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EPIGRAPH

“The chief source of ideas in oceanography comes, I think, from new observations. . . On the whole,

when it comes to the phenomenology of the ocean, there are more discoveries than predictions.

Most theories are about observations that have already been made.”

— Henry Stommel
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Surface currents measured by high-frequency (HF) radars in southern San Diego are addressed

from three perspectives: technical issues, physical interpretations, and environmental applications.

Objective mapping (also known as optimal interpolation (OI)) is applied to the surface vector current

using both observed and idealized covariance matrices. The mapping produces smooth fields and

can fill in missing data. The covariance matrices calculated from the raw observations of surface

currents show a roughly exponential form instead of the Gaussian shape which is often assumed.

The OI methods have been extended to map vector current directly from the radial ve-

locities as an alternative to un-weighted least-squares fitting (UWLS), which has been the default

method for the HF radar community. OI uses the expected covariance function in place of the

arbitrary, discontinuous correlation function used in UWLS. Moreover, the OI approach reduces

inconsistency along baselines between stations and provides superior uncertainty measures for the

estimated current field.

In order to refine the covariance estimates and maps, the surface currents are decomposed

according to their driving forces: tides, wind, low frequency pressure gradients, and several contin-

uous frequency bands. The locally wind-driven currents are calculated by regression of the shore

station winds on the observed surface currents to estimate the wind impulse response function. The

response of surface currents to the wind in a coastal region is anisotropic due to the anisotropic

bottom/coastline friction, pressure gradient, and boundary conditions. The frictional momentum

balance between the gradient of sea surface elevation and the low frequency band currents is also

considered. The spatial correlations of the components of surface currents exhibit a mix of Gaussian

and exponential shapes with varying decorrelation length scales.

Finally, a data-driven model of the fate and transport of the plumes from three local dis-

charges in southern San Diego has been developed using surface current observations. The statistical
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model calculates particle trajectories which are compared with water quality samplings, and the skill

of an alarm for low water quality is evaluated using receiver operating characteristic (ROC) analysis.
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Chapter 1

Introduction
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High-frequency (HF) radar using Bragg-backscattered radar signals ([Crombie(1955),

Stewart and Joy(1974), Barrick et al.(1977)]) has matured as an oceanographic observation tool.

It can provide hourly high resolution surface current fields covering 50 to 150 km from the coastline

with 0.5–6 km spatial resolution. It can serve as part of the infrastructure of the coastal ocean

observing system to integrate other in-situ observations and numerical modeling products. Research

on surface current measurements using HF radars can be classified by technical issues, scientific in-

terpretations, and environmental applications: the processing of the backscattered radar signal and

the generation of the vector current map from multiple radial current measurements; understanding

of the ocean surface circulation through analysis in time and space; water quality monitoring, larvae

spreading, search and rescue, and oil spill tracking.

ST

SB

λr

λw

Figure 1.1: A schematic figure to show the transmitted (ST) and backscattered (SB) radar signals in
the high-frequency radar operation. The radar signal is backscattered in phase when the wavelength
of the surface gravity wave (λw) is half of the wavelength of the radar signal (λr).

The transmitted radar signal from the HF radar ranges from 3 to 30 MHz, and is

backscattered in phase by surface gravity waves with the half wavelength of the radar signal,

i.e., 5–50 m surface gravity waves are targets of this measurement (Figure 1.1). Received radar

signals are processed in the form of the spectrum (Figure 1.2) in order to generate the ra-

dial current map (Figure 1.3a). At a given radar grid point, the radial current speed is cal-

culated from the Doppler shift of the first order echo, and the radial current direction is com-

puted from a direction finding method. The MUSIC algorithm (MUltiple SIgnal Classifica-

tion, [Schmidt(1986), Barrick and Lipa(1996), de Paolo and Terrill(2007b)]) and the beam forming

([Johnson and Dudgeon(1993)]) are used for direction finding for compact array and phased array

systems, respectively. Since the HF radar in this dissertation is based on the compact array system,

the MUSIC algorithm is applied for direction finding. However, the MUSIC algorithm does not
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provide a complete solution for all bearing angles, which leads to the missing data in the radial cur-

rent map, consequently, and vector current map (Figure 1.3b). In addition, the estimate of vector

currents along the baseline where the measurements of radial velocities are nearly aligned suffers

from poor geometric dilution of precision and frequently results in spurious values.
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Figure 1.2: An example of the power spectrum of the backscattered signals (a) in all ranges and (b)
at a single range (at the red line in (a)).

Coastal surface currents are a mixture of the oceanic responses to the local winds, re-

mote wind forcing via eddies and coastal trapped waves, tides, pressure gradients, and meteorolog-

ical fluxes of heat and fresh water ([Ewing(1950), Munk and Cartwright(1966), Essen et al.(1983),

Alpers(1985), Price et al.(1986), Prandle(1987), Ng(1993a), Ng(1993b), Shay et al.(1995)]). In con-

trast to regions where circulation is dominated by a single forcing mechanism, in the San Diego

region many superposed ocean responses are present as a result of the complicated topography,

relatively weak winds, and intermittent eddies in the region (Figures 1.5, 1.4 and 2.5). The

pure tides drive the coastal surface currents ([Munk et al.(1970), Hendershott and Munk(1970)]).

The local wind response may not be symmetric due to the coastline and bottom topography

([Ekman(1905), Sverdrup(1938), Allen(1980), Beardsley et al.(1987), Overland and Pease(1988),

Li and Weisberg(1999), Weisberg et al.(2001), Choi and Wilkin(2007)]). The shoreward steep bot-

tom slope of the continental shelf/break regions in southern San Diego satisfies the neces-

sary condition to generate M2 internal tides ([Cacchione and Wunsch(1974), Bratkovich(1985),

Cacchione et al.(2002)]). The alongshore pressure gradient influences the surface currents as a low

frequency forcing term ([Grant et al.(1984), Lentz and Winant(1986), Brink et al.(1987)]).

The border region coastlines of San Diego and Tijuana share similar environmental chal-

lenges with regards to impaired water quality resulting from local discharges. Water-borne materials

discharged in the coastal zone are free to transport across political boundaries. While an under-

standing of the fate and transport of these discharged plumes has a broad audience in the manage-

ment and general public alike, the spatial and temporal scales of the physical processes present nu-



4

117°30’ 117°20’ 117°10’

 32°20’

 32°30’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(a)

117°30’ 117°20’ 117°10’

 32°20’

 32°30’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

30 cm/s

(b)

Figure 1.3: An example of the (a) multiple radial current maps (red: SDPL; blue: SDBP, see Figure
1.5) and (b) vector current map derived from HF radars in southern San Diego.

merous challenges in assessing with any fidelity ([Svejkovsky and Jones(2001), Largier et al.(2004),

James and Groce(2006), Orozco-Borbon et al.(2006), Gersberg et al.(2008)]).

This dissertation is composed of five parts:

Chapter 2 presents objective mapping using observed and smoothed data covariance ma-

trices computed directly from the observations of surface currents in order to fill the missing ob-

servations, and estimates the correlation functions and the decorrelation length scales of surface

currents.

Chapter 3 investigates two methods – un-weighted least-squares fit (UWLS) and optimal

interpolation (OI) – to compute the vector current map from multiple radial maps. The correlation

function, the vector current map and its uncertainty, and the noise level of each method are discussed.

Chapter 4 focuses extensive statistical analysis on the physical relationship between surface

currents and wind as a part of the forcing decomposition of surface currents. The anisotropic and

asymmetric surface current response to the wind in a coastal region is presented.

Chapter 5 contains the decomposition of surface currents into components driven by pure

tides, local wind, low frequency pressure gradient (|ω| ≤ 0.4 cycles per day) and cuspate tidal

variances at the diurnal (K1) and semidiurnal (M2) frequencies. The variance distribution, the

characteristics and variability of each forcing component are presented.

Chapter 6 presents a data-driven model using Lagrangian forward integration to understand

the coastal surface circulation and to examine the connectivity between beach closure and fecal

indicator bacteria (FIB).

The data analysis and processing technique described in the following chapters are appli-
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cable for the any type of HF radar array system. u and v denote the current component in the

x- and y-directions, respectively, and there is no rotation of the coordinate system throughout the

dissertation.



Chapter 2

Objectively mapping

high-frequency radar derived

surface current data using

measured and idealized data

covariance matrices
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Abstract

Surface currents measured by high-frequency radars are objectively mapped using covari-

ance matrices computed from hourly surface vector currents spanning two years. Since retrievals

of surface radial velocities are inherently gappy in space and time, the irregular density of surface

current data leads to negative eigenvalues in the sample covariance matrix. The number and the

magnitude of the negative eigenvalues depend on the degree of data continuity used in the matrix

computation. In a region of 90% data coverage, the negative eigenvalues of the sample covariance

matrix are small enough to be removed by adding a noise term to the diagonal of the matrix.

The mapping is extended to regions of poorer data coverage by applying a smoothed covariance

matrix obtained by spatially averaging the sample covariance matrix. This approach estimates a

stable covariance matrix of surface currents for regions with the intermittent radar coverage. An

additional benefit is the removal of baseline errors that often exist between two radar sites. The

covariance matrices and the correlation functions of surface currents are exponential in space rather

than Gaussian, as is often assumed in the objective mapping of oceanographic data sets. Patterns

in the decorrelation length scale provide the variabilities of surface currents and the insights on the

influence of topographic features (bathymetry and headlands). The objective mapping approach

presented herein lends itself to various applications, including the Lagrangian transport estimates,

dynamic analysis through divergence and vorticity of vector currents, and statistical models of sur-

face currents.
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2.1 Introduction

The surface current measurement by interpretation of radio waves (3–30 MHz) backscat-

tered from surface gravity waves is quickly maturing as an oceanographic observational tool whose

data is useful to a broad range of users. The shore-based antenna approach can provide continuous

temporal and broad spatial surface current observations, facilitating the delivery of data in near

realtime for various applications.

The complicated signal processing for extracting surface currents from the backscat-

tered radar signals ([de Paolo and Terrill(2007b)]) yields radial velocities on polar coordinate grid

points centered by each antenna location. Radial velocities measured by multiple antenna in-

stallations have been combined into a vector current field using unweighted least squares fitting

([Lipa and Barrick(1983)], Mike Cook’s HFRadarmapVer4.1 MATLAB toolbox). The maps of ocean

surface currents are gappy in space and time for three reasons. First, the MUSIC algorithm (MUltiple

SIgnal Classification, [Schmidt(1986), Barrick and Lipa(1996), de Paolo and Terrill(2007b)]) on the

measured Doppler spectrum does not provide a solution for all bearing angles. Second, the estimate

of vector currents along the baseline between two radars where the measurements of radial velocities

are nearly aligned suffers from poor geometric dilution of precision (GDOP), and frequently results

in spurious vector currents. The region with radial velocities crossing at angles less than 15–20

degrees between two radars is commonly considered to produce unusable vector currents. Finally,

hardware or software problems can lead to the temporary shutdown of individual radar sites.

Relevant applications of surface currents require time- and space-continuous data, which

requires the interpolation of the gappy observations to a regularly spaced product. A popu-

lar approach involves projecting the observations on the dominant modes of the sample covari-

ance matrix (EOFs) ([Boyd et al.(1994), Beckers and Rixen(2003), Alvera-Azcarate et al.(2005),

Houseago-Stokes and Challenor(2004)]). The anomalies of the missing data are estimated itera-

tively, and the optimal number of EOFs and the number of iterations are determined by cross

validation with randomly selected observations and their estimates. Since the data set of surface

currents measured by high-frequency (HF) radars around San Diego is not pre-filtered and includes

errors and uncertainties due to radar operations ([Graber et al.(1997)]), the first few EOFs may

not explain the variability of observed surface currents effectively without elaborate quality control

before computing the covariance matrix.

Another approach used with geophysical data is the expectation maximization (EM)

method, which estimates the anomalies of the missing data with iteration using an error co-

variance matrix as the regularization matrix ([Orchard and Woodbury(1972), Schneider(2001),

Beckenbach and Washburn(2004)]). The covariance matrix is estimated with the demeaned missing

data substituted by zeros at the first iteration in order to avoid non-positive definiteness, and is up-

dated with estimated missing data until convergence. Since the EM method estimates only missing

data, the estimated covariance matrix may be discontinuous with nearby points in time and space.

Several approaches have been proposed for interpolation, such as normal mode
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analysis ([Lipphardt Jr. et al.(2000)]), and objective analysis ([Bretherton et al.(1976),

Denman and Freeland(1985), Hollingsworth and Lönnberg(1986), Brankart and Brasseur(1996)]).

These methods are all closely related. In particular, objective analysis can be implemented as

normal mode analysis or EOF analysis ([Davis(1985)]).

In this chapter, an objective mapping method is presented that applies the sample covari-

ance matrix computed directly from observations of hourly-averaged surface vector currents during

two years. This approach, although computationally cumbersome, is now technically feasible due to

advances in computing power. It has a number of advantages, including: the covariance matrix is

based directly on the observations, with no intermediate interpolation step; the calculation of the

matrix is fast and simple, without iteration; and the method can include both time and space covari-

ances. The main disadvantage of this method is the sensitivity to negative eigenvalues in the sample

covariance matrix, which can arise from missing data. The negative eigenvalues can be mitigated

by adding a noise term to the diagonal of the sample covariance matrix, effectively attenuating the

components with negative eigenvalues. The EOF reconstruction approach was also tried, but needed

to be severely limited in space because of outliers in the vector currents.

This chapter is organized into three sections. The outlier removal as a primitive data

quality control process and basic statistics of the surface currents are presented: the standard

deviation, the power spectrum, and the spatial structure of correlations (section 2.2). Then, the

gridding using both sample and smoothed covariance matrices and the estimates of decorrelation

scales of surface currents are presented (section 2.3). In particular, the approach used to estimate a

smoothed homogeneous 2-dimensional data covariance matrix from the 4-dimensional sample data-

data covariance matrix is described (section 2.3.5). Next, the decorrelation length scales across the

coast and the uncertainty of objectively mapped vector current data are discussed. Examples of

time series and vector fields of gridded surface currents are presented (section 2.4).

2.2 Observations

2.2.1 Data coverage

An array of high-frequency (about 25 MHz) direction-finding-style system for surface cur-

rent measurements (Codar Ocean Sensors, Palo Alto, CA) has been deployed in the San Diego region

since September 2002. Individual radar sites are located at Point Loma (SDPL), Border Field State

Park on the U.S.–Mexico Border (SDBP), and an offshore station at the Coronado Islands (SDCI)

(Figure 2.1).

The fractional data availability of surface vector currents at each vector grid point during a

two-year period (April 2003 – March 2005) is shown in Figure 2.2a. The existence of vector current

solutions depends strongly on the number and bearing angle diversity of the radial velocities within

a search radius at each vector grid point. Since at least two radial velocities from different radar

sites are required for a vector solution, the regions with overlapping radar range cells from multiple
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Figure 2.1: The observation domain of surface currents measured by HF radars deployed in southern
San Diego. Three HF radar sites are SDPL (Point Loma), SDBP (Border Field State Park), and
SDCI (Coronado Islands). The dotted area denotes the area with temporal coverage of at least 45%
during two years (April 2003 – March 2005). Grid line A is the reference axis of decorrelation length
scales in Figure 2.9. The bottom bathymetry contours are indicated by the thin lines with 10 m
(0 < z < 100 m) and 100 m (100 < z < 1000 m) contour intervals and the thick lines at the 50, 100,
500, and 1000 m contours.
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radar sites have better data coverage through time.

The timeline of available radial velocity data at each radar site is shown in Figure 2.3a.

The surface vector currents derived from radial velocities using measured beam patterns at three

sites (SDPL, SDBP, and SDCI) are used for this analysis. The percentage coverage relative to the

vector grid points (Figure 2.1) through time is shown in Figure 2.3b. The temporary disruption of

a single radar unit will reduce the coverage and the number of vector solutions.

The physical overview of surface currents is restricted to grid points with at least 45% vector

current availability during the two years period, as indicated in Figure 2.1. The estimation of the

data-data covariance matrix is limited to the domain of at least 90% coverage. Covariance matrices

computed from regions with many missing data have unacceptably large negative eigenvalues (section

2.4.2 and Figure 2.10).

2.2.2 Outlier removal

The outliers in the surface current data lie in the tail of its probability density function.

The identification of outliers follows as described below. A 2-day running mean of the time series,

which is consistent with the duration of the local ocean’s response to wind events, is subtracted to

produce a high-pass filtered time series. The anomaly time series are then passed through a moving

5-day window in which the deviation from the 5-day running mean is compared to the 5-day running

standard deviation. The hourly data during 5 days provide enough realizations for the detection

of statistically anomalous data. Anomalies outside five standard deviations from the 5-day running

mean are flagged as outliers. Figure 2.2b shows the percentage of identified outliers during two

years. Outliers are typically clustered on the baseline and at the edges of radar coverage regions.

Although most outliers are flagged in this process, a significant number remain behind.

The baseline, defined as the line of sight between two radars, is the place where it is

difficult to resolve vector solutions from nearly parallel radial velocities which weakly constrain the

vector current normal to the baseline. Vector current solutions using the standard unweighted least-

squares fit can be spurious, which should be identified as outliers. The GDOP is determined by both

the number of available radial velocities within the search radius of a vector grid point and their

location relative to the radar, and it is typically high near the baseline ([Lipa and Barrick(1983),

Gurgel(1994), Chapman et al.(1997), Levanon(2000)]).

The procedure for the preparation of the data set is to interpolate radial velocities across

a radar range cell prior to vector combination if the radial velocities are missing within 15 degrees,

and to remove the outliers among the combined vector currents using the approach described above.

There are no other data quality assurance/quality control (QA/QC) processes beyond these two

steps.
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Figure 2.2: (a) A map of temporal data coverage at all grid points and (b) the percentage of the
vector current solutions identified as outliers during two years of operation (April 2003 – March
2005).
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Figure 2.3: (a) The timeline of available radial velocities at each radar site. (b) The time series
of percentage coverage relative to grid points that have at least 45% data availability of surface
currents for two years.

2.2.3 Basic statistics

Southeastward flowing surface current is the typical current pattern in southern San Diego,

as shown in Figure 2.4a. In general, the surface currents pass south of Point Loma and bend into the

embayment created by the headland, with flow complications arising from San Diego Bay outflow,

local gradients in wind forcing and eddies. The offshore currents are stronger than nearshore currents

and are nearly unidirectional. The offshore is defined herein as the area farther than 30 km from the

coast, and nearshore is the region within 30 km of the coast. During the analysis of the multi-year

data set, the long term temporal mean (not shown) was found to exhibit a local artifact in a sector

at approximately 287 degrees from true north at the SDBP site. Further investigation revealed that

this artifact resulted from a bulge in the measured beam pattern of the SDBP site, which showed

a bias in radial solutions across a 5-degree-wide angular bin ([de Paolo and Terrill(2007a)]). While

the bias is visible in Figures 2.4b and 2.6c and the temporal mean currents as the discontinuous

feature in this sector, it affects less than 8% of grid points. Since the smoothed covariance matrix

and its decorrelation length scales presented herein are estimated from the spatial average of the

sample data covariance matrix, the artifact has a minimal impact on this analysis.

The standard deviation of the surface current magnitudes is shown in Figure 2.4b. The

standard deviations along the baselines are significantly larger than elsewhere due to the tendency of

the baseline to generate spurious results. The standard deviation at the baseline between SDPL and

SDBP shows some high values even after removal of outliers. The standard deviations of offshore

currents are generally larger than nearshore currents, which may also be partly traceable to the

inversion from radials.
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Figure 2.4: (a) A typical example of surface vector currents around San Diego. (b) The standard
deviation of surface current magnitudes. Higher standard deviations along the baseline (SDPL–
SDBP) result from the poor geometric dilution of precision.
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Figure 2.5: Regionally averaged power spectrum of hourly surface vector currents in the region
with 45% or greater coverage (1337 grid points) shows that the dominant variances are at the low
frequencies (less than 0.4 cpd), and the main tidal frequencies (K1 and M2) and their harmonics.

The regionally averaged power spectrum of the surface vector currents averaged over all

grid points with at least 45% temporal coverage (Figure 2.1) is shown as Figure 2.5. Dominant

variance appears at the low frequency band, defined herein as frequencies less than 0.4 cycles per

day (cpd), the main tidal frequencies (K1 and M2) and their harmonics. The spreading of the

energy around the tidal peaks is partly due to nonlinear interactions with the low frequency flow

([Munk and Cartwright(1966), Essen et al.(1983)]).

The correlation coefficients (equation 2.3) between surface currents at different grid points

show the statistical spatial structure of surface currents such as the decorrelation length scale and

the shape of the correlation function. The decorrelation length scale characterizes the typical scales

of variability, and the correlation can identify inconsistent or abrupt features in the spatial domain

and detect bad points.

The correlations of eastward currents (ρuu) between a reference grid point (x) and all other

grid points (x′) are shown in Figure 2.6. In the same way, the correlations of northward currents

(ρvv) are shown in Figure 2.7. Examples of the correlations are shown for two offshore grid points

(Figures 2.6a, 2.6c, 2.7a and 2.7c) and two nearshore points (Figures 2.6b, 2.6d, 2.7b and 2.7d). The

correlations at the offshore reference points show larger highly-correlated areas compared with the

nearshore points. The north-south flows (v) have more directional preferences in their correlations
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Figure 2.6: The correlations of eastward currents (ρuu) between a reference point (x) and all other
grid points (x′). The four reference points are selected as the (a) offshore point A (32◦37.40′N
117◦24.55′W), (b) nearshore point B (32◦37.40′N 117◦12.47′W), (c) offshore point C (32◦28.75′N
117◦21.37′W), and (d) nearshore point D (32◦28.75′N 117◦12.47′W).

than the east-west flows (u). The cross-correlations (ρuv and ρvu) have complicated structures in

space and vary within ±0.3, which is not much above the level of no significance.

The cross sections of correlation in latitude (Figures 2.8a and 2.8b) and in longitude (Fig-

ures 2.8c and 2.8d) are shown for u and v, respectively. These cross sections are aligned to have

a common origin and appear more exponential than Gaussian. The discontinuous lines result from

data gaps within 45% coverage region (top row of Figure 2.8) and the Coronado Islands (bottom

row of Figure 2.8).

Although the individual correlation functions of surface currents driven by a simple forcing

such as wind, tides (diurnal and semi-diurnal tides, and their cuspate variances), and the low pressure

gradient (Figure 2.5) are different (Chapter 5), we do not decompose the surface currents before

mapping. Band-passing gappy data to isolate different physics adds significant complexity to the
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Figure 2.7: The correlations of northward currents (ρvv) between a reference point (x) and all other
grid points (x′). The four reference points are selected as the (a) offshore point A (32◦37.40′N
117◦24.55′W), (b) nearshore point B (32◦37.40′N 117◦12.47′W), (c) offshore point C (32◦28.75′N
117◦21.37′W), and (d) nearshore point D (32◦28.75′N 117◦12.47′W).
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Figure 2.8: Latitudinal and longitudinal cross sections of two-dimensional correlations aligned to
have a common origin on either ∆x or ∆y axis. (a) ρuu(∆x, 0). (b) ρvv(∆x, 0). (c) ρuu(0, ∆y). (d)
ρvv(0,∆y).
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procedure. The sample data covariance matrix is the sum of the covariance matrix of all components.

2.3 Methods

2.3.1 Data covariance

The sample data covariance matrix (C) with zero time lag is written as

C(x,x′) =
1

N(x,x′)

∑

t∈(x∩x′)

u(x, t)uT(x′, t), (2.1)

where u(x, t) = [u(x, t) v(x, t)]T denotes the concatenated vector current observations, which have

2M × L element (for 90% coverage during the two year time span, there are 510 grid points, so

2M = 1020 and L = 17544). M and L are the number of grid points and time points, respectively.

N(x,x′) is the number of time with observations at both grid points (x and x′), and is less than L

due to missing data.

The observed data covariance matrix is the sum of the true covariance matrix (Ct) and the

error covariance (Q), which includes the observation errors owing to measurement noises and the

statistical errors due to missing data:

C = Ct + Q. (2.2)

2.3.2 Correlation coefficients

The correlation coefficient (ρ) of surface currents between any two grid points is,

ρ(x,x′) =




1
σu(x) 0

0 1
σv(x)


C(x,x′)




1
σu(x′) 0

0 1
σv(x′)


 =

[
ρuu ρuv

ρvu ρvv

]
, (2.3)

where σ(x) = [σu(x) σv(x)]T is the time-averaged standard deviation of u and v, respectively.

2.3.3 Gridding using sample covariance matrix

Since the sample data covariance matrix is calculated by the anomalies from the time mean

of a given time span, the mapping of anomalies is considered.

d̃ = (covdm)T (covdd)−1 d, (2.4)

where covdm, covdd, d, and d̃ denote the sample data-model covariance matrix, the sample data-

data covariance matrix, the observed demeaned vector currents, and the estimated demeaned vector

currents, respectively. The mapping grid coincides with the observation grid, so the two covariance

matrices are the same, except that the data-model covariance matrix does not include the observa-

tional error. An observational error covariance matrix (R) is added to the sample data covariance

matrix which already includes error due to the finite and gappy sampling (equation 2.2):
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covdm(x,x′) = C(x,x′) (2.5)

and

covdd(x,x′) = C(x,x′) + R. (2.6)

In the mapping using the sample covariance matrix (C), the regularization matrix (R) is usually

defined by the noise level of the observed data relative to the current variance. Since the sample

covariance matrix is not positive definite due to missing data, the regularization matrix makes the

data-data covariance matrix (covdd) invertible. It is assumed that the regularization matrix is a

scaled identity matrix,

R = γ2I. (2.7)

The mean eigenvalue (γ2) of the regularization matrix should be greater than the magnitude of the

smallest negative eigenvalue of the sample covariance matrix (equation 2.10), which is decomposed

into orthogonal eigenvectors (pk) and eigenvalues (λk):

C(x,x′) =
∑

k

pkλkpT
k . (2.8)

The mapping matrix is approximated schematically by,

covT
dmcov−1

dd =
∑

k

pk

( |λk|
|λk|+ γ2

)
pT

k , (2.9)

where pT
k pk = pkpT

k = I (k = 1, 2, ..., 2M) (equation 2.9 is valid only when all observations are

present):

|min(λk)| < γ2. (2.10)

The substitution of positive for negative eigenvalues in equation 2.9 does not change the covariance

matrix by a significant amount compared to the statistical uncertainty in the 90% coverage regions.

Maps using the sample covariance matrix without changing the sign of the eigenvalues are similar

to those using equation 2.9. However, the simple sign change is not a general solution, because, for

example, the variance becomes larger than in the sample covariance matrix.

2.3.4 Decorrelation length scale

The composite averaged correlation coefficients (ρ̃) are the spatial average of the correla-

tions at the local grid points (x̂) within r0 radius from a reference grid point (x), and are fitted with

the exponential function (f(∆x)):

ρ̃(x,∆x) =
∑
∀x̂ N(x̂, x̂ + ∆x)ρ(x̂, x̂ + ∆x)∑

∀x̂ N(x̂, x̂ + ∆x)
(2.11)
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and

f(∆x) = e−
√

g(∆x), (2.12)

where g(∆x) = a(∆x)2 + b(∆x)(∆y) + c(∆y)2. The composite averaged correlation for u and v

are calculated only within spatial lags from a reference point (±n∆x and ±n∆y, n ∈ Z), because

the signal-to-noise-ratio drops for larger lags. The coefficients (a, b, and c) are directly determined

from minimizing the residual (ε) between the composite averaged correlation coefficients and the

exponential function with a given n:

ε(x) =
1

(2n + 1)2

(2n+1)2∑

i=1

[ρ̃(x, ∆xi)− f(∆xi)]
2
. (2.13)

These coefficients in equation 2.12 can be converted to principal axes by

λx =
(
a cos2 θ − b cos θ sin θ + c sin2 θ

)− 1
2 , (2.14)

λy =
(
a sin2 θ + b cos θ sin θ + c cos2 θ

)− 1
2 , (2.15)

and

θ =
1
2

arctan
b

c− a
, (2.16)

where θ is the rotation angle (positive clockwise) and the number of lags (n) is determined from

stabilizing the decorrelation length scale, and is addressed with an example in section 2.4.1. Then

the semi-major (Λ) and semi-minor (λ) axes of the ellipse are

Λ = max(λx, λy) (2.17)

and

λ = min(λx, λy). (2.18)

2.3.5 Smoothed (homogeneous) covariance matrix

The sample mean correlation coefficient (ρ̄) is the average of correlation coefficients com-

positing the spatial lag (∆x) across all grid points.

ρ̄(∆x) =
∑
∀x N(x,x + ∆x)ρ(x,x + ∆x)∑

∀x N(x,x + ∆x)
=

[
ρ̄uu ρ̄uv

ρ̄vu ρ̄vv

]
. (2.19)

The sample mean standard deviations (σ̄) can be smoothed by fitting to a surface such as a plane,

σ̄(x) =

[
σ̄u(x)

σ̄v(x)

]
=

[
a1x + b1y + c1

a2x + b2y + c2

]
, (2.20)

or by using a constant, which is chosen as the median of the standard deviations in the observation

domain. The smoothed covariance matrix (C̄) is

C̄(x,x′) = ρ̄(∆x)σ̄(x)σ̄(x′). (2.21)
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2.4 Results

2.4.1 Decorrelation length scale

The decorrelation length scale provides a basis for the physical interpretation of surface

currents. The locally averaged correlation coefficients (equation 2.11) of the u (or v) are fit with an

exponential function (equation 2.12), and the decay scales of the exponential function are represented

by the semi-major and semi-minor axes as well as by the rotation of ellipses.

In order to examine the variability of surface currents across the coast, we focus on the

grid points along a line of constant latitude shown as line A in Figure 2.1. The locally averaged

correlation coefficients of u (or v) at grid points (x̂) within 4 km radius (r0) from the reference grid

points (x) are fit with an exponential function. The maximum lag (n = 3) was chosen as the low

end of a band of lags (n = 2, 3, · · · , 8) from the residuals (equation 2.13), which all give similar

decorrelation length scale estimates within 10–15%. The ellipses of u and v are shown in Figure

2.9Aa and Figure 2.9Ab, respectively, and the polarization of the axes is nearly constant along line

A. The decorrelation length scale of u decreases from offshore to the coast in the x- and y-directions,

at least partly due to the effects of decreasing depth and the boundary layer of of coastline as shown

in Figure 2.9B. Dominant southeastward currents in the south of San Diego are parallel to the

shoreline, resulting in a long decorrelation length scale in v. Peaks of the decorrelation length scale

of v are shown at 13 km offshore in the x-direction and at 18 km offshore in the y-direction.

2.4.2 Uncertainty

The number and magnitude of negative eigenvalues of the sample data covariance matrix

depend on how many data are missing in the data set used for the estimation of the covariance

matrix. Figure 2.10 shows the eigenvalue spectrum for several threshold values of the data coverage

(60, 70, 80, and 90%). As the estimate was restricted to regions of increasing coverage, the number of

negative eigenvalues decreases as do their magnitudes. If the data were 100% present there would be

no negative eigenvalues. The most negative eigenvalue is a measure of the error in the sample data

covariance compared to the true covariance matrix which must be non-negative definite. A diagonal

covariance matrix with uniform variance (γ2) is added to the sample data covariance matrix in order

to make the covariance matrix non-singular. This must be large enough to compensate for the worst

negative eigenvalue to restore the positive definite condition for the matrix inversion as discussed

above. In the standard objective mapping, where the covariance matrices are assumed to be known

in advance and are positive definite, the regularization matrix controls the amount of filtering in

the mapping. This regularization is an artificial addition to remove the negative eigenvalues in this

application. This is not an elegant method compared to other methods, but is simple and allows

some representative calculations.

The uncertainty of the objectively mapped vector currents differs from the GDOP. We

assumed all data are equally good regardless of GDOP, and the mapping error is determined by
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Figure 2.9: Decorrelation length scales of surface currents along grid line A in Figure 2.1. A.
Ellipses of (a) u-component and (b) v-component. B. Decorrelation length scales of near-coast
surface currents (Λ and λ denote the semi-major and semi-minor axes).
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Figure 2.10: The eigenvalue spectrum of the sample data covariance matrix with varying data
coverage. The positive and negative eigenvalues are indicated with circles and crosses, respectively.
(a) 1188 grid points (60% coverage). (b) 1062 grid points (70% coverage). (c) 856 grid points (80%
coverage). (d) 510 grid points (90% coverage).
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Figure 2.11: The square root of the magnitude of the most negative eigenvalue of the sample covari-
ance matrix (α, triangle), the square root of the average variance of the surface current magnitudes
at all grid points with the indicated data coverage (β, cross), and their ratio (f = β/α, circle) are
shown as a function of data coverage.

data coverage alone. The uncertainty presented here represents the expected uncertainty in the map

due to missing data and measurement errors. The square root of the absolute value of the most

negative eigenvalue of the sample covariance matrix as a function of data coverage (α, marked as

triangle), the square root of the averaged variance of the surface current magnitudes at all grid

points with the indicated data coverage (β, marked as cross), and their ratio (f = β/α, marked as

circle) are shown in Figure 2.11.

The sample covariance matrix with 90% coverage has a most negative eigenvalue of –7.9

cm2 s−2. In the objective mapping of this covariance matrix, a regularization matrix is applied as a

diagonal matrix with 10% of the averaged variance of sample covariance matrix (γ = 4.42 cm s−1),

which is larger than the square root of the magnitude of the most negative eigenvalue. This γ is

chosen arbitrarily as a ‘reasonable’ value, which leads to the estimation of surface currents with

about 4 cm s−1 uncertainty. Qualitatively similar results are obtained for γ2 in the range of 5–15%

of the averaged variance of the sample covariance matrix.

2.4.3 Smoothed (homogeneous) covariance matrix

The contour plots of the sample mean correlation coefficients (equation 2.19) between u

and v present the exponential structure as shown in Figures 2.12a and 2.12b, respectively. The

mean correlation coefficients are constructed in order to exclude spurious small-scale structures
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Table 2.1: (a) The coefficients (a, b, and c) of the exponential function fitted to the spatially averaged
correlation coefficients (equation 2.12). (b) The decorrelation length scales (km) of u-component
and v-component in the x- and y-directions.

(a)

a b c
ρ̄uu(∆x, ∆y) 0.0075 0.0038 0.007
ρ̄vv(∆x, ∆y) 0.0036 0.0004 0.009

(b)

x-direction y-direction
u 13.7 10.4
v 16.6 34.6

due to missing data and to achieve a more robust estimate of the covariance matrix by horizontal

averaging. The mean of the cross correlation term between u and v shows nearly flat structure

varying within ±0.2. Therefore the cross term of correlation for the smoothed covariance matrix is

set to zero.

The mean correlation coefficients within ±20∆x and ±20∆y from the center are fitted with

an exponential function (equation 2.12, n = 20). Since the mean correlation is smoother than the

locally averaged correlation (equation 2.11), it is fitted with larger n and results in smaller residual

variance. The contour plots of smoothed correlation coefficients are shown in Figures 2.12c and

2.12d, and the fitting coefficients (a, b, and c) and decorrelation length scales are shown in Table

2.1. These coefficients are a function of the spatial lag (∆x and ∆y), getting flatter away from the

center. However, for simplicity in calculations we assumed these coefficients as constant.

The standard deviation of surface currents might be assumed to depend on the bot-

tom bathymetry in shallow water or the distance from the coastline (Figure 2.4b). Accordingly,

the smoothed standard deviation of surface currents might be fitted by spatial functions such as

bathymetry or distance from the coastline. However, since some standard deviations near baselines

are high and are inconsistent with the nearby area, it could be difficult to avoid the influence of

spurious data. Therefore the smoothed standard deviation of u (or v) is estimated from the median

value of standard deviations at all observation grid points. The median value for σ̄u and σ̄v are

12.21 and 16.41 cm s−1, respectively.

The smoothed covariance matrix of surface currents is reconstructed by multiplying the

spatial mean correlation coefficients (equation 2.19) at the spatial lag (∆x and ∆y) and the smoothed

standard deviations at all grid points (x, y). The eigenvalue spectrum of the smoothed covariance

matrix is shown in Figure 2.13. The smallest eigenvalue of the smoothed covariance matrix is 3.91

cm2 s−2, and a diagonal matrix with 10% of averaged variance is added as the regularization matrix

(γ = 4.57 cm s−1). The smoothed covariance matrix is positive definite, and the regularization has

a reasonable noise level as discussed above.
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Figure 2.12: (a)-(b): The spatially averaged correlation coefficients (equation 2.19) for ρ̄uu and ρ̄vv.
(c)-(d): Exponential functions (equation 2.12) fitted to the spatially averaged correlation coefficients
for ρ̄uu and ρ̄vv. The spacing of thin contours is 0.05, and thick contours are at 0.2, 0.4, 0.6, and
0.8.
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Figure 2.13: The eigenvalue spectrum of the smoothed covariance matrix.

2.4.4 Comparison of gridding

The surface vector currents measured at 510 grid points (90% spatial coverage) for one

month were mapped objectively with both the sample covariance matrix during the two year time

span and the smoothed covariance matrix. The sample covariance matrix can only map in the 90%

coverage area, while the smoothed covariance matrix can be used for the expanded 45% coverage

area.

Time domain

The observed and the objectively mapped surface current components (u and v) are shown

in Figures 2.14a and 2.14b. As a random example having missing data, these time series are from a

grid point within the 90% coverage area. The estimated data with both covariance matrices agree

with the observations, and suppress the spurious data. Since the estimated data usually have less

variance than the observations due to the regularization, a variance or covariance estimated from

the objectively mapped surface currents will be biased.

Space domain

An example of the surface vector current field is shown with the 90% (dashed contour)

and 45% (gray contour) coverage area in Figure 2.15. Spurious data can be seen on the baselines

(SDPL and SDBP, SDPL and SDCI) and at the edge of the observation domain (at the west of
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Figure 2.14: The sample time series for the raw data (gray dots), the objectively mapped data using
the sample covariance matrix (black line), and the objectively mapped data using the smoothed
covariance matrix (black dashdot). (a) u-component. (b) v-component.
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Figure 2.15: An example of the vector current field. The data coverage is indicated with contours.

Point Loma). Moreover, there are missing data on the baselines and at the west of the Coronado

Islands.

The objectively mapped vector current field on grid points in the 90 and 45% coverage area

is shown in Figures 2.16a and 2.16b, respectively. The spurious data are suppressed, and the gaps

in space are filled with a consistent vector current field. The vector current field mapped with the

smoothed covariance matrix shows a smoother field.

The objectively mapped uncertainty field for two coverage cases are shown in Figures 2.16c

and 2.16d. The uncertainties normalized by the variance of the surface currents at each grid point

are varying from 0 (more reliable) to 1 (more uncertain), and are represented as ellipses to include

directional information. However, since the smoothed covariance matrix assumed no cross correlation

between u and v, the ellipses are not tilted in Figure 2.16d. Higher uncertainty occurs in both the

baseline of SDPL and SDBP (Figure 2.16c) and the area with fewer radial velocities (Figure 2.16d).

2.5 Discussion

There are a number of ways to map gappy observations to a complete grid. Some methods

use prior estimates of covariance functions from either analytical functions or basis functions (or
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Figure 2.16: An example of the objectively mapped vector current field using (a) the data covariance
matrix in the region with 90% data coverage and (b) the smoothed covariance matrix in the region
with 45% data coverage. (c) and (d) are the normalized uncertainty ellipses corresponding to (a)
and (b).
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‘normal modes’) determined from models. The approach we have described involves the use of the

observed covariance matrix in the objective mapping and the challenges faced when dealing with

the negative eigenvalues of the sample covariance matrix.

There are several assumptions used in the objective mapping technique described in this

chapter. First, the mean of the observations is assumed to be the same as the mean of the estimated

data. Since the grid points where the vector currents are estimated are the same as where the vector

currents are observed, this assumption is valid under the circumstances when there are sufficient

number of unbiased observations to estimate mean currents. Second, since the fraction of missing

observations is closely related to the size of the negative eigenvalues, there is a restriction in the

estimation of the surface vector currents with reasonable uncertainty through the objective mapping

using the sample covariance matrix. Finally, the cross correlations (ρ̄uv) between u and v are assumed

zero in the smoothed covariance matrix. The decorrelation length scales and standard deviations

are assumed as constant in the observation area as well. However, the smoothed covariance matrix

might be improved by using locally-averaged decorrelation length scales and standard deviations

related to the bottom bathymetry.

The objective mapping of surface currents enables us to get complete vector current fields

for real time applications. The integration in time and the differentiation in space of surface currents

are applicable to particle tracking for pollutants, rescue, and dispersion of larvae, and estimates of

divergence and vorticity (e.g., upwelling and downwelling). As an ongoing application, the Tijuana

River plume has been tracked with a random walk model based on the objectively mapped surface

currents (Chapter 6). The decorrelation length scales and the correlation functions estimated from

the observed surface currents provide the initial steps for the statistical surface current models. In

order to build this model, the data covariance matrix should have enough realizations to include the

response of surface currents to the various driving forces.

This job work was carried out in MATLAB on a dual Xenon CPU (4G RAM) machine

running Linux. The hourly gridding for 1337 grid points takes about 20–30 seconds. The dominant

computation is from the inversion of the covariance matrix.

This chapter, in part, is a reprint of the material as it appears in Journal of Geophysical

Research-Oceans, 2007, Kim, S. Y., E. J. Terrill, and B. D. Cornuelle titled by ‘Objectively map-

ping HF radar-derived surface current data using measured and idealized data covariance matrices’,

112, C06021, doi:10.1029/2006JC003756. The dissertation author was the primary investigator and

author of this paper. Copyright (2007) American Geophysical Union.
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Abstract

An optimal interpolation (OI) method to compute surface vector current fields from radial

velocity measurements derived from high-frequency (HF) radars is presented. The method assumes

a smooth spatial covariance relationship between neighboring vector currents, in contrast to the

more commonly used un-weighted least-squares fitting (UWLS) method, which assumes a constant

vector velocity within a defined search radius. This OI method can directly compute any quantities

linearly related to the radial velocities, such as vector currents and dynamic quantities (divergence

and vorticity) as well as the uncertainties of those respective fields. The OI method is found to

be more stable than the UWLS method and reduces spurious vector solutions near the baselines

between HF radar installations. The OI method produces a covariance of the uncertainty of the

estimated vector current fields. Three non-dimensional uncertainty indices are introduced to char-

acterize the uncertainty of the vector current at a point, representing an ellipse with directional

characteristics. The vector current estimation using the OI method eliminates the need for multiple

mapping steps and optimally fills intermittent coverage gaps. The effects of angular interpolation of

radial velocities, a commonly-used step in the pre-processing of radial velocity data prior to vector

current computation in the UWLS method, are presented.
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3.1 Introduction

The Doppler shifts of backscattered radio signals from surface gravity waves are used to

estimate the current component in the direction of the bearing angle of the radar cell (Figure

3.1). The radial velocities on the radar grid points are estimated using either beam forming or

direction finding (e.g. MUSIC) ([Lipa and Barrick(1983), Schmidt(1986), Barrick and Lipa(1996),

Barrick and Lipa(1997), de Paolo and Terrill(2007b)]). Radial velocities measured from multiple

radars are combined into vector currents on a rectangular grid, which is called vector grid, using

a variety of methods. This computation is an independent step from the radial current estimation

algorithm, and is applicable to the data obtained by high-frequency (HF) radar systems (e.g., WERA,

CODAR).

An un-weighted least-squares fitting (UWLS) method has been used by many authors

to extract the vector currents from the radial velocities ([Lipa and Barrick(1983), Gurgel(1994),

Graber et al.(1997)]). Implicit in this approach is an assumption of a uniform vector velocity pro-

ducing the radial velocities within the search radius for a given vector grid point. In other words,

the correlation of the vector current is assumed to be one everywhere within the search radius and

zero outside. The method also assumes an unlimited signal variance, which may create spurious es-

timates when combining nearly aligned noisy radial velocities due to the singularity of the geometric

covariance matrix (equation 3.6). The terms ‘signal variance’ and ‘error variance’ are defined here

as the expected variance of the surface currents and the expected observational error variance of

the surface currents, respectively. In operation, spurious vector solutions most often occur near the

baseline between two radars or near the maximum range. The segmented correlation function in the

UWLS method can also produce a discontinuous current field. The proposed optimal interpolation

(OI) method uses a correlation for the surface currents which more accurately describes the spatial

relationship between radial velocity measurements.

The uncertainty of the estimated vector current has historically been addressed in two

ways. The geometric dilution of precision (GDOP), which is calculated from the inverse of the

geometric covariance matrix, has been used as an indicator of uncertainty ([Lipa and Barrick(1983),

Chapman et al.(1997)]). In a slightly different way, the geometric covariance matrix is built with the

cosine and sine function of the bearing angle inversely weighted by the hourly standard deviation

(HSTD) of radial velocities ([Gurgel(1994), Lipa(2003)]). Since the GDOP has a different minimum

depending on the number of available radial velocities (section 3.6.1), and the HSTD inversely

weighted radial velocities follow different statistics compared to the raw (unconditioned) radial

velocities, a unified definition of the uncertainty would be useful. In the OI method, an error

covariance matrix is computed from the HSTD of radial velocities or the assumed error variance to

provide an uncertainty for regularization. Three uncertainty indices are introduced as a normalized

indicator for the quality of the solution.

This chapter is composed of four parts. First, we start with a general form of least-

squares fitting, weighted least-squares fitting (WLS), which is used to calculate the vector currents.
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Figure 3.1: The radar grid structure for the radar located at point C. Each radar grid point (blue
dot) is the center of a radar cell with the range resolution (∆s) and the azimuthal resolution (∆θ). A
radar cell (pink area) is the intersection of a range bin (annulus with thick curves) with an azimuthal
bin (dotted lines).
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We then show how to obtain the UWLS formula by allowing the signal variance to be infinite.

Next, we describe the OI method using an averaging kernel with infinite basis (section 3.2.2), the

algebraic derivation of the UWLS method from the OI method with finite basis (section 3.2.3), the

implementation of the OI method (section 3.2.4), and the determination of parameters in the UWLS

and OI methods (section 3.2.5). In the third part, the basic statistics of radial velocities and the

radar uncertainty are addressed (section 3.3). Finally, examples and discussions using both methods

are summarized (section 3.4).

3.2 Methods

The mean radial velocity (r) is the temporal average of N radial velocities (r0) estimated

from cross spectra of the backscattered signals during a given time span and in a given radar cell.

(The time span in this chapter is an hour.) The hourly standard deviation (HSTD, ε) of the radial

velocities is related to the uncertainty of the mean value (i.e., standard error):

ε =

√√√√ 1
N

N∑

i=1

(
ri
0 − r

)2
, (3.1)

where ri
0 is the radial velocity obtained at the ith time, and N is the sub-sampling rate during the

given time span. The radial velocity referred to in this chapter is the hourly mean radial velocity

(r), and its HSTD (ε) will be used in the construction of the error covariance of radial velocities.

3.2.1 Least-squares fitting

The weighted least-squares fitting (WLS, [Wunsch(1996)]) method to estimate the vector

current (u, 2×1 elements) at a vector grid point (xk, yk) assumes that each radial velocity is a linear

combination of the vector current components. The radial velocities (r, L× 1 elements) within the

search radius (d0) of the vector grid point are expressed with the projection matrix (Ga, L × 2

elements) and the vector current (u):

r = Gau + na, (3.2)

where

Ga =




gT
1

gT
2

...

gT
L




=




cos θ1 sin θ1

cos θ2 sin θ2

...
...

cos θL sin θL




, r =




r1

r2

...

rL




, (3.3)

gi = [cos θi sin θi]
T, θi denotes the bearing angle at the ith radar grid point (xi, yi) measured

counterclockwise from East, na is the residual (L× 1 elements) when the radial velocities are fit by

a single vector current, and L is the number of radial velocities within the search radius (T denotes

the matrix transpose). The least-squares estimate for the vector current is

û =
(
GT

a R−1Ga + P−1
)−1

GT
a R−1r. (3.4)
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The model covariance matrix
(
P ≡ 〈uuT〉) is the expected covariance of the unknown velocity, where

〈·〉 denotes the expected value. The error covariance matrix
(
R ≡ 〈nana

T〉) is the covariance matrix

of the measurement uncertainty. In simple least-squares fitting, both P and R are assumed to be

scaled identity matrices:

P = σ2
sI and R = σ2

rI. (3.5)

With the assumption of infinite signal variance (σ2
s = ∞) and unit error variance (σ2

r = 1),

the WLS method matches the UWLS method, which is the standard method in the estimate of

vector currents ([Lipa and Barrick(1983), Gurgel(1994), Graber et al.(1997)]). The UWLS method

also assumes constant vector currents within the search radius (d0) of the vector grid point, and the

estimate becomes

û =
(
GT

a Ga

)−1
GT

a r, (3.6)

where GT
a Ga is called the geometric covariance matrix (2×2 elements), of which the inverse matrix

is discussed with GDOP in section 3.6.1.

3.2.2 Averaging kernel with infinite basis

To begin a more general discussion of the computation of the vector current field, we

consider the sampling function. The radial velocity (r) is sampled by the kernel (w) over a region

(Ω) surrounding the nominal radar grid point (xi, yi) from a spatially continuous current field (u).

r(xi, yi) =
∫∫

Ω

w(xi, yi, x, y)Tu(x, y) dxdy + n, (3.7)

where r = r(xi, yi), w = w(xi, yi, x, y), u = u(x, y), and n is the measurement error of the radial

velocity.

The kernel represents the sensitivity of the observed radial velocities to the surface vector

current in the backscattering region. In other words, the kernel specifies the average over range and

bearing angle of the HF radar measurements. If the bearing angle is constant over the local domain

where the kernel (w(xi, yi, x, y)) is defined, the kernel can be factored into separate coverage and

angle components:

r(xi, yi) =
∫∫

Ω

w(xi, yi, x, y)g(xi, yi)Tu(x, y) dxdy + n, (3.8)

where gi = g(xi, yi) = [cos θi sin θi]T, and θi denotes the bearing angle at the radar grid point. The

weighting of the kernel (w(xi, yi, x, y)) is a function of the local radar grid point (xi, yi) and the

point (x, y) being sampled. The kernel (w) is normalized to unity,
∫∫

Ω

|w(xi, yi, x, y)| dxdy = 1. (3.9)

The vector grid points to be mapped can be considered individually or as a grouped matrix.

In this chapter, the UWLS and OI methods are described one by one.
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The OI estimates ([Bretherton et al.(1976)]) for the vector current (û), the a posteriori

uncertainty matrix (P̂), and the normalized uncertainty matrix (χ̂) at a single point (xk, yk) are

û = covT
dmcov−1

dd r, (3.10)

P̂ = covmm − covT
dmcov−1

dd covdm, (3.11)

and

χ̂ = I− cov−1
mmcovT

dmcov−1
dd covdm, (3.12)

where these three matrices are:

(covdm)ik = 〈riuT〉

=
∫∫

Ω

wi gT
i 〈u(x, y)uT(xk, yk)〉 dxdy, (3.13)

(covdd)ij = 〈rirT
j 〉+ 〈ninT

j 〉

=
∫∫

Ω′

∫∫

Ω

wiwj gT
i 〈u(x, y)uT(x′, y′)〉gj dxdy dx′dy′ + 〈ninT

j 〉, (3.14)

and

(covmm)kk = 〈ûkûT
k 〉, (3.15)

where (covdm)ik and (covdd)ij denote the components at the ith row and kth (or jth) column of the

data-model covariance matrix (covdm) and the data-data covariance matrix (covdd), respectively.

The measurement uncertainty covariance matrix (〈ninT
j 〉) is a diagonal matrix if the radial velocity

errors are independent. The error covariance is assumed to be

〈ninT
j 〉 = δijσ

2
r , (3.16)

where σ2
r includes the average measurement uncertainty (γ2) of the radial velocity and the possibly

time-dependent standard error (ε2/N) of the mean radial velocity for N samples per hour:

σ2
r = γ2 +

ε2

N
. (3.17)

The number of samples during an hour in the radar operation is not recorded for each radar cell

and varies in time and space between at least one and at most six in our dataset (1 ≤ N ≤ 6).

The average measurement uncertainty (γ2) of the radial velocity is the sum of the represen-

tational error of the model ([Lorenc(1986), Daley(1993)]) and the errors in the radar measurements,

and can be estimated by the variance of the sum of the radial velocities measured at nearby points

by two opposing radars (section 3.3.3).
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Although the radar measurement is not local, the form of the kernel (w) is not well-defined. There-

fore for simplicity the averaging kernel is hereafter assumed to be a delta function in space:

wi = δ(x− xi). (3.18)

The data-model covariance matrix (equation 3.13) and the data-data covariance matrix (equation

3.14) are

(covdm)ik = gT
i 〈uiuT

k 〉 (3.19)

and

(covdd)ij = gT
i 〈uiuT

j 〉gj + δijσ
2
r . (3.20)

In this case each radial velocity can be considered as a point observation. The representational error

may be adjusted to account for the covariance scale and the assumption that the kernel is a delta

function.

3.2.3 Derivation of UWLS from OI

The OI method is a general approach to calculate vector currents. One can obtain the

UWLS method from the OI method by making several simplifying assumptions. By default, the OI

method assumes a continuous current field so that the radial velocities (r, M × 1 elements) are the

projection of the collocated vector currents (u) along the bearing angle (M is the total number of

radial velocities):

r = Gu, (3.21)

where u represents the vector currents at the radar grid points (2M×1 elements) and the projection

matrix (G, M × 2M elements) is

G =




gT
1 0 0 0

0 gT
2 0 0

0 0
. . . 0

0 0 0 gT
M




. (3.22)

The continuous current field (u) may be parameterized by a finite set of values (m), and transformed

to the radial velocities at the radar grid points by the interpolation matrix (Fr):

u = Frm. (3.23)

Therefore the radial velocities are

r = GFrm + n = Ḡm + n, (3.24)
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where Ḡ ≡ GFr and Fr can represent a Fourier series expansion, a normal mode expansion

([Lipphardt Jr. et al.(2000), Kaplan and Lekein(2007)]), or an interpolation from a regular grid of

vector current values. As before, n is the residual when the vector current is fit to the parameters.

The use of the current values at the vector grid points as the parameters for a linear spline basis set

makes for the simplest comparison to the discrete least-squares fitting method.

If the model is described with a finite basis as in equation 3.24 ([Davis(1985)]), the estimated

vector current (û, equation 3.10) can be determined from the optimized parameters:

û = Fgm̂, (3.25)

where Fg is the mapping matrix of the vector currents to the vector grid point.

û = FgPḠT
(
ḠPḠT + R

)−1
r (3.26)

= Fg

(
ḠTR−1Ḡ + P−1

)−1
ḠTR−1r, (3.27)

If the parameters (m̂) in equation 3.23 are the estimated vector currents (û) on the vector grid

points, then Fg in equation 3.25 becomes the identity matrix, and the model covariance matrix

(P) becomes 〈uuT〉. Equations 3.26 and 3.27 are interchangeable by the matrix inversion lemma

([Golub and Van Loan(1996)]). In a similar way, the a posteriori uncertainty matrix (P̂, equation

3.11) with a finite basis at a vector grid point is derived corresponding to equations 3.26 and 3.27 as

P̂ = FgPFg
T − FgPḠT

(
ḠPḠT + R

)−1
ḠPTFg

T (3.28)

= Fg

(
ḠTR−1Ḡ + P−1

)−1
Fg

T. (3.29)

For comparison, the a posteriori uncertainty matrices in the WLS and UWLS methods are

P̂ =
(
GT

a R−1Ga + P−1
)−1

(3.30)

and

P̂ =
(
GT

a Ga

)−1
, (3.31)

respectively.

The normalized uncertainty matrix (ϕ) is introduced in order to compare the uncertainty in

the estimate between the UWLS and OI methods. The corresponding normalized uncertainty matrix

in the OI method is the a posteriori uncertainty matrix (equation 3.29) divided by the observational

error variance (σ2
r):

ϕ =
(
ḠTḠ + P−1σ2

r

)−1
, (3.32)
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(recall that R = σ2
rI). On the other hand, since the UWLS method implies the unit error variance

(1 cm2 s−2), the normalized uncertainty matrix is exactly the same as equation 3.31:

ϕ =
(
GT

a Ga

)−1
. (3.33)

Motivated by the convenience of a unified definition of the uncertainty, we suggest an

alternative non-dimensional uncertainty index matrix (χ̂, equation 3.12), which is normalized by the

signal variance (σ2
s) instead of the error variance (σ2

r). For the OI method, this is the a posteriori

uncertainty covariance matrix normalized by the a priori model covariance (P):

χ̂ ≡ P−1/2
(
P−PḠT

(
ḠPḠT + R

)−1
ḠPT

)
P−1/2. (3.34)

This non-dimensional uncertainty index matrix does not exist in the UWLS method due to the

assumption of the infinite signal variance (σ2
s = ∞), so the a priori model covariance matrix is not

meaningful.

3.2.4 Implementing optimal interpolation

This section describes the approach taken to apply the OI method to the radial velocity

data. The estimation of the vector current (û, equation 3.10) requires the data-model covariance

matrix (equation 3.19) and the data-data covariance matrix (equation 3.20):

(covdm)ik = gT
i σ2

s(xk, yk) ρ(∆xik,∆yik) (3.35)

and

(covdd)ij = gT
i σ2

s(xk, yk) ρ(∆xij , ∆yij)gj + δijσ
2
r , (3.36)

where gi = [cos θi sin θi]
T, (∆xik,∆yik) = (xi − xk, yi − yk), (∆xij , ∆yij) = (xi − xj , yi − yj),

and σ2
s(xk, yk) is the expected variance of surface currents at (xk, yk). ρ(∆x,∆y) is the correlation

function of the surface currents. Both exponential and Gaussian correlation functions are widely

used.

Exponential:

ρ(∆x, ∆y) = exp


−

√(
∆x

λx

)2

+
(

∆y

λy

)2

 , (3.37)

Gaussian:

ρ(∆x, ∆y) = exp

(
−

(
∆x

λx

)2

−
(

∆y

λy

)2
)

, (3.38)

where λx and λy are the decorrelation length scales in the x- and y-directions, respectively.

The normalized uncertainty matrix (ϕ) and the uncertainty index matrix (χ̂) are

ϕ =
1
σ2

r

(
covmm − covT

dmcov−1
dd covdm

)
(3.39)
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and

χ̂ =
1
σ2

s

(
covmm − covT

dmcov−1
dd covdm

)
. (3.40)

3.2.5 Definition of parameters

Several parameters must be chosen, depending on the method: the search radius (d0),

the decorrelation length scales (λx and λy), the signal variance (σ2
s), and the data error variance

(σ2
r). These parameters are functions of the range resolution (∆s) of the radar and the vector grid

resolution (∆x and ∆y). The vector grid resolution is determined by the spatial scales needed to

resolve the surface currents of interest and limited by the radar resolution.

The implied correlation function of the surface currents in the least-squares fitting (UWLS

and WLS) methods is one within the search radius (d0) and zero outside. The search radius is

typically chosen to be similar to the range resolution (∆s) of the radar, and so the observations at

adjacent radar cells in range and azimuthal directions are assumed to be independent. In contrast

to the least-squares fitting method, the correlation function of the OI method is controlled by the

decorrelation length scales (λx and λy), which are set according to the scales of the surface currents

to be resolved.

In order to avoid over-smoothing the data, the decorrelation length scale should be no

longer than the expected length scale of the surface current. To resolve the variability, the grid

resolution should be smaller than the expected length scale. In order to avoid too much redundancy,

four times the vector grid resolution is suggested as the upper bound of the length scale, and the

vector grid resolution is set to the length scale as the lower bound:

∆x ≤ λx ≤ 4∆x and ∆y ≤ λy ≤ 4∆y. (3.41)

The radial velocities measured by the long range and short range high-frequency radars in Southern

California are used to examine how the sensitivity and variability of the estimated current field

depend on the decorrelation length scale. Although the variability of the estimated currents depends

on the decorrelation length scale, the overall current variability is found to be varying only weakly

within the suggested range.

3.3 Observations

3.3.1 Data coverage

While the approach described here can be applied to any radar system, the settings and

data from an array of 25 MHz direction-finding style SeaSonde systems (Codar Ocean Sensors,

Palo Alto, CA) are used. The radar cell is defined by a range resolution (∆s) of 1.49 km and

an azimuthal resolution (∆θ) of 5 degrees (Figure 3.1). The maximum range is less than 45 km

and the effective bearing angles of individual radars are different due to the coastline geometry.
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Figure 3.2: Percent availability of the radial velocities at each radar site during the 2-year study
period (April 2003–March 2005). (a) SDPL. (b) SDBP. (c) SDCI.

The fractional availability of radial velocities of each radar during two years duration (April 2003–

March 2005) is shown in Figure 3.2. The timeline of available radial velocities at each radar site

is addressed elsewhere (Figure 2.3a). The radial velocities calculated with the measured antenna

response function at three sites are analyzed in this chapter: Point Loma (SDPL), Border Field

State Park on the U.S.–Mexico Border (SDBP), and Coronado Islands (SDCI).

3.3.2 Basic statistics

The two-year mean of the radial velocities measured by each radar is shown in Figure 3.3A.

Since the radial velocity at a radar grid point is the projection of the vector current in the bearing

angle, the contribution of the current component normal to the bearing angle is zero. The mean of

the observed radial velocities is consistent with the typical south-eastward currents of this region

(Figure 2.4).

The standard deviation (RMS) of radial velocities for each radar is shown in Figure 3.3B.

Typical RMS of the surface current is ∼10 cm s−1 in the near shore and ∼20 cm s−1 in the offshore,

respectively. Regions of low radial velocity variance are seen for all sites where the major axes of

the surface current ellipses are normal to the direction of radial velocities. Higher RMS near land

may result from abrupt changes of the radar signal strength due to land shadowing and the antenna

response function. However, the higher values west of Point Loma for all three radar sites do not

completely fit this explanation and need a separate investigation.

The probability density functions (PDFs) of the radial velocities measured by each radar

during the 2-year study period, shown in Figure 3.4a, roughly resemble Gaussian distributions with

fat tails. All three sites show similar e-folding scales and tails in the PDFs. The radial velocities in

the tail of the PDF (|r| > 90 cm s−1) are typically located at the edge of the radar coverage region,

and therefore can be interpreted as outliers. Since the resolutions (∆r) of the radial velocity due

to the first-order sea echo are 2.39, 2.29, and 2.36 cm s−1 for SDPL, SDBP, and SDCI, respectively,

there are discontinuities in the PDFs where the magnitude of the radial velocity is less than 2 cm s−1.
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The PDFs in log scale of the HSTD of the radial velocities are shown in Figure 3.4b. The

optimal histogram bin size (w) of the HSTD is given by the formula ([Scott(1979)])

w = 3.49ab−1/3 , (3.42)

where a and b denote the standard deviation of the HSTD and the number of available HSTD,

respectively. The optimal histogram bin sizes are 0.07, 0.06, and 0.09 cm s−1 for each site. Most

of the HSTD vary between 0.5 and 5 cm s−1, with upper bounds of about 120 cm s−1. The means

of the HSTD are 5.47, 4.65, and 4.64 cm s−1 for each site. The mean HSTD is an estimate of the

error variance of the surface currents. Since the number of samples (N) in each HSTD estimate is

only known in a range (1 ≤ N ≤ 6), we assume that the time-dependent standard error is about 9

cm2 s−2 as a constant, corresponding to N = 3.

The spatial and temporal distributions of radial velocities with magnitudes greater than 90

cm s−1 are shown in Figures 3.5a and 3.5b, respectively. They are located in the distant range bins

of SDPL and SDCI sites and along the edge of the azimuthal bin of the measured beam pattern of

SDCI site. Some of the radial velocities with large magnitude in SDBP site may not necessarily be

outliers. The occurrences of outliers are more frequent during the winter than the summer.

The two-dimensional joint PDF of radial velocities (r) and their HSTDs (ε) at each radar

site shows that there is no significant correlation between them:

P (r, ε) ≈ P (r)P (ε). (3.43)

The HSTDs of the radial velocities with magnitudes less than 30 cm s−1 have roughly chi-square

distributions.

3.3.3 Validation of radial velocities

One method for determining the uncertainty of the radar measurements is the comparison

of nearby radial velocities from two radars. Three requirements are recommended to find the pairs

of radial velocities for this validation: The radar grid points where the radial velocities are measured

are nearly collinear with the radar sites, separated by less than the radar range resolution, and

nearly equidistant from the two sites. In the ideal case where the vector current is the same in both

radar cells (or at coincident radar grid points), the correlation coefficients of those pairs would be a

function of the difference between bearing angles. The two radial velocity measurements are

r1(t) = gT
1 u1(t) + ε1(t) = u1(t) cos θ1 + v1(t) sin θ1 + ε1(t), (3.44)

r2(t) = gT
2 u2(t) + ε2(t) = u2(t) cos θ2 + v2(t) sin θ2 + ε2(t), (3.45)

where ri denotes the measured radial velocity, gi = [cos θi sin θi]
T is the directional unit vector, θi

is the bearing angle, εi is the radial measurement error at the ith radar, and ui = [ui vi]T is the

vector components of the surface current, so gT
i ui is an inner product (i = 1, 2). Assuming the

measurement errors are independent (〈ε1εT2 〉 = 0), the covariance of a pair of radial velocities is
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〈r1r
T
2 〉 = gT

1 〈u1uT
2 〉g2 =

[
cos θ1 sin θ1

]
〈u1uT

2 〉
[
cos θ2

sin θ2

]
. (3.46)

If 〈u1uT
2 〉 = σ2I, so u and v are independent with same variance, then the covariance is

〈r1r
T
2 〉 = σ2 (cos θ1 cos θ2 + sin θ1 sin θ2) = σ2 cos(θ1 − θ2). (3.47)

Converting the covariance to the correlation coefficient,

ρ(r1, r2) =
〈r1r

T
2 〉√

〈r2
1〉

√
〈r2

2〉
=

σ2

σ2 + γ2
cos(θ1 − θ2), (3.48)

where 〈r2
1〉 = 〈r2

2〉 = σ2 + γ2 and 〈ε21〉 = 〈ε22〉 = γ2.

From the observed radial velocities, 58 pairs are selected for which the distance between

the pair of radar grid points is less than 150 m, which is a tenth of the range resolution (∆s).

The correlation coefficients of these pairs with two years time span are shown as a function of the

difference between bearing angles in Figure 3.6a. They are distributed somewhat like the cosine

function of the difference of the bearing angles (γ2 = 0), which is the expected value for ideal radial

velocity measurements.

In a similar way, the averaged measurement uncertainty (γ2) of the radial velocity can be

estimated by assuming that two radial velocities (r1 and r2) are measured by two different radars

at the same time for the same current field (equations 3.44 and 3.45):

u1 = u2 = u and v1 = v2 = v. (3.49)

The variance of the sum of the two radial velocities is a function of the difference of the bearing

angle if u and v are independent:

〈(r1 + r2)
2〉 = 〈u2〉 (cos θ1 + cos θ2)

2 + 〈v2〉 (sin θ1 + sin θ2)
2 + 〈ε21〉+ 〈ε22〉. (3.50)

If the current variance and the error variance in the x- and y-directions are the same (isotropic

current field), respectively:

〈u2〉 = 〈v2〉 = σ2 and 〈ε21〉 = 〈ε22〉 = γ2, (3.51)

the variance of the sum of the radial velocities is

〈(r1 + r2)
2〉 = 4σ2 cos2

(
θ1 − θ2

2

)
+ 2γ2, (3.52)

where
√

2γ is the RMS error of the sum of oppositely-directed radial velocities (|θ1−θ2| = π). From

the observations of the nearby radial velocity pairs, the current variance and the error variance

are estimated using least-squares fitting, and their square roots are 13.5 and 5.5 cm s−1, respec-

tively (Figure 3.6b). Although this assumes the surface current field has uniform and unpolarized

variability, these can be used as the averages for the radial velocity measurements in the study

domain. Therefore the average measurement uncertainty of the radial velocity (γ2) is assumed to

be 30 cm2 s−2.
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Table 3.1: The comparisons of the singularity in the inversion of the covariance matrix and the
structure of the correlation function for the UWLS, WLS, and OI methods.

UWLS WLS OI
singularity singular nonsingular nonsingular
correlation function uniform uniform nonuniform

3.4 Results

Un-weighted least-squares fitting (UWLS), weighted least-squares fitting (WLS), and op-

timal interpolation (OI) are applied to the hourly radial velocities over a one month period (May

2004) in order to examine the estimated vector currents (section 3.4.3), their uncertainties (section

3.4.4), the effects of angular interpolation (section 3.4.5), and the calculation time and noise levels

(section 3.4.6) under the assumed parameters. This one month data set has fewer missing data than

those during other time periods, which allows a better estimate of the vector current and gives an

upper bound on calculation time. The three methods are classified by the nature of the singularity

in the inversion of the covariance matrix and the structure of the correlation function (Table 3.1).

3.4.1 Parameter selection

The search radius (d0) in the UWLS and WLS methods is set to 1.5 km, which is the same

as the radar range resolution (∆s). The segmented correlation function is shown in Figure 3.7a.

The signal variance (σ2
s) for the UWLS method is infinite and the error variance (σ2

r) is implied as 1

cm2 s−2 from R = I (equation 3.5). In the WLS method, the signal variance and the error variance

are assumed the same as the OI method as below.

The correlation function for the OI method is chosen as an exponential function based on

the spatially averaged correlation coefficients of surface currents (Figures 2.8, 2.12, and 5.14A). In

order to avoid smoothing the estimated current field, the decorrelation length scales of the spatially

averaged correlation coefficients ares considered to be an upper bound, which are 10–14 km in u

and 16–35 km in v. The decorrelation length scales (λx and λy) in the x- and y-directions of the

correlation function in the OI method are chosen to be 2 km, respectively, twice of the 1 km vec-

tor grid resolution (∆x and ∆y). The vector current estimated using the exponential correlation

function is less sensitive to the decorrelation length scale than that with Gaussian correlation func-

tion, because the exponential correlation falls off more quickly from the center. The exponential

correlation function is shown in Figure 3.7b. For simplicity in the estimate of the surface current

field the decorrelation length scales are assumed as a constant in space and all frequency bands.

The variation of decorrelation length scales in space and frequency bands can be addressed with the

complete dataset of estimated vector currents.

The search radius (d0) in the OI method is 5 km, at which range the correlation is 0.08,

which can be considered to be a reasonably small spatial weighting. The signal variance (σ2
s) and the
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error variance (σ2
r) are assumed to be 400 and 40 cm2 s−2, respectively, constant over the observation

domain. The error variance (σ2
r , equation 3.17) is the sum of the average measurement uncertainty

(γ2 ≈ 30 cm2 s−2, section 3.3.3) and the average standard error of the surface currents (ε2/N ≈ 9

cm2 s−2, section 3.3.2). This tends to overestimate the error variance because the average standard

error contributes to the average measurement uncertainty, and this produces estimates that err on

the side of smoothness.

3.4.2 Radial velocities

The PDFs of the radial velocities measured by each radar site during a one month period

(May 2004) are shown in Figure 3.8. Most radial velocities have magnitudes less than 70 cm s−1.

One radial velocity with magnitude greater than 90 cm s−1 was measured by the SDPL site. The bin

size of PDFs is the same as the resolution of radial velocity (∆r). The PDFs also show consistent

discontinuities where the magnitude of radial velocity is less than 2 cm s−1 (Figure 3.4a).

3.4.3 Extracted vector currents

The PDFs of the vector current components (u and v) estimated using the UWLS, WLS,

and OI methods without angular interpolation are compared in Figure 3.9 (Section 3.4.5 will explore

the effects of angular interpolation of the radial velocity before mapping). The PDFs of the estimated

vector components using the OI method are almost the same as the PDFs of radial velocities during

the same period (Figure 3.8). However, the PDFs of the estimated vector components using the

least-square fitting (WLS and UWLS) methods deviate from the PDFs of the OI method at a current

magnitude of about 45 cm s−1. These vector components take up about 0.8 and 1.6% (UWLS) and

0.1 and 0.2% (WLS) of the number of total vector components for u and v, respectively. They

are clustered in the areas having higher GDOP, which are the edges of the coverage of radars and

the baselines. The WLS method removes the singularity of the geometric covariance matrix, but

is still vulnerable to large errors in the radial velocities. Using a larger search radius in the WLS

method reduces them, but generates too smooth a current field. The OI result is less sensitive to the

error variance because of the larger averaging region. The OI method yields significantly more zero

magnitudes than the UWLS and WLS methods, because the estimator tends to zero where there is

insufficient data.

An arbitrarily chosen example of a vector current field estimated from the radial velocities

using the UWLS and OI methods is shown in Figures 3.10a and 3.10b. When the number of radial

velocities at a given vector grid point is insufficient to extract the vector current (e.g., near baselines

and at the edges of the observation domain), the UWLS approach consistently yields inconsistent

vectors as shown in Figure 3.10a, and the OI method tapers the solutions toward zero as shown in

Figure 3.10b. The effective coverage area, defined by the spatial region in which vector solutions

are generated, is found to vary with the mapping method, with the OI method yielding 30–40%

more vector current solutions than the UWLS method when using the same input data sets. In
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Figure 3.7: The spatial correlation functions in (a) least-squares fitting (UWLS and WLS) (d0 = 1.5
km) and (b) optimal interpolation (OI) (d0 = 5 km and λx = λy = 2 km).
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Figure 3.8: PDFs of the radial velocities at each radar site during one month (May 2004).

addition, the OI method generates smoother current fields than the UWLS method. The number

and magnitude of the outliers along the baselines (SDBP and SDPL, SDPL and SDCI) are reduced in

the current field estimated by the OI method, because of the non-singularity in the matrix inversion

due to the added error variance and the contribution of the non-parallel radial velocities within

the search radius. Although the baseline consistency can be improved in the WLS method, its

correlation function is segmented and differs from the observed correlation.

An example of vector current time series estimated using the UWLS and OI methods is

shown in Figure 3.11. The location of the grid point is 32◦35.72′N 117◦10.56′W, which is on the

baseline between SDPL and SDBP sites in a nearshore region with about 20 m water depth. The

vector components estimated using the UWLS method have both missing and spurious data. On

the other hand, the vector components estimated using the OI method show the smoothly-varying

current variance and improved consistency on the baseline.

A series of maps estimated using the OI method with the actual HSTD for each radar cell

at each time did not seem to differ greatly from the maps estimated with the assumed error variance.

However, the OI method using the actual HSTD enables us to make the most use of the available

observations.
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Figure 3.9: PDFs of the vector current components (u and v) estimated from the radial velocities
during one month (May 2004) using each method (UWLS, WLS, and OI). d0 denotes the search
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58

117°30’ 117°20’ 117°10’

 32°20’

 32°30’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(a)

30 cm/s

117°30’ 117°20’ 117°10’

 32°20’

 32°30’

 32°40’

Longitude (W)
La

tit
ud

e 
(N

)

(b)

30 cm/s

117°30’ 117°20’ 117°10’

 32°20’

 32°30’

 32°40’

5x 5

Longitude (W)

La
tit

ud
e 

(N
)

(c)

117°30’ 117°20’ 117°10’

 32°20’

 32°30’

 32°40’

5x 5

Longitude (W)

La
tit

ud
e 

(N
)

(d)

Figure 3.10: An example of the surface vector current field estimated using (a) the UWLS method
(d0 = 1.5 km) and (b) the OI method with the assumed error covariance matrix (d0 = 5 km,
λx = λy = 2 km, σ2

s = 400 cm2 s−2, and σ2
r = 40 cm2 s−2). (c) and (d) are normalized uncertainty

ellipses corresponding to (a) and (b), respectively. The vector grid points having the error level
greater than the cut-off error level are indicated with cross marks.
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Figure 3.11: An example of the vector current time series estimated using the OI (closed) and UWLS
(open) methods. The grid point is located at 32◦35.72′N 117◦10.56′W, which is the one of grid points
on the baseline between SDPL and SDBP sites in a nearshore region with about 20 m water depth.
(a) u-component. (b) v-component.
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3.4.4 Uncertainties

The uncertainty in the surface current measurements of the high-frequency radar usu-

ally results from the observation errors, the vector current estimation, and the radar system itself

such as the misalignment and the poor radar frequency signal-to-noise-ratio ([Graber et al.(1997),

Lipa(2003)]). The uncertainty estimated from the comparison with independent in-situ observations

is not included in this chapter; the discussion focuses on how the uncertainty of the radial velocities

is propagated into the uncertainty of the vector currents.

Since the error variances (σ2
r) in the UWLS and OI methods are 1 and 40 cm2 s−2, re-

spectively, a re-scaling of uncertainty is required to compare the uncertainties (ϕ) of the UWLS

and OI methods (equations 3.33 and 3.32). Three normalized uncertainty components (ϕuu, ϕvv,

and ϕuv) are illustrated with ellipses in Figures 3.10c and 3.10d. The cross term (ϕuv) provides

the directional uncertainty. The cut-off error level, which is defined by the ratio of the a posteriori

uncertainty matrix (P̂) to the expected observational error variance (σ2
r), is used as the upper limit

of the normalized uncertainty in the UWLS method. The vector grid points having errors greater

than the cut-off error level are indicated by the cross marks in Figure 3.10c, and are typically near

baselines and at the edges of the radar coverage region. The ellipses in Figure 3.10d are larger

than those in Figure 3.10c, which shows that the OI method has greater uncertainty. However, the

uncertainties of the UWLS and OI methods have different statistics (e.g., PDFs as shown in Figure

3.12) based on different signal and error variance assumptions. In other words, the uncertainty (ϕ)

normalized by the error variance is only comparable at the lower uncertainty levels, and differs at

the higher levels. The normalized uncertainty in the UWLS and OI methods varies from zero to

infinity and from zero to the ratio of the signal variance to the error variance, respectively.

The two-dimensional joint PDFs of the normalized uncertainty and estimated vector current

components (u and v) for the UWLS and OI methods are shown in Figure 3.12. The normalized

uncertainties greater than the cut-off error level in the UWLS method are not shown in Figures 3.12a

and 3.12b, and take up about 1.3 and 3.6% of the number of total vector current solutions during a

month for u and v, respectively. There is no obvious relationship between the normalized uncertainty

and the magnitude of the estimated current components. However, the outliers due to singularity of

the geometric covariance matrix in the UWLS method have higher normalized uncertainty (Figures

3.12a and 3.12b). The current components with higher uncertainty in the OI method are clustered

near zero magnitude (Figures 3.12c and 3.12d). This is an important positive feature of the OI

method.

A new set of uncertainty indices (χ̂), comprised of three components (χ̂uu, χ̂vv, and χ̂uv)

of the a posteriori uncertainty matrix normalized by the signal variance (σ2
s), have values approach-

ing zero for an estimate with zero uncertainty and one for an estimate with no information. The

ellipse can be tilted, which represents the directional uncertainty that results from the GDOP at a

given vector grid point. The uncertainty indices (χ̂uu and χ̂vv) in the UWLS method have Rayleigh

distributions, which typically represent two orthogonal components with normal and independent
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Figure 3.12: The two-dimensional joint PDFs of the vector current components (u and v) and their
normalized uncertainties (ϕuu and ϕvv) during one month (May 2004). The assumed axis is for the
uncertainty index (χ̂). (a) ϕuu and u (UWLS). (b) ϕvv and v (UWLS). (c) ϕuu and u (OI). (d) ϕvv

and v (OI).
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distributions. The uncertainty indices (χ̂uu and χ̂vv) in the OI method have uneven bimodal distri-

butions, which have a higher peak near the center and a lower peak at the end, and the cross-term

(χ̂uv) has an exponential distribution. Moreover, the uncertainty indices vary in time except that

higher uncertainty indices occur consistently around baselines and at the edges of the domain.

3.4.5 Effects of angular interpolation

A commonly-used process to fill gaps in MUSIC-derived radial velocity data is to interpolate

(or average) across a 15-degree swath using a boxcar filter. The vector currents estimated from the

radial velocities preprocessed with a 15 degree angular interpolation as well as their uncertainties

were considered on the UWLS and OI methods during the analysis period. Angular interpolation

increases the spatial extent of the vector currents estimated by the UWLS method. For example, the

15 degree angular interpolation typically increases the number of good estimates by 10%. However,

angular interpolation is found not to generate any appreciable change in spatial coverage for the OI

method. In addition, angular interpolation is not consistent with the assumptions of the statistics

of the field, and does not provide the uncertainty (HSTD).

3.4.6 Calculation time and noise levels

The calculation time for each method (UWLS, WLS, and OI) to estimate the hourly vector

current field is shown in Figure 3.13. On a per-grid-point perspective, the calculation time depends

on the size of the square matrix to be inverted, which is equal to the number of available radial

velocities within the defined search radius in the OI method and two in the least-squares fitting

(UWLS and WLS) method (geometric covariance matrix in equation 3.6). For a dual Xenon 3.2

GHz processor computer with 2 gigabytes of RAM, the OI method takes about 0.0125 seconds

per grid point, which is approximately three times longer than the least-squares fitting method.

The calculation time of the OI method is reasonable for modern computers dedicated to real-time

monitoring of hourly surface currents.

In order to examine the high frequency noise, the regionally averaged power spectra of

vector current magnitudes estimated using the UWLS, WLS, and OI methods in areas with low

and high fractional data availabilities (45 and 90%) over the one month period are shown in Figures

3.14a and 3.14b, respectively. At high frequencies (greater than 8 cycles per day, cpd), the power

spectrum of the OI method goes flat at about 10 cpd, while that of the UWLS method is closer to

about 8 cpd. However, the amount of the variance at frequencies less than 2.5 cpd, which explains

most of the variance of the surface currents in the study domain, is almost identical for all three

methods.

We assume that the difference between UWLS and WLS is only significant for incompatible

or poorly determined points (e.g. the vector currents estimated in the poor GDOP areas), so the

difference between these spectra should represent errors. The difference between WLS and OI results

from both noise and small scale variance removed by spatial smoothing. We also assume that the
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Figure 3.13: The calculation time and the number of vector grid points resolved from the radial
velocities during one month (May 2004) using each method (UWLS, WLS and OI). d0 denotes the
search radius and θ is the swath width of angular interpolation (No angular interpolation is done, if
θ is equal to zero degree).
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variances in the frequency band above about 6 cpd contain only noise. The average noise levels in

the area with over 45% coverage are about 8.92, 3.51, and 1.44 cm2 s−2 cpd−1 for the UWLS, WLS,

and OI methods, respectively, which correspond to 10.34, 6.49, and 4.15 cm s−1 standard deviations.

The vector current data with 45% coverage have higher errors than the data with 90% coverage,

because they have more missing data in areas of marginal coverage and have outliers. In the area of

with 45% coverage, the power spectra of the WLS and OI methods differ above about 2 cpd, while

in the 90% coverage region, they only differ above about 5 cpd. This suggests that the OI method

is not significantly smoothing the current field and is reducing the noise level. The average noise

levels in the area with over 90% coverage are 5.62, 4.48, and 3.82 cm s−1, respectively. Thus the

assumed error variance (∼6.3 cm s−1, section 3.4.1) is acceptable compared to the noise levels of the

OI method in both cases (45 and 90% fractional data availabilities).

3.5 Discussion

In the computation of vector currents from radial velocities measured by multiple high-

frequency radars, the optimal interpolation (OI) method is suggested as a method to replace the un-

weighted least-squares fitting (UWLS) method. The OI method uses realistic correlation functions

and the HSTD of the radial velocities, resolves the baseline inconsistency, and provides statistically

consistent and well-defined uncertainty and increased coverage area. Moreover, the OI method

produces currents with a similar PDF to that of the PDF of the radial velocities. The power

spectrum of vector currents estimated using the OI method shows a lower level of high-frequency

noise than the UWLS method, which is consistent with the assumed error covariance.

The OI method can directly calculate the vector currents, the divergence and vorticity of

surface currents from the radial velocities, and eliminate the need for multiple mapping steps for

the subsequent applications of surface currents. The computational expense of the OI method is

reasonable for supporting real-time observation system, even the size of Southern California (about

300 × 300 km2 region). The continuity equation and boundary conditions can be applied as con-

straints of the OI method, but this is beyond the scope of this chapter.

Although the covariance matrix used for the OI method is often derived from an isotropic

spatial correlation function, the observed (possibly smoothed) covariance matrix of the sur-

face currents (section 2.4.3) can be used, or a covariance representing a sum of normal modes

([Lipphardt Jr. et al.(2000), Kaplan and Lekein(2007)]). The variability of the estimated vector

currents is weakly sensitive to the assumptions of the cut-off error level and the decorrelation length

scales of the correlation function. Lower cut-off error level and longer decorrelation length scales

generate vector currents with the reduced variability and a spatially smoother field.
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Figure 3.14: Regionally averaged power spectra of the surface vector current magnitudes estimated
using the UWLS, WLS, and OI methods during the one month period (May 2004) over the area with
(a) 45% fractional data availability (1337 vector grid points) and (b) 90% fractional data availability
(510 vector grid points).
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3.6 Appendix

3.6.1 Geometric dilution of precision (GDOP)

The geometric dilution of precision (GDOP) vector is defined as the diagonal components

of the inverse of the geometric covariance matrix. The GDOP at a vector grid point generated by

L radial velocities is
(
GT

a Ga

)−1
=

[
αuu αuv

αvu αvv

]
, (3.53)

where αuu and αvv are the GDOP components in the x- and y-directions (u and v), respectively,

and αr is the GDOP of the total current:

αuu =
1

det (GT
a Ga)

L∑

l=1

sin2 θl ≥ 1
L

, (3.54)

αvv =
1

det (GT
a Ga)

L∑

l=1

cos2 θl ≥ 1
L

, (3.55)

and

αr = αuu + αvv ≥ 4
L

(3.56)

(det denotes the determinant of the matrix). The GDOP depends on the number of available

radial velocities within the search radius and their bearing angles. For an appropriate comparison

of the GDOP, the GDOP should be normalized with the lowest GDOP in 2-dimensional space

([Levanon(2000)]). In the case of two radial velocities, the GDOP components are

αuu =
sin2 θ1 + sin2 θ2

sin2(θ1 − θ2)
≥ 1

2
, (3.57)

αvv =
cos2 θ1 + cos2 θ2

sin2(θ1 − θ2)
≥ 1

2
, (3.58)

and

αr =
2

sin2(θ1 − θ2)
≥ 2, (3.59)

respectively. In the same way, the GDOP components by three radial velocities are

αuu =
∑

sin2 θl

det (GT
a Ga)

≥ 1
3
, (3.60)

αvv =
∑

cos2 θl

det (GT
a Ga)

≥ 1
3
, (3.61)

and

αr =
3

det (GT
a Ga)

≥ 4
3
, (3.62)

respectively. The GDOP in high-frequency radar measurements is more localized and time dependent

due to the sparse solutions of the MUSIC algorithm compared to the GDOP in satellite remote

sensing.
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Abstract

Analysis of coastal surface currents measured off the coast of San Diego during two years

suggests an anisotropic and asymmetric response to the wind, probably as a result of bottom/coast-

line boundary effects including pressure gradients. In a linear regression the statistically estimated

anisotropic response explains approximately 20% more surface current variance than an isotropic

wind-ocean response model. After steady wind forcing for 3 days, the isotropic surface current re-

sponse veers 42±2 degrees to the right of the wind regardless of wind direction while the anisotropic

analysis suggests that the upcoast (onshore) wind stress generates surface currents with 10±4 (71±3)

degrees to the right of the wind direction. The anisotropic response thus reflects the dominance of

along-shore currents in this coastal region. Both analyses yield wind-driven currents with 3–5% of

the wind speed as expected. In addition nonlinear isotropic and anisotropic response functions are

considered, and the asymmetric current responses to the wind are examined. These results provide

a comprehensive statistical model of the wind-driven currents in the coastal region, which has not

been well identified in previous field studies, but is qualitatively consistent with descriptions of the

current response in coastal ocean models.
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4.1 Introduction

Surface current dynamics encompass a complex mixture of forcing terms including

wind, tides, pressure gradients, and internal waves ([Ewing(1950), Munk and Cartwright(1966),

Essen et al.(1983), Alpers(1985), Prandle(1987), Ng(1993a), Ng(1993b)]). Generally, the wind

is a dominant driving source of energy for currents, which have been considered to have an

isotropic response in the open ocean ([Ekman(1905), Gonella(1972), Weller(1981), Price et al.(1987),

Rio and Hernandez(2003)]) and the coastal region ([Pidgeon and Winant(2005)]). The coastline

and bottom topography produce horizontal pressure gradients and friction so that the coastal wind

response of surface currents can depend on the wind direction. [Ekman(1905)] introduced this

anisotropy by including pressure gradients in the analysis, and [Winant(2004)] has made three-

dimensional calculations for basins with idealized topography. However, a complete wind-ocean

response model to reflect this phenomena has not been addressed with observations.

The wind impulse response function (WIRF) provides a comprehensive representation of

the link between the wind and currents from diurnal responses to upwelling events in the coastal

region. The WIRF in the frequency domain (H) is defined as the ratio of the Fourier coefficients of

the current (û) to wind stress (τ̂ ) at each frequency:

H(z, ω) =
û(z, ω)
τ̂ (ω)

. (4.1)

[Gonella(1972)] derived the WIRF and its phase relationship at infinite and finite depth,

and [Weller(1981)] observed the current shear and matched it with the Ekman theory.

[Rio and Hernandez(2003)] investigated the surface currents estimated by drifting buoys and altime-

try data along with atmospheric model (ECMWF) wind stress over the global ocean. These studies

([Gonella(1972), Weller(1981), Rio and Hernandez(2003)]) found a consistent phase relationship be-

tween surface currents and the wind. [Pidgeon and Winant(2005)] found negative phases between

the diurnal currents and the diurnal wind at several moorings in the Santa Barbara Channel which

were quantitatively consistent with previous studies. [Hyder et al.(2002)] used a depth-integrated

slab model to examine the WIRF of the diurnal currents near the critical latitude where the response

is resonant with the diurnal wind forcing.

The time domain WIRF (g) between the wind stress (τ ) and the current (u) at a point is

defined as a convolution ([Bendat and Piersol(2000)]):

u(z, t) =
∫

t′
g(z, t− t′)τ (t′) dt′. (4.2)

[Ekman(1905), Gonella(1971), Kundu(1984), Blackford(1978)] derived the time dependent cur-

rent response for a step function wind using linear and slab models. [Lewis and Belcher(2004)]

examined the time-dependent Ekman solutions coupled with Stokes drift using Laplace trans-

forms to include evanescent solutions. [Prandle(1987), Essen(1993), Ng(1993a), Zelenke(2005),

Rabinovich et al.(2006)] parameterized the observations of the wind stress and currents using

linear/nonlinear models, and performed a time domain regression. Although [Ng(1993a)] and
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[Rabinovich et al.(2006)] introduced the possibility of an anisotropic current response, the statistical

models lacked physical interpretation and the difference in skill between isotropy and anisotropy was

not explored.

[Li and Weisberg(1999), Weisberg et al.(2001), Overland and Pease(1988)] discussed the

anisotropic and asymmetric current (or sea-ice current) response due to the sea surface height set up

by the wind in the coastal regions using numerical models. [Simpson et al.(2002)] explained the in-

phase strong current variability with an analytical two-layer model using the pressure gradient set up

by the diurnal wind. [Sverdrup(1938), Allen(1980), Beardsley et al.(1987), Huyer and Kosro(1987),

Choi and Wilkin(2007)] also have examined the upwelling in the coastal region and the dependency

of the response on the wind direction.

The three-dimensional Ekman theory including pressure gradients induced by boundaries

can produce anisotropy, but it is difficult to apply to the realistic cases with open boundaries,

complicated bathymetry, and sparse wind observations. A statistical model that substantiates the

anisotropy and asymmetry of the surface current response is presented in this chapter without having

to build a numerical model.

This chapter is organized into three sections. First, the Ekman solutions with depth-

independent viscosity are obtained for the isotropic and anisotropic WIRFs in the frequency domain

(section 4.2). Next, the isotropic and anisotropic WIRFs are statistically estimated in both frequency

and time domains using observations of surface currents and the wind (sections 4.3, 4.4, and 4.5.2).

Finally, nonlinear WIRFs are considered for their asymmetrical responses (section 4.5.3).

4.2 Theoretical background

4.2.1 Momentum equations

Adjustment terms (Ax and Ay) in the momentum equations are introduced that are only

related to the wind-driven currents modeling both bottom drag and pressure gradient set up along

the coast:

∂u

∂t
− fcv + Ax =

1
ρ

1
∂z

(
µ

∂u

∂z

)
, (4.3)

∂v

∂t
+ fcu + Ay =

1
ρ

1
∂z

(
µ

∂v

∂z

)
, (4.4)

where fc, ρ, and µ denote the Coriolis frequency, the sea water density, and the dynamic viscosity,

respectively. z is the depth coordinate (upward positive). Assuming µ is independent of depth,

the adjustment terms are composed of pressure gradients and the anisotropic part of the stress

divergence:



72

Ax =
1
ρ

∂p

∂x
− νa

∂2u

∂z2
, (4.5)

Ay =
1
ρ

∂p

∂y
− νa

∂2v

∂z2
, (4.6)

where ν and νa denote the isotropic and anisotropic kinematic viscosity.

For the statistical analysis on the observations, the adjustment terms are considered as

convolutions of the time history of currents:

Ax = axx ∗ u + axy ∗ v =
∫ ∞

−∞
axx(ξ)u(t− ξ) + axy(ξ)v(t− ξ)dξ, (4.7)

Ay = ayx ∗ u + ayy ∗ v =
∫ ∞

−∞
ayx(ξ)u(t− ξ) + ayy(ξ)v(t− ξ)dξ, (4.8)

where axx, axy, ayx, and ayy represent the effects of the bottom and coastline boundary friction and

the pressure gradient set up near the coast. They are convolved in the time domain with the current

components (u and v) in the x- and y-directions, respectively (∗ is the time domain convolution

operator).

Since the system is linear and time-invariant, it is natural to work in the frequency domain,

and the equations transformed into the frequency domain are simpler because convolutions become

products:

(iω + axx) û + (−fc + axy) v̂ = ν
∂2û

∂z2
, (4.9)

(fc + ayx) û + (iω + ayy) v̂ = ν
∂2v̂

∂z2
. (4.10)

The isotropic and anisotropic WIRFs in the frequency domain are calculated explicitly (sections

4.2.2 and 4.7.1) and numerically (sections 4.2.3 and 4.7.1), respectively. The isotropic WIRF is

represented by a single complex function in both frequency and time domains, and the anisotropic

WIRF consists of four complex functions in the frequency domain or four real functions in the time

domain.

4.2.2 Isotropic approach

If an isotropic response is expected, the momentum equations can be combined using

complex numbers to represent the surface currents (u = u+ iv) and wind stress (τ = τx + iτy). The

frequency domain isotropic WIRF (FIWIRF) at finite depth with the depth-independent viscosity

and adjustment terms is reviewed in section 4.7.1.

As a simpler form, the FIWIRF for water of infinite depth without adjustment terms

(Ax = Ay = 0) was derived as in [Ekman(1905)] or text books:

H(z, ω) =
û(z, ω)
τ̂ (ω)

=
eλz

λρν
, (4.11)
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where λ =
√

i(ω + fc)/ν. The depth at which the current is directed oppositely to the surface current

at zero frequency is δE = π
√

2ν/fc ([Ekman(1905)]), which we call the Ekman depth. Typical eddy

viscosity (ν) values for the upper ocean used in these calculations have ranged from 10−5 to 10−1

m2 s−1 ([Santiago-Mandujano and Firing(1990), Chereskin(1995), Weller and Plueddemann(1996),

Schudlich and Price(1998), Rio and Hernandez(2003)]). The analysis below is not sensitive to the

choice of eddy viscosity, so 1× 10−4 m2 s−1 is chosen as an example.

The magnitude and phase of the FIWIRF at quarter fractions of the Ekman depth ranging

from the surface to the Ekman depth are shown in Figures 4.1A and 4.1C, respectively. The current

response is infinite at ω = −fc (fc = 1.07 cycles per day (cpd) in the study domain) and weakens

with depth due to the decreasing momentum flux divergence (Figure 4.1A). The veering of surface

currents is to the left of the wind stress with positive phase (ω < −fc) and is to the right of the wind

stress with negative phase (ω > −fc) ([Gonella(1972), Weller(1981), Rio and Hernandez(2003)]).

The phase of the FIWIRF at the surface is a step function with a jump from 45 to −45 degrees at

ω = −fc (Figure 4.1C). The veering of the current profile under steady wind (ω = 0) is 45 degrees to

the right of the wind at the surface and opposite to the surface current (225 degrees) at the Ekman

depth ([Ekman(1905), Gonella(1971)]). The current rotates clockwise (ω < −fc) with depth and

counterclockwise (ω > −fc), respectively.

The WIRF is dependent on the viscosity as expressed by δE in the simple cases. The WIRF

with lower viscosity has a stronger response at the surface and decays faster with depth yielding

shallow momentum penetration into the water column. For example, a well-stratified water column

with a shallow pycnocline is likely to have a strong wind impulse response confined near the surface

as with diurnal jets ([Price et al.(1986)]) or in the summer. In the same way, the current response

due to the wind in a water column with higher viscosity is weaker at the surface and penetrates

more deeply, as with well-mixed layers in the winter.

The difference between WIRFs for the surface current assuming infinite or finite depth

is small. The adjustment terms generally reduce the magnitude of the WIRF due to damping,

removing the singularity at the Coriolis frequency.

4.2.3 Anisotropic approach

The bottom friction and pressure set up in the momentum equations can be different in

the x- and y-directions, and lead to an anisotropic current response, referred to in the following

as ‘extended Ekman theory’. The surface currents and the wind are considered as two-dimensional

vectors as in [Pedlosky(1992)] instead of scalar complex variables. Although the adjustment terms

can be functions of frequency, for many of the following examples they are assumed to be constant

in the frequency domain corresponding to Rayleigh friction in the time domain: axx = rxxδ(t),

ayy = ryyδ(t), and axy = ayx = 0 (δ(t) denotes the Dirac Delta function). The frequency domain

anisotropic WIRF (FAWIRF) at finite depth is calculated algebraically in section 4.7.1.

As an introduction to the form of the anisotropic solutions, the FAWIRF at infinite depth
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Figure 4.1: A and C: The magnitude and phase of the linear FIWIRF in the Ekman theory at each
0.25δE depth increment from the surface (z = 0) to the Ekman depth (z = δE). B and D: The
magnitude and phase of the four functions of the linear FAWIRF at the surface for a parameter
choice as the Ekman theory. The FIWIRF and FAWIRF are calculated assuming infinite water
depth with depth-independent viscosity (ν = 1 × 10−4 m2 s−1) and no friction (rxx = 0 and ryy =
0). Hxx and Hyy in B and D are superposed, and Hxy and Hyx in B are superposed. The vertical
dot line indicates the inertial frequency (ω = ±1.07 cpd) in the study domain.
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with no adjustment terms was calculated, and its magnitude and phase are shown in Figures 4.1B

and 4.1D, respectively. The current responses due to two wind impulses and four components of the

FAWIRF are presented as

û(z, ω) = Hxx(z, ω)τ̂x(ω) + Hxy(z, ω)τ̂y(ω), (4.12)

v̂(z, ω) = Hyx(z, ω)τ̂x(ω) + Hyy(z, ω)τ̂y(ω), (4.13)

where Hxx, Hxy, Hyx, and Hyy are complex functions in the frequency domain. This solution

is the same as the Ekman solution. Although the anisotropic responses are not as convenient to

interpret, they can be converted to rotary spectra for comparisons with the isotropic response. In

this FAWIRF, the magnitudes of all four terms are the same for ω < fc, and the magnitudes of

the diagonal terms (Hxx and Hyy) and the cross terms (Hxy and Hyx) are the same for ω > fc,

respectively (Figure 4.1B). The cross terms are out of phase while the diagonal terms are in phase

for all frequencies. The phase slopes (∂θ/∂ω) of the cross terms and diagonal terms have an opposite

sign for ω < fc and zero for ω > fc (flat phase).

The anisotropic WIRF can be represented in the same way as the isotropic WIRF by

computing the response to each directional wind component separately. For example, the surface

current responses (û and v̂) can be expressed as the combination of the four functions of the FAWIRF

multiplied by the wind stress components (τ̂x or τ̂y) in the negative frequency (clockwise, ω < 0)

and the positive frequency (counterclockwise, ω > 0) domains:

û(ω < 0) =
(
H†

xx + iH†
yx

)
τ̂x(ω), (4.14)

û(ω > 0) = (Hxx + iHyx) τ̂x(ω), (4.15)

û(ω < 0) =
(
H†

xy + iH†
yy

)
τ̂y(ω), (4.16)

and

û(ω > 0) = (Hxy + iHyy) τ̂y(ω), (4.17)

where † denotes the complex conjugate, and û is the rotary Fourier coefficients for u and v. This

enables plotting the FAWIRF in Figures 4.2B and 4.2D as the FIWIRF for Ekman theory (Figures

4.1A and 4.1C). As an example, the surface current response at ω = 0 is 45 degrees to the right of

the wind stress:

û + iv̂ = Hxx(0)τ̂x + Hxy(0)τ̂y + i (Hyx(0)τ̂x + Hyy(0)τ̂y) (4.18)

= |Hxx(0)|e−π
4 (τ̂x + iτ̂y), (4.19)

where Hxx(0) = Hyy(0) = Hxy(0) = −Hyx(0) as shown in Figures 4.1B and 4.1D. The FIWIRF and

FAWIRF in Figure 4.1 are used for comparison to the WIRFs estimated from the observation data

(Figures 4.6, 4.7, 4.12, and 4.13).
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Figure 4.2: The linear FAWIRF based on the extended Ekman theory with depth-independent
viscosity (ν = 1×10−4 m2 s−1) and two different frictions in the x- and y-directions (rxx = 1×10−6

s−1 and ryy = 4× 10−5 s−1). A. The magnitude of the FAWIRF. B. The magnitude of the FIWIRF
with same viscosity and the friction as the arithmetic mean of two frictions (r = (rxx + ryy)/2), and
the magnitude of the FAWIRF when wind stress (τx or τy) is applied in each direction. C. The
phase of the FAWIRF. D. The phase of the FIWIRF and FAWIRF. The phase transition frequency
(ω0) is 0.7909 cpd (a vertical dashdot line in B and D) for the selected parameters. Hxy and Hyx in
A are overlapped, and the vertical dot line indicates the inertial frequency (ω = ±1.07 cpd) in the
study domain.

When the adjustment terms are different in the x- and y-directions (rxx < ryy in this exam-

ple), the response to either x- or y-directional wind stress using the FAWIRF is compared with that

of the FIWIRF with friction equal to the arithmetic mean of the two frictions (r = (rxx + ryy) /2).

The symmetry in the FAWIRF is broken by the differing friction (Figures 4.2A and 4.2C) although

the magnitudes of the cross terms (axy and ayx) of the adjustment terms are included as the identical

amount. The peaks of the FAWIRF are spread and the phases become smooth. Using equations

4.14–4.17, the FAWIRF for each wind stress component is converted to compare with the FIWIRF

(Figures 4.2B and 4.2D). The magnitude and phase of the isotropic WIRF stay between the two

components of the anisotropic WIRF. Due to the damping by the friction, the magnitude of the

FAWIRF in the direction with more friction is smaller than that in the direction with less friction

(Figure 4.2B).

The phase transition of the FAWIRF can be examined in three frequency bands as shown

in Figure 4.2D: The current response in the direction with less friction is more to the left of the wind

than that in the direction with more friction for ω < −fc. The current response in the direction



77

with more friction is more to the right of the wind than that in the direction with less friction for

ω > −fc but less than the frequency ω0 where the phase curves cross (−fc < ω < ω0). In other

words, more friction leads to more veering angle in the low frequency band (|ω| < fc) as expected.

The phase transition frequency (ω0) varies between fc/2 and fc, as a function of the two frictions

(not shown). Above the transition frequency, the current in the direction with less friction is more to

the right of the wind than the current response in the direction with more friction. Both anisotropic

surface current responses converge to −45 degrees as ω →∞.

When the adjustment terms are isotropic (rxx = ryy), the solution is isotropic, so the

FIWIRF and FAWIRF are identical. The magnitude of the four terms of the FAWIRF show similar

patterns to the Ekman theory except for a blunt peak at the Coriolis frequency and smoothly

changing phase due to the non-zero friction. The phase slope at ω = −fc of the FIWIRF and

FAWIRF (all four functions) is reduced in magnitude as the friction coefficient (r) increases:

∂θ(ω, r = 0)
∂ω

∣∣∣∣
ω=−fc

= −∞ (4.20)

and

∂θ(ω, r →∞)
∂ω

∣∣∣∣
ω=−fc

→ 0. (4.21)

As the friction increases, the phase at ω = 0 becomes bigger than −45 degrees, which means the

surface wind-driven currents head less than 45 degrees to the right of the wind.

4.3 Methods

4.3.1 Statistical linear estimate of WIRFs

The isotropic and anisotropic WIRFs in both frequency and time domains are estimated us-

ing the observations of surface currents and wind stress. Four cases are considered: frequency domain

isotropic and anisotropic WIRFs (FIWIRF and FAWIRF) and time domain isotropic and anisotropic

WIRFs (TIWIRF and TAWIRF). Although in ideal cases the frequency and time domain estimates

should be equivalent, the treatment of missing data leads to differences, and so both methods are used

as a check on the results and as a measure of uncertainty. This statistical estimate employs a form

of ridge regression ([Hoerl and Kennard(1970), Marquardt(1970), Snee(1977), Golub et al.(1979)])

using regularization. The wind stress and surface currents with bold font in the following equations

means either a complex number in the isotropic case or a two-element vector in the anisotropic case.

Frequency domain

From equation 4.1, the linear regression equation in the frequency domain is

û(z, ω) = H(z, ω)τ̂ (ω). (4.22)
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The frequency domain WIRF (H) is computed from the (time) ensemble covariance average of the

Fourier coefficients of surface currents (û) and wind stress (τ̂ ) at each frequency (ω):

H(z, ω) =
(
〈û(z, ω) τ̂ †(ω)〉

)(
〈τ̂ (ω) τ̂ †(ω)〉+ Ra

)−1

, (4.23)

where † indicates the complex conjugate transpose, and Ra is the regularization matrix and is

assumed the noise level of the wind stress.

Time domain

From equation4.2, the covariance of currents and wind stress is

〈uτ †〉 =
∫

t′
g(z, t− t′) 〈τ (t′)τ (t)†〉 dt′, (4.24)

and is truncated and discretized as a finite sum:

〈uτ †〉 =
N∑

k=0

g(z, k∆t) 〈τ (t− k∆t)τ (t)†〉. (4.25)

In other words,

〈u(z, t) τ †N (t)〉 = G(z)〈τN (t) τ †N (t)〉. (4.26)

where τN (t) = [τ (t−N∆t) · · · τ (t−∆t) τ (t)]† is the wind stress stacked with N hours time lag.

The time domain WIRF (G) is computed from the covariance matrix between surface

currents (u) and time lag wind stress (τN ).

G(z) =
(
〈u(z, t) τ †N (t)〉

) (
〈τN (t) τ †N (t)〉+ Rb

)−1

, (4.27)

where G = [g1 g2 · · · gN ]†, and Rb is the regularization matrix, which compensates for the sample

error in the covariance matrix by suppressing small or negative eigenvalues.

4.3.2 Statistical nonlinear estimate of WIRFs

Since the responses of the linear WIRFs to oppositely directed wind are symmetric, nonlin-

ear WIRFs are needed to break the symmetry of the response. The nonlinear WIRFs are calculated

in the frequency and time domains similarly to the linear WIRFs. The magnitude of the wind stress

is used in the regression to provide the nonlinear term as one of a number of ways to do the nonlinear

regression. In the frequency domain the nonlinear regression equation is

û(z, ω) = H1τ̂ + H2|τ̂ |, (4.28)

where H1 = H1(z, ω) and H2 = H2(z, ω). In the time domain, the regression equation becomes

u(z, t) = G1τN + G2|τN |, (4.29)

where G1 = G1(z) and G2 = G2(z). These are performed in practice by appending the vector of

|τ̂ | or |τN | to the existing vector data and regressing as usual.
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4.3.3 Residual variance ratio estimate

The variance ratio of the wind-driven currents to the total currents at each frequency

is the coherence (γ2). The residual variance ratio (β2) is its complement (β2 = 1 − γ2)

([Bendat and Piersol(2000)]). The total residual variance ratio (ε2) is defined as the variance of

the residual currents after the wind regression to the total currents for all frequencies or time lags,

and is convenient to compare the performance of the WIRFs.

Frequency domain

The residual variance ratio (β2) in the frequency domain is

β2(ω) =
|r̂(ω)|2
|û(ω)|2 , (4.30)

where r̂(ω) = û(ω) −H(ω)τ̂ (ω). H(ω) can be the FIWIRF or FAWIRF. For the linear FAWIRF,

the residual variance ratios (β2
u and β2

v) for the current components (u and v) are

β2
u(ω) =

|Hxxτ̂x + Hxy τ̂y − û|2
|û|2 (4.31)

and

β2
v(ω) =

|Hyxτ̂x + Hyy τ̂y − v̂|2
|v̂|2 , (4.32)

respectively, where Hxx, Hxy, Hyx, and Hyy are the four response functions of the FAWIRF. The

residual variance ratio of total currents is estimated:

β2(ω) =
|Hxxτ̂x + Hxy τ̂y − û|2 + |Hyxτ̂x + Hyy τ̂y − v̂|2

|û|2 + |v̂|2 . (4.33)

The total residual variance ratio (ε2) in the frequency domain is

ε2 =

∑

k

|r̂(ωk)|2
∑

k

|û(ωk)|2
. (4.34)

Time domain

The total residual variance ratio (ε2) in the time domain is

ε2 =

∑

k

〈r(tk)〉2
∑

k

〈u(tk)〉2
, (4.35)

where r(t) = u(t)−G(z)τN (t), G(z) denotes the TIWIRF or TAWIRF, and τN (t) is the N hours

time lag stacked wind stress. In the ideal case, the total residual variance ratio in both frequency

and time domains should be identical.
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4.4 Observations

Surface currents used for this study were observed by high-frequency (∼25 MHz) radars

during two years (April 2003–March 2005) over a 40 km region from the coast of southern San Diego

county (Chapters 2 and 3). A time series of spatially averaged hourly surface currents (u and v) over

the area shown as the black curve in Figure 4.3 is used in this analysis. This area indicates grid points

with data present for at least 70% of the two years. The spatially averaged surface current is smoother

and more reliable, having only 2.2% missing data. Regional averages or point measurements can be

used to investigate the horizontal structure of the WIRF. The effective averaging depth for surface

current measurements by high-frequency (HF) radar has been estimated as 5–16% of the wave

length of the backscattering surface waves ([Stewart and Joy(1974), Barrick et al.(1977), Ha(1979),

Fernandez et al.(1996)]), but the range accepted in the HF radar community is 8–16% (Don Barrick

2008, personal communication). Therefore the averaging depth in this study is assumed to be

approximately 1 m. The two year surface current time series is detided at the main tidal constituents

(O1, P1, K1, M2, and S2) using least squares fitting. The S2 component of the surface current is

removed even though the harmonic forcing of the diurnal wind can be ambiguous with the S2 tide.

The amplitude of the S1 surface tide in San Diego is nearly zero (harmonic constituents of surface

tides from [NOAA(2006)] and Table 5.1), so most of the diurnal variability of surface currents is

assumed to result from the diurnal wind.

The wind observed at Tijuana River (Tidal Linkage station, Figure 4.3) during the same

period as the surface current is hourly averaged and has 8.5% missing data. The hourly composite

mean of the wind (regardless of local sunrise and sunset) (not shown) shows about 2.5 times stronger

variance of the east-west wind than the north-south wind. The wind stress is estimated from the

drag coefficient as described in [Large and Pond(1981)], and the overall results are not sensitive to

the choice of the drag coefficient except for a compensating shift in magnitude of the WIRF.

The rotary power spectra of the detided surface current and the wind are shown in Figures

4.4A and 4.4C, respectively, which are estimated from 90 subsamples with the same record length,

and missing observation values have been filled with zeros. Both have a red spectrum and the wind

spectrum shows dominant clockwise diurnal variance. Although the variance of the surface current

has been reduced by the tidal fit, the resolution (∆ω = 0.1244 cpd) of the subsample power spectrum

is not enough to isolate the tidal lines, so there are broad variance peaks around the K1 and M2

frequencies due to nonlinearity.

The coherence and phase between each component of the surface current and wind stress are

shown in Figures 4.4B and 4.4D, which are estimated in the same way as the power spectra in Figures

4.4A and 4.4C. The x-directional wind stress (τx) is coherent with surface current components (u

and v) as ∼0.7 near 1 cpd, and the coherence of the y-directional wind stress (τy) is ∼0.3 at the

same frequency but high at low frequencies (less than 1 cpd) (Figure 4.4B). The phases fluctuate at

the frequencies with low coherence (Figure 4.4D).

The coastline in the south of San Diego is aligned roughly north-south and faces west
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Figure 4.3: The study domain of surface currents and the wind. The effective spatial coverage area
where the high-frequency radars (R1, R2, and R3) observed is indicated with black curve. Three
high-frequency radar sites are Point Loma (R1), Border Park (R2), and Coronado Island (R3). The
Tijuana River wind station (W) is located near the Tijuana River valley. Five evenly spaced grid
points are chosen as the offshore (a) and onshore (e) locations in the cross shelf direction to examine
the spatial variation of WIRFs (see section 4.5.2). The bottom bathymetry contours are indicated
by the thin curves with 10 m (0 < z < 100 m) and 50 m (100 < z < 1000 m) contour intervals and
the thick curves at the 50, 100, 500, and 1000 m depths.
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Figure 4.4: A and C: The rotary power spectra of the detided surface current (A) and the wind (C)
are estimated from 90 subsamples with the same record length (8.12 days) and averaged across each
frequency. B and D: Coherence (B) and phase (D) between the surface current and wind stress are
estimated using the same spectra.
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(Figure 4.3). The Coronado embayment (San Diego Bay) and the headland (Point Loma) are

located near the northeast boundary. The water depth of the continental shelf region is mostly less

than 100 m.

4.5 Data analysis

4.5.1 Overview

The WIRF estimates are affected by the treatment of the missing data. The frequency

domain WIRFs are estimated through replacing missing data with zeros. This leads to positive-

definite matrices, but the variances are biased low and spurious high frequency energies are created.

The time domain WIRFs are estimated from the covariance matrix of the observed data only. This

reduces bias, but can create small or negative eigenvalues of the lagged covariance matrix. A regular-

ization matrix can be added (equations 4.23 and 4.27) to limit the structure of the solutions and to

make the sample autocovariance matrix of the wind stress invertible when it is non-positive definite.

This regularization keeps the regression from overfitting the data, and is checked by cross-validation

([Efron and Gong(1983), LeBlanc and Tibshirani(1996)]). In other words, the model estimated from

training data is applied to independent test data, and the difference between the estimated and ob-

served data is called the cross-validation error. This error is a function of the regularization, and has

a minimum value between underfitting and overfitting. The regularization matrix (Ra = Ra(ω)) in

the frequency domain can be justified as the statistical and observational noise contributions to the

wind stress variance. The regularization matrix in the time domain compensates for the statistical

and observational noise in the autocovariance matrix of the wind. For lack of better assumptions,

it is assumed to be a scaled diagonal matrix with a fraction of the wind stress variance
(
Ra = κ2I

)
.

The effects of missing observations on the WIRF estimate are discussed in section 4.6.

The goal of the regularization is to ensure that the cross-validation error is no larger than

the error on the training data by adjusting Ra to minimize the cross-validation error for every set of

predicting variables ([Marquardt(1970), Hoerl and Kennard(1970)]). The number of subsamples in

the frequency or time domain calculation increases as the length of data chunks decreases, and the

degrees of freedom decrease with increasing Fast Fourier Transform (FFT) length or decreasing max-

imum time lag. The larger the maximum time lag, the more variables are available to fit the data, so

the total residual variance ratio decreases, but the decrease is small after about 6 days (Figure 4.5B).

Without cross-validation, the error using a small number of subsamples (many fitting variables) is

artificially low ([Davis(1985)]) if regularization is not used, but the need for regularization decreases

as the number of subsamples increases. As the fit is generalized from isotropic to anisotropic and

then to nonlinear, the number of parameters available to fit the data increases, so the residual vari-

ance ratio without cross-validation decreases. The regularization is adjusted so that the training and

test datasets yielded the nearly same error variance ratio. However, the residual variance ratio for

the cross-validation data has larger uncertainty due to the limited number of realizations compared
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to the training data when errors are estimated using the Jackknife ([Emery and Thomson(1997)]).

The total residual variance ratios for the training data in the frequency and time domains are shown

in Figures 4.5A and 4.5B, respectively. The Jackknife estimate for the impulse response function

and its uncertainty are shown in the frequency domain for simplicity:

H(ω) =
1
M

M∑

k=1

(
〈ûτ̂ †〉
〈τ̂ τ̂ †〉

)

k

(4.36)

and

σ2
H(ω) =

1
M − 1

M∑

k=1

[(
〈ûτ̂ †〉
〈τ̂ τ̂ †〉

)

k

−H(ω)

]2

, (4.37)

where M is the number of subsampled datasets.

Cross-validation ([Efron and Gong(1983), LeBlanc and Tibshirani(1996)]) is repeated 30

times with randomly chosen blocks of training data and test data taking 90 and 10% of the total

data, respectively. The training data are chosen by subsampling with a uniform probability as

opposed to a systematic choice of sequential contiguous blocks. Results of the two approaches

(random or systematic) become nearly the same as the number of realizations increases, with little

change in the results above 30 trials. In the frequency domain, the choice of the training data and

test data is constrained because the data are divided into blocks with the same record length, and

are Fourier transformed separately. In the time domain, each excluded datum removes many lags.

If they are distributed randomly, too many data are removed. Therefore they are subsampled in

blocks. The regularization (Rb) necessary to minimize the cross-validation error in the time domain

WIRFs is about 10% of the mean eigenvalue (averaged variance) of the wind stress autocovariance

matrix. On the other hand, the regularization in the frequency domain used a constant noise level,

which decreases as the number of subsamples increases. The relationship between the error in the

observations and the uncertainty in the WIRF estimate is discussed in section 4.5.6.

The minimum number of subsamples and the maximum time lag are determined by the val-

ues at which the total cross-validated residual variance ratio averaged across all realizations (section

4.3.3) is a minimum (Figure 4.5). The number of subsamples is larger than the number of indepen-

dent time series available from a given data set. The 6-day chunks are assumed to be mostly indepen-

dent, although the low frequency components are not. The error bars on the WIRF and the residual

variance are calculated using the Jackknife method (see for example [Emery and Thomson(1997)])

with 30 randomly subsampled data sets (M is equal to 30 in equations 4.36 and 4.37 and each subset

is 90% of total data).

The FIWIRF and FAWIRF are calculated from an ensemble of 90 independent FFTs of

8.12-day period of the surface current and wind stress (section 4.3.1 and equation 4.28), and the

TIWIRF and TAWIRF are computed from the wind stress stacked with hourly time lags up to 6

days regressed on the surface current (section 4.3.1 and equation. 4.29). These are approximately
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Figure 4.5: A. The total residual variance ratio (ε2) of the linearly/nonlinearly estimated FIWIRFs
and FAWIRFs for the training datasets in terms of the number of subsamples (equation 4.34). B.
The total residual variance ratio of the linearly/nonlinearly estimated TIWIRFs and TAWIRFs for
the training datasets in terms of the number of time lags (equation 4.35). The noise level of the
wind stress and the 10% of mean eigenvalue of the wind stress autocovariance matrix are used as
the regularization in the frequency domain WIRFs and the time domain WIRFs, respectively. The
mean total residual variance ratios and the uncertainties (a shaded region is one standard deviation)
are estimated from 30 realizations using the Jackknife method.
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the minima of the cross-validated error (Figure 4.5). The estimated WIRFs include the current

response to steady wind (ω = 0).

The WIRFs in one domain are (inversely) Fourier transformed into the other domain,

and each pair satisfies Parseval’s theorem. For example, the estimated FIWIRF (Figures 4.6A and

4.6B) is inversely Fourier transformed into the time domain to represent a temporal amplitude

(Figure 4.6C). The estimated TIWIRF (Figure 4.12C) is Fourier transformed into the frequency

domain (Figures 4.12A and 4.12B) so that the FIWIRF and TIWIRF are comparable across the two

domains, and a similar procedure can be applied to the FAWIRF (Figure 4.7) and TAWIRF (Figure

4.13). For the nonlinear WIRFs, only the linear regression coefficients (H1 in equation 4.28 and G1

in equation 4.29) are considered for the comparison between the two domains.

The isotropic and anisotropic WIRFs are compared both as the rotary power spectra in the

frequency domain and as the time integrated response. For instance, the linear FIWIRF is plotted

for only onshore wind (τx) because it is isotropic, but the linear FAWIRF is plotted for onshore and

upcoast winds (τx and τy), respectively, as magnitude and phase in the frequency domain (Figures

4.8A and 4.8B, respectively). The time integration of temporal amplitudes of the FIWIRF (Figure

4.6C) and FAWIRF (Figure 4.7C) for steady wind are compared (Figure 4.9A). The TIWIRF and

TAWIRF are also examined in the similar way (Figure 4.9B). The anisotropic response to upcoast

wind is shifted 90 degrees down (Figures 4.8B and 4.14B) and rotated 90 degrees clockwise (Figure

4.9) to align with the other results. Moreover, the nonlinear anisotropic WIRFs are illustrated for

steady winds with four directions: onshore (τx > 0), offshore (τx < 0), upcoast (τy > 0), and

downcoast (τy < 0) winds.

Because of the ambiguity of WIRFs with tides at the S2 frequency, the linear WIRFs

estimated with the surface current both including and excluding the S2 variance are compared. With

the S2 variance included in the fit, the residual variance ratios of the WIRF at the S2 frequency is

approximately 0.48, but the contribution of the S2 variance to the total variance is negligible. The

WIRFs with and without the S2 variance overlap within errorbars and the S2 variance of the wind

is small, so the surface current excluding the S2 variance is used. The variance removal at the S2

frequency is particularly evident in the plots of WIRFs (Figures 4.8A and 4.14A) as a drop in the

response function at that frequency.

4.5.2 Linear WIRFs

Frequency domain

The magnitudes of the FIWIRF and FAWIRF have peaks near the diurnal frequency (ω =

−1 cpd for the FIWIRF and ω = 1 cpd for the FAWIRF) instead of the Coriolis frequency (ω = ±fc)

as shown in Figures 4.6A and 4.7A. Because the variances of the diurnal surface currents and

diurnal wind stress are much larger than those at the Coriolis frequency, the WIRFs do not have

as good signal-to-noise-ratio (SNR) at the Coriolis frequency, and the regularized least squares

estimate biases the response function toward zero so that the estimated FIWIRF and FAWIRF have
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a maximum at the diurnal frequency (ω = −1 or ω = 1 cpd). There is also increasing uncertainty at

higher frequency due to the dominance of the diurnal variance in the data (Figures 4.6A and 4.7A).

The phase of the FIWIRF is nearly zero at ω ∼= −fc, and varies between −45 and 45 degrees

(Figure 4.6B). The overall shapes of the FIWIRF (Figures 4.6A and 4.6B) agree with the FIWIRF

at the ocean surface of the Ekman theory (Figures 4.1A and 4.1C) and as seen in other observations

([Gonella(1972), Weller(1981), Rio and Hernandez(2003)]). The temporal amplitude of the FIWIRF

has diurnal fluctuations, and diminishes within 3–4 days with a clockwise rotation (Figure 4.6C).

This time decaying amplitude is different from the evanescent solution for the step-function wind

using the Laplace transform ([Ekman(1905), Lewis and Belcher(2004)]), because we measure a local

response for a statistically steady state wind in the coastal region.

The FAWIRF is made up of four response functions, which gives twice the number of param-

eters as the FIWIRF. The cross terms (Hxy and Hyx) have more uncertainties in their magnitudes

and phases than the diagonal terms (Hxx and Hyy) (Figures 4.7A and 4.7B). At ω = 0, the phases

of the FAWIRF are the same as the phases of the Ekman theory (Figures 4.7B and 4.1D). However,

the magnitudes of four terms (Hxx, Hxy, Hyx, and Hyy) of the FAWIRF at ω = 0 are not identical

as they were in the isotropic case showing anisotropic response in the quasi-steady state (Figures

4.7A and 4.1B). The wind-current responses at all other frequencies are anisotropic although noise

in the estimate certainly contributes. The viscosity (ν) and adjustment terms (axx, axy, ayx, and

ayy) could be estimated as functions of frequency using the observations, and an example of the

fit of adjustment terms to the data is presented in section 4.7.2. The temporal amplitude of the

FAWIRF has approximately inertial periodicity and decays to zero within 3–4 days (Figure 4.7C).

Coherence calculations (not shown) find that 60–70% of the variances of the diurnal surface

currents is explained by the diurnal land/sea breezes (equations 4.31 and 4.32). However, the y-

directional surface current (v) in the low frequency band (0 ≤ ω < 1 cpd) has higher coherence with

wind than the x-directional surface current (u) (β2
v ≈ 0.5 and β2

u ≈ 0.3). This is consistent with

the hypothesis that the coastline in the study domain blocks flow to the east so that positive u is

inhibited by the pressure set-up at long time scales.

The FAWIRF to each wind component (τx or τy) is compared with the FIWIRF as rotary

spectra (Figure 4.8). The x-directional wind stress (τx) apparently generates a stronger response at

both clockwise diurnal frequency and zero frequency than the y-directional wind stress (τy) (Figure

4.8A), partly because of higher SNR. The phases of the FAWIRF for τx and τy vary between −45 and

45 degrees, and bracket the phase of the FIWIRF (Figure 4.8B) as the extended Ekman theory does

(Figure 4.2D). As an example, the temporal amplitudes of the FIWIRF and FAWIRF are integrated

for 3 days under constant wind stress (0.013 kg m−1 s−2 for the typical wind speed in the study

domain of 3 m s−1) as shown in Figure 4.9A. The FIWIRF generates surface currents 41±2 degrees

to the right of steady wind, and the FAWIRF produces surface currents at 75±0.5 (τx) and 9±2 (τy)

degrees to the right of the steady wind stress, respectively, which are identical of the phases at ω = 0

in Figure 4.8B. The time integration of the steady wind response shows that the response is smaller

cross-shore than along-shore as expected. The magnitudes of the wind-driven currents are 3–5% of
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Figure 4.6: The linearly estimated FIWIRF. A. Magnitude. B. Phase. C. Temporal amplitudes.
The FIWIRF is estimated with 90 subsamples, and the uncertainty shown as the gray-shaded region
in A and B is calculated from 30 realizations using the Jackknife method. The vertical dot line
indicates the inertial frequency (ω = −1.07 cpd) in the study domain.
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Figure 4.7: The linearly estimated FAWIRF. A. Magnitude. B. Phase. C. Temporal amplitudes.
The FAWIRF and its errorbars are estimated in the same way of the FIWIRF (Figure 4.6). The
vertical dot line indicates the inertial frequency (ω = 1.07 cpd) in the study domain.
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Figure 4.8: The magnitude and phase of the linearly estimated FIWIRF and FAWIRF for wind stress
(τx and τy), respectively. A. Magnitude. B. Phase. The phase of the FAWIRF for the y-directional
wind stress (τy) is shifted down by 90 degrees to align with the others. The solid curves in A and B
are the same as in Figures 4.6A and 4.6B, respectively. The vertical dot line indicates the inertial
frequency (ω = −1.07 cpd) in the study domain.
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Figure 4.9: Time integrations of the temporal amplitudes of the linearly estimated WIRFs for a
constant wind stress during 3 days. A. FIWIRF and FAWIRF. B. TIWIRF and TAWIRF. The wind
stress at either direction (τx or τy) of the typical wind speed (|u| = 3 m s−1) in the study domain is
applied. Anisotropic response for the y-directional wind stress (τy) is rotated 90 degrees clockwise
to align with other responses. The thin dashdot quarter-circular curves denote the percentage of
the wind-driven current speed to the wind speed, which are 1, 2, 3, 4, and 5% from the origin, and
the thin dotted line indicates the direction of 45 degrees to the right of the wind stress.
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the wind speed, which is consistent with other studies ([Bye(1965), Churchill and Csanady(1983),

Wu(1983), Weber(1983)]). The total residual variance ratios by the FIWIRF and FAWIRF are 0.62

and 0.52, respectively (Figure 4.5A), indicating significant anisotropy.

The spatial variation of WIRFs is examined by computing the FIWIRF between the detided

surface currents at five locations sampling the cross shelf direction in the study domain (grid points

a−e in Figure 4.3) and wind stress. Each FIWIRF is made from 90 subsamples with the same record

length, and averaged over the realizations at each frequency. As an example of cross shelf variation

of WIRFs, the magnitude and phase of the FIWIRF at five evenly spaced points sampling the

cross shelf direction are shown in Figure 4.10A and 4.10B, respectively. The FIWIRF shows larger

response onshore than offshore. To show the response to a steady wind, the temporal amplitude of

the FIWIRF is integrated in time for three days with a constant typical wind speed in San Diego

(Figure 4.11). As the point considered moves from offshore to onshore, the veering angle changes

from 70 degrees (offshore) to 30 degrees (onshore) to the right of the wind. The slower rotation

with depth inshore may imply that less of full Ekman layer may be fit into the shallow water depth

([Ekman(1905), Lentz(2001), Kirincich et al.(2005)]).

Time domain

The TIWIRF and TAWIRF are shown in Figures 4.12C and 4.13C, respectively, and the

magnitude and phase of the Fourier transformed TIWIRF and TAWIRF are shown in Figures 4.12A–

4.12B and 4.13A–4.13B, respectively. The TIWIRF shows approximately inertial oscillations with

slowly decreasing amplitude (Figure 4.12C), which are slightly larger than that of the FIWIRF

(Figure 4.6C). However, the energy of the TIWIRF and the FIWIRF is nearly equal when the time

lag and the data record length are same. The energy of the TAWIRF and the FAWIRF is also

approximately the same within the estimation errors. The SNR of the TAWIRF is again relatively

lower at the Coriolis frequency than at the diurnal frequency so the peaks are found close to 1 cpd.

The magnitude of the TIWIRF in the frequency domain is large at the diurnal frequency

(Figure 4.12A), and its phase stays between −45 and 45 degrees with phase shift of nearly zero

degree at ω ∼= −fc (Figure 4.12B). The phase of the TIWIRF at zero frequency is −43± 2 degrees

(Figure 4.6B or 4.14B), which is consistent with the phase of the FIWIRF (−41± 2 degrees, Figure

4.8B). The TAWIRF (Figure 4.13) has similar features to the FAWIRF (Figure 4.7).

The Fourier transformed TIWIRF and TAWIRF for each wind component (τx and τy) are

compared as rotary spectra (Figure 4.14), and also show the peak at the diurnal frequency, the

drops at the S2 frequency, and the bracketing phases of the TAWIRF as with the frequency domain

WIRFs.

The time-integrated responses (Figure 4.9B) of the TIWIRF and TAWIRF to typical con-

stant wind stress in the study domain also shows similar patterns to those of the FIWIRF and

FAWIRF (Figure 4.9A). In a quasi-steady state, the TAWIRF generates surface current responses

of 67±1 (τx) and 12±3 (τy) degrees to the right of the wind stress, respectively, and the TIWIRF
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Figure 4.12: The linearly estimated TIWIRF. A and B: The magnitude and phase of the inversely
Fourier transformed TIWIRF. C. Amplitude. The TIWIRF is estimated with the surface currents
and 6 days time lag stacked wind stress, and the uncertainty is calculated from 30 realizations using
the Jackknife method. The vertical dot line indicates the inertial frequency (ω = −1.07 cpd) in the
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Figure 4.13: The linearly estimated TAWIRF. A and B: The magnitude and phase of the inversely
Fourier transformed TIWIRF. C. Amplitude. The TAWIRF and its error bar are estimated in
the same way of the TIWIRF (Figure 4.12). The vertical dot line indicates the inertial frequency
(ω = 1.07 cpd) in the study domain.
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Figure 4.14: The magnitude and phase of the linearly estimated TIWIRF and TAWIRF for wind
stress (τx and τy), respectively. A. Magnitude. B. Phase. The phase of the TAWIRF for the y-
directional wind stress (τy) is shifted down 90 degrees to align with others. The solid curves in A
and B are the same as in Figures 4.12A and 4.12B, respectively. The vertical dot line indicates the
inertial frequency (ω = −1.07 cpd) in the study domain.
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yields surface currents at 43±2 degrees to the right of the wind direction. The suppression of the

crossshore response is still evident, as the veering angle of the response rotates the current away from

the crossshore direction when compared to the isotropic response. The fraction of surface current

variance explained by the TIWIRF and TAWIRF with 6-day time lag are 43.9 and 54.7% of the

total current variance, respectively (Figure 4.5B).

Although the linear WIRFs show anisotropy in the wind response, the responses to onshore

and offshore winds (or upcoast and downcoast winds) are identical.

4.5.3 Nonlinear WIRFs

The magnitude and phase of the WIRF (G or H) in the linear regression are similar to

those of the linear part (G1 or H1, respectively) in the nonlinear regression (not shown). The

nonlinear term (G2 or H2) controls the asymmetric current response. However, their contributions

can not be simply presented in the form of the linearly estimated WIRFs (e.g., magnitude and phase

in Figures 4.8 and 4.14) because of nonlinearity .

The time integrations of the temporal amplitudes of the linear and nonlinear WIRFs are

shown in Figure 4.15 to examine the anisotropic and asymmetric responses to four different steady

winds. While the linear FIWIRF (Figure 4.15A) has an isotropic response, the nonlinear FIWIRF

shows a different response to onshore and offshore winds. The response of the nonlinear FIWIRF to

onshore wind is closer to alongcoast compared to the onshore wind response of the linear FIWIRF,

and the offshore wind generates a much stronger response at about 40 degrees to the right of the

wind direction. Because of the isotropy assumption, the response of the nonlinear FIWIRF to the

upcoast wind is identical to that to the onshore wind, and the same for the offshore wind and

downcoast wind.

The time integrated responses of the linear and nonlinear FAWIRFs are shown in Figures

4.15B and 4.15C, respectively. The response of the linear FAWIRF was discussed in Figure 4.9A,

but is plotted with all four quadrants for easier comparison to the nonlinear results with the current

suppressed in the onshore direction and enhanced in the offshore direction (Figure 4.15B). The

response of the nonlinear FAWIRF shows asymmetric features in the coastal region (Figure 4.15C).

The time integrated responses of the linear/nonlinear TIWIRFs and TAWIRFs are shown

in Figures 4.15D–4.15F, and those have nearly the same pattern as the frequency domain WIRFs.

4.5.4 Wind-driven surface circulation

One of the benefits of the WIRF is to provide a complete description of the wind-driven

flow. The complexity of the wind-driven surface current was examined (not shown) using the non-

linear FAWIRF and two wind cases: constant wind and diurnal wind (hourly composite mean wind

stress). The responses to the steady wind from multiple directions (not shown) reflect coastline and

bathymetry effects. The surface current response to the onshore wind is inhibited by coastline and

veers either up- or down-coast. The response to the down-coast wind within 160–240T is 30–40%
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Figure 4.15: Top row: Time integrations of the temporal amplitudes of the frequency domain WIRFs
for a constant wind stress during 3 days. A. Linear FIWIRF (û = Hτ̂ ) and nonlinear FIWIRF
(û = H1τ̂ +H2|τ̂ |). B. Linear FAWIRF, which is a four quadrant plot of Figure 4.9A. C. Nonlinear
FAWIRF. Bottom row: Time integrations of the time domain WIRFs for a constant wind stress
during 3 days. D. Linear TIWIRF (u = GτN ) and nonlinear TIWIRF (u = G1τN + G2|τN |).
E. Linear TAWIRF, which is a four quadrant plot of Figure 4.9B. F. Nonlinear TAWIRF. The
constant wind stress is presented as an arrow for each direction: up (upcoast), down (downcoast),
right (onshore), and left (offshore). The thin dashdot circular curves denote the percentage of the
wind-driven current speed to the wind speed, which are 1, 2, 3, 4, and 5% from the origin, and the
thin dotted lines indicate the direction of 45 degrees to the right of the wind stress.
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stronger than response to the wind in other directions. The diurnal wind generates rotating currents

with the elliptical or skewed responses by the coastline with different phases (not shown) resulting

from varying time lags.

4.5.5 Residual variance ratio

The total residual variance ratio of the nonlinearly estimated WIRFs plotted against the

number of subsamples (Figure 4.5A for the FIWIRF and FAWIRF) and the number of time lags

(Figure 4.5B for the TIWIRF and TAWIRF) show improvement over the linear fits. Compared

with the linear estimate, the total residual ratio is reduced by about 5% in the frequency domain

estimates (FIWIRF and FAWIRF) and by about 4% for the time domain estimates (TIWIRF and

TAWIRF). This is not significant beyond one standard deviation, but it is greater than that expected

for adding red noise parameters and the physical results are sensible (Figure 4.15).

4.5.6 Errors in the WIRF

The error in the estimated WIRF can result from several sources: the measurement errors

of surface currents and wind, statistical uncertainty, and errors introduced by the parameterization

of the WIRF. The measurement error of surface currents in the study domain is about 5.5 cm s−1

(section 3.3.3), and is assumed to be uncorrelated in time so that averaging over many realizations

reduces the effects of this error. The wind measurement error is reported as ±2% of the wind speed

(0.04–0.18 m s−1). The statistical uncertainty is estimated using the Jackknife method, but that

does not completely characterize the error. Least-squares methods include error estimates, which

account for missing information.

The contamination of the observed currents by the measurement noise and other processes

is modeled by a white noise spectrum used to calculate a SNR at each frequency. The estimated

linear frequency domain WIRF (equation 4.23) can be rewritten as

H =
(
τ̂ †Ra

−1τ̂ + P−1
)−1

τ̂ †Ra
−1û (4.38)

=
(
τ̂ †τ̂ + P−1κ2

)−1

τ̂ †û, (4.39)

where Ra = κ2I is the noise level assumed as a constant, and P is the prior uncertainty of the

WIRF.

The posterior uncertainty covariance (P̂) of the WIRF is

P̂ =
(
τ̂ †Ra

−1τ̂ + P−1
)−1

= κ2
(
τ̂ †τ̂ + P−1κ2

)−1

. (4.40)

The amplitude of the uncertainty is somewhat arbitrary, because the choice of a white noise spectrum

is oversimplified and poorly constrained, but the posterior uncertainty (not shown) has larger errors

away from the frequencies with strong driving.

This error analysis does not account for systematic errors in the wind or current measure-

ments. The errors in the wind measurements translate to model errors in the regression, so that the
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problem becomes deconvolution, for solution by total least squares ([Golub and Van Loan(1980),

Van Huffel and Vandewalle(1991)]) or other methods, which are outside the scope of this work.

4.6 Discussion

Wind impulse response functions are statistically estimated from spatially averaged ob-

served surface currents and shore station wind in both frequency and time domains to examine

anisotropic and nonlinear current response in the coastal area. The surface current response due

to coastal wind forcing is found to be anisotropic, i.e., dependent on wind direction, in contrast to

the isotropic response in the open ocean. Bottom and coastline boundaries including islands and

headlands support local sea level gradients due to wind and may also yield anisotropic bottom drag.

For steady wind forcing for 3 days, the linear isotropic current response estimated in the frequency

or time domain is 42 ± 2 degrees to the right of wind direction regardless of the wind direction.

However, the linear anisotropic current response in both domains is 10±4 degrees to the right of the

upcoast wind and 71± 3 degrees to the right of the onshore wind. The linearly estimated FAWIRF

and TAWIRF by construction produce the same response to onshore and offshore winds (or upcoast

and downcoast winds). Only the nonlinear WIRFs can show asymmetric current response. The sur-

face current response discussed in this chapter includes the wind-driven components coupled with

the bottom and depth effects.

The instantaneous acceleration of the current is proportional to wind stress, friction, and

pressure gradients. The direct correlation of the wind stress and the acceleration of surface currents

(∂u/∂t) is relatively low due to noise in the derivatives. Instead of the momentum balance, the

regression is used, which implies time integration of the momentum equations. The response to the

wind includes sea surface set up due to the cumulative effects of currents interacting with topography.

Thus the wind response we consider here can include currents accelerated by the pressure gradients

due to sea surface set up, as considered by [Ekman(1905)]. The anisotropy of the coastline and

bathymetry leads to an anisotropic response of the currents both through pressure set up and

frictional effects.

For the comparison of estimated WIRFs, the total residual variance ratio is calculated by

cross-validation for the training data and the uncertainty is estimated using the Jackknife method.

The regularization in the frequency and time domain WIRF estimates is picked to optimize the

cross-validation performance. The error bars of the isotropic and anisotropic WIRFs do not overlap,

so the improvement in fitting attained by allowing anisotropy is robust.

The advantages in the use of spatially averaged surface currents are to avoid the ambiguity

in the spatial decorrelation of both surface currents and wind stress, to increase the SNR in the

surface currents with less missing data, and to provide a representative view of the study domain.

In addition, the effects of missing data are potentially represented in the error bars calculated by the

Jackknife method. Missing data are less of a problem for the time domain calculation of the WIRF.

Because the correlation uses only the data available, and no interpolation or zero-filling is used. This
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comes at the expense of non-positive-definite covariance matrices, and the crude regularization we

apply may affect the results. Similar results for both frequency and time domains estimates show

that missing data are not a dominant effect.

While the data and methodology presented document the anisotropic wind response of the

ocean near San Diego, it is noteworthy to emphasize that the response is a combination of both

directly wind-driven flow and alongshore geostrophic response to upwelling/downwelling favorable

winds. Given the site specific nature of the latter dynamics, a logical extension of this work would

be a broad area examination of the response function along the U.S. West Coast (USWC), taking

advantage of the growing HF radar mapped surface currents records (Figure 7.1A). It is expected

that the spatially varying USWC wind climate, coupled with a complex coastline geometry, will

introduce gradients in the geostrophic response that can be diagnosed in those data sets using the

wind impulse response functions described in this chapter.

The anisotropic wind response in coastal waters has broad ranging implications to the

understanding and prediction of the transport of biologics, contaminants, spilled oil, and other

water-borne constituents in the coastal zone, especially for those scenarios where ’rule of thumb’

estimates of wind drift are used for predicting the Lagrangian behavior of the upper ocean. This is

especially prevalent in operational communities dealing with oil spills and search/rescue response. In

addition, anisotropic surface current response suggests that coastal upwelling indices and estimates

based upon wind climatology may have biases that need further investigation. The previously

mentioned study would be a first step in this direction, and assist in growing interests in including

ocean dynamics in simple coastal productivity models and fisheries research.

4.7 Appendix

4.7.1 WIRFs in Ekman theory

The Ekman theory at finite depth is considered in the frequency domain.

Isotropic approach

The momentum equations with depth-independent viscosity (ν) in physical space,

∂u

∂t
− fcv + axx ∗ u = ν

∂2u

∂z2
, (4.41)

∂v

∂t
+ fcu + ayy ∗ v = ν

∂2v

∂z2
, (4.42)

are combined and Fourier transformed into the frequency domain assuming an isotropic friction

coefficient (axx = ayy = rδ(t) and axy = ayx = 0):

λ2û(z, ω) =
∂2û(z, ω)

∂z2
, (4.43)
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where λ =
√

[i(ω + fc) + r] /ν. τ̂ (ω) and û(z, ω) denote the wind stress and currents in the frequency

domain. When boundary conditions at the surface (z = 0) and finite depth (z = −h) are applied,

the upper boundary condition sets viscous stress equal to wind stress,

∂û(z, ω)
∂z

∣∣∣∣
z=0

=
τ̂ (ω)
ρν

. (4.44)

If the lower boundary condition sets flow to zero,

û(z, ω)|z=−h = 0, (4.45)

the FIWIRF is

H(z, ω) =
û(z, ω)
τ̂ (ω)

=
sinh λ(z + h)
λρν cosh(λh)

. (4.46)

If the lower boundary condition enforces zero deep stress,

∂û(z, ω)
∂z

∣∣∣∣
z=−h

= 0, (4.47)

the FIWIRF becomes

H(z, ω) =
û(z, ω)
τ̂ (ω)

=
cosh λ(z + h)
λρν sinh(λh)

, (4.48)

and its magnitude and phase are identical to equation 4.46.

Anisotropic approach

The momentum equations in the frequency domain are

αxxû + αxy v̂ = ν
∂2û

∂z2
, (4.49)

αyxû + αyy v̂ = ν
∂2v̂

∂z2
, (4.50)

where αxx = iω + axx, αxy = −fc + axy, αyx = fc + ayx, and αyy = iω + ayy. When equation 4.49

is used to solve for v̂(z, ω),

v̂ =
1

αxy

(
νû(2) − αxxû

)
, (4.51)

and substituted into equation 4.50, the fourth order ordinary differential equation results:

ν2û(4) − ν(αxx + αyy)û(2) + (αxxαyy − αxyαyx) û = 0, (4.52)

where B(n) is the n-th order of derivative with respect to z. Assuming that the solution of equation

4.52 is

û(z, ω) =
4∑

j=1

cj(ω)eλj(ω)z, (4.53)

and this assumption works only when ν is depth-independent. From the characteristic equation of

equation 4.52,

û(4) + pû(2) + qû(1) + sû = 0, (4.54)
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λ4 + pλ2 + qλ + s = 0, (4.55)

where p = − (αxx + αyy) /ν, q = 0, and s = (αxxαyy − αxyαyx) /ν2. The quartic equation can be

solved by Ferrari-Cardan’s method ([Smith(1959)]). An additional parameter (m) is introduced,

(λ2 + p + m)2 = (p + 2m)λ2 + (p2 − s + 2pm + m2), (4.56)

and three m are found to satisfy that determinant of the right hand side of equation 4.56 is equal

to zero
[
D = −4(p + 2m)(p2 − s + 2pm + m2) = 0

]
:

m1 = −p

2
and m2,3 = −p±√s. (4.57)

For each m, four characteristic roots (λ) exist. When m = −p/2,

λ2 = −p

2
±

√
p2

4
− s (4.58)

=
αxx + αyy

2ν
± 1

ν

√
(αxx − αyy)2

4
+ αxyαyx. (4.59)

When m = −p±√s,

λ1,2 =
1
2

(√
−p + 2

√
s±

√
−p− 2

√
s

)
(4.60)

and

λ3,4 =
1
2

(√
−p− 2

√
s±

√
−p + 2

√
s

)
. (4.61)

The boundary conditions at the top (wind stress) and bottom (zero deep stress) are applied,

∂û(z, ω)
∂z

∣∣∣∣
z=0

=
τ̂x(ω)
ρν

, (4.62)

∂v̂(z, ω)
∂z

∣∣∣∣
z=0

=
τ̂y(ω)
ρν

=⇒ 1
αxy

(
νû(3) − αxxû(1)

)∣∣∣∣
z=0

=
τ̂y(ω)
ρν

, (4.63)

∂û(z, ω)
∂z

∣∣∣∣
z=−h

= 0, (4.64)

and

∂v̂(z, ω)
∂z

∣∣∣∣
z=−h

= 0 =⇒ 1
αxy

(
νû(3) − αxxû(1)

)∣∣∣∣
z=−h

= 0. (4.65)

Equation 4.52 can be solved as an inverse problem ([Wunsch(1996)]).

Ac = d, (4.66)
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where c =




c1

c2

c3

c4




, d =




τ̂x(ω)
ρν

τ̂y(ω)
ρν αxy

0

0




, and

A =




λ1 λ2 λ3 λ4

νλ3
1 − αxxλ1 νλ3

2 − αxxλ2 νλ3
3 − αxxλ3 νλ3

4 − αxxλ4

e−λ1h e−λ2h e−λ3h e−λ4h

(νλ3
1 − αxxλ1)e−λ1h (νλ3

2 − αxxλ2)e−λ2h (νλ3
3 − αxxλ3)e−λ3h (νλ3

4 − αxxλ4)e−λ4h




.

The anisotropic response functions in the x-direction (Hxx and Hxy) are estimated by solv-

ing equation 4.66 numerically at each finite frequency and substituting the model efficient (c)

into equation 4.53. Then, the anisotropic response functions in the y-direction (Hyx and Hyy)

are estimated from equation 4.51. All FAWIRFs for three choices of m in equation 4.57 show the

identical magnitude and phase.

4.7.2 Estimate of adjustment terms

The parameters of the Ekman model, including kinematic viscosity (ν) and adjustment

terms (axx, axy, ayx, and ayy), can be estimated from data-derived WIRFs. However, there are

limitations in the estimate due to the errors in the estimated WIRFs. In addition, the transformation

between the parameters and the WIRF is nonlinear, and must be inverted iteratively. As the simplest

case, constant adjustment terms and viscosity are varied to approximately fit the width and the

magnitude of the peak at the Coriolis frequency. The peak of the WIRF near zero frequency is not

predicted by the Ekman model, and may indicate frequency-dependent adjustment terms and Ekman

layer parameters. The magnitude of the model WIRF is scaled by a constant for a compensating

shift in magnitude of the data-derived WIRFs, which provides a clue for the viscosity estimate. The

magnitude and phase of the FIWIRF and the model fit are shown in Figures 4.16A and 4.16C,

respectively. The estimated viscosity (ν) is 2.1 × 10−5 m2 s−1 in both FIWIRF and FAWIRF, and

is within the typical viscosity range (section 4.2.2). The isotropic friction coefficient (r) is equal

to 3.16 × 10−6 s−1. The anisotropic adjustment terms based on the data-derived FAWIRF are

rxx = 1 × 10−9 s−1, rxy = −8 × 10−6 s−1, ryx = 0, and ryy = 1 × 10−5 s−1 (Figures 4.16B and

4.16D). Although the adjustment terms can be a function of frequency, this is beyond the scope of

this dissertation.

This chapter, in part, has been accepted for publication of the material as it is supposed

to be appeared in Journal of Physical Oceanography, 2009, Kim, S. Y., B. D. Cornuelle, and E.

J. Terrill titled by ‘Anisotropic response of surface currents to the wind in a coastal region’, doi:

10.1175/2009JPO4013.1. The dissertation author was the primary investigator and author of this

paper.
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Figure 4.16: Comparison of the model WIRF (thick line) and the data-derived WIRF (thin line).
A and C: Magnitude and phase of the FIWIRF (r = 3.16 × 10−6 s−1). B and D: Magnitude and
phase of the FAWIRF (rxx = 1× 10−9 s−1, rxy = −8× 10−6 s−1, ryx = 0, and ryy = 1× 10−5 s−1).
The estimated viscosity (ν) is 2.1 × 10−5 m2 s−1 in both FIWIRF and FAWIRF. The vertical dot
line indicates the inertial frequency (ω = −1.07 cpd) in the study domain.
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Abstract

Surface current observations from a high-frequency radar network deployed in southern

San Diego are decomposed according to their driving forces: pure tides, local winds, low frequency

pressure gradient, and several continuous frequency bands. In contrast to regions where circulation is

dominated by a single forcing mechanism, in the San Diego region many superposed ocean responses

are present as a result of the complicated topography and relatively weak winds in the region. This

necessitates the application of a statistical decomposition approach. Surface currents driven by pure

tides are calculated using harmonic analysis. The locally wind-driven surface currents are estimated

by regression of observed winds on observed surface currents (Chapter 4). The surface currents with

the wind forced component removed are then filtered by weighted least-squares fitting assuming

three colored signals and white noise: low frequency band (|ω| ≤ 0.4 cycles per day) and cuspate

tidal peaks at the diurnal (K1) and semidiurnal (M2) frequencies. The power spectrum of the locally

wind-driven surface currents shows a strong diurnal peak superposed on a red spectrum, similar to

the power spectrum of the observed winds. The magnitude of the locally wind-driven surface currents

is typically 3–5% of the wind speed, and their veering angles vary 30–50 degrees to the right of the

wind at zero time lag. The frictional momentum balance is explored by calculating the coherence

between the atmospherically-adjusted sea-surface height difference and the surface currents within

a distinctive low frequency band. The spatial correlations of each part of the decomposed surface

currents exhibit Gaussian and exponential shapes with varying decorrelation length scales.
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5.1 Introduction

Coastal surface currents are a mixture of the oceanic responses to the local winds, re-

mote wind forcing via eddies and coastal trapped waves, tides, pressure gradients, and meteorolog-

ical fluxes of heat and fresh water ([Ewing(1950), Munk and Cartwright(1966), Essen et al.(1983),

Alpers(1985), Price et al.(1986), Prandle(1987), Ng(1993a), Ng(1993b), Shay et al.(1995)]).

Surface currents driven by the local wind are classified into two kinds of currents

by the nature of the mechanical coupling: wind-drift currents due to friction of the wind

([Ekman(1905), Bye(1965), Price et al.(1987)]) and wave-drift currents (Stokes drift) due to sur-

face waves ([Bye(1967), Kenyon(1969)]). Wind-drift currents (called wind-driven currents herein)

remain in the wall layer ([Csanady(1982)]) or the inertial sublayer ([Leibovich(1977)]), which is

a logarithmic boundary layer (O(1) m) between the air-sea interface and the top of Ekman layer

([Bye(1965), Wu(1975)]). The veering angles of wind-driven currents within the wall layer range from

zero to 45 degrees to the right of the wind direction ([Csanady(1982), Fernandez et al.(1996)]), and

their magnitudes are 2–3% of the wind speed ([Bye(1965), Churchill and Csanady(1983), Wu(1983),

Weber(1983), Spaulding(1999)]). In statistical analyses of the wind and currents, the locally wind-

driven currents have been parameterized by the wind velocity or wind stress using linear and

nonlinear models ([Prandle(1987), Essen(1993), Ng(1993a), Rabinovich et al.(2006)]). Meanwhile,

the wind impulse response function (WIRF) between wind stress and currents within the Ek-

man layer has been studied in a complementary way ([Ekman(1905), Gonella(1972), Weller(1981),

Rio and Hernandez(2003)] and Chapter 4). The wind-driven surface layer jet within the mixing

layer depends on the heat flux and the surface wind stress ([Phillips(1966), Price et al.(1986)]), and

seasonal and daily stratification changes can induce a signal of 1–3 cm s−1 ([Graber et al.(1997)])

and larger ([Cronin and Kesseler(2008)]). On the other hand, Stokes drift is dependent on the di-

rectional wave spectrum ([Kenyon(1969), Essen(1993)]), and has been reported as 7–14 cm s−1 at

the surface and ∼2 cm s−1 at 1 m depth as an exponentially decayed profile under typical wind

speed ([Graber et al.(1997)]). Because the high-frequency (HF) radar observes only the averaged

currents of the upper one meter, the surface layer jet and Stokes drift in this chapter will not be

distinguishable from the Ekman response (section 5.6.1).

Tidal forcing produces phase-locked pure tidal currents and near-tidal-band currents

([Munk et al.(1965), Munk et al.(1970), Hendershott and Munk(1970), Hendershott(1973)]). The

phase-locked tidal currents are the sum of the barotropic tides and the baroclinic internal tides. The

near-tidal-band currents arise from modulation of the tides by nonlinear interactions (e.g. cuspate

tidal peaks) or due to slowly varying parameters (e.g., stratification) in linear dynamics. From sur-

face current observations the barotropic and baroclinic tides may be distinguishable by the spatial

variation of the amplitude and phase due to changes in topography or stratification.

Besides tidal forcing, alongshore pressure gradients, typically generated by large

scale atmospheric forcing, can drive the subtidal surface currents ([Chelton and Davis(1982),

Allen and Denbo(1984), Lentz and Winant(1986)]). These subtidal currents may include
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coastally trapped waves ([Chapman(1983), Brink et al.(1987), Brink(1991)]) and other cli-

mate signals such as El-Nino, Southern Oscillation Index (SOI), and Pacific Decadal Oscil-

lation (PDO) ([Enfield and Allen(1980), Chelton and Enfield(1986), Johnson and O’Brien(1990),

Trenberth and Hurrell(1994)]).

Finally, the residual currents not explained by the other forcing terms are considered to be

a result of intermittent local eddies, high-frequency tidal harmonic surface currents, outliers, and

observational errors. There is precedence in the literature of separating currents based upon their

forcing such as decomposing tidal currents and residual currents using harmonic analysis or band-

pass filters ([Prandle(1987), Shay et al.(1995)]). Moreover, the locally wind-driven surface currents

were estimated from the de-tided surface currents in two ways: a simple regression between surface

currents and winds ([Essen et al.(1983), Prandle and Player(1993)]) and a fit using rotary empirical

orthogonal functions ([Ng(1993a)]). Surface currents off southern San Diego have a mixed response

from several driving forces: tidal constituents, diurnal (plus harmonics) wind, broad-band wind,

diurnal heat flux, and alongshore pressure gradient. Therefore the use of a band-pass filter before

the separation of locally wind-driven currents and tidal currents can be problematic, because locally

wind-driven currents can have similar spectral content as the tidal currents. Moreover, because of

missing data, least-squares spectral analysis is needed instead of conventional band-pass filters.

The surface current decomposition is motivated by the following questions: How much

surface current variance is explained by each forcing component? What are the characteristics and

variability of the surface currents driven by each forcing component? How can these results be used

to create a statistical surface current model based upon the observations?

This chapter is organized into three main sections. First, observations of winds, surface

tides (sea-surface heights), and surface currents are described (section 5.2). Next, the decomposi-

tion techniques using a statistical regression between winds and surface currents (Chapter 4) and

a weighted least-squares fitting method are addressed (section 5.3). Last, the characteristics of

the decomposed surface currents are discussed including typical time series, the variance fraction

attributed to each component, and the spatially averaged correlations (section 5.4).

5.2 Observations

Surface currents used in this analysis were observed by three HF radars (∼25 MHz) deployed

off southern San Diego (Figure 5.1): Point Loma, Border Park, and Coronado Islands. Winds are

observed at two shore stations – Scripps Pier (SIO) and Tijuana River (TJR), and are converted

into wind stress using the drag coefficient described in [Large and Pond(1981)]. For the estimate

of the alongshore pressure difference, the sea-surface heights (SSHs) at San Diego Bay (SDB) and

Los Angeles Harbor (LAH) and the atmospheric pressure data at San Diego Lindbergh Field (SAN)

and Los Angeles International Airports (LAX) are used. Observations used in this study are hourly

averages over two years (April 2003 – March 2005). The fractional data availability of the surface

currents and winds is shown in Figure 5.2, and the SSH records are complete. The gray scale in
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the data availability of surface currents indicates the ratio of the number of hourly vector current

solutions to the number of grid points in Figure 5.1, which indicate the spatial coverage region with

data at least 70% of the two-year period. The coastline of southern San Diego faces roughly west

southwest (SWW), and the continental shelf break is nearly parallel to the coastline. The headland

(Point Loma) is located near the northeast boundary.

5.2.1 Wind

The rotary power spectrum of the TJR wind estimated from two years of data is char-

acterized by a diurnal peak and its harmonics superposed on a red spectrum (Figure 5.3a). The

variance in the clockwise diurnal frequency is 3–4 times greater than that in the counterclockwise

diurnal frequency. The SIO wind spectrum (not shown) is similar. The rotary coherence and phase

between the two wind observations are estimated from 90 subsamples with 8.12-day record length,

with missing observation values filled with zeros (Figures 5.3b and 5.3c, respectively). The highest

coherence (0.6–0.8) is found at the diurnal (S1) and semidiurnal (S2) frequencies, and in the sub-

diurnal frequency band (|ω| < 1 cycle(s) per day (cpd)). The phase in all significant frequencies is

nearly zero.

In the time domain, the hodograph (not shown) of the hourly composite mean of the wind

observations with respect to the local time shows dominant land/sea breezes and northeast-southwest

polarization of the wind direction at both locations. A slight difference in the polarization between

both sites is presumably due to the geography.

5.2.2 Sea surface heights (SSHs)

The SIO SSH shows lower coherence than SDB SSH (by roughly 0.1) with the SSHs at

the other shore stations along the U.S. West Coast (USWC), especially in the subinertial frequency

band. Moreover, the SIO SSH anomaly (SSHA) time series shows inconsistencies compared with

SSHA at nearby stations. Therefore the SDB SSH is chosen to estimate the local pressure difference

although it may be biased by inner harbor effects and less exposed to local wave setup.

The power spectrum of the SDB SSH (not shown) shows that the semidiurnal variance is

stronger than the diurnal variance (M2>K1>O1'S2) as shown by the SDB tidal constituents listed

in Table 5.1. Since the SDB surface tide may be distorted by the frequency response of the bay, it

is compared with the SSH observed at 190 NM west of San Diego (NDBC buoy, 46412). The SSH

at the offshore station is 10–20% smaller and approximately 15 minutes later than that in the bay.

The power spectra shape of the SSHs at two locations are similar. The atmospherically-adjusted

SSHs are made by adding the algebraic sum of the atmospheric pressure and the SSH converted to

decibars at each pair of stations: SAN–SDB and LAX–LAH ([Wunsch and Stammer(1997)]). While

the atmospheric pressure and SSH are not observed at the same location, the atmospheric pressure

is assumed to have large scale variability and the mismatch in the observed locations should be

negligible.
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Figure 5.1: The study domain for the surface current decomposition: surface currents measured by
three HF radars – Point Loma (R1), Border Park (R2), and Coronado Islands (R3) – and winds
observed at two shore stations – Scripps Pier (SIO, W1) and Tijuana River (TJR, W2). The gray
dots indicate the grid points that have at least 70% data availability of surface currents for two years
(April 2003 – March 2005). The decomposed surface current time series at the location A are shown
as an example in Figure 5.5. The bottom bathymetry contours are indicated by the thin curves with
10 m (0 < z < 100 m) and 50 m (100 < z < 1000 m) contour intervals and the thick curves at the
50, 100, 500, and 1000 m depths.
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Figure 5.2: The data availability of the observations: (a) Surface currents. The gray scale indicates
the spatial coverage relative to total grid points shown in Figure 5.1. (b) SIO wind (W1). (c) TJR
wind (W2). The SSHs at San Diego Bay and Los Angeles Harbor and the atmospheric pressure
data at San Diego Lindbergh Field (SAN) and Los Angeles International Airports (LAX) do not
have missing data.

Table 5.1: The surface tide constituents and amplitudes at Los Angeles Harbor (LAH) and San
Diego Bay (SDB) ordered by the amplitude at SDB.

Constituents Constituents name Frequency (cpd) Amplitude (m)
LAH SDB

M2 Principal lunar semidiurnal 1.9323 0.515 0.576
K1 Lunar solar diurnal 1.0027 0.343 0.352
S2 Principal solar semidiurnal 2.0000 0.203 0.233
O1 Principal lunar diurnal 0.9295 0.218 0.223
N2 Larger lunar elliptic semidiurnal 1.8960 0.121 0.136
P1 Principal solar diurnal 0.9937 0.107 0.109
S1 Solar diurnal 1.0000 0.003 0.000

5.2.3 Surface currents

Hourly surface currents optimally interpolated directly from radial velocities are used for

the decomposition analysis (Chapter 3). As a part of the data quality control, the surface currents

with the fractional error variance (called an uncertainty index) bigger than 0.95 in either x- or

y-direction are filtered out. The fractional error variance is defined as the ratio of the posterior

uncertainty to the expected current variance in the optimal interpolation, and is approaching zero

for an estimate with zero uncertainty and one for an estimate with no information. A lower threshold

for the fractional error variance generates more missing data, but a higher threshold can impose a bias

in the surface current field. The surface currents in southern San Diego are typically southeastward,

and their spatial correlations exhibit an exponential shape with different length scale in the x- and

y-directions (Chapter 2).

The rotary power spectra of the surface currents are averaged over the grid points shown

in Figure 5.1 using data filled with zeros for missing data. The averaged power spectrum shows

clockwise-dominant tidal peaks, variance in the low frequency band (less than 0.4 cpd), frequency



114

−3 −2 −1 0 1 2 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Frequency (cpd)

P
ow

er
 (

(m
/s

)2 /c
pd

)

(a)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (cpd)

C
oh

er
en

ce

(b)

Coherence
95% significant level

−3 −2 −1 0 1 2 3
−90

−45

0

45

90

Frequency (cpd)

P
ha

se
 (

de
gr

ee
(s

))

(c)

Figure 5.3: (a) Rotary power spectrum of TJR wind calculated from two years of data. (b) and
(c): Coherence and phase between SIO and TJR winds estimated with 90 subsamples of two wind
time series, and each one has 8.12-day record of length. The 95% significant level is calculated from
the 95% percentile of the coherence between data and independent Gaussian random variables. The
missing observation values have been filled with zeros in those estimates.
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bands centered on diurnal and semidiurnal tides, their harmonics, and residuals (Figure 5.4a). How-

ever, the variance of surface currents at the inertial frequency (1.06 ≤ fc ≤ 1.08 cpd in the study

domain) is not significantly larger than the background ([Bratkovich(1985)]), which may be due to

dissipation and blocking by the coastline. The weak inertial variance of surface currents in southern

San Diego is not due to the limitation of record length because the two-year record length provides

enough resolution to separate the inertial frequency (fc) and the closest diurnal frequency (K1). In

addition, the surface currents measured by the HF radar network along the entire USWC (Figure

7.1A) show a significant separation of the variance between those two frequencies, so the weak iner-

tial variance appear to be local to San Diego. The diurnal variance of surface currents (K1 and S1)

is approximately five times larger than the semidiurnal (M2) variance, in contrast to the amplitude

distribution of the tidal constituents in SDB (Table 5.1) – likely a result of other diurnal forcing

components, especially, diurnal winds and the diurnal stratification or heat flux.

The source of the surface current variance at the semidiurnal frequency (S2) is ambiguous,

because it may be driven by both the diurnal wind and the S2 tide. Since the wind variance at the

S2 frequency is about 10 times less than the S1 variance, we assume that the S2 variance of surface

currents is dominantly driven by the S2 tide (section 4.5.1).

The effective averaging depth in the current measurements using HF radar is 8–

16% wavelength of the surface gravity wave (Don Barrick 2008, personal communication;

[Stewart and Joy(1974), Barrick et al.(1977), Ha(1979), Fernandez et al.(1996)]), and the averag-

ing depth for the data in this chapter is assumed to be less than 1 m due to radar with ∼25 MHz

operating frequency.

5.3 Methods

The surface currents (u) are decomposed according to their driving forces:

u = ut + uw + 〈u〉+ ug (5.1)

= ut + uw + 〈u〉+ uL̂ + uD̂ + uŜ + ur, (5.2)

where ut, uw, 〈u〉, and ug, respectively, denote the surface currents driven by pure tides, the locally

wind-driven surface currents, the temporal mean surface currents, the surface currents with wind

removed. The wind-free surface currents (ug) are the sum of low frequency (uL̂), diurnal frequency

band (uD̂), which include the inertial frequency surface currents, semidiurnal frequency band (uŜ)

components, and residual surface currents (ur).

Under the assumption that locally wind-driven surface currents and barotropic currents

driven by pure tides (Table 5.1) do not interfere, the barotropic tidal currents including the S2

variance are filtered out first, then locally wind-driven surface currents are separated later.
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Figure 5.4: Regionally averaged rotary power spectra of (a) surface currents (u), (b) locally estimated
wind-driven surface currents (uw), and (c) surface currents with the locally estimated wind-driven
components removed (ug).
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Figure 5.4: (Continued.)

5.3.1 Surface currents driven by pure tides

The current signal phased-locked with tidal constituents is filtered using least-squares fitting

for the main tidal frequencies in Table 5.1 except the S1 frequency. The barotropic and baroclinic

components are discussed with the tidal ellipses of surface currents at the K1 and M2 frequencies

in section 5.4.1. Moreover, the baroclinic tidal currents and near tidal band currents may not be

distinguishable in this analysis.

5.3.2 Locally wind-driven surface currents

The isotropic and anisotropic wind impulse response functions (WIRFs) in the frequency-

domain and time-domain have been studied ([Ekman(1905), Gonella(1972), Weller(1981)] and Chap-

ter 4). The frequency-domain WIRF describes the relationship between currents and wind stress as

in the extended Ekman theory (Chapter 4). On the other hand, the time-domain WIRF is convenient

for estimating wind-driven surface currents from the wind observations using the time convolution

for applications such as surface current forecast models or upwelling index estimates. Although the

frequency-domain and time-domain WIRF estimates should be equivalent, the two approaches differs

in the treatment of missing observations and in the regularization of the inverse problem. The sur-

face current response to wind in the coastal region has been reported as asymmetric and anisotropic

in the numerical models and observations ([Sverdrup(1938), Allen(1980), Beardsley et al.(1987),

Huyer and Kosro(1987), Overland and Pease(1988), Li and Weisberg(1999), Weisberg et al.(2001),

Choi and Wilkin(2007)]). Therefore both the frequency-domain isotropic WIRF (FIWIRF) and the

time-domain anisotropic WIRF (TAWIRF) are considered in this analysis. As the statistical es-

timates of the WIRFs were addressed thoroughly in Chapter 4, the essential part of the WIRF
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estimate in two domains is described briefly.

Frequency domain

The FIWIRF (Ĥ) is computed from the time average covariance of the Fourier coefficients

of the detided surface currents (ûf) and wind stress (τ̂ ) at each frequency (ω), which are combined

into complex numbers (τ̂ = τ̂x + iτ̂y, û = û + iv̂), respectively, for the isotropic estimate:

Ĥ(x, ω) =
(
〈ûf(x, ω) τ̂ †(ω)〉

)(
〈τ̂ (ω) τ̂ †(ω)〉+ Ra

)−1

, (5.3)

where † indicates the complex conjugate transpose and the regularization matrix (Ra) is assumed

to be the noise level of the wind stress. The averages are computed using 90 sub-intervals of the

total data duration and the missing data are filled with zeros.

The Fourier coefficients of the locally wind-driven surface currents are given by the product

of the transfer function with the wind stress

ûw(x, ω) = Ĥ(x, ω)τ̂ (ω). (5.4)

Time domain

The TAWIRF (H) of the detided surface currents (uf) in the discrete time domain (∆t) is

estimated from

H(x) =
(
〈uf(x, t) τ †N (t)〉

)(
〈τN (t) τ †N (t)〉+ Rb

)−1

, (5.5)

where τN (t) = [τ (t−N∆t) · · · τ (t−∆t) τ (t)]† denotes the wind stress stacked with up to N -hour

time lags. τ (t) is a two-element vector to allow for anisotropic response, i.e., τ (t) = [τx(t) τy(t)]†.

The regularization matrix (Rb) is assumed to be a scaled identity matrix

Rb = γ2I, (5.6)

with γ adjusted to minimize the error in the cross-validated current estimates (section 4.5.1). The

locally wind-driven surface currents are computed as the convolution of the TAWIRF and the wind

time series:

uw(x, t) =
N∑

n=0

h(x, n∆t) τ (t− n∆t). (5.7)

The autocovariance of wind stress and the covariance of wind stress with surface currents in equation

5.5 are computed excluding the missing data.

5.3.3 Surface currents in frequency bands

The power spectrum of the surface currents (ug) after removal of wind and tides is dom-

inated by three frequency bands (Figure 5.4c). As the observation time series are not complete,

band-pass filtering in the three frequency bands is accomplished by weighted least-squares fitting,

in spite of the computational expense. The frequencies are equally-spaced and cover the bands just
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as in conventional Fourier analysis, but the background spectrum outside the bands with enhanced

energy is treated as noise and is not estimated directly:

ug = uL̂ + uD̂ + uŜ + ur (5.8)

=
[
GL̂ GD̂ GŜ

]


mL̂

mD̂

mŜ


 + ur = Gm + ur, (5.9)

where G denotes the regression basis, which are the stacked arrays of sine and cosine functions for

regression on the low, diurnal, and semidiurnal frequency bands (GL̂, GD̂, and GŜ). The model

coefficients (m) are estimated by

m̂ = PG† (
GPG† + Rc

)−1
ug, (5.10)

or

=
(
G†Rc

−1G + P−1
)−1

G†Rc
−1ug, (5.11)

where P and R denote the model covariance matrix and the error covariance matrix, respectively

([Wunsch(1996)]). Equation 5.11 is applied in this chapter because of the computational expense

for the matrix inversion, i.e, the number of frequencies to be estimated (951 frequencies) is less than

the length of the time series (8771 time records).

The model covariance matrix (P = 〈mm†〉) is the prior estimate of the spectral covariance

matrix. The diagonal term of the model covariance matrix is the expected variance at each fre-

quency, and the off-diagonal terms are the cross-correlation of Fourier coefficients between different

frequencies. P is a diagonal matrix for a stationary process and can be separated into blocks by

each frequency component:

P =



PL̂ 0 0

0 PD̂ 0

0 0 PŜ


 , (5.12)

where PL̂ = 〈mL̂m
†
L̂
〉, PD̂ = 〈mD̂m†

D̂
〉, and PŜ = 〈mŜm

†
Ŝ
〉. The variance conservation between the

discrete Fourier transform and the weighted least-squares fitting approach is discussed in sections

5.6.2 and 5.6.3.

The error covariance matrix (Rc = 〈uru†r〉) is estimated from the power spectrum of the

residual surface currents (ur):

S(ω) ∝ ω−β , (5.13)

which can be assumed as the power spectrum with white noise (β = 0) or Brownian/Gaussian noise

(β = 2). The power spectrum of the background currents is approximately (Figure 5.4c)

S(ω) =
92

(ω + 3)2
. (5.14)
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However, because of the conversion of the non-white error spectrum to a non-diagonal matrix in the

time domain and the computational burden of matrix inversion, we assumed the power spectrum

of the error covariance matrix to be white with S(ω) = 2 cm2 s−2 cpd−1, which is the floor level in

Figure 5.4c.

5.3.4 Alongshore pressure gradient forcing

The frictionally dominated depth-averaged momentum balance ([Lentz and Winant(1986),

Brink et al.(1987)]) is:
b

H

∫ η

−H

u dz = −gH∇η, (5.15)

where b, g, and H, respectively, denote a linear bottom drag coefficient, gravitational acceleration

(9.8 m s−2), and the water depth. To relate this balance to the surface currents, two assumptions are

needed. First, assume that the local pressure gradient (∇η) is proportional to the atmospherically-

adjusted SSH difference between two shore stations (∆η) divided by the distance between them

(∆c):

∇η ∝ ∆η

∆c
, (5.16)

and second, assume that the low-frequency-band surface currents are proportional to the depth-

averaged currents:

uL̂ ∼
1
H

∫ η

−H

u dz. (5.17)

At each frequency we regress SSH difference on surface current to find coherence and regres-

sion coefficients for u and v with ∆η. The regression coefficients include bottom and form drag

([McCabe et al.(2006), Warner and MacCready(2008)]), corresponding to the b/ (gH) in equation

5.15. By multiplying by gH they can be compared to the bottom drag coefficients inferred by other

studies. The time derivative of the low frequency band surface currents was found to be negligible

compared with the two terms in the friction balance.

5.4 Results

A typical example of a time series of the decomposed surface currents at location A (Figure

5.1) is shown in Figures 5.5a–5.5h. The surface currents (Figure 5.5a) are decomposed into pure

tide surface currents (Figure 5.5b), locally wind-driven surface currents (Figure 5.5c), temporal mean

surface currents (Figure 5.5d), low frequency band surface currents (|ω| ≤ 0.4 cpd) (Figure 5.5e),

diurnal band surface currents (Figure 5.5f), semidiurnal band surface currents (Figure 5.5g), and

residual surface currents (Figure 5.5h). The variances partitioned into these components are summa-

rized in Table 5.2. The low frequency surface currents and the locally wind-driven surface currents

each have approximately one-third of the total variance. The variance of surface currents coherent

with the alongshore pressure difference takes approximately 3% of the total variance (section 5.4.4).

The pure tide surface currents and the surface currents in the diurnal and semidiurnal frequency
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Figure 5.5: An example of a set of time series of decomposed surface currents at the location A in
Figure 5.1. (a) Unconditioned surface currents (u). (b) Surface currents driven by pure tides (ut).
(c) Locally wind-driven surface currents (uw). (d) Mean surface currents (〈u〉). (e) Surface currents
in the low frequency band (uL̂). (f) Surface currents in the frequency band centered on diurnal
frequency (uD̂). (g) Surface currents in the frequency band centered on semidiurnal frequency (uŜ).
(h) Residual surface currents (ur).

bands represents ∼20% of the total variance. The residual surface currents – some portion of the

nonlinear interactions, the small scale structure, outliers, and noise – accounts for approximately

15% of total variance.

Table 5.2: The variance fraction (%) of the decomposed surface currents. The variance of surface
currents coherent with alongshore pressure difference is approximately 3% of total variance (section
5.4.4).

Pure tide Wind Mean Low Diurnal Semidiurnal Residual
6.3 32.6 1.4 31.8 8.9 4.1 14.9

5.4.1 Surface currents driven by pure tides

The surface currents driven by the K1 and M2 tides are shown as ellipses in Figures 5.6a

and 5.6b, respectively. The K1 tidal surface currents have a crossshore amplitude change from 2.5–
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3 cm s−1 over the continental shelf break (offshore) to 0.5–1.0 cm s−1 nearshore suggesting depth

and coastline effects (Figure 5.6a). The phases are nearly uniform but slightly rotate clockwise

from south to north. The M2 tidal surface currents show a front between oppositely rotating flows,

from clockwise in the north to counterclockwise in the south, with some clockwise ellipses around

the Coronado Islands (Figure 5.6b). The front is robust and consistent with the M2 tidal ellipse

structures estimated from shorter surface current time series (e.g. monthly data), and is likely

connected with the surface signature of shoreward propagating internal waves. An ADCP and

temperature mooring northeast of the Coronado Islands in 28 m water depth showed upward phase

propagation in the current profile and M2 internal bores in the temperature profiles, supporting

the existence of M2 internal tide signatures in the surface currents. The amplitude of the M2

tidal surface currents is 4.5–5 cm s−1 over the Loma Sea Valley (about 500 m water depth in the

southwestern area of Point Loma) and is 1.5–2.5 cm s−1 in the rest of the domain. The clockwise

ellipses near Coronado Islands maybe an island wake in the shoreward propagating surface features

([Ingram and Chu(1987)]). In addition, the alternating clockwise and counterclockwise flows in the

area of Point Loma and SDB mouth may be influenced by the topography.

The phase propagation speeds of barotropic tides along the USWC have been reported as

210–220 and 140–152 m s−1 ([Munk et al.(1970), NOAA(2006)]) for K1 and M2 tides, respectively.

Therefore the phase of barotropic tides across the study domain (about 40× 40 km2) are essentially

constant, and the local phase changes in Figure 5.6 are assumed to be a result of the baroclinic

component.

5.4.2 Locally wind-driven surface currents

Statistical overview

The FIWIRF is estimated using two wind observations (SIO and TJR) and surface currents

at each grid point in Figure 5.1. The coherences in the frequency domain are computed from 90

sub-integrals of 8.12 days record length using the minimum cross-validated residual variance (section

4.5.1). The probability density functions (PDFs) of both magnitude and phase of the FIWIRF at

each frequency for all grid points are shown in Figures 5.7a and 5.7c (SIO winds) and Figures 5.7b and

5.7d (TJR winds), respectively. The higher variance and the phase shift at near inertial frequency

are consistent with previous studies ([Gonella(1972), Weller(1981), Rio and Hernandez(2003)] and

Chapter 4). The removal of the S2 variance in the surface currents appears to cause the drop in

the response function at that frequency (Figures 5.7a and 5.7b). The higher variance in the very

low frequency band (|ω| ≤ 0.2 cpd in Figures 5.7a and 5.7b), which is the mismatched portion

with the theoretical response function, may be ambiguous since it could be a result of geostrophic

balance between currents and remotely or locally wind-driven pressure gradient. As the coherence

(not shown) between the alongshore pressure difference (equation 5.16) and wind stress at SIO and

TJR is ∼0.1 in this low frequency band, the local pressure setup is more likely. This higher variance

also can be studied by estimating the adjustment terms in the momentum equations (equations
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Figure 5.6: Tidal ellipses of surface currents estimated using the harmonic analysis for the (a) K1 and
(b) M2 frequencies. The red and blue ellipses represent counterclockwise and clockwise rotations,
respectively, and the phases are indicated with the black line in each ellipse. The units of the major
and minor axes are cm s−1.
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4.3 and 4.4) as a function of frequency, representing the anisotropic current response to the wind.

Although the phases in the high frequency band (|ω| > 2 cpd) fluctuate, they seem consistent with

the theoretical phase (gray line in Figure 5.7b). The TJR FIWIRF shows approximately three times

higher response than the SIO FIWIRF, and its phase is more stable. This is thought to be due to

its greater proximity to the region, and thus greater skill in representing the actual winds.

Coherence maps

The rotary coherence between detided surface currents and the individual wind is averaged

for frequencies at and below 2 cpd (|ω| ≤ 2 cpd) (Figures 5.3a and 5.3b), which we call the spatial

coherence map. The TJR coherence map shows radially decreasing coherence from the TJR wind

station (∼0.4) to offshore (∼0.1), and the SIO coherence map has a lower coherence level (0.1–0.2)

but with a similar tendency. The decrease in the coherence could be explained by reduced skill

of the wind at the shore station in estimating offshore wind or by less coherent offshore surface

currents. In spite of the distance between the two wind stations, the radial decay shown by the SIO

wind suggests that both shore station are measuring similar large scale winds and land/sea breezes

(Figure 5.3c).

In a similar way, the coherence maps (Figures 5.7c and 5.7d) calculated from the locally

estimated wind-driven surface currents (ûw in equation 5.4) using the FIWIRF estimated with two

winds simultaneously show radially decreasing features away from the TJR wind station with higher

coherence levels than the coherence map of detided surface currents: 0.6–0.8 (SIO, Figure 5.8c) and

0.7–0.95 (TJR, Figure 5.8d). The spatial structure in the locally wind-driven surface currents shows

the contribution of the local wind observations as a foot print. Coherence maps (not shown) using

only individual winds (SIO or TJR) show perfect coherence at all frequencies by definition, because

the locally wind-driven currents calculated from a single wind at a single frequency are perfectly

coherent with the wind. Since maps of coherence do not appear biased by areas of missing data

(Figures 5.8a–5.8d), we assume that the coherence estimates are not strongly influenced by missing

observations.

Locally wind-driven surface current estimate

The TAWIRF is computed from the surface currents at each grid point and both wind

observations together (SIO and TJR) (equation 5.5). The regularization level is set at 10% of the

mean eigenvalue of the autocovariance of the wind stress with 6 days time lag, which is 1.41×10−5

kg2 m−2 s−4. Then, the locally wind-driven surface currents (uw) are calculated with the estimated

TAWIRF and the two wind time series (equation 5.7). The regionally averaged power spectrum of

the locally wind-driven surface currents characterizes the response to the diurnal wind (land/sea

breezes) and its harmonics with red spectrum as the power spectrum of the wind (Figure 5.4b).

The mean wind-driven surface currents vary slowly over the study domain from 7–10 cm s−1

south of Point Loma to 1–5 cm s−1 offshore and nearshore (Figure 5.9). Notably, the response is
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Figure 5.7: PDF of the magnitude and phase of the FIWIRFs. Each FIWIRF is estimated with two
wind observations (SIO and TJR) together and surface currents at each grid point in Figure 5.1,
which have 8.12 days record length (90 subsamples). The gray line denotes the theoretical phase of
surface currents ([Gonella(1972)] and Figure 4.1C ). (a) and (c): The magnitude and phase of the
SIO FIWIRF. (b) and (d): The magnitude and phase of the TJR FIWIRF.
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Figure 5.8: (a)–(b): Averaged coherence of the detided surface currents (|ω| ≤ 2 cpd) and wind stress
at the individual shore station wind: (a) SIO wind. (b) TJR wind. (c)–(d): Averaged coherence
of the locally wind-driven surface currents (|ω| ≤ 2 cpd) estimated using FIWIRF and wind stress
at the individual shore station: (c) SIO wind. (d) TJR wind. The colorbars in (a)–(b) and (c)–(d)
have different bounds with same scale unit.
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Figure 5.9: Time mean of the locally wind-driven surface currents, which are estimated using the
TAWIRF and the wind stress time series for 6 days.
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weaker along the continental shelf break region. A possible explanations for this spatial gradient

is the wind offshore decorrelates from the observed wind at the coast. The directions of the mean

wind stress are 29 (SIO) and 42 (TJR) degrees from true north, and the overall wind-driven surface

current responses are less than 90 degrees to the right of the wind direction (Figure 5.9).

The 2D PDF of the ratio of the spatially averaged wind-driven surface current speed (|ūw|)
over the study domain to the TJR wind speed (|uw|) with respect to the TJR wind speed with

zero hour time lag is considered (not shown). The ratio in low wind speed (less 1 m s−1) is very

scattered, and varies with 2–5% intermediate wind speed (between 1 and 5 m s−1). At high speed

(more than 5 m s−1 and this occupies ∼1% of total wind data) the ratio converges about 4%.

The dominant ratio over all speeds stays within 1.5–3%, which is consistent with other studies

([Bye(1965), Churchill and Csanady(1983), Wu(1983), Weber(1983), Spaulding(1999)]). Moreover,

the directional PDF of the veering angle at zero time lag shows the dominance at 55±25 (SIO)

and 48±20 (TJR) degrees, which implies the direction of the locally wind-driven response to a

quasi-steady wind.

5.4.3 Mean surface currents

We examine the time averaged surface current signal that has the computed wind-driven

surface current removed and find that the flow in the western domain of the region examined has

strong variance (5–9 cm s−1).. This is consistent with the large scale surface current variability mea-

sured by two long range HF radars (∼5 MHz) off San Diego and San Clemente Island. Two surface

flows with opposite rotation are bifurcated near Tijuana River, which move northward (counterclock-

wise) and southward (clockwise) along the coastline (Figure 5.10). The northward surface currents

hit the northern boundary (SDB mouth), and return via southeastward flows. A local artifact found

along an azimuthal bin at approximately 287 degrees from true north of the SDBP site results from

the radial velocity solutions derived from an abrupt change in the measured beam pattern of the

SDBP site (section 2.2.3), which causes an ambiguity in the bearing solution calculated from the

MUSIC algorithm ([de Paolo and Terrill(2007a)]).

5.4.4 Low frequency surface currents

The coherence and phase between the alongshore pressure difference between LAH and

SDB and the spatially averaged low frequency band surface currents (ūL̂) are computed from 25

subsamples in the x- and y-directions, separately (Figure 5.11). The only coherence and phase

with higher than 80% significant levels are shown. The frequency band having the relatively higher

coherence (0.2–0.3) above the significant levels and approximately constant phase (45 degrees) is less

than 1/7 cpd for v̄L̂. Although the coherence and phase with 90 subsamples also produce consistent

results, the results estimated with 25 subsamples are used to provide better resolution in the low

frequency band. Since ūL̂ is not significantly coherent with the alongshore pressure difference, v̄L̂ in

low frequency band (|ω| ≤ 1/7 cpd) becomes the alongshore surface current.
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Figure 5.10: Time mean surface currents with estimated wind-driven surface currents removed.
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difference and the spatially averaged low frequency band surface currents (ūL̂) in the x- and y-
directions, separately. Both are computed with 25 subsampled elements, and cross and circle marks
indicates 80% significant levels for u and v, respectively



131

A M J J A S O N D J F M A M J J A S O N D J F M A
−18

−12

−6

0

6

12

18

Time (2003−2005)

u L (
cm

 s
−

1 )

A M J J A S O N D J F M A M J J A S O N D J F M A
−30

−20

−10

0

10

20

30

−
g∆

η/
∆c

 (
x 

10
5  c

m
 s

−
2 )

(a)

u
L

−g∆η/∆c

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time lag (∆t, Days)

ρ 
(∆

t)

(b)

Figure 5.12: (a) The time series and (b) the time lag correlation of the alongshore pressure difference
and the spatially averaged alongshore surface current within the coherent frequency band (|ω| ≤ 1/7
cpd). The time lag correlation has a maximum (∼0.3) at 1.75 days advanced time lag of the
alongshore pressure difference to the alongshore surface current (a dotted line in (b)).
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The time series of two terms in the frictional balance (equations 5.16 and 5.17) are shown

in Figure 5.12a, and the time lag correlation between them has ∼0.3 as a maximum with 1.75 days

advanced time lag of the alongshore pressure difference to the alongshore surface current (Figure

5.12b). The time lag may not be constant, however, the dominant low frequency variability can be

governed by the nearly constant time lag. At the time lag of maximum correlation, the frictional

coefficient (r) is calculated using linear regression to be 0.724×10−6 m−1s. The alongshore pressure

difference explains approximately 10% of the low frequency band surface currents, which is 3% of

total variance.

The computed frictional coefficient (r) may be interpreted as b/ (gH), which corresponds

to 0.07–0.7 cm s−1 in the O(10 − 100) m depth – consistent with the other bottom drag studies in

Table 5.3.

Table 5.3: The bottom drag studies using the conventional depth averaged momentum balance.
Studies Frictional balance Drag coefficient (b)
[Grant et al.(1984)] τB = ρbv|u| 0.005–0.011 (no unit)
[Lentz and Winant(1986)] τB = ρb

H

∫ η

−H
vdz 0.05 cm s−1

[Brink et al.(1987)] τB = ρb|u| 0.05–0.1 cm s−1

5.4.5 Diurnal band surface currents

The main driving forces for the diurnal band surface currents are considered as the diurnal

tidal constituents (K1, O1, and P1) and the diurnal wind (S1) modulated by the components in the

low frequencies ([Munk et al.(1965)]). The diurnal band surface currents in southern San Diego is

the dominantly clockwise flow with the order of 3±2 cm s−1.

5.4.6 Semidiurnal band surface currents

The M2 surface current signal is expected to contain signatures of the internal tide at the

same frequency as the region is conducive for their generation. The seasonal buoyancy frequency

(∼50 and∼200 cpd for winter and summer, respectively) and the shoreward steep bottom slope of the

continental shelf/break region in southern San Diego satisfies the necessary condition to generate

the M2 internal tides ([Cacchione and Wunsch(1974), Bratkovich(1985), Cacchione et al.(2002)]).

Independent studies have found internal tides observed in SAR images ([Jackson(2004)]). This topic

is outside of the scope of this publication, and will be addressed in subsequent research. Moreover,

the surface currents in the semidiurnal frequency band are considered to be minimally influenced by

the wind.
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5.4.7 Residual surface currents

The residual surface currents are considered to include the component of the signal driven

by non-linear forcing terms, small scale variability, intermittent local eddies, observational noise and

outliers. The significant higher variances of residual surface currents are shown in west/south of

Point Loma, the offshore edge of the radial bin of Coronado Islands site (R3 in Figure 5.1), and

the lee of the Coronado Islands (Figure 3.3). The spatial mean and RMS of the residual surface

currents are nearly constant in space with 2–3 and 4–6 cm s−1, respectively. One of the regions to

have higher variance of the residual surface currents is the Point Loma headland, which may result

from small scale variability arising from topographic effects and can be interpreted as the current

components driven out of phase with the described forcing functions. The other regions are the

baseline between SDBP and SDCI and the edge of the spatial coverage of the SDCI site (an angular

bin at approximately 315 degrees from true north).

5.4.8 Structure of decomposed surface currents

The spatially averaged correlations of the decomposed surface currents are presented with

their top views in the spatial lag space (∆x, ∆y) (Figure 5.13). Three correlation terms of each

decomposed component are considered: u-components (ρ̄uu, column a in Figure 5.13), v-components

(ρ̄vv, column b in Figure 5.13), and the cross correlation of u and v components (ρ̄uv, column c in

Figure 5.13). A set of the complement figures of the spatially averaged correlations of the decomposed

surface currents is also shown in Figure 5.14.

The surface currents (Figure 5.13A) have the superposed structure of all decomposed com-

ponents (Figures 5.13B–5.13G), which is slightly different from the spatial correlations presented

in earlier (Figure 2.12) due to the difference in the method to extract vector current from radial

velocity: optimal interpolation and un-weighted least-squares fitting (Chapter 3). The optimally

interpolated surface currents have less noise and lower spatial variance due to spatial smoothing. As

a result, the averaged spatial structure computed here is somewhat smoother than before. Currents

related to the alongshore pressure difference in the low frequency band (Figure 5.4a), ρ̄vv show a

larger scale in the y-direction (Figure 5.13Aa) than the x-direction (Figure 5.13Ab).

The pure tide surface currents have broad spatial structure (Figure 5.13B) presumably

owing to the large scale of the barotropic tidal forcing (section 5.4.1). Although the two shore

station winds are local (section 5.4.2), the locally wind-driven surface currents exhibit a large scale

structure in the x- and y-directions (Figure 5.13C).

The low frequency components have a directional preference in the decorrelation length

scale, so that the eastward surface currents have a longer decorrelation scale in the x-direction

than in the y-direction (Figure 5.13D). The diurnal band surface currents show clockwise flow with

nearly uniform direction over the domain (the variance ellipses are nearly circular (not shown)), so

the averaged spatial correlation shows a broad scale (Figure 5.13E). The semidiurnal band surface

currents have localized and complicated features in the correlation (Figure 5.13F). The decorrelation
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length scale of the residual surface currents is relatively small compared with the other components

(Figure 5.13G).

The estimated correlation functions appear to be both Gaussian and exponential struc-

tures, or combination of the two with different decorrelation length scales for each decomposed

component depending on physics and variability. The correlation functions of pure tide surface

currents and locally wind-driven surface currents appear more Gaussian-like than exponential (Fig-

ures 5.13B and 5.13C). Large scale variability, including geostrophic and barotropic motions are

expected to show more Gaussian shape, compared to exponential for turbulence ([Townsend(1980),

Denman and Freeland(1985), Chereskin and Trunnell(1996), Wilkin et al.(2002)]). The other corre-

lation functions are expected to be more exponential in shape, or perhaps large-scale Gaussian with

a small-scale exponential on top (Figures 5.13D–5.13F). The cross correlation terms vary within

±0.3 with complicated shapes and do not lend themselves to simple functional descriptions.

5.4.9 Relevance to a statistical model of surface currents

The results of decomposing the surface currents serve as building blocks for a statistical

model of the surface currents for gap-filling and forecasting (equation 5.2). Future currents driven by

pure tides can be computed from the estimated Fourier coefficients (section 5.3.1), and the locally

wind-driven currents may have some predictability from the 6-day time interval of the TAWIRF

(equation 5.7). The surface current components in the three frequency bands (equation 5.9) have

predictability according to their decorrelation times, but a dynamical model is probably needed to

optimize forecasts. For example, low frequency currents could be estimated from forecasts of large

scale wind and atmospheric pressure.

The spatial correlation functions of each component of the surface currents are also relevant

to the development of assimilation techniques for numerical ocean models, which often assume

Gaussian correlation functions for lack of an improved functional relationship.

5.5 Discussion

Surface currents measured by shore-based high-frequency radar are decomposed into com-

ponents using statistics informed by their driving physics: local wind, pure tides, cuspate tidal peaks

at the diurnal (K1) and semidiurnal (M2) frequencies, the low frequency band (|ω| ≤ 0.4 cpd), and

residual surface currents.

Decomposing the surface current components by their physics shows their distinct spatial

structure and decorrelation length scales. The spatially averaged correlations of decomposed surface

currents exhibit both Gaussian and exponential depending on the source of the variability and its

scale. The complicated observed surface current decorrelation function is a superposition of all terms.

The wind impulse response functions are estimated in the frequency and time domains, and are used

to estimate the spectral content of the wind-forced currents and for other applications using wind
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Figure 5.13: The spatially averaged correlations of decomposed surface currents are presented with
top views of three components. Column (a): u-components (ρ̄uu). Column (b): v-components (ρ̄vv).
Column (c): u and v components (ρ̄uv). A. Unconditioned surface currents (u). B. Surface currents
driven by pure tides (ut). C. Locally wind-driven surface currents (uw). D. Surface currents in the
low frequency band (uL̂). E. Surface currents in the frequency band centered on diurnal frequency
(uD̂). F. Surface currents in the frequency band centered on semidiurnal frequency (uŜ). G. Residual
surface currents (ur). In the autocorrelation terms (ρ̄uu and ρ̄vv), thick black contours present at
0.2, 0.4, 0.6, and 0.8 with 0.05 spacing with the gray contour. In the cross correlation term (ρ̄uv),
the dash, solid, and dashdot contours indicate the negative, positive, and zero correlations.
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Figure 5.13: (Continued.)
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wind observations and models (e.g., nowcast and forecast wind-driven current estimates, upwelling

index, and etc). Weighted least-squares fitting is used to band-pass filter the surface current signal

while treating missing data appropriately. The decomposition technique is applicable to both radial

velocities measured by individual radars and the vector current field estimated from a radar array.

Although the baroclinic and barotropic components are indistinguishable by surface current

observations alone, the spatial structure of the surface currents and the tidal ellipses may provide

clues to separate the two signals in the data. The surface currents driven by M2 tides show shorter

scales than those driven by K1 tides, suggesting baroclinic components such as shoreward propa-

gating M2 internal tides. With adequate modeling, HF radar could perhaps be used to detect the

surface signatures of small-scale baroclinic motions such as internal tides. The locally wind-driven

surface currents were estimated from shore station winds allowing for anisotropic response and show

relatively large scale structure. The magnitude of the locally wind-driven surface currents is typi-

cally 3–5% of the wind speed, and their veering angles vary 30–50 degrees to the right of the wind

at the zero time lag.

In the low frequency band, the alongshore pressure difference (estimated by the SSH dif-

ference between two tide gauge stations) explains 10% of the low frequency surface currents, which

presumably include both barotropic and baroclinic physics. This relatively low contribution of the

shoreline SSH difference may be explained by two reasons: the shoreline SSH might not be an proxy

for the alongshore pressure gradient term or the density gradients in the water column may be driv-

ing the low frequency surface currents, but does not result in an observable SSH difference. Although

the contribution by coastal trapped waves are not explicitly resolved in this analysis, it might be a

part of the alongshore pressure difference. The friction coefficient derived from the balance between

the low frequency surface currents and the alongshore pressure difference is compared to form and

bottom drag coefficients using the assumption of constant velocity throughout the water column.

5.6 Appendix

5.6.1 Stokes drift and surface layer jet

The contribution of the Stokes drift ([Kenyon(1969)]) to the observed surface currents is

calculated

uStokes(z) =
1
ρ

∫∫

k

S(k)
k
ω

[
2k cosh 2k(z + h)

sinh 2kh

]
dk, (5.18)

where S(k) = S(k, θ) = A(k)B(θ) is the surface gravity wave spectrum, which is the product of

two independent functions – the ocean surface wave spectrum (A) and the directional distribu-

tion function (B). k denotes the wave number and θ is the direction of wave relative to wind

(k = (k cos θ, k sin θ)).

The directional wave spectra off San Diego are retrieved using the Maximum Entropy

method ([Lygre and Korgstad(1986), Brissette and Tsanis(1994)]) using the Coastal Data Informa-
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tion Program (CDIP) wave buoy observation (Point La Jolla, 093 station). The typical Stokes drift

is 2–3.5 cm s−1 at the surface decreasing to about 1 cm s−1 at 1 m depth. The integration interval

of the wave number is between 0.004 and 1.3552 m−1, which covers the surface waves of 0.74–250

m wave length (or periods of 0.7–12.7 seconds) .

The surface current response to the wind may vary due to changes in the upper layer

stratification. The magnitude of the surface layer jet, for simplicity, depends on the mixing layer

(i.e., trapping depth, DT ) that the momentum penetrates, heat flux (Q), and wind stress (τ)

([Phillips(1966), Price et al.(1986)]):

|u| ∝ τ

DT
and DT ∝ τ√

Q
. (5.19)

The seasonal and daily surface layer jets are explored with the Price-Weller-Pinkel (PWP) model

([Price et al.(1986)]) using seasonal/daily heat flux and wind stress in southern San Diego. The

data are from the NCEP/NCAR heat flux reanalysis data ([Kalnay et al.(1996)]) and two wind

observations (SIO and TJR). The surface layer jet shows the vertical momentum penetration from

the surface in clockwise rotation. The order of magnitude of the surface layer jet is O(2−3) cm s−1,

which is relatively small compared to the total variance of surface currents. Because the nearshore

wind stress is much weaker than offshore and the diurnal winds within the land/sea breeze cell would

not produce the current response of the same order as a steady wind stress ([Price et al.(1986)]).

Since the seasonal variation of the wind stress is not significant in San Diego area (∼5% larger in

summer), the surface layer jet is considered depending mostly on the heat flux. The heat flux in

summer is approximately twice that in winter. From equation 5.19, the mixing layer in the summer

is about 30% shallower than in winter and it results in 40% increase of the surface layer jet in

summer.

The Stokes drift and surface layer jet are in separable in this analysis. The surface layer jet

is considered to be embedded in the locally wind-driven surface currents and diurnal band surface

currents as the seasonality of heat flux and the nonlinear interactions of responses to the diurnal

wind (section 5.4.5), respectively.

5.6.2 Variance conservation

A time series (d) can be regressed using the explicit basis of the sine and cosine functions

(G) on the discrete frequency domain,

d = Gm (5.20)

d(t) = a0 +
N∑

n=1

an cos ωnt + bn sinωnt (5.21)

= a0 +
1
2

N∑
n=1

(an − ibn) eiωnt + (an + ibn) e−iωnt , (5.22)
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where an and bn are the model coefficients (an and bn ∈ R). m = [a1 · · · an b1 · · · bn]†. On the

other hand, the discrete Fourier transform can decompose the time series (d) into

d = Gm̃ (5.23)

d(t) =
N∑

m=−N

d̂meiωmt (5.24)

=
N∑

m=−N

(
âm + ib̂m

)
eiωmt, (5.25)

where âm and b̂m are Fourier coefficients (âm and b̂m ∈ R, d̂m ∈ C, m 6= 0). The variance

conservation of two approaches in the frequency domain is

〈d(t)2〉 =
1
2

trace(〈mm†〉) = trace(〈m̃m̃†〉), (5.26)

where † denotes the (complex conjugate) transpose.

5.6.3 Relationship of slow least-squares fitting and discrete Fourier trans-

form

The slow least-squares fitting is converted the regular expression of the spectral analysis

([Gonella(1972), Mooers(1973), Emery and Thomson(1997)]). The data (d) is represented with

d(t) = u(t) + iv(t) =
1
2

N∑
n=1

αneiωnt + βne−iωnt, (5.27)

where

αn = (an + dn) + i (−bn + cn) , (5.28)

βn = (an − dn) + i (bn + cn) , (5.29)

u(t) =
N∑

n=1

an cosωnt + bn sin ωnt (5.30)

=
1
2

N∑
n=1

(an − ibn) eiωnt + (an + ibn) e−iωnt, (5.31)

and

v(t) =
N∑

n=1

cn cos ωnt + dn sin ωnt (5.32)

=
1
2

N∑
n=1

(cn − idn) eiωnt + (cn + idn) e−iωnt. (5.33)

5.6.4 Structure of decomposed surface currents (Complement)
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Figure 5.14: The spatially averaged correlations of decomposed surface currents are presented as the
x- and y- views for each component. Column (a): ∆x view of u-components (ρ̄uu). Column (b): ∆y
view of u-components (ρ̄uu). Column (c): ∆x view of v-components (ρ̄vv). Column (d): ∆y view
of v-components (ρ̄vv). A. Unconditioned surface currents (u). B. Surface currents driven by pure
tides (ut). C. Locally wind-driven surface currents (uw). D. Surface currents in the low frequency
band (uL̂). E. Surface currents in the frequency band centered on diurnal frequency (uD̂). F. Surface
currents in the frequency band centered on semidiurnal frequency (uŜ). G. Residual surface currents
(ur).
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Figure 5.14: (Continued.)
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This chapter, in part, has been submitted for publication of the material as it may appear

in Journal of Geophysical Research-Oceans, 2009, Kim, S. Y., B. D. Cornuelle, and E. J. Terrill

titled by ‘Decomposing observations of high-frequency radar derived surface currents by their forcing

mechanisms’. The dissertation author was the primary investigator and author of this paper.
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Abstract

The San Diego/Tijuana border region shares similar environmental challenges with regards

to assessing water quality impacts resulting from local coastal ocean discharges whose transport is

not hindered by political boundaries. While an understanding of the fate and transport of these

discharged plumes has a broad audience, the spatial and temporal scales of the physical processes

present numerous challenges in conducting assessment with any fidelity. To address these needs,

a data-driven model of the transport of both shoreline and offshore discharges is developed and

operated in a hindcast mode for a four-year period to analyze regional connectivity between the

discharges and the receiving of waters and the coastline. The plume exposure hindcast model is

driven by surface current data generated by a network of high-frequency radars. Observations

provided by both boat-based CTD measurements and fixed oceanographic moorings are used with

the Roberts-Snyder-Baumgartner model to predict the plume rise height. The surface transport

model outputs are compared with shoreline samples of fecal indicator bacteria (FIB), and the skill

of the model to assess low water quality is evaluated using receiver operating characteristic (ROC)

analysis.
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6.1 Introduction

Impaired coastal water quality from point source discharges is a well-known concern for

human health, degradation of marine ecosystems, and negative impacts to coastal economies when

beaches are closed. At Imperial Beach located in southern San Diego, a significant number of

beach closures by the San Diego County Department of Environmental Health (DEH) results from

the presence of high concentrations of fecal indicator bacteria (FIB) exceeding California health

standards (Assembly Bill 411). Similarly, high FIB levels are periodically reported on the Tijuana

shoreline in the sparse sampling that takes place within 10 miles north and south of the Tijuana

River mouth. Not only is the incidence of bacterial contamination and associated beach closures a

problem, but time lags between sampling of the coastal water and completion of the analysis likely

result in situations when beach waters may be clean when closed, and not clean when open. The

beach closure has similar economic consequences regardless of the FIB levels.

Possible sources of bacterial contamination responsible for beach closures in this region

include the Tijuana River (TJR), the South Bay International Water Treatment Plant Ocean Outfall

(SBIWTP, called herein SBO), northward flow from the Punta Bandera treatment plant discharged

at San Antonio de los Buenos (PBD), and local runoff from Imperial Beach. Furthermore, the

tourist corridor between Tijuana and Rosarito has increased its population five-fold leading to the

potential of uncontrolled residential and commercial discharge points. The multiplicity of possible

sources near beaches requires that the water quality of the area be examined.

While there is political and public interest in coastal water quality, especially in the cross-

border context on which this paper is based, the ocean monitoring of the physics responsible for

the transport of a discharge plume has historically not been conducted at the appropriate scales

required to accurately estimate its time-dependent nature. This is principally due to the high cost

of continuous measurements of ocean conditions and the relatively short decorrelation length scale

of a point measurement of ocean current. While the TJR flow is a likely cause for impaired water

quality during the rainy season, little is known about the offshore and alongshore extent of the river

plume. Likewise, impaired water quality events can occur during the dry season, indicating that

plume water from one of the other two discharges may periodically impact the coastline.

Stormwater and wastewater discharges in the Southern California region have been ad-

dressed using other observational methodologies, including the application of traditional in situ

oceanographic observations, analysis of historical data gathered as part of the National Pollutant

Discharge Elimination System (NPDES) permit, and interpretation of intermittently obtained re-

mote sensing data on the river discharge in the coastal area and the ocean outfall plume. The

dynamics of both river and outfall plumes have a history of experimental studies which provide a

basis for the approach described herein. The river plume models depend on the width of the river

discharge, bottom topography, wind speed and direction, ambient current field, input flow rate,

and inertial forcing ([Hill(1998), Washburn et al.(2003)]). The vertical rise and dilution of a sewage

plume discharged at the seafloor has been addressed through models based on hydraulic principles
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of buoyant jets in stratified and unstratified fluids, with the Roberts-Snyder-Baumgartner (RSB)

model ([Roberts et al.(1989), Roberts(1999a), Roberts(1999b)]) serving as a well documented model

in use by the U.S. Environmental Protection Agency (EPA) for evaluating near-field discharge plume

behavior.

The approach adopted here to understand the plume transport in the coastal zone is to

integrate surface current data measured by an array of high-frequency (HF) radars and produce a

Lagrangian analysis of the plume trajectory. Unlike traditional discharge monitoring approaches, HF

radar provides hourly surface current maps over a large spatial domain which can be used to drive

a time integration of the plume position. For the U.S.–Mexico cross-border region, multiple radar

sites have been maintained since 2001, providing a multi-year time series of circulation suitable for

hindcast analysis of the three major discharge plumes previously described. A primary distinction of

this study to previous studies is the four-year duration of a continuous hindcast analysis conducted

on an hourly interval.

This chapter is organized into three sections. First, water quality, rainfall, and physical

oceanographic observations of surface currents, and ocean stratification are summarized to provide

a description of the study region conditions (section 6.2). Then a hindcast analysis of three regional

discharges using a random walk model driven by surface current observations is described (sections

6.3 and 6.4). Lastly, we present the results of the plume exposure hindcast model including its

performance using Receiver Operating Characteristic (ROC) analysis (sections 6.6 and 6.5.4) and

discuss underlying assumptions used in the model including the suitability of the model when ad-

dressing transport across and within the surfzone (section 6.7). The summer and winter seasons

discussed in this chapter indicate April to September and October to March, respectively.

6.2 Summary of Observations

6.2.1 Water quality sampling

The FIB sampling locations in the cross-border region are summarized in Table 6.1 ordered

by a unique shore station ID as shown in Figure 6.1. These data are provided by San Diego

County DEH as part of their AB411 (Assembly Bill 411, Statutes of 1997, Chapter 765) samplings

and ([California Ocean Plan(1990)]) as well as the City of San Diego Wastewater District which

monitors the SBO for the NPDES permit both under contract to the International Boundary Water

Commission (IBWC) and for the City’s co-located water reclamation plant. Although the water

quality data at C1 and C14 stations are identified, they are not included in this analysis as they

were sparsely sampled as compared to the other stations. The FIB sampling and processing are

conducted using accepted standards and protocols on a scheduled basis except for targeted shoreline

samples by the DEH during suspected contamination events.

The distribution of the bacterial levels along the shoreline is examined with the annual mean

at each station over three FIB levels for ten years (January 1996 to March 2007): Total Coliform
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Figure 6.1: Study domain of the water quality monitoring in southern San Diego. Shoreline water
quality stations (C0, C2–C13, and C15–C18 in Figure 6.1) are indicated as dots. Three potential
sources of the impaired water quality are marked as triangles, and they are releasing locations of
the particle trajectory model: Tijuana River (A1, TJR), the South Bay International Wastewater
Treatment Plant (A2, SBO), and Punta Bandera treatment plant discharge at San Antonio de los
Bueno approximately 6 miles south of the U.S.–Mexico Border (A3, PBD). The southern effluent
outfall of the SBO is active, and the current and temperature profiles are observed at the SBO. The
nearcoast cell is defined as the area within 1 km from the coastline (shaded area).
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(TC, Figure 6.2a), Fecal Coliform (FC, Figure 6.2b), and Enterococcus (ENT, Figure 6.2c). The

horizontal axis is not scaled with the physical distance between stations to avoid the overlapped

plots. The highest FIB concentration is at C6 station closest to the TJR mouth. The FIB levels in

the southern area of the TJR are slightly higher than the northern side. The relatively higher level of

TC near the Punta Bandera discharge at Los Buenos creek is observed ([James and Groce(2006)]).

Table 6.1: A unified water quality sampling stations along the southern San Diego coastline and the
number of sampling data for about eleven years (January 1996 – March 2007). The water quality
data at C1 and C14 stations are reported from historical records, but they are not included in the
analysis due to their sparse observations and the lack of station information.

ID City ID County ID Station name The number of samplings
C0 S0 BC-010 Playa Blanca 232
C2 S2 BC-020 El Vigia 507
C3 S3 BC-030 Playas de Tijuana 507
C4 S4 IB-010 Border Fence 1252
C5 S10 IB-020 Monument Road 1257
C6 S5 IB-030 Tijuana River Mouth 1416
C7 S11 IB-040 3/4 miles North of Tijuana River 1342
C8 S6 IB-050 End of Seacoast Drive 1447
C9 EH-010 Cortez Avenue 380
C10 EH-020 Imperial Beach Boulevard 78
C11 EH-030 Imperial Beach Pier 604
C12 S12 IB-060 Carnation Avenue 1339
C13 EH-041 Camp Surf Jetty 231
C15 S8/D2 IB-070 Silver Strand Beach 1385
C16 S9/D3 IB-080 Avenida del Sol 2042
C17 EH-050 Loma Avenue 859
C18 EH-060 Navy Fence 853

Water quality standards in the State of California Health and Safety Code (AB 411) es-

tablish a set of criteria for identifying if a human health risk is present. These criteria are based on

both a single sample result for Total Coliform (c1), Fecal Coliform (c2), and Enterococcus (c3), as

well as the ratio of FC to TC:

g = {g|c1 > 10000, c2 > 400, c3 > 104,

(
c2

c1
> 0.1

)
∩ (c1 > 1000)}, (6.1)

where c1, c2, and c3 indicate the amount in 100 ml, and have the units as CFU (CFU: colony

forming units) for both TC and FC and as MPN (most probable number) for ENT, respectively.

The exceedance relations are posed as a water quality indicator (g) with a binary state – clean (C)

or contaminated (D):

g = g(c1, c2, c3, td), (6.2)

where td is the duration that the FIB level is valid.

The water quality sampling data along the shoreline stations for four years (April 2003 –

March 2007) are shown in Figure 6.3a. All available sampling data are indicated with dots (C) and
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Figure 6.2: The annual mean of the water quality sampling data (January 1996 – March 2007). (a)
Total Coliform (TC). (b) Fecal Coliform (FC). (c) Enterococcus (ENT).
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Figure 6.3: (a) Water quality sampling data along the coastline in southern San Diego. The triangles
and dots, respectively, indicate the contaminated (D) and clean (C) conditions based on the FIB
criteria in equation 6.1. (b) Hourly cumulative rainfall (cm) at SAN. (c) Hourly TJR flow rate
(m3 s−1, log scale).
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(2003 – 2007).

triangles (D). The D condition is highly correlated with the wet weather season (winter season),

which is consistent with other studies ([Kim et al.(2004), Svejkovsky and Jones(2001)]).

6.2.2 Rainfall in San Diego and Tijuana River flow

The hourly cumulative rainfall at San Diego Lindbergh Field (SAN) and the hourly TJR

flow rate are shown in Figures 6.3b and 6.3c, respectively. The rainfall in southern San Diego is

concentrated during the wet season, and leads to the TJR outflows with heavy sediment and debris

loads, which are potential causes of impaired coastal water quality. The river flow due to rainfall

shows a time-lagged response: in the initial stage of rainfall the river flow is nearly proportional to

it, then once rainfall reaches its peak, the river flow is almost steady and decreases slowly (Figure

6.4). The other local rainfall at the Tijuana River National Estuarine Research Reserve (TRNERR)

and the San Diego Coastal Ocean Observing System (SDCOOS) is compared with the SAN rainfall,

which is used as a proxy of the local rainfall owing to the longest record (∼10 years).

6.2.3 Surface currents

Coastal surface currents in the cross-border region used in this study are measured by

an array of HF radars. While their operation is detailed in Chapter 2, we note that they provide

hourly surface current maps with 1 km spatial resolution. Prior to their usage for Lagrangian

trajectory computations, the surface currents are objectively mapped using a sample covariance
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Figure 6.5: An example of the objectively mapped surface current field (May 20 1600, 2003 (GMT)).

matrix computed from four-year hourly data in order to fill in missing data (Chapter 2). The

uncertainty of the estimated surface current field is about 8.6 cm s−1, which is roughly consistent

with reported root mean square (RMS) differences between radar-derived surface currents that are

a spatial integral and in situ point observations: 5–7 cm s−1 (ADCP), ∼5.5 cm s−1 (radial velocities

of multiple HF radars, [Lipa et al.(2006)] and section 3.3.3), and 1–4 cm s−1 (GPS-tracked drifter,

[Ohlmann et al.(2007)]).

The typical surface circulation pattern in the study domain is distinct between offshore

(beyond 15 km from the coast) and nearshore (within 15 km from coast) regions. Persistent south-

eastward surface currents are observed offshore presumably due to flow around the headland or

eastward flow deflected by the coastline (section 2.2.3). In the nearshore, a single eddy or dipole

eddies with a diameter of 10–15 km are frequently observed near the TJR mouth and produce hor-

izontal divergence or convergence. Figure 6.5 shows an example of the typical circulation pattern

with a single counterclockwise eddy.

The dominant variance in the surface currents in this region is the low frequency band (less

than 0.4 cpd) and cuspate tidal peaks at the diurnal (K1) and semidiurnal (M2) frequencies super-

posed on a red spectrum
(
S(ω) ∝ ω−2

)
(sections 2.2.3, 4.4, and 5.2.3). Since the time integration

of the surface currents is a low-pass filter
(
S(ω) ∝ ω−4

)
, the Lagrangian surface transport should

be dominantly driven by the subinertial variability. The magnitude of the low frequency surface
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currents is approximately 10 cm s−1, so the Lagrangian surface transport is expected to exit the

study domain (40×40 km2) within about 5 days.

Since the numerical approach used transports plume water to the coastline, the boundary

conditions at the ocean-land boundary treat the boundary currents as the projection of an alongshore

vector of the measured currents from the nearby 1×1 km2 grid. Since the coastline has significant

curvature, the projection angle is computed for all discrete locations in the domain. The data suggest

that the currents have less variance north of the TJR mouth (C13–C16 stations in Figure 6.1) and

higher variance along the nearly straight coast south of TJR (C0–C5 stations). The alongshore

currents have 40–60% more variance in the low frequency band (0.1–0.5 cpd) compared with the

typical current variance in the study domain (not shown), which implies intensified 2–10 day period

alongshore transport.

For a typical rain event, the surface currents are generally to the north at the start of the

flow since storm events approach from the south, a pattern that was found to be consistent for over

80% of rain events when the daily averaged TJR flow rate is 103 m3 s−1 or more.

6.2.4 Vertical ocean temperature structure

Temperature observations using a vertical array of 10 temperature probes (0.01 degree ac-

curacy) for approximately three years at the SBO (A2 in Figure 6.1) provide a measurement of water

column stratification and allow the prediction of the plume rise height which discharges at a depth of

28 m. Since the temperature probes are sampled at a 5 minute interval, high frequency fluctuations

from internal tides and bores have been observed (not shown). The surfacing of the plume water

occurs during weak stratification allowing the plume’s buoyancy to overcome the trapping effect of

the density stratification. In addition, salinity is found to be a weak influence on changes in stratifi-

cation in Southern California waters ([Bratkovich(1985), Winant and Bratkovich(1981)]) including

San Diego.

6.2.5 Climatological data

The NPDES permit of the SBO discharge includes monthly vertical sampling of tempera-

ture, salinity, density, and chlorophyll-a. The data are obtained using a conductivity, temperature,

depth (CTD) sensor, and stations are vessel occupied both in the nearshore and offshore within 15

km from the coast including dense sampling near the SBO. Typical sampling stations are shown as

dots in Figures 6.6a and 6.6b, and they are occupied in a 2–4 day window for sampling.

Examples of the TJR plume and the SBO plume detected in the salinity data from the

CTD stations are shown as the linearly interpolated surface (Figure 6.6a) and bottom (Figure 6.6b)

maps and vertical sections in the cross-shore direction (Figures 6.6c and 6.6d). The cross-shore

sections of salinity (Figures 6.6c and 6.6d) use the salinity data within a rectangular box in Figures

6.6a and 6.6b. During a heavy rain in January 2005, a lower salinity front (less than 32.6 psu)

was observed in front of the TJR mouth and reached near 12 km from the coast with a film in the
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Figure 6.6: Linearly interpolated salinity (psu) surface/bottom maps and vertical section in the
cross-shore direction. (a) and (c): Surface map and vertical section of salinity during the one of
heavy rain events on January 2–6, 2005. (b) and (d): Bottom map and vertical section of salinity
on December 16, 2003. The vertical sections of salinity ((c) and (d)) use the salinity data within
the rectangular box on (a) and (b).

1–2 m upper layer (Figures 6.6a and 6.6c). This surface advected jet due to buoyancy difference

is a typical flow pattern of the river plume in the coastal region ([Yankosvky and Chapman(1997),

MacDonald and Geyer(2005), McCabe et al.(2008)]). On December 2003, the lower salinity water

(less than 32.9 psu) near the outfall was trapped within 20 m of the bottom and spread in the

alongshore direction.

6.2.6 Remote sensing data

Satellite images of total suspended matter (TSM) and chlorophyll-a (Chl-a) in the study

area are used for qualitative verification of the offshore surface transport. The satellite IRS-

P4 (Indian Remote Sensing Satellite or OCEANSAT-1) carries two sensors MSMR (Multichannel

Sacnning Microwave Radiometer) for data collection on SST, wind speed, and atmospheric wa-

ter vapour and OCM (Ocean Color Monitor) for data on atmospheric aerosols, suspended sed-

iments, chlorophyll concentration, and reports the identical coverage of a given area every 48
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hours ([Space Applications Centre (ISRO)(1997), Space Applications Centre (ISRO)(1998)]). Dur-

ing a storm event on January 2–6 of 2005 the higher density TSM and Chl-a were observed as a

stretched tongue or a jet (Figures 6.7a and 6.7b, respectively) as the salinity surface map in Figure

6.6a.

6.3 Regional discharges

Three likely candidate discharges responsible for high FIB levels in southern San Diego

are summarized by location, discharge type, and flow rate (Table 6.2). The source locations (A1,

A2, and A3 in Figure 6.1) are used as source points for the particle trajectory calculation in the

subsequent hindcast analysis. The TJR outflows just north of the border and drains precipitation

from a watershed of 4,480 km2, two thirds of which is in Mexico (A1 in Figure 6.1). The SBO is

located 3.5 miles offshore west of the border and has discharged advanced primary-treated wastewater

through an underwater outfall year round since 1999 (A2 in Figure 6.1). The City of Tijuana

discharges pre-treated waters directly into the beach at San Antonio del los Buenos (6 miles south

of the border) from the PBD (A3 in Figure 6.1) ([Largier et al.(2004), San Diego County(2000),

Svejkovsky and Jones(2001), Orozco-Borbon et al.(2006)]).

Table 6.2: The potential sources of bacterial contamination in southern San Diego are summarized
with the location, discharge type, and flow rate (MGD: Million gallons per day): Tijuana River
(TJR), South Bay International Wastewater Treatment Plant (SBO), and Punta Bandera discharge
(PBD).

Sources Location Discharge type Flow rate (m3 s−1 (MGD))Longitude (W) Latitude (N)
TJR 32.5556 117.1369 Wet season ∼ 2.9 (66)
SBO 32.5373 117.1835 Plume surfacing ∼ 0.9 (20)
PBD 32.4336 117.1100 Continuous 1–1.5 (22–35)

6.3.1 Coastline discharge: Tijuana River

The rainfall in southern San Diego and the TJR outflow are concentrated during the winter

season (Figures 6.3b and 6.3c), and FIB exceedance at the TJR mouth (C6 station) is 93% coherent

with the existence of the TJR flow. Due to the high correlation of high FIB with the TJR flow, we

use flow conditions as the trigger for when to track water parcels from the TJR source.

6.3.2 Submerged discharge: South Bay International Wastewater Treat-

ment Plant (SBIWTP)

The dynamics of the plume is controlled by the outfall design and density structure with

depth in the near-field and the ocean variabilities in the far-field (e.g., winds, tides, alongshore
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Figure 6.7: Ocean satellite images: (a) Total suspend matters (mg L−1) and (b) Chlorophyll-a
(mg m−3) during a heavy rain event on January 6 1939, 2005 (GMT).
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Table 6.3: (a) Inputs and (b) outputs of the RSB model to examine the near-field behavior of the
SBO ([Roberts et al.(1989), Largier et al.(2004), San Diego County(2000)]).

(a)
Model inputs Input data
Number of ports, n 60
Port diameter, D (m) 5
Port spacing, ∆d (m) 3.66
Discharge depth, z0 (m) 28
Diffuser orientation, θ0 (degrees, clockwise @ N) 11.7
Effluent density, ρq (g cm−3) 0.997
Discharge amounts, q (MGD) 20
Number of points in density profile 13

(b)
Model outputs
Minimum dilution at the end of near-field, Sn

Rise height from the bottom, ze (m)
Thickness of plume, he (m)
Height to level of near-field dilution, zm (m)
Length of the near-field, xn (m)

pressure gradient, and internal waves). The U.S. EPA Roberts-Snyder-Baumgartner (RSB) plume

model ([Roberts et al.(1989), Roberts(1999a), Roberts(1999b)]) has been used to predict the height

of the plume and the potential for active surfacing within the near-field. The RSB model is based on

the assumptions of linear stratification between neighboring vertical observations, uniform currents,

straight diffusers, and Gaussian spreading of plume water concentrations at the end of the near-field

([Roberts(1999a), Roberts(1999b), Frick et al.(2001)]). The plume height (h) is parameterized in

the RSB model as

h = h(ρ(z),u(x, z0), q; n,D, ∆d, z0, θ0, ρq), (6.3)

where ρ(z), u(x, z0), and q denote the ambient density profile, the current at the plume depth,

and the amount of outfall flow (m3 s−1), respectively. The SBO plume specifications and the RSB

model outputs are described in Figures 6.3a and 6.3b, respectively. The behavior of the plume in the

near-field is estimated with the RSB model, and the transport in the far-field of the surfacing plume

water is tracked with Lagrangian trajectory analysis of hourly surface current maps, which will be

discussed in the following section. The surfacing of the SBO plume water is used for triggering when

to tack transport.

The SBO has improved the impaired coastal water quality in southern San Diego

since 1999 ([James and Groce(2006), Gersberg et al.(2008)]). However, the improvements during

dry and wet seasons need to be investigated with continuous observations. ([Bratkovich(1985),

Winant and Bratkovich(1981)]) found that the density stratification is closely related to the

temperature rather than salinity in the Southern California Bight, which allows the den-

sity profile to be calculated from vertical temperature profile ([Millero and Poisson(1981),

Fofonoff and Millard Jr.(1983)]). Due to limited observation of the current profile, the bottom cur-
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rent is assumed as Gaussian variables using the mean and RMS of the ADCP observations at that

location, which are 5.5 and 2.3 cm s−1, respectively. The estimated plume rise height is found to be

less sensitive to the bottom current.

The predicted ceiling depth (ze) is highly dependent on the stratification: the strong strat-

ification in summer traps the plume beneath the thermocline, and the weak stratification in winter

allows the plume to surface. The RSB model outputs show the approximately one hour time lag

between uplifts in isotherms and the predicted ceiling depth.

The surfacing of the SBO plume takes place ∼25% over a year. Excluding the surfacing

events, the plume ceiling is on average 9.3 m (mean depth) with 3.5 m (RMS). The vertical temper-

ature differences between top and bottom depths during surfacing and non-surfacing events are less

than 1 degree and 5–6 degrees, respectively. The monthly histogram of the ceiling depth shows the

frequent surfacing during winter and intermittent breakdown of the stratification during summer,

which can explain the anomaly in August. The four years of temperature data (April 2003 – March

2007) have some gaps which can bias the seasonal statistics: the missing observations are 8 and 2

months for summer and winter seasons during four years, respectively, and those are 33 and 8.3%

of each season.

6.3.3 Coastline discharge: Punta Bandera discharge

The Los Buenos Creek continuously discharges 0.97–1.46 m3 s−1 of minimally treated

sewage effluent from the San Antonio de Los Buenos Sewage Treatment Facility near Tijuana

([Svejkovsky and Jones(2001), Orozco-Borbon et al.(2006)]). [Orozco-Borbon et al.(2006)] reported

the higher bacteria concentration near the PBD due to the treatment facility, and discussed the im-

paired water quality at the U.S.–Mexico border dominantly resulted from the TJR than the PBD.

Since it is a continuous discharge, not conditional trigger for the source is necessary.

6.4 A plume exposure hindcast model and analysis

6.4.1 Trajectory analysis using random walk model (RWM)

The forward particle trajectory in the finite time domain is calculated as:

x(t) =
∫ t

t0

(u(t′) + εu) dt′ + x(t0) ≈
∑

k

(u(tk) + εu
k)∆t + x(t0), (6.4)

y(t) =
∫ t

t0

(v(t′) + εv) dt′ + y(t0) ≈
∑

k

(v(tk) + εv
k)∆t + y(t0), (6.5)

where x(t) = [x(t) y(t)]† and u(t) = [u(t) v(t)]† denote the location of the particle and the sur-

face currents at the particle location at a given time (t), respectively (t0 is the initial time of the

simulation). εu and εv are the random variables with zero mean and RMS of ε.
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In Lagrangian stochastic models, the random walk model (RWM) inherits the similar-

ity of the Lagrangian statistics of the passive tracer in the coastal region compared to the ran-

dom flight model ([Griffa et al.(1995), Griffa(1996)]). The random flight model has been used

in studies of marine larvae spreading ([Siegel et al.(2003), Isaji et al.(2005), Ullman et al.(2006),

Spaulding et al.(2006)]) for the active tracer simulation. The added random variable (ε) at time

k + 1 in the random walk and random flight models has white (λt = ∆t) and red (λt > ∆t) spectra,

respectively, as

εk+1 = εk

(
1− ∆t

λt

)
+ ασ

√
2∆t

λt
, (6.6)

where α is the Gaussian variable for the perturbation, λt is the decorrelation time scale, and σ is

RMS of the current field. The shorter the decorrelation time scale is in the random flight model,

the flatter its spectrum is. The RWM is used in this study in order to preserve the shape of the

power spectrum of the original current field and to simulate the pollutants as the passive tracer.

The diffusion parameter (εu and εv) in equations 6.4 and 6.5 represents unresolved velocities as

the uncertainty in the HF radar measurements (ε = 5 cm s−1). A large number of particles are

released and tracked with each time step so that their statistical distribution can be used to infer a

probability exposure for a given discharge.

The RWM is applied to investigate the statistics of the particle transport for three potential

sources: TJR, SBO, and PBD. For this study, all discharges are assumed to be passive with no

dynamical impact on the flow, allowing the mapped surface currents to be the initial current field

into which the discharge occurs. 50 particles are released hourly at each source location (A1, A2, and

A3 in Figure6.1). In case that the particle crosses over the coastline boundary in a given current field,

the trajectory is recalculated by applying the alongshore currents in order to constrain the particle

to follow the coastline. Particles are tracked for three days, which is consistent with the estimated

life time of the FIB ([Noble et al.(2000), Ackerman and Weisberg(2003), Noble et al.(2004)]). No

time dependent decay of the FIB is used for the analysis since the goal is to examine the plume

water exposure probability as opposed to concentration prediction.

A snapshot of the particle trajectory of the RWM and the histogram of the particle con-

centration within the nearcoast cell – an alongshore band extending 1 km from the coast (shaded

area in Figure 6.1) – is shown in Figure 6.8, which is a part of the near real-time TJR plume tracker

(http://sdcoos.ucsd.edu/data/particles/IB/). This histogram helps to understand upcoast/-

downcoast transports in time.

The number of particles (f) arriving in the nearcoast cell is a function of several parameters:

f = f(l, tp, w, n,x0,u, ε), (6.7)

where l is the life time of the particle, tp is the time span of discharge (e.g., river flood period or wet

season), w is the alongshore-wide bin size of the nearcoast cell, n is the number of particles released

per unit time, x0 is the initial position where particles are released, u is the surface current field,

and ε is the diffusion parameter in the RWM.
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Figure 6.8: A snapshot of the TJR plume track model and the histogram of the particle concentration
within the nearcoast cell. The hourly released particles at the TJR mouth are tracked for three days.
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6.5 Exposure kernel

6.5.1 Coastal exposure kernel (CEK)

The coastal exposure kernel (CEK, p) of each source indicates the probability to the source

location or maximum PDF resulting from the surface transport, and is calculated as

pk(x, y) =
Nk(x, y)

max(Nk(x, y))
× 100, (6.8)

where Nk(x, y) denotes the number of particles in space (x, y) for the k-th source.

6.5.2 Shoreline exposure kernel (SEK)

In a similar way, the shoreline exposure kernel (SEK, q) is the probability to the source or

maximum PDF within the nearcoast cell, and is from

qk(l) =
fk(l)

max(fk(l))
× 100, (6.9)

where fk(l) denotes the number of particles at the location l within the nearcoast cell for the k-th

source (equation 6.7).

6.5.3 Scaled shoreline exposure kernel (SSEK)

In order to provide a time integrated statistic that considers the intermittency of the source,

a scaled shoreline exposure kernel (SSEK, r) is defined as the SEK scaled by the number of days

(δ) that each source is active over the entire period (T ). T is recommended to be either annual or

seasonal (summer/winter).

rk(l) = qk(l)
δ

T
(6.10)

The number of particles within the nearcoast cell is counted using the projection to the

piece-wise coastline. The coefficients (a, b, and c) are estimated from the longitude (x) and latitude

(y) of the piece-wise coastline and the distance (d) from the one end.

d = ax + by + c (6.11)

d = Gm (6.12)

where m = [a b c]†. The estimated coefficients (m̂),

m̂ =
(
G†G

)−1
G†d, (6.13)

is used to project the each location of the particles within the nearcoast cell into the one-dimensional

axis (distance from the one end). This ad-hoc one-dimensional projection can be valid within the

limited cross-shore direction (e.g., the nearcoast cell).
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6.5.4 Receiver operating characteristic (ROC) analysis

A technique from statistical decision theory, the receiver (or relative) operating charac-

teristic (ROC) analysis is used in binary classifier systems ([Metz(1978), Hanley and McNeil(1982),

Hanley and McNeil(1983), Swets(1988)]). In the ROC analysis, the diagnosis (the model outputs)

and the event (the observations) are used, and the positive and negative cases are typically considered

as signal and noise events, respectively. All possible cases fall into four categories in the contingency

table (Table 6.4 and [Swets(1988)]). When the diagnosis and the event agree, true-positive (TP) and

true-negative (TN) are claimed, and if they disagree, false-positive (FP) and false-negative (FN) are

claimed. The beach closure is evaluated with the diagnosis based on the RWM (f in equation 6.7)

and the event from the FIB level (g = C or D in equation 6.1).

Table 6.4: A contingency table for two alternative events and two diagnosis. The positive and
negative represent the D and C conditions, respectively.

Event
Positive Negative

Diagnosis Positive True-Positive (TP) False-Positive (FP)
Negative False-Negative (FN) True-Negative (TN)

The TP proportion (sensitivity, α) and the FP proportion (1–specificity, β) are a function

of the threshold value (λ) as shown in Figure 6.9:

α(λ) =
TP

TP + FN
= P (g ≡ D | f ≤ λ) (6.14)

and

β(λ) =
FP

FP + TN
= P (g ≡ C | f ≤ λ). (6.15)

Each point of the ROC curve represents a pair of α and β in a given threshold (λ). The

area (A) under the ROC curve indicates how well the diagnosis system distinguish between positive

and negative cases as the discriminator:

A =
∫ 1

0

α dβ ≈
∑

k

α(βk)∆β. (6.16)

The area under the ROC curve of the binary classifier systems under random variables is equal to

0.5.

6.6 Results

A time-averaged synthesis of the particle trajectories is used to construct three probability

kernels for the surface transport of regional discharges: coastal exposure kernel (CEK, section 6.5.1),
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The number of particles within the nearcoast cell

H
is

to
gr

am

Clean

Contaminated

λ = λ
0

TP

FP FN

TN

Figure 6.9: Variables in the Receiver Operating Characteristic (ROC) analysis are a function of
threshold (λ) : true-positive (TP), false-negative (FN), false-positive (FP), and true-negative (TN).

shoreline exposure kernel (SEK, section 6.5.2), and scaled shoreline exposure kernel (SSEK, section

6.5.3). The bin size of probability kernels is a square box of 0.2×0.2 km2 (CEK) and a rectangular

box of 0.2×1 km2 (SEK and SSEK, w = 200 m in equation 6.7), respectively. The CEK and SEK

are normalized to a maximum of 1 allowing the kernel to represent a statistical assessment of the

resulting exposure during a discharge. The kernels are contoured at 100, 90, 80, 70, 50, 25, 10, 5,

2.5, 1%, and minor percentages. These procedures are intended to allow rapid examination of how

a discharge may expose itself along the coast, but should be used with caution if relative impacts

of different sources are desired since their flow rates and concentrations of contaminants can vary.

To provide a simple comparison between sources, the SEK is scaled by the percentage of time it

is active, providing a time integrated statistic that can be used to assess how often a particular

source may be transported to a particular shoreline location relative to another. The units in the

CEK and SEK are the source exposure probabilities (%) if the source is active, and the SSEK (%)

considers the source statistics for a given time period (either annual or seasonal). The number of

particles within the nearcoast cell for the SEK is counted using an ad-hoc method which considers

the curvature of the coastline.

In order to examine the typical surface transport pattern in southern San Diego, the CEK by

each steady source regardless of discharge type (Table 6.2) is considered with three cases: year-round

(Figure 6.10), season (summer/winter, Figure 6.11), and selected by nearshore current direction

(upcoast/downcoast, Figure 6.12). Then, the CEK is considered while each source is active (Figure
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6.14), and its SEK is evaluated with FIB data using ROC analysis (Figure 6.15 and section 6.5.4). For

the RWM, the number of tracers released and tracked are constant regardless of the time-dependent

nature of the discharge flow rate.

6.6.1 Regional exposure kernel

The TJR plume statistics exhibit a broad distribution in the near the coast, with the

influence of the eddy flows presenting itself in the northern and southern edges of the domain

(Figure 6.10a). The SBO surface transport is slightly oval due to stronger alongshore currents than

cross-shore currents. The relatively high probabilities in the nearcoast cell result from a trapping

of plume water at the coastline in the simulation (Figure 6.10b). Most tracers from PBD plume

water are transported south and spread along the coastline. Upcoast transports from the PBD

cross the U.S–Mexico border intermittently – 56 times for 234 days (∼16%) over four years –, and

their probabilities are less than 2.5% compared with those in the PBD area (Figure 6.10c). The

plume probability decays exponentially in the cross-shore direction with 1–2 km length scale. The

alongshore probability distribution is addressed with the SEK (Figure 6.15).

The seasonal CEKs of the three sources are shown as Figures 6.11A, 6.11B, and 6.11C. The

summer CEK has more alongshore spreading of the plume water, and the winter CEK shows the more

offshore extend of it. For example, 10% contours of the seasonal TJR CEKs cover approximately 20

and 12 miles centered by the TJR for summer and winter, respectively (Figures 6.11Aa and 6.11Ab).

The summer SBO CEK shows the significant alongshore transport to reach the most of shoreline

stations (Figure 6.11Ba). The winter PBD CEK exhibits the dominant offshore stretch of plume

statistics (Figure 6.11Cb). The seasonal upcoast events which the PBD plume crosses the border

occur 17 times during 66 days (summer) and 28 times during 120 days (winter).

The CEKs of the three sources under two current directions (upcoast and downcoast) are

shown in Figures 6.12A, 6.12B, and 6.12C, respectively. The upcoast and downcoast directions are

defined as the averaged alongshore surface currents within the nearcoast cell. The spreading of

the plume water under the unidirectional currents and the relatively longer residence time at the

shoreline boundary are simulated.

The SEKs of the three sources for four years are shown in Figure 6.13a. Each SEK repre-

sents the relative probability along the coast generated by each source. Two shoreline sources (TJR

and PBD) exhibit slightly different distribution: nearly similar shape centered by the TJR (TJR

SEK) and the abrupt decay of the concentration in the north of the PBD (PBD SEK). These dif-

ferences result from spatial variations of the circulation observed in the region. The offshore source

generates nearly uniform probability along the coast (SBO SEK). The SBO SEKs in both seasons

are very similar except the probability in the northern area of C13 station (Figures 6.13b and 6.13c).
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Figure 6.10: Coastal exposure kernels (CEKs) for each local discharge derived from the RWM using
surface current observations for four years. The concentration in a given 0.2×0.2 km2 square box
is normalized with the maximum concentration, which is typically the value at the source location.
The contours indicate 100, 90, 75, 50, 25, 10, 5, 2.5, 1, and minor percentages. (a) TJR. (b) SBO.
(c) PBD.
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Figure 6.11: Seasonal CEKs for each local discharge. A. TJR. B. SBO. C. PBD. (a) Summer. (b)
Winter.



167

Table 6.5: The number of days (δ) that each source is active.

Sources All season Summer Winter
TJR 369 71 298
SBO 420 2 418
PBD 1461 732 729

6.6.2 Regional exposure kernel while sources are active

While the previous section illustrated the potential connectivity between discharge sites for

all times, regardless if the discharge was active, this section examines the resultant exposure only

when a site is an active discharge. The RWM starts and stops according to the type of three local

discharges (Table 6.3). A CEK and SEK are conditionally computed only with the discharge source

active. Although the TJR flow rate is nearly zero, the residual flow after a flood event may last

several days and the discharge may take several days to be flushed out of the estuary. For this study,

we assume the TJR is active for 7 days after rain event. The surfacing of the SBO serves as the

trigger for the SBO CEK. Since the PBD is continuous discharge (Figures 6.10c and 6.11C), only

TJR CEK and SBO CEK are considered. The number days that each source is active is summarized

in Table 6.5.

The active CEKs for four years, summer, and winter are shown in Figures 6.14A, 6.14B,

and 6.14C, respectively. Due to the sparse rain and strong ocean stratification during summer, they

are similar to the winter CEKs (Figures 6.11Ab and 6.11Bb) and the active winter CEKs (Figures

6.14Ca and 6.14Cb).

The active SEKs for four years, summer, and winter are shown in Figures 6.15Aa, 6.15Ba,

and 6.15Ca, respectively. The spreading pattern along the shore in the active SEKs is nearly the

same as the SEKs (Figure 6.13).

The SSEKs for four years, summer, and winter are shown in 6.15Ab, 6.15Bb, and 6.15Cb,

respectively. The SSEK can be interpreted as the time-averaged probability that plume water from a

particular source may be present along the coast. At the source locations for the coastline discharges,

the annual probabilities are 100, 28.2, and 4.8% for PBD, TJR, and SBO, respectively. The daily

probability of the SBO is 2.3 relative to the PBD, which means the daily (highest) probability of

finding SBO plume water somewhere on the northern coast of U.S.–Mexico border is 2.3 time higher

than the probability of the PBD plume water. For the dry season (April - October), the daily

probability of the SBO is almost zero, while during the wet season, the daily probabilities for TJR

and SBO are 22.7 and 5.3 times relative to the PBD.

6.6.3 ROC analysis

The receiver operating characteristic (ROC) analysis is applied to several rain events during

the wet season. The number of particles within the nearcoast cell is plotted against the observed

FIB levels. FP and TP are calculated as a function of the number of particles (λ in Figure 6.9).
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An example of ROC analysis is shown in Figure 6.16, of which area is about 0.72. Using four years

water quality samplings and the RWM during several rain events, the average accuracy of the plume

exposure hindcast model is about 70%, which is a reasonable classification. A random classifier

would have 0.5 skill.

6.7 Discussion

A framework for combining FIB samplings with integrated coastal observations – surface

currents, temperature and current profiles, rain fall and river flow measurements, CTD cast data,

and satellite images – is presented. The framework leads to a plume exposure hindcast statistical

model for coastal water quality prediction. A Lagrangian particle trajectory model (random walk)

using hourly surface current maps applied to three discharge sites provides a regional (spatial) plume

water exposure kernel as well as the shoreline exposure kernel for two shoreline sources (TJR and

PBD) and one offshore outfall (SBO). The data-driven model is compared to the FIB samplings

using ROC analysis for several rain events, and found to have 70% accuracy.

The surface transport of the passive tracer is simulated with the random walk rather than

the random flight model, which preserves the shape of the power spectrum of the surface current

field. The power spectrum of the time-integrated surface currents exhibits variance dominated by

the low frequency band (less than 0.4 cpd), which may result from the alongshore pressure gradient

and local pressure setup by wind.

As the plume is trapped and transported along the shoreline, an assumption is made that

the shoreline currents are simply the along-coast projection of currents measured 1 km offshore.

As a result, the model ignores the important role of wave-driven currents in the surfzone and the

exchange of water across the breaking surf. A logical next step to improve the fidelity of the hindcast

approach presented is to include effects of surfzone currents and surfzone exchange.

The Lagrangian trajectory model framework using HF radar-derived surface currents has

been applied to other applications including tracking a coastal river plume, water quality, oil spill,

search and rescue, and biological larvae spreading ([Spaulding et al.(1993), Ullman et al.(2006),

Coulliette et al.(2007), Kohut et al.(2008)]). The near real-time TJR plume tracking model has

been used the San Diego County DEH for decision making and guiding the posting of beach advi-

sories.

This chapter has been submitted for publication of the material as it my appear in Environ-

mental Science & Technology, 2009, Kim, S. Y., E. J. Terrill, and B. D. Cornuelle titled by ’Assessing

coastal plumes in a region of multiple discharges: the U.S.–Mexico border’. The dissertation author

was the primary investigator and author of this paper.



169

117°20’ 117°15’ 117°10’ 117°05’

 32°25’

 32°30’

 32°35’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(a)
A.

0.02

0.1

0.5

1

2.5

5

10

25

50

70

80

90

100

117°20’ 117°15’ 117°10’ 117°05’

 32°25’

 32°30’

 32°35’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(b)

0.02

0.1

0.5

1

2.5

5

10

25

50

70

80

90

100

117°20’ 117°15’ 117°10’ 117°05’

 32°25’

 32°30’

 32°35’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(a)
B.

0.02

0.1

0.5

1

2.5

5

10

25

50

70

80

90

100

117°20’ 117°15’ 117°10’ 117°05’

 32°25’

 32°30’

 32°35’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(b)

0.02

0.1

0.5

1

2.5

5

10

25

50

70

80

90

100

117°20’ 117°15’ 117°10’ 117°05’

 32°25’

 32°30’

 32°35’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(a)
C.

0.02

0.1

0.5

1

2.5

5

10

25

50

70

80

90

100

117°20’ 117°15’ 117°10’ 117°05’

 32°25’

 32°30’

 32°35’

 32°40’

Longitude (W)

La
tit

ud
e 

(N
)

(b)

0.02

0.1

0.5

1

2.5

5

10

25

50

70

80

90

100

Figure 6.12: CEKs for each local discharge under the current directions. A. TJR. B. SBO. C. PBD.
(a) Upcoast currents. (b) Downcoast currents. The direction of the upcoast and downcoast currents
is determined by the sign of the averaged alongshore current within the nearcoast cell.
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Figure 6.13: Shoreline exposure kernels (SEKs) for three local discharges based on the four year
RWM outputs. (a) All season. (b) Summer. (c) Winter.
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Figure 6.14: Active CEKs for each local discharge. A. All season. B. Summer. C. Winter. (a) TJR.
(b) SBO.
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Figure 6.15: Active SEKs and SSEKs for each local discharge (TJR, SBO, and PBD). A. All season.
B. Summer. C. Winter. (a) SEK. (b) SSEK (zoomed in).
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Figure 6.16: An example of the RWM evaluation using ROC analysis. (a) The time series of the
SEK superposed with FIB samplings. Red and blue triangles indicate the contaminated (D) and
clean (C) conditions, respectively. (b) Hourly TJR flow rate (m3 s−1). (c) ROC curve.
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The dissertation addressed coastal ocean studies in southern San Diego using high-

frequency-radar-derived surface currents including low-level HF radar data processing, data analysis

using statistical techniques and physical interpretation, and coastal environmental applications.

Optimal interpolation shows better performance – concrete uncertainty estimates, reduced spuri-

ous currents, direct calculation of dynamic quantities, and use of prior information – than more

commonly used un-weighted least-squares fitting. The surface currents observed in southern San

Diego are decomposed into the currents driven by the pure tides, local winds, low frequency pressure

gradient, and several continuous frequency bands. Once the locally wind-driven surface currents are

removed by regression of observed winds on surface currents, the filter by weighted least-squares

fitting assuming three colored signals and white noise is applied. The frictional momentum balance

is examined with the atmospherically-adjusted sea-surface difference and the surface currents within

a distinctive low frequency band. The spatial correlations of each part of the decomposed surface

currents exhibit Gaussian and exponential shapes with varying decorrelation length scales. The

impaired water quality in the border region coastlines of San Diego and Tijuana is monitored by

a data-driven model to understand the transport of shoreline and offshore discharges. The surface

transport model outputs are compared with shoreline samples of fecal indicator bacteria, and the

skill of the model to assess low water quality is evaluated using receiver operating characteristic

analysis.

The techniques discussed in the dissertation are applicable to the surface current data in

other study domains. For example, the U.S. National HF radar network may enable us to examine

poleward propagating surface currents or coastally trapped waves, locally wind-driven currents along

the U.S. West Coast, and the proxies for climate signals (Figure 7.1). Moreover, the spatial correla-

tion function and decorrelation length scales, the large scale surface circulation, and the biological

connectivity (e.g., Lyapunov exponents, the random walk/flight models) can be explored. On the

other hand, the horizontal and vertical continuity of the current field can be examined with other

in-situ observations such as the altimetry-derived geostrophic current, the moored current profile,

and Lagrangian observations (e.g, autonomous unmanned vehicle, glider, and ship transects). The

high-density HF radar-derived surface current maps can be used as a potential resource of the nu-

merical ocean model and the data assimilation. Although the baroclinic and barotropic components

are not distinguishable by surface current measurements alone, the spatial structure and its conti-

nuity would play in a role of detecting the surface features of internal waves/tides. The link between

the surfzone and the nearcoast area will be a subject for future work.

Observations of coastal surface currents using HF radar provide the infrastructure of the

national and regional coastal ocean observing system, and are growing in use world wide (Figures

7.1B and 7.2).
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A

Figure 7.1: An example of the surface current map created by (A) U.S. West Coast HF radar
network and (B) U.S. National HF radar network superposed on the Google map (a courtesy of
http : //www.cordc.ucsd.edu). The balloon indicates the location of the HF radar, and its color
represents the status of HF radar as green (online), yellow (temporary delay), red (temporary shut-
down), and gray (offline).



177

B

Figure 7.1: (Continued.)
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Figure 7.2: National and regional coastal ocean observing systems built in the HF radars.
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