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We present the next-to-next-to-leading order (NNLO) calculation of quark quasiparton distribution
functions (PDFs) in the large momentum effective theory. The nontrivial factorization at this order is
established explicitly and the full analytic matching coefficients between the quasidistribution and the light-
cone distribution are derived. We demonstrate that the NNLO numerical contributions can improve the
behavior of the extracted PDFs sizably. With the unprecedented precision study of nucleon tomography at the
planned electron-ion collider, high precision lattice QCD simulations with our NNLO results implemented
will enable to test the QCD theory and more precise results on the PDFs of nucleons will be obtained.

DOI: 10.1103/PhysRevLett.126.072002

Introduction.—The Feynman parton distribution func-
tions (PDFs) are the most-important cornerstones for
applying quantum chromadynamics (QCD) to high energy
particle and nuclear physics. They provide not only an
important platform to unveil the fundamental structure of
the nucleons, but are also a crucial ingredient to explore
new physics beyond the standard model at hadron colliders.
Decades of extensive studies were made to probe the PDFs
from hard QCD processes [1–4], while limited success was
achieved from the first principle of QCD, i.e., the lattice
QCD, and only a few lowest moments were obtained [5–9].
Recently the large momentum effective theory (LaMET)

[10,11], established to calculate various parton distribution
functions directly from lattice QCD, has attracted great
attention from both the phenomenology and lattice com-
munities. Significant progress has been made, see, e.g.,
recent reviews [12,13] and other applications [14–16]. In
LaMET, a quasidistribution is constructed from the lattice
calculable matrix element of the hadron state and the
relevant light-cone distributions can be derived through a
perturbative matching. This provides a powerful tool to
calculate all parton observables from the first principle of
QCD which can be directly confronted with the experi-
mental measurements. With the unprecedented precision
study of nucleon tomography at the planned electron-ion
collider (EIC) [17], high precision LaMETapplications will

enable us to test the QCD theory and deepen our under-
standing of the PDFs of a nucleon.
According to the LaMET factorization, the quasi-PDF

can be expressed in terms of the light-cone PDF,

f̃i=Hðy; pzÞ ¼
Z

1

−1

dx
jxj

�
Cij

�
y
x
;
jxjpz

μ

�
fj=Hðx; μÞ

�
; ð1Þ

where f̃i=H and fj=H represent the quasi-PDF and light-
cone PDF, respectively, i, j for the parton flavors and
μ the factorization scale. In the above equation, x ∈ ½−1; 1�
and y ∈ ½−∞;∞� are the light-cone momentum and ẑ-
component momentum fractions of the hadron carried by
the parton j and i, respectively. This factorization argument
is obtained on the basis that the infrared (IR) behaviors for
the quasi-PDF and light-cone PDF are the same in LaMET
[10,11], and the matching coefficient Cij is perturbative
calculable.
The fixed-order calculation plays an important role in the

development of LaMET. It provides not only the explicit
expression of the matching coefficients needed for the
lattice computation, but also the detailed instances showing
how the factorization works. All previous analyses are
based on one-loop calculations [13]. Very recently, the two-
loop studies have started, but only the ultraviolet (UV)
renormalization was discussed in Ref. [18]. In this Letter,
we will carry out, for the first time, the flavor nonsinglet
quark distribution in LaMET at two-loop order, including
the matching coefficient and the numeric improvement to
extract the light-cone PDF from lattice QCD.
We emphasize two important features of our study

below. First, we will demonstrate the nontrivial feature
of the QCD factorization at the NNLO. Soft divergences
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will be canceled out between various contributions,
whereas the collinear divergences between the quasi-
and light-cone PDFs cancel out. This cancellation requires
the fine details of the theory, including the ϵ term and the
exact scale dependence in the one-loop matching. Our
explicit demonstration provides important proof of the
factorization argument in LaMET [19–22].
Second, the NNLO matching results can be directly

implemented in lattice calculations. As an example, we will
show how this improves the previous determination of the
quark PDF in LaMET. This will have a significant impact in
the hadron physics community and will open new oppor-
tunities to perform high precision lattice PDF calculations
in the new era [23].
To be explicit we will first derive the analytic result for

the flavor nonsinglet quark distribution in LaMET at two-
loop order, where various techniques developed for high-
order calculations [24–27] are employed. After subtracting
the UV and IR divergences, we will derive the NNLO
matching coefficient into two often-used renormalization
schemes. We will then show a numeric example where our
new result can greatly improve the shape of the extracted
quark PDFs.
LaMET factorization at two-loop order.—We will focus

on the flavor nonsinglet quark distribution whose light-
cone distribution follows the usual definition in the
literature,

fq=Hðx; μÞ ¼
Z

dξ−

4π
e−ixp

þξ−hpjq̄ðξ−ÞγþWðξ−; 0Þqð0Þjpi;

ð2Þ

where Wðξ−; 0Þ denotes the light-cone gauge link. The
quark quasidistribution is defined as

f̃q=Hðy; pzÞ ¼ pz

p0

Z
dz
4π

eizyp
zhpjq̄ðzÞγ0Wðz; 0Þqð0Þjpi;

ð3Þ

where the Wilson link is along the z direction: Wðz; 0Þ ¼
P exp ½−ig R z

0 dz
0Azðz0Þ�.

In the LaMET factorization of Eq. (1), both fq and f̃q
contain collinear divergences. The dimensional regulation
withD ¼ 4 − 2ϵ and the minimal subtraction scheme (MSÞ
are adopted in the calculations. Equation (1) should be
expanded as

f̃ð2Þi=k

�
y;
pz

μ
; ϵIR

�
¼ Cð2Þ

ij

�
y
x
;
jxjpz

μ

�
⊗ fð0Þj=kðx; ϵIRÞ

þ Cð1Þ
ij

�
y
x
;
jxjpz

μ

�
⊗ fð1Þj=kðx; ϵIRÞ

þ Cð0Þ
ij

�
y
x
;
jxjpz

μ

�
⊗ fð2Þj=kðx; ϵIRÞ; ð4Þ

where ϵIR was introduced to regulate the collinear diver-
gence and the convolution ⊗ integral is defined
as in Eq. (1). The perturbative expansion series are

collected as Ta ¼
P∞

n¼0 ðαs=2πÞnTðnÞ
a with Ta being each

of f̃i=k; Cij; fj=k. For the flavor nonsinglet quark distribu-

tion, the collinear divergences in the light-cone PDFs fðiÞj=k
on the right-hand side of Eq. (4) are known in the literature
[24–27]. For the matching coefficients, the leading order is

trivial: Cð0Þ
ij ðyÞ ¼ δijδð1 − yÞ, and the NLO Cð1Þ

ij ðyÞ in MS
and RI-MOM schemes can also be found in Refs. [28,29].
Therefore, in order to demonstrate the factorization at

NNLO, one needs to carry out the perturbative calculation
of f̃q at two-loop order. In total, there are 79 Feynman
diagrams, and three representative diagrams that are shown
in Fig. 1. Virtual and real subdiagrams can be obtained by
applying different cuts on the Wilson line and the total
contributions satisfy vector current conservation. We shall
point out that all the Feynman integrals can be classified
into three families of integrals:

I1ni ¼
Z Z

dDk1dDk2
ðk21Þn1ðk22Þn2 ½ðk2 − pÞ2�n3 ½ðk1 þ k2Þ2�n4

×
1

½ðk1 þ k2 − pÞ2�n5
�

1

ðP1 þ i0Þn6 −
1

ðP1 − i0Þn6
�

×
1

4πi

�
1

ðQ1 þ i0Þn7 þ
1

ðQ1 − i0Þn7
�
; ð5Þ

with P1 ¼ n · k1 þ yn · p, Q1 ¼ n · k2 and
nμ ¼ ð0; 0⃗D−2; 1Þ;

I2ni ¼
Z Z

dDk1dDk2
ðk21Þn1ðk22Þn2 ½ðk2 − pÞ2�n3 ½ðk1 þ k2Þ2�n4

×
1

½ðk1 þ k2 − pÞ2�n5
�

1

ðP2 þ i0Þn6 −
1

ðP2 − i0Þn6
�

×
1

4πi

�
1

ðQ2 þ i0Þn7 þ
1

ðQ2 − i0Þn7
�
; ð6Þ

with P2 ¼ n · k1 þ n · k2 þ yn · p and Q2 ¼ n · k2;

I3ni ¼
Z Z

dDk1dDk2
ðk21Þn1ðk22Þn2 ½ðk1 − pÞ2�n3 ½ðk2 þ pÞ2�n4

×
1

½ðk2 − k1 þ pÞ2�n7
�

1

ðP3 þ i0Þn6 −
1

ðP3 − i0Þn6
�

×
1

4πi

�
1

ðQ3 þ i0Þn5 þ
1

ðQ3 − i0Þn5
�
; ð7Þ

with P3 ¼ n · k1 þ yn · p and Q3 ¼ n · ðk2 − k1 þ pÞ. The
þi0 prescription for the other propagators involving the
k1, k2 is implicitly assumed. The first two families of
integrals I1ni and I

2
ni correspond to the two kinds of cut in the

left diagram in Fig. 1. The third family of integrals I3ni can
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be obtained by the right diagram in Fig. 1. To organize the
calculations of these diagrams, we use FeynRules [30] and
FeynArts [31]. The algebraic manipulation and simplification
of the amplitudes are performed by Mathematica packages
FeynCalc [32]. We employ the integration-by-parts (IBP)
techniques with the help of FIRE [33] and reduce all the
involved tensor integrals into a minimal set of integrals that
are called master integrals (MIs). We calculate all the MIs
for both p2 ¼ 0 and p2 ≠ 0 cases with the method of
differential equations [34]. Inspired by Ref. [35], we
construct three groups of canonical basis ðgi; i ¼ 1; 2; 3Þ
that are linear combinations of MIs [36,37], and whose
differential equations can be expressed as

dgi ¼ ϵ dM · gi: ð8Þ

M is the matrix whose elements contain only log functions
with a rational coefficient. The above form will vastly
simplify the calculations. More details on the calculations
of MIs can be found in Ref. [37]. These techniques
developed in this calculation are also applicable to other
distributions including flavor-singlet quark and gluon PDFs
and generalized parton distributions.
For the UV divergences, the renormalization of the

quasioperator is given as

f̃

�
y;
pz

μ
;ϵIR

�
¼
Z

dy1
jy1j

�
Z̃

�
y
y1

���
Z−1f̃

�
y1;

pz

μ
;ϵ

��
; ð9Þ

where Z is the quark field wave function renormalization
constant and Z̃ is the quasidistribution renormalization
constant [18,38]. After subtracting the UV divergences, we
are left with IR divergences. It contains 1=ϵIR and 1=ϵ2IR
collinear divergences, and can be expressed as

f̃ð2Þq=q

�
y;
pz

μ
; ϵIR

�����
div

¼ ΓIR
2 ðyÞ
ϵ2IR

þ
ΓIR
1 ðyÞ þ 2ΓIR

2 ðyÞ logð μ2pz2Þ
ϵIR

:

ð10Þ

The explicit expressions for ΓIR
2 ðyÞ and ΓIR

1 ðyÞ are listed in
the Supplemental Material to this Letter [39]. The 1=ϵ2IR
divergence is canceled by the last term of Eq. (4), whereas
that of 1=ϵIR by the last two terms. At NNLO, these

divergences depend on three color structures: C2
F, CFCA,

and CFTF. The cancellations of divergences are found
for all these color structures. It is necessary to emphasize
that the important role of demonstrating the complete
cancellation.
Matching at NNLO.—With the collinear divergence

canceled out completely in Eq. (4), one can derive the
matching coefficient at NNLO. In the factorization for-
mulae of Eqs. (1) and (4), the light-cone PDF is defined in
the MS scheme while the matching coefficient depends on
the renormalization scheme of the quasi-PDF. The regu-
larization-independent momentum subtraction (RI-MOM)
scheme is mostly adopted in lattice calculations [40], while
in some quasi-PDF studies, a two-step matching procedure
has been advocated in Refs. [28,41–44]. An example is the
so-called modified MS (MMS) renormalization scheme
[44]. In this scheme, the lattice data on the quasi-PDF
are firstly converted to the MMS scheme, and in the second
step one matches the MMS-renormalized quasi-PDF to the
light-cone PDF. Very recently a hybrid renormalization
scheme has also been proposed in Ref. [45].
The subtraction in the RI-MOM scheme can be sum-

marized as [29,40]

Z̃−1
RI-MOMhpjq̄ðzÞγzWðz; 0Þqð0Þjpijp2¼−μ2R;p

z¼pz
R

¼ hpjq̄ðzÞγzWðz; 0Þqð0ÞjpijLO; ð11Þ

where μR and pz
R are the two renormalization scales in the

RI-MOM scheme. The corresponding matching coefficient
can be written as

CðnÞ;RI-MOM
qq ¼

�
CðnÞ;MS
qq

�
y;
pz

μ

�
− ðf̃ðnÞq=qÞC:T:

�
þ
; ð12Þ

where ½CðnÞ;MS
qq ðy; pz=μÞ�þ is the nth-order matching coef-

ficients in the MS scheme. The counterterm in the RI-
MOM scheme is given by

ðf̃ðnÞq=qÞC:T: ¼
���� p

z

pz
R

����f̃ðnÞ;Rq=q

�
pz

pz
R
ðy − 1Þ þ 1;

μ2R
pz
R
2

�
: ð13Þ

The explicit expressions for these counterterms are avail-
able in the supplementary Mathematica package files to
this Letter [39].
With the factorization scale μ ¼ pz, the matching coef-

ficients in the MS scheme can be decomposed into three
different color structures,

Cð2Þ;MS
qq ðy; 1Þ½i� ¼ ðCFc

CF
i þ CAc

CA
i þ 2TFnfc

TF
i ÞCF; ð14Þ

where [i] represents four different kinematic regions for y:
y > 1, 0 < y < 1, −1 < y < 0, and y < −1. One interest-
ing point is that the scale dependent single logarithm
logðμ2=pz2Þ appears in the NNLO matching coefficients

FIG. 1. Feynman diagrams for the two-loop master integrals,
where the double lines correspond to the Wilson line. A dot on a
propagator indicates that the power of the propagator is not
always 1 and may be any integer ni.
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at all nonphysical regions. The complete expressions for

Cð2Þ;MS
qq for all these regions are given in the Supplemental

material to this Letter [39]. Substituting the above results
into Eq. (12), one can obtain the matching coefficients in
the RI-MOM scheme.
In the MMS scheme, the matching coefficient is obtained

from Cð2Þ;MMS
qq ðy; pz=μÞ with the asymptotic form in the

y → �∞ region subtracted. All of the expressions of the

matching coefficient Cð2Þ;MMS
qq ðy; pz=μÞ can be found in

the Supplemental Material to this Letter [39].
Numerical impact.—We adopt here the MMS renorm-

alization scheme to demonstrate the impact of NNLO
results. We use the lattice data for the MMS-renormalized
quasi-PDF from Ref. [44]. As an example, in Fig. 2, we
give the results of isovector quark distribution fu−dðxÞ
extracted from the lattice data of [44] at NLO and NNLO,
respectively. In the numeric calculations, we choose μ ¼
2 GeV and pz ¼ 2.3 GeV. One can see from Fig. 2 that the
NNLO correction is important to improve the NLO
behavior and the extracted distribution at large x region
agrees better with the phenomenology fit from the
NNPDF3.1 set [2]. An oscillatory behavior appears
because the cutoff method is used and we truncate the
lattice data at z ¼ 10a in coordinate space [44,46,47].
The NNLO corrections can soften the oscillatory behavior.
We plan to have a more detailed comparison of different
schemes and a detailed analysis of theoretical uncertainties
in a future publication.
Conclusions.—We have for the first time explored the

flavor-nonsinglet quark quasi-PDFs in the large momentum
effective theory at two-loop order. With the explicit full
analytic results, we found that all the collinear divergences
factorized into the relevant light-cone PDFs. This has
provided concrete proof of the LaMET factorization at
the nontrivial two-loop order. The matching coefficient

between the quark quasi-PDF and light-cone PDF was
derived in the MS and RI-MOM subtraction scheme. As an
example, we have also shown in the MMS scheme that the
NNLO corrections improve the previous lattice result for
the isovector quark distribution.
We expect that more theoretical developments will

follow along the direction of this Letter. In particular,
the procedure and computation techniques can be extended
to all other channels, including flavor singlet quark dis-
tribution and gluon distribution functions. This will com-
plete all necessary ingredients for extracting PDFs from
lattice QCD at two-loop order. Our calculation can be
applied to other parton observables, such as the generalized
parton distributions, transverse momentum dependent dis-
tributions, and meson distribution amplitudes. This will
provide solid ground for applying lattice QCD to nucleon
tomography and comparing to the experiment exploration
from the future EIC.
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