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Abstract Acoustic tomography methods belong to the class of nondestructive in-
spection techniques and are used in engineering applications. One of the main issues
for these methods is the direct arrival, which can be noisy or can be affected by
scattering or other propagation effects. In this paper, we present the mathematical
deduction and analysis of the so-called robust mean traveltime curves—the median,
p-percentiles, inter-quartile range and minimum absolute deviation—for homoge-
neous isotropic or elliptical anisotropic media. Robust mean traveltime curves are a
simple model used to describe the variation of the traveltime statistical descriptors
for the different gathering subsets as a function of a gather index, and generalize the
mean traveltime curves introduced in the past to the case of robust statistics. These
curves admit analytical expression for zonal isotropic and elliptical anisotropic me-
dia explored via rectangular or irregular acquisition geometries, and thus, apply to 2D
acoustic transmission tomography experiments conducted in relatively homogeneous
blocks. The robust mean traveltime curves are more resistant to the presence of out-
liers, and thus they are preferred to infer background velocity models which can be
taken into account in the resolution of the tomographic inverse problem. The property
of robust descriptors to find blocky solutions in presence of velocity heterogeneities
is also illustrated. Finally, we show the application of this methodology to a granitic
medium (Febex Project, Nagra, Switzerland).
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1 Introduction

Tomographic inversion techniques have been widely used in very different geological
engineering applications, and consist of iteratively finding the velocity field of a geo-
logical medium that better fits the traveltime data acquired from their boundaries. Dif-
ferent numerical methods have been reported in the literature to solve the transmis-
sion tomographic inverse problem, including biomedical reconstruction techniques
(Gordon 1974; Dines and Lytle 1979; Ivansson 1986), conjugate gradient methods
(Scales 1987), and least-squares algorithms (Berryman 1991). Since the tomographic
inverse problem is ill-posed, it is crucial to have methodologies to analyze the trav-
eltime quality on hand in order to identify and filter possible errors, and to infer
prior velocity information to win stability at inversion. The Mean Traveltime Curves
(MTC) is a simple methodology that has been designed to accomplish this task by an-
alyzing the data variability the source and receiver gathers at the preinversion stage.
These curves describe the variation of the main statistical descriptors (mean and stan-
dard deviation) of the experimental traveltimes for the different gathering subsets as
a function of their gather index (Fernández-Martínez et al. 2006). The theoretical
mean traveltime curves assume that the geological medium can be divided into ho-
mogeneous layers, either isotropic or elliptical anisotropic (Fernández-Martínez and
Pedruelo-González 2008). Least-squares fitting of the empirical traveltime curves us-
ing the theoretical models allows the inference of background velocity models valid
at experiment scale, which can be taken incorporated in the resolution of the inverse
problem as regularization term. In the case of elliptical anisotropic media, the mean
traveltime curves are a simple method to infer the anisotropic parameters from trav-
eltime data at preinversion stage (Fernández-Martínez et al. 2009a).

These curves can also be useful in the detection of outliers. Since our first pa-
per devoted to this subject, we have shown that different kind of data errors have
different signatures that can be used to discriminate them from geological hetero-
geneities (Fernández-Martínez et al. 2006). Also, sensibility analysis performed on
these curves showed two important conclusions: (i) the mean curve is less prone
to errors than the standard deviation curve, and thus is more suitable for velocity
identification (Fernández-Martínez et al. 2006; Fernández-Martínez and Pedruelo-
González 2008); and (ii) data errors can be misinterpreted as high anomalous values
of anisotropy (Fernández-Martínez and Pedruelo-González 2008). A common alter-
native in inversion to diminish the effect of the data errors is to make use of the
L1 norm (Scales and Gersztenkorn 1988). The use of this norm is implicitly related
to long-tail probability distribution (exponential) for the misfit error. These kinds
of distributions are able to anticipate outliers without drastically modifying its cen-
ter of mass. This idea has led us to propose the robust mean traveltime curves that
describe the p-percentiles and the associated dispersion descriptors (inter-quartile
range and minimum absolute deviation) of the experimental traveltime distribu-
tion.
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In this paper, we present the theoretical deduction and analysis of the robust mean
traveltime curves for the case of a layered isotropic or elliptical anisotropic media
explored via any arbitrary recording geometry. As mentioned above, these statistical
measures belong to the category of robust statistics, since they are less sensible to
the presence of outliers than the classical descriptors (mean and standard deviation).
These curves have already been implemented in AMTCLAB (Fernández-Martínez
et al. 2009a). We show how the anisotropy of the geological medium and the irregu-
larity of the recording geometry affect the shape of these curves. Sensitivity analysis
to data errors and different geological heterogeneities is also performed by means of
synthetic cases. As the main conclusion we find that the mean, median, and upper-
quartile curves are less prone to errors than the mean curve. Similar conclusions are
also reached by the application of this methodology to the Grimsel data set. This
methodology has also been recently applied to analyze the anisotropy of a rock massif
in France studied by GPR (Ground Penetrating Radar) transmission data (Fernández-
Martínez et al. 2009b).

2 The Robust Mean Traveltime Curves in the Isotropic Case

Let Ω be homogeneous and isotropic medium with constant velocity to be studied by
transmission tomography. Let us also assume that we have two lines of sources and
receivers located on the boundary of Ω . Gathering subsets can be defined grouping
together traveltimes arriving to each receiver (common receiver gathering) and those
emitted from each source. Mean traveltime curves describe analytically the variation
of the main statistical parameters (mean and standard deviation) of the different gath-
ering subsets as a function of the gather distance (Fernández-Martínez et al. 2006).
Robust mean traveltime curves refer to the variation of the different p-percentiles and
related measures of dispersion (inter-quartile range and minimum absolute deviation)
for the above mentioned gathering subsets. It will be shown that these measures are
more robust in presence of data errors.

2.1 The Rectangular Recording Geometry Case

Let Ω be a homogeneous isotropic domain explored by means of a rectangular
recording geometry (sources and receivers placed along two parallel boreholes) as
shown in Fig. 1(a). Seismic rays follow straight lines. Due to the isotropy and homo-
geneity, the traveltime distributions in each source gather, xs , follow the hyperbolic
law

t (ξ ;xs) =
√

t2
0 + (ξ − xs)2

V 2
,

where ξ describes the receiver positions with respect to the gather origin, V is the
constant velocity of the medium, and t0 is the minimum traveltime in the gathering,
which remains the same for all gathers due to the rectangular acquisition geometry.
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Fig. 1 (a) Rectangular recording geometry and variables involved in the mean traveltime curve analysis.
(b) Robust MTC curves in relation to the mean and standard deviation curves

The following statistical descriptors of the traveltime distribution for different
gathering subsets are of interest:

2.1.1 p-Percentiles

The p-percentile, mp , of the traveltime distribution,

t (ξ ;xs) =
√

t2
0 + (ξ − xs)2

V 2
,

is implicitly defined as

P
(
t (ξ ;xs) < mp

) = p ∈ [0,1],
where p is the probability threshold corresponding to mp . For instance, the me-
dian corresponds to p = 0.5, and the lower and upper percentiles to p = 0.25 and
p = 0.75.

Considering that the spatial variable ξ is distributed uniformly on the borehole
length, L(ξ → U(0,L)), this probability can be calculated as follows

P
(
t (ξ ;xs) < mp

) = P(x1 < ξ < x2) =
∫ x2

x1

1

L
dx,

where

x1 = max
{

0, xs −
√(

m2
p − t2

0

) · V
}
,

x2 = min
{
L,xs +

√(
m2

p − t2
0

) · V
}
.
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In this calculation, three cases arise

Case 1.

0 < xs <
pL

2
�⇒ mp(xs) =

√
t2
0 + (pL − xs)2

V 2
,

Case 2.

pL

2
< xs < L − pL

2
�⇒ mp(xs) =

√
t2
0 + (pL)2

4V 2
,

Case 3.

L − pL

2
< xs < L �⇒ mp(xs) =

√
t2
0 + ((p − 1)L + xs)2

V 2
.

As a main conclusion, the p-percentile curves are symmetric with respect to the
middle of the gather line, xs = L

2 , and have a sill interval whose length is L(1 − p)

of constant value, mpc, which is related to the isotropic velocity

V =
√

A2 + (
pL
2 )2

mpc

.

This formula provides a simple and robust method (resistant to outliers) to determine
the isotropic velocity, V , since it uses the p-percentile sill value, mpc , which is the
traveltime at position xp = xs + pL

2 , and is the same for all the gathers on the interval

[pL
2 ,L − pL

2 ].
The median curve, mp=1/2(xs), is a particular case and provides the trajectory of

the center of the traveltime distribution as a function of the gather index, xs . This
curve is a symmetric curve, has a sill whose length is L

2 , and constant value, m1/2,
which is related to the isotropic velocity as follows

V =
√

A2 + (L
4 )2

m1/2
.

2.1.2 The Inter-Quartile Range

The inter-quartile range is the difference

iqr(xs) = m3/4(xs) − m1/4(xs).

Taking into account the analytical expression of the p-percentiles, it is easy to show
that the inter-quartile range for gather subset, xs , has the following expression

Case 1.

0 < xs <
L

8
�⇒ iqr(xs) =

√
t2
0 + ( 3L

4 − xs)2

V 2
−

√
t2
0 + (L

4 − xs)2

V 2
,
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Case 2.

L

8
< xs <

3L

8
�⇒ iqr(xs) =

√
t2
0 + ( 3L

4 − xs)2

V 2
−

√
t2
0 + (L

8 )2

V 2
,

Case 3.

3L

8
< xs <

5L

8
�⇒ iqr(xs) =

√
t2
0 + ( 3L

8 )2

V 2
−

√
t2
0 + (L

8 )2

V 2
,

Case 4.

5L

8
< xs <

7L

8
�⇒ iqr(xs) =

√
t2
0 + (xs − L

4 )2

V 2
−

√
t2
0 + (L

8 )2

V 2
,

Case 5.

7L

8
< xs < L �⇒ iqr(xs) =

√
t2
0 + (xs − L

4 )2

V 2
−

√
t2
0 + (xs − 3L

4 )2

V 2
.

The iqr curve has a sill whose length is L
4 and constant value, iqrc , related to the

isotropic velocity as follows

V =
√

A2 + ( 3L
8 )2 −

√
A2 + (L

8 )2

iqrc
.

This formula can be generalized to any other percentile range, [mp1,mp2], by

iqp(xs) = mp2(xs) − mp1(xs).

The sill length is in this case L(1 − p2), and the corresponding constant value, iqpc,
is related to the isotropic velocity in the following way

V =
√

A2 + (
p2L

2 )2 −
√

A2 + (
p1L

2 )2

iqpc

.

2.1.3 The Minimum Absolute Deviation (mad)

The minimum absolute deviation is

mad(xs) = 1

L

∫ L

0

∣∣t (ξ ;xs) − m1/2(xs)
∣∣dξ,

i.e., the mean absolute distance of t (ξ ;xs) to the median, m1/2(xs), for each source
gather, xs .
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The minimum absolute deviation has the following expression

Case 1.

0 < xs <
pL

2
,

mad(xs) = 1

L

∫ Lp

0

(
mp(xs) − t (ξ ;xs)

)
dξ + 1

L

∫ L

Lp

(
t (ξ ;xs) − mp(xs)

)
dξ,

Case 2.

pL

2
< xs < L − pL

2
,

mad(xs) = 1

L

∫ xs− Lp
2

0

(
t (ξ ;xs) − mp(xs)

)
dξ

+ 1
L

∫ xs+ Lp
2

xs− Lp
2

(
mp(xs) − t (ξ ;xs)

)
dξ

+ 1

L

∫ L

xs+ Lp
2

(
t (ξ ;xs) − mp(xs)

)
dξ,

Case 3.

L − pL

2
< xs < L,

mad(xs) = 1

L

∫ L(1−p)

0

(
t (ξ ;xs) − mp(xs)

)
dξ

+ 1

L

∫ L

L(1−p)

(
mp(xs) − t (ξ ;xs)

)
dξ.

These integrals can be analytically calculated and can be put in relation with the
percentile, mp , and the mean traveltime values, t [a,b], calculated over certain gather
intervals [a, b] where the percentile function is defined

Case 1.

mad(xs) = mp(2p − 1) + t [0,L] − 2pt [0,Lp],

Case 2.

mad(xs) = mp(2p − 1) + t [0,L] − 2pt [xs− Lp
2 ,xs+ Lp

2 ],

Case 3.

mad(xp) = mp(2p − 1) + t [0,L] − 2pt [L(1−p),L] .

The mad curve does not reach a sill, it is a decreasing–increasing curve with its
minimum in the middle of the gather line (in the isotropic case). Also, this curve has
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Fig. 2 (a) Parameters in the irregular recording geometry case. (b) Robust MTC curves compared to
the mean and standard deviation curves. The medium is in this case isotropic with V = 5.4 km/s. The
recording geometry parameters are: d0 = 66 m, dn = 32 m, Lr = 191 m, and Ls = 170 m

two inflexion points located at pL
2 and L− pL

2 , respectively, i.e., the xs -values where
the mad function changes.

Figure 1(b) shows the median, the lower and upper quartile, the inter-quartile
range, and the minimum absolute deviation for an isotropic and homogeneous
medium explored with a rectangular recording configuration (L = 140 m, V =
5.4 km s−1 and A = 70 m), compared to the mean and standard deviation curves.
The mean curve is close to the 0.6 percentile curve in this case, and the standard
deviation to the mad curve.

2.2 The Irregular Recording Geometry Case

The above mentioned relationships can be generalized to an isotropic medium ex-
plored with an irregular recording geometry. Analytical expressions are identical to
those in the rectangular case with the following identifications: xs → sr , L → Lr ,
A → Ax . Calculations depend on recording geometry parameters d0, dn, Lr,Ls ,
where d0 is the distance between the source in x = x0 and the receiver in ξ = ξ0,
dn is the distance between the source in x = xn and the receiver in ξ = ξn,Ax is the
distance between the source in x = xs and the receiver borehole, Lr is the receiver
borehole length, and Ls is the source borehole length. Development and deduction
of the robust mean traveltime curves for irregular recording geometries is provided
in Appendix A. Figure 2 shows all the variables involved in an irregular recording
geometry and the shape of the robust traveltime curves we get for this case. As it can
be observed, the irregular configuration provokes asymmetry of these curves. The sill
also becomes a dipping straight line, since the p-percentile depends on the parameter
Ax for the gathering position, xs .
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Fig. 3 (a) Parameters in the anisotropic case for a rectangular recording geometry. (b) Robust mean travel-
time curves for an anisotropic medium with Vmax = 5.4 km/s, λ = 0.95, and α = 45 (E45◦N). (c) Robust
mean traveltime curves for the same anisotropic medium and an irregular configuration geometry (same
as in Fig. 2)

3 The Robust Mean Traveltime Curves in the Anisotropic Case

Fernández-Martínez and Pedruelo-González (2008) generalized the mean traveltime
curves for media with an elliptical velocity model explored either with a rectangular
or irregular recording geometry (Fig. 3). In this section, we present the robust mean
traveltime curves for these two cases.

3.1 The Rectangular Recording Geometry Case

In this case, the traveltime variations in each source gather, xs , can be described
through the following relationship (Fernández-Martínez and Pedruelo-González
2008)
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t (ξ ;xs) =
√

(1 + λ2 tan2 α)(ξ − xs)2 + 2A tanα(λ2 −1)(ξ − xs) + A2(λ2 + tan2 α)

λ2(1 + tan2 α)V 2
max

.

By introducing the variables

a = (1 + λ2 tan2 α)

λ2(1 + tan2 α)V 2
max

, b = 2A tanα(λ2 − 1)

λ2(1 + tan2 α)V 2
max

,

c = A2(λ2 + tan2 α)

λ2(1 + tan2 α)V 2
max

,

it is straightforward to show that the discriminate of the quadratic expression inside
t (ξ ;xs) is always negative

Δ = b2 − 4ac = − 4A2

λ2V 4
max

,

and thus the traveltime t (ξ ;xs) is never null.
Reasoning in the same way as in the isotropic case, the p-percentile curve for an

elliptical anisotropic medium has the following expressions:

Case 1.

0 < xs <
pL

2
+ b

2a
�⇒ mp(xs) =

√
[2a(xs − pL) − b]2 − Δ

4a
,

Case 2.

pL

2
+ b

2a
< xs < L − pL

2
+ b

2a
�⇒ mp(xs) =

√
(apL)2 − Δ

4a
,

Case 3.

L − pL

2
+ b

2a
< xs < L �⇒ mp(xs) =

√
[2a((1 − p)L − xs) + b]2 − Δ

4a
.

The following can be observed: (i) the percentile curves have a sill whose length
is the same than in the isotropic case, but which is shifted a distance equal to b

2a
=

A(λ2−1) tanα

(λ tanα)2+1
; this effect has already been presented for the mean and the standard

deviation curves for anisotropic media (Fernández-Martínez and Pedruelo-González

2008), and (ii) the value of the sill, mpc =
√

(apL)2−Δ
4a

, is related to the anisotropic
parameters.

3.2 The Irregular Recording Geometry Case

The formulas are similar to those developed in the irregular isotropic and rectangu-
lar anisotropic cases, but in this case both features act at the same time. A correc-
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tion of the anisotropy angle, α, with respect to the Ax direction (Fig. 2(a)) is now
needed. Deduction is provided in Appendix B. Figure 3(c) shows the comparison of
the robust mean traveltime curves for an anisotropic medium with Vmax = 5.4 km/s,
α = 45◦ (N45◦E), and λ = 0.95, explored through the same irregular recording
geometry used in Fig. 2(a). It can be observed that the robust mean traveltime curves
shown in this case have similarities to those shown in Figs. 2 and 3(b).

4 Influence of the Anisotropic Parameters on the Robust Mean Traveltime
Curves

The influence of the anisotropic parameters on the mean curves is explained via syn-
thetic modeling, considering an elliptical anisotropic medium with maximum veloc-
ity 5.4 km/s and anisotropy direction N30◦W . The recording geometry is rectangular,
limited by two parallel boreholes of length L = 150 meters, located 70 meters apart
(distance A) as shown in Fig. 1(a). Figure 4(a) shows the robust mean traveltime
curves for anisotropic ratios, λ, of 0.7 and 0.95. Anisotropy induces a vertical shift
of the percentile curves towards higher values as λ decreases; these curves become
more asymmetric and may lose one of their branches. Also, horizontal asymptotes
may appear in some of the robust MTC curves—inter-quartile range, minimum ab-
solute deviation and standard deviation (Fig. 4(c)). On the other hand, as the parame-
ter λ increases, these curves become more symmetric, tending to the isotropic case.
Same conclusions are valid for the mad curve, but the vertical shift with respect to
the isotropic counterpart is much lower than for the other robust curves. The upper
quartile curve is the most sensible to anisotropy type-effects. The other curves are not
very different for parameters in the range of weak anisotropy. For the inter-quartile
range curve, anisotropy only provokes a lateral shift, i.e., the sill value is constant
for any anisotropic ratio. The effect of the anisotropic direction is a lateral shift of
the percentile curve, inducing asymmetry. For a source-left recording configuration,
the shift is towards the right of the middle point of the line source (70 meters in this
case) if the anisotropy direction is northwest, and towards the left if the anisotropy
direction is northeast. The shift is the distance b

2a
. Finally, increasing Vmax lowers

the percentile values of the traveltime distribution. These effects are similar to those
commented on in Fernández-Martínez and Pedruelo-González (2008) for the mean
and the standard deviation curves. Figure 4(b) shows the comparison between the
isotropic and anisotropic curves in the range of weak anisotropy (λ = 0.95). It can
be observed that the quartiles are most sensible to anisotropy effects rather than the
iqr and mad curves. This result becomes very important for the anisotropic parameter
identification.

4.1 The Effect of Geological Heterogeneities

The adjustment of the empirical mean traveltime curves, carried over independently
on the different mean traveltime curves (robust and classical descriptors) on each
region of analysis, is an identification problem whose results might shed light over
the causes of data variability. The degree of agreement between the velocity model
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Fig. 4 Rectangular recording geometry case (source left). (a) Influence of the anisotropic ratio on the
robust mean traveltime curves. (b) Comparison to the isotropic curves for an anisotropic medium with
Vmax = 5.4 km/s, λ = 0.95, and α = 30◦ (N60◦E). (c) Robust mean traveltime curves for a medium with
Vmax = 5.4 km/s, λ = 0.1, and α = 30◦

estimated from the empirical mean traveltime curves for the shot and the receiver
domains provides criteria that help the analysis and the classification of the sources
of data variation. This has been investigated for the classical descriptors (mean and
standard deviation curves) in Fernández-Martínez et al. (2006). Figure 5 shows the
effect of a fault (low velocity anomaly) or an intrusion (high velocity anomaly) zone
on the robust mean traveltime curves. The effect of these anomalies is better observed
on the lower-quartile and median curves, where a pull-up or pull-down effect can be
observed. The std and mad curves in these cases show slope breaks on the boundaries
of the velocity heterogeneity. The iqr curves also detect these features, but the effect
is much more complicated, inducing two different sills which hamper a clear interpre-
tation of this effect. It can be observed that the effect on the mean and upper-quartile
curves is very subtle.
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Fig. 5 Effect of an intrusion (high velocity anomaly) and of a fault (low velocity) on the robust mean
traveltime curves. Comparison to the isotropic case and to the mean and standard deviation curves

4.2 Inference of the Anisotropic Velocity Parameters

The anisotropic parameters (Vmax, α,λ) can be inferred from the experimental trav-
eltime counterparts. The method consists in dividing the domain into fairly homo-
geneous zones (isotropic or anisotropic), and reducing the misfit between the exper-
imental traveltime curves and the theoretical predictions in each gather, solving the
following optimization problems of the kind (one for each robust mean time curve in
the source and receiver gathers)

(Vmax, α,λ)∗ = min
(Vmax,α,λ)∈M

∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎝

tg

σg

mp

mad

iqr

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎝

tg

σg

mp

mad

iqr

⎞
⎟⎟⎟⎟⎟⎠

∗

(Vmax,α,λ)

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

where
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⎛
⎜⎜⎜⎜⎝

tg

σg

mp

mad
iqr

⎞
⎟⎟⎟⎟⎠

are the experimental robust mean traveltime curves in the considered gather (source
or receiver), and ⎛

⎜⎜⎜⎜⎝
tg

σg

mp

mad
iqr

⎞
⎟⎟⎟⎟⎠

∗

(Vmax,α,λ)

are the corresponding anisotropic robust MTC theoretical predictions for a certain set
of anisotropic parameters.

M is the search space for the anisotropic parameters

Vl ≤ Vmax ≤ Vs,

−90◦ ≤ α ≤ 90◦,
0.8 ≤ λ ≤ 1.

Lower and upper bounds for Vmax and the zones of analysis can be deduced from prior
information or from the analysis of the isotropic mean traveltime curves themselves,
as we have shown for the zonal isotropic case (Fernández-Martínez et al. 2006). Due
to the small number of parameters to infer and to the presence of equivalent models
and local minima, the optimization is accomplished by means of a global optimiza-
tion algorithm (Fernández-Martínez et al. 2009a). This methodology is valid for ho-
mogeneous anisotropic media at the scale of the experiment (anisotropic single-zone
MTC analysis), and also for zonal elliptical anisotropic media (anisotropic multi-zone
MTC analysis).

4.3 Sensitivity Analysis

To analyze the effect of errors in data in the identification process, we generate a
synthetic anisotropic traveltime data set corresponding to a theoretical medium with
the following anisotropic parameters (Vmax = 5.4, α = 120◦, λ = 0.95), and times
are perturbed by different levels of Gaussian noise. Figure 6 shows the effect of the
noise level on the identification of (Vmax, α,λ) for the main robust mean traveltime
curves, both in the source and receiver gather. The following conclusions may be
obtained. First, Vmax is the anisotropic parameter that is better identified. This para-
meter was well identified for noise levels under 10% in the mean curve and under 5%
in the standard deviation curve (Fernández-Martínez and Pedruelo-González 2008).
For high levels of noise, the identification becomes inaccurate originating high veloc-
ity artifacts. Second, the anisotropic ratio tends to be underestimated (higher levels
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Fig. 6 Effect of the noise on the anisotropic parameter identification for the different robust MTC curves

of anisotropy), and for noise levels higher than 10% there is a clear degradation of
this ratio, which is around 0.7. Third, generally speaking, the direction of anisotropy
is the parameter that is worst identified. For noise levels higher than 8%, this parame-
ter does present a bias towards 180◦ (horizontal direction). This behavior is identical
in the source and receiver domains. Last, taking into account the above mentioned
points, the more robust identification of the anisotropic parameters comes from the
median and upper-quartile curves, while the iqr and mad curves are the most sensible
to the presence of noise. For instance, the identification of the direction of anisotropy



392 Math Geosci (2010) 42: 377–400

Fig. 7 Effect of the noise on the error surfaces for the different robust MTC curves

from the upper-quartile curve is very robust for very high noise levels. This result is
even more important if we take into account the difficulty to identify this parameter
from the other curves.

In conclusion, noise makes direction identification ambiguous and biased towards
0 degrees, and generates artifacts in the estimated anisotropy ratios in most of the
curves. The median and upper-quartile curves are the most robust descriptors in the
presence of noise. These features can be explained analyzing the topography of the
misfit surface as a function of λ and α, assuming that Vmax is well constrained.
Figure 7 shows the shape of the objective function for the median, upper-quartile,
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Fig. 8 Experimental traveltime and distance map for the Grimsel data set

lower-quartile and inter-quartile curves for a level of noise of 10%. The region of
equivalent models (i.e., the anisotropy sets of parameters which fit equally well the
corresponding experimental traveltime curve) is well constrained for the median and
upper-quartile curve, whilst for the rest of statistical descriptors (lower quartile, iqr
and mad curves) this region becomes broader in size and for some of them presents
a central elongated valley parallel to the λ axis. This valley deforms progressively as
the level of noise increases, becoming a flat elongated area where all the directions
give a good fit for a certain range of anisotropic ratios. Thus, when a high level of
errors is present, the identification of anisotropic parameters from the lower quartile,
inter-quartile and mad curves might become inaccurate.

5 Study Case: Application to the Grimsel Test Site

In this section, we show an application of the mean traveltime curves analysis to a
data set which comes from an area with granitic geology: the Grimsel test site Field 1
(NAGRA, the Swiss National Cooperative for the disposal of Radioactive Waste).

The geometry of the survey is approximately rectangular, bounded by two bore-
holes. The dimensions are approximately 70 × 150 m2. The numbers of sources and
receivers are 58 and 60, and the distance between adjacent sources or receivers is
approximately 2.5 meters. The geological and geophysical studies in this granite
have been originally undertaken by Gelbke et al. (1989). This data set was also an-
alyzed in Fernández-Martínez et al. (2006, 2008, 2009a) and in Fernández-Martínez
and Pedruelo-González (2008), to illustrate the MTC analysis with isotropic and
anisotropic assumptions for the velocity model. These authors arrived at the con-
clusion that this data set was contaminated by a level of approximately 6% of non-
Gaussian noise. These authors also inferred the parameters of the acoustic anisotropy,
showing via synthetic experiments that errors in data can be misinterpreted as anom-
alous values of anisotropy (Fernández-Martínez and Pedruelo-González 2008).

The aim in this section is not to perform a complete modeling analysis, but to
show how the results issued from the analysis of the robust mean traveltime curves
match previous results obtained the classical MTC descriptors (Fernández-Martínez
and Pedruelo-González 2008). Figure 8 shows the experimental traveltime and the
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Fig. 9 Experimental and theoretical robust MTC curves for the Grimsel data set (source and receiver
gathers). We also show the mean traveltime curve that has been introduced in past publications

acquisition distance maps for this data set. Cells with zero traveltime map indicate
pairs of sources and receivers with no available traveltime measurements (mainly re-
ceiver gathers 1 to 13) due to acquisition problems. The similarity between both maps
indicates behavior close to isotropy and homogeneity. Nevertheless, the experimental
traveltime is deformed with respect to the distance map due to the effect of the weak
anisotropy. Figure 9 shows the experimental robust mean traveltime curves and their
corresponding theoretical models. The corresponding theoretical models are shown
in Sect. 3.2. The inference of the anisotropic parameters is developed in Sect. 4.2. It
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Table 1 Grimsel data set 1.
Source Gather. Anisotropic
parameters deduced from the
robust MTC analysis (degrees
measured from the east
counter-clockwise)

Mean Std Median Upper- Lower- iqr mad

quartile quartile

Vmax (km/s) 5.28 5.64 5.37 5.25 5.21 6.37 5.76

λ 0.97 0.95 0.95 0.97 0.92 0.89 0.94

α 61◦ 13◦ 65◦ 72◦ 13◦ 0◦ 8◦

Table 2 Grimsel data set 1.
Receiver Gather. Anisotropic
parameters deduced from the
robust MTC analysis (degrees
measured from the east
counter-clockwise)

Mean Std Median Upper- Lower- iqr mad

quartile quartile

Vmax (km/s) 5.24 5.56 5.35 5.26 5.21 5.30 5.57

λ 0.97 0.96 0.95 0.975 0.93 0.97 0.96

α 28◦ 25◦ 65◦ 51◦ 11◦ 56◦ 25◦

can be observed that there is a good match between them in all the cases. The lower
quartile curve is the one that presents more low scale variabilities, which can be due
partially to the effect of noise.

Tables 1 and 2 show the results of this analysis for the source and receiver gathers.
These tables show the maximum velocity, direction and ratio of anisotropy deduced
from the analysis and fitting of the different mean time descriptors (Sect. 4.2). We
outline in bold the parameters inferred from the mean, median, and upper-quartile
curves. Results are very coherent for these descriptors in the source and receiver
gathers, since they are less prone to errors than the standard deviation, inter-quartile
range, lower quartile and minimum absolute deviation. This situation agrees with the
conclusions that have been presented on the section devoted to the sensibility analysis
of the robust mean traveltime descriptors via synthetic experiments.

6 Conclusions

In the present work, we have presented the mathematical deduction and analysis of
robust traveltime curves in elliptical anisotropic media, which complete the analysis
presented in the past for the mean and standard deviation curves. The fitting of the
empirical traveltime curves provide us with a new a simple method to estimate the
model of elliptical anisotropy from traveltime data before the inversion, and to ana-
lyze the traveltime quality. The mean, median, and upper-quartile curves are the most
robust descriptors to identify anisotropic parameters. Conversely, the rest of descrip-
tors are very sensible to data errors, and they can be used to detect their presence
before the inversion. This filtering process is very important because we have shown
that data errors provoke anisotropy artifacts, very anomalous anisotropic ratios and
wrong directions of anisotropy biased towards 0 degrees. This is a very important
conclusion, since it highlights that data errors can be interpreted as false anisotropy.
Thus, performing mean traveltime curve analysis is always recommended, since it
does not need stringent numerical requirements.
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Appendix A: Isotropic Medium Explored via an Irregular Recording
Geometry

These formulas correspond to Sect. 2.2. The variables that appear in the following
formulas are those presented in Fig. 2(a).

A.1 p-Percentiles and the mad Curves

Case 1.

0 < sr <
pLr

2
, that is,

0 < xs <
(p − 1)L2

r − d2
0 + L2

s + d2
n − 2Lsdn cosγ

2(Ls − dn cosγ − d0 cos δ)
,

mp(xs) =
√

(pLr − sr )2 + A2
x

V 2
,

mad(xs) = mp(2p − 1) + t [0,Lr ] − 2pt [0,Lrp],

Case 2.

pLr

2
< sr < Lr − pLr

2
, that is,

(p − 1)L2
r − d2

0 + L2
s + d2

n − 2Lsdn cosγ

2(Ls − dn cosγ − d0 cos δ)

< xs <
(1 − p)L2

r − d2
0 + L2

s + d2
n − 2Lsdn cosγ

2(Ls − dn cosγ − d0 cos δ)
,

mp(xs) =
√

(
pLr

2 )2 + A2
x

V 2
,

mad(xs) = mp(2p − 1) + t [0,Lr ] − 2pt [sr− Lrp
2 ,sr+ Lr p

2 ],
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Case 3.

Lr − pLr

2
< sr < Lr, that is,

(1 − p)L2
r − d2

0 + L2
s + d2

n − 2Lsdn cosγ

2(Ls − dn cosγ − d0 cos δ)
< xs < Ls,

mp(xs) =
√

((p − 1)Lr + sr )2 + A2
x

V 2
,

mad(xs) = mp(2p − 1) + t [0,Lr ] − 2pt [Lr(1−p),Lr ].

A.2 Inter-Quartile Range

Case 1.

0 < sr <
Lr

8
, that is,

0 < xs <
−3L2

r + 4(L2
s − d2

0 + d2
n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)

�⇒ iqr(xs) =
√

( 3Lr

4 − sr )2 + A2
x

V 2
−

√
(Lr

4 − sr )2 + A2
x

V 2
,

Case 2.

L

8
< sr <

3Lr

8
, that is,

−3L2
r + 4(L2

s − d2
0 + d2

n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)

< xs <
−L2

r + 4(L2
s − d2

0 + d2
n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)
,

iqr(xs) =
√

( 3Lr

4 − sr )2 + A2
x

V 2
−

√
(Lr

8 )2 + A2
x

V 2
,

Case 3.

3Lr

8
< sr <

5Lr

8
, that is,

−L2
r + 4(L2

s − d2
0 + d2

n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)

< xs <
L2

r + 4(L2
s − d2

0 + d2
n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)
,

iqr(xs) =
√

( 3Lr

8 )2 + A2
x

V 2
−

√
(Lr

8 )2 + A2
x

V 2
,
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Case 4.

5Lr

8
< sr <

7Lr

8
, that is,

L2
r + 4(L2

s − d2
0 + d2

n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)

< xs <
3L2

r + 4(L2
s − d2

0 + d2
n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)
,

iqr(xs) =
√

(sr − Lr

4 )2 + A2
x

V 2
−

√
(Lr

8 )2 + A2
x

V 2
,

Case 5.

7Lr

8
< sr < Lr, that is,

3L2
r + 4(L2

s − d2
0 + d2

n − 2Lsdn cosγ )

8(Ls − dn cosγ − d0 cos δ)
< xs < Ls,

iqr(xs) =
√

(sr − Lr

4 )2 + A2
x

V 2
−

√
(sr − 3Lr

4 )2 + A2
x

V 2
.

Appendix B: Elliptical Anisotropic Medium Explored via an Irregular
Recording Geometry

These formulas correspond to Sect. 3.2. In this case, for the sake of simplicity, we
omit the formulas describing the inter-quartile range, since they do not provide addi-
tional insights.

B.1 p-Percentiles and the mad Curve

Case 1.

0 < sr <
pLr

2
+ b

2a
, that is,

0 < xs <
(p − 1)L2

r a + Lrb − a(d2
0 − L2

s − d2
n + 2Lsdn cosγ )

2a(Ls − dn cosγ − d0 cos δ)
,

mp(xs) =
√

[(pLr − sr )2a + b]2 − Δ

4a
,

mad(xs) = mp(2p − 1) + t [0,Lr ] − 2pt [0,Lrp],



Math Geosci (2010) 42: 377–400 399

Case 2.

pLr

2
+ b

2a
< sr < Lr − pLr

2
+ b

2a
, that is,

xs >
(p − 1)L2

r a + Lrb − a(d2
0 − L2

s − d2
n + 2Lsdn cosγ )

2a(Ls − dn cosγ − d0 cos δ)
and

xs <
(p − 1)L2

r a − Lrb + a(d2
0 − L2

s − d2
n + 2Lsdn cosγ )

2a(dn cosγ + d0 cos δ − Ls)
,

mp(xs) =
√

(apLr)2 − Δ

4a
,

mad(xs) = mp(2p − 1) + t [0,Lr ] − 2pt [sr− Lr p
2 − b

2a
,sr+ Lrp

2 − b
2a

],

Case 3.

Lr − pLr

2
+ b

2a
< sr < Lr, that is,

(p − 1)L2
r a − Lrb + a(d2

0 − L2
s − d2

n + 2Lsdn cosγ )

2a(dn cosγ + d0 cos δ − Ls)
< xs < Ls,

mp(xs) =
√

[2a((1 − p)L − sr ) + b]2 − Δ

4a
,

mad(xs) = mp(2p − 1) + t [0,Lr ] − 2pt [Lr(1−p),Lr ].
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