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Abstract 65 

 66 

Climate change is expected to profoundly affect key food production sectors, including 67 

fisheries and agriculture. However, the potential impacts of climate change on these sectors 68 

are rarely considered jointly, and when they are, it is often at a national scale, which can 69 

mask substantial variability in how communities will be affected. Here, we combine 70 

socioeconomic surveys and intersectoral multi-model simulation outputs to conduct a sub-71 

national analysis of the potential impacts of climate change on fisheries and agriculture in 72 72 

coastal communities across five Indo-Pacific countries. Our study reveals three key findings: 73 

First, we find that the overall potential losses to fisheries is higher than potential losses to 74 

agriculture, but there is substantial within-country variability. Second, while more than two-75 

thirds of locations will bear a double burden of potential losses to both fisheries and 76 

agriculture simultaneously, mitigation could reduce the proportion of places facing a double 77 

burden. Third, lower socioeconomic status communities are more likely to experience 78 

potential impacts than higher socioeconomic status communities. 79 

 80 

Introduction 81 

 82 

Climate change is expected to profoundly impact key food production sectors, with the 83 

tropics expected to suffer losses in both fisheries and agriculture. For example, by 2100 84 

tropical areas could lose up to 200 suitable plant growing days per year due to climate 85 

change
1
. Likewise, fishable biomass in the ocean could drop by up to 40% in some tropical 86 

areas
2,3

. 87 

 88 

While understanding the magnitude of losses that climate change is expected to create in key 89 

food production sectors is crucial, it is the social dimensions of vulnerability that determine 90 

the degree to which societies are likely to be affected by these changes
4–8

. Vulnerability is the 91 

degree to which a system is susceptible to and unable to cope with the effects of change. It is 92 

comprised of exposure (the degree to which a system is stressed by environmental or social 93 

conditions), and the social dimensions of sensitivity (the state of susceptibility to harm from 94 

perturbations), and adaptive capacity (people‘s ability to anticipate, respond to, and recover 95 

from the consequences of these changes)
4,9

. Together, the exposure and sensitivity domains 96 

are referred to as ―potential impacts‖, which are the focus of this article. 97 

 98 

Incorporating key social dimensions of vulnerability is particularly important because many 99 

coastal communities simultaneously rely on both agriculture and fisheries to varying 100 

degrees
10

, yet assessments of climate change impacts and the policy prescriptions that come 101 

from them often consider these sectors in isolation
1,5,11–14

. Recently, studies have begun to 102 

look at the simultaneous impacts of climate change on both fisheries and agriculture at the 103 

national level
15,16

, but this coarse scale does not capture whether people simultaneously 104 

engage with- and are likely to be affected by- changes in these sectors. Indeed, whether 105 

households engage in both fisheries and agriculture
10

 will determine whether people have the 106 

knowledge, skills, and capital to substitute sectors if one declines, or alternatively, make them 107 

particularly susceptible to the potential ‗perfect storm‘ of a combined decline across sectors
15

. 108 

Thus, more localised analyses incorporating key social dimensions of vulnerability are 109 

required to better understand how combined impacts to fisheries and agriculture may affect 110 

coastal communities. Here, we combine a measure of exposure based on model projections of 111 

losses to exploitable marine biomass (here dubbed ―fisheries catch potential‖) and agriculture 112 

from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Fast Track phase 3 113 

dataset with a measure of sensitivity based on survey data about material wealth and 114 
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engagement in fisheries, agriculture, and other occupational sectors from >3,000 households 115 

across 72 tropical coastal communities in five countries (Table S1). We ask: ―What are the 116 

potential impacts of projected changes to fisheries catch potential and agriculture on coastal 117 

communities?‖ ―How much will mitigation measures reduce these potential impacts?‖ and 118 

―Are lower socioeconomic status coastal communities facing more potential impacts from 119 

climate change than their wealthier counterparts? ― 120 

 121 

Results and Discussion 122 

Our study has three key results. First, we find that overall possible impacts on fisheries catch 123 

potential is higher than possible impacts on agriculture, but there can be substantial within-124 

country variability in both exposure and sensitivity (Fig. 1). Specifically, exposure under the 125 

high-emissions Shared Socioeconomic Pathway 8.5 scenario (which has tracked historic 126 

cumulative CO2 emissions
17

, but has been recently critiqued for over-projecting CO2 127 

emissions and economic growth
18

) indicates substantive losses by mid-century to fisheries 128 

catch potential [Fig. 1; 14.7% +/- 4.3% (SE)  mean fisheries catch potential loss]. To put 129 

these projected losses in perspective, Sala et al.
19

 found that strategically protecting 28% of 130 

the ocean could increase food provisioning by 5.9 million tonnes, which is just 6.9% of the 131 

84.4 million tons of marine capture globally in 2018
20

. Thus, the mean expected fisheries 132 

catch potential  losses are approximately double that which could be buffered by strategic 133 

conservation. Model run agreement about the directionality of change for projected impacts 134 

to fisheries catch potential was high (SSP5-8.5: 84.7 +/- 4.5% (SE); SSP1-2.6: 89.2 +/- 135 

4.06% (SE)). Interestingly, crop models projected that agricultural productivity (based on 136 

rice, maize, and cassava- see methods) is expected to experience small average gains across 137 

the 72 sites  (1.2% +/- 1.5% (SE) mean agricultural gain), with a large response range 138 

between sites and crops (Fig S1). However, the average gains are not significantly different 139 

from zero (t = -0.80, df = 5.0, p=0.46), and model run agreement about directionality of 140 

change was lower for agriculture (SSP5-8.5: 69.1 +/- 4.82% (SE); SSP1-2.6: 70.4 +/- 3.27% 141 

(SE)). These projected agricultural gains are driven exclusively by rice (Supplemental Fig 1), 142 

which has particularly large model disagreement
14,21

. Excluding rice shows an average 143 

decline in agricultural production by mid-century, since maize and cassava show consistent 144 

median losses under both SSP1-2.6 and SSP5-8.5 climate scenarios (Supplemental Fig. 1). 145 

Significantly greater losses in fisheries catch potential compared to agriculture productivity 146 

are apparent  not only for our study sites (i.e. 15.9 +/- 5.6% (SE) greater; t = 2.81, df = 4.97, 147 

p = 0.0379), but also for a random selection of 4,746 (10% of) coastal locations in our study 148 

countries with populations >25 people per km
2
 (Fig. 2). Among those random sites, fisheries 149 

catch potential losses are an average of 15.6 +/- 5.1% (SE) greater than agriculture 150 

productivity changes (t = 3.06, df = 5.00, p=0.0282). Differences between expected losses at 151 

our sites and the randomly selected sites are small for agriculture (Cohen‘s D for SSP5-8.5=-152 

0.31, SSP1-2.6=-0.35) and negligible for fisheries catch potential (Cohen‘s D for SSP5-8.5 =-153 

0.02, SSP1-2.6=-0.03), indicating that our sites are not particularly biased towards high or 154 

low exposure for the study region. Not only is the level of exposure generally higher in 155 

fisheries compared to agriculture, but the sensitivity is on average nearly twice as high (Fig. 156 

1A,B; 0.077 +/- 0.007 mean fisheries sensitivity; 0.04+/-0.01 mean agricultural sensitivity; t 157 

=3.0, df = 2.26, p-value =0.0815).  158 

 159 

Our analysis also reveals high within-country variability in potential impacts (i.e. both 160 

exposure and sensitivity), particularly for fisheries (Fig. 1) - a finding that may be masked in 161 

studies looking at national-level averages
15,16

. Looking only at the mean expected losses can 162 

obscure the more extreme fisheries catch potential losses projected for many communities 163 

(Figs. 1,2). For example, under SSP5-8.5, our Indonesian sites are projected to experience 164 
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very close to the average fisheries catch potential losses among our study sites (15.9 +/- 165 

2.1%SE), but individual sites range from 6.5-32% losses (Fig 1B). There is also substantial 166 

within-country variation in how communities are likely to experience climate change 167 

impacts, based on their sensitivity (Fig. 1A,B). For example, in the Philippines, exposure to 168 

fisheries is consistently moderate (range 8.9-12.6% loss), but sensitivity ranges from our 169 

lowest (0.001) to our highest recorded scores (0.32). There is also within-country variability 170 

in model agreement, particularly for the agricultural models in Indonesia, where agricultural 171 

model agreement ranges from 50-85% and fisheries model agreement ranges from 56-100% 172 

for SSP5-8.5, and 50-80% and 50-94%, respectively, for SSP1-2.6. 173 

  174 

 175 

  176 

 177 
Figure 1. Potential Impacts for (A) agriculture and (B) fisheries under SSP5-8.5. 178 

Potential impacts comprise the exposure (y-axis, measured in potential losses) and 179 

sensitivity (x-axis, measured as level of dependence by households). Error bars show 180 

25
th

 and 75
th

 percentiles of exposure. (C) study site locations (n=72). Model run 181 

agreement highlights the proportion of (A) crop model runs (n=20), (B) fisheries model 182 

runs (n=16), and (C) average of agriculture and fisheries model runs that agree about 183 

the direction of change per site. Inset map in Supplemental Fig. 9. 184 

 185 
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 186 
 187 

Figure 2. A comparison of expected fisheries catch potential and agriculture losses 188 

(exposure) by mid-century under SSP5-8.5. Black dots/histograms are our study sites. 189 

Grey dots/histograms are a random selection of 4,746 (10% of) coastal cells with 190 

population densities >25 people/km
2 

from our study countries.  Dotted lines represent 191 

mean exposure.  192 

 193 

The second key result from our integrated assessment reveals that some locations will bear a 194 

double burden of losses to fisheries and agriculture simultaneously, but mitigation efforts that 195 

reduce greenhouse gas emissions could curb these losses. Specifically, under SSP5-8.5, 64% 196 

of our study sites are expected to lose productivity in fisheries and agriculture simultaneously 197 

(Fig. 3A), but this would reduce to 37% of sites under the low emissions scenario SSP1-2.6 198 

(Fig. 3B). Again, the effect of mitigation is consistent in the random selection of 4,746 sites 199 

(Supplemental Figure 2), with 70% of randomly selected sites expected to experience a 200 

double burden under SSP5 8.5, and 47% under SSP1 2.6. Many of the sites expected to 201 

experience the highest losses to both fisheries catch potential and agriculture have moderate 202 

to high sensitivity (Fig 3A, Supplemental Fig.3), which means the impacts of these changes 203 

could be profoundly felt by coastal communities.  204 

 205 

Over a third of our sites (36% under SSP5-8.5) are expected to experience increases in 206 

agriculture (due to CO2 fertilization effects that fuel potential increases particularly in rice 207 

yields) while experiencing losses in fisheries catch potential. For these sites, a question of 208 

critical concern is whether the potential gains in agriculture could help offset the losses in 209 

fisheries catch potential. The answer to this lies in part in the degree of substitutability 210 

between sectors. Our survey of 3008 households reveals high variation among countries, and 211 

even within some countries in the degree of household occupational multiplicity 212 

incorporating both agriculture and fisheries sectors (Table 1). 31% of households in our study 213 
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engaged in both fishing and agriculture, though this ranged from 10% of households in the 214 

Philippines to 77% of households in Papua New Guinea. This means that the degree to which 215 

agricultural gains might possibly offset some fisheries losses at the household scale is very 216 

context dependent. Our survey also revealed that 17% of households were involved in 217 

agriculture but not fisheries, ranging from 33% in Madagascar to 3% in our Papua New 218 

Guinean study communities. Alternatively, more than a third of households surveyed in 219 

Indonesia and Philippines were involved in fisheries but not agriculture (36% and 37% 220 

respectively), compared to a low value of 16% in Madagascar. In 12% of the Philippines 221 

communities surveyed (n=3), not a single household was engaged in agriculture. Thus, for 222 

32% of households across our sample, including some entire communities, potential 223 

agricultural gains will not offset potential fisheries losses. In these locations building adaptive 224 

capacity to buffer change will be critical
9
. 225 

 226 
Figure 3. The simultaneous potential losses to fisheries and agriculture in coastal 227 

communities. (A) Under SSP5-8.5 agricultural losses (y-axis) plotted against fisheries 228 

losses (x-axis) with bubble size revealing the overall sensitivity and the colour revealing 229 

the fisheries-agricultural relative sector dependency of each community’s sensitivity. 230 

(B) The potential benefits of mitigation shown by the potential losses for each 231 

community change going from the high emissions scenario (SSP5-8.5) to a low emissions 232 

scenario  (SSP1-2.6). 233 

 234 

 235 

 236 

COUNTRY NUMBER OF 

HOUSEHOLDS 
AGRICULTURE 

AND FISHERIES 
AGRICULTURE, 
NO FISHERIES 

FISHERIES, NO 

AGRICULTURE 

INDONESIA 1140 0.25 0.18 0.36 

MADAGASCAR 339 0.42 0.33 0.16 

PAPUA NEW 

GUINEA 
318 0.77 0.03 0.18 

PHILIPPINES 973 0.11 0.18 0.37 

TANZANIA 238 0.69 0.04 0.26 

Table 1. Proportion of surveyed households in each study country engaged in both 237 

agriculture and fisheries, agriculture but not fisheries, and fisheries but not agriculture. 238 
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Note, proportions do not add up to 1 because some households were not engaged in 239 

agriculture or fisheries. 240 

 241 

Our third key result is that coastal communities with lower socioeconomic status are more 242 

likely to experience potential impacts than communities of higher socioeconomic status 243 

across the climate mitigation scenarios (SSP1-2.6 and SSP5-8.5; Fig. 4). Specifically, we 244 

examined the relationship between the average material style of life (a metric of wealth based 245 

on material assets; see methods) in a community and the relative potential impacts of 246 

simultaneous fisheries catch potential and agriculture losses (measured as the Euclidean 247 

distance of sensitivity and exposure from the origin). Importantly, socioeconomic status is 248 

related to both sensitivity and exposure (Supplemental Fig. 4). In other words, low 249 

socioeconomic status communities tend to have higher sensitivity to fisheries and agriculture 250 

than the wealthy,  and are significantly more likely to be exposed to climate change impacts. 251 

Our findings regarding the relationship between socioeconomic status and sensitivity are 252 

consistent with a broad body of literature that shows how people tend to move away from 253 

natural resource dependent occupations as they become wealthier
10,22–25

. One potential 254 

interpretation of our findings is that alternative livelihood programs (e.g. jobs outside the 255 

fisheries or agricultural sectors, such as the service industry) could reduce sensitivity in lower 256 

socioeconomic status communities. However, decades of research on livelihood 257 

diversification has highlighted a multitude of reasons why alternative livelihood projects 258 

frequently fail
26

, including that they do not provide high levels of non-economic satisfactions 259 

(e.g., social, psychological, and cultural)
27–29

, as well as cultural barriers to switching 260 

occupations (e.g. caste systems)
30

, and attachment to identity and place
31

. Alternative 261 

occupations need to provide some of the same satisfactions, including basic needs (safety, 262 

income), social and psychological needs (time away from home, community in which you 263 

live, etc.), and self-actualization (adventure, challenge, opportunity to be own boss, etc.). For 264 

example, fishing attracts individuals manifesting a personality configuration referred to as an 265 

externalizing disposition, which is characterized by a need for challenges, adventure, and 266 

risk. Fishing can be extremely satisfying for people with this personality complex, while 267 

many alternative occupations can lead to job dissatisfaction, which has negative social and 268 

psychological consequences
32,33

.  Research has shown that for fisheries, recreational fishing 269 

captains or guides as alternative occupations produce some of the same satisfactions and have 270 

been successful
33

. Despite these limited successes, alternative livelihood programs frequently 271 

fail and are not a viable substitute for mitigating climate change for the ~6 million coral reef 272 

fishers globally
34

. 273 

 274 
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 275 
 276 

Figure 4. Relationships between potential impacts (calculated as the Euclidean distance 277 

of exposure and sensitivity) and material style of life (a metric of wealth based on 278 

material assets) under different mitigation strategies. Grey shading indicates 95% 279 

confidence intervals. (m)=marginal R
2
, (c)=conditional R

2
. 280 

 281 

Our study is an important first step in examining the potential simultaneous impacts to 282 

fisheries catch potential and agriculture in coastal communities, but has some limitations, 283 

some of which could be addressed in future studies. First, our measure of exposure was 284 

dynamic (i.e., it was projected into the future), while our measures of sensitivity and material 285 

wealth were static (i.e., from a single point in time) and did not consider potential changes 286 

over time. Although there are projections of how national-scale measures of wealth (e.g. 287 

gross domestic product; GDP) may change in the future, there are no reliable projections for 288 

household- or community-scale changes to material wealth or livelihoods. As a supplemental 289 

analysis, we examined observed changes in sensitivity and material wealth over 15 and 16 290 

years, respectively, in two Papua New Guinean coastal communities (Fig. 5). We found that, 291 

over the observed time frame (2001-2016), which is approximately half that of the predicted 292 

time frame of exposure, sensitivity scores were extremely stable, particularly in Ahus (Fig. 293 

5). Similarly, material wealth was also reasonably stable over time, but did reflect a shift in 294 

both communities toward more houses being built out of sturdier material (e.g., wood plank 295 

walls and floor, metal roofs). Importantly, while there were absolute changes to material 296 

wealth in  both communities, the relative position stayed very similar. Although these data do 297 

not allow us to make inferences about what will happen into the future, they do highlight that, 298 

at least in decadal timeframes, these indicators are reasonably stable. One alternative 299 

approach may have been to assume that projected national-scale changes to GDP would 300 

apply evenly across each coastal community within a country (i.e., adjust the intercept of 301 

both material wealth and correlated sensitivity for each country relative to the projected 302 

changes in GDP). However, given the wide spread of material wealth and sensitivity scores 303 

within countries, we ultimately were less comfortable with the assumptions inherent in the 304 

approach (i.e., that national-scale changes would affect all communities in a country equally) 305 

than with the caveat that our metrics were static.  306 
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 307 

 308 
Fig 5. Changes in sensitivity (A) and material wealth (B) over time in two Papua New 309 

Guinean communities. Panel B shows how the communities change along the first two 310 

axes of a principal component analysis based on 16 household-scale material items.  311 

 312 

Second, there are key limitations and assumptions to the models we used. For example, many 313 

tropical small-scale fisheries target seagrass
35

 and coral reef habitats
34

, which are not 314 

represented in the global ensemble models. Additionally, the ensemble models were 315 

developed at relatively low spatial resolution (e.g. 1° cells), and are not designed to capture 316 

higher resolution structures and processes. Our approach for dealing with this was to make 317 

transparent the degree of ensemble model run agreement about the direction of change, which 318 

relies on the assumption that we have greater confidence in projections that have higher 319 

model run agreement. Another limitation is that there may be discrepancies between the total 320 

consumer biomass (see method) in the absence of fishing that is outputed by the models used 321 

here and what would actually be harvested by fishers since total consumer biomass can 322 

include both target and non-target species as well as other taxa entirely. Despite these 323 

limitations, we assumed that total consumer biomass is directly related to potential fisheries 324 

yields
11

. Likewise, we included just 3 crops in the agricultural models (rice, maize, and 325 

cassava), which are key in the study region, with many study countries growing 2 or more of 326 

these crops. For example, Indonesia is the 3
rd

 largest producer of rice in the world, and the 6
th

 327 

largest producer of maize and cassava
36

. However, subsistence agriculture in Papua New 328 

Guinea is dominated by banana and yams, for which agricultural yield projections were not 329 

available. We used an unweighted average of projected changes in these three crops to 330 

represent a portfolio of small-scale agriculture, with a sensitivity test based on agricultural 331 

projections weighted by current yields/production area proportions of current yields 332 

(Supplemental Fig. 1). Finally, it is important to keep key model assumptions in mind when 333 

interpreting these data. For example, the agricultural models assumed no changes in farm 334 

management or climate change adaptation over time, while the fisheries models do not 335 

explicitly resolve predation impacts from higher trophic levels on phytoplankton.  336 

 337 

Third, our sensitivity metric examined a somewhat narrow aspect of what makes people 338 

sensitive to climate change. Sensitivity is thought to contain dimensions of economic, 339 

demographic, psychological, and cultural dependency
37

. Our metric was based on people‘s 340 
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engagement in natural resource-based livelihoods, which primarily captures the economic 341 

dimensions (although livelihoods do provide cultural and psychological contributions to 342 

people
26,28,29,31,38

).  343 

 344 

Fourth, our study explicitly focused on the potential impacts of climate change in 72 Indo-345 

Pacific coastal communities by examining their sensitivity and exposure, but our 346 

methodology did not enable us to incorporate adaptive capacity. Adaptive capacity is a latent 347 

trait that enables people to adapt to and take advantage of the opportunities created by 348 

change
39,40

, and is critically important in determining the fate of coastal communities under 349 

climate change. Adaptive capacity is thought to consist of dimensions of assets, flexibility, 350 

social organisation, learning, socio-cognitive, and agency
9,41,42

. Unfortunately, indicators of 351 

these dimensions of adaptive capacity were not collected in a standardised manner across all 352 

of the different projects comprising this study.   353 

 354 

Fifth, we investigated the potential impacts of climate change on two key food production 355 

sectors, but there may be other climate change impacts which have much more profound 356 

impacts on people‘s wellbeing. For example, sea level rise may destroy homes and other 357 

infrastructure
43

, while heat waves may result in direct mortality
44

. Lastly, we used shared 358 

socioeconomic pathway exploratory scenarios that bracket the full range of scenario 359 

variability (SSP5-8.5 and SSP1-2.6). At the time of publication, these were the only scenarios 360 

available for both fisheries and agriculture using the ISIMIP Fastrack Phase 3 dataset. Future 361 

publications may wish to explore additional scenarios. 362 

 363 

Our study quantifies the potential impacts of climate change on key food production sectors 364 

in tropical coastal communities across a broad swath of the Indo-Pacific. We find that both 365 

exposure and sensitivity to fisheries is generally higher than to agriculture, but some places 366 

may experience losses from both sectors simultaneously. These losses may be compounded 367 

by other drivers of change, such as overfishing or soil erosion, which is already leading to 368 

declining yields
45,46

. Simultaneous losses to both fisheries catch potential and agriculture will 369 

limit people‘s opportunity to adapt to changes through switching livelihoods between food 370 

production sectors
9
. This will especially be the case in lower socioeconomic status 371 

communities where dependence on natural resources is higher
10

. Together, our novel 372 

integration of model projections and socioeconomic surveys highlight the importance of 373 

assessing climate change impacts across sectors, but reveals important mismatches between 374 

the scale at which people will experience the impacts of climate change and the scale at 375 

which modelled projections about climate change impacts are currently available.   376 

 377 

Methods 378 

Sampling of coastal communities 379 

Here, we integrated data from five different projects that had surveyed coastal communities 380 

across five countries
47–50

. Between 2009 and 2015, we conducted socioeconomic surveys in 381 

72 sites from Indonesia (n=25), Madagascar (n=6), Papua New Guinea (n=10), the 382 

Philippines (n=25), and Tanzania (Zanzibar) (n=6). Site selection was for broadly similar 383 

purposes- to evaluate the effects of various coastal resource management initiatives 384 

(collaborative management, integrated conservation and development projects, recreational 385 

fishing projects) on people‘s livelihoods in rural and peri-urban villages. Within each project, 386 

sites were purposively selected to be representative of the broad range of socioeconomic 387 

conditions (e.g., population size, levels of development, integration to markets) experienced 388 

within the region. We did not survey strictly urban locations (i.e., major cities). Because our 389 
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sampling was not strictly random, care should be taken when attempting to make inferences 390 

beyond our specific study sites.  391 

 392 

We surveyed between 13 and 150 households per site, depending on the population of the 393 

communities and the available time to conduct interviews per site. All projects employed a 394 

comparable sampling design: households were either systematically (e.g., every third house), 395 

randomly sampled, or in the case of three villages, every household was surveyed (a census) 396 

(Table S1). Respondents were generally the household head, but could have been other 397 

household members if the household head was not available during the study period (i.e. was 398 

away). In the Philippines, sampling protocol meant that each village had an even number of 399 

male and female respondents. Respondents gave verbal consent to be interviewed. 400 

 401 

A standard methodology was employed to assess material style of life, a metric of material 402 

assets-based wealth
48,51

. Interviewers recorded the presence or absence of 16 material items 403 

in the household (e.g., electricity, type of walls, type of ceiling, type of floor). We used a 404 

Principal Component Analysis on these items and kept the first axis (which explained 34.2% 405 

of the variance) as a material wealth score. Thus, each community received a mean material 406 

style of life score, based on the degree to which surveyed households had these material 407 

items, which we then scaled from 0-1. We also conducted an exploratory analysis of how 408 

material style of life has changed in two sites in Papua New Guinea (Muluk and Ahus 409 

villages) over fifteen and sixteen year time span across four and five time periods (2001, 410 

2009, 2012, 2016 and 2002, 2009, 2012, 2016, 2018), respectively, that have been surveyed  411 

since 2001/2
52

. These surveys were semi-panel data (i.e. the community was surveyed 412 

repeatedly, but we did not track individuals over each sampling interval) and sometimes 413 

occurred in different seasons. For illustrative purposes, we plotted how these villages 414 

changed over time along the first two principal components.  415 

 416 

Sensitivity 417 

We asked each respondent to list all livelihood activities that bring in food or income to the 418 

household and rank them in order of importance. Occupations were grouped into the 419 

following categories: farming, cash crop, fishing, mariculture, gleaning, fish trading, salaried 420 

employment, informal, tourism, and other. We considered fishing, mariculture, gleaning, fish 421 

trading together as the ‗fisheries‘ sector, farming and cash crop as the ‗agriculture‘ sector and 422 

all other categories into an ‗off-sector‘.  423 

 424 

We then developed three distinct metrics of sensitivity based on the level of dependence on 425 

agriculture, fisheries, and both sectors together. Each metric incorporates the proportion of 426 

households engaged in a given sector (e.g., fisheries), whether these households also engage 427 

in occupations outside of this sector (agriculture and salaried/formal employment; referred to 428 

as ‗linkages‘ between sectors), and the directionality of these linkages (e.g., whether 429 

respondents ranked fisheries as more important than other agriculture and salaried/formal 430 

employment) (Eq. 1-3) 431 

 432 
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 439 

where    ,    and     are a community‘s sensitivity in the context of agriculture, fisheries 440 

and both sectors, respectively. A, F and AF are the number of households relying on 441 

agriculture-related occupations within that community, fishery-related and agriculture- and 442 

fisheries-related occupations within the community, respectively. NA, NF and NAF are the 443 

number of households relying on non-agriculture-related, non-fisheries-related, and non-444 

agriculture-or-fisheries-related occupations within the community, respectively. N is the 445 

number of households within the community.   ,    and     are the number of times 446 

agriculture-related, fisheries-related and agriculture-and-fisheries-related occupations were 447 

ranked higher than their counterpart, respectively.    ,     and     are the number of times 448 

non-agriculture, non-fisheries, and non-agriculture-and-fisheries-related occupations were 449 

ranked higher than their counterparts. As with the material style of life, we also conducted an 450 

exploratory analysis of how joint agriculture-fisheries sensitivity has changed over time in a 451 

subset of sites (Muluk and Ahus villages in Papua New Guinea) that have been sampled since 452 

2001/2002
52

. Although our survey methodology has the potential for bias (e.g. people might 453 

provide different rankings based on the season, or there might be gendered differences in how 454 

people rank the importance of different occupations
53

), our time-series analysis suggest that 455 

seasonal and potential respondent variation do not dramatically alter our community-scale 456 

sensitivity metric. 457 

 458 

Exposure 459 

To evaluate the exposure of communities to the impact of future climates on their agriculture 460 

and fisheries sectors, we used projections of production potential from the Inter-Sectoral 461 

Impact Model Intercomparison Project (ISIMIP) Fast Track phase 3 experiment dataset of 462 

global simulations. Production potential of agriculture and fisheries for each of the 72 463 

community sites and 4,746 randomly selected sites from our study countries with coastal 464 

populations >25 people/km
2
 were projected to the mid-century (2046-2056) under two 465 

emission scenarios (SSP1-2.6, and SSP5-8.5) and compared with values from a reference 466 

historical period (1983-2013).  467 

 468 

For fisheries exposure (EF), we considered relative change in simulated total consumer 469 

biomass (all modelled vertebrates and invertebrates with a trophic level >1). For each site, the 470 

twenty nearest ocean grid cells were determined using the Haversine formula (Supplemental 471 

Fig. 5). We selected twenty grid cells after a sensitivity analysis to determine changes in 472 

model agreement based on different numbers of cells used (1, 3, 5, 10, 20, 50, 100; 473 

Supplemental Figs. 6-7), which we balanced off with the degree to which larger numbers of 474 

cells would reduce the inter-site variability (Supplemental Fig. 8). 25
th

 and 75
th

 percentiles 475 

for the change in marine animal biomass across the model ensemble were also reported. 476 

Projections of the change in total consumer biomass for the 72 sites were extracted from 477 

simulations conducted by the Fisheries and marine ecosystem Model Intercomparison Project 478 

(FishMIP
3,54

). FishMIP simulations were conducted under historical, SSP1-2.6 (low 479 

emissions) and SSP5-8.5 (high emissions) scenarios forced by two Earth System Models 480 

from the most recent generation of the Coupled Model Intercomparison project (CMIP6)
55

; 481 

GFDL-ESM4
56

  and IPSL-CM6A-LR
57

. The historical scenario spanned 1950-2014, and the 482 

SSP scenarios spanned 2015-2100. Nine FishMIP models provided simulations: 483 

APECOSM
58,59

, BOATS
60,61

, DBEM
2,62

, DBPM
63

, EcoOcean
64,65

, EcoTroph
66,67

, FEISTY
68

, 484 

Macroecological
69

, and ZooMSS
11

. Simulations using only IPSL-CM6A-LR were available 485 
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for APECOSM and DBPM, while the remaining 7 FishMIP models used both Earth System 486 

Model forcings. This resulted in 16 potential model runs for our examination of model 487 

agreement, albeit with some of these runs being the same model forced with two different 488 

ESMs. Thus, the range of model agreement could range from 8 (half model runs indicating 489 

one direction of change, and half indicating the other) to 16 (all models agree in direction of 490 

change). Model outputs were saved with a standardised 1° spatial grid, at either a monthly or 491 

annual temporal resolution. 492 

 493 

For agriculture exposure (EA), we used crop model projections from the Global Gridded Crop 494 

model Intercomparison Project (GGCMI) Phase 3
14

, which also represents the agriculture 495 

sector in ISIMIP. We used a window of 11x11 cells centred on the site and removed non-land 496 

cells (Fig S5). The crop models use climate inputs from 5 CMIP6 ESMs (GFDL-ESM4, 497 

IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL), downscaled and 498 

bias-adjusted by ISIMIP and use the same simulation time periods. We considered relative 499 

yield change in three rain-fed and locally relevant crops: rice, maize, and cassava, using 500 

outputs from 4 global crop models (EPIC-IIASA, LPJmL, pDSSAT, and PEPIC), run at 0.5° 501 

resolution. These 4 models with 5 forcings generate 20 potential model runs for our 502 

examination of model agreement. Yield simulations for cassava were only available from the 503 

LPJmL crop model. All crop model simulations assumed no adaptation in growing season 504 

and fertilizer input remained at current levels. Details on model inputs, climate data, and 505 

simulation protocol are provided in ref
14

. At each site, and for each crop, we calculated the 506 

average change (%) between projected vs. historical yield within 11x11 cell window. We 507 

then averaged changes in rice, maize and cassava to obtain a single metric of agriculture 508 

exposure (EA).  509 

 510 

 511 

We also obtained a composite metric of exposure (EAF) by calculating each community‘s 512 

average change in both agriculture and fisheries: 513 

 514 

     
      

 
           (4) 515 

 516 

Potential Impact 517 

We calculated relative potential impact as the Euclidian distance from the origin (0) of 518 

sensitivity and exposure.  519 

 520 

Sensitivity Test 521 

To determine whether our sites  displayed a particular exposure bias, we compared the 522 

distributions of our sites and 4,746 sites that were randomly selected from 47,460 grid cells 523 

within 1 km of the coast of the 5 countries we studied which had population densities >25 524 

people/km
2
, based on the SEDAC gridded populating density of the world dataset 525 

(https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download). 526 

We used Cohen‘s D to determine the size of the difference between our sites and the 527 

randomly selected sites.  528 

 529 

Validating ensemble models 530 

We attempted a two-stage validation of the ensemble model projections. First, we reviewed 531 

the literature on downscaling of ensemble models to examine whether downscaling validation 532 

had been done for the ecoregions containing our study sites.  533 

 534 

https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsedac.ciesin.columbia.edu%2Fdata%2Fset%2Fgpw-v4-population-density-rev11%2Fdata-download&data=02%7C01%7Cjoshua.cinner%40jcu.edu.au%7C49fbd6943fe543e4c9a008d826c86347%7C30a8c4e81ecd4f148099f73482a7adc0%7C0%7C0%7C637301989381376202&sdata=ntZdoYGzLw5%2FKn047eKfX5M0L2LHzA6XiLEq%2BSzn59A%3D&reserved=0
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While no fisheries ensemble model downscaling had been done specific to our study regions, 535 

most of the models of the ensemble have been independently evaluated against separate 536 

datasets aggregated at scales down to Large Marine Ecosystems (LMEs) or Exclusive 537 

Economic Zones (EEZs) (see 
11

). For example, the DBEM was created with the objective of 538 

understanding the effects of climate change on exploited marine fish and invertebrate 539 

species
2,71

. This model roughly predicts species‘ habitat suitability; and simulates spatial 540 

population dynamics of fish stocks to output biomass and maximum catch potential (MCP), a 541 

proxy of maximum sustainable yield
2,62,70

. Compared with spatially explicit catch data from 542 

the Sea Around Us Project (SAUP; www.seaaroundus.org)
71

 there were strong similarities in 543 

the responses to warming extremes for several EEZs in our current paper (Indonesia and 544 

Philippines) and weaker for the EEZs of Madagascar, Papua New Guinea, and Tanzania. At 545 

the LME level, DBEM MCP simulations explained about 79% of the variation in the SAUP 546 

catch data across LMEs
72

. The four LMEs analyzed in this paper (Agulhas Current;  Bay of 547 

Bengal; Indonesian Sea; and Sulu-Celebes Sea) fall within the 95% confidence interval of the 548 

linear regression relationship
62

. Another example, BOATS, is a dynamic biomass size-549 

spectrum model parameterised to reproduce historical peak catch at the LME scale and 550 

observed catch to biomass ratios estimated from the RAM legacy stock assessment database 551 

(in 8 LMEs with sufficient data). It explained about 59% of the variability of SAUP peak 552 

catch observation at the LME level with the Agulhas Current,  Bay of Bengal, and Indonesian 553 

Sea catches reproduced within +/-50% of observations
61

. The EcoOcean model validation 554 

found that all four LMEs included in this study fit very close to the 1:1 line for overserved 555 

and predicted catches in 2000
64,65

. DBPM, FEISTY, and APECOSM have also been 556 

independently validated by comparing observed and predicted catches. While the models of 557 

this ensemble have used different climate forcings when evaluated independently, when 558 

taken together the ensemble multi-model mean reproduces global historical trends in relative 559 

biomass , that are consistent with the long term trends and year-on-year variation in relative 560 

biomass change (R
2
 of 0.96) and maximum yield estimated from stock assessment models 561 

(R
2
 of 0.44) with and without fishing respectively

11
.   562 

 563 

Crop yield estimates simulated by GGCMI crop models have been evaluated against 564 

FAOSTAT national yield statistics 
14,73,74

. These studies show that the models, and especially 565 

the multi-model mean, capture large parts of the observed inter-annual yield variability across 566 

most main producer countries, even though some important management factors that affect 567 

observed yield variability (e.g., changes in planting dates, harvest dates, cultivar choices, etc.) 568 

are not considered in the models. While GCM-based crop model results are difficult to 569 

validate against observations, Jägermeyr et al.
14

 show that the CMIP6-based crop model 570 

ensemble reproduces the variability of observed yield anomalies much better than CMIP5-571 

based GGCMI simulations. In an earlier crop model ensemble of GGCMI, Müller et al.
74

 572 

show that most crop models and the ensemble mean are capable of reproducing the weather-573 

induced yield variability in countries with intensely managed agriculture. In countries where 574 

management introduces strong variability to observed data, which cannot be considered by 575 

models for lack of management data time series, the weather-induced signal is often low
75

, 576 

but crop models can reproduce large shares of the weather-induced variability, building trust 577 

in their capacity to project climate change impacts
74

.  578 

 579 

 580 

We then attempted to validate the models in our study regions. For the crop models, we 581 

examined production-weighted agricultural projections weighted by current yields/production 582 

area (Supplemental Fig. 1). We used an observational yield map (SPAM2005) and multiplied 583 

it with fractional yield time series simulated by the models to calculate changes in crop 584 
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production over time, which integrates results in line with observational spatial patterns. The 585 

weighted estimates were not significantly different to the unweighted ones (t=0.17, df=5, 586 

p=0.87). For the fisheries models, our study regions were data poor and lacked adequate 587 

stock assessment data to extend the observed global agreement of the sensitivity of fish 588 

biomass to climate during our reference period (1983-2013). Instead, we provide the degree 589 

of model run agreement about the direction of change in the ensemble models to ensure 590 

transparency about the uncertainty in this downscaled application.  591 

 592 

Analyses 593 

To account for the fact that communities were from five different countries we used linear 594 

mixed effects models (with country as a random effect) for all analyses. All averages  595 

reported (i.e. exposure, sensitivity, and model agreement) are estimates from these models. In 596 

both our comparison of fisheries and agriculture exposure and test of differences between 597 

production-weighted and unweighted agriculture exposure we wanted to maintain the paired 598 

nature of the data while also accounting for country. To accomplish this we used the 599 

differences between the exposure metrics as the response variable (e.g. fisheries exposure 600 

minus agriculture exposure), testing whether these differences are different from zero. We 601 

also used linear mixed effects models to quantify relationships between material style of life 602 

and potential impacts under different mitigation scenarios (SSP1-2.6 and 8.5), estimating 603 

95% confidence intervals from 1000 bootstrap replications. To further explore whether these 604 

relationships between material style of life and potential impacts were driven by exposure or 605 

sensitivity, we conducted a supplemental analysis to quantify relationships between material 606 

style of life and: 1) joint fisheries and agricultural sensitivity; 2) joint fisheries and 607 

agricultural exposure under different mitigation scenarios. We present both the conditional R
2
 608 

(i.e., variance explained by both fixed and random effects) and the marginal R
2
 (i.e., variance 609 

explained by only the fixed effects) to help readers compare among the material style of life 610 

relationships. 611 
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 822 
 823 

Figure S1. Projected agricultural changes by crop for SSP1-2.6 and 8.5. Top row are 824 

projections for our study sites, while the bottom row examines projected changes for 4,746 825 

randomly selected sites from our study region. Weighted average is based on agricultural 826 

projections weighted by current yields/production area.  827 

 828 
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 829 
Figure S2. A comparison of expected fisheries  and agriculture losses (exposure). A) SSP1-830 

2.6, B) SSP5-8.5. Black dots/histograms are our study sites. Grey dots/histograms are a 831 

random selection of 4,746 (10% of) coastal cells with population densities >25 people/km
2
.  832 

Dotted lines represent the mean exposure. Differences between expected losses in our sites 833 

and the  randomly selected sites are generally small to negligible (Cohen‘s D for agricultural 834 

losses SSP5-8.5=0.31, SSP1-2.6= 0.35, fisheries losses SSP5-8.5 =-0.02, RCP2.6=-0.03), 835 

indicating that our sites are not particularly biased.   836 
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 839 
 840 

 Fig S3. Potential impacts of changes to agriculture and fisheries by scenario. A) SSP1-2.6, 841 

B) SSP5-8.5. Both exposure and sensitivity to fisheries and agriculture are  integrated. The 842 

potential impact is calculated as the Euclidian distance to the origin. C) The change in 843 

potential impact from mitigation (i.e. the difference between SSP5-8.5 and SSP1-2.6).  844 
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 850 
 851 

Fig S4. Relationships between MSL and (A) Ag-Fish sensitivity, (B) Ag-Fish exposure under 852 

SSP1-2.6 and (C) SSP5-8.5. (m)=marginal R
2
, (c)=conditional R

2
 853 
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 858 

Fig. S5. The cells used in determining fisheries and agriculture exposure.  859 
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 862 
Figure S6. Trade-off between model agreement and number of cells used for fisheries SSP1-863 

2.6. A model run agreement of 50%, the lowest possible value, indicates that half of model 864 

runs indicate one direction of change, and half the opposite; conversely, a value of 100% 865 

indicates that all model runs agree on the direction of change. 866 
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 867 
Fig S7. Trade-off between model agreement and number of cells used for fisheries SSP5-8.5. 868 

A model run agreement of 50%, the lowest possible value, indicates that half of model runs 869 

indicate one direction of change, and half the opposite; conversely, a value of 100% indicates 870 

that all model runs agree on the direction of change. 871 
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 888 

 889 
Figure S8. Spatial extent covered by using different numbers of grid cells to determine 890 

fisheries exposure. Black dots are coastal study sites associated with each? 891 
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 894 
 895 

Fig. S9. Inset map of study sites and average agriculture-fisheries model run agreement at 896 

each site. A model run agreement of 50% means that half of model runs indicate one 897 

direction of change, and half the opposite; conversely, a value of 100% indicates that all 898 

model runs agree on the direction of change.  899 
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Table S1. Sample size and proportion of social surveys 901 

 902 

 903 
COMMUNITY COUNTRY NUMBER 

HOUSEHOLDS 
SURVEYED 

NUMBER 
HOUSEHOLDS 
TOTAL 

SAMPLING 
PROPORTION 

SAMPLING 
STRATEGY 

ANOI ITAM indonesia 29 158 0.18 Systematic 

BAHOI indonesia 22 100 0.22 Systematic 

BALOHANVILLAGE indonesia 47 577 0.08 Systematic 

BENTANAN indonesia 40 355 0.11 Systematic 

BLONGKO indonesia 56 1827 0.03 Systematic 

BONDALEM indonesia 48 333 0.14 Systematic 

BOYONG PANTE indonesia 18 2505 0.01 Systematic 

BUERAWANG indonesia 51 344 0.15 Systematic 

IBOIH indonesia 21 92 0.23 Systematic 

IEU MEULEE indonesia 30 228 0.13 Systematic 

JABOI indonesia 50 1269 0.04 Systematic 

KAHUKU indonesia 27 180 0.15 Systematic 

KEUNEUKAI indonesia 44 196 0.22 Systematic 

LAMPUYANG indonesia 36 241 0.15 Systematic 

MINANGA indonesia 27 203 0.13 Systematic 

PASIRAN indonesia 58 480 0.12 Systematic 

PEMUTERAN indonesia 49 1651 0.03 Systematic 

PENUKTUKAN indonesia 26 133 0.20 Systematic 

PRIA LAOT indonesia 22 1986 0.01 Systematic 

RUMBIA indonesia 20 902 0.02 Systematic 

SAMBIRENTENG indonesia 61 278 0.22 Systematic 

TALISE indonesia 30 1024 0.03 Systematic 

TEJAKULA indonesia 52 630 0.08 Systematic 

TULAMBEN indonesia 24 2366 0.01 Systematic 

TUMBAK indonesia 21 1799 0.01 Systematic 

AMBODIPAKA madagascar 115 835 0.14 Systematic 

DAUPHIN madagascar 55 90 0.61 Systematic 

FIMIHARA madagascar 43 900 0.05 Systematic 

MASOALA madagascar 63 142 0.44 Systematic 

NOSY VALIHA madagascar 29 41 0.71 Systematic 

RASIS madagascar 34 58 0.59 Systematic 
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AHUS papua new 
guinea 

38 122 0.31 Systematic 

ANDRA papua new 
guinea 

23 95 0.24 Systematic 

BAIA papua new 
guinea 

35 35 1 Census 

DABANOT papua new 
guinea 

19 25 0.76 Systematic 

KAVULIK papua new 
guinea 

24 51 0.47 Systematic 

MULUK papua new 
guinea 

20 66 0.30 Systematic 

SILOM 1 papua new 
guinea 

13 23 0.57 Systematic 

SOMALANI papua new 
guinea 

67 67 1 Census 

UNGAKUM papua new 
guinea 

24 56 0.43 Systematic 

VESSE papua new 
guinea 

55 55 
 

1 Census 

MATABAO philippines 40 999 0.04 Random 

MOCABAC ISLAND philippines 40 119 0.34 Random 

TIPOLO philippines 28 585 0.05 Random 

AGUINING philippines 30 480 0.06 Random 

CALUBCUB II philippines 40 912 0.04 Random 

BATAAN philippines 41 435 0.09 Random 

LAIYA APLAYA philippines 41 1,202 0.03 Random 

SAWANG philippines 40 438 0.09 Random 

LAGADLARIN philippines 40 753 0.05 Random 

BALIBAGO philippines 40 635 0.06 Random 

ANILAO PROPER philippines 40 600 0.07 Random 

SAN AGUAPITO IV philippines 40 352 0.11 Random 

PAPAYA philippines 40 508 0.08 Random 

PANTALAN philippines 40 643 0.06 Random 

WAWA philippines 40 4,662 0.01 Random 

BUCAL philippines 40 212 0.19 Random 

BAHA philippines 40 200 0.20 Random 
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TALIBAYOG philippines 40 411 0.10 Random 

NINIKAT NG PAG-ASA philippines 39 133 0.29 Random 

MALIGAYA philippines 40 207 0.19 Random 

KANLURAN philippines 40 133 0.30 Random 

BRGY 6 philippines 40 151 0.26 Random 

BRGY 4 philippines 40 110 0.36 Random 

POBLACION philippines 40 404 0.10 Random 

PUTICAN philippines 34 
102 

0.33 
  

Random 

JAMBIANI tanzania 40 600 0.07 Systematic 

MATEMWE tanzania 39 378 0.10 Systematic 

MKOKOTONI tanzania 39 500 0.08 Systematic 

MTENDE tanzania 39 400 0.10 Systematic 

MZURI tanzania 40 217 0.18 Systematic 

PWANI MCHANGANI tanzania 41 200 0.21 Systematic 
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