seeking algorithms

operate with a pseudo-gradient that is not κ-strongly monotone, or equivalently when

q ∈ Qu = Q \ Qs.

In this chapter, the property of prescribed-time stability was studied and extended

for a class of hybrid dynamical systems incorporating switching nonlinear vector fields with

time-varying increasing gains, exogenous inputs, and resets. Novel switching conditions

that preserve the prescribed-time stability properties of the system were derived using

tools from hybrid dynamical systems theory and under a suitable contraction/dilation of

the hybrid time domains. The switching conditions allow the incorporation of unstable

modes. The results were illustrated in two applications in the context of control and

decision-making. Future applications will include prescribed-time concurrent learning and

prescribed-time switching extremum seeking. Future work will also include studying the

synergies between non-smooth and prescribed-time tools, as well as consistent discretization

mechanisms for HDS, similar to [230].
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Part IV

Global Asymptotic Guarantees via Hybrid Dynamical Systems
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Chapter 10

Robust Global Optimization on Smooth Compact Manifolds via

Hybrid Gradient-Free Dynamics

This chapter studies algorithms for the global solution of optimization problems of

the form

min ϕ(z) subject to z ∈M, (10.1)

where ϕ is a smooth cost function and (M, g) is an n-dimensional Riemannian manifold to

be formally defined in Section 10.1. The mathematical form of ϕ and its derivatives is

assumed to be unknown. It is only assumed that ϕ is available through measurements or

evaluations on M . This class of problems arises in various practical applications, spanning

from aerospace engineering [231] to power systems [232] and quantum control [233]. One

of the simplest and most successful algorithms for optimization is the gradient-descent

method, which has been studied in the context of manifolds since at least the end of

the last century [234]. Recently, these methods have gained considerable interest due to

their potential applications in estimation, machine learning, and data science pipelines

[235]. In the context of dynamical systems described by ordinary differential equations

(ODEs), real-time optimization problems defined on a manifold M are common in robotics,

mechanical systems, and aerospace control problems evolving under kinematic constraints.

For example, controlling unicycles [236, Sec. 2.2] or navigating in obstacle-occluded spaces
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[25]. In such problems, the restriction to evolve onM limits the feasible directions that any

onboard algorithm can exploit in real-time. For comprehensive introductions to ODE-based

optimization algorithms on manifolds, we refer the reader to [232, 237]. One of the primary

challenges in solving optimization problems on smooth (boundaryless) compact manifolds

stems from the fact that in such spaces, a point cannot be robustly globally asymptotically

stabilized using continuous feedback in ordinary differential equations (ODEs) [238, Thm.

1]. This result extends to compact Lie groups and non-contractible spaces in general,

as shown in [239, Thm. 21]. This well-known property implies that standard gradient

flows or Newton-like flows cannot achieve robust global convergence to the minimizer of

a continuously differentiable cost function for every type of smooth compact manifold.

The reason behind this incompatibility lies in the fundamental mismatch between the

topological nature of the basin of attraction of a point under continuous dynamics, and the

topological properties of a compact boundaryless manifold [239, Thm. 21]. Specifically,

the basin of attraction of a point under continuous feedback is contractible, while a

compact manifold is not. Many results in the literature overcome this issue by focusing

on asymptotic stability properties that overlook measure-zero sets containing the critical

points of the cost function that are not solutions to the optimization problem under

study [240, 241], such as local maximizers and saddle points. However, algorithms with

almost global convergence certificates have been shown to be susceptible to arbitrarily

small (adversarial) disturbances. Under such disturbances, the set of problematic initial

conditions from which convergence is not achieved is not of measure zero anymore, but

rather an open set. Examples illustrating this susceptibility can be found in [236], [25, Ex.

1], and [242].

Alternatively, other works have circumvented the obstruction via time-varying

[243], or discontinuous feedback [244], finding success in achieving global convergence in

certain applications. However, as shown in [245, Cor. 21], time-varying approaches can

only circumvent the issue when the optimization dynamics operate in nominal conditions.
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In particular, when the system is subject to (arbitrarily) small disturbances, robust and

global stabilization of a point in compact boundaryless manifolds cannot be achieved by

merely using discontinuous or time-varying feedback strategies. To address this issue,

in [246] the authors introduced a hybrid controller that synergistically switches between

different continuous vector fields, generated from a family of potential functions, to globally

stabilize a point. Recent works have employed the synergistic framework to solve attitude

stabilization problems in SO(3) [247], stabilization by hybrid backstepping [248], and for

the robust stabilization of trajectories in multi-rotor aerial vehicles [249]. However, since

these works address stabilization problems, where the point to be stabilized is known a

priori, in general, they cannot be directly used for the solution of optimization problems

where the set of optimizers is unknown, or in cases where the potential functions are only

accessible via measurements or evaluations.

Optimization problems where the cost function is unknown and only accessible

through measurements or evaluations are common across many applications. These

problems have traditionally been studied using gradient-free methods, such as zeroth-order

optimization algorithms. While the literature of continuous-time zeroth-order optimization

dynamics, also known as extremum seeking, is quite rich [250, 251, 111], most of the

algorithms applicable to smooth compact manifolds are characterized by smooth gradient-

free dynamical systems that aim to emulate, via averaging or other “approximation”

technique, the behavior of a target gradient-flow on the manifold [251, 252]. In these

settings, the stability properties of gradient-free dynamics are usually inherited from the

stability properties of the target system being approximated. Therefore, the challenges of

robust global optimization extend to the gradient-free counterparts whenever the target

system is characterized by a smooth ODE. Moreover, existing results that achieve global

optimization via switching control [253] do not preserve the forward invariance of the

manifold due to the use of dither signals that do not evolve in the manifold’s tangent

space, a requirement that is relevant for practical applications where the evolution on
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manifolds is enforced by physical constraints, or in problems where the cost function is

defined only on the manifold.

To address the above challenges and limitations of existing approaches, the main

contribution of this chapter is the introduction of a novel class of gradient-free algorithms

for the global solution of optimization problems defined on compact boundaryless connected

Riemannian manifolds. The algorithms are characterized by a family of hybrid gradient-

free controllers that switch between different zeroth-order feedback laws that implement

exploratory geodesic dithers to extract suitable “descent directions” from the cost function

ϕ. The switches in the algorithms are implemented in both the exploration and the

exploitation components of the dynamics. In particular, to globally navigate and explore

manifolds that are not parallelizable (e.g., S2), the exploratory geodesic dithers switch

between different local frames using a hystheresis-based mechanism. To achieve global

convergence to (a neighborhood of) the set of minimizers, the algorithms implement a class

of switching diffeomorphisms adapted to the cost function of interest. Such diffeomorphisms

can be constructed under mild qualitative assumptions on the cost functions and for

different types of manifolds. Our main result establishes robust global practical asymptotic

stability of the set of minimizers of the cost function for the proposed hybrid gradient-free

dynamics. Compared to previous approaches for gradient-free optimization on manifolds,

e.g. [251], [252] and [254], our convergence results are global rather than local or almost

global. Compared to existing switching algorithms [253], our gradient-free dynamics are

designed to evolve on the manifold and preserve its invariance via geodesic dithering. The

results presented in this chapter are also applicable to a larger class of manifolds and

optimization problems. Our results also provide an alternative approach to the solution of

gradient-free optimization and extremum seeking problems with multiple critical points,

typical in non-convex settings, a problem that has also been recently studied in [255] using

other techniques.
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10.1 Preliminaries on Differential Geometry

We introduce the main differential geometric concepts used in the chapter. For

more details, we refer the reader to [256] and [257]. The concept of smooth manifold will

play an important role in this chapter:

Smooth manifolds: An n-dimensional manifold is a second-countable Hausdorff

topological space that is locally Euclidean of dimension n. A coordinate chart for M is a

pair (U,φ) where U ⊂M is an open set and φ : U → Û ⊂ Rn is a homeomorphism. Two

coordinate charts (U,φ) and (V, ψ) are said to be smoothly compatible if the transitions

maps ψ ◦ φ−1 and φ ◦ ψ−1 are diffeomorphisms. A smooth structure on M is a maximal

collection of coordinate charts for which any two charts are smoothly compatible; a smooth

coordinate chart is any chart that belongs to a smooth structure. Then, a smooth manifold

is a manifold endowed with a particular smooth structure. Given a smooth manifold M ,

the set of all smooth real-valued functions f :M → R is denoted by C∞(M).

Tangent space and Vector Fields: Dynamical systems evolving on smooth

manifolds are defined by vector fields that lie within their tangent spaces. For each

z ∈ M , a tangent vector at z is a linear map v : C∞(M) → R that satisfies v(fh) =

f(z) ·v(h)+h(z) ·v(f), for f, h ∈ C∞(M). The set of all tangent vectors at z is denoted by

TzM and is called the tangent space ofM at z. The tangent bundle TM is defined to be the

disjoint union of the tangent spaces at all points in the manifold, i.e., TM :=
⊔
z∈M TzM .

A smooth vector field is a smooth map X : M → TM satisfying X(z) ∈ TzM for all

z ∈M . We use X(M) to denote the set of all smooth vector fields on M .

The differential of a function f ∈ C∞(M), denoted by df : TM → R, is a map

defined pointwise by:

dfz(v) = v(f), ∀ v ∈ TzM. (10.2)

Using the differential, we define the sets of critical points and critical values of f ∈ C∞(M)
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as follows:

Critf := {z ∈M : dfz = 0} , (10.3)

Valf := {a ∈ R : a = f(z), z ∈ Critf} . (10.4)

A local frame for M is defined as a tuple of vector fields (X1, . . . , Xn) defined on

an open set U ⊂M , that is linearly independent and spans TzM at each z ∈M . If this

frame is defined in the entire manifold (U = M), it is called a global frame. When M

admits a global frame, the manifold is said to be parallelizable. Parallelizability will play

an important role in our algorithms.

Riemannian Manifolds: in this chapter, we will focus on Riemannian manifolds.

An n-dimensional Riemannian manifold is a pair (M, g), where M is an n-dimensional

smooth manifold, and g is a Riemannian metric whose value at each point z ∈M , denoted

as gz, is an inner product defined on TzM . The Riemannian metric g enables the definition

of the gradient of f , ∇f :M → TM , as the continuous map satisfying:

dfz(v) = g (∇f |z, v) , for all z ∈M, v ∈ TzM, (10.5)

where ∇f |z ∈ TzM represents the value of the gradient of f at z.

To guarantee a suitable exploration of M , while preserving its invariance, we will

work with algorithms that implement geodesic dithers:

Geodesics: Geodesics are defined as curves γ : [a, b] → M on a Riemannian

manifold, satisfying

∇γ̇(t)γ̇(t) = 0, (10.6)

where ∇ : X(M) × X(M) → X(M) is the Levi-Civita connection [257, Ch. 5]. To

generate the dither signals used by the gradient-free optimization algorithms considered
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in this chapter, we use the restricted exponential map expz : TzM → M , defined by

expz(v) = γv(1), where γv is the unique maximal geodesic satisfying γv(0) = z and

γ̇v(0) = v.

Throughout the chapter, we make use of the following standing assumption.

Assumption 10.1. The Riemannian manifold (M, g) is compact, boundaryless, and

connected.

In particular, Assumption 10.1 guarantees the existence of a path between any two points

in M [257, Prop 2.50], which facilitates the definition of a notion of distance.

Riemannian Distance: The Riemannian distance, denoted by dg(z1, z2) is defined

to be the infimum of the lengths of all admissible curves between a pair of points in the

manifold [256, Ch 2.]. Formally, the Riemannian distance dg :M ×M → R≥0 is defined

by dg(z1, z2) := infγ∈A(z1,z2)
∫ t2
t1

√
g (γ̇(t), γ̇(t))dt, where A(z1, z2) represents the set of all

admissible curves connecting z1 and z2, and t1, t2 ∈ R are such that γ(t1) = z1 and

γ(t2) = z2 for γ ∈ A(z1, z2).

Stability Notions: In this chapter we consider algorithms modeled as hybrid

dynamical systems (HDS) of the form:

x ∈ C, ẋ = F (x) (10.7a)

x ∈ D, x+ ∈ G(x), (10.7b)

where some components of the state x will be constrained to evolve in the manifold M .

By endowing the manifold M with the distance function dg, M constitutes a metric space

[257, Thm 2.55]. Accordingly, we can use stability notions analogous to those studied in

the Euclidean space.
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Definition 10.1. The compact set A ⊂ C ∪D ⊂M is said to be uniformly globally

asymptotically stable (UGAS) for (10.7) if ∃ β ∈ KL such that for all solutions x:

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), (10.8)

∀ (t, j) ∈ dom(x), where |z|A = mins∈A dg(z, s).

We also consider ε-parameterized HDS Hε of the form

x ∈ Cε, ẋ = Fε(x), and x ∈ Dε, x
+ ∈ Gε(x),

where ε > 0. For these systems, we will study global practical stability properties as

ε→ 0+.

Definition 10.2. The compact set A ⊂ C ∪D is said to be Globally Practically

Asymptotically Stable (GP-AS) as ε→ 0+ for system (10.7) if ∃ β ∈ KL such that

for each ν > 0 there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) and x(0, 0) ∈M , every

solution of Hε satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + ν, (10.9)

∀ (t, j) ∈ dom(x).

The notion of GP-AS can be extended to systems that depend on two parameters

ε = (ε1, ε2). In this case, we say that A is GP-AS as (ε2, ε1) → 0+ where the parameters

are tuned in order starting from ε1.
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(a) Block diagram of the Zeroth-Order Hybrid
Dynamics H0.

(b) Example of a trajectory z and its
average zA.

Figure 10.1. Left: Block diagram of the proposed hybrid zeroth-order dynamics with
geodesic dithering. Right: Cartoon of the trajectories of the system evolving on a manifold
M.

Hybrid Gradient-Free Synergistic Optimization

Approaches for optimization in Euclidean spaces with global convergence certifi-

cates usually rely on convexity properties of ϕ. For Riemannian manifolds, convexity

is characterized along geodesics. However, under Assumption 10.1 geodesic convexity

has little utility since, in compact Riemannian manifolds, geodesically convex functions

are necessarily constant [258, Cor. 2.5]. Given the limitations imposed by convexity in

compact Riemannian manifolds, this chapter opts for an alternative by relying on the

following regularity assumption on ϕ, which is closely related to the decomposability of

invariant sets introduced in [259, Assumption 1].

Assumption 10.2. The cost function ϕ has a finite amount of critical values, i.e.,

there exists l ∈ N such that Val ϕ = {ϕ1, ϕ2, . . . , ϕl}, where

ϕ := ϕ1 < ϕ2 ≤ ϕi ≤ ϕl =: ϕ,

and ϕ ≤ ϕ(z) ≤ ϕ for all z ∈M . Moreover, the critical points of ϕ are isolated, and

ϕ has a unique minimizer.

Let A :=
{
z ∈ Crit ϕ : ϕ(z) = ϕ

}
represent the minimizer of ϕ and define B :=
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Crit ϕ \ A. Since M is compact, the set A is also compact. Note that Assumption 10.2

does not rule out functions ϕ with multiple critical points. Indeed, in our problem setup,

B is not empty since, by Morse theory, there exists at least two critical points for scalar-

valued functions on compact boundaryless manifolds. Such critical points correspond

to equilibria in traditional gradient flows, rendering them highly susceptible to small

(adversarial) disturbances. This robustness issue, thoroughly discussed in [236], [25, Ex.

1], and [242], and illustrated later in Section 10.2.2 via numerical examples, is one of the

main motivations for the development of robust hybrid algorithms. In our case, we design

the hybrid algorithms to be gradient-free by leveraging tools from averaging theory for

hybrid dynamical systems.

Remark 10.1. For the case when ϕ is a Morse function [260, Definition 2.3],

Assumption 10.2 is automatically satisfied. Moreover, since the set of Morse functions

is an open dense set in the space of differentiable functions [260, Theorem 2.7], we

can dispense with Standing Assumption 10.2 by considering a surrogate approximate

optimization problem to (10.1), whose solution is the minimizer of a Morse function

sufficiently close to ϕ.

Remark 10.2. When the set of minimizers A forms a submanifold rather than a

singleton in M , the basin of attraction is diffeomorphic to a tubular neighborhood

of A in M [245, Cor. 21]. This neighborhood may or may not be contractible. In

this case, to assess the applicability of our approach, further assumptions regarding

the topological characteristics of A and its tubular neighborhood are required. To

simplify our presentation, we defer this problem to future research.

To solve problem (10.1), the left plot of Figure 10.1 shows a block diagram of the

proposed controllers. Before analyzing the mathematical properties of this system, we first

briefly describe the main ideas behind the algorithms:
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(a) A set of dynamic oscillators, with state χ and frequency proportional to 1/εd,

where εd > 0 is a small tunable parameter, is employed to generate exploratory signals

defined in Tn. The signals are then suitably combined with a local orthonormal frame

{Ei,p}ni=1, p ∈ P ⊂ Z≥1, to obtain a dithering vector field Dp that drives dithering

geodesics along the manifold M . These geodesic dithers will be used for the purpose of

local (real-time) exploration.

(b) To ensure that a local exploration around every point z ∈ M is well-defined

for all time, we let p be a logic state that selects an orthonormal frame {Ei,p}ni=1 that

locally spans the tangent space at a given point z. This logic state is updated using a

hybrid exploration supervisor that hysteretically switches between local frames. When the

manifold is parallelizable, we can dispense with this logic state and its associated hybrid

dynamics.

(c) The geodesic dithers, together with measurements or evaluations of the cost ϕ,

are used to generate families of vector fields {f̂q,p(·, χ)}q∈Q, p ∈ P , given by

f̂q,p (z, χ) :=
2

εa
ϕ̃q (expz (εaDp(z)))Dp(z), (10.10)

where εa > 0 is a tunable gain and Q ⊂ Z≥1. These vector fields, explained below, are

used for the purpose of exploitation in the optimization dynamics.

(d) To define the vector fields {f̂q,p(·, χ)}q∈Q, we use a set of diffeomorphisms and

generate a family of surrogate warped cost functions {ϕ̃q}q∈Q. The chosen diffeomorphisms

shift the points that are not in a neighborhood of the minimizers of ϕ. In this manner,

by appropriately partitioning the manifold M , for each q ∈ Q we can implement the

vector field f̂q,p (·, χ) in a “safe zone” where its average dynamics have no critical points

other than A. A hybrid exploitation supervisor is then used to switch the logic state q to

globally steer the state z to A. These partitions can be constructed under mild qualitative

assumptions on the cost function.

253



(f) As we increase the frequency of the dithers (i.e., εd → 0+), the trajectories

induced by the switching vector fields (10.10) will approximate the trajectories of a class

of hybrid gradient flows that will be shown to achieve robust global asymptotic stability of

A on M .

The above ideas suggest that the proposed algorithms are similar in spirit to other

hybrid controllers studied in the context of robust global stabilization problems [246], [199,

Ch. 7]. However, the algorithms studied in this chapter do not exactly fit the setting of

synergistic hybrid control, since the family {f̂q,p(·, χ)}q∈Q does not describe gradients of

synergistic Lyapunov functions. In fact, unlike standard stabilization problems tackled

via hybrid control, the main challenges in problem (10.1) are that the set A and the

function ϕ are unknown. Therefore, to implement the gradient-free hybrid dynamics we

need to characterize the family of cost functions ϕ and smooth manifolds (M, g) that

admit suitable partitions and deformations to generate feasible adaptive switching rules

that induce global stability of A, in a gradient-free way.

10.2 Stability, Convergence, and Robustness Re-

sults for Parallelizable Manifolds

To solve problem (10.1), we first focus on manifoldsM that are parallelizable, which

enables the use of a global orthonormal frame {Ei}ni=1. This facilitates the definition of a

single dithering vector field D :M → TM as D(z) :=
∑n

i=1 χ̂iEi(z), where χ̂ corresponds

to the vector that stacks the odd components of χ. This single vector field will drive the

dithering geodesics, ensuring global exploration of M without the need of using additional

logic states (i.e., with p ≡ 1). The study of the non-parallelizable scenario is postponed to

Section 10.3.

The closed-loop system describing the gradient-free hybrid dynamics, shown in

Figure 10.1a, has three main states: (z, q, χ) ∈ M × Q × Tn, where z is an internal

auxiliary state, q ∈ Q := {1, 2, . . . , N}, N ∈ Z≥2, is a logic decision variable, and χ is the
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state of the oscillator. The data of this hybrid system is denoted as:

H0 = {C0, F0, D0, G0}. (10.11)

In this way, the continuous-time dynamics of H0, with state y := (z, q, χ) are

given by

y ∈ C0, ẏ = F0(y) :=




−f̂q (z, χ)

0

2π
εd
Ψ(ω)χ



, (10.12)

where f̂q : M × Tn → TM is defined via (10.10) by omitting the state p, and

Ψ : Rn → R2n×2n is given by

Ψ(ω) :=




Ω(ω1) 0 ... 0
0 Ω(ω2) ... 0

...
...

...
...

0 0 ... Ω(ωn)


 , Ω(α) :=




0 α

−α 0


 ,

where α > 0. Here, ωi is a positive rational number, and εd ∈ R>0 and εa ∈ R>0 are tunable

gains. For every q ∈ Q, the vector field f̂q(z, χ) is obtained by geodesically dithering

the corresponding warped cost function ϕ̃q (defined below in Definition 10.3) around the

current point z. In particular, the dither is obtained along a geodesic γ, originating from

z with an initial velocity parameterized by the dithering amplitudes, denoted by χ.

To model the switches between different vector fields, the discrete-time dynamics

G0 of H0 are given by the following constrained difference inclusion

y ∈ D0, y+ ∈ G0(y) := {z} × h(z)× {χ}, (10.13)

where the set-valued map h :M ⇒ Q, is defined as

h(z) :=
{
q ∈ Q : ϕ̃q(z) = m(z)

}
, (10.14)
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and m :M → R is defined as:

m(z) := min
q∈Q

ϕ̃q(z). (10.15)

Namely, m(z) is the minimum value among all the warped cost functions ϕ̃q at a

given point z. To compute m(z), the algorithm only needs measurements or evaluations

of ϕ̃q(z), which preserves the gradient-free nature of the hybrid dynamics. Moreover, the

minimum in (10.15) is well-defined since Q is finite, and obtaining the value of m is not

computationally expensive, since the complexity scales linearly with the cardinality of Q.

The final elements needed for the characterization of the hybrid system H0 are the

flow and jump sets C0 and D0, respectively. To define these sets, and since the warping

induced by the diffeomorphisms is only useful if it modifies the points that are not in a

neighborhood of the minimizers, we will use a threshold parameter γ ∈ R characterized by

the following assumption:

Assumption 10.3. There exists a known threshold number γ ∈ (ϕ, ϕ2).

Remark 10.3. Knowledge of γ does not necessarily imply a precise understanding

of the minimizer or the exact mathematical form of ϕ. Instead, Assumption 10.3

requires only a mild qualitative understanding of the values of ϕ near its minimum.

Such a qualitative characterization is often available in practical scenarios where the

range of ϕ is known to lie within certain broad bounds. An example of this can be

found in [261, pp. 131], where a known lower bound on the cost function is employed

to design the gain of an exploratory signal for extremum seeking control. In the

particular case when ϕ = 0, the assumption holds for any sufficiently small γ > 0.

Using γ, we can characterize a synergistic family of diffeomorphisms for the solution

of problem (10.1).
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Definition 10.3. Let M be a smooth manifold, and suppose ϕ ∈ C∞(M) satisfies

Assumption 10.2. A family of functions S = {Sq}q∈Q is said to be a δ-gap synergistic

family of diffemorphisms adapted to ϕ if it satisfies:

(A1) For every q ∈ Q, Sq :M →M is a diffeomorphism.

(A2) For every q ∈ Q, ϕ(z) < γ =⇒ Sq(z)=z.

(A3) There exists δ ∈ (0, µ(S)), where

µ (S) := min
q∈Q

z∈Crit ϕ̃q\A

(
ϕ̃q(z)−min

p∈Q
ϕ̃p(z)

)
,

and the warped cost ϕ̃q :M → R is given by ϕ̃q := ϕ ◦ Sq, ∀ q ∈ Q.

The family of functions S satisfying the above properties ensures there are enough

ways to distort the manifold (M, g), allowing for the distinction of critical points other

than the minimizers of ϕ using only cost measurements or evaluations. For each distortion

of (M, g), a warped cost ϕ̃q can be defined, leading to a family of N different vector fields

in (10.12). Using Definition 10.3, we state our last main standing assumption

Assumption 10.4. There exists a δ-gap synergistic family of diffeomorphisms

adapted to ϕ with finite index set Q.

Remark 10.4. Verifying conditions (A1)-(A3) is clearly application-dependent, and

different manifolds typically result in different warped costs. However, we stress that

the constructions needed to implement the hybrid dynamics do not require explicit

mathematical knowledge of the cost function ϕ, but only knowledge of qualitative

properties that could be verified a priori via simple tests or experiments. Particular

examples of pairs (ϕ, (M, g)) that satisfy Standing Assumptions 10.2-10.4 will be

presented in Section 10.2.3.
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The flow sets and jump sets of the zeroth-order hybrid dynamics H0, given by

(10.11), are given by

C0 :=
{
(z, q, χ) ∈M ×Q× Tn :

(
ϕ̃q −m

)
(z) ≤ δ

}

D0 := {(z, q, χ) ∈M ×Q× Tn :
(
ϕ̃q −m

)
(z) ≥ δ}.

Based on the structure of the sets (C0, D0), switches of q (i.e., jumps) are allowed whenever

the difference ϕ̃q(z)−m(z) exceeds a δ-threshold. Flows following the vector field (10.12)

are allowed when this difference is less or equal to δ. When the difference is exactly equal

to δ, flows and jumps are both allowed. This immediately indicates that solutions of H0

are not unique. However, the structure of the warped cost functions ϕ̃q and the jump

map will prevent the occurrence of infinite consecutive jumps by inducing hysteresis-like

behavior. In this manner, whenever a solution approaches a critical point of ϕ̃q outside the

set of minimizers A, the dynamics will transition to a different vector field generated from

a warped cost function ϕ̃p with a lower value. The existence of such a warped cost function

is guaranteed by the following technical Lemma. All proofs are presented in Section H.

Lemma 10.1. Suppose that ϕ satisfies Assumption 10.2, and let S = {Sq}q∈Q be a

family of functions satisfying (A1) and (A2) in Definition 10.3. If S satisfies (A3),

then, for all q ∈ Q and every z ∈ Crit ϕ̃q \ A, there exists p ∈ Q such that:

ϕ̃p(z) + δ < ϕ̃q(z). (10.16)

Conversely, if for all q ∈ Q and every z ∈ Crit ϕ̃q \ A, there exists p ∈ Q such

that (10.16) holds, then S satisfies (A3), making it a δ-gap synergistic family of

diffeomorphisms adapted to ϕ.

We can now state the first main result of the chapter.
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Figure 10.2. Top: Trajectory of a gradient flow under a disturbance d(t)E(z). Bottom:
Evolution in time of the main state of H1 under the same perturbation applied to the
z-component of the dynamics. See Example 3.6.

Theorem 10.1. Assume that the manifold M is parallelizable, and consider the

hybrid zeroth-order dynamics H0 with data (10.11). Let the frequencies ωi in (10.12)

satisfy:

ωi ̸= ωj, ωi ̸= 2ωj, ωi ̸= 3ωj, for all i ̸= j. (10.17)

Then, the set A×Q× Tn is GP-AS as (εd, εa) → 0+, and M ×Q× Tn is strongly

forward invariant.

The result of Theorem 10.1 establishes global convergence of the trajectories z of

H0 to an arbitrarily small neighborhood of the set of minimizers A, while simultaneously

evolving on (and exploring) the manifold M . This behavior is illustrated in Figure 10.1b.

To our best knowledge, Theorem 10.1 is the first result in the literature that achieves

global bounds of the form (10.9) in smooth boundaryless compact Riemannian manifolds

via deterministic continuous-time zeroth-order optimization algorithms.
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10.2.1 Approximation via 1st-Order Hybrid Dynamics

The result of Theorem 10.1 relies on using averaging theory and perturbation theory

(for hybrid systems) to show that, as (εd, εa) → 0+, the trajectories of H0 will approximate

(on compact time domains) a solution of a first-order hybrid algorithm H1, with state

x = (z, q), continuous-time dynamics given by

x ∈ C1, ẋ = F1(x) :=



−∑n

i=1∇Eiϕ̃q(z)Ei(z)

0


 (10.18)

discrete-time dynamics given by

x ∈ D1, x+ ∈ G1(x) = {z} × h(z), (10.19)

and flow set and jump set given by

C1 := {(z, q) ∈M ×Q : (ϕ̃q −m)(z) ≤ δ} (10.20a)

D1 := {(z, q) ∈M ×Q : (ϕ̃q −m)(z) ≥ δ}. (10.20b)

Since system (10.18)-(10.20) makes use of first-order information of the warped costs ϕ̃q

via ∇Eiϕ̃qEi(z), we will refer to this system as the first-order hybrid dynamics H1 :=

{C1, F1, D1, G1}. In this system, for every q ∈ Q, the dynamics ż in (10.18) represents

a scaled version of grad ϕ̃q. Similar dynamics have been studied in the literature [252].

They differ from the coordinate representation of

grad ϕ̃q(z) =
n∑

i,j=1

ζ ij(z)∇Eiϕ̃q(z)Ej(z), (10.21)

by excluding the values ζ ij(z) ∈ R that represent the Riemannian metric g at a point

z ∈M , in terms of the basis {Ei(z)}ni=1. However, as shown in the following Lemma 10.2,

such dynamics do not modify the set of critical points of the warped cost functions.
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Lemma 10.2. For all q ∈ Q we have that grad ϕ̃q|z = 0 if and only if
∑n

i=1∇Eiϕ̃q(z)Ei(z) = 0.

The following theorem provides a first-order version of Theorem 10.1 for the case when

the vector field (10.18) can be explicitly computed or measured in real time, and all the

standing assumptions hold.

Theorem 10.2. The first-order hybrid dynamics H1 render the set A×Q UGAS,

and the set M ×Q is strongly forward invariant.

Similar to Theorem 10.1, the main novelty of Theorem 10.2 is the ability to overcome

topological obstructions to global optimization on smooth compact manifolds that emerge

in ODEs. In particular, the asymptotic stability result is global rather than almost global,

semi-global, or local. This result, combined with the well-posedness of the dynamics, will

allow us to establish important robustness properties with respect to arbitrarily small

(potentially adversarial) disturbances, which could also act on the hybrid zeroth-order

dynamics H0.

10.2.2 Robustness Corollaries: Stability Under Adversarial
Disturbances

Crucially, the hybrid dynamics H0 and H1 satisfy the Basic Assumptions of [33, Ch.

6]. Consequently, their stability properties are not drastically affected by small (potentially

adversarial) additive disturbances acting on the states and data of the hybrid systems [33,

Thm. 7.20]. This is formalized in the following corollary:

Corollary 10.1. Consider the perturbed first-order hybrid dynamics

x+ d1 ∈ C1, ẋ = F1(x+ d2) + d3 (10.22a)

x+ d4 ∈ D1, x+ ∈ G1(x+ d5) + d6 (10.22b)

261



Figure 10.3. Trajectories of H1, under a small adversarial disturbance generated by a
dynamical system. The insets show the amplitude of the injected disturbance, as well as
the evolution of the index state q in time. See Example 3.6.

where {C1, F1, D1, G1} is the data of H1, and the signals dj : dom(x) → C1 ∪D1, for

all j ∈ {1, 2, 4, 5, 6}, and d3 : dom(x) → TC1, are measurable functions satisfying

sup(t,j)∈dom(x) |dk(t, j)| ≤ d∗, where d∗ > 0, for all k ∈ {1, 2, . . . , 6}. Then, system

(10.22) renders the set A×Q GP-AS as d∗ → 0+.

Robustness results, such as Corollary 10.1, are relevant for practical applications

where measurement noise or numerical approximations induce unavoidable disturbances

during implementations. They also hold with respect to adversarial perturbations designed

to destabilize the set A, or to stabilize spurious equilibria.

Example 10.1. LetM = S1 ⊂ R2 be the unit circle, which is a smooth, boundaryless

compact parallelizable manifold. We consider the cost function ϕ : S1 → R, z 7→

1 − z1, where zi ∈ [−1, 1] represents the i-th coordinate of z ∈ S1 expressed in

regular Cartesian coordinates. The cost function ϕ has two critical points in S1

corresponding to the global minimizer given by (in polar coordinates) θ∗ = 2π, and

a global maximizer, given by θ′ = π. To find the unknown minimizer of ϕ, we first
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implement the first-order dynamics

z ∈M, ż = −∇E(z)ϕ̃q(z)E(z) + d(t)E(z), (10.23)

where E : S1 ⊂ R2 → TS1 is the vector field defined by E(cos(θ), sin(θ)) =

(− sin(θ), cos(θ)) and θ denotes the polar coordinate on the circle. By [256, Ex-

ample 8.10.d)], E constitutes a smooth global frame for S1. In (10.23), d(t)E(z) is

a time-varying perturbation that preserves the invariance of M . The amplitude of

this perturbation d(t) was generated by interconnecting (10.23) with an adversarial

hybrid system to stabilize the maximizer θ′. As shown in Figure 10.2, the adversarial

perturbation is always bounded and it succeeds in stabilizing θ′. On the other hand,

when this same adversarial signal d(t)E(z) is added in open loop to H1, as in (10.22),

the hybrid dynamics achieve global convergence to the minimizer θ∗, as shown in the

bottom plot of Figure 10.2. Finally, we show in Figure 10.3 the performance of the

hybrid system H1 when interconnected to the same adversarial dynamical system

used to destabilize θ∗ in (10.23). As observed, the hybrid controller still achieves

convergence to θ∗.

It is important to note that smooth gradient-free versions of (10.23), obtained

via averaging theory, might encounter similar issues as those illustrated in Example 10.1.

Specifically, if a small adversarial disturbance can locally stabilize the average dynamics

of the system to a point outside A, and if this stabilizing effect of the disturbance is

preserved after averaging, then applying the same disturbance to the original dynamics

may cause the system to locally converge to a neighborhood of that point, as predicted by

standard averaging results for ODEs (e.g., [22, Ch. 10]). An example of this behavior in

obstacle avoidance problems was presented in [25, Ex. 1]. The question of systematically

constructing such adversarial signals in other manifolds remains application-dependent
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and is not further explored in this chapter.

The following corollary parallels the results of Corollary 10.1 for the zeroth-order

dynamics H0.

Corollary 10.2. Consider the perturbed zeroth-order dynamics, given by

y + d1 ∈ C0, ẏ0 = F0(y + d2) + d3 (10.24a)

y + d4 ∈ D0, y+0 ∈ G0(y + d5) + d6 (10.24b)

where {C0, F0, D0, G0} is the data of H0 in (10.11), and the signals dj : dom(y) →

C0 ∪D0, for all j ∈ {1, 2, 4, 5, 6}, and d3 : dom(y) → TC0, are measurable functions

satisfying sup(t,j)∈dom(y) |dk(t, j)| ≤ d∗, where d∗ > 0, for all k ∈ {1, 2, . . . , 6}. Then,

system (10.24) renders the set A×Q× Tn GP-AS as (d∗, ε2, ε1) → 0+.

Remark 10.5. The class of problems for which smooth optimization dynamics

cannot achieve robust global certificates on a compact boundaryless manifold M

extends beyond the case where the cost has a unique minimizer. Indeed, as briefly

stated in Remark 10.2, the basin of attraction of the set of minimizers A of a

continuous cost ϕ under any outer-semicontinuous and locally bounded optimization

dynamics F , is diffeomorphic to an open tubular neighborhood of A. In general, this

neighborhood is not topologically compatible with M . For instance, when the cost

has a finite set of global isolated minimizers A =
⋃
i∈I {xi}, the basin of attraction

BF (A) =
{
x ∈M : dg(x, xi) <

1
2
mini ̸=j dg

(
xj, xi

)}
is not contractible. However,

the results of Theorems 10.1 and 10.2 can be directly extended to overcome this type

of topological obstruction. We omit this extension due to space limitations.
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Figure 10.4. Top: Visualization of diffeomorphisms on the circle. Middle: Average
gradient-based vector fields derived from warped costs. Bottom: Original and warped
costs obtained by precomposing with diffeomorphisms.

10.2.3 Applications: Synthesis of Algorithms

In this section, we showcase the effectiveness of the proposed zeroth-order hybrid

dynamics H0 for solving problems of the form (10.1) on two distinct compact parallelizable

Riemannian manifolds. In particular, we show how to synthesize specific algorithms by

generating a δ-gap family of diffeomorphisms adapted to smooth cost functions defined in

the unitary circle S1, and in the special orthogonal group SO(3), and we use the hybrid

algorithms to achieve global gradient-free (practical) optimization while preserving the

forward invariance of the manifolds during the real-time exploration.
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Gradient-free Feedback Optimization on S1

Consider the unitary circle S1 = {z ∈ R2 : |z|2 = 1}. Given kq ∈ R, with q

belonging to some index set Q, we define the map S
(1)
q : S1 → S1 as follows:

S(1)
q (z) :=1{ϕ(z)≤γ}z + 1{ϕ(z)>γ}e

kqα(ϕ(z)−γ)Ψz, (10.25a)

where Ψ := e2e
⊤
1 − e1e

⊤
2 ∈ R2×2, and α : R → R is a continuously differentiable function

satisfying: (B1) α(0) = 0; (B2) α
′(0) = 0; (B3) α

′(r) > −1, ∀r ≥ 0. The conditions

(B1)-(B3) ensure that S
(1)
q is a continuously differentiable function that constitutes a

suitable candidate for a diffeomorphism. In particular, by leveraging [253, Thm 4.1], we

have that if

|kq|<
1

max {|α′ (ϕ(z)−γ) dϕz(Ψz)| : z ∈ S1, ϕ(z) ≥ γ} ,

then S
(1)
q is a diffeomorphism. Although the value of the bound on kq might not be known

(since we do not know the cost function nor its differential) its existence is guaranteed by

the continuity of α′, ϕ, and dϕ, and the compactness of {z ∈ S1, ϕ(z) ≥ γ}. Estimates of

the bound could be obtained by, e.g., a Monte Carlo method that uses measurements of ϕ

at different z ∈ S1.

Given a cost ϕ(1) : S1 → R, and using gains {kq}q∈Q with corresponding diffeo-

morphisms defined by (10.25), it is possible to build a suitable δ-gap synergistic family

of diffeomorphisms subordinate to ϕ(1). To illustrate this process, similarly to Example

10.1, consider the cost function ϕ(1)(z) := 1 − z1. Assume that only measurements or

evaluations of ϕ(1) are available for feedback design, but that the intermediate value

γ = 1 ∈ (0, 2) =
(
ϕ(1), ϕ

(1)
2

)
and the number of critical points of ϕ(1) are known in

advance. Let α(r) = r2, and note that it satisfies conditions (B1)-(B3). Then, by choos-

ing any two gains satisfying the bound on |kq|, we can obtain a synergistic family of

diffeomorphisms subordinate to ϕ(1). Indeed, with Q = {1, 2} , |kq| < 1, q ∈ Q, k1 ≠ k2

266



Figure 10.5. Gradient-free global optimization via H0 on S1 using Geodesic Dithering.

the set S(1) =
{
S
(1)
q

}
q∈Q

is a δ-gap family of diffeomorphisms adapted to ϕ(1) with gap

δ < µ
(
S(1)

)
. In Figure 10.4 we present a visualization of the diffeomorphisms in this

family using the choice k1 =
1
2
, k2 = −1

2
, and we show how these maps warp the original

cost function. We also plot the gradient-based vector fields obtained from the warped cost

functions which, as shown in Section H, correspond to O(εa)-perturbations of the flows of

H1 in (10.18). In turn, the trajectories of H0 are shown in Figure 10.5. As observed, the

zeroth-order hybrid dynamics with geodesic dithering successfully converge (globally) to

the minimizer of ϕ(1), z∗ = (1, 0), while escaping the other critical point z′ = (−1, 0).

Gradient-free Feedback Optimization on SO(3)

As an additional application, we consider the special orthogonal group SO(3), i.e.,

the group of 3×3 orthogonal matrices with determinant equal to 1 and matrix multiplication

as the group operation. By [262, Cor. 3.45], SO(3) forms a 3-dimensional compact Lie
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group. The tangent space at z is given by TzSO(3) = {zX : X ∈ R3×3, X⊤ = −X}, see

[262, Def. 3.18].

To equip SO(3) with a Riemannian structure, we consider the metric ⟨X, Y ⟩z =

tr(X⊤Y ) for all z ∈ SO(3), and all X, Y ∈ TzSO(3). Using this choice, the Riemannian

exponential map can be written in terms of the matrix exponential e(·) [263, Prop. 21.20]

as expz(X) = zez
−1X for X ∈ TzSO(3). Moreover, since SO(3) is a Lie group, it is

parallelizable [256, Cor. 8.39]. Indeed, for i ∈ {1, 2, 3} let Ei : SO(3) → TSO(3) be the

vector field defined as Ei(z) = zbi, where

b1 :=
1√
2
(e3e

⊤
2 − e2e

⊤
3 ), b2 :=

1√
2
(e1e

⊤
3 − e3e

⊤
1 ),

b3 :=
1√
2
(e2e

⊤
1 − e1e

⊤
2 ).

It follows that for every z ∈ SO(3), TzSO(3) = span {Ei(z)}3i=1 and ⟨Ei(z), Ej(z)⟩z = δij,

which implies that {Ei}∞i=1 constitutes an orthonormal global frame for SO(3). Using this

global frame, we can implement the dithering vector field D(z) =
∑n

i=1 χ̂iEi(z) everywhere

to extract suitable information from a cost function ϕ at every point in SO(3).

Given a cost ϕ ∈ C∞(SO(3)), to establish a suitable family of diffeomorphisms

consider the map S
(2)
q : SO(3) → SO(3), defined as

S(2)
q (z) = 1{ϕ(z)≤γ}z + 1{ϕ(z)>γ}e

kqα(ϕ(z)−γ)Xz, (10.26)

where kq ∈ Rn and X ∈ TISO(3), X ̸= 0 are tunable parameters, and α : R → R satisfies

the conditions (B1)-(B3) defined in Section 10.2.3 to ensure continuous differentiability of

the map. The definition of the map S(2)
q , results from modifying the function introduced

in [242, Sec 3.4.3] for the angular warping of the two-dimensional sphere by using the

function α, and letting the warping act only when ϕ exceeds the threshold γ. For this

map we establish the following technical lemma:

268



Figure 10.6. Synergistic Gradient-free Optimization Seeking on SO(3) via Geodesic
Dithering.

Lemma 10.3. Let kq satisfy the bound |kq| < k
(2)
, with:

k
(2)
:=

∥X∥−1
F

max
z∈SO,ϕ(z)≥γ

|α′(ϕ(z)−γ)| ∥grad ϕ|z∥F
, (10.27)

and ∥X∥F =
√
tr(X⊤X). Then, S(2)

q is a global diffeomorphism.

To illustrate the application of the zeroth-order hybrid dynamics H0 in SO(3),

we consider the cost function ϕ(2)(z) = tr ((I − z)A), where A = 3∑3
i=1 ai

diag (a), and

a = (11, 12, 13). It follows that Critϕ(2) = {I} ∪⋃3
i=1{I + 2[ei]

2
×}, where ei ∈ R3 denotes

the standard basis vector with a 1 in the i-th position and zeros in the other entries, and

where [u]× : R3 → R3×3 is defined as

[u]× :=
√
2u1b1 +

√
2u2b2 +

√
2u3b3. (10.28)

For this problem, we consider the threshold value γ = 2 ∈
(
ϕ(2), ϕ

(2)
2

)
, and we select the

gains k1 = 0.15 and k2 = −0.15, let X = [a/|a|]×, α(r) = r2

2
, and consider the family of
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Figure 10.7. Left: Visualization of diffeomorphisms on S2. Right: Average vector fields
derived from warped cost functions

functions S(2) := {S(2)
q }q∈{1,2}. With these choices, the value of the upper bound k

(2)
in

(10.27) is approximately 0.188, which means that |kq| < k
(2)
, and hence, via Lemma 10.3,

that the set S(2) is a family of diffeomorphisms adapted to ϕ(2). It can be computed that

the family is δ-synergistic with gap δ = 0.0796.

Using S(2) and the global orthonormal frame {Ei}3i=1, we implement the HDS H0

and obtain the results shown in Figure 10.6. The figure shows the trajectories of the

entries of the state z converging (globally) to the optimal values z∗i , where z
∗ = I.

10.3 Extensions to Non-parallelizable Manifolds:

Gradient-free Feedback Optimization on S2

In this section, we extend our results to manifolds M that are not parallelizable.

In such cases, a unique global orthonormal frame is unavailable to define dithering

vectors that are valid at every point on M . To address this issue, we employ local

orthonormal frames and we introduce a suitable switching mechanism between them to

cover M . This mechanism ensures that dithering vectors are always available for real-time

exploration. Since the constructions of the controllers in non-parallelizable manifolds are

highly dependent on the manifold, we focus our attention on the 2-dimensional sphere

S2 := {z ∈ R3 : z⊤z = 1}. However, we stress that the proposed methodology can be

extended to other compact non-parallelizable manifolds.

First, we introduce two local orthonormal frames {Ei,p}2i=1, p ∈ P := {1, 2}, which

will later be used to generate suitable dithering vector fields. Specifically, inspired by [264],
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we use local coordinate frames established through the stereographic projection maps:

φ1 : U1 := S2 \ {N} → R2, z 7→ 1

1− z3
(z1, z2) , (10.29a)

φ2 : U2 := S2 \ {S} → R2, z 7→ 1

1 + z3
(z1, z2), (10.29b)

where N := (0, 0, 1) and S := (0, 0,−1), denote the north and south pole of S2, respectively.

The stereographic projections constitute homeomorphisms onto their images, and their

inverse functions are given by [263, Ex. 4.1]:

φ−1
1 (u1, u2) =

1

1 + |u|2 (2u1, 2u2, |u|
2 − 1) (10.30a)

φ−1
2 (u1, u2) =

1

1 + |u|2 (2u1, 2u2, 1− |u|2). (10.30b)

Using (10.29)-(10.30), we define the vector fields Ei,p(z) := d(φ−1
j )φj(z)(ei) for all z ∈ Uj,

i ∈ {1, 2}, and p ∈ P := {1, 2}, where ei denotes the i-th canonical basis vector in R2.

Unwrapping definitions, we obtain:

E1,1(z) =




1− z3 − z21

z1z2

(1− z3)z1



, E1,2(z) =




z1z2

1− z3 − z22

(1− z3)z2



,

E2,1(z) =




1 + z3 − z21

−z1z2
−z1(1 + z3)



, E2,2(z) =




−z1z2
1 + z3 − z22

−z2(1 + z3)



.

Next, for each local orthonormal frame {Ei,p}2i=1, p ∈ P, we define a corresponding

dithering vector field used for the purpose of real-time exploration of M :

Dp =
2∑

i=1

χ̂iEi,p. (10.31)
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Additionally, for each dithering vector field Dp, and given a δ-gap synergistic family of

diffeomorphisms S = {Sq}q∈Q adapted to a cost function ϕ, we define a family of vector

fields {f̂q,p(·, χ)}q∈Q suitable for exploitation of the information of ϕ learned during the

exploration. Specifically, given q ∈ Q and p ∈ P , we let

f̂q,p(z, χ) :=
2

εa
ϕ̃q (expz (εaDp(z)))Dp(z), (10.32)

where the vector of oscillating amplitudes χ ∈ T2, and the warped cost function ϕ̃q = ϕ◦Sq
are as defined in Section 10.2. Finally, we modify the zeroth-order hybrid dynamics H0 to

incorporate the switching between frames. The new zeroth-order hybrid system, termed H̃0,

incorporates an additional logic state p ∈ P and implements a hysteresis-based switching

mechanism dependent on z. The mechanism enables the robust transition between the

families of vector fields {f̂q,p(z, χ)}q∈Q, and ensures that the orthonormal frame associated

with the selected family satisfies the condition span ({Ei,p}2i=1) = TzS2 for the current

value of z. To the best of our knowledge, this approach has not been studied before in the

context of zeroth-order optimization and extremum-seeking.

To define the hysteresis-based switching, we first let r > 1, and define the open sets

Cp := φ−1
p (rB◦). By using the definitions of φi and φ

−1
i , it follows that C1 ∪ C2 = S2, and

that span({Ei,p}2i=1) = TzS2 for all z ∈ Cp and all p ∈ P . Using these sets, we characterize

the new dynamics H̃0, which describe the evolution of the state ỹ := (z, q, χ, p) ∈ S2 ×

Q× T2 × P , and have data H̃0 = {C̃0, F̃0, D̃0, G̃0}, with continuous-time dynamics:

ỹ ∈ C̃0, ˙̃y = F̃0(ỹ) :=




−f̂q,p(z, χ)

0

2π
εd
Ψ(ω)χ

0



, (10.33)

where Ψ(ω) ∈ R4×4 and ω ∈ R2 are as defined in Section 10.2. The flow set is defined by
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C̃0 := C̃0,1 ∪ C̃0,2, where, for all p ∈ P , we let

C̃0,p :=
{
(z, q, χ) ∈ Cp×Q× T2 :

(
ϕ̃q−m

)
(z) ≤ δ

}
×{p}.

The jump set D̃0 is constructed as the union of two sets: 1) D̃0,d, which enables switching

between the families of vector fields {f̂q,p(·, χ)}q∈Q, and 2) D̃0,s, which enables the syner-

gistic switching between vector fields within the selected family, akin to the methodology

outlined in Section 10.2. Specifically, we let D̃0 := D̃0,d ∪ D̃0,s, where D̃0,d :=
⋃
p∈{1,2} D̃p,d,

and

D̃p,d := (S2 \ Cp)×Q× T2 × {p}, ∀p ∈ P

D̃0,s := {(z, q, χ) ∈ S2 ×Q× T2 :
(
ϕ̃q−m

)
(z) ≥ δ}×P .

The jump map describing the switches of p is given by G̃0,d(ỹ) := (z, q, χ, 3−p), ∀ỹ ∈ D̃0,d,

which updates the current frame used for the purpose of dithering. On the other hand, the

jump map describing the switches of q is given by G̃0,s(ỹ) := {z}×h(z)×{(χ, p)}, ∀ỹ ∈ D̃0,s,

where h is the set-valued map defined in (10.14). Using these maps, the overall jump map

of the HDS H̃0 is given by:

G̃0(ỹ) :=





G̃0,s(ỹ) ∀ỹ ∈ D̃0,s \ D̃0,d

G̃0,d(ỹ) ∀ỹ ∈ D̃0,d \ D̃0,s

G̃0,s(ỹ) ∪ G̃d(y) ∀ỹ ∈ D̃0,d ∩ D̃0,s

.

By leveraging our standing assumptions, the following theorem extends the global results

of Theorem 10.1 to the non-parallelizable manifold S2.
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Figure 10.8. Evolution of the coordinates of z under the Synergistic Gradient-Free
Optimization Seeking dynamics on S2.

Theorem 10.3. Consider the zeroth-order hybrid dynamics H̃0 and let the vector

of frequencies ω in (10.33) satisfy condition (10.17). Then, the set A×Q× T2 × P

is GP-AS as (εd, εa) → 0+.

To illustrate the performance of H̃0 in S2, we synthesize the algorithms by using

the parameterized transformation S(3)
q : S2 → S2 defined as:

S(3)
q (z) = 1{ϕ(z)≤γ}z + 1{ϕ(z)>γ}e

kqα(ϕ(z)−γ)[u]×z, (10.34)

with kq ∈ R, X ∈ TISO(3) and α as defined in Section 10.2.3. Note that S(3)
q is identical

to S(2)
q , except for the fact that its domain and codomain are now S2 instead of SO(3).

The following Lemma extends the result of Lemma 10.3 to S2.

Lemma 10.4. Let kq satisfy |kq| < k
(3)
, where:

k
(3)

:=
1

max {|α′ (ϕ(z)−γ) dϕz (Xz)| : z ∈ S2, ϕ(z) ≥ γ} .

Then, S
(3)
q is a diffeomorphism.
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Figure 10.9. Synergistic Gradient-Free Optimization Seeking on S2 via Geodesic Dithering.
The inset shows the moment when the system switches from one local frame to another.

For numerical verification, we consider the cost function ϕ(3) : S2 → S2 defined

by ϕ(3)(z) = 1 − z3. We choose the threshold value γ = 1, the gains k1 = 1
2
, k2 = −1

2
,

the matrix X = [u]× ∈ SO(3), where u = (0, 1, 0) ∈ R3 and [u]× is as defined in

Section 10.2.3, and let α(r) = r2. With this data, we define the family of tranformations

S(2) :=
{
S
(2)
q,u

}
q∈{1,2}

. Since |kq| < k
(3)

= 1 for all q ∈ Q := {1, 2}, via Lemma 10.4, S(2)

is a family of diffeomorphisms. In fact, by Lemma 10.1, S(2) constitutes a δ-synergistic

family of diffeomorphisms adapted to ϕ with gap δ < 1
4
. Figure 10.7 shows a visualization

of the diffeomorphisms in this family with the choice k1 = 1
2
, k2 = −1

2
. The figure also

shows the vector fields obtained from the warped cost functions. We stress that such

diffeomorphisms can be constructed using only mild qualitative knowledge of ϕ, namely,

under a suitable choice of γ, which can be seen as a tunable parameter of the algorithm.

In Figure 10.8, we show the trajectory of the coordinates of the state z and indicate when

the local frame used for the dithering switches by showing the moments when the state p

jumps. In Figure 10.9 we show the trajectory evolving on the sphere. As observed, the

state z converges to the global minimizer z∗ = (0, 0, 1), while escaping the critical point

z′ = (0, 0,−1).

In this chapter, we introduced a novel class of zeroth-order hybrid algorithms for
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the global solution of gradient-free optimization problems on smooth, compact, and bound-

aryless manifolds. These algorithms combine continuous-time dynamics and discrete-time

dynamics to achieve robust global practical stability of the optimizer of a smooth cost func-

tion accessible only via measurements or evaluations. The proposed approach overcomes

topological obstructions that prevent the solution of this problem using algorithms modeled

by smooth ODEs. We characterized the stability and robustness of the algorithms using

tools from the theory of hybrid dynamic inclusions. Future research will explore tracking

problems in time-varying optimization settings, as well as the incorporation of dynamic

plants in the loop. A completely coordinate-free formulation of the hybrid algorithms,

and the development of accelerated dynamics and single-point algorithms, are also future

research directions.
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Chapter 11

Hybrid Kapitza’s Pendulum

Kapitza’s pendulum, named after Soviet physicist Pyotr Kapitza, is a deceptively

simple mechanical system that has captivated physicists and control theorists since its initial

analysis in 1951 [265]. This system, consisting of a pendulum with its pivot point subjected

to rapid oscillations (see Figure 11.1), exhibits a counterintuitive behavior: under certain

conditions, the typically unstable inverted position becomes stable. This phenomenon

exemplifies the rich dynamics that can emerge from nonlinear systems and has found

applications ranging from atomic physics to control engineering [266, 267]. Moreover,

the study of Kapitza’s pendulum has inspired the development of vibrational control

techniques for a wide range of systems [268]. This chapter explores Kapitza’s pendulum,

Figure 11.1. Pendulum with oscillating pivot at a fixed angle ϕ

its mathematical foundations, and novel approaches to achieving global stabilization

through hybrid control. We begin by examining the equations of motion with a crucial
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modification to the regular Kapitza’s pendulum: arbitrary directions of oscillations at the

pivot. We then discuss the challenges in achieving global asymptotic stability and propose

a novel approach to overcome those challenges by using multiple oscillating directions

combined with a suitably designed hybrid dynamical system.

11.1 Equations of Motion

In this section, we derive the equations of motion using the Euler-Lagrange formal-

ism. While the traditional analysis of Kapitza’s pendulum focuses on vertical oscillations,

we extend our analysis to consider multiple directions of oscillation. This generalization

allows us to explore a broader range of dynamic behaviors and lays the foundation for the

hybrid control approach presented in Section 11.3.

• Position: x(θ) = l sin(θ) + µ(t) sin(ϕ), y(θ) = −l cos(θ) + µ(t) cos(ϕ).

• Potential Energy: U(θ, t) = mgy(θ, t) = −mg [l cos(θ)− µ(t) cos(ϕ)]

• Kinetic Energy:

K(θ, θ̇, t) =
m

2

(
ẋ2(θ) + ẏ2(θ, t)

)

=
m

2

([
l cos(θ)θ̇ + µ̇ sin(ϕ)

]2
+
[
l sin(θ)θ̇ + µ̇ cos(ϕ)

]2)

=
m

2

(
l2 cos2(θ)θ̇2 + l2 sin2(θ)θ̇2 + µ̇2+

2lµ̇θ̇ [sin(θ) cos(ϕ) + cos(θ) sin(ϕ)]

)

=
m

2

(
l2θ̇2 + µ̇2 + 2l sin(θ + ϕ)θ̇µ̇

)
.

• Lagrangian:

L(θ, θ̇, t) = K(θ, θ̇, t)− U(θ, t)

278



=
m

2

(
l2θ̇2 + µ̇2 + 2l sin(θ + ϕ)θ̇µ̇

)
+mg [l cos(θ)− µ(t) cos(ϕ)] .

• Disipation potential:

We consider the dissipation function

D(v) =
γ

2
v2

where v is the velocity of the bob, i.e., v = |(ẋ, ẏ)|, and γ ∈ R≥0. Now, we have that

v2 = ẋ2 + ẏ2

= l2θ̇2 + 2l sin(θ + ϕ)θ̇µ̇+ µ̇2,

and, thus, the friction force is given by

Ffr = −∂D(v)

∂θ̇

= −γ
(
l2θ̇ + l sin(θ + ϕ)µ̇

)
(11.1)

• Euler-Lagrange Equations (With External Forces - Friction):

∂L
∂θ̇

= ml2θ̇ +ml sin(θ + ϕ)µ̇

d

dt

∂L
∂θ̇

= ml2θ̈ +ml cos(θ + ϕ)θ̇µ̇+ml sin(θ + ϕ)µ̈

∂L
∂θ

= −mgl sin(θ) +ml cos(θ + ϕ)θ̇µ̇.

By using the fact that d
dt
∂L
∂θ̇

= ∂L
∂θ

+ Ffr, we are now prepared to write down the

equations of motion:

lθ̈ = −g sin(θ)− µ̈ sin(θ + ϕ)− γ

m

(
lθ̇ + sin(θ + ϕ)µ̇

)
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=⇒ θ̈ = −g
l
sin(θ)− 1

l
sin(θ + ϕ)µ̈− γ

lm

(
lθ̇ + sin(θ + ϕ)µ̇

)
. (11.2)

To analyze the stability properties of the inverted position θ = π under high-frequency

oscillations at the pendulum’s pivot, we employ averaging theory for hybrid dynamical

systems [269]. Our goal is to transform the system’s continuous-time evolution so

that it admits a suitable average. To this end, we begin by setting µ(t) = a sin(ωt)

and assuming a/l ≪ 1 and ω0/ω ≪ 1, where ω0 =
√
g/l is the pendulum’s natural

frequency. We then introduce the following parameters:

ε := a/l, α := ω0l/ωa, β := γ/mω0.

Using these definitions, it follows that ω0/ω = αε. With these substitutions, equation

(11.2) transforms into:

θ̈ = −ω2
0 sin(θ) + εω2 sin(ωt+ η) sin(θ + ϕ)− ω0

l
β
(
lθ̇ + aω cos(ωt+ η) sin(θ + ϕ)

)

= −ω2
0 sin(θ) + εω2 sin(ωt+ η) sin(θ + ϕ)− ω0βθ̇ − εω0βω cos(ωt+ η) sin(θ + ϕ).

Letting τ := ωt, this further reduces to

ω2 d
2θ

dτ 2
= −ω2

0 sin(θ) + εω2 sin(ωt+ η) sin(θ + ϕ)− ω0βω
dθ

dτ

− εω0βω cos(ωt+ η) sin(θ + ϕ)

=⇒ d2θ

dτ 2
= −ω

2
0

ω2
sin(θ) + ε sin(ωt+ η) sin(θ + ϕ)− ω0

ω
β
dθ

dτ

− ε
ω0

ω
β cos(τ + η) sin(θ)

=⇒ d2θ

dτ 2
= −α2ε2 sin(θ) + ε sin(τ + η) sin(θ + ϕ)

− αβε
dθ

dτ
− αβε2 cos(τ + η) sin(θ + ϕ). (11.3)
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Now, by applying the near-identity transformation defined by:

x1 = θ, x2 =
1

ε

dθ

dτ
+ cos(τ + η) sin(θ + ϕ),

from (11.3) we obtain

dx1
dτ

=
dθ

dτ

= ε (x2 − cos(τ + η) sin(x1 + ϕ))

dx2
dτ

=
1

ε

d2θ

dτ 2
− sin(τ + η) sin(θ + ϕ) + cos(τ + η) cos(θ + ϕ)

dθ

dτ

=
1

ε

[
− α2ε2 sin(θ) + ε sin(τ + η) sin(θ + ϕ)− αβε

dθ

dτ

− αβε2 cos(τ + η) sin(θ + ϕ)

]
− sin(τ + η) sin(θ + ϕ)

+ cos(τ + η) cos(θ + ϕ)
dθ

dτ

=
1

ε

[
−α2ε2 sin(θ)− αβε

dθ

dτ
− αβε2 cos(τ + η) sin(θ + ϕ)

]

+ cos(τ + η) cos(θ + ϕ)
dθ

dτ

= −εα2 sin(θ)− αβ
dθ

dτ
− αβε cos(τ + η) sin(θ + ϕ) + cos(τ + η) cos(θ + ϕ)

dθ

dτ

= −εα2 sin(θ)− αβε

[
1

ε

dθ

dτ
+ cos(τ + η) sin(θ + ϕ)

]
+ cos(τ + η) cos(θ + ϕ)

dθ

dτ

= ε
(
−α2 sin(x1)− αβx2

)
+ cos(τ + η) cos(θ + ϕ)

dθ

dτ

= ε
(
−α2 sin(x1)− αβx2

)

+ cos(τ + η) cos(θ + ϕ)ε (x2 − cos(τ + η) sin(θ + ϕ))

= ε

(
− αβx2 − α2 sin(x1) + x2 cos(x1 + ϕ) cos(τ + η)

− sin(x1 + ϕ) cos(x1 + ϕ) cos2(τ + η)

)
.
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Therefore, we have

dz

dτ
=




d
dτ
x

d
dτ
ϕ

d
dτ
χ




= F̃ (z) :=




εFx(x, ϕ, χ)

0

Fχ(χ)




(11.4)

with z := (x, ϕ, χ) ∈ R2×R×S1, and where the continuous vector fields Fx : R2×R×S1 →

R2 and Fχ : S1 → S1 are defined by:

Fx(x, ϕ, χ) :=




x2 − χ1 sin(x1 + ϕ)

−αβx2 − α2 sin(x1) + x2 cos(x1 + ϕ)χ1 − sin(x1 + ϕ) cos(x1 + ϕ)χ2
1




Fχ(χ) :=




0 1

−1 0


χ.

The flow map F̃ in (11.4) lends itself to averaging in the context of hybrid dynamical

systems. As we will explore in Section 11.3, analysis of its first-order average allows us

to strategically select oscillating directions φ(q) and partitions of the circle S1 to ensure

that, on average, the system behaves like a heavy-ball system seeking the minimum of a

carefully designed effective potential function.

The following section focuses on designing this effective potential so that it has

a global minimum at the naturally unstable position θ = π. This approach transforms

the stabilization problem into an optimization challenge over an engineered potential

landscape. The key challenge lies in carefully selecting oscillation directions φ(q) and

defining regional boundaries on S1 where these directions of oscillation are implemented to

create a globally invex effective potential, while respecting physical constraints specified

by the equations of motion in (11.4).
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11.2 Designing a Physically-Informed Invex Effec-

tive Potential

First, let

Θq :=





[−5π/8,−3π/8] if q = −3

[−3π/8,−π/8] if q = −2

[−π/8, 0] if q = −1

[−π,−5π/8] ∪ [5π/8, π] if q = 0

[0, π/8] if q = 1

[π/8, 3π/8] if q = 2

[3π/8, 5π/8] if q = 3

, φ(q) :=





3π/4 if q = −3

π/2 if q = −2

π/4 if q = −1

0 if q = 0

3π/4 if q = 1

π/2 if q = 2

π/4 if q = 3

Uq(θ) := −α2 cos(θ) +
1

4
sin2(θ + φ(q)) + cq, (11.5)

where cq ∈ R and q ∈ Q := [−3, 3] ∩ Z. Moreover, define the global potential energy

function by:

U(x1, q) :=
∑

p∈Q
Up(x1)1{x1∈Θp} − Uq(x1)1{x1∈ϑq}, (11.6)

where

ϑp :=





{0} if p = 0

Θp ∩Θ(p+sign(p)) mod 4 otherwise

,

and where the set of constants {cq}q∈Q is chosen such that U(θ) :=
∑

q∈Q Uq(θ)1{θ∈Θq} is

continuous and satisfies U(±π) = 0. The negative term on the right of (11.6) is used to
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Figure 11.2. Plot of the Designed Effective Potential

remove duplicates values from the sum whenever x1 ∈ {ϑq}q∈Q. Now, note that

∇U(x1, q) = ∇Uq(x) ∀(x, q) ∈
⋃

q∈Q
Θq × {q} .

We now introduce a sufficient condition on α to guarantee that the potential defined

U(x1, q), with the directions of oscillation introduced in (11.5), is an invex potential.

Lemma 11.1. If 0 < α2 < 1
2
cos (3π/8), then

∇U(x1, q) = ∇Uq(x1) = 0 ⇐⇒ (θ, q) ∈ {−π, π} × {0} , and

⟨∇U(x1, q), x1⟩ < 0 ∀(x1, q) ∈
⋃

q∈Q
(Θq \ {−π, 0, π})× {q} .

Via Lemma 11.1 we obtain that U(x1, q) > U(±π, 0) for all (x1, q) in

⋃

q∈Q
(Θq \ {−π, π})× {q} (11.7)
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Indeed, we have that

U(x1, q) = U(−π, 0) +
∫ θ

−π
∇Uq(ϑ)1{ϑ∈Θq}dϑ θ ∈ (−π, 0]

> U(−π, 0) for all x1 ∈ (−π, 0)

U(θ) = U(π, 0) +

∫ θ

π

∇Uq(ϑ)1{ϑ∈Θq}dϑ θ ∈ [0, π)

= U(π, 0)−
∫ π

θ

∇Uq(ϑ)1{ϑ∈Θq}dϑ

> U(π) for all θ ∈ (0, π).

Figures 11.2 and 11.3 present a visualization of the designed potential U(x1, q) and its

gradient ∇x1U(x1, q).
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11.3 Hybrid Vibrational Controller

The design of the invex potential in the previous section provides a theoretical

foundation for global stabilization of the Kapitza pendulum. However, implementing a

control strategy that robustly achieves this stabilization faces a fundamental challenge

rooted in the topology of the system’s state space. The state space of Kapitza’s pendulum is

given by S1×R, where S1 corresponds to the angular position and R to the angular velocity.

This non-contractible state space poses a fundamental obstacle to global asymptotic

stability via traditional control methods. For continuous, discontinuous, or time-varying

feedback systems, the basin of attraction of an asymptotically stable equilibrium must be

contractible [270, 271]—a condition incompatible with the pendulum’s state space.

To overcome these topological limitations, we introduce a hybrid vibrational control

approach that addresses these challenge by combining continuous-time vibrational control

with discrete switching logic. It implements the oscillation directions defined by the

invex potential design across different regions of S1. The strategy integrates continuous-

time vibrational stabilization with discrete-time jumps, ensuring proper switching between

oscillation modes as the pendulum traverses these regions. Crucially, it provides mechanisms

to avoid Zeno behavior without relying on traditional dwell-time constraints, which are

impractical in this context due to the potential for arbitrarily small flow intervals.

To explain the hybrid mechanism, we begin by considering the four specific oscillat-

ing directions presented in the design of the invex potential:

ϕ1 = 0, ϕ2 =
π

4
, ϕ3 =

π

2
, ϕ4 =

3π

4
(11.8)

We formulate our control strategy as a hybrid dynamical system in the τ -continuous time

scale. The state of this system is given by z := (x, q, k, χ), where x = (x1, x2) represents

the pendulum’s angular position and velocity, respectively, q ∈ Q := [−3, 3] ∩ Z is a
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discrete variable encoding the current region of operation, k ∈ K := Z ∩ [−4, 4] stores

information about the sign of the angular velocity upon entering a region, and χ represents

the amplitude of the oscillation. The flow set C, and jump set D of the HDS are given by:

C =
3⋃

q=−3

Θq × R× {q} ×K↑
q , K↑

q :=





{−3,−1} if q = −3

{−2, 0} if q = −2

{−3,−1} if q = −1

{−4, 4} if q = 0

{1, 3} if q = 1

{0, 2} if q = 2

{3,−1} if q = 3

, (11.9a)

D =
⋃

p∈Q
ϑp ×

(
D↑
p ∪D↓

p

)
, (11.9b)

D↑
p :=





R≥0 × {−1} × {−3} if p = 0

{x2 ∈ R : x2sign(p) ≥ 0} × {p} ×K↑
p otherwise

, (11.9c)

D↓
p :=





R≤0 × {1} × {3} if p = 0

{x2 ∈ R : x2sign(p) ≤ 0} × {(p+ sign(p)) mod 4} ×K↓
p otherwise

, (11.9d)
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Figure 11.4. Depiction of jump and flow sets for the HDS H presented in (11.9)

K↓
p :=





{4} if p = −3

{−1} if p = −2

{−4} if p = −1

{4} if p = 1

{−1} if p = 2

{−4} if p = 3

. (11.9e)

Figure 11.4 shows a representation of the introduced flow and jump sets. The flow map F

of the HDS is given by

F (z) =




εFx(x, φ(q), χ)

0

0

Fχ(χ)




∀z ∈ C × S1, . (11.9f)
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Finally, the jump map G is defined as follows:

G(z) =








x1

x2

sign(x2)

−sign(q)

χ




if z ∈ (D ∩ ({ϑ0} × R×Q×K))× S1




x1

x2

(
q + sign(x2)

)
mod 4

q + sign(q)

χ




if z ∈

(
D ∩

({
x1 ∈

⋃
q∈Q\{0} ϑq

}

×R× [Q \ {0}]×K
))

× S1




x1

x2

s+(x2)

q + sign(q)

χ




if z ∈ (D ∩ ({ϑ3} × R× {0} × K))× S1




x1

x2

s−(x2)

q + sign(q)

χ




if z ∈ (D ∩ ({ϑ−3} × R× {0} × K))× S1

, (11.9g)
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where

s+(x2) =





3 if x2 < 0

{0, 3} if x2 = 0.

0 if x2 > 0

s−(x2) =





−3 if x2 > 0

{0,−3} if x2 = 0.

0 if x2 < 0

.

Remark 11.1. Note that for q ∈ Q \ {0} we have that sign(q) = sign (−∇Uq(x1))

by design.

Lemma 11.2. The HDS H = (C × S1, F,D × S1, G), where C,F,D, and G are

defined in (11.9), is well posed.

Lemma 11.3. Solutions to H experience at most 2 consecutive jumps between

intervals of flow.

We will use averaging techniques for hybrid dynamical systems [272] to prove the

main results of this paper. To this end, recall that the system

χ̇ = Fχ(χ)

generates sinusoid components (χ1, χ2) = χ with shifted phase π/2 and initial phase

η depending on the initial conditions (χ1(0), χ2(0)). Thus, H admits the HDS Hav :=
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(Fav, C,Gav, D) as its average system, with Gav as defined in (I.1),

Fav(x, q) :=




x2

−αβx2 − α2 sin(x1) +
1
2
sin(x1 + φ(q)) cos(x1 + φ(q))

0




=




x2

−∇Uq(x1)− αβx2

0



, (11.10)

and where Uq was defined in (11.5). Next, we introduce two lemmas that characterize the

solutions of Hav.

Lemma 11.4. Every maximal solution of Hav is complete.

Lemma 11.5. For any p ∈ Q \ {−3, 3} and any solution y : dom(y) → C ∪D to

Hav with

y(0, 0) ∈ Gav

(
ϑp ×D↑

p

)

there exists T > 0 such that y(T, 0) ∈ ϑp↑ ×D↑
p↑ , with p

↑ = p+ sign(p).

The following Lemma follows directly by the same ides of the proof of Lemma 11.5.

Lemma 11.6. For any solution y : dom(y) → C ∪D to Hav with

y(0, 0) ∈ Gav

(
ϑ0 ×D↓

0

)
,

there exists T > 0 such that y(T, 0) ∈ ϑ−1 ×D↑
−1.
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Remark 11.2. The name for the subset ϑ0 ×D↓
0 can be misleading. Even though

we have used the symbol ↓, after a solution hits ϑ0 ×D↓
0 and jumps, it is no longer

going “downwards”. On the contrary, by the design of the global effective potential,

the pendulum will start going “upwards”. A possible alternative for the edge case of

x1 = ϑ0 could be changing the notation to ϑ0 ×
(
D↑

0+ ∪D↑
0−

)
.

The following two lemmas examine the behavior of solutions originating at the

boundaries of the region surrounding the inverted position θ = π (q = 0).

Lemma 11.7. For any p ∈ {−3, 3} and any solution y : dom(y) → C ∪D to Hav

with

y(0, 0) ∈ Gav

(
ϑp ×D↑

p

)
,

one of the following holds:

• There exists T > 0 such that y(T, 0) ∈ ϑp↑ ×D↓
−p.

• limt→∞ y(t, 0) ∈ A0.

where A0 := {−π.π} × {0} × {0} × {−4, 4}.

Lemma 11.8. For any p ∈ Q \ {0} and any solution y : dom(y) → C ∪D to Hav

with

y(0, 0) ∈ Gav

(
ϑp ×D↓

p

)
,

one of the following holds:

• y(0, 0) ∈
(
ϑp ×D↑

p

)
, y(0, 0) ̸∈

(
Θp↑ × R×

{
p↑
}
×K↑

p↑

)
, and solutions will

necessarily jump afterwards.
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• There exists T > 0 such that y(T, 0) ∈ ϑq ×D↑
q .

• There exists T > 0 such that y(T, 0) ∈ ϑp↓ ×D↓
p↓ , where p

↓ = p− sign(p).

In words, Lemma 11.8 can be interpreted as: Whenever the hybrid dynamical

system enforces a jump outside of the “final” region (q = 0) and the solution is going

downwards, the following scenarios are successfully captured by the dynamics:

• Either the solution has zero speed and the jump map will adjust its logical values

such that it will immediately start flowing upwards.

• The solution will loose enough kinetic energy during the next interval of flow and the

velocity x2 will change sign during flows. After that, the solution will start flowing

upwards and eventually jump in the upwards direction.

• The solution does not loose enough kinetic energy during the next interval of flow

and hits the next downward guard. This scenario can happen a successive finite

amount of times until x2 becomes 0 and any of the two previous scenarios occurs.

With the above lemmas, we can ensure that no solution to the hybrid dynamical system is

Zeno.

Lemma 11.9. No maximal solution of Hav with (x(0, 0), q(0, 0)) ∈ C ∪D is Zeno.

We are now prepared to present the main result of this section, which establishes

suitable global asymptotic stability guarantees for the naturally unstable position θ = π.

Theorem 11.1. Assume that α2 < 1
2
cos (3π/8). Then, the HDS H renders the set

A := A0 × S1 globally practically asymptotically stable.

Remark 11.3. The proofs for the different results above rely on analyzing the

continuous-time behavior of solutions for Hav at different modes determined by the
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state q, as well as studying how solutions are allowed to jump between those modes.

These proofs make extensive use of the “next” mode p↑, and the “previous” mode p↓,

from an “initial” mode p. The flow and jump sets in (11.10) can be explicitly written

in terms of these quantities; this potential modification can improve the clarity of

the explanation. Also, the definition of Cp := Θp × R× {p} ×K↑
p and C =

⋃
p∈QCp.

Figure 11.5. Convergence to the naturally unstable equilibrium under the Hav.

To validate Theorem 11.1, Figure 11.5 presents numerical simulations of the average

system for the Kapitza pendulum under the proposed hybrid vibrational control strategy.

The figure illustrates a trajectory converging to the upright equilibrium θ = π. We also

present the evolution of the logical variables q and k, capturing the hybrid control’s

transitions between oscillation modes across the partitioned state space.

Remark 11.4. The successful emulation of the heavy-ball optimization dynamics

over the global potential U(x1, q), obtained by “stitching” together several local

potentials, relies on the carefully designed jump and flow sets presented in (11.9).

This approach appears to be difficult to extend to a different setup than the one
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studied in this manuscript. An approach that relies on a hybrid dynamical model

of an automata that allows consecutive jumps without intervals of flow in-between,

could prove to be useful for extensions to higher dimensional settings.
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Appendix A

Proofs of Chapter 3

A.1 Proofs of Section 3.2

Proof of Theorem 3.2

Gradient of Critic Error-Function in Deviation Variables

First, using (3.20) together with H(x, u∗(x),∇V ∗) = 0 for all x, we obtain:

ψ(x, u∗(x))⊤θ∗c +Q(x) +R (u∗(x)) = ϵHJB(x). (A.1)

Thus, using (3.19) and (A.1), we can rewrite the gradient of e(θc, x, u) as follows:

∇θce(θc, x, u) = Θ(x, u) (θc − θ∗c ) + υϵ(x, u) + χ(x, u), (A.2)

where

Θ(x, u) := ρiΨ(x, u)Ψ(x, u)⊤ + ρdΛ, (A.3)

and

υϵ(x, u) := ρi
ψ(x, u)ϵHJB(x)(
1 + |ψ(x, u)|2

)2 + ρd

N∑

k=1

ψ(xk, u
∗(xk))ϵHJB(xk)(

1 + |ψ(xk, u∗(xk))|2
)2 ∈ Rlc , (A.4)
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χ(x, u) :=
ρiψ(x, u)

[
∂ϕc(x)
∂x

g(x) (u− u∗(x))
]⊤
θ∗c

(
1 + |ψ(x, u)|2

)2 +
ρiψ(x, u) [R(u)−R(u∗(x))]

(
1 + |ψ(x, u)|2

)2 ∈ Rlc ,

(A.5)

which, by using the fact that r
(1+r2)2

≤ 3
√
3

16
,∀r ∈ R≥0, satisfy:

|υϵ(x, u)| ≤
3
√
3

16
ϵHJB (ρi +Nρd) , (A.6a)

|χ(x, u)| ≤ ρi
3
√
3

16

(
g
(
dϕc [1 + |θ∗c |] + dϵc

)
|u− u∗(x)|+ λmax (Πu) |u− u∗(x)|2

)
. (A.6b)

The following Lemma will be instrumental for our results.

Lemma A.1. If the data is λ-sufficiently-rich, then there exist Θ,Θ ∈ R>0 such

that

ΘIn ⪯ Θ(x, u) ⪯ ΘIn ∀x ∈ Rn, ∀u ∈ Rm.

Proof. Let θ ∈ Rlc be arbitrary. Since, by assumption, the data is λ-SR it follows

that:

θ⊤Θ(x, u)θ = θ⊤ρiΨ(x, u)Ψ(x, u)⊤θ + θ⊤ρdΛθ

≥ ρdλ|θ|2

=⇒ Θ(x, u) ⪰ ΘIlc , ∀(x, u) ∈ Rn × Rm, (A.7)

where Θ := ρdλ. On the other hand, using the fact that
∣∣aa⊤

∣∣ = |a|2, ∀a ∈ Rn, we

obtain that:

∣∣Ψ(x, u)Ψ(x, u)⊤
∣∣ = |Ψ(x, u)|2 ≤ 1, ∀(x, u) ∈ Rn × Rm,
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we obtain:

θ⊤Θ(x, u)θ = θ⊤ρiψ(x, u)ψ(x, u)
⊤θ + θ⊤ρdΛθ

≤ (ρi + ρdλmax (Λ)) |θ|2

=⇒ Θ(x, u) ⪯ ΘIlc , ∀(x, u) ∈ Rn × Rm,

where Θ := ρi + ρdλmax (Λ). ■

Lyapunov-Based Analysis

Recall from Section 3.2 that y = (θc, p, τ ), suppose that the assumptions of Theorem

3.2 hold and consider the Lyapunov candidate function Vc : Rlc × Rlc × R>0 → R≥0 given

by:

Vc(y) :=
|p− θc|2

4
+

|p− θ∗c |2
4

+ kcρdτ
2 (θc − θ∗c )⊤Λ (θc − θ∗c )

2
, (A.8)

where Λ was defined in Assumption 3.1 and which satisfies:

c|y|2Ac ≤ Vc(y) ≤ c|y|2Ac , (A.9)

c := min

{
1

4
,
kcρdT

2
0 λ

2

}
, c :=

{
3

4
,
1

2

(
1+kcρdT

2λ
)}

,

where λ := λmax (Λ). Now, let u ∈ UV , and consider the time derivative of Vc along the

continuous-time evolution of the critic subsystem, i.e., V̇c = ∇yVc(y)
⊤ẏ. Then, by using

(A.2) and Lemma A.1, and some algebraic manipulation, V̇c can be shown to satisfy

V̇c ≤ −kcτ
2

(
|p− θc| |θc − θ∗c |

)
M(τ)




|p− θc|

|θc − θ∗c |


+ 2

√
2kcyAc

(
|υϵ(x)|+ |χ(x, u(x))|

)
,

(A.10)
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where

M(τ) :=




2
kcτ2

−ρi
2

−ρi
2

Θ


 , (A.11)

and Ac was defined in Section 3.2. Since 2ρdλ > ρi and T
2 < 8ρdλ

kcρ2i
by means of Asssumption

3.2, and τ(t, j) ∈ [T0, T ], ∀(t, j) ∈ dom (y) by construction of the critic update dynamics

(3.21), it follows that M(τ) ⪰ r̃ with r̃ := Θ− ρi
2
. Hence, defining r := kcT0

2
r̃, from (A.10)

and using (A.6), we obtain that:

V̇c ≤ −r|y|2Ac + |y|Ac
(
γν (ϵHJB) + γχ (|u(x)− u∗(x)|)

)
, (A.12)

where γν , γχ ∈ K∞ are given by:

γν(r) :=
3
√
6

8
(ρi +Nρd) r, γχ(r) := cχ(r + r2),

cχ :=
3
√
6

8
ρimax

{
g
(
dϕc [1 + |θ∗c |] + dϵc

)
, λmax (Πu)

}
.

Thus, letting Dc
0 ∈ (0, 1), and using (A.9), (A.12):

V̇c ≤ −r(1−Dc
0)

c
Vc(y), ∀|y|Ac ≥

1

Dc
0

(
γν (ϵHJB) + γχ (|u(x)− u∗(x)|)

)
. (A.13a)

On the other hand, the change of Vc during the jumps in the update dynamics for the

critic (3.21), satisfies:

Vc
(
y+
)
− Vc(y) ≤ −ηVc(y), (A.14)

with η := 1 − T 2
0

T 2 − 1
2kcρdλT 2 which satisfies η ∈ (0, 1) by means of Assumption 3.2.

Together, (A.13) and (A.14), in conjuction with the quadratic bounds of (A.9), imply the

results of Theorem 3.2 via [273, Prop 2.7] and the fact that |θc(t, j)− θ∗c | ≤ |y(t, j)|Ac ≤

|(θc(t, j), p(t, j))|Aθc,p for all (t, j) ∈ dom (y). ■
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Proof of Theorem 3.3

Gradient of Actor Error-Function in Deviation Variables

First, note that we we can write (3.29) as:

∇θuεa(x, θc, θu) = Ω(x) (θu − θ∗c − (θc − θ∗c )) ,

and consider the following Lemma, instrumental for our results.

Lemma A.2. There exists Ω,Ω ∈ R>0 such that

ΩIlc ⪯ Ω(x) ⪯ ΩIlc .

Proof. Let θ ∈ Rlc be arbitrary. Then, by the definition of Ω : Rn → Rlc×lc in (3.30),

it follows that:

θ⊤Ω(x)θ = α1

∣∣ω(x)⊤θ
∣∣2

1 + Tr{ω(x)⊤ω(x)} + α2|θ|2 ≥ α2|θ|2 =⇒ Ω(x) ⪰ ΩIlc , ∀x ∈ Rn,

where Ω := α2. On the other hand, we obtain:

θ⊤Ω(x)θ =

(
α1

|ω(x)|2

1 + |ω(x)|2F
+ α2

)
|θ|2 ≤ Ω|θ|2 =⇒ Ω(x) ⪯ ΩIlc , ∀x ∈ Rn,

where Ω := α1 + α2, |A|F represents the Frobenius norm and where we used |A| ≤

|A|F , ∀A ∈ Rlc×lc and r2

1+r2
≤ 1 ∀r ∈ R. ■

Now, consider the Lyapunov function

V(z) := Vo(x) + Vc(y) + Va(θu), (A.15a)

Vo(x) := V ∗(x), Va(θu) :=
1

2
|θu − θ∗c |2, (A.15b)
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where Vc was defined in (A.8) and where we recall that z = (x, y, θu). By [22, Lemma

4.3], and since Vo = V ∗ is a continuous and positive definite function in Rn, there exist

γ
o
, γo ∈ K such that γ

o
(|x|) ≤ Vo(x) ≤ γo(|x|). Hence, using (A.9), and the fact that sum

of class K is in turn of class K, there exist γV , γV ∈ K such that:

γV (|z|A) ≤ V(z) ≤ γV (|z|A) (A.16)

Now, the time derivative of V̇o = ∇Vo(x)⊤ẋ along the trajectories of (3.32) satisfies:

V̇o ≤ −Q(x) + g2λmax (Π
−1
u )

2

(
dϕc|θ∗c |+ dϵc

) (
dϕc|θu − θ∗c |+ dϵc

)
. (A.17)

On the other hand, making use of Lemma 6.2, for the time derivative of V̇a = ∇θuVa(θu)
⊤θu

we obtain:

V̇a ≤ −kuα2|θu − θ∗c |2 + kuΩ|θu − θ∗c ||θc − θ∗c |. (A.18)

Hence, using (A.10), (A.17), and (A.18), together with the upper bounds in (A.6), we

obtain that the time derivative of V along the trajectories of the closed-loop system

satisfies:

V̇ ≤ −Q(x)− r|y|2Ac − kuα2|θu − θ∗c |2

+ cy|y|Ac + cu|θu − θ∗c |+ cyu|θu − θ∗c ||y|Ac
+ cyu2 |y|Ac |θu − θ∗c |2 + c0, (A.19)

where

cy :=
3
√
6

8
kc

(
ϵHJB (ρi +Nρd)
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+
1

2
g2ρi

[
λmax

(
Π−1
u

) (
dϕc [1 + |θ∗c |] + dϵc

)
dϵc + λmax (Πu)λmax

(
Π−1
u

)2
dϵc

2

])
,

cu :=
1

2

(
dϕc|θ∗c |+ dϵc

)
g2λmax

(
Π−1
u

)
dϕc,

cyu :=
3
√
6kc
16

(
2kuΩ + g2ρiλmax

(
Π−1
u

) (
dϕc [1 + |θ∗c |] + dϵc

)
dϕc

)
,

cyu2 :=
3
√
6

16
kcg

2ρiλmax (Πu)λmax

(
Π−1
u

)2
dϕc

2
,

c0 :=
1

2

(
dϕc|θ∗c |+ dϵc

)
g2λmax

(
Π−1
u

)
dϵc.

Then, for all |θu − θ∗c | ≤ cyu
cyu2

, by using Q(x) = x⊤Πxx and letting d1 ∈ (0, 1), from (A.19),

V̇ can be further upper bounded as:

V̇ ≤ −λmin (Πx) |x|2 − (1− d1)
(
r|y|2Ac + kuα2|θu − θ∗c |2

)

+ cy|y|Ac + cu|θu − θ∗c |+ c0

−
(
|y|Ac |θu − θ∗c |

)


d1r −cyu
−cyu d1kuα2







|y|Ac
|θu − θ∗c |


 . (A.20)

Now, pick a set of tunable parameters (ρi, ρd, kc, ku) such that r ≥ c2yu
d21kuα2

so that from

(A.20), we obtain:

V̇ ≤ −(1− d2)dz|z|2A, ∀|z|A ≥ max

{
c0

2dyu
,
2dyu
d2dz

}
, |θu − θ∗c | ≤

cyu
cyu2

, (A.21a)

with

dz := min {λmin (Πx) , (1− d1)r, kuα2} ,

dyu := max {2cyu, c0} , d2 ∈ (0, 1).

Notice that for every compact set Kθ of initial conditions for θu we can pick suitable
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ρi, ρd, α1, α2, kc, ku to satisfy Kθ ⊂ cyu
cyu2

B such that (A.21) holds for every trajectory with

θu(0, 0) ∈ Kθ. Now, during jumps x and θu do not change, and hence V satisfies:

V(z+)− V(z) = Vc(y
+)− Vc(y) ≤ −ηVc(y). (A.22)

The result of the theorem follows by using the strong-decrease of V during flows outside

a neighborhood of A described in (A.21), the non-increase of V during jumps given in

(A.22), by noting that, by design, the closed-loop dynamics are a well-posed HDS which

experiences periodic jumps followed by intervals of flow of length T − T0 > 0 (c.f. [6]), and

by following the same arguments of [33, Prop 3.27] and [273, Prop. 2.7]. ■
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Appendix B

Proofs of Chapter 4

B.1 Proofs of Section 4.3

For the sake of clarity in the presentation of the proofs, in this section, we assume

that n = 1, i.e., that the action of each player qi is one-dimensional. The proofs for

the general case where n ≥ 1 follow analogously, with the appropriate incorporation of

Kronecker products to handle the higher-dimensional action spaces.

Proof of Lemma 4.1

1) Well-posedness follows directly by [16, Thm. 6.30], since F1 is continuous, C1 and

D1 are closed sets, and G1 is outer-semicontinuous (OSC) and locally bounded (LB)

in D1 by construction.

2) To rule out finite escape times it suffices to study the behavior of the states (q, p).

Indeed, by using the ℓ-global Lipschitz assumption on G, leveraging the structure of

the flow map F1 in (4.9c), and using the fact that G(q∗) = 0, it follows that

|q̇| ≤ 2

T0
|p− q|, and |ṗ| ≤ 2Tℓ|q − q∗|,

for all q∗ ∈ ANE, which implies that |(q̇, ṗ)| ≤ ℓ̃|(q, p) − (q∗, q∗)|, with ℓ̃ :=
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2
√
3max{ 1

T0
, T ℓ}. Then, by using the fact that

d|u(t)|
dt

≤
∣∣∣∣
du(t)

dt

∣∣∣∣,

for any differentiable function u : R≥0 → RN and any t ∈ dom (u), it follows that

d|(q − q∗, p− q∗)|
dt

≤ ℓ̃|(q − q∗, p− q∗)| ∀q∗ ∈ ANE.

Then, the Gronwall-Bellman inequality implies that during flows

|(q − q∗, p− q∗)| ≤ |(q(0)− q∗, p(0)− q∗)|eℓ̃t

for all q∗ ∈ ANE and all (t, ·) ∈ dom((q, p)). Thus, the flow map (4.9c) does not

generate finite escape times.

Additionally, since after jumps we have that τ+ ∈ {T0, T}N , it follows that G1(D) ⊂

C1 ∪D1, which in turn implies that solutions do not stop due to jumps leaving the

set C1 ∪D1. Next, note that the synchronization mechanism that governs the state

τ is decoupled from the dynamics of the states (q, p), and can be written as a the

following HDS:

τ ∈ Cτ := [T0, T ]
N , τ̇ = η1N , (B.1a)

τ ∈ Dτ :=
{
τ ∈ Cτ : max

i
τi = T

}
, τ+ ∈ Gτ (τ), (B.1b)

where Gτ (τ) is the projection of G1 into the τ -component, which is independent

of (p, q). This hybrid system is well-posed by construction, and by [51, Thm. 1]

it renders uniformly fixed-time stable the set Async, with a convergence bound T ∗
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given by

T ∗ :=
1

η
(T − T0) +N, (B.2)

for all τ(0, 0) ∈ [T0, T ]
N . Moreover, each solution has at most N jumps in any interval

of length L := 1
η
(T −T0), and, for any pair of hybrid times (t, j), (s, i) ∈ dom (τ) with

t+ j ≥ s+ i ≥ T ∗ the following dwell-time condition holds L+ t−s ≥
⌊
j−i
N

⌋
L, where

⌊·⌋ denotes the floor function. Thus, any solution τ of system (B.1a) is complete

and also satisfies |τ(t, j)|Async = 0 for all t+ j ≥ T ∗ such that (t, j) ∈ dom(τ). Since

the states (q, p) of H1 evolve in RN ×RN , for each τ(0, 0) ∈ [T0, T ]
N the hybrid time

domains of system (4.9a)-(4.9f) are the same hybrid time domains of system (B.1a).

This equivalence, plus the above properties, establish the result. ■

The previous Lemma directly implies the following:

Lemma B.1. Let ν > 0 and consider the HDS H1 with restricted flow and jump

sets given by:

Cν :=
{
x ∈ R2nN+N : (p, q) ∈ {(q∗, q∗)}+ νB, τ ∈ [T0, T ]

N
}
,

Dν :=
{
x ∈ R2nN+N : x ∈ Cν , max

i∈V
τi = T

}
,

and jump map G1 with values intersected with the set Cν ∪Dν . Then, the restricted

system Hν = {F1, Cν , Gν , Dν} renders UGFxS the set Aν := ({(q∗, q∗)}+νB)×Async.

Proof of Theorem 4.1

First, by using Lemmas 4.1 and B.1, we note that we can analyze the HDS H1 by

instead studying the HDS Hv with data intersected with the set Aν . We denote this new

restricted HDS as Hs := {Fs, Cs, Gs, Ds}, and we note that any compact set A′ ⊂ RN×RN

such that A′ × Async is UGAS for this system will also be UGAS for Hν thanks to the

hybrid reduction principle [16, Cor. 7.24]. Moreover, since ν is arbitrary and independent
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of any parameter, and H1 has no finite escape times, the set A′ ×Async will also be UGAS

for H1. Our subsequent analysis, introduces multiple lemmas that characterize the stability

properties of A under Hs.

Lemma B.2. Under the conditions of Theorem 4.1-(i1), system Hs renders UGAS

the set A given by (4.14). □

Proof. By using the potential function P we define the error P̃ (q) := P (q)−P (ANE),

and we consider the Lyapunov function

V = V1 + V2 + V3, (B.3)

where the smooth functions Vi are defined as follows:

V1(x):=
1

4
|p− q|2, V2(x) :=

1

4
|p|2ANE , V3(x) :=

|τ |2
N

P̃ (q). (B.4a)

where |z|2,ANE = mins∈ANE |z − s|2 and |z|2 = z⊤z. By the definition of potential-

games, and the construction of V1 and V2, the function V is radially unbounded and

positive definite with respect to the compact set A ∩ (Cs ∪Ds).

Now, during flows in Cs the time derivative of V satisfies:

V̇ (x) =
∂V (x)

∂x
ẋ =

∂V (x)

∂q
q̇ +

∂V (x)

∂p
ṗ+

∂V (x)

∂τ
τ̇ . (B.5)

The first term of (B.5) is given by:

∂V (x)

∂q
q̇ =

(
−1

2
(p− q) +

|τ |2
N

∇P (q)
)⊤

q̇

= −(p− q)⊤T −1 · (p− q)

+ 2
|τ |2
N

∇P (q)⊤T −1 · (p− q),
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= − 1

τs
(p− q)⊤(p− q) + 2τs(p− q)⊤∇P (q),

where in the last equality we used the fact that in the set Cs\Ds we have τ = τs1N

with τs ∈ [T0, T ], and that points in Cs ∩ Ds lead to solutions that cannot flow.

Similarly,

∂V (x)

∂p
ṗ =

(
1

2
(p− q) +

1

2

(
p− ΠANE(p)

))⊤
ṗ

= −(p− q)⊤T G(q)

− (p− ΠANE(p))
⊤T G(q),

= −τs
(
(p− q) + (p− ΠANE(p))

)⊤
G(q),

where ΠANE(p) is the projection of p on ANE. Moreover, it follows that

∂V (x)

∂τ
τ̇ =

(
P̃ (q)

τ

N

)⊤
τ̇ = P̃ (q)

τ⊤1N
N

= 2τsP̃ (q)η.

Combining the above inequalities, and using the definition of G(q) = ∇P (q) and

0 < η ≤ 1/2, we obtain:

V̇ (x) ≤ − 1

τs
|p− q|2 − τs

((
q − ΠANE(p)

)⊤G(q)− P̃ (q)
)
. (B.6)

Now, since P is a convex function with ℓ-Lipschitz gradient G the following standard

inequality is satisfied [274, Thm. 5.8]:

P (y) ≥ P (x) + (y − x)⊤ G(x) + 1

2ℓ
|G(x)− G(y)|2, ∀x, y ∈ RN . (B.7)

Then, letting x = q and y = ΠANE(p) for q, p ∈ Rn, and using the fact that
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G (ΠANE(p)) = 0, it follows from (B.7) that

1

2ℓ
|G(q)|2 ≤ −

(
ΠANE(p)− q

)⊤
G(q) + P (ΠANE(p))− P (q)

=
(
q − ΠANE(p)

)⊤
G(q)− P̃ (q). (B.8)

Thus, from (B.6), we obtain during flows that

V̇ (x) ≤ − 1

τs
|p− q|2 − τs

2ℓ
|G(q)|2. (B.9)

Since |G(q)| = 0 if and only if q ∈ ANE, during flows we have V̇ (x) < 0 for all

x ∈ Cs\A.

Similarly, during each jump the change of V , denoted ∆j+1
j V (x) := V (x(t, j + 1))−

V (x(t, j)), satisfies ∆j+1
j V (x) = ∆j+1

j V3(x) and

∆j+1
j V3(x) =

P̃ (q)

N

(
|τ+|2 − |τ |2

)
=
P̃ (q)

N

N∑

i=1

(τ 2+i − τ 2i ),

= − ε̃

N
P̃ (q) ≤ 0, (B.10)

for some ε̃ > 0, where the last equality follows by the definition of G1 in (4.9a) and

the two following facts: first, if x ∈ Ds, we have two possible cases for all players

i ∈ V : a) if τi = T0, then τ
+
i = T0; b) if τi = T then τ+i ∈ {T0, T}; second, if x ∈ Ds,

we have that in each jump one and only one player i satisfies τi = T and τ+i = T0.

Therefore, since T > T0 there exists ε̃ > 0 such that T 2
0 − T 2 = −ε̃, leading to

(B.10). This implies that V does not increase during each reset triggered by a player.

Given that the hybrid time domains of Hs are intervals of flow of duration 1
η
(T −T0),
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followed by n consecutive jumps, we can use (B.10) n times to obtain:

∆j+N
j V (z) =

N∑

k=1

∆j+k
j+k−1V (z) = −εP̃ (q) ≤ 0, ∀ x ∈ Ds.

By [16, Prop. 3.27], the periodic strong decrease of V during flows, and its non-

increase during jumps, imply that Hs renders UGAS the set A. ■

Lemma B.3. Under the conditions of Theorem 4.1-(i2), system Hs renders UGES

the set A.

Proof. The κ-strong convexity of P̃ and the ℓ-Lipschitz continuity of G, yields the

following quadratic bounds on V :

min

{
1

4
,
κT 2

0

2

}
|x|2A ≤ V (x) ≤ 1

2
max

{
1 +

ℓ2

κ
,
3

2

}
|x|2A, (B.11)

where we have used the fact that in such cases ANE = {q∗}. Additionally, it follows

that ΠANE(p) = q∗. Then, from (B.6), we obtain

V̇ (x) ≤ − 1

τs
|p− q|2 − τs

κ

2
|q − q∗|2. (B.12)

Using the quadratic bounds (B.11) in (B.12) yields

V̇ (x) ≤ −λV (x), (B.13)

where

λ :=
2

3T

min{1, 0.25T0Tκ}
max{1, 2T 2ℓ} ≈ 1

12T

T0
T

κ

ℓ
, (B.14)

and the approximation holds when T0 is sufficiently small, and T is sufficiently large
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(but finite). Then, during each interval of flow, V satisfies the t-time bound

V (t, j) ≤ V (tj, j)e
−λ(t−tj), (B.15)

for all (t, j) ∈ dom (x) such that j = k · N for some k ∈ N. To characterize the

behavior of V during jumps, let Θ and I be the set of indices of players who implement

αi = 0, and αi = 1, respectively. It follows that after the n consecutive jumps that

proceed the intervals of flow of every solution of Hs, we have

∆j+N
j V (x) ≤ −1

4

(
|p− q|2 + |p− q∗|2

)

+
1

4

∑

i∈I

[
(pi − qi)

2 + (pi − q∗i )
2
]

+
1

4

∑

i∈Θ
[qi − q∗i ]

2 − κ

2
(τ 2s − T 2

0 ),

≤ −1

4

∑

i∈Θ

(
(pi − qi)

2 + (pi − q∗i )
2
)

− 1

2

(
κ(τ 2s − T 2

0 )−
1

2

)∑

i∈Θ
(qi − q∗i )

2

− κ

2
(τ 2s − T 2

0 )
∑

i∈I
(qi − q∗i )

2 =⇒ ∆j+N
j V (x) ≤ 0, (B.16)

where we used the fact P̃ is strongly convex, and the condition T 2 − T 2
0 >

1
2κ

given

by (4.16) with ρJ = κ−1. Therefore, it follows that V (tj, j) ≤ V (tj, j −N)e−λ(t−tj)

for all j ≥ n and t ≥ tj. Since each interval of flow has length L = (T − T0)/η, it

follows that Ṽ (tj, j) ≤ Ṽ (tj−N + L, j −N)e−λLe−λ(t−tj). Iterating, and using (B.15):

V (t, j) ≤ V (0, 0)e−λ(⌊ j
N ⌋−1)Le−λ(t−tj). (B.17)
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Thus, from (B.17), and using the quadratic bounds on V , we obtain:

|x(t, j)|A ≤ c|x(0, 0)|Ae−
λ
2
(t−(T−max τ(0,0))/η), (B.18)

with c > 0. Moreover, using the structure of the hybrid time domains, all hybrid

times (t, j) ∈ dom (x) satisfy

−λ
2
t ≤ − 1

3N
λ (t+ j) +

λL

3
, (B.19)

for all λ > 0. Hence, we obtain:

|x(t, j)|A ≤ ĉs|x(0, 0)|Ae−
λ
3N

(t+j), (B.20)

where ĉs := ceλL(
1
3
+ 1

2η ). Inequality (B.20) implies that A is UGES under Hs. ■

Lemma B.4. Under the conditions of Theorem 4.1-(i3), system Hs renders UGES

the set A.

Proof. Using the Lyapunov function V given by (B.3), and the fact that ANE = {q∗},

we obtain again inequality (B.13) during flows. Since now α = 0n, during jumps we

have

∆j+1
j V (x) ≤ −V1(z)− V2(z)−

P̃ (q)

N

N∑

i=1

(τ 2i − τ 2+i )

+
1

4

(
N∑

i=1

(
(p+i − q+i ) + (p+i − q∗+i )

)
)
.

For each solution x and each (t, j) ∈ dom(x) such that x(t, j) ∈ D1 and x(t, j +

1) ∈ G1(x(t, j)), consider the sets Ij+1(t), I+
j+1(t) ⊂ {1, 2, . . . , n}, which satisfy

the following: 1) Ij+1(t) ∩ I+
j+1(t) = {∅}, Ij+1(t) ∪ I+

j+1(t) = {1, 2, . . . , n}; and,
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letting card(A) denote the cardinality of a set A ⊂ Z≥0, 2) they are generated

recursively as card(Ij+1(t)) = card(Ij(t))− 1, and card(I+
j+1(t)) = card(I+

j (t)) + 1,

with card(Ij(t)) = N and card(I+
j (t)) = 0, where j := min{j ∈ Z≥0 : (t, j) ∈

dom(x), x(t, j) ∈ D1}. Since the reset policy αi = 0 for all i ∈ V corresponds to

resets of the form τ+i = T0, p
+
i = qi, ∀ i ∈ V, and since every jump corresponds

to one and only one reset, the change of the Lyapunov function at each of the jth

jumps that follow each interval of flow in the hybrid time domain of a solution to Hs

satisfies

∆j+1
j V (x) ≤ −V1(x)− V2(x)− (τ 2s − T 2

0 )
P̃ (q)

N

+
1

4

∑

i∈Ij+1(t)

(
(pi − qi)

2 + (pi − q∗i )
2
)

+
1

4

∑

i∈I+
j+1(t)

(qi − q∗i )
2. (B.21)

It follows that after N consecutive jumps, the change of the Lyapunov function

satisfies

∆j+N
j V (x) ≤ −V1(x)− V2(x)−

1

2
(τ 2s − T 2

0 )P̃ (q) +
1

4
|q − q∗|2. (B.22)

By strong convexity of P̃ , we can further bound (B.22) as:

∆j+N
j V (x) ≤ −V1(x)− V2(x)− γ

(
κ−1
)
V3(x)

≤ −γ
(
κ−1
)
V (x), (B.23)

where γ(·) is given by (4.19), and satisfies γ (κ−1) ∈ (0, 1) under (4.16). Thus, by

[223, Thm. 1], inequalities (B.13) and (B.23), and the quadratic upper and lower

bounds of V , we obtain that Hs renders UGES the set A. ■
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Now, by using Lemmas B.2-B.4, which establish suitable stability properties for

the “synchronized” HDS Hs, we proceed to proof the three main items of Theorem 4.1 for

the original hybrid dynamics H1.

(a) Stability: By the hybrid reduction principle [16, Cor. 7.24], UGAS of A for

system Hs (established in Lemmas B.2, B.3 and B.4), and UGFxS of Aν for system Hν ,

imply that A is UGAS for system Hν . Moreover, since the choice of ν > 0 is arbitrary,

and has no effect on the dynamics of the system, and since the trajectories of the original

HDS H1 are complete and bounded, the compact set A is also UGAS for system H1. This

establishes UGAS of A under the conditions of items (i1), (i2) and (i3). For items (i2) and

(i3), UGES follows by the exponential convergence bounds of Lemmas B.3-B.4 and the

fixed-time synchronization of τ . UGAS and UGES follow directly by robustness results of

well-posed HDS, specifically by [16, Thm. 7.21].

(b) Convergence Bounds: For any solution x and all (t, j) ∈ dom (x) such that

t + j ≥ (T − T0)/η + N =: T ∗ we have that |τ(t, j)|Async = 0. Thus, for such times the

trajectories of H1 satisfy the Lyapunov inequalities established in Lemmas B.2-B.4. To

establish (4.17), we use inequality (B.9), which implies that for each (t, j), (s, j) ∈ dom (x),

such that t > s, and s + j ≥ T ∗, we have V (t, j) ≤ V (s, j). Since V3(x) ≤ V (x) for all

x ∈ R2nN+N , and using sj := min{t ∈ R≥0 : (t, j) ∈ dom (x) , t+ j ≥ T ∗}, we obtain

P̃ (q(t, j)) ≤ N

τ⊤τ
V (sj, j) =

cj
τ 2s
, ∀t > sj, (B.24)

where cj := V (sj, j). Using the fact V is non-increasing during flows and jumps, and also

converges to zero, we obtain that {cj}∞j=0 → 0+. To obtain the convergence bound of item

(i2), we first note that from the proof of Lemma 4.1 it follows that
d|x(t,j)|A

dt
≤ ℓ̃|x(t+ j)|A

for all (t, j) ∈ dom (x), where ℓ̃ = 2
√
2max

{
1
T0
, T ℓ
}
. In particular, this implies that

|x(ts, js)|A ≤ |x(0, 0)|Ael̃(T−max τ(0,0))/η, (B.25)
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where (ts, js) are the smallest times for which |τ(t, j)|Async = 0 for all t+ j ≥ ts + js. Note

that x(ts, js) ∈ Cs ∪ Ds, and hence (B.18) holds with |x(0, 0)|A replaced by |x(ts, js)|A,

i.e., |x(t, j)|A satisfies:

|x(t, j)|A ≤ c|x(ts, js)|Ae−
λ
2
(t−(T−max τ(0,0))/η), (B.26)

for all t+ j ≥ ts + js. Therefore, inequality (B.26), together with (B.25), implies:

|x(t, j)|A ≤ c̃|x(0, 0)|Ae−
λ
2
t, (B.27)

for all (t, j)dom (x), and where c̃ = ce(
λ
2
+l̃)L. Using (B.19) and (B.27) gives:

|x(t, j)|A ≤ ĉ|x(0, 0)|Ae−
λ
3N

(t+j), (B.28)

with ĉ = c̃eλL/3 which establishes the bound in (4.18). This also implies that H1 renders

A UGES under the conditions of Theorem 4.1-(i2). Finally, to establish the convergence

bound of item (i3), we note that (B.23) implies V (x(t, j +N)) ≤ (1− γ (κ−1))V3(x(t, j)).

Since V3(x) ≤ V (x) for all (t, j) ∈ dom (x) such that t + j ≥ T ∗, V does not increase

during flows, and using the periodicity of the hybrid time domains, we obtain:

V3(t, js + kN) ≤ (1− γ
(
κ−1
)
)kV3(ts, js), ∀ k ∈ Z≥0, (B.29)

for all t ∈ (ts + (k − 1)L, ts + kL), where (ts, js) denotes the first hybrid time after which

the timers τ flow synchronized. By Lemma 4.1, such times are uniformly bounded as

0 ≤ ts + js ≤ 2T ∗. Using (B.29), the definition of V3, as well as strong convexity and

smoothness of P̃ , we obtain:

|q(t, js + kN)− q∗| ≤ σr

√
ℓ

κ
(1− γ

(
κ−1
)
)
k
2 |q(ts, js)− q∗|, (B.30)
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for all k ∈ Z≥0. Finally, since by Lemma 4.1 all solutions are bounded, it follows that for

each compact set of initial conditions K0 there exists M0 > 0 such that |x(t, j)|A ≤ M0

for all (t, j) ∈ dom(x) such that 0 ≤ t ≤ ts and 0 ≤ j ≤ js. This bound, combined with

(B.30), implies the bound of the theorem via the change of variable j = js + kN and the

upper bound n ≤ js ≤ 2n. ■

B.2 Proofs of Section 4.4

Proof of Lemma 4.2

First, by Assumption (4.1)-(i1), the system of equations characterizing Nash flows

(4.22) reduces to:

Azfq + b+ δ · q + µ1N − λ = 0, (B.31a)

zfq ∈ ∆, λiz
f
i,q = 0, λi ≥ 0 ∀i ∈ V , (B.31b)

where λ := (λ1, · · · , λN). Moreover, by Assumption (4.1)-(i2), it follows that λi = 0 ∀i ∈ V .

Thus, we have that (B.31) can be written as



A 1N

1⊤
N 0






zfq

µ


 =



−(b+ δ · q)

1


 . (B.32)

By solving (B.32) for zfq we obtain that

zfq =−
(
I − A−1 1N1

⊤
N

1⊤
NA

−11N

)
A−1(b+ δ · q)

+
A−11N

1⊤
NA

−11N
.

Letting O(q) := zfq for all q ∈ RN obtains the result. ■
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Proof of Lemma 4.3

We solve for an optimal incentive that makes a Nash flow state maximize the

social welfare of the system in the sense of (4.23). To do so, consider the KKT conditions

characterizing the socially optimal flow (4.24), and replace z∗ with the Nash flow O (q∗)

at the optimal incentive q∗:

− ∂ci
∂zi

(O(q∗)) · [O(q∗)]i − ci ([O(q∗)]i) + µ̃− λ̃i = 0 (B.33a)

O(q∗) ∈ ∆, λ̃i [O(q∗)]i = 0, λ̃i ≥ 0 ∀i ∈ V . (B.33b)

Note that O(q∗) ∈ relint(∆) via Assumption 4.1-(i2) and the fact that O(q∗) is a Nash

flow satisfying (4.22). Therefore, from (B.33b), we obtain that λ̃i = 0, ∀i ∈ V . This fact,

together with Assumption-(i1), reduces (B.33a) to

2AO(q∗) + b = µ̃1N , µ̃ ∈ R, (B.34)

where we have used the fact that ∂c
∂q
(q̃) = A, ∀q̃ ∈ Rn. On the other hand, let L ∈ RN×N

be an arbitrary Laplacian matrix. It follows that L1N = 0 and thus that

LAO(q) = −
(
L− L1N

1⊤
NA

−1

1⊤
NA

−11N

)
(b+ δ · q)

= −L(b+ δ · q), (B.35)

for all q ∈ RN , and where we have used the definition of Q in (4.26). Therefore, left-

multiplying (B.34) by Q, recalling that Q is a Laplacian matrix, and using (B.35), we

obtain that

− 2Q(b+ δ · q∗) +Qb = Qµ1N
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=⇒ Qq∗ = Q

(
µ1N − b

2δ

)
, µ ∈ R

=⇒ q∗ = − b

2δ
+ µ1N , µ ∈ R,

which obtains the result. ■

Proof of Lemma 4.4

We first rewrite GO(q) using the fact that c(q) = Aq+b by Assumption 4.1, together

with the result of Lemma 4.2:

GO(q) = 2AO(q) + b (B.36)

= 2A (−Q (b+ δ · q) + α) + b (B.37)

In particular, (B.37) implies that GO(q) is ℓGO -Lipschitz with ℓGO satisfying

ℓGO ≤ 2δ

(
1 +

na−1

∑N
i=1

1
ai

)
(B.38)

where a ∈ Rn is such that A = diag(a), and b := mini∈V (bi) for b ∈ RN . Moreover, since

Q is a Laplacian matrix, from (B.37) it follows that GO (q□
)
= 0 for all q□ ∈ Bq, where

Bq :=
{
q ∈ Rn : q =

1

δ

[
Q†
(
A−1 b

2
+ α

)
− b

2
+ µ1N

]
,

µ ∈ R
}
,

and Q† is the pseudoinverse of Q.

Step 1 (Absence of finite escape times): Follows directly by noting that the flow map of

the HOPD is globally Lipschitz and via the application of the comparison principle.

Step 2 (Completeness of Solutions): By [275], the dynamics of the timers always generate
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complete solutions. On the other hand, by the properties of the Laplacian L, we have that

1⊤
N ṗ = 0. Thus, the state p always remains in ker(L)⊥, which is unbounded. Since the

state q evolves in RN , and there are no finite escape times, every solution of the HDS is

complete.

Step 3 (Synchronization in finite time): Achieved by the results of [275] for strongly

connected graphs. The synchronization state is reached in finite time such that τ(t, j) =

τs1N , τs ∈ [T0, T ] for all t+ j ≥ T ∗ and where T ∗ := 2 (T − T0) +N .

Step 4 (Fixed-Time Stability of Async): First, note that since the timer state of the system

satisfies τ(i, j) = τs1N with τs ∈ [T0, T ], it follows that LT = τsL. Moreover, we have that

d
(
1⊤
Np(t, j)

)

dt
= 1⊤

N ṗ

= 1⊤
N

(
2τsLGO(q(t, j))

)

= 2τs1
⊤
NLGO(q(t, j))

= 0, (B.39)

d
(
1⊤
Nq(t, j)

)

dt
= 1⊤

N q̇

=
2

τs
1⊤
N (p(t, j)− q(t, i))

=
2

τs
1⊤
N (p(t, j)− q(t, j))

= − 2

τs
1⊤
Nq(t, j)

=⇒ 1⊤
Nq(t, j) = e−2 ln( 2t

τs(0,0)
+1)1⊤

Nq(tj, j), (B.40)

where tj := min {t ∈ R>0 : (t, j) ∈ dom (x)}. Due to p(0, 0) ∈ ker (L)⊥, together with

the fact that (q, p)+ = (q, p) during jumps, we have that: 1) by using (B.39) that ker (L)⊥

is strongly forward invariant for p, and 2) after the first interval of flow followed by n

successive jumps, from (B.40), that during 1⊤
Nq(t, j) = e−2 ln( 2t

τs(0,0)
+1)1⊤

Np(tj, j) = 0 for
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all (t, j) ∈ dom (x) such that j ≥ N , and thus that q converges to ker (L)⊥ in fixed time.

Therefore, since we have that the set of initial conditions is arbitrary for q, it follows that

in fact Async is UGFxS under the hybrid dynamics of HHOPD
1 . ■

Proof of Theorem 4.2

Consider the restricted hybrid dynamical system

HHOPD
1,s :=

(
CHOPD

1 ∩ Async, F
HOPD
1 , DHOPD

1 ∩ Async, G
HOPD
1

)
. (B.41)

We first rewrite the ṗ vector field in terms of the deviation variable q̃ := q−ΠAq(p), where

ΠAq(p) denotes the projection of p onto Aq, and by using the definition of O(q) in (4.26):

ṗ = 2τsL (2AO(q) + b)

= 2τsL (−2AQ(δ · q + b) + 2Aα + b)

= 2τs (−2L (δ · q + b) + 2LAα + Lb)

= 2τs

(
−2L (δ · q + b) + 2L 1N

1⊤
NA

−11N
+ Lb

)

= 2τs (−2L (δ · q + b) + Lb)

= 2τs (−2L (δ · [q∗ + q̃] + b) + Lb)

= 2τs

(
−2L

(
δ ·
[
− b

2δ
+ q̃

]
+ b

)
+ Lb

)

= −2τs · 2δLq̃,

where we have used the definitions of α and q∗ in Lemmas 4.2 and 4.3, respectively, together

with the fact that L is a Laplacian matrix and thus that LAQ = L since L1N = 0.

Now, consider the Lyapunov function given by

V (x) =
1

4
|p− q|2 + 1

4
|p|2Aq + δ

|τ |2
N

q̃⊤Lq̃.
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Using the fact that ∇p

(
1
2
|p|Aq

)2
= p − ΠAq(p) =: p̃, the time derivative of V along the

flows of the HOPD satisfies

V̇ =− 1

τs
(p− q)⊤(p− q) + 4τs(p− q)⊤δLq̃

− τsγ
(
(p− q) + (p− ΠAq(p))

)⊤
2δLq̃ + τsδq̃

⊤Lq̃

≤− 1

T
|p̃− q̃|2 − γδT0q̃

⊤Lq̃, (B.42)

where p̃ := p− p∗, and where we have used the fact that q̂⊤L = q̂⊤L⊤ = q∗, ∀q̂ ∈ Aq and

L = L⊤ since L is the Laplacian matrix of a connected undirected graph. Now, during

jumps we have that

V (x+)− V (x) = −|p− q|2
4

− δ

2

(
T 2 − T 2

0

)
q̃⊤Lq̃

= −
(
1− T 2

0

T 2
− 1

2T 2γδσ2 (L)

)
V (x), (B.43)

where we have used the fact that σ2 (L) |q|2 ≤ q⊤Lq ≤ σN (L) |q|2 for all q ∈ ker (L)⊥,

together with the fact that ker (L)⊥ is invariant under ˙̃q and ˙̃p, where p̃ := p− q∗. Using

similar arguments to the proof of [1, Thm 1-(i3)], UGES of Aq and the convergence bound

of the theorem, follow by the fact that T 2−T 2
0 >

1
2γδσ2(L) together with (B.43), the decrease

during flows of (B.42) in ker (L)⊥, and the invariance of ker (L)⊥ for p and q. ■

B.3 Proofs of Section 4.5

The convergence and stability analysis of the HDS HA starts with the following

lemma. The proof is almost identical to the proofs of [51, Prop. 1] and [275, Thm. 1], and

it is presented here only for the sake of completeness.
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Lemma B.5. Consider the hybrid dynamical system

τ ∈ Cτ := [T0, T ]
N , τ̇ =

1

2
1N , (B.44a)

τ ∈ Dτ :=
{
τ ∈ Cτ : max

i
τi = T

}
, τ+ ∈ Gτ (τ), (B.44b)

whereGτ is the osc hull of the set-valued mapping resulting from projection ofGHARDD
1

into the τ -component, which is independent of (q, p). If ri satisfies ri ∈
(
0, T−T0

N

)

for all i ∈ V , then every solution is complete and uniformly non-Zeno, the set Aτ is

UGAS, and every solution satisfies |τ(t, j)|Aτ = 0, for all (t, j) ∈ dom(τ) such that

t+ j ≥ 2(T − T0) +N .

Proof. Absence of finite escape times follows by compactness of the flow set and

jump set. Being uniformly non-Zeno follows by the fact that after n jumps the

system is necessarily synchronized and the timers satisfy τ ∈ [T0, T ]
N\Dτ , which

implies that the system has to flow. Since the intervals of flow have a maximum

duration of T − T0, it follows that there can be at most N consecutive jumps in

any interval of length 2(T − T0). This also implies completness of solutions. To

show UGAS of Aτ we define a Lyapunov function V : [T0, T ]
N → R≥0 to be the

the infimum of the lengths of all arcs that touch all timers (see Figure B.1 for an

illustration), where the points T0 and T in the interval [T0, T ] are identified to be the

same to form a circle. Since all the timers have the same frequency, during the flows

the Lyapunov function does not change, i.e., V̇ (τ) = 0. Moreover, during jumps

the Lyapunov function cannot increase its value since jumps only happen whenever

one or more timers satisfy the condition τi = T , which either leaves the timers in

the same position of the circle, or forces some of the timers to go to T . In both

cases, V (τ+) does not increase. To show that V converges to zero in a fixed-time,

we note that for any initial condition τ(0, 0) ∈ [T0, T ]
N the Lyapunov function V
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Figure B.1. Representation of the Lyapunov function used in proof of Lemma B.5

always satisfies V (τ) ≤ T − T0
(
1− 1

n

)
. Since all timers have the same frequency,

and since ri ∈ (0, T−T0
N

) for all i, there will exist a time 0 ≤ t < 2T − T0 and some

j ∈ {0, 1, . . . , n} such that τi(t, j) > ri for all i ∈ V . From this point, since the graph

is connected and undirected, any jump induced by an agent j satisfying τj = T will

be followed by at most n− 1 jumps after which all timers will be synchronized at

the position τi = T0, which implies V (τ) = 0. From this point, the system remains

synchronized. Since no complete solution keeps V equal to a non-zero constant,

UGAS of the set Aτ follows now directly by the Hybrid Invariance Principle [33,

Thm. 8.8]. ■

Proof of Theorem 4.3

We divide the proof in seven main steps. Refer to Figure B.2 for an overview and

visualization of the main aspects of the proof.

Step 1: Absence of Finite Escape Times

First, note that the function FHARDD
1 is continuous in CHARDD

1 . Also, by item (b) in
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Figure B.2. To prove UGAS of the set A:
a) First, UGAS of the set AK,s from C1,K∪D1,K is proven by the fixed-time synchronization
of the timers.

b) Second, when ∇F (z) is globally Lipschitz (α = 1), the set ker (L)⊥ is UGAS via the
jump map GHARDD

1 (p). When α = 0, UGAS is achieved via the flow map (4.48). This
fact, together with strong forward invariance of ker (L)⊥ and Aτ , for p and τ respectively,
render the set A0 UGAS from AK,s.
c) Third, with the Lyapunov function in (B.47), UGAS of A from A0 is guaranteed under
the HDS HHARDD

1 .
d) Last, by the nested application of the Hybrid Reduction Principle [33, Cor. 7.24] UGAS
of A is guaranteed.

Lemma 4.5, the gradient ∇ϕ is globally Lipschitz. It then follows that since T0 ≤ τi ≤ T

for all i, we have:

|ṗ| ≤ 2γ(T )|Lz∗(Lq)| ≤ 2γ(T )ℓϕ|q − p∗|,

|q̇| ≤ 2|T −1(p− q)| ≤ 2

T0
|p− q|,

for any p∗ ∈ Aϕ. Combining these inequalities, and the Comparison Lemma [22] we obtain
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that the flows (4.48) always generate bounded signals (q, p), which rules out finite escape

times.

Step 2: Completeness of Solutions

We show that solutions cannot stop due to flows or jumps leaving CHARDD
1 ∪ DHARDD

1 .

By Lemma B.5, the dynamics of the timers always generate complete solutions. On the

other hand, by the properties of the Laplacian L, we have that 1⊤
nN ṗ = 0. Thus, the

state y always remains in ker(L)⊥, which is unbounded. Since the state x evolves in Rnp,

every solution of the HDS is complete and the hybrid time domains of the solutions are

generated by the hybrid time domains of the HDS (B.44). This establishes properties (P.1)

and (P.2).

Step 3: Fixed-Time Synchronization of Restarting Mechanisms

Let k > 0 and define the compact set K := Aϕ + kB. Let us restrict the data of

the original HDS H := {CHARDD
1 , FHARDD

1 , DHARDD
1 , GHARDD

1 } by intersecting with K

the (q, p)-components of the flow set and the jump set. The resulting HDS has data

HK := {C1,K , F
HARDD
1 , D1,K , G

HARDD
1 }, where

C1,K := K × (ker(L)⊥ ∩K)× [T0, T ]
N (B.45a)

D1,K := K × (ker(L)⊥ ∩K)×Dτ . (B.45b)

Since the dynamics of the timers τ are independent of x and y, by the definition of UGAS

and by Lemma B.5 the restricted HDS HK renders UGAS the compact set

AK,s := K × (ker(L)⊥ ∩K)×Aτ . (B.46)

Step 4: Asymptotic Stability of Feasible Set

Let us now further restrict the flow and the jump sets of the HDS HK with the set AK,s.
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We denote this new restricted HDS as HK,s := {CA,K,s, FHARDD
1 , DA,K,s, G

HARDD
1 }, where

CA,K,s = K × (ker(L)⊥ ∩K)× ([T0, T ]
n ∩ Aτ ) ,

DA,K,s = K × (ker(L)⊥ ∩K)× (Dτ ∩ Aτ )

In this HDS, during flows the timers satisfy τ = α1N where α ∈ [T0, T ].

Lemma B.6. For the HDS HK,s the compact set A0 = (ker(L)⊥ ∩K)× (ker(L)⊥ ∩

K) × Aτ is UGAS. Moreover, if α = 0, then every complete solution satisfies

q(t, j) ∈ ker(L)⊥ for all (t, j) ∈ dom(x) such that t+ j ≥ 2N + 4(T − T0).

Proof. We show that A0 is strongly forward invariant and globally uniformly attrac-

tive, which implies UGAS via [33, Prop. 7.5]. Let x(0, 0) ∈ A0. By Lemma B.5

the set Aτ is strongly forward invariant under the dynamics of τ . By Step 2, the

set ker(L)⊥ is strongly forward invariant for the state p. Moreover, by definition

of the flow set CA,K,s, during flows τ(t, j) = α1N with α ∈ [T0, T ]. Thus, 1
⊤
npq̇ = 0

which implies that 1⊤
nNq(t, 0) = 0 for all (t, 0) ∈ dom(x) since q(0, 0) ∈ ker (L)⊥.

Because q+ = q (α = 0) or q+ = p (α = 1), the state q remains in ker(L)⊥ also

during jumps. To show that A0 is uniformly attractive it suffices to show that every

complete trajectory of q converges to ker(L)⊥. Let α = 0 and consider the auxiliary

variable q̃ = 1⊤
nNq, with dynamics ˙̃q = 21⊤

nNT −1(p−q) = 2
α
1⊤
nN (p−q), where we used

again the fact that τ = α1N during flows. Since 1⊤
nNp = 0 always hold, we obtain

˙̃q = −2 1
α
q̃, which implies that q̃ converges exponentially fast to zero, i.e., q(t, j)

converges to ker(L)⊥ ∩K exponentially fast during flows. When α = 1, convergence

of q to ker(L)⊥ happens in finite time after the n consecutive jumps induced by the

synchronized timers τ , and the fact that qi = pi after each jump. ■
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Step 5: Asymptotic Stability of the Optimal Set

Having established UGAS of A0 for the HDS HK,s, we now proceed to further re-

strict the data of HK,s using the set A0. In particular, we consider a HDS HK,s,0 :=

{CA,K,s,0, FHARDD
1 , DA,K,s,0, G

HARDD
1 } with flow and jump sets

CA,K,s,0 := (ker(L)⊥ ∩K)× (ker(L)⊥ ∩K)×
(
[T0, T ]

n ∩ Aτ

)
,

DA,K,s,0 := (ker(L)⊥ ∩K)× (ker(L)⊥ ∩K)×
(
Dτ ∩ Aτ

)
.

For this restricted HDS, the following two lemmas establish UGAS of the set A, and

suitable acceleration properties.

Lemma B.7. Let α = 0. Then, the HDS HK,s,0 renders UGAS the set A, and the

dual function is minimized at a rate of O(1/τ 2) during flows.

Proof. Consider the Lyapunov function

V (x) :=
1

4
|q − p|2 + 1

4
|p|2Aϕ + γ

τ⊤τ

N
(ϕ(q)− ϕ∗) (B.47)

where ϕ∗ = ϕ(Aϕ). This is a modified version of the “centralized” Lyapunov function

considered in [24]. By construction, this function is positive definite with respect

to the compact set A in CA,K,s,0 ∪ DA,K,s,0, and also radially unbounded due to

Assumption 4.4. Since during flows τ(t) = τs(t)1N , with τ̇s(t) = 0.5, the gradient of

V satisfies

∇V (x) =




1
2
(q − p) + γ τ

⊤τ
N

∇ϕ(q)
1
2
(p− q) + 1

2
(p− p∗)

γ 2τ
N
(ϕ(q)− ϕ∗)



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=




1
2
(q − p) + γτ 2s∇ϕ(q)

y − 1
2
(q + p∗)

2γ τs
N
(ϕ(q)− ϕ∗)1N




(B.48)

where p∗ is the Euclidean projection of p in Aϕ. Therefore, the derivative of V along

the trajectories of the system satisfies

V̇ (x) = −|p− q|2
τs

+ 2γτs(p− q)⊤∇ϕ(q)− 2γτsy
⊤∇ϕ(q)

+ γτs(q + p∗)⊤∇ϕ(q) + γτs(ϕ(q)− ϕ∗)

= −|p− q|2
τs

− γτs
(
(q − p∗)⊤∇ϕ(q)− (ϕ(q)− ϕ∗)

)
. (B.49)

Since, by assumption ϕ is convex, we have that (q − p∗)⊤∇ϕ(q)− (ϕ(q)− ϕ∗) ≥ 0.

Moreover, due to the fact that τs ∈ [T0, T ], and by Assumption 4.4 from (B.49) we

obtain that V̇ < 0 for all p ∈ CA,K,s,0\A. On the other hand, jumps occur whenever

τ1 = τ2 = . . . = τn = T . This condition will trigger N consecutive jumps, after which

the system will flow again. Thus, we evaluate the Lyapunov function after the N

jumps and obtain:

V (q+
n

) =
1

4
|q − p|2 + 1

4
|p|2Aϕ + γT 2

0 (ϕ(q)− ϕ∗).

Therefore, the difference ∆(p+
n
)V := V (p+

n
)− V (x) satisfies

∆V (q+
n

) =
1

4
|q − p|2 + 1

4
|p|2Aϕ + γT 2

0 (ϕ(q)− ϕ∗)

− 1

4
|q − p|2 − 1

4
|p|2Aϕ − γ(T )2(ϕ(q)− ϕ∗)

= −γ(ϕ(q)− ϕ∗)
(
(T − T0)

2 + 2T0(T − T0)
)

≤ 0,
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for all x ∈ DA,K,s,0. Therefore, the Lyapunov function V has strict decrease during

flows and does not increase during jumps. Since at most n jumps can happen between

each interval of flow of duration 2(T − T0), UGAS follows directly by the invariance

principle [33, Thm. 8.8].

To obtain the convergence bound for the dual function, note that V̇ ≤ 0 implies

V (x(t, j)) ≤ V (x(s, j)) for all (t, j), (s, j) ∈ dom(x) with t ≥ s. In turn, this

inequality implies that

ϕ(q(t, j))− ϕ∗ ≤ N · V (sj, j)

γτ⊤τ
=
cj
τ 2i
, (B.50)

during flows, where sj = inf{t ≥ 0 : (t, j) ∈ dom(p)}, and cj := V (sj, j)/γ. ■

Lemma B.8. Let α = 1. Then, the HDS HK,s,0 renders uniformly globally

exponentially stable (UGES) the set A, and ϕ is minimized at an exponential rate.

Proof. By Lemma 4.5, the function ϕ is µϕ-strongly convex in ker(L)⊥, and has

a globally ℓϕ-Lipschitz gradient. Thus, Aϕ = {q∗}. We consider again the same

Lyapunov function V (x), which now satisfies

c|x|2A ≤ V (x) ≤ c|x|2A

with c := 0.25min{1, 2γT02µϕ} and c := 0.25max{3, 6γ(T )2ℓϕ}. Since the continuous-

time dynamics are the same of Lemma B.7, we still have V̇ ≤ 0. However, using

strong convexity we have

(ϕ(q)− ϕ∗)− (q − q∗)⊤∇ϕ(q) ≤ −µϕ
2
|q − q∗|2
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to further obtain

V̇ (x) ≤ −|p− q|2
α

− γµϕ
α

2
|q − q∗|2

≤ − |p− q|2
T0 + T − T0

− γµϕ
T0
2
|q − q∗|2

≤ min

{
1

T0 + T − T0
,
γT0µϕ

4

}(
−|p− q|2 − |q − q∗|2

)
− γµϕ

T0
4
|q − q∗|

≤ −1

2
min

{
1

T0 + T − T0
,
γT0µϕ

4

}(
|p− q∗|2 + |q − q∗|2

)

≤ −ρ
c
V (x)

for all x ∈ CA,K,s,0, where ρ := 0.5min{ 1
T
, 0.25γT0µϕ}. On the other hand, after the

n consecutive jumps triggered by the condition τ1 = τ2 = . . . = τn = T , the change

in the Lyapunov function is

∆V (x+
n

) =
1

4

∣∣q+n − p+
n∣∣2 + 1

4

∣∣p+n − q∗
∣∣2 + γT 2

0

(
ϕ
(
q+

n)− ϕ∗)

− 1

4
|q − p|2 − 1

4
|p− q∗|2 − γ(T )2(ϕ(q)− ϕ∗)

= γT0
2(ϕ(p)− ϕ∗)− 1

4
|q − p|2 − γ(T )2(ϕ(q)− ϕ∗).

Since ϕ is strongly convex in ker(L)⊥, and ∇ϕ is globally Lipschitz, we have that

ϕ(p)− ϕ∗ ≤ 1

2
ℓϕ|p− q∗|2, ∀ p ∈ ker(L)⊥, (B.51)

and

ϕ(q)− ϕ∗ ≥ 1

2
µϕ|q − q∗|2, ∀ q ∈ ker(L)⊥. (B.52)

Using these two inequalities to further upper bound ∆V (p+
n
), we obtain:

∆V (x+
n

) ≤ γℓϕ
T 2
0

2
|p− q∗|2 − 1

4
|q − p|2 − γµϕ

(T )2

2
|q − q∗|2
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≤ −T1|q − p|2 − T2|q − q∗|2

≤ −T (|q − p|2 + |q − q∗|2),

where T1 := 1
4
− γℓϕT

2
0 , T2 := 1

2
γµϕ(T )

2 − γℓϕT
2
0 and T = min {T1, T2}. The

constants T1 and T2 are positive provided the following holds: 0 < T0 < 1/(2
√
γℓϕ)

and (T )/T0 >
√

2κϕ, which are precisely conditions (C.1) and (C.2).

Finally, since V can be upper bounded as

V (x) ≤ c
(
|q − q∗|2 + |p− q∗|2

)

≤ c
(
|q − q∗|2 + 2|p− q|2 + 2|q − q∗|2

)

≤ 3c
(
|q − q∗|2 + |p− q|2

)
,

we obtain

∆V (x+
n

) ≤ −βV (x)

where β := T/3c. These bounds, and the fact that the system is uniformly non-Zeno

with N consecutive jumps followed by a constant interval of flow, establish UGES of

A via [223, Thm. 1]. ■

Step 6: Nested Application of the Reduction Principle

We now repeatedly apply the Hybrid Reduction Principle [33, Cor. 7.24] to establish

UGAS for the original hybrid system HA. First, since the set A is UGAS for the HDS

HK,s,0, and the set A0 is UGAS for the HDS HK,s, by the reduction principle, we obtain

that the set A is UGAS for the HDS HK,s. Moreover, since the compact set AK,s is UGAS

for the HDS HK , it follows again by the reduction principle that HK renders UGAS the

set A. Finally, since by Step 1, there are no finite escape times in the original HDS HA,

and since the compact set K was arbitrary, we have that the set A is indeed UGAS for
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the HDS HA with no restriction. This establishes the stability result of property (P.3).

See Figure B.2 for an illustration of the nested application of the reduction principle to

guarantee asympotic stability of the set A.

Step 7: Optimal Bounds for the Primal. Finally, we derive convergence bounds for the

primal problem (4.41) based on the convergence bounds derived for the dual problem in

Steps 1-6.

Let α = 1. Since the gradient of ϕ is globally Lipschitz, we have

|∇ϕ(q)|2 ≤ λmax(L2)

µ
(ϕ(q)− ϕ∗) (B.53)

Using (4.44),

|Lz|2 ≤ λmax(L2)

µ
(ϕ(q)− ϕ∗) (B.54)

Let us decompose z = z̄ + z̃, where z̄ ∈ ker(L) and z̃ ∈ ker(L)⊥. We then have

|Lz̃|2 ≤ λmax(L2)

µ
(ϕ(q)− ϕ∗) (B.55)

and since z̃ ∈ ker(L)⊥, which implies that |Lz̃|2 ≥ λ+min(L2)|z̃|2s, we get

|z̃|2 ≤ λmax(L2)

µλ+min(L2)
(ϕ(q)− ϕ∗). (B.56)

Using (4.44) and the definition of z = h(·) in we get:

⟨Lq, z⟩ − F (z) ≥ ⟨Lq, z∗⟩ − F (z∗), (B.57)

where z∗ is the minimizer of the primal problem. Now, using the fact that Lz∗ = 0 we
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obtain:

F (z) ≤ F (z∗) + ⟨Lq, z − z∗⟩

= F (z∗) + ⟨q, Lz̃⟩

= F (z∗) + ⟨Lq, z̃⟩

≤ F (z∗) + |⟨∇F (z), z̃⟩|,

where in the last step we have used that Lq = ∇F (z) by KKT conditions. Moreover, by

the Cauchy-Schwartz inequality we get:

F (z)− F (z∗) ≤ |∇F (z)||z̃|. (B.58)

Combining (B.56) and (B.58), we get

F (z)− F (z∗) ≤ |∇F (z)|
√

λmax(L2)

µλ+min(L2)
(ϕ(q)− ϕ∗). (B.59)

By UGAS, for each compact set of initial condition K0 there exists M > 0 such that

|∇F (z)| < M . By exponential stability [223] and property (B.51) we obtain:

ϕ(q)− ϕ∗ ≤ 1

2
ℓϕc

2|q(0, 0)− q∗|2 exp(−2λ(t+ j)), (B.60)

where c2 := c
c
and λ = ρ

c
. Combining this with (B.59) we finally obtain for all initial

conditions x(0, 0) ∈ K0 that:

F (z)− F (z∗) ≤ cM

√
λmax(L2)

2µλ+min(L2)
|q(0, 0)− q∗| exp(−λ(t+ j)). (B.61)

When α = 0 we can follow exactly the same steps, using the bound (B.50) instead of using

(B.51). ■
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Appendix C

Proofs of Chapter 5

C.1 Proofs of Section 5.1

Similar to the proof of Theorem 4.1 in Appendix B.1 we divide the proof in different

lemmas.

Lemma C.1. Consider the HDS Hs under the Assumptions of Theorem 5.1. Then,

the set A is UGAS.

Proof. First, by Assumption 5.3 and strict convexity of ϕi on qi for all i ∈ V,

which follows by strict monotonicity of the pseudo-gradient, existence of the NE is

guaranteed via [56, Cor 4.2]. With this at hand, we consider the Lyapunov function

Ṽ = V1 + V2 + Ṽ3, where V1 and V2 are defined in (B.4), and Ṽ3 is given by:

Ṽ3(x) := co
|τ |2|G(q)|2

2n
, (C.1)

where co corresponds to the cocoercivity constant of G. By construction and As-

sumption 5.2, we have that V is radially unbounded, and also positive definite with

respect to A ∩ (Cs ∪Ds). Using co-cocoercivity of G, inequality (B.6) now becomes

˙̃V (x) ≤ − 1

τs
|p− q|2 − 2τs(p− q)⊤G(q)
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+ 2coτsG⊤(q)
∂G
∂q

(q)(p− q) + co(1− η)τs|G(q)|2,

which can be written in quadratic form as

˙̃V (x) ≤ −τsx̃⊤M1/co(q, τs)x̃, (C.2)

with x̃ :=
(
(p− q),G(q)

)
, and

M1/co(q, τs) :=




1
τ2s
In In − co∂G(q)⊤

In − co∂G(q) co(1− η)In


 . (C.3)

Since η ≤ 1
2
by design, co = 1/ℓ, and τs ∈ [T0, T ], under the conditions of Theorem

5.1, we have that Mℓ(q, τs) ≻ 0 for all τs ∈ [T0, T ] and q ̸= q∗ whenever

0 ≺ In −
T 2

ℓ(1− η)

(
ℓIn − ∂G(q)⊤

)(
ℓIn − ∂G(q)

)
. (C.4)

The expression in (C.4) is precisely (5.7) with ρF = ℓ and δ = 0. Thus, since by

assumption S0 is ℓ-GC, it follows that (C.4) holds. Finally, note that when q = q∗

inequality (C.2) reduces to ˙̃V (x) ≤ − 1
τs
|p− q|2 ≤ 0.

On the other hand, after the n consecutive jumps that proceed each interval of flow,

the change of V is

∆j+n
j Ṽ (z) =

co
2
|G(q)|2

(
T 2
0 − T 2

)
≤ 0. (C.5)

Finally, we show that no complete solution x of Hs keeps Ṽ in a non-zero level set.

In particular, since for all (q, p, τ) ∈ Rn\{q∗} × Rn × [T0, T ] we have that V̇ < 0, it

suffices to consider the case q = q∗, which leads to V̇ = 0 only when p = q, i.e., when

(p, q) ∈ A. Therefore, no solution that flows can keep Ṽ constant in a non-zero level

set. Since the flows are periodic UGAS of A follows now by the hybrid invariance
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principle [16, Thm. 8.8]. ■

Proof of Theorem 5.1

(a) Stability Properties: Follows by the same ideas used in the proof of the stability

properties of Theorem 4.1-(i1), but using Lemma C.1 instead of Lemma B.2.

(b) Convergence Bounds: Follows by the same steps used in the proof of Theorem

1-(i1), substituting (B.24) by

|G(q)|2 ≤ 2ℓn

τ⊤τ
Ṽ3(sj, j) =

c̃j
τ 2s
. (C.6)

where c̃j := 2ℓṼ3(sj, j). ■

Lemma C.2. Consider the HDS Hs under the Assumptions of Theorem 5.2-(i4).

Then, the set A is UGES.

Proof. We consider the Lyapunov function V used in the proof of Lemma C.1, with

Ṽ3 given by (C.1) and co = κ/ℓ2. The time derivative of Ṽ now satisfies

˙̃V (x) ≤ −τsx̃⊤Mσϕℓ(q, τs)x̃,

with x̃ :=
(
(p − q),G(q)

)
. By assumption we know that Sδ is (σϕℓ)-GC, which is

equivalent to:

0 ≺ In −
(

T 2

1− T 2δ

) (
σϕℓIn − ∂G(q)⊤

)
(σϕℓIn − ∂G(q))

σϕℓ(1− η)− σ2
ϕℓ

2δ
.

In turn, when 0 < δ < (1− η)/σϕℓ and 0 < η ≤ 1/2, the above inequality directly

implies thatMσϕℓ(q, τs) ≻ δIn, for all τs ∈ [T0, T ] and all q ̸= q∗. Thus, for such points,

and during flows, we have ˙̃V ≤ −δ(|p− q|2 + |G|(q)). Using κ-strong-monotonicity
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and κ/ℓ2-cocoercivity of G we conclude

˙̃V (x) ≤ −λṼ (x), with λ =
4δ

max
{
3, 2( 1

κ2
+ κ

ℓ2
T 2)
} . (C.7)

On the other hand, during jumps, using (RC1), the definition of Ṽ3, and the Reset

Policy α ∈ {0, 1}n, the change of Ṽ is

∆j+n
j Ṽ ≤ −1

4

∑

i∈Θ

[
(pi − qi)

2 + (pi − q∗i )
2
]
− γ(σ2

ϕκ
−1)Ṽ3(x), (C.8)

where γ(σ2
ϕκ

−1) ∈ (0, 1) is given by (5.6), and Θ is defined in the proof of Lemma

B.3. Thus, it follows that ∆j+n
j Ṽ ≤ 0. Moreover, by the κ-strong monotonicity and

ℓ-Lipschitz continuity of G, Ṽ satisfies the quadratic bounds c|x|2A ≤ Ṽ (x) ≤ c|x|2A,

where:

c := min

{
1

4
,
κT 2

0

2σ2
a

}
, c := max

{
3

4
,
1

2
+
κT 2ℓ2

2

}
. (C.9)

The exponential decrease of V during the flows (which are periodic), the non-increase

of V during the jumps, and the quadratic upper and lower bounds of Ṽ , imply that

Hs renders UGES the set A. ■

Lemma C.3. Consider the HDS Hs under the Assumptions of Theorem 5.2-(i5).

Then, the set A is UGES.

Proof. Consider the Lyapunov function Ṽ used in the proof of Lemma C.1, which

still satisfies (C.7). During jumps, the reset policy α = 0n implies that Θ = V in

(C.8), leading to ∆j+n
j Ṽ (x) ≤ −V1(x) − V2(x) − γ(σ2

ϕκ
−1)V3(x) ≤ −γ(σ2

ϕκ
−1)Ṽ (x).

Therefore, by [223, Thm. 1], and the quadratic upper and lower bounds of Ṽ , system

Hs renders UGES the set A. ■
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Proof of Theorem 5.2

(a) Stability Properties: Follows by using using Lemmas C.2 and C.3 in conjunction

with the same ideas used in the proof of Theorem 1.

(b) Convergence Bounds: We follow the same steps of the proof of Theorem 1,

using now Ṽ3 instead of V3. For item (i4), this leads to the following bound instead of

(B.28):

|x(t, j)|A ≤ ĉ|x(0, 0)|Ae−
λ
3n

(t+j),

where λ are defined in (C.7), ĉ :=
√
c/c · e( 5

6
λ+l̃)L, and c and c are given in (C.9). Finally,

for item (i5), we obtain the following bound instead of (B.30):

|q(t, js + kn)− q∗| ≤ σrσϕ
(
1− γ

(
σ2
ϕκ

−1
)) k

2 |q(ts, js)− q∗|,

from here, the proof follows the exact same steps. ■

Proof of Lemmas 5.1 and 5.2

We first show Lemma 5.2. Using co = κ/ℓ2 we have that (RC3) can be equivalently

written as

α̃ > 1− 2coκ+ c2oℓ
2, (C.10)

with α̃ :=
(

1
T 2 − δ

)
(co(1− η)− δ). By using the fact that G is ℓ-Lipschitz continuous, it

follows that ∂G(q)⊤∂G(q) ≺ ℓ2In [123], where we use ∂G in place of ∂G
∂q

to simplify notation.

Using this fact, together with monotonicity properties of the pseudogradient, which implies

that ∂G(q) + ∂G(q)⊤ ≻ 2κIn [118, Prop 2.3.2 c)], from (C.10) we obtain

0 ≺ (α− 1)I + co
(
∂G(q) + ∂G(q)⊤

)
− c2o∂G(q)⊤∂G(q).
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and hence that

0 ≺ I −
(

T 2

1− T 2δ

) (
In − co∂G(q)⊤

)
(In − co∂G(q))

co(1− η)− δ
,

which implies, whenever 0 ≤ δ < c0(1− η), that Sδ is (1/co)-GC. Lemma 2 follows by the

same arguments, using co = 1/ℓ and letting κ→ 0+. ■

Proof of Lemma 5.3

To satisfy (RC)1 and (RC)3 we need

T 2
0 +

ℓ2

2κ3
<

κ(1− η)− δℓ2

ℓ2 − κ2 + δ(κ(1− η)− δℓ2)
.

Since T 2
0 > 0, it is necessary that

ℓ2

2κ3
<

κ(1− η)− δℓ2

ℓ2 − κ2 + δ(κ(1− η)− δℓ2)
,

which in turn is equivalent to

1 < 2
(1− η)

σ4
ϕ

+
1

σ2
ϕ

(
1− δ

(
2κ+

1− η

κ
− δ

ℓ2

κ2

))
. (C.11)

Since by assumption σ4
ϕ − σ2

ϕ < 2(1 − η), there exists δ > 0 sufficiently small such that

(C.11) holds. ■

Proof of Lemma 5.4:

The convergence bound of Theorem 5.2-(i5) implies the slightly looser bound

∀ (t, j) ∈ dom(x):

|q(t, j)− q∗| ≤ σrσϕ (1− γ (ρJ))
1
2⌊ j−nn ⌋M0. (C.12)
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Since (0, 0) ∈ dom (x), by using the structure of the hybrid time domain, with (i, s) = (0, 0),

we obtain ⌊
j − n

n

⌋
≤ t

L
,

where L = (T − T0)/η. Hence, using (C.12), |q − q∗| satisfies

|q(t, j)− q∗| ≤ σϕσr
(
1− γ

(
σ2
ϕκ

−1
)) η

2
t

T−T0 M0. (C.13)

By minimizing the right hand side of (C.13) with respect to the restarting parameter

T , we find that the minimum value is achieved when (1 − γ(σϕκ
−1)) = 1

e2
. Solving for

T , we obtain precisely T opt. Using this restarting parameter, for any ν > 0 the error

|q(t, j)− q∗| ≤ ν is obtained when σϕσre
−η t

Topt−T0M0 ≤ ν. This inequality holds precisely

for all t ≥ toptν . Finally, using (1− γ(σϕκ
−1)) = 1

e2
in (C.13):

|q(t, j)− q∗| ≤ σϕσre
−η t

Topt−T0M0. (C.14)

As T0 → 0+, and using the value of T opt:

|q(t, j)− q∗| ≤ σϕσre
−t η

√
2κ

eσϕ M0, (C.15)

which gives the convergence bound of order O(e−
√
κ/σϕ).

Proof of Proposition 5.1

We consider the Lyapunov function V̂ = V1 + V2 + V̂3, where V1 and V2 are

given by (B.4a), and V̂3 is defined as V̂3 = κ |τ |2
2n

|q − q∗|2. During flows we now have
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˙̃V (x) ≤ −τsx̂⊤MQ(τs)x̂, where x̂ = (p− q, q − q∗) with MQ given by

MQ(τs) =




1
τ2s
In (A− κIn)

(
A⊤ − κIn

)
κ(1− η)In


 . (C.16)

This matrix is positive definite if and only if the following matrix inequality holds for all

τs ∈ [T0, T ]:

0 ≺ κ(1− η)

τ 2s
In − (κIn − A)

(
κIn − A⊤) . (C.17)

Hence, it suffices to verify the condition 0 ≺ In − T 2

κ(1−η) (κIn − A)
(
κIn − A⊤) , which is

equivalent to κ-GC of S0. It follows that MQ(τs) ≻ 0 for all τ ∈ [T0, T ], and
˙̂
V ≤ −τsc|ẑ|2

during flows, for some c > 0. On the other hand, during jumps, the policy α = 0n leads to:

∆j+n
j V (z) ≤ −V1(z)− V2(z)

(
κ

2
(τ 2s − T 2

0 )−
1

4κ2

)
|q − q∗|2.

Using (RC2), we obtain ∆j+n
j V (z) ≤ −V1(z) − V2(z) − γ(κ−1)V3(z), with γ as in (5.6).

UGES of A follows by the same arguments of the proof of Theorem 3-(i5). ■

Proofs of Theorem 5.3

To prove Theorem 5.3, we present two auxiliary lemmas:

Lemma C.4. Consider the assumptions of Theorem 5.3, and let H2,s =

{C2,s, F2,s, D2,s, G2,s} be obtained by intersecting the data of H2 with A2,ν :=

Aν × (Q(1n ⊗ q∗) + νB), where Aν = ({(q∗, q∗)} + νB) × Async. Then H2,s ren-

ders UGAS the set A× {Q(1n ⊗ q∗)}.

Proof. Consider the change of variable θ = q̂ − h(q), with h(q) := Q(1n ⊗ q) and let

W (q, θ, ε) := −QLQ⊤θ − εQ
(
1n ⊗ 2D(τ)−1(p− q)

)
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+ εQ
(
1n ⊗ PLQ⊤θ

)
. (C.18)

This change of coordinates leads to a HDS Hϑ with state ϑ := (x, θ), where x =

(q, p, τ ), and data Hϑ = (C2,ϑ, F2,ϑ, D2,ϑ, G2,ϑ), where C2,ϑ, D2,ϑ and G2,ϑ are obtained

directly from (5.16), (5.17), and (5.18) respectively via the change of coordinates,

and where the flow map is defined by F2,ϑ(ϑ) := (U(x, θ+h(q)), W (q, θ, ε)/ε) where:

U(x, θ + h(q)) =




2D(τ)−1(p− q)− PLQ⊤θ

−2D(τ)Ĝ(1n ⊗ q +Q⊤θ)

η1n



. (C.19)

Let Hϑ,s be the HDS that results from intersecting the data of Hϑ with Aν × (νB),

with ν > 0. Note that studying the stability of A× {Q(1n ⊗ q∗} under H2,s, is is

equivalent to analyzing the stability properties of the compact set AG,θ = A×{0}n2−n

under Hϑ,s. For this last system, we consider the Lyapunov function

VG(ϑ) = (1− d)Ṽ (x) + d · Vθ(θ), with d ∈ (0, 1), (C.20)

where Ṽ is defined as in Lemma C.1, and Vθ(θ) := 1
2
|θ|2. By using the proof of

Lemma C.1, and noting that Ĝ(1⊗ q) = G(q), we obtain:

∂Ṽ (x)

∂x
U(x, h(q)) ≤ −τsx̃⊤Mℓ(q, τs)x̃, (C.21)

with x̃ :=
(
(p− q),G(q)

)
and Mℓ given by (C.3) with co =

1
ℓ
. Under the assumptions

of Theorem 5.3 we know that

0 ≺ In −
(

T 2

1− T 2δ

) (
ℓIn − ∂G(q)⊤

)
(ℓIn − ∂G(q))

ℓ(1− η)− ℓ2δ
,
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and thus that Mℓ(q, τs) ≻ δIn ∀τs ∈ [T0, T ]. Hence, from (C.21) and letting ξ(x) :=
(
|p− q|2 + |q − q∗|2

)1/2
we obtain that

∂Ṽ (x)

∂x
ẋ ≤ −T0δmin {1, ζ} ξ2(x), (C.22)

where we have also used the bound of Assumption 5.4. Additionally, it also follows

that

∂Ṽ

∂x
(U(x, θ + h(q))− U(x)) ≤ c1 (|p− q|+ |q − q∗|) |θ|, (C.23)

c1 :=
T 2λmax(L)√

2
max

{
1

T 2
+

4ℓ

Tλmax(L)
, 2 +

2ℓ

Tλmax(L)

}
.

On the other hand, by the fact that the underlying communication graph is undirected

and connected, it follows that QLQ⊤ is positive definite [107, Lemma 6], and,

moreover

∂Vθ
∂θ

W (q, θ, 0) ≤ −λ2(L)
n

|θ|2. (C.24)

We also have that

(
∂Vθ
∂x

−∂Vθ
∂θ

∂h

∂x

)
U(x, θ+h(q)) ≤ c2ψ(x)|θ|+c3|θ|2, (C.25)

where c2 := 2
√
2n/T0 and c3 := 2

√
nλmax(L). Hence, using (C.22)-(C.25) it follows

that the time derivative of VG satisfies V̇G ≤ −(ξ(x), θ)⊤Λε(ξ(x), θ) with

Λε :=



(1− d)T0ϵmin {1, ζ2} −1

2
(1− d)c1 − 1

2
c2

−1
2
(1− d)c1 − 1

2
c2 d

(
λ2(L)
εn

− c3

)


 ,

which is positive definite provided that ε ∈ (0, ε∗δ) where ε
∗
δ is as defined in (5.20).
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Note moreover, that if ε satisfies this condition there exists kε > 0 such that

V̇G ≤ −kε
(
|p− q|2 + |q − q∗|2 + |θ|2

)
. (C.26)

Leveraging the results regarding the change of the Lyapunov function Ṽ during

jumps presented in the proofs of Lemmas C.1, C.2 and C.3, given that (RC1) is

satisfied with ρJ = 0 by assumption, and since V +
θ (θ) = Vθ(θ) for all θ whenever

ϑ ∈ D2,ϑ, it follows that ∆
j+n
j VG(ϑ) ≤ 0 for any resetting policy α ∈ {0, 1}n. This

inequality and (C.26) imply that Hϑ,s renders the set AG,θ UGAS via [16, Prop.

3.27]. The stability results for H2,s follow directly by the change of cooordinates

q̂ = θ + h(q) and the described result for Hϑ,s. ■

Lemma C.5. Every solution of H2 is complete.

Proof. Since τ is restricted to a compact set, it suffices to study the behavior of

the states (q, p, q̂) or equivalently of (q, p, θ). Hence, considering the dynamics

in (C.18) and (C.19) it follows that |q̇| ≤ ℓ̃q (|p− q|+ |θ|), |ṗ| ≤ ℓ̃p (|q − q∗|+ |θ|),

and
∣∣∣θ̇
∣∣∣ ≤ ℓ̃θ (|p− q|+ |θ|), where ℓ̃q := max

{
2
T0
, λmax(L)

}
, ℓ̃p := 2ℓT

√
N and

ℓ̃θ := max
{
λmax(L)

(
1
ε
+
√
N
)
,
√
N
T0

}
. Using these inequalities we obtain:

d|(q − q∗, p− p∗, θ)|
dt

≤
∣∣∣(q̇, ṗ, θ̇)

∣∣∣ ≤ ℓ̂|(q − q∗, p− q∗, θ)|,

with ℓ̂ = 2
√
3max

{
ℓ̃q, ℓ̃p, ℓ̃θ

}
, which by the Gronwall-Bellman inequality implies

that the continuous time dynamics of H2 do not generate finite escape times. Since

G2(D2) ⊆ C2 ∪D2, solutions do not stop due to jumps. Therefore, every maximal

solution of H2 is complete. ■

We are now prepared to present the proof of Theorem 5.3.

(a) Let H2,ν be defined from H2 by following the same procedure described in the statement
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of Lemma B.1. Since the addition of the state q̂ and its associated dynamics do not affect

the synchronization dynamics, H2,ν renders UGFxS the set A2,ν , where A2,ν is as defined

in the previous Lemma. Therefore, by the hybrid reduction principle [16, Cor. 7.24],

UGAS of A × {Q(1n ⊗ q∗)} for system H2,s, established in Lemma C.4, implies that

A × {Q(1n ⊗ q∗)} is UGAS for system H2,ν . Since the choice of ν > 0 is arbitrary and

since solutions of H2 are complete and bounded, using Lemma C.5 we obtain that the

compact set A× {Q(1n ⊗ q∗)} is also UGAS for system H2.

(b) Let ν > 0, and K0 := Kx ×Kq̂ ⊂ R3n × Rn2−n be an arbitrary compact set. Moreover,

define v := maxϑ∈K0 VG(ϑ), where VG is as defined in (C.20). Notice that v exists since VG

is continuous and K0 is compact by assumption. It follows that K0 ⊆ LVG (v), where Lf (c)

represents the c-sublevel set of the function f : Rm → R. Since VG is radially unbounded

by construction and Assumption 5.2, it follows that LVG (v) is compact. Let KV := LVG (v)

and define the HDS H2,K = (F2, C2 ∩KV , G2, D2 ∩KV ). Notice that under H2,K , q̂

evolves in a compact set. Moreover, by the arguments presented in the proof of item (a),

H2,K renders KV strongly forward invariant for any ε ∈ (0, ε∗δ). Hence, using Lemma C.5,

it follows that, given any arbitrary compact set K̃x × K̃q̂ ⊂ KV , every solution to H2,K

with (x(0, 0), q̂(0, 0)) ∈ K̃x × K̃q̂ is complete. Therefore, by [30, Thm. 1], for any pair

t̂, ĵ > 0 there exists ε̃ ∈ (0, ε∗δ) such that for each ε ∈ (0, ε̃] and each solution z to H2,K ,

with z(0, 0) ∈ Kx×Kq̂, there exists a solution x to H1such that x and z are (t̂, ĵ, ν)−close.

The result follows by using ε∗∗ = min {ε̃, ε∗δ}. ■

Proof of Theorem 5.4

The proof uses tools recently developed for hybrid extremum seeking control

[111, 25]. Specifically, we show that all the assumptions needed to apply [25] are satisfied.

In particular, using a Taylor expansion of the form ϕi(q+εaµ̃)µ̃i = µ̃iϕi(q)+εaµ̃iµ̃
⊤∇ϕi(q)+

µ̃iO(ε2a), and the fact that |µ̃i| ≤ 1 for all i ∈ V, and that 1
L̃

∫ L̃
0
µ̃i(t)µ̃(t)

⊤dt = ei, where

L̃ = 2πLCM{1/ς1, 1/ς2, . . . , 1/ςn} and LCM denotes the least common multiple, the
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average dynamics of H3 are precisely given by HA
3 = (C1, F

A
1 , D1, G1), where G1, C1 and

D1 are given by (4.9a), (4.9e), and (4.9f), respectively, and FA
1 is given by:

FA
1 (x) =




2D(τ)−1(p− q)

−2D(τ) (G(q) +O(εa))

η1n



. (C.27)

It follows that, on compact sets, we have

FA
1 (x) ∈ conF1(x+ kεaB) + kεaB, (C.28)

for some k > 0, where F1 was defined in (4.9c). Thus, any solution of the average dynamics

HA
3 is also a solution of an inflated HDS generated from H1. By [16, Thm. 7.21], we

conclude that, under the Assumptions of Theorems 4.1-5.2, system HA
3 renders SGPAS

as εa → 0+ the compact set A. Since HA
3 and H1 are nominally well-posed, all the

assumptions needed to apply [25, Thm.7] are satisfied, and we can conclude that H3

renders SGPAS as (εp, εa) → 0+ the compact set A× Tn. Item (b) follows directly by [25,

Prop. 6]. ■

C.2 Proofs of Section 5.2

Proof of Proposition 5.2

For the purpose of clarity, we divide the proof of Proposition 5.2 into multiple

lemmas.

Lemma C.6. Suppose that Assumption 5.6 holds; then, there exists a unit vector

q ∈ RN such that items (a), (b), and (c) of Proposition 5.2 hold.
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Proof. Items (a)-(b) follow directly by [276, Prop. 1]. To show item (c), we use the

expressions in (5.51) and (5.52), and by direct substitution we obtain:

Σ+Ω = krQ∆+
kc
2

(
QL+L⊤Q

)
+
kc
2

(
QL−L⊤Q

)

= krQ∆+ kcQL.

Applying a left-multiplication by Q−1 and a right-multiplication by θ̃ leads to

Q−1 (Σ+Ω) θ̃ = kr∆θ̃ + kcLθ̃, (C.29)

and since θ̃ = θ − 1N ⊗ θ⋆, and L(1N ⊗ θ⋆) = 0, we obtain:

Q−1 (Σ+Ω) θ̃ = kr∆θ̃ + kcLθ.

Finally, we show that Φ(θ, 0) = ∆θ̃. Indeed, since Φ(θ, 0) =

(Φ1(θ1, 0), . . . ,ΦN(θN , 0)) and Φi(θ1, 0) is given by (5.33), we have:

Φi(θi, 0) =

k̄i∑

k=1

ϕi(ti,k)
(
ϕi(ti,k)

⊤θi − ϕi(ti,k)
⊤θ⋆
)

=

k̄i∑

k=1

ϕi(ti,k)ϕi(ti,k)
⊤ (θi − θ⋆) = ∆iθ̃i, ∀ i ∈ V ,

which implies Φ(θ, 0) = diag({∆1, . . . ,∆N})θ̃ = ∆θ̃. ■

Lemma C.7. There exists χ ∈ K∞ such that (5.53) holds.

Proof. Consider the following matrix:

W(t) :=
[
Ω+ ktQA(t)

][
Ω+ ktQA(t)

]⊤
, (C.30)
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and recall that for any symmetric matrix A ∈ Rn×n we have A ⪯ λmax(A)In [277, Cor.

10.4.2] and λmax(A) ≤ σmax(A) = ∥A∥ [277, Fact 7.12.9], where λmax(A) and σmax(A)

are the maximum eigenvalue and the maximum singular value of A, respectively.

By using these facts, together with the sub-multiplicativity of the matrix norm, we

obtain that:

W(t) = ΩΩ⊤ + kt
(
ΩA(t)⊤Q+QA(t)Ω⊤)

+ k2tQA(t)QA(t)⊤

⪯
(
σ2
Ω + 2σΩσQ∥A(t)∥kt + σ2

Q∥A(t)∥2k2t
)
INn. (C.31)

Since ϕi(·) is uniformly bounded, there exists ϕ > 0 such that ϕi(t) < ϕ for all i ∈ V

and all t ∈ R. Combining this fact with the diagonal structure of A(t) leads to

∥A(t)∥ ≤ (ϕ)2. By using this bound in (C.31) we obtain:

W(t) ⪯
(
σ2
Ω + 2σΩσQϕ

2
kt + σ2

Qϕ
4
k2t

)
INn.

The result follows using χ(kt) :=
√
2σΩσQϕ

2
kt + σ2

Qϕ
4
k2t , which is clearly a class-K∞

function. ■

Proof of Proposition 5.3

We divide the proof into two lemmas:

Lemma C.8. Under Assumption 5.6, item (d) of Proposition 5.2 holds, i.e., Σ is

positive definite.

Proof. We present the proof step-by-step.

(a) First, note that Q∆ = ∆Q since Q = Q⊗ In = diag ({q1In, . . . , qNIn}), ∆ =

diag ({∆1, . . . ,∆N}), with ∆i :=
∑ki

k=1 ϕ(ti,k)ϕ(ti,k)
⊤ ∈ Rn×n, and qiIn∆i = ∆iqiIn
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trivially. Then, since Q ≻ 0 and ∆ ⪰ 0 it follows that Q∆ ⪰ 0. (b) Let the

eigenvalues of the matrix L⊤Q +QL be organized as 0=λ1<λ2≤ · · ·≤λN , and let

vi ∈ RN be the eigenvector that corresponds to the eigenvalue λi and satisfies |vi| = 1.

It follows that v1 =
1√
N
1N . (c) Let M := L⊤Q+QL, and let

E :=
1√
N

[1N ⊗ e1, · · · ,1N ⊗ en]

U := [v2 ⊗ e1, · · · , v2 ⊗ en, · · · , vN ⊗ e1, · · · , vN ⊗ en]

where the vectors ei denote the standard basis in Rn. Note that the matrices

E ∈ RNn×n and U ∈ RNn×(N−1)n characterize the null space and the range space of

M, respectively.

(d) Let x̂ ∈ RNn be a unit vector, which we can write as

x̂ = Eb+Uc (C.32)

where b ∈ Rn and c ∈ R(N−1)n satisfy |b|2 + |c|2 = 1.

(e) Since E can be written as E = 1√
N
1N ⊗ In, and Q∆ = diag ({q1∆1, . . . , qN∆N}),

we have that

Q∆E =
1√
N




q1∆1

...

qN∆N



,

which leads to

E⊤Q∆E =
1

N

N∑

i=1

qi∆i. (C.33)

Using (C.32) and (C.33), we obtain

x̂⊤Q∆x̂ ≥ b⊤E⊤∆Eb+ 2b⊤E⊤Q∆Uc
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≥ σQᾱ|b|2 + 2b⊤E⊤Q∆Uc,

where ᾱ := α/N , α is given by Assumption 5.6, σQ and σQ are defined in (5.50),

and σ∆ := |∆|. Moreover, since |2b⊤E⊤Q∆Uc| ≤ 2|b||c|σQσ∆, and using |c| =
√

1− |b|2, we obtain:

x̂⊤Q∆x̂ ≥ σQᾱ|b|2 − 2σQσ∆|b|
√
1− |b|2 =: ξ1(b). (C.34)

(f) On the other hand, we have that

x̂⊤Mx̂ ≥ λ2|c|2 = λ2(1− |b|2) =: ξ2(b). (C.35)

Since by the construction of Σ in (5.52) we have x̂⊤Σx̂ = krx̂
⊤Q∆x̂+ kc

2
x̂⊤Mx̂, the

above bounds imply that Σ ⪰ σΣINn, where

σΣ ≥ min
0≤ν≤1

max

{
krξ1(ν),

kc
2
ξ2(ν)

}
, (C.36)

with ξ1 given by (C.34) and ξ2 given by (C.35).

(g) Next, we study (C.36) and we show that this lower bound is indeed positive.

Since, by item (a), Q∆ ⪰ 0, without loss of generality we can assume that the first

term in the brackets in (C.36) is non-negative. Indeed, suppose by contradiction

that such term is negative. Then, since Q∆ ⪰ 0, we can take ξ(b) as a non-negative

lower bound for x̂⊤Σx̂, and since ξ(b) = 0 only if b = 1, we obtain that for such b

the first term in the brackets is indeed positive.

(h) To get a closed form of the expression in (C.36), let ν = sin(θ), θ ∈ [0, π/2]. In
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the θ variable, (C.36) becomes:

min
0≤θ≤π

2

max
{
k1(1− cos(2θ))−k2 sin(2θ), k3(1 + cos(2θ))

}
,

where the constants k1, k2, k3 > 0 are given by k1 :=
krσQᾱ

2
, k2 := krσ∆σQ, k3 :=

kc
4
λ2. Further simplifying, we obtain

min
0≤θ≤π

2

max

{
k1 −

√
k21 + k22 sin

(
2θ + tan−1

(
k1
k2

))
,

k3 + k3 cos(2θ))

}

:= min
0≤θ≤π

2

max
{
g1(θ), g2(θ)

}
. (C.37)

We argue that the intersection point θ∗ ∈ [0, π
2
] of the trigonometric curves g1(θ), g2(θ)

solves the min-max problem (C.37).

(i) To establish the existence of such θ∗ ∈ [0, π
2
], we use the following

facts: (i) k1, k2, k3 > 0, (ii) g1(0) = 0, g1(
π
2
) = 2k1 > 0, dg1(θ)

dθ
=

−2
√
k21 + k22 cos

(
2θ + tan−1(k1

k2
)
)
, (ii) g2(0) = 2k3 > 0, g2(

π
2
) = 0, dg2(θ)

dθ
=

−2k3 sin(2θ). Since g1 and g2 are continuous functions, the previous conditions

imply the existence of a point θ∗ such that g1(θ
∗) = g2(θ

∗). Moreover, since g2

is decreasing on [0, π
2
] with g2(0) > 0, g2(

π
2
) = 0, g1(0) = 0, g1(

π
2
) > 0, and

dg1(θ)
dθ

= −2
√
k21 + k22 cos

(
2θ + tan−1(k1

k2
)
)
, it follows that the intersection point θ∗ is

in fact the minimum of the point-wise maximum of g1(θ) and g2(θ). See Figure C.1

for an illustration of this step.

(j) By computing the intersection point θ∗, we obtain

θ∗ =
1

2

[
cos−1

(
k1 − k3√

(k1 + k3)2 + k22

)
+ tan−1

(
k2

k1 + k3

)]
.
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Figure C.1. Illustration of step (i) in the proof of Proposition C.8.

Substituting the values of k1, k2 and k3, establishes the existence of a positive lower

bound on the constant σΣ that satisfies Σ ⪰ σΣINn, given by

σΣ ≥ kcλ2
4

[
1 + cos(θ∗)

]
, (C.38)

where θ∗ = θ∗1 + θ∗2, with

θ∗1 = cos−1


 2krσQα− kcλ2√

(2krσQα + kcλ2)2 + 16k2rσ
2
∆σ

2
Q




and θ∗2 = tan−1
(

4σ∆krσQ

2σQkrα+kcλ2

)
. Note that cos(θ∗) ∈ [0, 1] since θ∗ ∈ [0, π/2], which

implies that σΣ > 0. ■

Lemma C.9. Let λN be the largest eigenvalue of L⊤Q + QL. Then, under

Assumption 5.6, the matrix Σ satisfies

Σ ⪯
(
krσQσ∆ +

kc
2
λN

)
INn. (C.39)
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Proof. By the definition of ∆ and σ∆, the term Q∆ satisfies: Q∆ ⪯ σQσ∆INn.

By the definition of λN and the fact that QL = QL ⊗ In by the properties of the

Kronecker product, it follows that L⊤Q+QL ⪯ λNINn. Note that λN > 0 since, as

stated in the proof of Lemma 5.2, QL+L⊤Q is a nonzero and symmetric M -matrix.

Combining these arguments we obtain (C.39). ■

Proof of Theorem 5.5

We follow a (hybrid) Lyapunov-based approach to study the HDS Hc with input u,

in the error coordinates

ỹc = (x̃c, s) := ((θ̃, p̃, τc), s),

where θ̃ = θ − 1N ⊗ θ⋆, x̃c = (θ̃, p̃, τc), and p̃ = p− 1N ⊗ θ⋆. In these new coordinates, the

HDS with input u becomes

H̃c = (Cc × R≥0, F̃c,Dc × R≥0,Gc),

where F̃c(ỹc, u) := F̂c(ỹc, u)× [0, ω]× {1}, with F̂c given by (5.38). For this system, we

will study stability properties with respec to the set Ãc × R≥0, where

Ãc := {0} × {0} × [T0, T ]. (C.40)

Proof of Theorem 5.5-(a)

We establish item (a) of Theorem 5.5 via a sequence of lemmas. The following

lemma follows directly from the uniform boundedness assumption on the regressors ϕ and

the definition of U in (5.39).

Lemma C.10. There exist ϕ > 0 such that |U(s)| ≤ ϕ|u| for all s ≥ 0.
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Next, we consider the Lyapunov function

V (ỹc) :=
|p̃− θ̃|2Q

4
+

|p̃|2Q
4

+ τ 2c
|θ̃|2Σ
2
. (C.41)

and we study its behavior during flows and jumps of H̃c. and present a lemma and two

auxiliary propositions.

Lemma C.11. There exist constants c > c > 0 such that

c|ỹc|2Ãc×R≥0
≤ V (ỹc) ≤ c|ỹc|2Ãc×R≥0

,

for all ỹc ∈ (Cc ∪Dc)× R≥0.

Proof. Since, by the definition of H̃c, we always have s ∈ R≥0, we just need to

study |x̃c|Ãc . To establish the lower bound, and using the definition of the norm

| · |P, and since τc ≥ T0 for all x̃c ∈ Cc ∪Dc, we directly obtain that |p̃|2Q ≥ σQ|p̃|2

and τ 2|θ̃|2Σ ≥ σΣT
2
0 |θ̃|2. Therefore, V (ỹc) ≥ c|x̃c|2Ãc , where c :=

1
4
min

{
σQ, 2σΣT

2
0

}
.

To establish the upper bound, we use (5.50) together with the fact that τ ≤ T to

obtain that V (ỹc) ≤ 1
4
(2σQ|θ̃|2 + 3σQ|p̃|2 + 2T 2|θ̃|2Σ), where we also used the fact

that |p̃ − θ̃|2 ≤ 2(|θ̃|2 + |p̃|2). Using Lemma C.9, we obtain V (ỹc) ≤ c|x̃c|2Ã, with

c := 1
4
max {3σQ, T

2(2krσQσ∆ + kcλN) + 2σQ}. ■

Lemma C.12. Suppose that T < T; then, there exists ϱ > 0 and γ > 0 such that

V satisfies V̇ (ỹc) ≤−ϱV (ỹc) + γ|u|2, for all ỹc ∈ Cc × R≥0.

Proof. By direct computation, we have:

V̇ (ỹc) = −τc
(
(p̃− θ̃)⊤ θ̃⊤

)
Vw(τc, s)



p̃− θ̃

θ̃



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+ τc(2p̃− θ̃)⊤QU(s), (C.42)

where

Vw(τc, s) :=




Q
τ2c

Ω̂(s)

Ω̂(s)⊤ (1− w)Σ+ ktQA(s)


 ,

for all w ∈ [0, ω], where

Ω̂(s) := Ω+ ktQA(s),

and where we used the fact that x⊤1 Ωx1 = 0 and Proposition 5.2. Using the definitions

of σQ, σΣ, and σΩ provided in Propositions 5.2-5.3, and Lemma C.15 in the Appendix,

it follows that Vw(τc, s) ⪰ vINn, for all τc ∈ [T0, T ], all w ∈ [0, ω], and all s ∈ R≥0,

with

v :=
(1− ω)σΣσQ − T 2(σ2

Ω + χ(kt)
2)

T 2(1− ω)σΣ + σQ

> 0, (C.43)

and χ ∈ K∞. Using the Cauchy-Schwartz inequality to upper-bound the last term in

(C.42), and since T0 ≤ τc ≤ T and |x̃c|2 ≤ 3(|p̃− θ̃|2 + |p̃|2) for all x̃c ∈ Cc ∪Dc, we

obtain:

V̇ (ỹc) ≤ −T0v(|p̃−θ̃|2 + |θ̃|2) + 2T (|p̃|+ |θ̃|)∥Q∥|U(s)|

≤ −v

3
T0|x̃c|2 + 2

√
2σQϕT |x̃c||u|

≤−
(
v

3
T0−

1

ϵ

)
|x̃c|2+2ϵ

(
σQϕT

)2 |u|2, (C.44)

for all ϵ > 0 and all w ∈ [0, ω], where the last inequality follows from the fact that

ab ≤ 1
4ϵ
a2 + ϵb2 for all ϵ > 0. Setting ϵ := 3(1+ε)

T0ν
for ε > 0 and using the lower bound

of Lemma C.11, the expression in (C.44) yields:

V̇ (ỹc) ≤− ε

1+ε

νT0
3c

V (ỹc) + (1+ε)
6

νT0

(
σQϕT

)2 |u|2. (C.45)
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The result follows by setting ϱ := νT0
3c

ε
1+ε

and letting γ ∈ K∞ be defined as γ(r) :=

(1 + ε) 6
νT0

(
σQϕT

)2
r. ■

Lemma C.13. Suppose that T > T; then,

V (ỹ+c ) ≤ (µT )
η V (ỹc), ∀ ỹc ∈ (Cc ∪Dc)× R≥0,

where η := mini∈V ηi, and µT := (T/T )2.

Proof. Using the definition of the jump map Gc, for all ỹc ∈ Dc × R≥0 we have:

4V (ỹ+c ) = |Rηθ̃+(INn−Rη)p̃−θ̃|2Q

+ |Rηθ̃ + (INn −Rη)p̃|2Q + 2T0|θ̃|2Σ, (C.46)

where Rη := diag(η)⊗ In. By Lemma C.16 in the Appendix, the change of V during

jumps, given by ∆V (ỹc) := V (ỹ+c )− V (ỹc), satisfies:

4∆V (ỹc) = |θ̃|2RηQ − |p̃|2RηQ − |θ̃ − p̃|2RηQ + 2T 2
0 |θ̃c|2Σ − 2T 2|θ̃|2Σ

≤ −
(
|p̃|2RηQ + |θ̃ − p̃|2RηQ

)
+
σQ

σΣ

|θ̃|2Σ + 2T 2
0 |θ̃|2Σ − 2T 2|θ̃|2Σ

= −
(
|p̃|2RηQ + |θ̃ − p̃|2RηQ

)
− (1− µT )2T

2|θ̃|2Σ

≤ −(1− µT )
(
|p̃|2RηQ + |θ̃ − p̃|2RηQ + 2T 2|θ̃|2Σ

)
,

where we also used the fact that µT ∈ (0, 1) whenever T > T. It then follows that

∆V (ỹc) ≤ 0 for all ỹc ∈ Dc × R≥0. When η = 1, the previous inequality yields

∆V (ỹc) ≤ −(1− µT )V (ỹc), wich in turn implies that V (ỹc) ≤ µTV (ỹc). ■

By the construction of the dynamics of τc, every solution to Hc is guaranteed to
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have intervals of flow with a duration of at least (T − T0)/ω between any two consecutive

jumps. Combining this fact with Lemmas C.11, C.12, and C.13, it follows that H̃c renders

the set Ãc ISS with respect to the input u. The ISS property of the HDS Hc with respect

to | · |Ac × R≥0 follows directly by employing the change of coordinates ỹc → yc.

Proof of Theorem 5.5-(b)

Let the initial condition satisfy ỹ0 := ((θ̃(0, 0), p̃(0, 0), τc(0, 0)), s(0, 0)) ∈ (Cc ×

Dc)× R≥0, and let (ỹc, u) be a maximal solution pair to H̃c from the initial condition ỹ0,

satisfying during flows τ̇c(t, j) = ω ∈ (0, 1) for all (t, j) ∈ dom(ỹc). By Lemma C.12, we

have that V̇ (ỹc) ≤ −ϱ
2
V (ỹc) for all ỹc ∈ (Cc ∪Dc)× R≥0 such that V (ỹc) ≥ 2γ

ϱ
|u|2. Let

R :=

{
ỹc ∈ R2nN+1 × R≥0 : V (ỹc) ≤

2γ

ϱ
|u|2∞

}
, (C.47)

and let T := sup{σ ∈ R≥0 : ỹc(t̃, j̃) ̸∈ R, (t̃, j) ∈ dom(ỹc), 0 ≤ t̃ + j̃ ≤ σ}. Then,

letting tj := min{t ∈ R≥0 : (t, j) ∈ dom(ỹc)} for every j ∈ Z≥0, and via the comparison

lemma, it follows that V (ỹc(t, j)) ≤ e−ρ(t−tj)/2V (ỹc(tj, j)), for all (t, j) ∈ dom(ỹc) such that

tj+j ≤ t+j ≤ T. On the other hand, from Lemma C.13, it follows that V (ỹc(tj+1, j+1)) ≤

µTV (ỹc(tj+1, j)), which iterating over j yields:

V (ỹc(t, j)) ≤ e−ϱt/2µjTV (ỹ0), (C.48)

for all (t, j) ∈ dom(ỹc) such that t + j ≤ T and where we have used that t0 = 0. Since

V̇ (ỹc(t, j)) ≤ 0 if ỹc(t, j) ∈ R and Proposition C.13 holds for all (tj, j) ∈ dom(ỹ), it follows

that ỹc(t, j) ∈ R for all t+ j ≥ T , meaning that

V (ỹc(t, j)) ≤
2γ

ϱ
|u|∞, (C.49)
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for all t+ j ≥ T . The bounds (C.48) and (C.49), together with Lemma C.11 and the time-

invariance of Hc, imply that |ỹc(t, j))|2Ãc ≤
c
c
µjT |ỹ0|2Ãc +

2γ
ϱ
|u|(t,j) for all (t, j) ∈ dom(ỹc),

where we also used the fact that e−ϱt/2 ≤ 1 for all t ∈ R≥0. The bound (5.57), is obtained

by evaluating the above bound at the hybrid times (tj, j), noting that |θ̃| ≤ |ỹc|Ac , and

via the change of coordinates ỹc 7→ yc. ■

Proof of Theorem 5.6

The proof uses the reduction principle for hybrid systems [16, Corollary 7.24]. First,

note that, by construction, H satisfies the hybrid basic conditions [16, Assump. 6.5]. Since

the flow map F is globally Lipschitz in C, the HDS does not exhibit finite escape times.

To study the stability properties of the system, we first intersect the flow set C, the jump

set D, and the values of the jump map G with a compact set K ⊂ R(2n+1)N . Since τ

already evolves in a compact set, we take K only to restrict the states (θ, p, s). The new

restricted system is denoted as HK = (C ∩K,F,D ∩K,G ∩K). Since the dynamics of

the state τ are independent of (θ, p), we can directly use [148, Prop. 1-(a)] to conclude

that, under condition (b) of Theorem 5.6: 1) the set K × Async is UGAS for the HDS

HK , and 2) τ converges to Async before the hybrid time (2t∗, 2N). It follows that, for

all solutions (y, s), and all times (t, j) ∈ dom((y, s)) such that t ≥ 2t∗ and j ≥ 2N , the

restricted synchronized HDS behaves as having the centralized master timer τc of Section

5.2. Next, we intersect the data of the HDS HK with the set K×Async. For this restricted

HDS, denoted HK,Async , Theorem 5.5 guarantees UGES of the set A when u = 0. By

invoking the reduction principle of [16, Corollary 7.24], we conclude UGES of the set A

for the HDS HK . Since this system has bounded solutions, and K was arbitrary large, for

each compact set of initial conditions K0 of system H, we can select K sufficiently large

such that the restriction in HK does not affect the solutions from K0, obtaining UGES of

A for the original hybrid system H. Now, since the convergence of τ ∈ RN to Async occurs

in finite time after which the stability properties are characterized by Theorem 5.5, we
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obtain that A is UGES for H. ■

Proof of Corollary 5.1

First, note that j ≥ t′
(T−T0)/ω for any (t′, j) ∈ dom(y). Therefore, since µ(T ) ∈ (0, 1),

the bound (5.57) implies the following slightly looser bound when u ≡ 0:

|yj|2A ≤ c

c

(
µ

1
T−T0
T

)ωt′
|y0|2A. (C.50)

where c and c come from Lemma C.11. Following similar ideas to [93, 25], and using the

definition of µ(T ), we solve the following optimization problem to maximize the rate of

contraction over any window of time t′:

min
T∈R>0

ϕ(T ) := µ
1

T−T0
T .

Computing the derivative of ϕ with respect to T , and equating to zero, we obtain:

T ∗ = e
√

σQ

2σΣ
+ T 2

0 , which is the unique minimizer of ϕ. By substituting T = T ∗ in (C.50),

we obtain

|yj|2A ≤ c

c
e
− 2ωt′
T ∗−T0 |y0|2A. (C.51)

Thus, to have |yj|2A ≤ ε for a given ε > 0, it suffices to have that

t′ ≥ 1

2ω
(T ∗ − T0) log

(
1

ε

c

c
|y0|2A

)
. (C.52)

Moreover, note that the right hand side of (C.51) is of order O
(
e−

√
σΣ/σQt

′
)
. ■

Proof of Corollary 5.2

The arguments are similar to those used in the proof of Theorem 5.5 by using the

fact that in Lemma C.13 the expression in (C.46) yields ∆V (ỹc) ≤ 0 whenever η = 0.
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Auxiliary Lemmas

Lemma C.14. Consider the following block triangular matrix:

M :=



A B

0 D




Suppose that M is non-singular. Then, the minimum singular value of M , σmin(M),

satisfies

σmin(M) ≥ 1√
∥A−1∥2(1 + ∥BD−1∥2) + ∥D−1∥2

.

Proof. First, since the inverse of the block triangular matrix M is given by

M−1 =



A−1 −A−1BD−1

0 D−1


 ,

we can upper-bound the 2-norm matrix of M−1:

∥M−1∥2 = max
|u|2+|v|2=1

∣∣∣∣∣∣∣



A−1 −A−1BD−1

0 D−1






u

v




∣∣∣∣∣∣∣

2

= max
|u|2+|v|2=1

∣∣∣∣∣∣∣



A−1u−A−1BD−1v

D−1v




∣∣∣∣∣∣∣

2

= max
|u|2+|v|2=1

∣∣A−1u−A−1BD−1v
∣∣2 +

∣∣D−1v
∣∣2

≤ ∥A−1∥2(1 + ∥BD−1∥2) + ∥D−1∥2. (C.53)

Then, since the minimum singular value of a matrix is the inverse of the 2-norm of the

inverse matrix, i.e., σmin(M) = 1
∥M−1∥ , we can use (C.53) to obtain the result. ■
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Lemma C.15. For each τc ∈ [T0, T ] and s ∈ R≥0, consider the following block

matrix

Vw(τc, s) :=




1
τ2
Q Ω̂(s)

Ω̂(s) Σ̂(s)


 ,

where

Σ̂(s) := (1− ω)Σ+ ktQA(s) (C.54)

Ω̂(s) := Ω+ ktQA(s) (C.55)

where w ∈ [0, ω], ω ∈ (0, 1), and the matrices Q, Ω, and Σ are defined as in

Proposition 5.2. Then, under Assumption 5.6, we have that:

Vw(τc, s) ⪰ νINn, (C.56)

for all τc ∈ [T0, T ], all w ∈ [0, ω], and all s ∈ R≥0, where

ν :=
(1− ω)σΣσQ − T 2(σ2

Ω + ktχ
2)

T 2((1− ω)σΣ) + σQ

> 0, (C.57)

with σQ, σΣ, and σ
2
Ω as defined in Proposition 5.2.

Proof. First, we show that the matrix-valued function Vw(·, ·) is positive-definite

uniformly over τc ∈ [T0, T ], s ∈ R≥, and w ∈ [0, ω]. To do this, we decompose Vw as

follows:

Vw(τc, s) = U(τc, s)
⊤D(τc, s)U(τc, s) (C.58)
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where

D(τc, s) :=




Q
τ2c

0

0 Σ̂(s)− τ 2c Ω̂(s)⊤Q−1Ω̂(s)


 ,

and

U(τc, s) :=



I τ 2Q−1Ω̂(s)

0 I


 ,

Using the definition of Q, and the fact that τc ≤ T for all ỹc ∈ Cc ∪Dc, we obtain

Q

τ 2
⪰
(σQ

T 2

)
INn. (C.59)

Also, it follows that

Σ̂(s)− τ 2c Ω̂(s)⊤Q−1Ω̂(s) ⪰ ζINn, (C.60)

for all s ∈ R≥0, where

ζ := (1− ω)σΣ − T 2

σQ

(σ2
Ω + χ2(kt)). (C.61)

Note that ζ > 0 since condition (5.56) holds by assumption. Therefore, since

Q

τ 2c
≻ 0 and Σ̂(s)−τ 2c Ω̂⊤(s)Q−1Ω̂(s) ≻ 0.

it follows that the matrix Vw(τc, s) is positive definite uniformly over τc ∈ [T0, T ],

s ∈ R≥0, and w ∈ [0, ω] [278, Theorem 7.7.7].

Now, we establish the matrix inequality (C.56). To do so, we use the bounds (C.59)
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and (C.60) for (C.58) to obtain that

Vw(τc, s) ⪰ U⊤(τc, s)



σQ

T 2 INn 0

0 ζINn


U(τc, s)

= V(τc, s)
⊤V(τc, s), (C.62)

where V(τc, s) is the upper block triangular matrix

V(τc, s) :=




√
σQ

T 2 INn

√
τ4σQ

T 2 Q−1Ω̂(s)

0
√
ζINn


 .

By applying Lemma C.14 on the matrix V(τc, s), and using (C.62) together with the

fact that V has full column rank and thus that σmin(V
⊤V) ≥ σmin(V

⊤)σmin(V) =

σ2
min(V), we obtain

Vw(τc, s) ⪰
1

T 2

σQ

(
1 +

τ4σQ

ζT 2 ∥Q−1Ω̂(s)∥2
)
+ 1

ζ

I2Nn

=
ζσ2

Q

T 2(ζσQ + T 2(σ2
Ω + χ2(kt))) + σ2

Q

I2Nn

=
(1− ω)σΣσQ − T 2(σ2

Ω + χ2(kt))

T 2((1− ω)σΣ) + σQ

I2Nn

where we have used the fact that the induced 2-norm is sub-multiplicative and that

∥Q−1∥ ≤ 1/σQ and ∥Ω∥2 ≤ σ2
Ω. This completes the proof. ■

Lemma C.16. Let η := (η1, η2, . . . , ηN ) with ηi ∈ {0, 1} for all i ∈ V = {1, 2, . . . , N}

and Rη = diag(η)⊗ In. Then, for all θ̃, p̃ ∈ RNn we have:

|Rηθ̃ + (INn −Rη) p̃− θ̃|2Q + |Rηθ̃ + (INn −Rη) p̃|2Q
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− |p̃|2Q − |p̃− θ̃|2Q = |θ̃|2RηQ − |p̃|2RηQ − |θ̃ − p̃|2RηQ

where Q is defined in (5.50).

Proof. By direct computation, we have:

∣∣Rηθ̃ + (INn −Rη) p̃− θ̃
∣∣2
Q
=
∣∣Rη(θ̃ − p̃)− (θ̃ − p̃)

∣∣2
Q

= | (INn −Rη) (θ̃ − p̃)|2Q

= |Rc
η(θ̃ − p̃)|2Q

= |z|2Q,

where z := Rc
η(θ̃ − p̃), and Rc

η := INn − Rη. . Writing z = (z1, . . . , zN), with

zi = (ηi − 1)
(
θ̃i − p̃i

)
∈ Rn, ∀i ∈ V , it follows that

|z|2Q =
N∑

i=1

qi|θ̃i − p̃i|2(ηi − 1)2

=
N∑

i=1

qi|θ̃i − p̃i|2 (1− ηi) . (C.63)

Similarly,

|Rηθ̃ + (INn −Rη) p̃|2Q = |Rη(θ̃ − p̃) + p̃|2Q = |z̃|2Q,

where z̃ = Rη(θ̃ − p̃) + p̃. Writing z̃ := (z̃1, . . . , z̃N), with z̃i = ηi

(
θ̃i − p̃i

)
+ p̃i ∈

Rn, ∀i ∈ V , we get:

|z̃|2Q =
N∑

i=1

qi|z̃i|2
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=
N∑

i=1

qi|ηi(θ̃i − p̃i) + p̃i|2

=
N∑

i=1

qi

(
η2i |θ̃i − p̃i|2 + 2ηi(θ̃i − p̃i)

⊤(p̃i) + |p̃i|2
)

=
N∑

i=1

qi

(
ηi(θ̃i − p̃i)

⊤(θ̃i + p̃i) + |p̃i|2
)

=
N∑

i=1

qiηi|θ̃i|2 +
N∑

i=1

qi|p̃i|2(1− ηi). (C.64)

Together (C.63) and (C.64) yield:

|Rηθ̃ +
(
INn−Rη

)
p̃− θ̃|2Q + |Rηθ̃ + (INn−Rη) p̃|2Q

−|p̃|2Q − |p̃− θ̃|2Q =
N∑

i=1

qiηi|θ̃i|2

+
N∑

i=1

qi(1− ηi)
(
|p̃i|2 + |θ̃i − p̃i|2

)

−
N∑

i=1

qi|p̃i|2 −
N∑

i=1

qi|θ̃i − p̃i|2

=
N∑

i=1

qiηi|θ̃i|2

−
N∑

i=1

qiηi

(
|p̃i|2 + |θ̃i − p̃i|2

)

= |θ̃|2RηQ − |p̃|2RηQ − |θ̃ − p̃|2RηQ.

■
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Appendix D

Proofs of Chapter 6

Proof of Lemma 6.2

Let x ∈ Rn be arbitrary. Then, by using that the data is SR with level of richness

γ we find that

x⊤Ω(s)x = x⊤σ
ϕ(s)ϕ(s)⊤

(1 + ϕ(s)⊤ϕ(s))2
x+ x⊤ρPx

= σ
|ϕ(s)x|2

(1 + ϕ(s)⊤ϕ(s))2
+ ρx⊤Px

≥ ρx⊤Px

≥ γρ|x|2

=⇒ Ω(s) ⪰ κIn ∀s ∈ R≥0, (D.1)

where κ := γρ. On the other hand, using the fact that
∣∣aa⊤

∣∣ = |a|2, ∀a ∈ Rn we obtain

that
∣∣Ψ(s)Ψ(s)⊤

∣∣ = |Ψ(s)|2 ≤ 1, ∀x ∈ Rn,

and thus, using Hölder’s inequality, it follows that:

x⊤Ω(s)x = x⊤σΨ(s)Ψ(s)⊤x+ x⊤ρPx
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≤ σ
∣∣x⊤Ψ(s)Ψ(s)⊤x

∣∣+ ρλmax(P )|x|2

≤ σ|x|
∣∣Ψ(s)Ψ(s)⊤x

∣∣+ ρλmax(P )|x|2

≤ σ|x|
∣∣Ψ(s)Ψ(s)⊤

∣∣|x|+ ρλmax(P )|x|2

≤ (σ + ρλmax(P )) |x|2

=⇒ Ω(s) ⪯ KIn,

where K := σ + ρλmax(P ). ■

Proof of Theorem 6.9

We will establish the stability results by using hybrid Lyapunov functions. In

particular, we consider the function

V (x, s) =
(p− θ̂)2

4
+

(p− θ∗)2

4
+ kρτ 2

θ̃⊤P θ̃

2
.

Therefore, for all x ∈ C ∪D, using the fact that τ(t, j) ≥ T0 together with Lemma 6.2, for

all (t, j) ∈ dom(x), we obtain:

V (x, s) ≥

∣∣∣p− θ̂
∣∣∣
2

4
+

|p− θ∗|2
4

+
kρT 2

0

2
θ̃⊤P θ̃

≥

∣∣∣p− θ̂
∣∣∣
2

4
+

|p− θ∗|2
4

+ kργT 2
0

∣∣∣θ̃
∣∣∣
2

2

≥

∣∣∣p− θ̂
∣∣∣
2

4
+ min

{
1

4
,
kργT 2

0

2

}(
|p− θ∗|2 +

∣∣∣θ̃
∣∣∣
2
)

≥ c|x̃|2A ∀s ∈ R≥0, (D.2)
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where c := min
{

1
4
,
kργT 2

0

2

}
. On the other hand, since τ(t, j) ≤ T for all (t, j) ∈ dom(x),

we obtain that V satisfies:

V (x, s) ≤ |p− θ|2
4

+
|p− θ∗|2

4
+ kρT 2 θ̃

⊤P θ̃

2

≤ |p− θ|2
4

+
|p− θ∗|2

4
+ kρT 2λmax (P )

∣∣∣θ̃
∣∣∣
2

2

≤ |p− θ|2
4

+
|p− θ|2 +

∣∣∣θ̂ − θ∗
∣∣∣
2

2
+ kρT 2λmax (P )

∣∣∣θ̃
∣∣∣
2

2

=
3
∣∣∣p− θ̂

∣∣∣
2

4
+

1

2

(
1 + kρT 2λmax (P )

) ∣∣∣θ̃
∣∣∣
2

≤ c|x̃|2A, (D.3)

where c := max
{

3
4
, 1
2
(1 + kρλmax (P )T

2)
}
. Similarly, using

|p− θ∗|2 ≤ 2

(∣∣∣p− θ̂
∣∣∣
2

+
∣∣∣θ̃
∣∣∣
2
)
,

we obtain:

V (x, s) ≤

∣∣∣p− θ̂
∣∣∣
2

4
+

1

2

(∣∣∣p− θ̂
∣∣∣
2

+
∣∣∣θ̃
∣∣∣
2
)
+ kρλmax (P )T

2

∣∣∣θ̂ − θ∗
∣∣∣
2

2

=
3

4

∣∣∣p− θ̂
∣∣∣
2

+
1

2

(
1 + kρλmax (P )T

2
) ∣∣∣θ̂ − θ∗

∣∣∣
2

≤ c

(∣∣∣p− θ̂
∣∣∣
2

+
∣∣∣θ̂ − θ∗

∣∣∣
2
)

=⇒
∣∣∣p− θ̂

∣∣∣
2

+
∣∣∣θ̂ − θ∗

∣∣∣
2

≥ V (x, s)

c
. (D.4)

Additionally, let η := 1− T0
T 2 − 1

2kγT 2 , and λ := min
{
kT0(ργ−σ/2)

2c
,− log(1− η)

}
. Then, by

Assumption 6.2, we have that λ ∈ R>0, since
kT0(ργ−σ/2)

2c
> 0 and η ∈ (0, 1) .

Hence, by letting x̃ := (x, s), the time-derivative of V along the trajectories generated by

369



the flows of Accelerated Hybrid Dynamics with Periodic Restarting satisfies:

V̇ (x, s) =
∂V

∂x̃
F (x, s)

=

(
−p− θ

2
+ kρτ 2P θ̃

)⊤
2

τ
(p− θ)

+

(
p− θ̂

2
+
p− θ∗

2

)⊤ (
−2kτΩ(s)θ̃

)
+
kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
+ 2kτ θ̃⊤ρP (p− θ̂)

− kτ(p− θ̂)⊤Ω(s)θ̃ − kτ(p− θ∗)⊤Ω(s)θ̃ +
kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
+ kτ θ̃⊤ (2ρP − Ω(s)) (p− θ̂)− kτ θ̃⊤Ω(s)(p− θ∗) +

kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
+ kτ θ̃⊤

(
ρP − σΨ(s)Ψ(s)⊤

)
(p− θ̂)

− kτ θ̃⊤
(
σΨ(s)Ψ(s)⊤ + ρP

)
(p− θ∗) +

kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
+ kτ θ̃⊤

(
ρP − σΨ(s)Ψ(s)⊤

)
(p− θ̂ + θ∗ − θ∗)

− kτ θ̃⊤
(
σΨ(s)Ψ(s)⊤ + ρP

)
(p− θ∗) +

kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
− kτ θ̃⊤

(
ρP − σΨ(s)Ψ(s)⊤

)
θ̃ + kτ θ̃⊤

(
ρP − σΨ(s)Ψ(s)⊤

)
(p− θ∗)

− kτ θ̃⊤
(
σΨ(s)Ψ(s)⊤ + ρP

)
(p− θ∗) +

kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
− kτ θ̃⊤

(
ρP − σΨ(s)Ψ(s)⊤

)
θ̃ − kτ θ̃⊤σΨ(s)Ψ(s)⊤(p− θ∗)

− kτ θ̃⊤σΨ(s)Ψ(s)⊤(p− θ∗) +
kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
− kρτ θ̃⊤P θ̃ − kστ θ̃⊤Ψ(s)Ψ(s)⊤(2p− 2θ∗ − θ̃) +

kρ

2
τ θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

τ
− k

2
ρτ θ̃⊤P θ̃ − kστ θ̃⊤Ψ(s)Ψ(s)⊤(2p− θ̂ − θ∗)
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= −

∣∣∣p− θ̂
∣∣∣
2

τ
− k

2
ρτ θ̃⊤P θ̃ − kστ θ̃⊤Ψ(s)Ψ(s)⊤(2p+ θ̃ − 2θ̂)

= −

∣∣∣p− θ̂
∣∣∣
2

τ
− k

2
ρτ θ̃⊤P θ̃ − kστ θ̃⊤Ψ(s)Ψ(s)⊤θ̃ − 2kστ θ̃⊤Ψ(s)Ψ(s)⊤(p− θ̂)

≤ −

∣∣∣p− θ̂
∣∣∣
2

τ
− k

2
τ θ̃⊤Ω(s)θ̃ − 2kστ θ̃⊤Ψ(s)Ψ(s)⊤(p− θ̂)

= −τ




∣∣∣p− θ̂
∣∣∣
2

τ 2
+
k

2
θ̃⊤Ω(s)θ̃ + 2kσθ̃⊤Ψ(s)Ψ(s)⊤(p− θ̂)


 (D.5)

≤ −τ




∣∣∣p− θ̂
∣∣∣
2

τ 2
+
k

2
θ̃⊤Ω(s)θ̃ − 2kσ

∣∣∣θ̃⊤Ψ(s)Ψ(s)⊤(p− θ̂)
∣∣∣




≤ −τ




∣∣∣p− θ̂
∣∣∣
2

τ 2
+
k

2
κ
∣∣∣θ̃
∣∣∣
2

− 2kσ
∣∣∣θ̃⊤Ψ(s)Ψ(s)⊤(p− θ̂)

∣∣∣




≤ −τ




∣∣∣p− θ̂
∣∣∣
2

τ 2
+
k

2
κ
∣∣∣θ̃
∣∣∣
2

− 2kσ
∣∣∣θ̃Ψ(s)

∣∣∣
∣∣∣Ψ(s)⊤(p− θ̂)

∣∣∣




≤ −τ




∣∣∣p− θ̂
∣∣∣
2

τ 2
+
k

2
κ
∣∣∣θ̃
∣∣∣
2

− 2kσ
∣∣∣θ̃
∣∣∣|Ψ(s)|2

∣∣∣p− θ̂
∣∣∣




≤ −τ




∣∣∣p− θ̂
∣∣∣
2

τ 2
+
k

2
κ
∣∣∣θ̃
∣∣∣
2

− k

2
σ
∣∣∣θ̃
∣∣∣
∣∣∣p− θ̂

∣∣∣




= −kτ
2



2
∣∣∣p− θ̂

∣∣∣
2

kτ 2
+ κ
∣∣∣θ̃
∣∣∣
2

− σ
∣∣∣θ̃
∣∣∣
∣∣∣p− θ̂

∣∣∣




= −kτ
2

(∣∣∣p− θ̂
∣∣∣
∣∣∣θ̃
∣∣∣
)
M̂(τ)




∣∣∣p− θ̂
∣∣∣

∣∣∣θ̃
∣∣∣


 (D.6)

where

M̂ :=




2
kτ2

−σ
2

−σ
2

κ


 . (D.7)
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Next, we compute the eigenvalues of M̂ :

0 =

(
r − 2

kτ 2

)
(r − κ)− σ2

4

= r2 − r

(
2

kτ 2
+ κ

)
−
(
σ2

4
− 2κ

kτ 2

)

=⇒ r±(τ) =
1

2


 2

kτ 2
+ κ±

√(
2

kτ 2
+ κ

)2

+

(
σ2 − 8κ

kτ 2

)


=
1

2


 2

kτ 2
+ κ±

√(
2

kτ 2
− κ

)2

+ σ2


 .

In order to have that r−(τ) > 0 we have the following necessary condition

(
2

kτ 2
+ κ

)2

>

(
2

kτ 2
− κ

)2

+ σ2

⇐⇒
8

kτ 2
κ > σ2 ⇐= T 2 <

8κ

kσ2
=

8ργ

kσ2
.

Now, using the fact that
√
a2 + b2 ≤ a+ b, it follows that

r−(τ) ≥
1

2

(
2

kτ 2
+ κ−

∣∣∣∣
2

kτ 2
− κ

∣∣∣∣− σ

)
. (D.8)

If

T 2 <
2

k
max

{
4ργ

σ2
,
1

ργ

}
, (D.9)

from (D.8) we obtain that:

r−(τ) ≥ κ− σ

2
.
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Moreover, if 2ργ > σ holds (D.9), reduces to:

T 2 <
2

k
max

{
4ργ

σ2
,
1

ργ

}
=

2

kργ
max

{
4ρ2γ2

σ2
, 1

}
=

8ργ

kσ2
,

and hence to

T 2 <
8ργ

kσ2
. (D.10)

Hence, provided that (D.10) holds, and defining r := kT0
2

(
ργ − σ

2

)
we can further upper

bound (D.6) by

V̇ ≤ −r
(∣∣∣p− θ̂

∣∣∣
2

+
∣∣∣θ̃
∣∣∣
2
)

≤ −r
c
V (x, s) (D.11)

Since by definition we have λ ≤ r
c
, it follows that

V̇ (x, s) ≤ −λV (x, s), ∀x ∈ C. (D.12)

Note that this bound implies that V does not increase during flows, and that it satisfies

V (x(t, j)) ≤ V (x(s, j)) for all t > s and each fixed j such that (t, j) ∈ dom(x). This

generates the bound (6.8) (acceleration bound in the theorem).

On the other hand, during jumps the restarting policy q = 0 generates changes in the

Lyapunov function given by

V (x+, s+)− V (x, s) =

∣∣∣p− θ̂
∣∣∣
2

4
+

|p− θ∗|2
4

+
kT 2

0

2
θ̃⊤P θ̃

−

∣∣∣p− θ̂
∣∣∣
2

4
− |p− θ∗|2

4
− kT 2

2
θ̃⊤P θ̃

= −kT
2 − T 2

0

2
θ̃⊤P θ̃
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≤ −kγT
2 − T 2

0

2

∣∣∣θ̃
∣∣∣
2

≤ 0, (D.13)

where in the last step we have used Lemma 6.2. Additionally, when q = 1, the change of

the Lyapunov function during jumps is given by

V (x+, s+)− V (x, s) =

∣∣∣θ̃
∣∣∣
2

4
+
kT 2

0

2
θ̃⊤P θ̃ −

∣∣∣p− θ̂
∣∣∣
2

4
− |p− θ∗|2

4
− kτ 2

2
θ̃⊤P θ̃

≤ 1

4γ
θ̃⊤P θ̃ +

kT 2
0

2
θ̃⊤P θ̃ −

∣∣∣p− θ̂
∣∣∣
2

4
− |p− θ∗|2

4
− kτ 2

2
θ̃⊤P θ̃

= −

∣∣∣p− θ̂
∣∣∣
2

4
− |p− θ∗|2

4
−
(
1− T 2

0

τ 2
− 1

2kγτ 2

)
kτ 2

2
θ̃⊤P θ̃

≤ −ηV (x, s)

=⇒ V (x+, s+) ≤ e−λV (x, s), (D.14)

for all x ∈ D, x+ ∈ G(x), s ∈ R≥0, and where we used (1− η) ≤ e−λ which follows from

the definition of λ. Inequality (D.14) and the non-increment of V during flows implies the

bound (6.9) (exponential bound in Theorem). Inequalities (D.11) and (D.14), together

with the quadratic bounds on the Lyapunov function (D.2) and (D.3), imply UGES of

the set A ([223, Thm. 1]). Similarly, inequalities (D.11) and (D.13) imply UGAS via the

hybrid invariance principle [33, Thm. 8.8], which in turn implies that V → 0+, i.e., the

sequence {βj}∞j=0 with βj := V (x(tj, j), s(tj, j)) and tj := min{t ∈ R≥0 : (t, j) ∈ dom(x)},

is monotonically decreasing and converges to zero. ■
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Proof of Theorem 6.2

First, notice that the Hamiltonian function H satisfies:

Ḣ(θ̂, p) = ∇H⊤




˙̂
θ

ṗ


 = kρ

(
∂H

∂θ̂

)⊤(
∂H

∂p

)
− kρ

(
∂H

∂p

)⊤(
∂H

∂θ̂

)
= 0, (D.15)

where we used ∂H

∂θ̂
= B(θ̂). To analyze the behaviour of H during jumps, we follow similar

arguments as in [167], and we first note that for any pair of vectors u, v ∈ Rn we have

that:

|u|2P
2

=
|v|2P
2

+ v⊤P (u− v) +
1

2
(u− v)⊤P (u− v).

Therefore, since the data is SR with level of richness γ > 0, we obtain:

|u|2P
2

≥ |v|2P
2

+ v⊤P (u− v) +
γ

2
|u− v|2. (D.16)

After minimizing with respect to u at both sides of (D.16), we find that

0 = min
u∈Rn

|u|2P ≥ |v|2P
2

− 1

2γ
|Pv|2 =⇒ |Pv|2

2γ
≥ |v|2P

2
. (D.17)

Now, let ε := 1
λ̄
γ
+1

, and note that ε ∈ (0, 1) since λ̄ ≥ γ. Hence, using (D.17), we can write

an upper bound for the value of the Hamiltonian after a jump as follows:

H(θ̂+, p+) = H(θ̂, 0)

=
|θ̃|2P
2

= (1− ε)
|θ̃|2P
2

+ ε
|θ̃|2P
2
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≤ (1− ε)
|θ̃|2P
2

+ ε

∣∣∣P θ̃
∣∣∣
2

2γ

= (1− ε)
|θ̃|2P
2

+ ε
|B(θ̂)|2
2γ

. (D.18)

Using the fact that

1− ε = 1− 1
λ̄
γ
+ 1

=
λ̄

γ

1
1

λ̄
γ
+1

= ε
λ̄

γ
, (D.19)

from (D.18), we obtain that

H(θ̂+, p+) ≤ ε

2γ

(
λ̄
∣∣∣θ̃
∣∣∣
2

P
+
∣∣∣B(θ̂)

∣∣∣
2
)
,

which, using the definition of H, further reduces to

H(θ̂+, p+) ≤ ε

2γ

(
λ̄
∣∣∣θ̃
∣∣∣
2

P
+ λ̄|p|2

)

=
ελ̄

2γ

(∣∣∣θ̃
∣∣∣
2

P
+ |p|2

)

=
ελ̄

γ
H(θ̂, p). (D.20)

Therefore, given any arbitrary initial condition (θ̂0, p0, τ0), and using (D.19) together with

(D.20), after j jumps we obtain

H(θ̂(t, j), p(t, j)) ≤
(
ε
λ̄

γ

)j
H(θ̂0, p0) = (1− ε)jH(θ̂0, p0) = e−jTαH(θ̂0, p0), (D.21)

where α := 1
T
ln
(

1
1−ε
)
= 1

T
ln
(
1 + γ

λ̄

)
. As described in Remark 6.2 we have that τ(t, j) < T

for all t+ j > 0, and thus t < (j + 1)T =⇒ e−jTα < e−α(t−T ). Using this inequality in
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(D.21), we obtain

H(θ̂(t, j), p(t, j)) ≤ min
{
1, e−α(t−T )

}
H(θ̂0, p0). (D.22)

Additionally, by the definition of the Hamiltonian, there exist κ := min {γ/2, 1/2}, and

K := max
{
λmax(P )/2,

1
2

}
, such that

κ|x|2AH ≤ H(θ̂, p) ≤ K|x|2AH

Hence, using (D.22) and (D.15), by [223, Thm. 1] the set AH is UGES.

Now, we note that under the Hybrid Concurrent Learning dynamics defined in (6.10),

by the definition of the jump map and set, for each initial condition there exists a time

t1 ≤ T such that x(t1, 1) = (θ(t1, 1), 0, 0) for θ(t1, 1) ∈ Rn. Thus, given the state value

(θ(t1, 1), 0, 0) at (t1, 1) ∈ dom(x), and using (D.19) together with (D.20), after j − 1

additional jumps we have that

H(θ̂(t, j), p(t, j)), ≤ e−(j−1)TαH(θ(t1, 1), 0). (D.23)

Moreover, by the definition of the Hamiltonian, we obtain that

∣∣∣θ̃(t, j)
∣∣∣
2

≤ 2

γ
H(θ̂, p) (t, j) ∈ dom(x), (D.24a)

H(θ̂(t1, 1), 0) ≤ λmax(P )

∣∣∣θ̃(t1, 1)
∣∣∣
2

2
. (D.24b)

Therefore, using (D.23) together with (D.24), we obtain

∣∣∣θ̃(t, j)
∣∣∣
2

≤ λmax(P )

γ
min

{
1, e−α(t−2T )

} ∣∣∣θ̃(t1, 1)
∣∣∣
2

, (D.25)
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where we have used the fact that e−(j−1)Tα < e−α(t−2T ). Since the flow map in (6.10) is

globally Lipschitz, and t1 <∞, there exists c1 ∈ R>0 such that

∣∣∣θ̃(t, 0)
∣∣∣ ≤ c1

∣∣∣θ̃(0, 0)
∣∣∣ ∀t ≤ t1. (D.26)

Since θ̃(t, 1) = θ̃(t, 0), from (D.25) and (D.26), we obtain that

∣∣∣θ̃(t, j)
∣∣∣
2

≤ λmax(P )c1
γ

min
{
1, e−α(t−T̃ )

} ∣∣∣θ̃(0, 0)
∣∣∣
2

,

which is equivalent to (6.11) with c0 :=
λmax(P )c1

2
and T̃ = 2T . This concludes the proof.■

Proof of Lemma 6.3

a) By the definition of B(θ̂) we have that B(θ∗) = 0. Now, we prove that B(θ̂) = 0 =⇒

θ̂ = θ∗. Moreover, note that we can write

B(θ̂) = P θ̃. (D.27)

Since the data is SR with level of richness γ > 0, meaning that P ⪰ γIn, we obtain that

ker (P ) = {0n}. Consequently, from (D.27), we have that

B(θ̂) = 0 =⇒ θ̃ = 0n =⇒ θ̂ = θ∗.

This concludes the proof.

b) The fact that the vector field vanishes at θ∗ follows directly by construction. On the

other hand, from the item above B(θ̂) = 0 ⇐⇒ θ̂ = θ∗ whenever the data is SR, and
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thus, that the the following implication holds:

0 = −k
(
σA(s, θ̂) + ρB(θ̂)

) 1

|B(θ̂)| 12
=⇒ σA(s, θ̂) + ρB(θ̂) = 0. (D.28)

Rewriting (D.28) by using the fact that σA(s, θ̂) + ρB(θ̂) = Ω(s)θ̃

0 = Ω(s)θ̃. (D.29)

Therefore, using the fact that Ω(s) is positive definite via Lemma 6.2, it follows from

(D.29) that θ̃ = 0 =⇒ θ̂ = θ∗. This concludes the proof.

■

Proof of Lemma 6.4

a) We follow similar arguments as in [185]. First, by continuity of the ℓ2-norm we note

that

∣∣∣∣∣∣
lim
θ̂→θ∗

B(θ̂)∣∣∣B(θ̂)
∣∣∣
a

∣∣∣∣∣∣
= lim

θ̂→θ∗

∣∣∣∣∣∣
B(θ̂)∣∣∣B(θ̂)

∣∣∣
a

∣∣∣∣∣∣
,

= lim
θ̂→θ∗

1∣∣∣B(θ̂)
∣∣∣
a

∣∣∣B(θ̂)
∣∣∣,

= lim
θ̂→θ∗

∣∣∣B(θ̂)
∣∣∣
1−a

,

=

∣∣∣∣ lim
θ̂→θ∗

B(θ̂)

∣∣∣∣
1−a

= 0, ∀a ∈ (0, 1).

Hence, by positive-definiteness of the norm, we obtain that

lim
θ̂→θ∗

B(θ̂)∣∣∣B(θ̂)
∣∣∣
a = 0, ∀a ∈ (0, 1). (D.30)
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On the other hand, by assumption, we have that ϕ is uniformly bounded, and thus,

there exists M ∈ R≥0 such that
∣∣Ψ(s)ϕ(s)⊤

∣∣ ≤M . With this in mind, using (D.27) and

rewriting A in terms of its definition we find

∣∣∣B(θ̂)
∣∣∣
a

=
∣∣∣P θ̃

∣∣∣
a

≥ γa
∣∣∣θ̃
∣∣∣
a

, (D.31)

A(s, θ̂) =
ϕ(s)

(1 + ϕ(s)⊤ϕ(s))2

(
ϕ(s)⊤θ̂ − y(s)

)
= Ψ(s)Ψ(s)⊤θ̃ =⇒

∣∣∣A(s, θ̂)
∣∣∣ ≤

∣∣∣θ̃
∣∣∣, (D.32)

where we have used the fact that
∣∣aa⊤

∣∣ = |a|2 for all a ∈ Rn together with |Ψ(s)| ≤ 1.

Hence, using (D.32) and (D.31), we have that

0 ≤

∣∣∣A(s, θ̂)
∣∣∣

∣∣∣B(θ̂)
∣∣∣
a ≤ 1

γa

∣∣∣θ̂ − θ∗
∣∣∣
1−a

∀θ̂ ∈ Rn, a ∈ (0, 1). (D.33)

Moreover, using continuity of the ℓ2-norm together with (D.33), we obtain that

∣∣∣∣∣∣
lim
θ̂→θ∗

A(s, θ̂)∣∣∣B(θ̂)
∣∣∣
a

∣∣∣∣∣∣
= lim

θ̂→θ∗

∣∣∣A(s, θ̂)
∣∣∣

∣∣∣B(θ̂)
∣∣∣
a ≤ lim

θ̂→θ∗

1

γa

∣∣∣θ̂ − θ∗
∣∣∣
1−a

=
1

γa
lim
θ̂−θ∗

∣∣∣θ̂ − θ∗
∣∣∣
1−a

= 0,

for all a ∈ (0, 1). Therefore, by positive-definitness of the norm, we obtain

lim
θ̂→θ∗

A(s, θ̂)∣∣∣B(θ̂)
∣∣∣
a = 0 ∀a ∈ (0, 1). (D.34)

This concludes the proof.

b) Continuity for every θ̂ ∈ Rn such that B(θ̂) ̸= 0, follows directly from the continuity of

A and B. Hence, in order to show continuity we only need to analyze the cases where B

vanishes. As shown by Lemma 6.3, B vanishes only when θ̂ = θ∗. Hence, using Lemma
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6.4, with a = 1
2
, we have that

lim
θ̂→θ∗

−kσA(s, θ̂) + ρB(θ̂)
∣∣∣B(θ̂)

∣∣∣
1
2

= −kσ lim
θ̂→θ∗

A(s, θ̂)
∣∣∣B(θ̂)

∣∣∣
1
2

− kρ lim
θ̂→θ∗

B(s, θ̂)
∣∣∣B(θ̂)

∣∣∣
1
2

= 0, (D.35)

where in the second to last step we have used the continuity of A and B, together with the

fact that A and B vanish at θ̂ = θ∗. Equation (D.35), together with the fact that (6.12)

is defined to be 0 when θ̂ = θ∗, shows that the vector field describing the Finite-Time

Concurrent Learning dynamics is continuous at θ∗, and hence, by the aforementioned

arguments, that it is continuous everywhere. ■

Proof of Theorem 6.3

We consider the Lyapunov function V (θ̂) = 1
2

∣∣∣θ̃
∣∣∣
2

, whose time-derivative along the

trajectories of the Finite-Time Concurrent Learning dynamics satisfies:

V̇ (θ̂) = ∇V (θ̂)⊤
˙̂
θ

= −kθ̃⊤σA(s, θ̂) + ρB(θ̂)

|B(θ̂)| 12

= −kθ̃⊤ Ω(s)
∣∣∣B(θ̂)

∣∣∣
1
2

θ̃

≤ −kκ

∣∣∣θ̃
∣∣∣
2

∣∣∣B(θ̂)
∣∣∣
1
2

, (D.36)

where in the last step we have used (D.1). Now, note that

∣∣∣B(θ̂)
∣∣∣ =

(
θ̃⊤P⊤P θ̃

) 1
2 ≤

(
λ2max(P )

∣∣∣θ̃
∣∣∣
2
) 1

2

= λmax(P )
∣∣∣θ̃
∣∣∣ (D.37)

=⇒ 1
∣∣∣B(θ̂)

∣∣∣
1
2

≥ 1

λ
1
2
max(P )

∣∣∣θ̃
∣∣∣
1
2

,
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and thus, from (D.36) we obtain that

V̇ (θ̂) ≤ − kκ

λ
1
2
max(P )

∣∣∣θ̃
∣∣∣
2

∣∣∣θ̃
∣∣∣
1
2

= − kκ

λ
1
2
max(P )

∣∣∣θ̃
∣∣∣
3
2

= − kκ

λ
1
2
max(P )

(
2V (θ̂)

) 3
4

= − 23/4kκ

λ
1
2
max(P )

V (θ̂)
3
4

= − 23/4kγρ

λ
1
2
max(P )

V (θ̂)
3
4

Hence, it follows by [279, Thm. 4.2] that the set A0 is UGFTS with settling time function

T : R>0 → R>0 bounded as

T (θ̂(0)) ≤ 2

kγρ
λ1/2max(P )

√
|θ̂(0)− θ∗|. (D.38)

This concludes the proof. ■

Proof of Lemma 6.5

Continuity for every θ̂ ∈ Rn such that B(θ̂) ̸= 0, follows directly from the continuity

of A and B. Hence, in order to show continuity we only need to analyze the cases where

B vanishes. As shown by Lemma 6.3, B vanishes only when θ̂ = θ∗. Hence, using Lemma

6.4, for all a ∈ (0, 1) we have that

lim
θ̂→θ∗

−kσA(s, θ̂) + ρB(θ̂)∣∣∣B(θ̂)
∣∣∣
a = −kσ lim

θ̂→θ∗

A(s, θ̂)∣∣∣B(θ̂)
∣∣∣
a − kρ lim

θ̂→θ∗

B(s, θ̂)∣∣∣B(θ̂)
∣∣∣
a = 0 (D.39)
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lim
θ̂→θ∗

−kσA(s, θ̂) + ρB(θ̂)∣∣∣B(θ̂)
∣∣∣
−a = lim

θ̂→θ∗
−k
(
σA(s, θ̂) + ρB(θ̂)

) ∣∣∣B(θ̂)
∣∣∣
a

= −k (σA(s, θ∗) + ρB(θ∗)) |B(θ∗)|−a

= 0, (D.40)

where in the second to last step we have used the continuity of A and B, together with

the fact that A and B vanish at θ̂ = θ∗. Equations (D.39) and (D.40), and the fact that

(6.13) is defined to be 0 when θ̂ = θ∗, show that the vector field describing the Fixed-Time

Concurrent Learning dynamics is continuous at θ∗, and hence, by the previous arguments,

that it is continuous everywhere. ■

Proof of Theorem 6.4

We consider the Lyapunov function V (θ̂) = Ṽ (θ̂)2

2
, where Ṽ is an auxiliary function

defined as Ṽ (θ̂) := 1
2

∣∣∣θ̃
∣∣∣
2

. Hence, the time-derivative of V along the trajectories of the

Fixed-Time Concurrent Learning dynamics satisfies

V̇ (θ̂) = Ṽ (θ̂) ˙̃V (θ̂)

= −kṼ (θ̂)θ̃⊤
(
σA(s, θ̂) + ρB(θ̂)

|B(θ̂)|a
+
σA(s, θ̂) + ρB(θ̂)

|B(θ̂)|−a

)

= −kṼ (θ̂)θ̃⊤
(

Ω(s)θ̃

|B(θ̂)|a
+

Ω(s)θ̃

|B(θ̂)|−a

)

= −kṼ (θ̂)θ̃⊤Ω(s)θ̃

(
1

|B(θ̂)|a
+

1

|B(θ̂)|−a

)

≤ −kκṼ (θ̂)
∣∣∣θ̃
∣∣∣
2
(

1

|B(θ̂)|a
+

1

|B(θ̂)|−a

)
, (D.41)
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where in the last step we have used (D.1). Now, note that

∣∣∣B(θ̂)
∣∣∣ ≤ λmax(P )

∣∣∣θ̃
∣∣∣ =⇒ 1∣∣∣B(θ̂)

∣∣∣
a ≥ 1

λamax(P )
∣∣∣θ̃
∣∣∣
a ,

∣∣∣B(θ̂)
∣∣∣
a

=
∣∣∣θ̃⊤P⊤P θ̃

∣∣∣
α
2 ≥ γa

∣∣∣θ̃
∣∣∣
a

,

and thus, from (D.41), we obtain that

V̇ (θ̂) ≤ −kκṼ (θ̂)
∣∣∣θ̃
∣∣∣
2


 1

λamax(P )

1∣∣∣θ̃
∣∣∣
a +

γa∣∣∣θ̃
∣∣∣
−a




= −kκṼ (θ̂)

(
1

λamax(P )

∣∣∣θ̃
∣∣∣
2−a

+ γa
∣∣∣θ̃
∣∣∣
2+a
)

= −kκṼ (θ̂)

(
1

λamax(P )

(
2Ṽ (θ̂)

)1−a
2
+ γa

(
2Ṽ (θ̂)

)1+a
2

)

= − 21−
a
2 kκ

λamax(P )
Ṽ (θ̂)2−

a
2 − 21+

a
2 kκγaṼ (θ̂)2+

a
2

= −22−3a
4 kκ

λamax(P )
V (θ̂)1−

a
4 − 22+3a

4 kκγaV (θ̂)1+
a
4

= −22−3a
4 kγρ

λamax(P )
V (θ̂)1−

a
4 − 22+3a

4 kργa+1V (θ̂)1+
a
4 .

The last inequality implies UGFXS via [203, Lemma 1]. Moreover, by [280, Lemma 2], a

sharp bound T ∗ on the settling time function T can be computed as

T ∗ =
π

2aγρk

√
λamax(P )

γa
. (D.42)

This concludes the proof. ■
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Appendix E

Proofs of Chapter 7

Proof of Theorem 7.1

The result of Theorem 7.1 can be established by showing that all the assumptions

needed to apply [111, Thm.1] are satisfied in a neighborhood of the optimal incentive. First,

note that, by Assumption 7.1, the plant has a well-defined steady state input-to-output

map φ̃. Also, under Assumption 7.2, this response map is strictly convex, and thus has

a unique minimizer. Since under Assumption 7.4 the average dynamics of (7.11) can

be computed to be ˙̂u = −k∇φ̃(u) +O(εa) (see, e.g., [25, Sec. 7]), it follows that for εa

sufficiently small, in a neighborhood of the optimal incentive u∗ the average dynamics

converge to a neighborhood of u∗. By averaging theory and the results of [111, Thm.1],

the original system retains the stability properties in a practical sense. The result follows

by using a (local) singular perturbation argument to interconnect the dynamics (7.11)

with the dynamics (7.5). ■

Proof of Theorem 7.2

We prove Theorem 7.2 following a similar approach as in Theorem 7.1. In particular,

first note that the hybrid dynamics (7.12) are well-posed in the sense of [33, Sec. 6] because

the sets C2 and D2 are closed, and the maps F2 and G2 are continuous on these sets.

Moreover, neglecting the socio-technical dynamics, and using Assumption 7.4, the average
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dynamics of (7.12) correspond to an O(εa)-perturbed version of the hybrid Nesterov

gradient dynamics studied in [25] for the model-free optimization of static maps. Under

Assumptions 7.1, 7.2 or 7.3, and 7.4, these average hybrid dynamics render the set

{(û, p, τ) : û = p = argmin φ̃(u), τ ∈ [T0, T ]} (locally) practically asymptotically stable.

By using, sequentially, averaging and singular perturbation theory for perturbed hybrid

systems [25, Thm. 7], we obtain the desired result for the interconnection between the

controller and the socio-technical dynamics, which are stable under Assumption 7.1. ■

Proof of Theorem 7.3

Neglecting the socio-technical dynamics, the average dynamics of (7.13) are given

by a perturbed version of the fixed-time gradient flows studied in [185]. Under Assumption

7.3, these dynamics render the optimal incentive fixed-time stable. A direct application

of averaging theory for non-smooth systems [180] allows us to conclude practical (with

respect to Λ̃u) fixed-time stability for the ISC interconnected with the socio-technical

dynamics (7.1). ■
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Appendix F

Proofs of Chapter 8

Before presenting the proofs of our main results we start by establishing the following

auxiliary Lemma.

Lemma F.1. Under the conditons of Lemma 8.1, for every z0 = (x0, µ0) ∈

(Cx ∪Dx)×Xµ, it follows that

a) ẑ ∈ SĤ (z0) =⇒ ẑ ◦ Dµ0 ∈ SH (z0) with dom(ẑ ◦ Dµ0) = D−1
µ0

(dom(ẑ)), and

b) z ∈ SH (z0) =⇒ z ◦ D−1
µ0

∈ SĤ (z0) with dom(z ◦ D−1
µ0
) = Dµ0 (dom(z)),

where D−1
µ0

:= D−1
µ0

× idZ≥0
for all µ0 ∈ Xµ. □

Proof: (a) Let z0 := (x0, µ0) ∈ (Cx ∪Dx)×Xµ, and ẑ be a maximal solution to the

HDS Ĥ from z0. Then, by the definition of solutions to hybrid dynamical systems, for each

j ∈ Z≥0 such that the interior of Îj := {s ≥ 0 : (s, j) ∈ dom(ẑ)} is nonempty, ẑ satisfies

d

ds
ẑ(s, j) ∈ Fx (x̂(s, j))×

{
1

µ̂(s, j)
Fµ(µ̂(s, j))

}
, (F.1)

for almost all s ∈ Îj. Now, consider the hybrid signal z := ẑ ◦ Dµ0 . Then, using the chain

rule, the signal z satisfies

d

dt
z (t, j) =

d

dt
(ẑ ◦ Dµ0) (t, j)
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=
d

ds
ẑ(s, j)

∣∣∣
s=Dµ0 (t)

dDµ0

dt
(t), (F.2)

for almost all t ∈ D−1
µ0

(
Îj

)
=: Ij. Since

dDµ0
dt

(t) = (û ◦ Dµ0)(t) for all t ∈ Tµ0 by

assumption. Noting that µ̂ does not change during the jumps of (8.7), and using the fact

that suptdom(ẑ) = ∞, it follows that µ(t, j) = (µ̂ ◦ Dµ0) (t, j) = (û ◦ Dµ0)(t) for all t ∈ Ij.

Therefore, using (F.1) and (F.2) we obtain that

d

dt
z(t, j) = µ (t, j)Fx ((x̂ ◦ Dµ0) (t, j))× Fµ ((µ̂ ◦ Dµ0) (t, j))

= µ (t, j)Fx (x(t, j))× Fµ (µ(t, j)) , (F.3)

for almost all t ∈ Ij . Equation (F.3) implies that z satisfies the continuous-time dynamics

of the HDS H for almost all t ∈ Ij . Moreover, note that by the definition of Ij , we directly

get that Dµ0(tj) = sj and Dµ0(tj) = sj where tj := min Ij, tj = sup Ij, sj := min Îj,

sj = sup Îj . Similarly, we have that x̂(s, j + 1) ∈ G(x̂(s, j)) for every (s, j) ∈ dom(x̂) such

that (s, j + 1) ∈ dom(x̂), and therefore x(t, j + 1) ∈ G(x(t, j)) since the HDSs Ĥ and the

HDS H have the same discrete-time dynamics. Thus z is a maximal solution to H. Using

these arguments, we also obtain that

dom (ẑ ◦ Dµ0) =

supj dom(z)⋃

j=0

Ij × {j}

=

supj dom(ẑ)⋃

j=0

D−1
µ0

(
Îj × {j}

)
= D−1

µ0
(dom(ẑ)) .

(b) Follows by the same ideas of the proof of item (a), via the use of the inverse mapping

D−1
c . ■
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Proof of Lemma 8.1

A first consequence of Lemma F.1 is that it allows us to certify that the map W

introduced in (8.9) is well-defined. Indeed, let ẑ ∈ SĤ be arbitrary. Then, by the definition

of solutions to hybrid dynamical systems, there exists z0 = (x0, µ0) ∈ (Cx ∪Dx)×Xµ such

that ẑ(0, 0) = z0. Thus, using Lemma F.1, we obtain that W(ẑ) = ẑ ◦Dµ0 ∈ SH(z0) ⊂ SH,

meaning that W indeed maps SĤ into SH. Using these facts, we are now prepared to

present the proofs of our main results.

Now, to prove that W is a bijection it suffices to establish the existence of both a

left and a right inverse. For this purpose, consider the following map:

Ŵ : SH −→ SĤ (F.4a)

z = (x, µ) 7−→ z ◦ D−1
µ(0,0), (F.4b)

which is well-defined by the results of Lemma F.1. Then, for every z ∈ SH, we have that

(
W ◦ Ŵ

)
(z) = W

(
Ŵ(z)

)

= W
(
z ◦ D−1

µ(0,0)

)

= z ◦ D−1
µ(0,0) ◦ Dµ(0,0)

= z ◦ idR≥0×Z≥0

= z =⇒ W ◦ Ŵ = idSH .

Similarly, it follows that Ŵ ◦W = idSĤ
. Hence, we have that W−1 = Ŵ, and thus that

W is a bijection between SH and SĤ. The fact that dom (W(ẑ)) = D−1
µ̂(0,0)(dom(ẑ)) follows

directly from the results of Lemma F.1. ■
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Proof of Theorem 8.1

Let z0 = (x0, µ0) ∈ (Cx ∪Dx)×Xµ and z ∈ SH(z0). Then, by Lemma 8.1 it follows

that there exists ẑ ∈ SĤ such that z = W(ẑ), where Ŵ is the inverse of W as defined in

(F.4). Therefore, we obtain that

|z(t, j)|A0 = |W(ẑ)(t, j)|A0

=
∣∣(ẑ ◦ Dµ̂(0,0)

)
(t, j)

∣∣
A0

=
∣∣ẑ
(
Dµ̂(0,0)(t), j

)∣∣
A0

≤ β
(
|ẑ(0, 0)|A0

, Dµ̂(0,0)(t), j
)
, (F.5)

for all (t, j) ∈ dom(z), where in the last step we used that A0 is β-UGAS for Ĥ. Addition-

ally, it follows that

z0 = z(0, 0) = W(ẑ)(0, 0) = (ẑ ◦ Dµ̂(0,0))(0, 0)

= ẑ(Dµ̂(0,0)(0), 0)

= ẑ(0, 0), (F.6)

where we used that Dµ̂(0,0)(0) = 0 by Assumption 8.1. Now, by the definition of solutions

to hybrid dynamical systems we necessarily have that ẑ(0, 0) = (x̂(0, 0), µ̂(0, 0)) ∈ (Cx ∪

Dx)× Xµ. In particular, since A0 = A× Xµ, this implies that |ẑ(0, 0)|A0 = |x̂(0, 0)|A =

|x(0, 0)|A = |x0|A, where the last equality follows by (F.6). By replacing this expression

in (F.5), and using the fact that µ̂(0, 0) = µ(0, 0) = µ0 by (F.6), we obtain the following

bound:

|z(t, j)|A0 ≤ β(|x0|A,Dµ0(t), j), (F.7)
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for all (t, j) ∈ dom(z). Since z = (x, µ) ∈ SH(z0), by the definition of solutions to hybrid

dynamical systems, and the construction of the jump and flow sets of the HDS H, it

follows that µ(t, j) ∈ Xµ for all (t, j) ∈ dom(z). Then, using this fact in (F.7) finally yields

|x(t, j)|A ≤ β(|x0|A,Dµ0(t), j) (F.8)

for all (t, j) ∈ dom(z). ■

Proof of Proposition 8.1

The bound in (8.14) follows directly by the results of Theorem 8.1, and leveraging

the fact that A0 is βg-UGAS for Ĥg, as discussed above the statement of Proposition 8.1.

To obtain Inequality (8.15), let z0 = (x0, µ0) ∈ Rn ×Xµ, and z = (x, µ) ∈ SHg(z0)

be arbitrary. By Lemma 8.1, it follows that there exists ẑ = (x̂, µ̂) ∈ SĤg
such that

z = W(ẑ). Using this fact, and letting Πx be the natural projection that selects the

x̃-coordinates from a point (x̃, µ̃) ∈ Rn ×Xµ, we obtain the following:

f(x(t))− f ⋆ ≤ f(Πx(W(ẑ)))− f ⋆

= f(x̂ ◦ Dµ0(t))− f ⋆

≤ V0
Dµ0(t)

,

for all t ∈ dom(z), where in the last step we have employed bound (8.13). This obtains

the result. ■

Proof of Proposition 8.2

Using [24, Theorem 3.1.a)], the fact that for any solution ẑ = (x̂, µ̂) ∈ SĤm
we have

|µ̂(s, j)|Xµ = 0 for all (s, j) ∈ dom(ẑ), and since the x̂ dynamics are uncoupled from the

µ̂ dynamics, it follows that there exists βm ∈ KLL such that A0 is βm-UGAS for Ĥm.
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Also by using the completeness of solutions result of [24, Theorem 3.1.a)], together with

the fact that Fµ satisfies Assumption 8.1, it follows that Assumption 8.2 is also satisfied.

These results imply Inequality (8.17) via Theorem 8.1.

Now, by the same arguments of [24, Sec. IV.A], it follows that for every solution

ẑ = ((x̂1, x̂2, x̂3), µ̂) ∈ SĤm
there exists a monotonously decreasing sequence of positive

numbers {vj}∞j=1 such that the following bound holds

f(x̂1(s, j))− f ⋆ ≤ vj
x̂3(s, j)2

for every (s, j) ∈ dom(ẑ). Now, let sj := min{s : (s, j) ∈ dom(ẑ)}. Noting that

d
ds
x̂3(s, j) =

1
2
, and since x̂3(sj, j) = T , by the definition of the jump map Gm, it follows

that x̂3(s, j)
2 =

(
1
2
(s− sj) + T

)2
> 1

4
(s− sj)

2 for all (s, j) ∈ dom(ẑ). This result, together

with the above inequality yields the following bound

f(x̂1(s, j))− f ⋆ ≤ 4vj
(s− sj)

2
.

Following the same arguments as in the proof of Proposition 8.1, and the relations between

sj and tj := min{t : (t, j) ∈ dom(W(ẑ))} obtains Inequality (8.18). ■
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Appendix G

Proofs of Chapter 9

G.1 Proofs of Section 9.1

The results below follow directly by computations and/or straightforward extensions

or specializations of existing results in the literature.

Proof of Lemma 9.1

By direct integration, we have that:

∫ µk(t)

µ0

dµk

µ
1+ 1

k
k

=

∫ t

0

k

T
dt =⇒ − kµ

−1
k
k

∣∣∣
µk(t)

µ0
=
k

T
t.

Thus, it follows that k
(
−µk(t)

−1
k + µk(0)

−1
k

)
= k

T
t, and:

1

µk(t)
1
k

=
1

µk(0)
1
k

− t

T
=
T − tµk(0)

1
k

Tµk(0)
1
k

,

from which we obtain the result. ■

Proof of Lemma 9.3

By direct integration, we have that:

∫ µ̂k(t)

µ0

dµ̂k

µ̂
1
k
k

=

∫ t

0

k

T
dt =⇒ 1

1− 1
k

µ̂
1− 1

.
k

k

∣∣∣
µ̂k(t)

µ0
=
k

T
t.
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Therefore, we obtain k
k−1

(
µ̂
1− 1

k
k (t)− µ

1− 1
k

0

)
= k

T
t, and:

µ̂k(t) =

(
k − 1

T
t+ µ

k−1
k

0

) k
k−1

.

This obtains the result. ■

Proof of Proposition 9.1

(P1) Follows by the monotonicity of ωk(·, ·) in its first argument, combined with the limit

limt→ΥT,k µk(t) = ∞.

(P2) For k > 1, the result follows by direct computation. For k = 1, the result is obtained

by the properties of the logarithm.

(P3) By definition, the equality Tk(0) = 0 holds for all k ∈ R≥1. For k = 1, by direct

computation, we have: dT1(t)
dt

= T
µ1(t)

µ̇1(t) = µ1(t). For k > 1, by the chain rule, we obtain:

dTk(t)
dt

=
∂ωk(b, µk(0))

∂b

∣∣∣∣
b=µk(t)

µ̇k = µk(t).

(P4) For k = 1, we have that µ1(t) =
µ0T
T−µ0t . It then follows that s =

(
T1 ◦ T −1

1

)
(s) =

T ln

(
µ1(T −1(s))

µ0

)
. Solving for T −1

1 (s) leads to T −1
1 (s) = ΥT,1

(
1− e−

s
T

)
. For k > 1, let

yk := T −1
k . By using (9.4), and the inverse function theorem, we obtain thatdyk

ds
=

(ΥT,k−y)
k

Tk
.

Then, by direct integration and using the fact that yk(0) = 0, we obtain the following

equality ΥT,k − yk(s) =
(

(k−1)s
Tk

+Υ1−k
T,k

) 1
1−k

. Solving for T −1
k (s), we obtain that T −1

k (s) =

ΥT,k −ΥT,k

(
1 + (k−1)s

ΥT,kµ0

) 1
1−k

.

(P5) Follows directly by the inverse function theorem.

(P6) For k = 1, using the equality ln(1− x) =
∑∞

l=1
−1
l
xl, |x| < 1, we obtain that

T1(t) = µ0t +
∑∞

l=2
1
l
µl0t

lT 1−l, for all tµ0 < T . Letting T → ∞, the second term in this

expression vanishes, and we obtain that the equality limT→∞ T1(t) = µ0t holds for all
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(t, µ0) ∈ R≥0 × R≥1. For k > 1, from Remark 9.5 it follows that

Tk(t) =
Tµ

k−1
k

0

k − 1



(
1− tµ

1
k
0

T

)1−k

− 1


 . (G.1)

Now, using the binomial theorem we have that

(
1− tµ

1
k
0

T

)1−k

− 1 =
(k − 1)tµ

1
k
0

T
+

∞∑

l=2

gk,l

(
tµ

1
k
0

T

)l

,

for all tµ
1
k
0 < T , and where gk,l =

(k−1)k(k+1)···(k+l−2)
l!

. Thus, for all tµ
1
k
0 < T , equality (G.1)

can be written as Tk(t) = µ
k−1

k2

0 t+
∑∞

l=2
gk,l
k−1

tlµ
(k−1)l

k2

0 T 1−l. Letting T → ∞, the second term

in this expression vanishes. Thus, it follows that the limit limT→∞ Tk(t) = µ
k−1

k2

0 t holds for

all (t, µ0) ∈ R≥0 × R≥1. ■

Proof of Proposition 9.2

We prove each item separately:

(a) Let (ẑ, û) be a maximal solution pair of Ĥ from z0. Then, for each j ∈ Z≥0 such that

the interior of Îj := {s ≥ 0 : (s, j) ∈ dom(ẑ)} is nonempty, ẑ satisfies:

d

ds
ẑ(s, j) ∈ 1

µ̂k(s, j)
F (ẑ(s, j), û(s, j)), (G.2)

for almost all s ∈ Ij. Using the chain rule, z satisfies:

d

dt
z(t, j) =

d

dt
ẑ(Tk(t), j) =

d

ds
ẑ(s, j) · Ṫk(t),

and since Ṫk(t) = µk(t, j) for all t ∈ [0,ΥT,k) due to (9.7), and µk does not change during
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the jumps (9.3d), using (G.2) we obtain:

d

dt
z(t, j) = µk(t, j)

d

ds
ẑ(s, j) ∈ µk(t, j)

µ̂k(s, j)
F (ẑ(s, j), û(s, j)).

By construction, µk(t, j) = µ̂k(s, j), u(t, j) = û(s, j) and z(t, j) = ẑ(s, j) via the time

dilation s = Tk(t). Thereforc, substituting in the above inclusion we obtain that ż(t, j)

satisfies (9.3b) for almost all t ∈ Ij := {t ≥ 0 : (t, j) ∈ dom(z)}. Moreover, note

that Tk(tj) = sj and Tk(tj) = sj where tj := min Ij, tj = sup Ij, sj := min Îj, sj = sup Îj.

Similarly, for every (s, j) ∈ dom(ẑ) such that (s, j+1) ∈ dom(ẑ), we have that ẑ(s, j+1) ∈

G(ẑ(s, j)), and therefore z(t, j + 1) ∈ G(z(t, j)). Thus (z, u) is a maximal solution to H.

(b) Let (z, u) be a maximal solution pair of H from z0. Using again the chain rule, and

the definition of ẑ, we obtain that for each j for which the interior of Ij := {t ≥ 0 : (t, j) ∈

dom(z)} is nonempty, the signal ẑ satisfies:

d

ds
ẑ(s, j) =

dz

dT −1
k

dT −1
k

ds
=

ż(t, j)

µk(t, j)
∈ F (z(t, j), u(t, j))

µk(t, j)
,

where we used (9.3b) and (9.9). Note that by construction ẑ(s, j) = z(t, j), µ̂k(s, j) =

µk(t, j), and û(s, j) = u(t, j) via the time contraction t = T −1
k (s). Then, by substituting

in the above expression we obtain that ẑ satisfies ˙̂zs ∈ 1
µ̂k
F (ẑ, ûk) for almost all s ∈ Îj =

{s ≥ 0 : (s, j) ∈ dom(ẑ)}. Moreover, note that T −1
k (sj) = tj and T −1

k (sj) = tj where

tj := min Ij , tj = sup Ij , sj := min Îj , sj = sup Îj . Since for every (t, j) ∈ dom(z) such that

(t, j+1) ∈ dom(z), we have that z(t, j+1) ∈ G(z(t, j)), and therefore ẑ(s, j+1) ∈ G(ẑ(s, j)),

it follows that (ẑ, û) is a maximal solution pair to Ĥ. ■

396



G.2 Proofs of Section 9.2

Proof of Lemma 9.4

Let τd > 0, N0 ≥ 1, and σ(t) ∈ ΣADT(τd, N0). Then, it follows that

N(t2, t1) ≤
1

τd
(t2 − t1) +N0, (G.3)

for all t1 ≤ t2. We prove that expression (G.3) can be upper bounded by the right-hand

side of (9.20).

Case k = 1: Assume that t1, t2 ∈ [0,ΥT,k) and define X =
ΥT,k−t1
ΥT,k−t2 , where ΥT,1 =

Tµ−1
0 and µ0 ≥ 1 fixed. Then, X ≥ 1 and:

t2 − t1 = (ΥT,1 − t1)

(
1− 1

X

)
.

Now, fix t1 and define f(X) = ln(X) − T−1(ΥT,1 − t1)
(
1− 1

X

)
. Since t1 satisfies t1 ≤

ΥT,1 ≤ T by assumption, it follows that there exists δt1 ∈ [0, 1] such that:

f(X) = ln(X)− δt1

(
1− 1

X

)
.

By noting that f(1) = 0, and since X ≥ 1, it follows that the derivative of f satisfies:

f ′(X) =
1

X

(
1− δt1

X

)
≥ 0,

for all δt1 ∈ [0, 1]. Thus, f(X) ≥ 0 for all X ≥ 1 and t1 ≤ ΥT,1. Equivalently, by using the

definition of X, it follows that:

T ln

(
ΥT,1 − t1
ΥT,1 − t2

)
− (t2 − t1) ≥ 0,
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for all 0 ≤ t1 ≤ t2 < ΥT,1, where we have used the definition of X. Using this bound in

(G.3) yields:

N(t2, t1) ≤
T

τd
ln

(
ΥT,1 − t1
ΥT,1 − t2

)
+N0,

for all 0 ≤ t1 ≤ t2 < ΥT,1, which implies that σ(t), when restricted to [0,ΥT,1), satisfies

the bound (9.20) for k = 1.

Case k > 1: Assume that t1, t2 ∈ [0,ΥT,k), with ΥT,k = Tµ
− 1
k

0 , T > 0 and µ0 ≥ 1.

Let ∆ = t2 − t1, and define

f(∆) = Tk(t1 +∆)− Tk(t1)−∆, ∆ ∈ [0,ΥT,k).

Then, by using the result of Proposition 9.1-(P3) the derivative of f satisfies:

f ′(∆) = µk(t1 +∆)− 1,

for all t1,∆ ∈ [0,ΥT,k). Since µk(t) ≥ 1 for all t ∈ R≥0, the previous equality implies that

f ′(∆) ≥ 0. This result, together with the fact that f(0) = 0, implies that f(∆) ≥ 0 for all

t1,∆ ∈ [0,ΥT,k). Equivalently, by using the definition of ∆ we obtain:

0 ≤ Tk(t2)− Tk(t1)− (t1 − t2)

=⇒ (t1 − t2) ≤ ωk(µk(t2), µk(t1)),

where the implication follows from the result of Proposition 9.1-(P2). Using this bound in

(G.3) yields:

N(t2, t1) ≤
1

τd
ωk(µk(t2), µk(t1)) +N0,
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for all 0 ≤ t1 ≤ t2 < ΥT,1, which implies that σ(t), when restricted to [0,ΥT,1), satisfies

the bound (9.20) for k ∈ Z≥1. ■

Proof of Lemma 9.5

The case k = 1 follows directly by the definition of T1 and Remark 9.3. For k > 1,

consider expanding the right-hand side of (9.20):

N(t2, t1) ≤
T

τd

(
µk(t2)

k−1
k

k − 1
− µk(t1)

k−1
k

k − 1

)
+N0

=
T k

τd(k − 1)

(
(ΥT,k − t1)

k−1 − (ΥT,k − t2)
k−1

((ΥT,k − t2) (ΥT,k − t1))
k−1

)
+N0.

Taking the limit as k → 1, one obtains (9.21), see also Remark 9.3. On the other hand, when

k ∈ Z>1, the Binomial theorem can be used to write (ΥT,k−ti)k−1 =
∑k−1

ℓ=0 bk,lΥ
k−1−ℓ
T,k (−ti)ℓ,

for i ∈ {1, 2}, where bk,l := (k−1)!
ℓ!(k−ℓ−1)!

are the so-called Binomial coefficients. Let

S :=
k−1∑

ℓ=0

bk,lΥ
k−1−ℓ
T,k (−t1)ℓ −

k−1∑

ℓ=0

bk,lΥ
k−1−ℓ
T,k (−t2)ℓ

=
k−1∑

ℓ=1

bk,lΥ
k−1−ℓ
T,k (−t1)ℓ −

k−1∑

ℓ=1

bk,lΥ
k−1−ℓ
T,k (−t2)ℓ

= bk,1Υ
k−2
T,k (t2 − t1) +

k−1∑

ℓ=2

bk,lΥ
k−1−ℓ
T,k

(
(−t1)ℓ − (−t2)ℓ

)

= bk,1Υ
k−2
T,k (t2 − t1) +

k−1∑

ℓ=2

(−1)ℓ+1bk,lΥ
k−1−ℓ
T,k

(
tℓ2 − tℓ1

)
.

Therefore, the BUk-ADT bound can be written as

N(t2, t1) ≤
T k

τd(k − 1)

(
S

((ΥT,k − t2)(ΥT,k − t1))
k−1

)
+N0

=
γk(t1, t2)

τd

[
(t2 − t1) +

k−1∑

ℓ=2

c̃ℓ,k
(
tℓ2 − tℓ1

)
]
+N0,
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where

c̃ℓ,k = (−1)ℓ+1bk,lΥ
k−1−ℓ
T,k

(
bk,1Υ

k−2
T,k

)−1
= (−1)ℓ+1 bk,l

bk,1
Υ1−ℓ
T,k ,

and

γk(t1, t2) =
bk,1T

kΥk−2
T,k

(k − 1)

(
1

(ΥT,k − t2)(ΥT,k − t1)

)k−1

=
T k

ΥT,k

[
ΥT,k

(ΥT,k − t2) (ΥT,k − t1)

]k−1

= µ0

[
Υ2
T,k

(ΥT,k − t2) (ΥT,k − t1)

]k−1

where we have used the fact that bk,1 = k − 1. ■

Proof of Lemma 9.6

Proof: The HDS H given by (9.3) has state z = (ψ, µk) ∈ Rn+3 with ψ = (x, τ, q) ∈

Rn+2, and dynamics

z ∈ C := Rn × [0, N0]×Qs × R≥1 (G.4a)

ż =




ẋ

τ̇

q̇

µ̇k




∈ F (z, u) :=




µk · fq(x, µk, u, τ)
[
0,
µk
τd

]

0

k

T
µ
1+ 1

k
k




, (G.4b)

z ∈ D := Rn × [1, N0]×Qs × R≥1, (G.4c)
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z+ =




x+

τ+

q+

µ+
k




∈ G(z) :=




Rq(x)

τ − 1

Qs\{q}

µk




. (G.4d)

Since the function µk generated by (G.4) is precisely (9.4), any solution z :

dom(z) → Rn+3 to (G.4) will necessarily satisfy lengtht(dom(z)) ≤ ΥT,k. By Propo-

sition 9.2, the corresponding HDS (9.11) in the (s, j)-time scale is given by:

ẑ ∈ C, ˙̂zs =




˙̂xs

˙̂τs

˙̂qs

˙̂µks




∈ F̂T (ẑ, û) :=




fq̂(x̂, µ̂k, û, τ̂)
[
0,

1

τd

]

0

k

T
µ̂

1
k
k




(G.5a)

ẑ ∈ D, ẑ+ ∈ G(ẑ), (G.5b)

where C, D, and G were defined in (G.4). Since Assumption 9.3 ensures that the state x̂

does not exhibit finite escape times, by noting that the dynamics of (τ̂ , q̂) are decoupled

from µ̂k, and since µ̂k remains constant during jumps, we can directly obtain µ̂k(s, j) for

any (s, j) ∈ dom(ẑ) using Proposition 9.3: µ̂k(s, j) =
(

(k−1)
T

t+ µ̂(sj, j)
k−1
k

) k
k−1

, for k > 1,

and µ̂k(s, j) = µ̂k(sj, j)e
s
T , for k = 1, where sj := min{s ≥ 0 : (s, j) ∈ dom(ẑ)}. By [33,

Ex. 2.15] it follows that every solution ẑ of (G.5) has a HTD that satisfies the ADT bound

in the (s, j)-time scale:

j2 − j1 ≤
1

τd
(s2 − s1) +N0, (G.6)

for all (s1, j1), (s2, j2) ∈ dom(ẑ), with s2 > s1 ≥ 0. Additionally, by [33, Ex. 2.15], for

every hybrid time domain satisfying (G.6), there exists a solution to the HDS (G.5) having
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said hybrid time domain. Thus, it remains to show that (G.6) is equivalent to (9.20)

in the original (t, j)-time scale. Using the time scaling function Tk given by (9.6), for

any solution z of (G.4) and all (t1, j1), (t2, j2) ∈ dom(z) with 0 ≤ t1 < t2, we have that

(s1, j1), (s2, j2) ∈ dom(ẑ), where s1 = Tk(t1), s2 = Tk(t2), and 0 ≤ s1 < s2. Substituting in

(G.6):

j2 − j1 ≤
1

τd
(Tk(t2)− Tk(t1)) +N0.

The result follows now by using (P2) in Proposition 9.1. ■

Proof of Theorem 9.1

The proof has three main steps.

Step 1: Stability of the “target” HDS Ĥ in the (s, j)-Hybrid Time Scale: The overall HDS

is given by (G.4), which in the (s, j)-time scale is given by (G.5). To study the stability

properties of system (G.5), we consider the Lyapunov function W (ẑ) := Vq̂(x̂, τ̂)e
ln(r)τ̂ .

By Assumption 9.3, this function satisfies c|ẑ|pA ≤ W (ẑ) ≤ c|ẑ|pA, ∀ ẑ ∈ C ∪ D, with

c := minp∈Q c1,p, c := eln(r)N0c2, and c2 := maxp∈Q c2,p. When ẑ ∈ C, for all η ∈ [0, 1/τd],

we have:

⟨∇W (ẑ), F̂T (ẑ, û)⟩ =
〈
∇Vq̂(x̂, τ̂),




fq̂(x̂, û, τ̂)

η



〉
eln(r)τ̂

+ ⟨ln(r)Vq̂(x̂, τ̂)eln(r)τ̂ , ˙̂τs⟩

≤ −c3
(
1− ln(r)

c3τd

)
W (ẑ) + c4e

ln(r)N0∆(µ̂k)|û|p,

where c3 := minp∈Q cp,3, c4 := maxp∈Q cp,4, and where we used item (b) in Assumption 9.3.
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On the other hand, when ẑ ∈ D we can use Assumption 9.3-(d) to obtain

W (ẑ+) = Vq̂+(x̂
+, τ̂+)eln(r)τ̂

+

= Vq̂+ (Rq̂(x̂), τ̂ − 1) eln(r)(τ̂−1)

≤ χVq̂(x̂, τ̂)e
ln(r)(τ̂−1) =

χ

r
W (ẑ).

Thus, using the definition of r, during jumps we obtain

W (ẑ+)−W (ẑ) ≤ −
(
1− χ

max{1, χ}

)
W (ẑ) ≤ 0

Using Lemma G.3, we conclude that every solution ẑ of system (G.5) satisfies:

|ẑ(s, j)|A ≤ κ1e
−κ2(s+j)|ẑ(0, 0)|A + κ3 · sup

0≤ζ≤s
|∆̂(ζ)|, (G.7)

for all (s, j) ∈ dom(ẑ), where κ1 = (c/c)1/p e
λ
2p

τd
1+τd

N0 κ2 = λτd/(2p(1 + τd)), κ3 =
(
2c4r

N0/[λc]
)1/p

, λ = c3 − ln(r)/τd, and ∆̂(s) := ∆(µ̂k(s))û(s). Moreover, when ∆(µ̂k) =

µ̂−ℓ
k , via Lemma G.4, there exists βk ∈ KL such that every solution ẑ of system (G.5)

satisfies:

|ẑ(s, j)|A ≤ βk

(
κ1|ẑ(0, 0)|Ae−κ2(s+j) + κ3|û|(s,j), s

)
, (G.8)

for all (s, j) ∈ dom(ẑ), with κ1 := κ1, κ2 :=
κ2
2
, κ3 := 2κ3.

Step 2: PT-ISSF of the HDS in the (t, j) - Time Scale: We now use the properties of

the solutions ẑ of system (G.5) to establish properties for the solutions z of system (G.4).

First, we use Proposition 9.2 and let s = Tk(t), which yields e−κ2(s+j) = e−κ2(Tk(t)+j),

and |ẑ(Tk(t), j)|A = |z
(
T −1
k (Tk(t)), j

)
|A = |z(t, j)|A. Then, by substituting in (G.7) and

noting that Tk(0) = T −1
k (0) = 0, it follows that when ∆ = 0 or ∆ = 1, every solution

z = (ψ, µk) of the HDS (G.4) with µk(0, 0) = µ0 ≥ 1 satisfies the bound:

|z(t, j)|A ≤ κ1e
−κ2(Tk(t)+j)|z(0, 0)|A + κ3∆|u|(t,j), (G.9)
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for all (t, j) ∈ dom(ψ), which implies that A is PT-ISSF . Similarly, when ∆(µ̂k) = µ̂−ℓ
k ,

(G.8) leads to:

|z(t, j)|A ≤ βk

(
κ1|z(0, 0)|Ae−κ2(Tk(t)+j) + κ3|u|(t,j), Tk(t)

)
, (G.10)

for all (t, j) ∈ dom(z). Inequality (G.10) implies that A is PT-ISS-CF .

Step 3: Length of solutions in the (t, j) - Time Scale: Finally, we show that

sup
t
(dom(z)) = ΥT,k

for all solutions z of (G.4). First, note that by the definition of Tk and Proposition 9.2, we

have supt(dom(z)) = ΥT,k if and only if sups(dom(ẑ)) = ∞. Furthermore, based on the

bound (G.6), we obtain hat j ≤ 1
τd
s+N0 for any (s, j) ∈ dom(ẑ). Since every complete

solution ẑ of (G.5) satisfies length(dom(ẑ)) = ∞, and noting that length(dom(ẑ)) =

sups(dom(ẑ)) + supj(dom(ẑ)), we can infer that if j → ∞, then s → ∞. Consequently,

every complete solution of (G.5) must satisfy sups(dom(ẑ)) = ∞, which in turn implies

that supt(dom(z)) = ΥT,k for such solutions. ■

Proof of Corollary 9.1

Using (9.10b) and the bounds obtained in Step 2 of the proof of Theorem 9.1,

it follows that e−κ2(Tk(t)+j) = e
−α ln

(
µ1(t)
µ0

)
e−κ2j =

(
µ0
µ1(t)

)α
e−

α
T
j where α = κ2T . Since

|z|A = |x| for every solution, inequality (G.9) becomes (9.25). Similarly, inequality (G.10)

becomes (9.26) with α1 := κ1, α2 := (κ3 + κ2)T , α3 := κ3T , α4 := κ2, α5 := κ2T , and

α6 := κ4. ■
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Proof of Lemma 9.7

The overall HDS has state z = (ψ, µk) ∈ Rn+4 with ψ = (x, τ, ρ, q, ), and the

following dynamics:

z ∈ C := Rn × [0, N0]× [0, T0]×Q× R≥1, (G.11a)

ż =




ẋ

τ̇

ρ̇

q̇

µ̇k




∈ F (z, u) :=




µk · fq(x, µk, u, τ)
[
0,
µk
τd

]

[
0,
µk
τa

]
− µkIQu(q)

0

k

T
µ
1+ 1

k
k




, (G.11b)

z ∈ D := Rn × [1, N0]× [0, T0]×Q× R≥1, (G.11c)

z+ =




x+

τ+

ρ+

q+

µ+
k




∈ G(z, u) :=




Rq(x)

τ − 1

ρ

Q \ {q}

µk




. (G.11d)

This system has a finite escape time at t = ΥT,k, induced by µk. Note that, by construction,

the states (τ, ρ, q) are confined to the compact sets [0, N0], [0, T0], and Q respectively.

Using the time variable s = Tk(t) defined in (9.6), and Proposition 9.2, we obtain the
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following HDS in the (s, j)-time scale:

ẑ ∈ C, ˙̂zs =




˙̂xs

˙̂τs

˙̂ρs

˙̂qs

˙̂µks




∈ F̂ (ẑ, û) :=




fq(x̂, µ̂k, û, τ̂)
[
0,

1

τd

]

[
0,

1

τa

]
− IQu(q̂)

0

k

T
µ̂

1
k
k




, (G.12a)

ẑ ∈ D, ẑ+ ∈ G(ẑ), (G.12b)

where the subscript s in (G.12a) indicates that the time derivative is taken with respect

to s. Since (G.12) incorporates an ADT automaton τ̂ and a time-ratio monitor ρ̂, by [111,

Lemma 7] every solution ẑ of (G.12) has a hybrid time domain such that for any pair

(s1, j1), (s2, j2) ∈ dom(ẑ) the bound (G.6) is satisfied, as well as the following bound:

T(s1, s2):=
∫ s2

s1

IQu(q̂(s, ȷ̂(s)))ds ≤
1

τa
(s2 − s1) + T0, (G.13)

where ȷ̂(s) := min {j ∈ Z≥0 : (s, j) ∈ dom(q̂)}. Moreover, by [111, Lemma 7] every hybrid

arc satisfying (G.13) can be generated by the HDS (G.12). Using s = Tk(t), the left-hand

side of (G.13) can be expressed in the t-variable as:

T(Tk(t2), Tk(t1))=
∫ t2

t1

∂Tk(t)
∂t

· IQu
(
q̂
(
Tk(t), ȷ̂

(
Tk(t)

)))
dt

=

∫ t2

t1

µk(t) · IQu
(
q(t, j(t))

)
dt, (G.14)
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where we used Proposition 9.1-(P3), together with the equality

q̂(Tk(t), ȷ̂ (Tk(t))) = q
(
T −1
k (Tk(t)), j

(
T −1
k (Tk(t))

))
= q(t, j(t)).

Using (G.13)-(G.14), together with Proposition 9.1-(P2), the AAT condition in the (t, j)-

time scale becomes

∫ t2

t1

µk(t) · IQu(q(t, j(t)))dt ≤
1

τa
ωk (µk(t2), µk(t1)) + T0,

which is precisely (9.27). The fact that inequality (9.20) holds follows by Lemma 9.6. ■

Proof of Theorem 9.2

The proof follows the same three steps as in the proof of Theorem 9.1. We

start by using the time dilation T −1
k and Proposition 9.2. Hence, we consider the HDS

(G.12) in the (s, j)-time scale, with state ẑ = (x̂, τ̂ , ρ̂, q̂, µ̂k). To study the stability

properties of this system, let ξ̂ := ln(r)τ̂ + (c3 + c5)ρ̂, and consider the Lyapunov function

W2(ẑ) = Vq̂(x̂, τ̂)e
ξ̂, which, by Assumption 9.3-(a), satisfies φ|ẑ|2A ≤ W2(ẑ) ≤ φ|ẑ|2A, with

φ = minp∈Q cp,1, φ = maxp∈Q cp,2eln(r)N0+(c3+c5)T0 . When ẑ ∈ C, the time derivative of ξ̂

with respect to s satisfies:

˙̂
ξs = ln(r) ˙̂τs + (c3 + c5) ˙̂ρs ∈ [0, δ]− (c3 + c5)IQu(q̂),

where δ := 1
τd
ln(r)+ 1

τa
(c3+ c5). Using the above expression together with Assumption 9.3,

we evaluate the change of W2 during the flows of stable and unstable modes. In particular,

when ẑ ∈ C and q̂ ∈ Qs, we have

⟨∇W2(ẑ), ˙̂zs⟩ = eξ̂
〈
∇Vq̂(x̂, τ̂), ˙̂xs

〉
+ eξ̂Vq̂(x̂, τ̂)

˙̂
ξs

≤ −(c3 − δ)W2(ẑ) +
c4
c2
φ∆̂(s)|û|p, (G.15)
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where ∆̂(s) := ∆(µ̂k(s))û(s), c2 := maxp∈Q c2,p and c4 = maxp∈Q c4,p, and where c3 − δ > 0

since (9.31) is satisfied by assumption. On the other hand, when ẑ ∈ C and q̂ ∈ Qu:

⟨∇W2(ẑ), ˙̂zs⟩ ≤
(
c5Vq̂(x̂, τ̂) + c4∆̂(s)|û|

)
eξ̂ + Vq̂(x̂, τ̂)e

ξ̂ ˙̂ξs

≤ (δ − c3)W2(ẑ) + c4∆̂(s)|û|eξ̂

≤ − (c3 − δ)W2(ẑ) +
c4
c2
φ∆̂(s)|û|p,

which is the same bound as (G.15).

During jumps, it follows that ξ̂+ = ln(r)τ̂+ + (c3 + c4)ρ̂
+ = ξ̂ − ln(r) for all ẑ ∈ D.

Then, using Assumption 9.3, the Lyapunov function satisfies:

W2(ẑ
+) = Vq̂+(x̂

+, τ̂+)eξ̂
+

= Vq̂+ (Rq̂(x̂), τ̂ − 1) eξ̂−ln(r)

≤ χVq̂(x̂, τ̂)e
ξ̂−ln(r) =

χ

max{1, χ}W2(ẑ) ≤ W2(x̂).

It follows that W2(ẑ
+)−W2(ẑ) ≤ 0 for all ẑ ∈ D. Using Lemma G.3, we conclude that

every solution ẑ satisfies the bound

|ẑ(s, j)|A ≤ κ1|ẑ(0, 0)|Ae−κ2(s+j) + κ3∆̂(s)|û|(s,j),

for all (s, j) ∈ dom(ẑ), where κ1 =
(
φ/φ

)1/p
e
λ
2p

τd
1+τd

N0 κ2 = λτd/(2p(1 + τd)), κ3 =
(
2c4φ/[c2λφ]

)1/p
, λ = c3 − δ, and ∆̂(s) := ∆(µ̂k(s))û(s). From here, the bounds (9.14)-

(9.15) are obtained following the exact same arguments used in Steps 2 and 3 of the proof

of Theorem 9.1. ■
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G.3 Proofs of Section 9.3

Proof of Proposition 9.3

Proof: We show that under Assumption 9.4 a suitable Lyapunov function can be

used to show that Assumption 9.3 is satisfied. Let Vq̂(x̂) =
1

2σq̂
|x̂|2 for every q̂ ∈ Qs. By

employing Young’s inequality, we obtain

⟨∇Vq̂(x̂), fq̂(x̂, µ̂k)⟩ ≤ −2σq̂ηq̂Vq̂(x̂) +
1

µ̂2
k

1

4σ2
q̂δq̂

, (G.16)

for all q̂ ∈ Qs. Similarly, for all q̂ ∈ Qu let Vq̂(x̂) =
|x̂|2
2
. Using this function, we obtain

⟨∇Vq̂(x̂), fq̂(x̂, µ̂k)⟩ ≤ Vq̂(x̂) +
1

µ̂2
k

d̄2q̂
2
, (G.17)

for all q̂ ∈ Qu. Using cq̂,1 = cq̂,2 = 1/2σq̂, cq̂,3 = 2σq̂ηq̂, cq̂,4 = 1/4σ2
q̂δq̂, when q̂ ∈ Qs, and

cq̂,1 = cq̂,2 = 1/2, cq̂,5 = 1, cq̂,4 = d̄2q̂/2 when q̂ ∈ Qu, together with the set of smooth

functions {Vq̂}q̂∈Q, Assumption 9.3 is satisfied. Thus, we can always pick τa > 1 and

τd > 0 large enough to satisfy the stability condition (9.31). Additionally, Assumption

9.2 is satisfied by the Lipschitz properties of both dq(·) and bq(·). Assumption 9.1 is met

by the same Lipschitz property and the construction of the HDS H with data (9.29). It

follow that Aψ × R≥1 is PT-ISS-CF for the closed-loop system via Theorem 2-c).

We now prove the boundedness and convergence to 0 of the switching feedback-

law uq given in (9.33). By applying (G.10) from the proof of Theorem 2-c), for any

(x0, µ0) ∈ Rn×R≥1 and any solution z = (x, τ, ρ, q, µk) to the closed-loop system satisfying

x(0, 0) = x0 and µk(0, 0) = µ0 we obtain:

|x(t, j)| ≤ βk(κ1e
−κ2(Tk(t)+j)|x(0, 0)|+ κ3u, Tk(t)), (G.18)
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for all (t, j) ∈ dom(z), where κ1, κ2, κ3 > 0, u := max

{
maxq∈Qs

1
4σ2
qδq
, maxq∈Qu

d
2
q

2

}
, and

βk(r, s) = r ·max{κ1e−κ2s, ξ−2
k (s)} =: r · αk(s), with ξk(s) =

(
k−1
T
s+ 1

) k
k−1 , is the same

KL function obtained in Lemma G.4. Then, from (G.18) we obtain:

|x(t, j)| ≤
(
κ1e

−κ2(Tk(t)+j)|x(0, 0)|+ κ3u
)
αk(T (t)),

for all (t, j) ∈ dom(z). Hence, uq satisfies:

|uq(x(t, j), µk(t))| ≤ r̃k(t, j)
∣∣∣ηq+δqd

2

q(x(t, j))
∣∣∣µk(t)αk(Tk(t)),

for all (t, j) ∈ dom(z) and all q ∈ Q, where r̃k(t, j) =
(
κ1e

−κ2(Tk(t)+j)|x(0, 0)| + κ3u
)
.

Since dq(·) is assumed to be continuous for all x ∈ Rn, it is locally bounded. Then,

r̃k(t, j)
∣∣∣ηq + δqd

2

q(x(t, j))
∣∣∣ is bounded as r̃(t, j) is bounded by definition. Now, note that

αk(s) = max{κ1e−κ2s, ξ−2
k (s)} = ξ−2

k (s) for s sufficiently large since the inverse exponential

decays faster than any proper rational function. Additionally, by leveraging the result of

Proposition 2 it follows that µk(t) = µ̂k(Tk(t)) =
(
k−1
T

Tk(t) + µ
k−1
k

0

) k
k−1

for k ≥ 2. Then,

as t→ ΥT,k we have that

µk(t)αk(Tk(t)) =
[(

k − 1

T
Tk(t) + µ

k−1
k

0

)
/

(
k − 1

T
Tk(t) + 1

)2
] k
k−1

which implies that µk(t)αk(Tk(t)) → 0. Using this fact, together with the inequality above

and the boundedness of r̃k(t, j)
∣∣∣ηq + δqd

2

q(x(t, j))
∣∣∣, allows us to conclude that uq → 0 as

t→ ΥT,k. ■

Proof of Proposition 9.4

The following Lemma is instrumental in studying the stability properties of the

HDS with data (9.35).
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Lemma G.1. Consider the matrix

Mζq(x1, τ) :=




1
η(τ)2

I I − ∂Gq(x1)⊤

I − ∂Gq(x1) (ζq − ρη′(τ))I


 , (G.19)

where q ∈ Q, τ ∈ [0, N0], η(τ) ∈ [η, η], ρ ∈ [0, 1/τd], and η
′(τ) := dη

dτ
(τ), Gq(·), and ζq

are as introduced in Section 9.3.2. Suppose that Assumption 9.4 is satisfied. Then,

Mζq(x1, τ) ⪰ νMI, ∀ τ ∈ [0, N0], x1 ∈ Rn (G.20)

where νM := (1−δd−δη)σ2

δη(1−δd)ζ+σ2 , with ζ := minq∈Q ζq and σ := maxq∈Q σq. □

Proof. First we show that matrix-valued function Mζq(·, ·) is positive-definite uni-

formly over ρ ∈ [0, τ−1
d ], x1 ∈ Rn, and τ ∈ [0, N0]. To this end, we decompose the

matrix Mζq(x1, τ) as follows:

Mζq(x1, τ) = Uq(x1, τ)Wq(τ, x1)Uq(x1, τ)
⊤, (G.21a)

Wq(τ, x1) :=




I
η(τ)2

0

0 ϱq(τ)I − η2(τ)Σq(x1)Σq(x1)
⊤


 , (G.21b)

ϱq(τ) := ζq − ρη′(τ), Σq(x1) := I − ∂Gq(x1), (G.21c)

Uq(x1, τ) :=




I 0

η2(τ)Σq(x1) I


 . (G.21d)

By the fact that η(τ) ∈ [η, η] for all τ ∈ [0, N0] it follows that

1

η(τ)2
I ⪰ 1

η2
I. (G.22)
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Also, by Assumptions 9.4, we have that

ϱq(τ)I − η(τ)2Σq(x1)Σq(x1) ⪰
(
ϱq(τ)− η2σ2

q

)
I

⪰
(
ζq −

η − η

τdN0

− η2σ2
q

)
I

⪰ δ̃I, (G.23)

where δ̃ := (1 − δ)ζ, with ζ := minq∈Q ζq. Therefore, via [278, Theorem 7.7.7],

the matrix Mζq(x1, τ) is positive definite for all x1 ∈ Rn and τ ∈ [0, N0]. Now, we

establish the matrix inequality (G.20). To do so, we use (G.22) and (G.23) in (G.21a)

to obtain that

Mζq(x1, τ) ⪰ Uq(x1, τ)




1
η2
I 0

0 δ̃I


U⊤

q (x1, τ)

⪰ Zq(x1, τ)Zq(x1, τ)
⊤, (G.24)

where Zq(x1, τ)
⊤ is the upper block triangular matrix

Zq(x1, τ)
⊤ :=




1
η
I η(τ)2

η
Σq(x1, τ)

⊤

0
√
δ̃I


 .

By applying [5, Lemma 9], and using (G.24) together with the fact that

Zq(x1, τ) has full column rank for all x1 ∈ Rn and τ ∈ [0, N0] and thus that

σmin(Zq(x1, τ)Zq(x1, τ)
⊤) ≥ σmin(Zq(x1, τ))σmin(Zq(x1, τ)

⊤) = σ2
min(Zq(x1, τ)

⊤), we

obtain

Mζq(x1, τ) ⪰
1

η2
(
1 + η2

δ̃
∥Σq(x1)2∥

)
+ 1

δ̃

I
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⪰ (1− δd − δη)σ
2

δη(1− δd)ζ + σ2 I,

where in the last two steps we used Assumption 9.4. This completes the proof. ■

With the previous lemma we are now prepared to present the proof of Proposition

9.4.We show that, under Assumption 9.4, a suitable Lyapunov function for the “target”

system Ĥ can be used to show that Assumption 9.3 is satisfied. Indeed, for every q̂ ∈ Q

consider the Lyapunov function

Vq̂(x̂, τ̂) =
1

4
|x̂2 − x∗|2 + 1

4
|x̂2 − x̂1|2 +

η(τ̂)2

2
|Gq̂(x̂1)|2 ,

which in the flow set and jump set satisfies: vq̂,1|x̂|2Ax ≤ Vq̂(x̂, τ̂) ≤ vq̂,2|x̂|2Ax , with vq̂,1 :=

0.25min
{
1, 2κ2q̂η

2
}
, and vq̂,2 := 0.25max

{
3, 2 + 2ℓ2q̂η

2
}
. Let

L(fq̂ ,ρ)Vq̂(x̂, τ̂) :=
〈
∇Vq̂(x̂, τ̂),




fq̂(x̂, τ̂)

ρ



〉

(G.25)

Since Gq̂(·) is κq̂-strongly-monotone and ℓq̂−Lipschitz, we have that ⟨x1 − x̃, Gq̂(x̂1)⟩ ≥

ζq̂ |Gq̂(x̂1)|2, where ζq̂ = κ2q̂/ℓq̂. During flows:

L(fq̂ ,ρ)Vq̂(x̂, τ̂) = − 1

η(τ̂)
|x̂2 − x̂1|2

− 2η(τ̂) ⟨Gq̂(x̂1), [I − ∂Gq̂(x̂1)] (x̂2 − x̂1)⟩

− η(τ̂)
[
⟨x̂1 − x∗, Gq̂(x̂1)⟩ − ρη′(τ̂)|Gq̂(x̂1)|2

]

≤ −η(τ̂)
〈
χq̂, Mζq̂(x̂1, τ̂)χq̂

〉
, (G.26)

for all (x̂, τ̂ , ρ) ∈ R2n × [0, N0]× [0, τ−1
d ], where χq̂ := (x̂2 − x̂1,Gq̂(x̂1)) ∈ R2n, and Mζq̂ is
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given by

Mζq̂(x̂1, τ̂) :=




1
η(τ̂)2

I I − ∂Gq̂(x̂1)⊤

I − ∂Gq̂(x̂1) (ζq̂ − ρη′(τ̂))I


 .

Using Lemma G.1, we conclude that L(fq̂ ,ρ)Vq̂(x̂, τ̂) ≤ −ηνM |χq̂|2 for all (x̂1, x̂2, τ̂) ∈

R2n × [0, N0]. Hence, by noting that Vq̂(x̂, τ̂) ≤ 1
4
max

{
3, 2

(
1
κ2q̂

+ η2
)}

|χq̂|2 we obtain:

L(fq̂ ,ρ)Vq̂(x̂, τ̂) ≤ −
4ηνM

max
{
3, 2

(
1
κ2q̂

+ η2
)}Vq̂(x̂, τ̂). (G.27)

Now, for all p̂, q̂ ∈ Q, let

∆V q̂
p̂ (x̂, τ̂) := Vq̂ (Rp̂(x̂), τ̂ − 1)− Vp̂(x̂, τ̂), τ̂ ∈ [1, N0].

During jumps:

∆V q̂
p̂ (x̂, τ̂) = Vq̂ ((x̂1, x̂1), τ̂ − 1)− Vp̂(x, τ̂) (G.28)

≤ −1

4
|x̂1 − x∗|2 − 1

4
|x̂1 − x̂2|2 +

1

4κ2p̂
|Gp̂(x̂1)|2

+
1

2

(
η(N0 − 1)2

ℓ2q̂
κ2p̂

− η(1)2

)
|Gp̂(x̂1)|2

≤ −
(
1− γ q̂p̂

)
Vp̂(x̂, τ̂),

where γ q̂p̂ :=
2η(N0−1)2ℓ2q̂+1

2κ2p̂η(1)
2 . The above inequality implies that

Vq̂ (Rp̂(x̂), τ̂ − 1) ≤ γ q̂p̂Vp̂(x̂, τ̂).

where ℓ := minq̂∈Q ℓq̂, κ := maxq̂∈Q κq̂, and κ := minq̂∈Q κq̂. Thus, noting that γ q̂p̂ ≤
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ℓ
2

κ2
η(N0−1)2

η(1)2
+ 1

2κ2η(1)2
=: γ, we obtain:

Vq̂ (Rp̂(x̂), τ̂ − 1) ≤ γVp̂(x̂, τ̂), (G.29)

for all τ ∈ [1, N0], p, q ∈ Q. By the smoothness properties of Gq(·) and the differentiability

of η(·), we obtain that fq(x, τ) is locally Lipschitz and, thus, that Assumption 9.2 also

holds. On the other hand, note that via a simple change of coordinates, and without

loss of generality, the results of Theorem 9.1 hold for A as defined in (9.23) but with

the set {0} replaced by the set Ax in (9.38). Therefore, the quadratic bounds on the

Lyapunov function, together with condition (9.39), (G.27), and (G.29), imply PT-SF of

Ax × [0, N0]×Q× R≥1 via Theorem 9.1-a). ■

G.4 Auxiliary Results

Lyapunov Conditions for Exponential-ISS of Hybrid Dynamical
Systems

The following lemma is a specialization of [21, Prop. 2.7] for the case when the

system is exponentially ISS. We present the complete proof here only for the purpose of

completeness.

Lemma G.2. Consider the HDS (1.3), and a closed set A ⊂ Rm. Suppose there

exist constants α, α, ρ, p > 0, λ ∈ (0, 1), and a smooth function V : C ∪D → R≥0,

such that the following inequalities hold:

α|z|pA ≤ V (z) ≤ α|z|pA, ∀ z ∈ C ∪D ∪G(D),

⟨∇V (z), F (z, u)⟩ ≤ −λV (z) + ρ|u|p, ∀ (z, u) ∈ C × Rm,

V (G(z))− V (z) ≤ −λV (z) + ρ|u|p, ∀ (z, u) ∈ D × Rm.
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Then, every solution of (1.3) satisfies

|z(s, j)|A ≤ κ1e
−κ2(s+j)|z(0, 0)|A + κ3 sup

0≤τ≤s
|u(τ)|, (G.30)

for all (s, j) ∈ dom(z), and where κ1 = (α/α)p, κ2 = λ/2p, and κ3 =
(

2ρ
λα

)1/p
. □

Proof. We follow similar ideas as in the proof of [21, Prop. 2.7], but considering

set-valued flow and jump maps. The proof has four main steps:

Step 1: First, note that for all (z, u) ∈ (C ∪D)× Rm:

−λV (z) + ρ|u|p ≤ −λ
2
V (z), if V (z) ≥ 2ρ

λ
|u|p. (G.31)

Therefore, whenever V (z) ≥ 2ρ
λ
|u|p we have that

⟨∇V (z), F (z, u)⟩ ≤ −λ̃V (z), ∀(z, u) ∈ C × Rm,

V (G(z))− V (z) ≤ −λ̃V (z), ∀(z, u) ∈ D × Rm,

where λ̃ := λ/2.

Step 2: For any r ≥ 0, define γc4(r, s, j) = e−λ̃(s+j)r. We first show that when

V (z) ≥ 2ρ
λ
|u|p, the function V evaluated along the solutions of (1.3) satisfies

V (z(s, j)) ≤ γλ(V (z(0, 0)), s, j), ∀ (s, j) ∈ dom(z). (G.32)

To establish this property, note that since V (z(·, ·)) is not increasing during flows

and jumps, if there is (s′, j′) ∈ dom(z) with 0 < s′ + j′ < t + j and such that

V (z(s′, j′)) = 0, then we necessarily must have V (z(s̃, j̃)) = 0 for all (s̃, j̃) ∈ dom(z)

such that s′+j′ ≤ s̃+ j̃ ≤ s+j, and (G.32) would hold for such times (s̃, j̃). Suppose

there is no (s′, j′) ∈ dom(z) with 0 < s′ + j′ < t+ j such that V (z(s′, j′)) = 0. For
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each (s, j) ∈ dom(z), we partition the hybrid time domain of z up to time (s, j) as

dom(z) =
⋃j
n=0[sn, sn+1]× {n}, with s0 = 0 and sj+1 = s. For any n ∈ {0, 1, . . . , j},

V satisfies
∫ sn+1

sn

˙︷ ︸︸ ︷
V (z(τ, n))

λ̃V (z(τ, n))
dτ ≤ −

∫ sn+1

sn

dτ = −(sn+1 − sn).

Using the new variable ϱ = V (z(τ, n)), we obtain dϱ = V̇ dτ and the above integral

can be written as ∫ V (z(sn+1,n))

V (z(sn,n))

dϱ

λ̃ϱ
≤ −(sn+1 − sn). (G.33)

Similarly, note that

∫ V (z(sn+1,n+1))

V (z(sn+1,n))

dϱ

λ̃ϱ
≤
∫ V (z(sn+1,n+1))

V (z(sn+1,n))

dϱ

λ̃V (z(sn+1, n))

≤ −1,

where the last inequality follows by the inequality V (z(s, j + 1)) − V (z(s, j)) ≤

−λ̃V (z(s, j)). Combining the above two inequalities, we obtain

∫ V (z(s,j))

V (z(0,0))

dρ

λ̃ϱ
=

j∑

n=0

∫ V (z(sn+1,n))

V (z(sn,n))

dϱ

λ̃ϱ

+

j∑

n=1

∫ V (z(sn+1,n+1))

V (z(sn+1,n))

dϱ

λ̃ϱ

≤ −
(

j∑

n=0

(sn+1 − sn) +

j∑

n=1

1

)

= −(sj+1 − s0 + j) = −(s+ j). (G.34)

Integrating the left-hand side, we obtain 1
λ̃
ln
(
V (z(s,j))
V (z(0,0))

)
≤ −(s+ j), from which we

directly get

V (z(s, j)) ≤ V (z(0, 0))e−
λ
2
(s+j) (G.35)
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Step 3: Let (z, u) be a maximal solution pair of (1.3). Define the set

Ω :=

{
z ∈ Rn : V (z) ≤ 2ρ

λ
|u|p∞

}
. (G.36)

For each z0 ∈ Rn, let

Tz,u,z0 := sup
{
τ ∈ R≥0 : z(s, j) /∈ Ω, z(0, 0) = z0,

∀ (s, j) ∈ dom(z), 0 ≤ s+ j ≤ τ
}
.

It follows that for all solutions of (1.3) with z(0, 0) = z0 and (s, j) ∈ dom(z) such

that 0 ≤ s+ j < Tz,u,z0 we have that V (z) > 2ρ
λ
|u|p∞, which, by Step 2, implies that

V satisfies (G.35). Using the quadratic upper and lower bounds on V , we obtain:

|z(s, j)|A ≤
(
α

α

) 1
p

|z(0, 0)|Ae−
λ
2p

(s+j), (G.37)

which holds for all (s, j) ∈ dom(z) such that 0 ≤ s+ j < Tz,u,z0 .

Step 4: The last step is to prove forward invariance of Ω. Suppose there exist

(s′, j′) ∈ dom(z) such that z(s′, j′) ∈ Ω and (s′, j′ + 1) ∈ dom(z). Since λ̃ < λ, V

satisfies

V (z(s′, j′ + 1)) ≤ (1− λ̃)V (z(s′, j′)) + ρ|u|p∞,

≤
(
1− λ

2

)
2ρ

λ
|u|p∞ + ρ|u|p∞ =

2ρ

λ
|u|p∞.

Moreover, if (s′, j′ + 1) ∈ dom(z), then z cannot leave Ω via flows because V̇ ≤ 0 if

V (z) ≥ 2ρ
λ
|u|p∞. It follows that for all (s, j) ∈ dom(z) such that s + j ≥ Tz,u,z0 the

solution z satisfies:

α|z(s, j)|pA ≤ V (z(s, j)) ≤ 2ρ

λ
|u|p∞, (G.38)
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that is, |z(s, j)|A ≤
(

2ρ
λα

) 1
p |u|∞, for all s+ j ≥ Tz,u,z0 . Combining this bound with

(G.37) we obtain

|z(s, j)|A ≤ max

{(
α

α

) 1
p

|z(0, 0)|e− λ
2p

(s+j),

(
2ρ

λα

) 1
p

|u|∞
}
, (G.39)

for all (s, j) ∈ dom(z). Since max{a, b} ≤ a+ b, we obtain

|z(s, j)|A ≤ κ1|z(0, 0)|e−κ2(s+j) + κ3|u|∞, (G.40)

with κ1 =
(
α
α

) 1
p
, κ2 = λ

2p
and κ3 =

(
2ρ
λα

) 1
p
. The result follows from the above

inequality by time-invariance and causality. ■

The following result relaxes the third condition in Lemma G.2 under a standard

average dwell-time condition on the jumps.

Lemma G.3. Consider the HDS (1.3), and suppose that: (a) every solution satisfies

the ADT constraint (9.19); (b) there exist constants α, α, ρ, p > 0, λ ∈ (0, 1), and a

smooth function V : C ∪D → R≥0, such that the following inequalities hold:

α|z|pA ≤ V (z) ≤ α|z|pA, ∀ z ∈ C ∪D ∪G(D),

⟨∇V (z), F (z, u)⟩ ≤ −λV (z) + ρ|u|p, ∀ (z, u) ∈ C × Rm,

V (G(z))− V (z) ≤ 0, ∀ z ∈ D.

Then, every solution of (1.3) satisfies

|z(s, j)|A ≤ κ1e
−κ2(s+j)|z(0, 0)|A + κ3 sup

0≤τ≤s
|u(τ)|, (G.41)

for all (s, j) ∈ dom(z), where κi > 0, for i ∈ {1, 2, 3}.
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Proof. The proof follows similar steps as the proof of Lemma G.2. In particular,

inequality (G.33) still holds. On the other hand, during jumps, we now have

V (z(sn+1, n+ 1))− V (z(sn+1, n)) ≤ 0 (G.42)

Dividing both sides by λ̃V (z(sn+1, n)), we obtain

0 ≥ V (z(sn+1, n+ 1))− V (z(sn+1, n))

λ̃V (z(sn+1, n))

=

∫ V (z(sn+1,n+1))

V (z(sn+1,n))

dϱ

λ̃V (z(sn+1, n))
.

It follows that inequality (G.34) now becomes
∫ V (z(s,j))

V (z(0,0))
dρ

λ̃ϱ
≤ −s, from which we

obtain after integration:

V (z(s, j)) ≤ V (z(0, 0))e−
λ
2
s (G.43)

Finally, the ADT condition (G.6) guarantees that j ≤ 1
τd
s+N0 for any (s, j) ∈ dom(ẑ),

which implies that s+ j ≤ ( 1
τd

+ 1)s+N0. In turn, this inequality can be written as

s ≥ τd
1+τd

(s+ j)− τd
1+τd

N0, so that (G.43) can be upper-bounded as follows:

V (z(s, j)) ≤ κ7e
−κ8(s+j)V (z(0, 0)), (G.44)

where κ7 := e
λ
2

τd
1+τd

N0 and κ8 :=
λ
2

τd
1+τd

. From here the proof follows the same Steps

3-4 from the proof of Lemma G.2. In particular, the inequality (G.40) now becomes

|z(s, j)|A ≤ κ̃1|z(0, 0)|e−κ̃2(s+j) + κ̃3|u|∞,

with κ̃1 :=
(
α
α

) 1
p
e
λ
2p

τd
1+τd

N0 , κ̃2 :=
λ
2p

τd
1+τd

, and κ3 =
(

2ρ
λα

) 1
p
. ■
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Corollary G.1. Consider the normalized-by-µk BU-ODE of Lemma 9.3, dµ̂k
ds

= k
T
µ̂

1
k
k .

Then, for any ℓ > 0 and any solution µ̂k to the ODE satisfying µk(0) = µ0 ≥ 1 the

following bound holds:

µ−ℓ
1 (s) ≤ e−ℓ

s
T , ∀s ∈ R≥1,

when k = 1, and

µ−ℓ
k (s) ≤

(
k − 1

T
s+ 1

)−ℓ k
k−1

, ∀s ∈ R≥1,

when k ∈ Z≥2. □

Proof. We divide the proof into two cases.

Case k = 1: From Lemma 9.3, for k = 1, the solution to the normalized-by-µk

BU-ODE is given by:

µ̂k(s) = µ0e
s
T .

It follows that µ−ℓ
k (s) = µ−ℓ

0 e−
ℓ
T
s ≤ e−

ℓ
T
s for all s ≥ 0, where we have used the fact

that µ−ℓ
0 ≤ 1 since µ0 ≥ 1 and ℓ > 0 by assumption.

Case k > 1: From Lemma 9.3, for k > 1, the solution to the normalized-by-µk

BU-ODE is given by:

µ̂k(s) =

(
k − 1

T
s+ µ

k−1
k

0

) k
k−1

.

Using the fact that µ0 ≥ 1 and that (·) k
k−1 is monotonically increasing in R≥0 for any

k > 1, and thus preserves the order in R≥0, it follows that µ̂k(s) ≥
(
k−1
T
s+ 1

) k
k−1 .

Therefore, we obtain: µ̂−ℓ
k (s) ≤

(
k−1
T
s+ 1

)−ℓ k
k−1 for all s ≥ 0. ■
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Lemma G.4. Suppose that every solution pair (ẑ, û) of the HDS (G.5) satisfies the

bound (G.7) for all (s, j) ∈ dom(ẑ). Assume that ∆(µ̂k) = µ̂−ℓ
k , where ℓ > 0. Then,

(ẑ, û) satisfies the inequality

|ẑ(s, j)|A ≤ βk

(
κ̄1|ẑ(0, 0)|Ae−κ̄2(s+j) + κ̄3|û|(s,j), s

)
,

for all (s, j) ∈ dom(ẑ), where κ̄1 := κ1, κ2 := κ2
2
, κ̄3 := 2κ3. Here βk(r, s) ∈ KL is

defined as βk(r, s) = r ·max{κ1e−κ2s, ξ−ℓk (s)}, ξk(s) =
(
k−1
T
s+ 1

) k
k−1 for all k > 1,

and ξ1(s) = e
s
T . □

Proof. Consider a complete solution pair (ẑ, û) of the HDS (G.5) satisfying the bound

(G.7). Then, we have that

|ẑ(s, j)|A ≤ κ1e
−κ2(s+j)|ẑ(0, 0)|A + κ3 · sup

0≤ζ≤s
|∆̂(ζ)|, (G.45)

for all (s, j) ∈ dom(ẑ), and where ∆̂(s) := ∆(µ−ℓ
k (s))û(s). Next, pick an arbitrary

time (s̄, j̄) ∈ dom(ẑ), and let ŷ(r, k) := ẑ(r + s̄, k + j̄), and v(r, k) := µ−ℓ
k (s̄ + r).

Since ŷ is also a hybrid arc that is a solution to (G.5), using the above bound and

by time-invariance, it satisfies:

|ŷ(r, k)|A ≤ κ1|ŷ(0, 0)|e−κ2(r+k) + κ3|û|(r,k)|v|(r,k)

= κ1|ẑ(s̄, j̄)|e−κ2(r+k) + κ3|û|(r,k) sup
0≤τ≤r

µ̂−ℓ(s̄+ τ)

≤ κ1|ẑ(s̄, j̄)|e−κ2(r+k) + κ3|û|(r,k)µ̂−ℓ
k (s̄). (G.46)

Now, using (G.45) with s = s̄ and j = j̄, we obtain:

|ẑ(s̄, j̄)|A ≤ κ1|ẑ(0, 0)|Ae−κ2(s̄+j̄) + κ3|û|(s̄,j̄) sup
0≤τ≤r

µ̂−ℓ
k (τ). (G.47)
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Combining (G.46) and (G.47), and using Remark 2, we have

|ŷ(r, k)|A ≤ κ1

(
κ1|ẑ(0, 0)|Ae−κ2(s̄+j̄)

+ κ3 sup
0≤τ≤r

|û(τ)| sup
0≤τ≤r

µ̂−ℓ
k (τ)

)
e−κ2(r+k)

+ κ3 sup
0≤τ≤r

|û(τ)|µ̂−ℓ
k (s̄).

Evaluating the above bound at r = s̄ and j̃ ∈ Z≥0 such that (s̄, j̃) ∈ dom(y), we

obtain:

|ŷ(s̄, j̃)|A ≤ κ1

(
κ1|ẑ(0, 0)|Ae−κ2(s̄+j̄)

+ κ3 sup
0≤τ≤s̄

|û(τ)| sup
0≤τ≤s̄

µ̂−ℓ
k (τ)

)
e−κ2(s̄+j̃)

+ κ3 sup
0≤τ≤s̄

|û(τ)|µ̂−ℓ
k (s̄)

≤ κ1

(
κ1|ẑ(0, 0)|Ae−κ2(s̄+j̄) + κ3 sup

0≤τ≤s̄
|û(τ)|

)
e−κ2(s̄+j̃)

+ κ3 sup
0≤τ≤s̄

|û(τ)|µ̂−ℓ
k (s̄)

≤
(
κ1|ẑ(0, 0)|Ae−κ2(s̄+j̄+j̃)

+ 2κ3 sup
0≤τ≤s̄

|û(τ)|
)
max

{
κ1e

−κ2s̄, µ̂−ℓ
k (s)

}
,

where we used the fact that e−κ2j̃ ≤ 1, and sup0≤τ≤s µ̂
−ℓ
k (τ) ≤ µ−ℓ

0 ≤ 1 since µ0 ≥ 1

and ℓ > 0. Using the result of Corollary G.1 it then follows that

|ŷ(s̄, j̃)|A ≤
(
κ1|ẑ(0, 0)|Ae−κ2(s̄+j̄+j̃) + 2κ3 sup

0≤τ≤s̄
|û(τ)|

)
ηk(s)

where ηk(s) := max{κ1e−κ2s, ξ−ℓk (s)}, ξk(s) =
(
k−1
T
s+ 1

)− k
k−1 for all k > 1 and

ξ1(s) = e−
s
T . Note that ηk is continuous and satisfies ηk(s) → 0 as s → ∞ since

κ1e
−κ2s → 0 and ξk(s) → 0 as s → ∞. Now, using the definition of ŷ, and letting
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λ := 2s̄, i := j̃ + j̄:

|ẑ(λ, i)|A ≤
(
κ1|ẑ(0, 0)|Ae−κ2(

λ
2
+i) + 2κ3 sup

0≤τ≤s̄
|û(τ)|

)
ηk(λ/2)

Since the choice of (s̄, j̄) ∈ dom(z) was arbitrary, z is complete, and the previous

inequality holds for all j̃ ∈ Z≥0, in particular we can use s = 2s̄, j = j̄, and j̃ = 0

such that (s, j) ∈ dom(z). Thus, from the above inequality and using Remark 2, we

obtain that there exists βk(r, s) := r · ηk(s) ∈ KL such that

|ẑ(s, j)|A ≤ βk

(
κ̄1|ẑ(0, 0)|Ae−κ̄2(s+j) + κ̄3|û|(s,j), s

)
,

with κ̄1 := κ1, κ2 :=
κ2
2
, κ̄3 := 2κ3. ■
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Appendix H

Proofs of Chapter 10

Since the stability results of the zeroth-order hybrid dynamics H0 in Theorem 10.1

rely on the stability properties of the first-order dynamics H1, we first present the proof of

Theorem 10.2.

Proof of Theorem 10.2

We first present the proof of our auxiliary lemmas.

Proof of Lemma 10.1

Suppose that S is a δ-gap synergistic family of diffeomorphisms adapted to ϕ. Then,

we have that δ < µ(S), meaning that

δ <

(
ϕ̃q −min

p∈Q
ϕ̃p

)
(z) ∀q ∈ Q,

and all z ∈ Crit ϕ̃q \A. Then, it follows that for all q ∈ Q and z ∈ Critϕ̃q \A, there exists

p ∈ Q such that (10.16) is satisfied.

Conversely, assume that for every q ∈ Q and z ∈ Critϕ̃q \ A, there exists p ∈ Q such

that (10.16) is satisfied. In particular, for all q ∈ Q and z ∈ Critϕ̃q \ A it follows that
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δ < (ϕ̃q −minp∈Q ϕ̃p)(z), which implies that

δ < min
q∈Q

z∈Crit ϕ̃q\A

(ϕ̃q −min
p∈Q

ϕ̃p)(z).

This concludes the proof. ■

Lemma H.1. The HDS H1 is well-posed.

Proof. We prove that H1 satisfies the hybrid-basic conditions [199, Def. 2.20]. First,

note that the flow map F1 is continuous, by the continuity of
∑n

i=1 ∇Eiϕ̃q(·)Ei(·)

in M for all q ∈ Q, and the fact that Q is a discrete set. Second, define the

function µ̃ : M × Q → R by letting µ̃(z, q) := (ϕ̃q − m)(z). Note that µ̃ is

continuous by following similar reasoning as in the continuity argument for F1. Then,

gph h = {(z, q) ∈M ×Q : z ∈M, µ̃(z, q) = 0} is closed since µ̃ is continuous. It

follows that h and G1 are outer-semicontinuous. Boundedness of G1 follows by

compactness of M ×Q and outer-semicontinuity of G1. Now, C1 and D1 are closed,

since they are sublevel and superlevel sets, respectively, of the continuous function µ̃.

The result follows via [33, Thm. 6.30]. ■

Proof of Lemma 10.2

Let ϕ ∈ C∞(M) be arbitrary. Assume that ∇ϕ|z = 0 at some z ∈ M . Then, by

the representation of ∇ϕ in terms of the global orthonormal frame {Ei}ni=1, it follows

that:
∑n

i,j=1 ζ
ij(z)∇Eiϕ(z)Ej(z) = 0. Thus, since the matrix with coefficients ζ ij(z) is

nonsingular for all z ∈M , as it provides a local representation of the Riemannian metric,

and given that {Ei}ni=1 is a frame, we obtain:

∇Eiϕ(z) = 0, ∀i ∈ {1, · · · , n} , (H.1)
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which implies that
∑n

i=1∇Eiϕ(z)Ei(z) = 0. Conversely, assume that
∑n

i=1 ∇Eiϕ(z)Ei(z) =

0. Then, equation (H.1) holds, and thus 0 =
∑n

i,j=1 ζ
ij(z)∇Eiϕ(z)Ej(z) = gradϕ|z. This

concludes the proof. ■

Now, we consider the set of critical points of the warped cost functions that are not

minimizers of ϕ:

E :=
{
(z, q) ∈M ×Q : z ∈ Crit ϕ̃q \ A

}
.

The following lemma shows that E is properly contained in D1, thus enforcing jumps

whenever (z, q) ∈ E . This means that the HDS H1 must jump at critical points that are

not minimizers of ϕ. In the following, we use A◦ to denote the topological interior of a set

A.

Lemma H.2. Suppose that Assumption 10.4 is satisfied. Then E ⊊ D◦
1 and

G1(E) ⊊ C◦
1 .

Proof. First, the fact that δ>0 combined with the continuity and positive semidef-

initeness of (ϕ̃q −m)(·) ensures the existence of open subsets of C1 and D1 where

0 < (ϕ̃q −m)(z) < δ and (ϕ̃q −m)(z) > δ, respectively, proving that C◦
1 and D◦

1 are

non-empty. Second, consider (z, q) ∈ E . Lemma 10.1 guarantees the existence of

p ∈ Q such that ϕ̃p(z)+δ < ϕ̃q(z). Given that m(z) ≤ ϕ̃q(z) for all p ∈ Q, we deduce:

m(z)+δ < ϕ̃q(z), implying (z, q) ∈ D1. Thus, E ⊆ D1. Now, consider (z, q) ∈ D1\D◦
1,

which implies m(z) = ϕ̃q(z) − δ. Assume, for contradiction, that (z, q) ∈ E . By

Lemma 10.1, there exists p ∈ Q such that ϕ̃p(z) < ϕ̃q(z)− δ = m(z), contradicting

m(z) ≤ ϕ̃q(z) for all q ∈ Q. Hence, (z, q) /∈ E , proving that D1\D◦
1 contains elements

not in E , and therefore tha E ⊊ D◦
1. The fact that G1(E) ⊊ C◦

1 follows by construction,

since after a jump we have that ϕ̃q+(z
+)−m(z+) = ϕ̃q+(z)−m(z) = 0 < δ. ■

By leveraging the results of the previous lemmas we can now prove the first main

theorem of the paper.
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Proof of Theorem 10.2

Consider the Lyapunov function:

V (x) := ϕ̃q(z)− ϕ, (H.2)

which is continuous due to similar arguments to the ones used to prove the continuity of F1

in Lemma H.1. Since ϕ < ϕ(z) for all z ̸∈ A, together with (A2) in Definition 10.3, we have

that ϕ̃q(z)− ϕ ≥ 0 for all (z, q) ∈M ×Q and ϕ̃q(z)− ϕ = 0 if and only if (z, q) ∈ A×Q.

Therefore, it follows that V (x) ≥ 0 for all (z, q) ∈ M × Q and V (x) = 0 if and only if

z ∈ A. Now, during the flows of H1, the Lie-derivative of V satisfies

LF1V (x) = −
n∑

i=1

∇Eiϕ̃q(z)Ei(z)
(
ϕ̃q − ϕ

)

= −
n∑

i=1

(Ei(z)ϕ̃q)
2 =: uC(x), ∀x ∈ C1, (H.3)

where we used the fact that LXf(z) = ∇Xf(z) = (X(z))(f) for all X ∈ X(M) and

f ∈ C∞(M), and that v(c) = 0 for all v ∈ TzM , every constant function c, and all z ∈M ,

via [256, Lemma 3.4]. On the other hand, during the jumps of H1, using the definition of

h and m in (10.14) and (10.15), it follows that:

V
(
x+
)
−V (x) =

(
ϕ̃h(z) − ϕ̃q

)
(z)

=
(
m− ϕ̃q

)
(z) ≤ −δ =: uD(x), (H.4)

for all x ∈ D1. Since uC(x) ≤ 0 for all z ∈ C1 and uD(x) < 0 for all x ∈ D1, it follows that

A is stable under H1 via [199, Thm. 3.19].

To show the attractivity of A we employ the hybrid invariance principle [199, Thm. 3.23].

Indeed, since uC(x) ≤ 0 for all x ∈ C1 and uD(x) < 0 for all x ∈ D1, and using u−1
D (0) = ∅,
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given r ∈ V (A ∪ E) ⊂ [0, ϕ − ϕ], solutions approach the largest weakly invariant set in

V −1(r) ∩ ((A ∪ E)×Q). Let Ω denote such an invariant set and assume that r ≠ 0. By

the definition of E and the synergistic family of diffeomorphisms, it follows that Ω ⊂ E .

Additionally, by Lemma H.2, we obtain that Ω ⊂ D◦
1. Since D

◦
1 ∩ C1 = ∅ by construction,

for Ω to be invariant under H1, we would need to have that Ω = G(Ω), but this would

imply, via Lemma H.2, that Ω ⊂ C◦
1 , and thus that Ω ⊂ C◦

1 ∩ D◦
1 = ∅ =⇒ Ω = ∅.

Therefore, we must have that r = 0, and thus that ∀(z(0), q(0)) ∈ M × Q solutions

approach the largest weakly invariant set in V −1(0) ∩ ((A ∪ E)×Q) = A×Q, which is

A×Q it self. UGAS follows directly by the global attractivity and stability of A. ■

Proof of Theorem 10.1

The proof uses tools recently developed for averaging on compact Riemannian man-

ifolds [252] together with the framework for hybrid extremum seeking control introduced

in [111].

First, since M is compact, we can select εa ∈ R>0 such that expz (εaD(z)) ∈ ı(M), with

ı(M) the injectivity radius ofM [252, Lemma 3.2]. This makes possible a Taylor expansion

in normal coordinates along the geodesic dithers for every ϕ̃q, such that the average dy-

namics of H0 can be computed to be (see [111]) HA
0 =

{
C1, F

A
0 , D1, G1

}
, where C1, D1, G1

are defined in (10.20a), (10.20b) and (10.19) respectively, and FA
0 :M ×Q → TM × N is

the average flow map, given by:

FA
0 (x):=



−∑n

i=1 ∇Eiϕ̃q(z)Ei(z) +
∑n

i=1O(εa)Ei(z)

0


 .

Hence, on closed subsets of M we have that

FA
0 (x) ∈ conzF1(x+ kεaB, 0) + (kεaB, 0) , (H.5)
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for some k > 0, where F1 was defined in (10.18). Here, the convex hull affects the state z

only, and the Minkowski additions (z + kεaB) are defined in a suitable ambient Euclidean

space which always exists due to the Whitney Embedding Theorem [256, Thm 6.15]. By

(H.5), any solution of the average dynamics HA
0 is also a solution of an inflated HDS

generated from H1. Hence, and since H1 is a well-posed HDS via Lemma H.1, by [33, Thm.

7.21] we conclude that system HA
0 renders the set A GP-AS in the ambient Euclidean

space as εa → 0+. Since HA
0 and H1 are nominally well-posed, all conditions to apply

[111, Cor. 1] are satisfied. Therefore, together with the compactness of M , H0 renders

the set A× Tn GP-AS in the ambient Euclidean space as (εd, εa) → 0+. Note that any

solution z to H0 is constrained to M since the dithering is performed along geodesics on

the manifold, and f̂q(z, χ) ∈ TzM for all (z, q, χ) ∈M ×Q× Tn. Thus, we obtain GP-AS

of A in the sense of Definition 10.2. ■

Proof of Lemma 10.3

First, we compute the differential of S(2)
q and, whenever (10.27) is satisfied, we

show that it is full rank for all z ∈ SO(3). When ϕ(z) ≤ γ, the differential is trivially

full-rank since d
(
S(2)
q

)
z
= I. When ϕ(z) > γ, we obtain:

d
(
S(2)
q

)
z
=ekqα(ϕ(z)−γ)X [kqα

′(ϕ(z)−γ) (X · z) dϕz + I] . (H.6)

Since the linear operator v 7→ ekqα(ϕ(z)−γ)Xv is invertible, because erX ∈ SO(3) for all r ∈ R

and X ∈ TISO(3), to prove that d
(
S(2)
q

)
z
is full-rank it suffices to show that (Ψz + I) is

invertible, where Ψz := kqα
′(ϕ(z)− γ) (X · z) dϕz. To this end, letting ∥Ψz∥z denote the

operator 2-norm induced by the inner product in the Hilbert space Vz := (TzSO(3), ⟨·, ·⟩z),

we obtain that: ∥Ψz∥z ≤ |kq||α′(ϕ(z) − γ)|∥X∥F∥gradϕ|z∥F . Then, whenever (10.27) is

satisfied, it follows that ∥Ψz∥z < 1, which implies that (I +Ψz) is invertible, and hence

that d
(
S(2)
q

)
z
is full rank for all z such that ϕ(z) > γ. By the inverse function theorem
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[256, Thm. 4.5], it follows that S(2)
q is a local diffeomorphism everywhere. Now, note

that S(2)
q is a proper map1 since it is continuous and SO(3) is a compact Hausdorff space.

This fact, together with the compactness of SO(3), implies that S(2)
q is surjective via [281,

Lemma. 1]. Injectivity of S(2)
q follows from the arguments presented in [242, Appendix,

Proof Thm. 8], which we omit here for conciseness. Since S(2)
q is bijective, as well as a

local diffeomorphism everywhere, it follows that it is a global diffeomorphism. ■

Proof of Theorem 10.3

The proof employs the same concepts as the proof of Theorem 10.1. We provide some

details for completeness. Specifically, we now consider the Taylor expansion of the flow-map

F̃0 in normal coordinates and we analyze the corresponding average hybrid dynamics

H̃A
0 = {C̃1, F̃

A
0 , D̃1, G̃1}, describing the evolution of the state x̃ := (z, q, p) ∈ S2 ×Q×P.

In this case, the average flow-map F̃A
0 (·) is given by

F̃A
0 (x̃)=

{
F̃1,qp(z)+

2∑

i=1

O(εa)Ei,p(z)

}
× {0} × {0},

where F̃1,qp(z) := −∑2
i=1 ∇Ei,pϕ̃q(z)Ei,p(z). The flow set C̃1, the jump set D̃1, and the

jump map G̃1 are the same as the sets C̃0, D̃0, and them map G̃0 defined in Section

10.3, but disregarding the state χ ∈ T2 from the main state of the system. Using this

construction, (H.5) becomes

F̃A
0 (x̃) ∈ conzF̃1(x̃+ kεaB, 0) + (kεaB, 0) , (H.7)

where k > 0, and F̃1(x̃):={F̃1,qp(z)}×{0} × {0}. Furthermore, let H̃1 be the first-order

HDS with data H̃1 = {C̃1, F̃1, D̃1, G̃1}, and consider the same Lyapunov function of (H.2).

During the flows of H̃1, it follows that LF̃1
V (x̃) = −∑n

i=1(Ei,p(z)ϕ̃q)
2 for all x̃ ∈ C̃1.

1A map f : A→ B is proper if the preimage of each compact subset of B is compact.
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During the jumps of H̃1, the change of the Lyapunov function ∆V (x̃) := V (x̃+)− V (x̃)

satisfies: ∆V (x̃) = −δ whenever x̃ ∈ D̃1,s := {(z, q) ∈ S2 ×Q :
(
ϕ̃q −m

)
(z) ≥ δ} × P,

and ∆V (x̃) = 0 whenever x̃ ∈ D̃1 \ D̃1,s. In words, the Lyapunov function decreases

whenever there is a switch between warped cost functions, denoted by a change in q, and

does not increase if the system only switches between families of vector fields, i.e., only

when the state p changes. Now, by the structure of the flow and jump sets, after a jump

that only changes p is triggered, the system can either exhibit a change in q, after which it

necessarily flows, or directly flows. The converse is true if a jump that only changes q is

triggered first. Then, leveraging the decrease of the Lyapunov function during flows and

employing a similar reasoning as in the proof of Theorem 10.2, it follows that every solution

of H̃1 converges to the largest weakest invariant set in V −1(0)∩ ((A ∪ E)×Q× P), which

is Ã := A×Q×P itself. It follows that Ã is UGAS under H̃1 via the hybrid invariance

principle [199, Thm. 3.23]. The GP-AS of A under H̃0 is obtained by using (10.22), the

well-posedness of H̃1 and H̃A
0 , and applying the same arguments at the end of the proof of

Theorem 10.1. ■

Proof of Lemma 10.4

Using the fact that d
(
eAη(z)

)
z
= eAη(z)(I + Azdηz) for A ∈ Rn×n and η : Rn → R

we get: det
(
d
(
S
(3)
q

)
z

)
= 1+kqα

′ (ϕ(z)− γ) dϕz (Xz) , for all z such that ϕ(z) > γ. Thus,

whenever |kq| < k
(3)
, det

(
d(S

(3)
q )z

)
̸= 0 for all z ∈ S2. Note that S(3)

q is proper, being

both continuous and defined on the compact space S2. Then, by the fact that S2 is simply

connected and det(dS
(3)
q ) ̸= 0, it follows that S

(3)
q is a diffeomorphism via [282, Thm. B].

strut ■
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Appendix I

Proofs of Chapter 11

Proof of Lemma 11.1

We find a sufficient condition on α to ensure that the relations in (11.1) are satisfied,

and confirm that they are implied by the assumption of the Lemma. First, we have that

∇Uq(θ) = −α sin2(θ) +
1

2
sin(θ + ϕ) cos(θ + ϕ)

= −α sin2(θ) +
1

4
sin(2 [θ + ϕ])

= α2 sin(θ) +
1

2
sin(θ + φ(q)) cos(θ + φ(q))

= α2 sin(θ) +
1

4
sin (2 (θ + φ(q)))

= α2 sin(θ) +
1

4
[sin(2θ) cos(2φ(q)) + sin(2φ(q)) cos(2θ)]

First, recall the sufficient condition to have that (θ1, θ2) = (±π, 0) is locally exponentially

stable. To do so, note that around that point the only solutions allowed to flow have q = 0.

Hence, computing Jacobian of Fav(x, 0) around (±π, 0) we obtain

∂Fav(x, 0)

∂x
[(±π, 0)] =




0 1

α2 − 1
2

−αβ



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With α2 < 1
2
, and β > 0, it follows that the matrix is Hurwitz and thus that the point is

locally exponentially stable. From now on, we assume that α2 ∈ (0, 1/2) such that at least

local exponential stability of ±π is attained.

First, we prove that ∇Uq(θ)1{θ∈Θq} > 0 ∀θ ∈ (−π, 0].

• q = 0, θ ∈ Θ0 ∩ {θ < 0} , φ(q) = 0 :

∇Uq(θ) = α2 sin(θ) +
1

4
[sin(2θ) cos (0) + cos(2θ) sin (0)]

= α2 sin(θ) +
1

2
sin(θ) cos(θ)

= sin(θ)

(
α2 +

1

2
cos(θ)

)

(θ ∈ Θ0 ∩ {θ < 0} =⇒ sin(θ) < 0)

∇Uq(θ) > 0 ⇐= α2 < −1

2
max

θ∈Θ0∩{θ<0}
cos(θ) =

1

2
cos(3π/8)

• q = −1, θ ∈ Θ−1 = [−π/8, 0], φ(q) = π/4

∇Uq(θ) = α2 sin(θ) +
1

4

[
sin(2θ) cos

(π
2

)
+ cos(2θ) sin

(π
2

)]

= α2 sin(θ) +
1

4
cos(2θ)

= α2 sin(θ) +
1− 2 sin2(θ)

4

=
1

4
+ α2 sin(θ)− 1

2
sin2(θ)

= −1

2

(
sin2(θ)− 2α2 sin(θ)− 1

2

)

= −1

2

(
(sin(θ)− α2)2 − α4 − 1

2

)

≥ −1

2
max

[−π/8,0]
(sin(θ)− α2)2 +

1

2

(
α4 +

1

2

)

= −1

2

(
− sin(π/8)− α2

)2
+

1

2

(
α4 +

1

2

)
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= −1

2
sin2(π/8)− sin(π/8)α2 +

1

4

∇Uq(θ) > 0 ⇐= α2 <
1
2
− sin2

(
π
8

)

2 sin(π/8)

• q = −2, θ ∈ Θ−2 = [−3π/8,−π/8], φ(q) = π/2

∇Uq(θ) = α2 sin(θ) +
1

4
[sin(2θ) cos (π) + cos(2θ) sin (π)]

= α2 sin(θ)− 1

4
sin(2θ)

= α2 sin(θ)− 1

2
sin(θ) cos(θ)

= − sin(θ)

(
1

2
cos(θ)− α2

)

(θ ∈ Θ−2 =⇒ − sin(θ) > 0)

∇Uq(θ) > 0 ⇐= α2 <
1

2
min
θ∈Θ−2

cos(θ) =
1

2
cos(3π/8)

• q = −3, θ ∈ Θ−3 = [−5π/8,−3π/8], φ(q) = 3π/4,

∇Uq(θ) = α2 sin(θ) +
1

4

[
sin(2θ) cos

(
3π

2

)
+ cos(2θ) sin

(
3π

2

)]

= α2 sin(θ)− 1

4
cos(2θ)

= α2 sin(θ)− 1− 2 sin2(θ)

4

= −1

2

(
1

2
− 2α2 sin(θ)− sin2(θ)

)

= −1

2

(
1

2
+ α4 −

(
α2 + sin(θ)

)2
)

≥ 1

2

(
−1

2
− α4 + min

θ∈Θ−3

(
α2 + sin(θ)

)2
)

=
1

2

(
−1

2
− α4 +

(
α2 + sin(−3π/8)

)2
)

=
1

2

(
−1

2
+ 2α2 sin(−3π/8) + sin2(−3π/8)

)
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=
1

2

(
−1

2
− 2α2 sin(3π/8) + sin2(3π/8)

)

∇Uq(θ) > 0 ⇐= α2 <
sin2(3π/8)− 1

2

2 sin(3π/8)
.

We now prove that ∇Uq(θ)1{θ∈Θq} < 0 ∀θ ∈ [0, π).

• q = 0, θ ∈ Θ0 ∩ {θ > 0} , φ(q) = 0

∇Uq(θ) = α2 sin(θ) +
1

4

[
sin(2θ) cos

(
3π

2

)
+ cos(2θ) sin

(
3π

2

)]

= −1

2

(
1

2
+ α4 −

(
α2 + sin(θ)

)2
)

≤ 1

2

(
−1

2
− α4 +max

θ∈Θ1

(
α2 + sin(θ)

)2
)

=
1

2

(
−1

2
− α4 +

(
α2 + sin(π/8)

)2
)

=
1

2

(
−1

2
+ sin(π/8)2 + 2 sin(π/8)α2

)

∇Uq(θ) < 0 ⇐= α2 <
1
2
− sin2

(
π
8

)

2 sin(π/8)

• q = 2, θ ∈ Θ2 = [π/8, 3π/8], φ(q) = π/2

∇Uq(θ) = α2 sin(θ) +
1

4
[sin(2θ) cos (π) + cos(2θ) sin (π)]

= α2 sin(θ)− 1

4
sin(2θ)

= α2 sin(θ)− 1

2
sin(θ) cos(θ)

= sin(θ)

(
α2 − 1

2
cos(θ)

)

(θ ∈ Θ2 =⇒ sin(θ) > 0)

≤ sin(θ)

(
α2 − 1

2
min
θ∈Θ2

cos(θ)

)
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∇Uq(θ) < 0 ⇐= α2 <
1

2
min
θ∈Θ2

cos(θ) =
1

2
cos(3π/8)

• q = 3, θ ∈ Θ3 = [3π/8, 5π/8], φ(q) = π/4

∇Uq(θ) = α2 sin(θ) +
1

4

[
sin(2θ) cos

(π
2

)
+ cos(2θ) sin

(π
2

)]

= α2 sin(θ) +
1

4
cos(2θ)

= α2 sin(θ) +
1− 2 sin2(θ)

4

=
1

4
+ α2 sin(θ)− 1

2
sin2(θ)

=
1

2

(
− sin2(θ) + 2α2 sin(θ) +

1

2

)

=
1

2

(
−(sin(θ)− α2)2 + α4 +

1

2

)

≤ −1

2
min
θ∈Θ3

(sin(θ)− α2)2 +
1

2

(
α4 +

1

2

)

= −1

2

(
sin(3π/8)− α2

)2
+

1

2

(
α4 +

1

2

)

= −1

2
sin2(3π/8) + α2 sin(3π/8) +

1

4

∇Uq(θ) < 0 ⇐= α2 <
sin2(3π/8)− 1

2

2 sin(3π/8)

Now, for any α we have that ∇U0(±π) = −α2 sin(±π)+ 1
2
sin
(
±π + π

2

)
cos
(
±π π

2

)
. Hence,

provided that

α2 < min

{
1

2
cos(3π/8),

1
2
− sin2(π/8)

2 sin(π/8)
,
sin2(3π/8)− 1

2

2 sin(3π/8)
,
1

2

}
=

1

2
cos(3π/8),

it follows that

∇U(x1, q) = 0 ⇐⇒ x1 ∈ {−π, π} , and

⟨U(x1, q), x1⟩ < 0 ∀(x1, q) ∈
⋃

q∈Q
(Θq \ {−π, 0, π})× {q}
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■

Proof of Lemma 11.2

First, note that for every q we have that Θq ⊂ R is a closed interval and K↑
q is a

finite set and hence closed. Therefore Θq × R× {q} ×K↑
q is closed since finite product of

closed sets is closed. Then, C is a finite union of closed sets which implies that C × S1 is

also closed.

Now, we have that Fx(·, ·, φ(·)) is continuous in R2 ×Q× S1 since it is a composition of

the continuous function Fx : R2 × R× S1 → R2 and φ : Q→ R, which is continuous since

Q is finite. Continuity of F in C ∪D ⊂ R2 × R× S1 follows directly by recalling that Fχ

is continuous and noting that Cartesian product of continuous functions is continuous.

Moreover, since F is continuous and single valued we obtain that it is locally bounded.

On the other hand, note that Θq ∩Θ(q+sign(q)) mod 4 ̸= ∅ by design. Moreover, we have that

{0} is closed since it is a singleton set, and that Θq ∩Θp is closed for all p, q ∈ Q, due to

intersection of closed sets being closed. Consequently, ϑq is closed for every q ∈ Q. Noting

that D↑
p and D↓

p are closed for every p, it follows that D is a finite union of the closed sets

ϑq ×
(
D↑
p ∪D↓

p

)
and thus that D × S1 is closed.

Finally, let ν : Q+{−1, 1} → Q be defined by ν(q̂) = q̂ mod 4, and ξ : Q×R → Q+{−1, 1}

be given by ξ(q, s) = q + sign(s). It follows that ν(·) is continuous, since Q + {−1, 1}

is finite, and thus locally bounded and outer-semicontinuous when seen as a set-valued

map. Moreover, ξ(·, ·) is outer-semicontinous and locally bounded via [52, Prop. 5.51] due

to q → {q} and sign(·) being outer-semicontinuous and locally bounded. Thus, by [52,

Prop. 5.52], ν ◦ ξ : Q× R ⇒ Q, (q, x2) 7→ (q + sign(x2)) mod 4, is outer-semicontinuous

and locally bounded. Additionally, we have that s is outer-semicontinuous and locally

bounded by construction. This, together with the continuity of x1 7→ x1, x2 7→ x2, and

χ 7→ χ, implies the outer-semicontinuity and locally boundedness of G.
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Therefore, H satisfies the hybrid basic conditions [33, Asm. 6.5] which suffices to conclude

that it is well posed [33, Thm. 6.30.]. ■

Proof of Lemma 11.3

Let y = (x, q, k) such that the state of H can be written as z = (y, χ). Since χ does

not play any role during jumps, to prove the lemma it suffices to focus on the discrete-time

evolution of y. The discrete-time dynamics for y coincide with the average jump map:

Gav(y) =








x1

x2

sign(x2)

−sign(q)




if y ∈ (D ∩ ({ϑ0} × R×Q×K))




x1

x2

(
q + sign(x2)

)
mod 4

q + sign(q)




if y ∈

(
D ∩

({
x1 ∈

⋃
q∈Q\{0} ϑq

}

×R× [Q \ {0}]×K
))




x1

x2

s(x2)

q + sign(q)




if y ∈ (D ∩ ({ϑ3} × R× {0} × K))




x1

x2

−s(x2)

q + sign(q)




if y ∈ (D ∩ ({ϑ−3} × R× {0} × K))

. (I.1)
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Now, note that D is constructed as the union of the sets
{
ϑq ×

(
D↑
q ×D↓

q

)}
q∈Q. Since

p ̸= q =⇒ ϑp ̸= ϑq, by design, and it is always true that x+1 = x1 during jumps regardless

of the value of x1, it follows that Gav

(
ϑq ×

(
D↑
q ×D↓

q

))
∩ ϑp ×

(
D↑
p ×D↓

p

)
= ∅ whenever

p ̸= q. Thus, to show that solutions to H experience at most 2 consecutive jumps in-

between intervals of flow, we only need to study the intersection of Gav

(
ϑq ×

(
D↑
q ×D↓

q

))

with ({ϑq} × R×Q×K) ∩ (C ∪D).

Thus, for y ∈ D such that x1 = ϑ0 = 0, we have that

Gav

(
ϑ0 ×D↑

0

)
= Gav (ϑ0 × R≥0 × {−1} × {−3})

= Gav (ϑ0 × ({0} ∪ R>0)× {−1} × {−3})

= Gav ([ϑ0 × {0} × {−1} × {−3}] ∪ [ϑ0 × R>0 × {−1} × {−3}])

= Gav (ϑ0 × {0} × {−1} × {−3}) ∪Gav (ϑ0 × R>0 × {−1} × {−3})

= (ϑ0 × {0} × {−1, 1} × {1}) ∪ (ϑ0 × R>0 × {1} × {1})

= ϑ0 × ([{0} × {−1, 1} × {1}] ∪ [R>0 × {1} × {1}]) (I.2)

We consider the intersection of (I.2) with the part of the jump set D for which πx1 (D) = ϑ0:

Gav

(
ϑ0 ×D↑

0

)
∩

(
ϑ0 ×

[
D↑

0 ∪D↓
0

])
= ϑ0 ×

[
([{0} × {−1, 1} × {1}] ∪ [R>0 × {1} × {1}]) ∩D↑

0

]

∪ ϑ0 ×
[
([{0} × {−1, 1} × {1}] ∪ [R>0 × {1} × {1}]) ∩D↓

0

]

= ϑ0 ×
[
({0} × {−1, 1} × {1}) ∩D↑

0

]

∪ ϑ0 ×
[
(R>0 × {1} × {1}) ∩D↑

0

]

∪ ϑ0 ×
[
({0} × {−1, 1} × {1}) ∩D↓

0

]

∪ ϑ0 ×
[
(R>0 × {1} × {1}) ∩D↓

0

]

= ϑ0 ×
[
({0} × {−1, 1} × {1}) ∩D↑

0

]
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∪ ϑ0 × [R>0 × ∅ × ({1} ∩ {−3})]

∪ ϑ0 ×
[
({0} × {−1, 1} × {1}) ∩D↓

0

]

∪ ϑ0 × [∅ × {1} × ({1} ∩ {3})]

= ϑ0 ×
[
({0} × {−1, 1} × {1}) ∩D↑

0

]

∪ ϑ0 ×
[
({0} × {−1, 1} × {1}) ∩D↓

0

]

= ϑ0 × [{0} × {−1} × ({1} ∩ {−3})]

∪ ϑ0 × [{0} × {1} × ({1} ∩ {3})]

= ϑ0 × [{0} × {−1} × ∅]

∪ ϑ0 × [{0} × {1} × ∅]

= ∅ (I.3)

Gav

(
ϑ0 ×D↓

0

)
= ϑ0 ×

([
{0} × {−1, 1} × {−1}

]
∪ [R<0 × {−1} × {−1}]

)

=⇒

Gav

(
ϑ0 ×D↓

0

)
∩

(
ϑ0 ×

[
D↑

0 ∪D↓
0

])
= ϑ0 ×

[
({0} × {−1, 1} × {−1}) ∩D↑

0

]

∪ ϑ0 ×
[
(R<0 × {−1} × {−1}) ∩D↑

0

]

∪ ϑ0 ×
[
({0} × {−1, 1} × {−1}) ∩D↓

0

]

∪ ϑ0 ×
[
(R<0 × {−1} × {−1}) ∩D↓

0

]

= ϑ0 ×
[
({0} × {−1, 1} × {−1}) ∩D↑

0

]

∪ ϑ0 × [∅ × {−1} × ({−1} ∩ {−3})]

∪ ϑ0 ×
[
({0} × {−1, 1} × {−1}) ∩D↓

0

]

∪ ϑ0 × [R<0 × ∅ × ({−1} ∩ {3})]
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= ϑ0 ×
[
({0} × {−1, 1} × {−1}) ∩D↑

0

]

∪ ϑ0 ×
[
({0} × {−1, 1} × {−1}) ∩D↓

0

]

= ϑ0 × [{0} × {−1} × ({−1} ∩ {−3})]

∪ ϑ0 × [{0} × {1} × ({−1} ∩ {3})]

= ∅. (I.4)

which means that whenever a solution experiences a jump after hitting ϑ0 ×
(
D↑

0 ∪D↓
0

)
,

it cannot jump again. On the other hand, for y ∈ D with x1 ∈
⋃
q∈Q\{0} ϑq, it follows that

Gav

(
ϑp ×D↑

p

)
= Gav

(
ϑp × {x2sign(p) ≥ 0} × {p} ×K↑

p

)

= ϑp × ([{0} × {[p+ {−1, 1}] mod 4} × {p+ sign(p)}])

∪ϑp× ([{x2sign(p) > 0} × {(p+ sign(p)) mod 4} × {p+ sign(p)}]) ,

which implies that

Gav

(
ϑp ×D↑

p

)
∩

(
ϑp ×

[
D↑
p ∪D↓

p

])
= ϑp ×

[
{0} × {[p+ {−1, 1}] mod 4} × {p+ sign(p)} ∩D↑

p

]

∪ ϑp ×
[
({x2sign(p) > 0} × {(p+ sign(p)) mod 4} × {p+ sign(p)}) ∩D↑

p

]

∪ ϑp ×
[
{0} × {[p+ {−1, 1}] mod 4} × {p+ sign(p)} ∩D↓

p

]

∪ ϑp ×
[
({x2sign(p) > 0} × {(p+ sign(p)) mod 4} × {p+ sign(p)}) ∩D↓

p

]

(1. any set with q ̸= p has empty intersection with D↑
p)

= ϑp ×
[
{0} × {[p+ {−1, 1}] mod 4} × {{p+ sign(p)}} ∩D↓

p

]

∪ ϑp ×
[
({x2sign(p) > 0} × {(p+ sign(p)) mod 4} × {p+ sign(p)}) ∩D↓

p

]
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(2. any z with x2, p such that x2sign(p) > 0 does not belong to D↓
p)

= ϑp ×
[
({0} × {[p+ {−1, 1}] mod 4} × {p+ sign(p)}) ∩D↓

p

]

= ϑp ×
[
{0} × {(p+ sign(p)) mod 4} × {p+ sign(p)} ∩K↓

p

]

(3. {p+ sign(p)} ∩K↓
p = ∅ by design)

= ∅. (I.5)

Hence, whenever a solution experiences a jump after hitting
⋃
q∈Q\{0} ϑq ×D↑

0, it cannot

jump again. On the other hand, for y ∈ D with x1 ∈
⋃
q∈Q\{0} ϑq, it follows that

Gav

(
ϑp ×D↓

p

)
= Gav

(
ϑp × {x2sign(p) ≤ 0} ×

{
p↑
}
×K↓

p

)

= ϑp ×
([
{0} ×

{
p↑↑, p

}
× {g(p)}

])

∪ ϑp × ([{x2sign(p) < 0} × {p} × {g(p)}])

where

p↑ : Q \ {0} → Q, p 7→ (p+ sign(p)) mod 4, p↑↑ =





−3 if p = 3

0 if p = 2

3 if p = 1

−3 if p = −1

0 if p = −2

3 if p = −3

,

g(p) := p↑ + sign
(
p↑
)
. (I.6)
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Therefore, we have

Gav

(
ϑp ×D↓

p

)

∩
(
ϑp ×

[
D↑
p ∪D↓

p

])
= ϑp ×

[
{0} ×

{
p↑↑, p

}
× {g(p)} ∩D↑

p

]

∪ ϑp ×
[
({x2sign(p) < 0} × {p} × {g(p)}) ∩D↑

p

]

∪ ϑp ×
[
{0} ×

{
p↑↑, p

}
× {g(p)} ∩D↓

p

]

∪ ϑp ×
[
({x2sign(p) < 0} × {p} × {g(p)}) ∩D↓

p

]

(1. Any z = (x1, x2, p) satisfying x2sign(p) < 0 is not in D↑
p)

= ϑp ×
[
{0} ×

{
p↑↑, p

}
× {g(p)} ∩D↑

p

]

∪ ϑp ×
[
{0} ×

{
p↑↑, p

}
× {g(p)} ∩D↓

p

]

∪ ϑp ×
[
({x2sign(p) < 0} × {p} × {g(p)}) ∩D↓

p

]

(
2.
{
p↑
}
∩
{
p
↑↑
, p
}
= ∅

)

= ϑp ×
[
{0} ×

{
p↑↑, p

}
× {g(p)} ∩D↑

p

]

∪ ϑp ×
[
({x2sign(p) < 0} × {p} × {g(p)}) ∩D↓

p

]

(3. {p} ∩
{
p↑
}
= ∅)

= ϑp ×
[
{0} ×

{
p↑↑, p

}
× {g(p)} ∩D↑

p

]

= ϑp × {0} × {p} ×
(
{g(p)} ∩K↑

p

)

= ϑp × {0} × {p} × ({g(p)}) ∈ ϑp ×D↑
p. (I.7)

Equation (I.7) implies that if a solution hits ϑp ×D↓
p with p ≠ 0 and jumps, it can only

jump again whenever x+2 = x2 = 0, since in that case y+ ∈ ϑp ×D↑
p. However, after such
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jump, by (I.5), it cannot jump once more. Therefore, in that case there are at most 2

consecutive jumps. ■

Proof of Lemma 11.4

Note that solutions do not stop due to jumps since by construction Gav (D) ⊆

(C ∪D). Moreover, note that Fav is globally Lipschitz. Thus, by Gronwall-Bellman

inequality the flow map (11.10) does not generate finite escape times. Therefore, by [33,

Prop. 2.10], all maximal solutions of H are complete. ■

Proof of Lemma 11.5

First, by Lemma 11.1, continuity of Uq(·) for all q, and the fact that Θq̂ is compact

for all p ∈ Q \ {0}, we obtain that ∃mp ∈ R>0 and Mp ∈ R>0 such that

min
θ∈Θp

∇Up(θ) = −mpsign(p), max
θ∈Θp

∇Up(θ) = −Mpsign(p) (I.8)

Moreover, note that p ∈ Q \ {−3, 3} ⇐⇒ p↑ ∈ Q \ {0}. For the sake of simplicity

of the proof assume that p ≥ 0 which implies that p↑ > 0; the same inequalities we

present below hold by switching mp↑ with −mp↑ , Mp↑ with −Mp↑ , and appropriately

changing the direction of the inequalities whenever p↑ < 0. Therefore, we have that both

−mp↑sign
(
p↑
)
= −mp and −Mp↑sign

(
p↑
)
= −Mp↑ by using (I.8). Moreover, under the

average dynamics Hav it follows that

mp↑ − αβx2 ≤ ẋ2 ≤Mp↑ − αβx2 ∀(x, q, k) ∈ Θq × R× {q} ×K↑
q (I.9)

From (I.9), by using the comparison principle, we obtain that

mp↑t+ x2(0, 0)
(
1 + e−αβt

)
≤ x2(t, 0) ≤Mp↑t+ x2(0, 0)

(
1 + e−αβt

)
, (I.10)
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for all solutions to y(t, 0) to Hav with y(0, 0) ∈ Θq ×R×{q}×K↑ and all (t, 0) ∈ dom (x)

such that x1(t, 0) ∈ Θp↑ . On the other hand, by assumption, we have that

x1(0, 0) = ϑp ≥ 0, x2(0, 0) ∈ R≥0, q(0, 0) = p↑, k(0, 0) = p↑, (I.11)

where we have used the fact that x+1 = x1, x
+
2 = x2 during jumps, and that x1 ≥ 0, x2 ∈

R≥0sign(p) whenever y ∈ ϑp × D↑
p. Therefore, using (I.11) on (I.10), it follows that x2

cannot change signs and additionally that it satisfies

mp↑t ≤ x2(t, 0).

Therefore, using the definition of Fav in (11.10), and invoking the comparison principle,

from (I.10) we obtain

mp↑t ≤ ẋ1(t, 0) =⇒ mp↑
t2

2
+ ϑp ≤ x1(t, 0). (I.12)

Since ϑp↑ > ϑp whenever p
↑ ∈ Q \ {0} , p↑ > 0, from (I.12) we can conclude that there

exists T > 0 such that

x1(T, 0) = ϑp↑ for T ≤ Tp, and where T 2
p :=

2
∣∣ϑp↑ − ϑp

∣∣
mp

. (I.13)

The same reasoning holds for p↑ ∈ Q \ {0} , p↑ < 0. By the fact that q̇ = 0 and k̇ = 0, we

obtain that q(t, 0) = p↑, k(t, 0) = p↑ for all t ∈ [0, T ]. This, together with (I.13) and (I.12),

implies that y(T, 0) = (ϑp, cx2 , p
↑, p↑) ∈ ϑp↑ ×D↑

p↑ , where cx2 ≥ 0 is the non-negative value

that x2 has at the hybrid-time (T, 0), which depends on the initial condition x2(0, 0). This

concludes the proof. ■
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(a) With x1 ∈
⋃
q∈Q\{0} ϑq (b) With x1 = ϑ0

Figure I.1. Possible behaviors for trajectories hitting the jump set

Proof of Lemma 11.7

First, since y(0, 0) ∈ Gav

(
ϑp ×D↑

p

)
we have that

x1(0, 0) = ϑp ∈ Θ0,

x2(0, 0) ∈ R≥0sign(p), q(0, 0) ∈ sign(p)s(x2), k(0, 0) = sign(p)4.

Now, consider the behavior of the local Lyapunov function:

W (x) = U0(x1) +
1

2
|x2|2,

during the flows of Hav. It follows, given y ∈ Θ0 × R× {0} ×K↑
q ⊂ C, that

Ẇ (x) = ∇W (x)⊤Fav(x, q)

(
y ∈ Θ0 × R× {0} ×K↑

q =⇒ q = 0
)

= ⟨∇U0(x1), x2⟩+ ⟨x2, −∇U0(x1)− αβx2⟩

= −αβ ⟨x2, x2⟩
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= −αβ|x2|2 ≤ 0. (I.14)

Now, note that Ẇ = 0 only for solutions with x2 = 0 identically. For thus solutions we

thus have that ẋ2 = 0 which from (11.10) implies that ∇U0(x1) = 0 at all times. However,

by Lemma 11.1 this happens if and only if x1 ∈ {−π, π}. Therefore, from (I.14) we

obtain that Ẇ < 0 for all y ∈ (Θ0 × R× {0} × {−4, 4}) \ {−π, π}, and Ẇ = 0 only if

(x1(t, 0), x2(t, 0)) ∈ {−π, π} × {0} for all t. With this at hand we divide the remainder of

the analysis by cases:

• Assume that x2(0, 0) = 0. Thus, it follows that q(0, 0) ∈ sign(p) {0, 3}. Since

k(0, 0) = sign(p)4 we obtain that y(0, 0) ∈ Θ0 × R × {0} × K↑
0 and y(0, 0) ̸∈

(
ϑp ×

(
D↑
p ∪D↓

p

))
∪
(
Θp × R× {p} ×K↑

p

)
. Therefore, solutions must necessarily

flow with q = 0. Now, assume that there exists T > 0 such that x1(T, 0) = ϑp↑ =

ϑ−p = −ϑp. Since U0(·) is symmetric by design, we obtain that U0(x(T, 0)) =

U0(−ϑp) = U(ϑp) = U(x1(0, 0)), and hence that

W (x(T, 0)) = U(x1(0, 0)) +
1

2
|x2(T, 0)|2

= U(x1(0, 0)) +
1

2
|x2(T, 0)|2 +

1

2
|x2(0, 0)|2 −

1

2
|x2(0, 0)|2

= W (x1(0, 0)) +
1

2

(
|x2(T, 0)|2 − |x2(0, 0)|2

)

=⇒ 2 [W (x(T, 0))−W (x(0, 0))] = |x2(T, 0)|2 − |x2(0, 0)|2. (I.15)

Since x1(0, 0) ̸∈ {−π, π}, it follows from the discussion above that Ẇ (t, 0) < 0

for almost all t. Thus, we obtain that W (x(T, 0)) < W (x(0, 0)), which implies

that |x(T, 0)|2 < |x(0, 0)|2 = 0, but this cannot happen. Therefore, if x2(0, 0) = 0

there cannot exist T > 0 such that y(T, 0) ∈ ϑp↑ × D↓
−p, and thus, solutions

should flow with x1(t, 0) ∈ Θ0 for all t > 0. Hence, by the invariance principle,

and via (I.14), it follows that limt→∞(x1(t, 0), x2(t, 0)) ∈ {−π, π} × {0}. Since
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(q(0, 0), k(0, 0)) ∈ {0} × {−4, 4}, jumps are not triggered, and q̇ = 0, k̇ = 0 it follows

that (q(t, 0), k(t, 0)) ∈ {0} × {−4, 4} and thus that limt→∞ y(t, 0) ∈ A0.

• If x2(0, 0) ∈ R>0sign(p). On possibility is that the initial kinetic energy 1
2
|x2(0, 0)|2

is big enough for there not to be enough dissipation during the flow with x1 ∈ Θ0

and consequently that x1(T, 0) ∈ ϑp↑ for some T > 0. If conversely the initial

kinetic energy is small enough to have invariance of Θ0 × R × {0} × {−4, 4} by

a similar argument to the one presented in the previous item, we obtain that

limt→∞ y(t, 0) ∈ A0.

■

Proof of Lemma 11.8

To prove Lemma 11.8 we study conditions to guarantee that p↑ + sign
(
p↑
)
∈ K↓

p↓

and p↑ + sign
(
p↑
)
∈ K↑

p for all p ∈ Q \ {0}, enabling the successful emulation of the

heavy-ball dynamics on the designed potential.

First, by using the definition of D↓
p and Gav it follows that

x1(0, 0) = ϑp, x2(0, 0) = 0, q(0, 0) ∈
{
p↑↑, p

}
, k(0, 0) = p↑ + sign

(
p↑
)
, or

x1(0, 0) = ϑp, x2(0, 0) ∈ R<0sign(p), q(0, 0) = p, k(0, 0) = p↑ + sign
(
p↑
)
.

(I.16)

Now, we divide the analysis by cases depending on the value of x2(0, 0).

• x2(0, 0) = 0. From (I.16) it follows that

y(0, 0) ∈ ϑp × {0} ×
{
p↑↑, p

}
×
{
p↑ + sign

(
p↑
)}

. Note that by construction of the flow and jump sets of H, no solution is allowed

to flow nor jump from a state with x1 = ϑp and q = p↑↑. Therefore, we only need
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to focus on the case with y(0, 0) = ϑp × {0} × {p} ×
{
p↑ + sign

(
p↑
)}

. By design,

p↑ + sign
(
p↑
)
∈ K↑

p for all p ∈ Q \ {0}. Thus, it follows that y(0, 0) ∈ ϑp × D↑
p,

and, due to K↑
p ∩ K↑

p↑ = ∅ for all p ∈ Q and the fact that q(0, 0) = p, that

y(0, 0) ̸∈
(
Θp↑ × R×

{
p↑
}
×K↑

p↑

)
. Moreover, although y(0, 0) ∈ Θp×R×{p}×K↑

p

, since x1(0, 0) = ϑp, x2(0, 0) = 0, and ⟨∇Up(x1), x1⟩ < 0 by Lemma 11.1, there is

no solution flowing from the particular y(0, 0) under study. In summary, we have

that y(0, 0) ∈
(
ϑp ×D↑

p

)
, y(0, 0) ̸∈

(
Θp↑ × R×

{
p↑
}
×K↑

p↑

)
, and solutions will

necessarily jump afterwards.

• x2(0, 0) ∈ R<0sign(p). For this case, from (I.16), it follows that y(0, 0) = ϑp ×

R<0sign(p) × {p} ×
{
p↑ + sign

(
p↑
)}

. Therefore, solutions will necessarily have to

flow as y(0, 0) ∈
(
Θp × R× {p} ×K↑

p

)
and y(0, 0) ̸∈ D. For the sake of simplicity,

assume that p ≥ 0. Then, by the comparison principle we have

mpt+ x2(0, 0)
(
1 + e−αβt

)
≤ x2(t, 0) ≤Mpt+ x2(0, 0)

(
1 + e−αβt

)
, (I.17a)

ϑp +mp
t2

2
+

x2(0, 0)

(
t− 1

αβ
e−αβt

)
≤ x1(t, 0) ≤ ϑp +Mp

t2

2
+ x2(0, 0)

(
t− 1

αβ
e−αβt

)
,

(I.17b)

where mp > 0 and Mp > 0 are as defined in the proof of the previous lemma.

The same inequalities we present below hold by switching mp with −mp, Mp with

−Mp, and appropriately changing the direction of the inequalities whenever p < 0.

Depending on the magnitude of x2(0, 0), from (I.17) and the fact x2(0, 0) < 0, we

consider the two following cases:

– There exists T0 > 0 such that x2(T0, 0) = 0 and x1(T0, 0) ∈ (ϑp, ϑp↓). In such

case, y(T0, 0) ∈ Θp×R≥0×{p}×
{
K↑
p

}
. Then, using (11.10), by the comparison
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principle we get that

mp(t− T0) ≤ x2(t, 0) ≤Mp(t− T0), (I.18a)

x1(T0, 0) +mp
(t− T0)

2

2
≤ x1(t, 0) ≤ x1(T0, 0) +mp

(t− T0)
2

2
, (I.18b)

for t > T0. Since x1(T0, 0) ∈
(
ϑp, ϑp↓

)
, and mp > 0,Mp > 0, by definition, from

(I.18b) we obtain that there exists T > T0 satisfying (T − T0)
2 ≤ 2|ϑp−ϑp↓|

mp
, such

that x1(T, 0) = ϑp and x2(T, 0) ≥ 0. Since q̇ = 0 and k̇ = 0, it follows that

q(T, 0) = p, k(T, 0) = p↑ + sign
(
p↑
)
∈ K↑

p ∀p. The same arguments hold for

p < 0, by following the modifications mentioned above, and, therefore, it follows

that y(T, 0) ∈ ϑp ×D↑
p for all p ∈ Q \ {0}.

– There exists T > 0 such that x1(T, 0) = ϑp↓ and x2(T, 0) ≤ 0, i.e., x2 does

not change sign during the flow interval. Since q̇ = 0 and k̇ = 0, it follows

that q(T, 0) = p, k(T, 0) = p↑ + sign
(
p↑
)
. Since p↑ + sign

(
p↑
)
∈ K↓

p↓ for all

p ∈ Q \ {0} by design, it follows that y(T, 0) = (ϑp↓ , cx2 , p, p
↑ + sign

(
p↑
)
) ∈

ϑp↓ ×D↓
p↓ , where cx2 ≥ 0 is the non-positive value that x2 has at the hybrid-time

(T, 0), which depends on the initial condition x2(0, 0). Since the same arguments

hold for p < 0, by following the modifications mentioned above, it follows that

y(T, 0) ∈ ϑp↓ ×D↓
p↓ for all p ∈ Q \ {0}.

■

Proof of Lemma 11.9

Together, Lemmas 11.5-11.8 show that Hav induces a finite amount of jumps before

entering the region with x1 ∈ Θ0 with low enough kinetic energy such that solutions will

flow from there onward without jumping again. In particular, this implies that there

cannot be maximal Zeno solutions to Hav. ■
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Proof of Theorem 11.1

Via Lemmas 11.5-11.9 we can conclude that the HDS Hav emulates continuous-time

heavy-ball dynamics with friction coefficient αβ and potential function given by U(x1, q)

as defined in (11.6). Now, consider the following Lyapunov candidate function

V (x, q) = U(x1, q) +
|x2|2
2

which satisfies V (x, q) ≥ 0 ∀(x, q) ∈ C ∪ D, and V (x, q) = 0 ⇐⇒ (x, q) ∈ A0 via the

application of Lemma 11.1. Moreover, V is radially unbounded since V is continuous in x1

and x1 ∈ S1, and V (x) → ∞ as |x2| → ∞. For all (x, q) ∈ C, during flows we have that

V̇ (x, q, k) = ∇V ⊤




x2

−∇Uq(x1)− αβx2


 ∀(x, q) ∈ C

=

(
∇U(x1, q) x2

)



x2

−∇Uq(x1)− αβx2




= ∇U(x1, q)x2 − x2∇Uq(x1)− αβ|x2|2

= ∇Uq(x1)x2 − x2∇Uq(x1)− αβ|x2|2

= −αβ|x2|2 ≤ 0, (I.19)

where we have used the fact that (x, q, k) ∈ C =⇒ x ∈ Θq × R, and thus that

U(x1, q) = Uq(x1) ∀(x, q, k) ∈ C. On the other hand, for every (x, q, k) ∈ D, during jumps

we have that V (x+, q+, k+) = V (x, q, k).

Now, we show that no complete solution of Hav keeps V in a non-zero level set. To this

end, consider a solution for which V̇ (x, q, k) = 0. Then, it follows that x2(t, j) = 0 for

almost all (t, j) ∈ dom (x), and thus that during flows ẋ2 = 0 for almost all t. Therefore,

since solutions of Hav satisfy (ẋ, q̇, k̇) = Fav(x) for almost all t during intervals of flow,

452



it must be that 0 = −∇Uq(x1(t, j)). However, by Lemma 11.1, this can only happen if

(x1(t, j), x2(t, j), q(t, j), k(t, j)) ∈ {−π, π}×{0}×{0}×{−4, 4} for all (t, j) ∈ dom(x). In

particular, this means that V̇ < 0 for all (x, q) ∈ C \ {−π, π} × {0} × {−4, 4}. Therefore,

no solution that flows can keep V constant in a non-zero level set. Since by Lemma 11.9

every maximal solution is non-Zeno, and in fact there is only a finite ammount of jumps,

we obtain UGAS of A0 via the the hybrid invariance principle [33, Thm. 8.8.]. Global

practical asymptotic stability of A0 × S1 is obtained by applying [272, Thm. 2]. ■
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[250] M. Krstić and H.-H. Wang, “Stability of extremum seeking feedback for general
nonlinear dynamic systems,” Automatica, vol. 36, no. 4, pp. 595–601, 2000.

472
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