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Abstract 

The numerical simulation of the nuclear Boltzmann-Langevin equation is in
vestigated for idealized two-dimensional nuclear matter. The equivalence of the 
lattice and test-particle methods are demonstrated for both the mean field evo
lution, the average collision integral, and the agitation and growth of unstable 
collective modes for various densities and temperatures. 

*This work was supported by the Director, Office of Energy Research, Office of High En
ergy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy, 
under Contract No. DE-AC03-76SF00098, and by the Commission of the European 
Community, under Contract No. ERBCHBI-CT-930619 



1 Introduction 

Over the past decade, there has been considerable interest in time-dependent 
nuclear mean-field theory, due in large part to its success in describing many as
pects of intermediate-energy nuclear collisions [1]. In particular, the semiclassical 
version of the time-dependent Hartree-Fock model has been extended by incorpo
rating a Pauli-suppressed collision term, leading to a Boltzmann-like dynamical 
description [2], often denoted the BUU model.1 

Given the initial one-body phase-space density f( r, p, t = 0), these theories 
produce a single trajectory for the system in the one-body phase space, f(r,p, t). 
Consequently, they cannot provide a description of fluctuations and are therefore 
inadequate for addressing such phenomena as correlations in light-particle emis
sion, fluctuations of one-body observables, and multifragmentation. In order to 
obtain a description of fluctuations in the evolution of the nuclear system, a suit
able extension of the transport theory is required. In the work of Bixon and 
Zwanzig [3], a prescription was given for incorporating small-amplitude fluctu
ations around equilibrium into the Boltzmann equation. However, this method 
cannot be extended to large-amplitude fluctuations and non-equilibrium scenar
IOS. 

A possible extension of the BUU-type transport theories was suggested by 
Ayik and Gregoire [4], consisting of the addition of a stochastic term in the 
equation of motion for the one-body density. The resulting Boltzmann-Langevin 
equation of motion is then 

a -
otf(r,p, t) = {h[j],J} + I[f] + bl[f] . (1) 

There are thus three distinct sources for the evolution of the one-body density. 
The first is the <;ollisionless propagation of f in the self-consistent one-body field 
described by the effective Hamiltonian h(r,p); this part is often referred to as 
the Vlasov propagation and corresponds to the TDHF description. The second 
source of evolution is l[J] which represents the average effect of the residual two
body collisions; this is the term included in the BUU-type descriptions. The third 
term, bl[f], is the new stochastic term and it is ordinarily assumed to represent 
the fluctuating effect of the two-body collisions. The collision term acts as a 
Langevin force on the one-body density which then evolves in a manner similar 
to Brownian motion, giving rise to the term of the Boltzmann-Langevin theory. 

In ref. [5] a Fokker-Planck transport formalism was developed for treating the 
BL problem and it offers a convenient formal framework for discussing stochastic 
one-body dynamics. It has been demonstrated that the Fokker-Planck approach 
is equivalent to the direct simulation of the BL equation [6]. Several applications 
have been made to fluctuations of one-body observables in nuclear dynamics 
[6, 7, 8] and it has been demonstrated that the lattice phase-space method (i) 

1 A variety of names have been employed in the literature: Boltzmann-Uehling-Uhlenbeck 
(BUU), Vlasov-Uehling-Uhlenbeck, Landau-Vlasov, or Boltzmann-Nordheim-Vlasov. 
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produces results that are in very good agreement with expectations based on sta
tistical mechanics, and ( ii) is able to break symmetries that have been artificially 
imposed on the initial density, thus making the approach suitable for addressing 
multifragmentation processes. The purpose of the present paper is to compare 
this numerical method with the more familiar test-particle method, especially in 
the presence of instabilities when numerical errors are particularly critical. 

The presentation is organized as follows: In sect. 2 we discuss different meth
ods of discretization of the mean field and the collision integral, and we compare 
the test-particle method with the lattice simulation. In sect. 3 we discuss the 
growth of instabilities in spinodal nuclear matter, and in sect. 4 we illustrate the 
propagation and amplification ~f fluctuations for various densities and tempera
tures. Finally, sect. 5 presents a concluding discussion. 

2 Numerical methods 

In the present study we ignore the spin-isospin degrees of freedom of the nucleons 
for simplicity, since their inclusion would have no bearing on our findings. 

2.1 Test-particle method 

Boltzmann-like equations can conveniently be solved by means of the so called 
test-particle method (see, for example, ref. [2]). The basic idea is to represent 
f(r,p, t) by a large number of test particles, N, 

A}\[ 1 
f(r,p; t) ~ N I; 8(r- rn,P- Pni t). (2) 

In order to calculate the Pauli suppression factors J = 1 - J, it is necessary 
to have a smooth density in momentum space. In our studies, this is achieved 
by performing a convolution with a normalized gaussian having a width ap = 
0.15 njfm. The collisionless part of the test-particle motion is governed by the 
newtonian equations of motion implied by the effective Hamiltonian, while the 
collision integral is treated by a Monte Carlo method based on the specified 
nucleon-nucleon cross section aNN ~ 40 mb [9]. It should be noted that the 
test-particle method is not intended to present any stochastic behavior. Indeed, 
the number of test particles per nucleon, N, is merely a numerical parameter 
that should be chosen sufficiently large to render the results independent of N. 
However, even for large N, there is always a remaining fluctuation and a finite 
numerical viscosity associated with the test-particle method, as will be discussed 
elsewhere [10]. 

2.2 Lattice method 

Spurious fluctuations can be avoided by discretizing the phase space on a lattice, 
thereby eliminating the need for Monte Carlo evaluations and thus obtained a 
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truly deterministic evolution. The phase-space is then divided into a cartesian 
lattice of cells i = (a, {3), with a and f3 labeling the lattice sites in position 
and momentum space, respectively. Each cell has the side lengths D.r and D.p. 
The corresponding elementary phase-space volume is then D.!l = (D.rb.pjh)D, 
where D is the dimension of the physical space. Most computational problems 
associated with nuclear Vlasov dynamics arise from the need to have a smooth 
one-body density, so that derivatives are well behaved. In order to achieve a 
sufficiently fine paving of the phase-space, the magnitudes of D.r and D.p should be 
smaller than the range of the nuclear force and the Fermi momentum, respectively. 
Typically, D.r ~ 1 fm, while D.p ~ 100 MeV jc. The discretization introduces a 
noiseless numerical error on the physical observables, which can be systematically 
reduced by employing an increasing number of ever smaller cells, so the degree 
of accuracy that can be obtained is limited only by the storage capability and by 
the corresponding rapid growth in computing time. 

2.2.1 Discretization of the mean field 

The discretization of the mean field is not a trivial problem, because conservation 
of particle number and energy is easily violated. We therefore discuss our adopted 
method in some detail. 

After discretization of the gradients, the total time derivative of the one-body 
distribution function fcxf3 reads, on a one-dimensional grid, 

~ J, + fcx+I,{J - fcx-1,{3 + F Jcx,{J+l - fcx,{J-1 _ 0 at cx{J V(J 2/).r ex 2/).p - . (3) 

where Fcx is the force and Vf3 the velocity. It is then straightforward to demonstrate 
that both particle number A, momentum P , and energy E are conserved, to first 
order in time, 

!£A a D.n "L 8 J cx{3 = o , (4) 
dt cx{J t 

!£p a D.n LPf3[f fcxf3 = 0 , (5) 
dt cx{J t 

!£E a 
(6) - D.n "L hcxf3a fcxf3 0 ' dt cx(3 t 

provided the velocity and the force are given by 

Vf3 b.h = P~+1 - P~-l = Pf3+l + Pf3-l Pf3 (7) 
D.p 4mb.p 2m m 

Fcx 
D.h Ucx+1 - Ucx-l (8) 
D.r 2D.r 

i.e. the standard lattice representations of the gradients of the Hamiltonian hcxf3· 

3 



Adopting the above lattice scheme, we solve the Vlasov propagation on the 
lattice by means of a matrix method. The Vlasov equation then has the form, 

lli(t) ~= Mriii(t) ~ +Mpiii(t) ~ (9) 

where I is considered as a supervector denoted III ~' and Mr and Mp are 
matrices which can be constructed from the effective field and the momenta, 
respectively, using Eq. (3). The above equation can then be solved to second 
order in !).t, 

1 + (Mr + Mp)f).t 
·III(t + 2!).t) ~= 1·_ (Mr + Mp)f).t III(t) ~ , (10) 

requiring only the inversion of the matrix 1 - (Mr + Mp)!).t. 
It is important to take account of the fact that the propagations in coordinate 

and momentum space do not commute, due to the position dependence of the 
force F. Recalling that the self-consistent propagation of classical particles can 
be accurately solved by the following "leapfrog" algorithm [2], 

r(t + !).t) 
p(t + 2!).t) 

we adopt the following algorithm, 

r(t- !).t) + 2!).t p(t) , 
m 

p(t) + 2!).tF(t + !).t), 

III'~ 
_ 1 + Mr[Im]!).t llf 

1- Mr[Im]!).t m ~ 

IIIm+I ~ = 
1 + Mp[j']!).t I 

1- Mp[I']!).t III ~ ' 

(11) 

(12) 

(13) 

(14) 

which propagates the density I from the time tm = 2m!).t to the subsequent time 
tm+I, via the intermediate density f'. This method has proved to be numerically 
very accurate for conserving particle number, momentum, and energy. 

2.2.2 Discretization of the collision integral 

As already discussed in the introduction, the stochastic collision term is decom
posed into an average and a fluctuating part, I = I+ 81. The average term 
expresses the mean rate of collisions from two phase-space elements 1 and 2 into 
two other phase-space elements 1' and 2' during a small time interval !).t, 

Here Ii is the average value of I over the cell i and the Pauli suppression factor 
h = 1 - Ii is the corresponding availability. The average collision integral I 
is obtained by adding all possible elementary contributions n1,2;1',2'. The tran
sition rate for an elementary scattering process, w, is related to the differential 
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cross-section of the colliding nucleons, duNN/ dD., which has been assumed to be 
independent of angle and energy. 

The numerical algorithm adopted for calculating the transition rate needs 
some care. Indeed, in the Boltzmann equation the collisions are assumed to be 
local in space, implying that the system may be described on scales smaller than 
that defined by the collision cross-section, as is in fact needed for obtaining a reli
able mean-field propagation. In order to have an algorithm that i~ as independent 
as possible of the actual coarse graining of the phase space, we have adopted the 
following procedure. The nucleons in a given cell are allowed to interact with 
th,ose situated in a given number of neighboring cells. The side length of the 
corresponding cube, d0 = nc.6.r, is taken to be near the interaction range implied 
by the actual nucleon-nucleon cross section, UNN· All the nucleons included in 
the nf cells interact with the nucleons of the considered cell, with a constant 
collision length ). that has been determined so that the total nucleon-nucleon 
collision cross section is preserved. The transition rate into a given final state 
1'2' is then calculated by requiring energy and momentum conservation, and by 
assuming that the particles remain at the same position in space. It is convenient 
to pre-calculate and store the transition rate w(1, 2; 1', 2'). 

For convenience, we use a collisional time step that is larger than thoat used 
for the mean-field propagation. We note that, in contrast with the test-particle 
method, the lattice method yields the Pauli blocking without numerica~ noise, 
since the occupancies are known at each lattice site. 

2.2.3 Treatment of the Langevin term 

Since the elementary collisions are regarded as independent random processes, 
the collision number n1,2;t',2' can be regarded as having a Poisson distribution, 

(16) 

Consequently, the stochastic term 8! can be produced by adding to the mean 
value fi1,2;t',2' a fluctuation 8n1,2;t',2' chosen randomly from a distribution with 
a variance equal to fi (and vanishing mean value). It has been shown that the 
results are not sensitive to the particular form of the probability distribution 
employed [11], and therefore we use a normal distribution which is numerically 
more tractable. Since the number of collisions occurring during the small time 
interval .6.t for a specific elementary process 12 --+ 1'2' is usually considerably 
smaller than unity, the fluctuating part 8n dominates over the mean value fi. 

Special care must then be taken to prevent the dynamical density f(n) from 
acquiring unphysical values (i.e. f < 0 which is not allowed in a semiclassical 
approximation or f > 1 which is forbidden by the Pauli exclusion principle). 

A reasonable treatment can be obtained by accumulating the fluctuations 
over a phase-space volume of magnitude hD, corresponding to an entire nucleon 
[6]. This is a reasonable method because the fluctuations in the BL treatment 
arise from the basic physical fact that each elementary collision involves two 
entire nucleons. Therefore, we carry two different scales in the calculation, the 
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basic scale used for computing the mean-field evolution and the average collision 
rate, and a larger scale used for calculating the fluctuations. It is important to 
match these scales correctly. Given four of the large cells, I, J, I', J', we consider 
elementary transitions of the form ij -+ i'j', with i E I, j E J,. i' E I', and 
j' E J'. For each such type of transition, the actual number occurring is 

ni 3·.;, 3·, = iii 3··i' 3·, + 8ni 3· i' 3·• , ', .. ' '' ' '' ' 
(17) 

where the mean iii,j,i',j' is evaluated as explained above. The total rate of all such 
transitions is then given by 

NI J·l' Jl = fh J·l' J' + 8NI J·l' Jl ' 
' ' ' ' ' ' ' ' ' 

(18) 

where fhJ·l'J' ~; 3·;, 3·,fiiJ.i'J·'· On the basis of fhJ·l'J', the fluctuation 
' ' ' L-.J .. , , .. ' ' ' ' ' ' ' 

8NI,J;I',J' may now be calculated using eq. (16). Subsequently, the fluctuating 
part of each of the basic transitions, 8ni,j,i',j' is obtained by sharing 8NI,J;l',J' in 
proportion to the mean rates, 

n· .. , ., 
8n· · ., ., - t,J,t '3 8NI,J·,I',J' . 

t,3,t ,3 - N 
I,J;l',J' 

(19) 

This method preserves the relation between mean and variance on the large scale, 
while correlating the fluctuations on the small scale, thus avoiding the inherent 
diverging behavior as the small scale is reduced. The scheme also has the ad
vantage that the Vlasov propagation and the collision term are computed on the 
same small scale, thus ensuring high accuracy. 

3 Test of the dynamical simulation methods 

In order to get .a better understanding of the transport equations, it is instructive 
to compare the test-particle and the lattice simulation methods both for the 
collision term and the mean field propagation. 

3.1 Test of the collision term 

For this purpose, we have studied a two-dimensional fermion gas in a constant 
effective field. We may then employ a single spatial cell, with periodic bound
ary conditions. The initial momentum distribution has been chosen to be two 
touching Fermi spheres of radius Pp = 275 MeV I c. The lattice size in momen
_tum space is .6..px = .6..py = 50 MeV I c and the entire lattice consists of 29 x 29 
momentum cells. The nucleon-nucleon "cross section" was taken as 2.4 fm, cor
responding to an interaction range of 1.2 fm. The time step was chosen equal 
to /::it = 2 fml c. The equations of motion were then followed numerically until 
approximate stationarity was reached. 

The corresponding density is shown in fig. 1; with the histogram indicating 
the lattice result and the solid line being the test-particle result. For reference, 
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the dashed line shows the associated Fermi-Dirac equilibrium distribution, 

(20) 

where f-l = 62.6 MeV and T = 31.6 MeV are determined by the specified in
tial density f(p, t). The excellent agreement among all three results gives us 
confidence in the numerical methods for treating the collision integral. 

As a further check, fig. 2 di.splays the time evolution of the anisotropy, as 
measured by the quadrupole moment of the momentum distribution, 

. Q = I dpxdpy(p;- P~)f(px,Py) 
I dpxdpy(p; + P~)J(px,Py) . 

(21) 

The solid line is the lattice result, while the dashed line is the test-particle result. 
The anisotropy relaxes in the same manner in the two approaches, with a relax
ation time approximately equal to 9 fm/c [6]. The agreement between the two 
numerical approaches can also be seen in table 1, which shows the total num
ber of collisions in one single time step for Fermi-Dirac distributions at different 
temperatures. The result of a direct numerical evaluation of the collision number 
is also shown. We note that the number of collisions increases with the tem
perature, as it should be because of the partial relaxation of the Pauli blocking. 
Moreover, the increase is approximately quadratic in T, as expected [12, 13]. "' 

3.2 Test of the mean field propagation 

In this section we discuss how the mean field propagates, both in the lattice and 
test-particle method. In particular, we analyze the behavior of nuclear matter in 
the spinodal zone of the phase diagram where uniform matter is unconditionally 
unstable against density fluctuations. We consider ag.ain a two-dimensional pe
riodic box and use side lengths Lx = 63 fm and Ly = 21 fm .. For the effective 
one-body field we employ a simplified Skyrme interaction [8], 

(22) 

with A= -100.3 MeV and B = 48 MeV. The saturation density Ps = 0.55 fm-2 

corresponds to a Fermi momentum of PF = 260 MeV jc. Furthermore, p(x) is the 
local average of the density with respect to the transverse direction y, smeared 
in the x direction with a gaussian of width O"r = 0.87 fm. It should be noticed 
that in the case of the lattice calculation the lattice is introducing an additional 
smearing and therefore the gaussian width must be correspondingly reduced in 
order to compensate from this effect. 

Since we wish to study the behavior of the system in the spinodal region, the 
initial conditions are chosen as a ·uniform density p0 equal to half the saturation 
density Ps and having a finite temperature equal toT= 3 MeV, which places the 
system near the center of the spinodal region [14]. 
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In order to achieve a better understanding of the instabilities, we first consider 
the linearized Vlasov equation at zero temperature. The resulting dispersion 
relation is easy to derive [14] and for unstable systems it reads, 

. . 1 

n k( to au -k2a2f2) [ m ( to au -k2a2f2)]- 2 
mf= -+-e ---+-e 

tk Po ap p 2po ap 
(23) 

where a = <7r/n, k is the wave number of the unstable mode and to is the Fermi 
energy associated with the specified initial density p0 • The partial derivatives of 
the mean field are calculated at the actual density. 

In order to extract the actual dispersion relation from the numerical simula
tions, we have considered a slight harmonic perturbation on the initial uniform 
density along the x direction. For each perturbation characterized by the wave 
number k, we have performed a pure Vlasov evolution and determined the growth 
time t k from the growth of the Fourier component of p( x) corresponding to the 
wave number k. It has of course been verified that the linear response theory 
remains valid during the time needed to accurately compute the growth time, by 
checking that the Fourier components associated with the wave number differ
ent from the considered k were not beco~ing important and by confirming that 
the growth of the component associated with k was actually exponential. It was 
found that most of the exponential growth persists up to about 75 fm/ c, after 
which time fragments are so well developed that the linear response treatment 
no longer applies. 

Figure 3 displays the solutions to eq. (23). The stars and the circles represent 
the results obtained in the lattice and test-particle method, respectively. We 
note a quite good agreement between the analytical result (23) and the numerical 
simulations. The small differences between the two methods will be discussed in 
the next section. 

Of course, the complete dispersion relation must take into account collisional 
and temperature effects. For small temperatures, the dependence on T s only 
slight and so may be ignored. As for the effect of the two-body collisions, their 
contribution has been shown to be rather negligible, within the relaxation-time 
approximation [15, 16]. , 

4 Test of unstable collective dynamics 

We now turn to the self-consistent dynamics of the unstable collective modes. 
When considering such catastrophic processes, it is especially important to ana
lyze how fluctuations are propagated by the unstable effective field. In order to 
establish a useful reference, we first present a brief summary of the analysis made 
in ref. [14]. 
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4.1 Linear Vlasov propagation of fluctuations 

In an infinite system the collective modes are plane waves, and so it is helpful to 
perform a Fourier analysis of the density fluctuations for the considered ensemble, 

O"k(t) =-< 1Pk(t)l2 >-= j j dxdx' ~-ik(x-x') -< 8p(x, t) 8p(x', t) >- . (24) 

where 8p(x) = p(x)- p0 represents the fluctuating part of the matter density. 
Following refs. [8, 14], we linearize the problem and concentrate on the collective 
part of the response. Since there is a growing and a decaying eigenmode for each 
wave number (labeled by the superscript v = ±), the above variance consists 
of four terms, O"k = I:w' a;:v', each governed by a simple feedback equation of 
motion, 

d lll/
1 

( ) ,..,vv1 v + v' lll/
1 

( ) -d O"k t = 2vk + O"k t . t tk . 
(25) 

Here V'{/ denotes the corresponding source term arising from the stochastic part 
of the collision integral, and the feedback arises from the response of the effective 
field, in accordance with the dispersion relation (23). These four equations can 
readily be solved analytically and the resulting time development for the variance 
coefficient O"k is then given by 

ak(t) = 2Vt+tk sinh( 
2
t) + 4Vt-t + 2at+(o) sinh( 

2
t) + 2at-(O) , (26) 

tk tk 

Here a;:v' (0) denotes the initial fluctuations, appropriately projected, which was 
assumed to fulfil the relation and at+(o) = ak"-(0). We have also utilized that 
vt+ = vk- and vt- = vk+. It is thus clear that the presence of an instability 
will soon lead to an exponential growth of the corresponding variance O"k. 

4.2 Fluctuations induced by the numerical methods 

In order to be able to treat the stochastic evolution correctly, we must first 
fully understand the possible sources of fluctuation arising from the discretization 
procedures. 

In the case of the lattice simulations, we have checked that initially uniform 
unstable matter does not evolve at all, in the absence. of the stochastic part of 
the collision term 81. This is due to the fact that no part of the Vlasov propa
gation algorithm is able to break the initial translational symmetry and because 
the effect of the average collision term I is completely deterministic in the lattice 
treatment. This demonstrates that the lattice method does not introduce addi
tional fluctuations and so it provides a safe basis for treating stochastic dynamics. 

The situation is quite different in the test-particle method. Indeed, the fi
nite value of N introduces fluctuations already in the initial state. This initial 
fluctuation is simple to calculate [17], 

Lx P 
O"k =TN' 

y 

9 

(27) 



corresponding to a white noise spectrum (i.e. O'k is independent on the wave 
number k). 

In addition, the test-particle simulation also generates fluctuations in the 
dynamics, both from the Monte-Carlo estimation of the collision term and from 
the propagation of the test particles [10]. 

As far as the average collision term is concerned, it is clear that the Monte
Carlo estimation in effect acts as a stochastic collision term, due to the finite value 
of N. Indeed, the contribution from l is completely analogous to the source term 
'Dk of the Boltzmann-Langevin theory, except that is must be divided by N. 

Finally, since we are treating a gas of classical particles (the only quantum 
effect is the Pauli blocking in the collision integral), the calculations also con
tain fluctuations and correlations associated with the disordered propagation of 
the test particles in the effective field. So even if the initial fluctuations were 
artificially put to zero, density fluctuations will be generated as a result of the 
Vlasov propagation. In fact, the simulation is equivalent to molecular dynam
ics for the test particles and so it contains many-body correlations at this level 
[10, 18]. These correlations provide an additional source of fluctuation which can 
be calculated as a function of the density and the temperature of the system [10]. 
When N is increased, most of these effects diminish as powers of 1/N. However,· 
even in the limit of very large N, a constant numerical viscosity on the one-body 
dynamics will remain [10]. 

Since disturbances are so quickly amplified in the spinodal zone no matter 
how large is 1/N the numerical fluctuation will soon generate large fluctuations. 
Indeed, if we look at the asymptotic evolution, it follows from eq. (26) that the 
magnitude ofthe fluctuations is given by at+(O)+At+tk in the BUUtest-particle 
simulation. We have then performed BUU calculations using a range of values 
for N. The time evolution of the fastest mode is shown in fig. 4 for two different 
test-particle n~mbers. The time evolutions follow the form given in eq. (26) which 
are also· displayed in fig. 4. This confirms the 1/ N scaling. 

Figure 5a shows the evolution of one particular density distribution ( calcu
lated in the test-particle method with N = 90), while fig. 5b presents the fluctu
ation O'k computed over an ensemble containing 100 events. It is clear that the 
density irregularities quickly attain a sizable magnitude. 

This clearly demonstrates that any Langevin dynamics based on the test
particle method must be performed with a much larger number N, at least several 
thousand, in order to have results which are not dominated by numerical noise. 
However, as far as spinodal instabilities are concerned, it has been suggested and 
explored in ref. [17] that the numerical noise of the test-particle method can be 
used as a fluctuation source in order to have a very schematic Langevin dynamics. 
Indeed, the noise of the test-particle method can be tuned by employing a suitable 
number of test particles N in order to mimic the behaviour of the most unstable 
mode found in the BL dynamics. In the present case the value N = 90 is 
predicted to achieve the above requirement and indeed we observe that figs. 4 
and 5 are remarkably similar to the prediction of the BL simulations (figs. 6 and 
7. However, we would like to stress that this ultra-simplified Langevin dynamics 
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based on the noise induced by the finite sampling of the phase space is very crude 
an approximation which can only give qualitative answers when real collisions are 
considered. Therefore, in order to become really quantitative, better methods are 
clearly called for [19]. 

4.3 Lattice simulation of BL dynamics 

Let us now turn to the study of the exact Boltzmann-Langevin dynamics per
formed on the lattice. We have used basic lattice spacings of 8x = i fm and 
8p ....:. 40 MeV/ c which gives a fairly good phase-space paving resolution. 

We first focus on the evolution of the spatial density of the system, which 
is displayed in fig. 7a. Initially the system has a uniform density, but soon the 
fluctuations break this translational symmetry. Subsequently the fluctuations 
are rapidly amplified by the action of the effective one-body field, thus leading 
towards fragment formation. 

Figure 7b displays the coefficient <J'k as a function of the node number ]{ = 
kL/27r. It can be seen that certain modes are amplified more rapidly than others, 
in accordance with their respective characteristic times tk, and the final Fourier 
spectrum is therefore dominated by the most unstable modes. Eq. (26) provides 
a good understanding of the growth of the fluctuations. In fact, at early times, 
the fluctuation coefficient reflects the spectrum of the initial noise and it grows 
linearly in time as the collective modes are agitated by the respective source terms. 
Subsequently, the instabilities start to manifest themselves and the rise becomes 
purely exponential. At still later times, beyond the linear regime, fragments begin 
to form and uk(t) levels off. 

In order to better elucidate the dynamics in the spinodal zone, it is instructive 
to exhibit the dependence of the diffusion coefficient arid the instability growth 
times on the initial density and temperature. For that, we studied an ensemble 
of 50 events for a density-temperature grid within the spinodal zone of our two
dimensional test system. The spectral analysis of the fluctuations provides the 
values of the source terms and the growth times. A typical fit using by eq. (26) 
is displayed in fig. 6 (squares) for a given point well insi.de the spinodal zone. 
We obtain Vk = 1.6 · 10-3 cjfm3 for the source term and tk = 38 fm/ c for the 
growth time. These values agree well with those obtained analytically in ref. [14] 
for Vk. Systematic comparisons are· shown in figs. 8 and 9. The dashed lines 
represent the numerical BL lattice simulation, while the solid ·lines are analytical 
results obtained directly from the linear response theory for unstable systems 
[14]. (When making the comparison between the BL lattice simulations and the 
linear-response treatment, one should keep in mind that the method employed 
in ref. [14] is only approximate, so perfect agreement should not be expected; a 
more refined method is presently being developed [20].) The dependence on the 
temperature is stronger than on the density, as expected since the source term Dk 
is closely related to the rate of collisions in by the system [14], and this number is 
proportional to T 2 and .JP in 2D. In fig. 9 we show the extracted growth times. 
The dependence of the growth time tk on temperature and density is weaker than 
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for the diffusion coefficient, as one would also expect from simple considerations 
[16]. 

5 Conclusion · 

In this paper we have shown how it is possible to describe catastrophic evolu
tions of nuclear matter within the nuclear Boltzmann transport theory, using 
a lattice method. The equivalence between this method and the more common 
test-particle method was demonstrated regarding the average one-body dynamics. 
The numerical errors and possible noise of the two methods are discussed. The 
lattice treatment was then extended to incorporate the Langevin fluctuation term 
and we showed that the resulting approach is reliable for describing processes in 
which fluctuations play a decisive role, such as is 'expected in multifragmenta
tion events. The BL model allows one to include both the stochastic collisions, 
which create the seeds for the density fluctuations, and the effective field, which 
propagates and amplifies them, thus leading the system towards fragmentation. 
We have shown how the early evolution can be quantitatively understood within 
linear response theory, with a dispersion relation that predicts the growth of in
stabilities to good accuracy. The dependence of the source terms on density and 
temperature was also briefly illustrated. 

This exposition complements earlier presentations and is intended to provide 
a better m:iderstanding of both the lattice method and the test-particle method, 
as well as their mutual relationship. 
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Table 1: Collision rates. 

T (MeV) Exact Lattice Test particles 
3 2.23 2.59 3.73 
4 4.29 4.61 6.02 
5 7.20 7.74 8.62 
6 11.14 11.98 11.74 

The total rate of nucleon-nucleon collisions at normal density, for a Fermi-Dirac 
distribution prepared at a given temperature T, as obtained by either a direct 
numerical evaluation of the collision integral, or with the lattice and test-particle 
dynamical simulations. 
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Figure 1: 
The calculated stationary one-body density J, as a function of the momentum p, 
resulting from an initial configuration consisting of two touching Fermi spheres. 
Solid histogram: lattice simulation. Solid curve: test-particle simulation. Dashed 
curve: the Fermi-Dirac distribution corresponding to the specified density and 
energy. 

Figure 2: 
The relaxation of the anisotropy Q obtained when starting from the same initial 
configuration as in fig. 1, calculated with either the lattice simulation (solid) or 
the test-particle method (dashed). 

Figure 3: 
The growth rate of instabilities, t/:1 as a function of the wave number k, obtained 
from either the dispersion relation (23) (dashed curve), or with the lattice (stars) 
and test-particle (circles) simulations. The error bars indicate the uncertainties 
associted with extracting the rate of the exponential growth rates. 

Figure 4: 
The fluctuation coefficient uk as a function of time, for the mode having k 
0.6 fm-I, as obtained with either N = 500 (lower) or N = 90 (upper) test 
particles per nucleon. The dashed curves represent fits based on eq. (21). 

Figure 5: 
5a: The density profiles of one event, as a function of the position x and at 
different times t. 5b: The fluctuation coefficient Uk extracted from 100 events, 
as a function of the node number I< = kL j21r for the same points in time. 
The simulations have been performed using N = 90 test particles, at half the 
saturation density and for T = 3 MeV. 

Figure 6: . 
The fluctuation coefficient uk vs. time for the most unstable mode ( k = 0.6 fm- 1 

). 

The stars represent the lattice simulation, while the dashed curve is a fit of the 
lattice calculation based on eq. (2). 

Figure 7: 
Similar to fig. 5, but obtained with the lattice simulation. 

Figure 8: 
The source term Vk vs. the initial density for the mode with wave number 
k = 0.6 fm- 1

, as obtained by either a direct numerical evaluation (solid) or ex
tracted from the lattice simulations (dashed), for the temperatures T = 1.5 MeV 
(diamonds), T = 3 MeV (squares), T = 6 MeV (circles). 

Figure 9: 
Similar to fig. 8, for the corresponding growth time tk. 

15 



0 
~~~~~~~~~~~~~~~~~-.~~~ 0 

co 

0 
0 
co 

0 
0 
..qt 

0 
0 
(.\2 

~~~~~~~~~~~~~~~~~~~~~ 0 
0 co 

0 
co 
0 

(.\2 

0 
0 
0 

,-_ 
C) 

~ 
:> 
Q) 

::g ...._, 

~ 

s 
~ 

-f-) 

~ 
Q) 

s 
0 

::g 



~~~~~~~--~~~~~~~~~~~~~~~ 0 

. '~ . . 0 . 
0 0 0 0 0 



co 
0 

., ,--... 
....-4 

\ I 

' • 0 
lD s 

\ 
0 C+-4 ......__, 

\ 
~ 

\ ..qc 

ot 0 S-c 

\ 
Q) 

..0 
\ s ~-.- In 

' 0 ~ 

' 
~· 

' Q) 

'Q• N > 0 ro 

' ~ 
' ' ....-4 , ... . 

0 

' ' ' 0 

en N ....-4 
. oo 

0 0 0 0 . . 
0 0 0 0 

M 
. 

Q) 

(UIJ/~) 1~1 a1-e.1 l{l-M.O.I!) 
5-4 
::s 
b.O 

•P"4 

~ 



\ 

~ 
\ 

\ ~ 

J+i~ I 

\ s 
\ 

'\ t+-1 

\1-+-1 ~ c.o 
\ . 

\ 
\ 

0 
\ II 
~ ~ ~ 

\ \ 
\ ~ 

\ ~ 
~ '\ 

'\ ...a 
'\ '\ 

'\ J+-\ 
~, ~, 

' ~ 

' ' ' 1-4 
~ ' 
~~ ~, 
I~ ~ 

~ 0 ~ C\2 
0 0 I I 
~ ~ 0 0 

~ ~ 

(z- UIJ) }[D 88UB1JBA 

C") 

I 
0 
~ 

0 
0 
C\2 

0 
10 
~ 

0 
0 
~ 

0 
10 

0 

,--.. 
C) 

""' s 
t+-1 ..._..., 
-+-) 

Q) 

s 
• r-1 

E--! 

~ 

Q,) 
M ::s 
b.O .... 
~ 



I 5 ~ • 
I I I I I I I I I I I I I 

I I ' ' ·.~ ~~· ' ' It ·~5·f~~c· ~ ·• ·-~-· ' l 0.020 

0.015 1:0 f- t = 5 fm/c 
0.010 

0.5 ~ ... ~ u;.r If- - ~uuy u-- u uuo,m--
uu T 1 

0.005 

0.000 < 0.0 . 

0.10 Pl 
1.0 t. = 25 fm/c t = 25 fm/c 0.08 

.., 

....... 
0 0.06 Pl 

Q.. 
0.04 ~ ............ 0.5 0 

Q.. 0.02 (l) 

~ 0.0 0.00 q 
...,_) 

~ 
0.5 II';' 

•l""'f 
rn 1.0 t = 50 fm/c 0.4 ,-..... 
~ 0.3 

......, 
Q) t = 50 fm/c s Q 0.5 0.2 I 

0.1 N ......_., 
0.0 0.0 

t = 75 fm/c 
I ) l ., 1.5 

1.0 r 
t = 75 fm/c ., 1.0 

0.5~~~~~Jl , 0.5 

0.0 0.0 
0 20 40 600 20 40 60 80 

Position x (fm) Mode number K 

Figure 5 



1.5 0.0006 

1.0 t = 5 fm/c t = 5 fm/c 0.0004 

0.5 0.0002 

0.0 0.0000 

t == 25 fm/c 0.06 < 
1.0 t = 25 fm/c p.> ., 

0 0.04 ..... 
~ 0.5 

p.> 

0.02 t:J 
Q.. () 

~ 0.0 0.00 
(t) 

-+-> 0.5 q 
• ..-4 

C/l 1.0 t = 50 fm/c 0.4 
!IIi" 

~ t =50 fm/c 0.3 
,..--.. 

Q) ~ 

Q 0.5 0.2 s 
0.1 I 

N 

0.0 t J {1, > 
i 0.0 

........... 

t == 75 fm/c t = 75 fm/c 
1.5 

1.or 

0.5 ~ '"' r~ !\ 1 \ 1 \ /\ 1 1 J ~ 
11.0 

0.5 

0.0 0.0 
0 20 40 600 20 40 60 80 

Position x (fm) Mode number K 

Figure 6 



...... 0 ~ 

0 0 I ...... ...... 0 
~ 

(~-UlJ) Jt.o 

' ~ 
' )E 

...... 

' 

I s 
t+--4 

0 
co . 
0 
II 
~ 

....... 

N 
I 
0 ..... 

~ ..... 

8DUB1JBA 

C'? 
I 
0 
~ 

0 
co 

0 
N 

0 .t-" 
Q) 
~ = . bO. ..... 
~ 



0 

~ <> 1.0 
\ 0 

\ \ \ 
\ \ \ 
\ \ \ 
\ ' \ 
\ \ \ 

1.0 
\ \ \ -.;:f4 . 
\ . \ \ 0 

0 
\ \ \ Q.. 

\ ' \ "" \ ' \ 
Q.. 

\ \ \ ~ 
_.J 

\ ~· \ 0 
. ,..... 

~ ~ 
-.;:f4 rn 
0 ~ 

\ \ \ Cl) 

Q 
\ \ \ 

' \ \ 

' \ \ 

' \ \ 
1.0 

I \ \ (") . 
I \ \ 0 

cb lh ~ 

0 
<X) (") 

0 0 0 0 0 0 LDo Q) 

0 0 0 0 l{) ...-I 0 ~ 

.. 0 0 l{) ...-I 0 0 0 :::I . . . . . . . b.O 
1.0 ...-I 0 0 0 0 0 ..... 

r.. 

2 01 X (8 UIJ/D) +~a ULI8l 8Q.ITIOS 



0 
co 

.....-1 

I s 
~ 

0 
CD . 
0 
II 
~ 

\ 
\ 
\ 
\' 
\ 
I 

<& 

0 
LO 
0 

LO 
~ 

0 

0 
~ 

0 

LO 
(I') . 
0 

0 
Q.. 

"-.. 
Q.. 

~ 
+J 
•1"""'1 
rn 
~ 
Q) 

0 

0')· 

(1} 
i ~ 

i::1 
bOt 

. •1'"4 

~ 



LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

--




