Lawrence Berkeley National Laboratory

Recent Work

Title
DECAY MODES AND WIDTH OF THE MESON

Permalink

https://escholarship.org/uc/item/2z6245qm

Authors
Bastien, Pierre L.
Berge, J. Peter
Dahl, Orin I.
et al.

Publication Date

1961-12-27

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA.

Lawrence Radiation Laboratory Berkeley, Califormia

Contract No. W-7405-eng-48

DECAY MODES AND WEDTH OF THE T MESON
Plerre L. Bagtien, J. Peter Berge, Orin i. Dahl, Mascimiliano Ferro-Lazti, Donald F. Miller. Joseph 3. Murray, Arthur H. Rosenfeld, and Mason B. Watson

DECAY MODES AND WIDTH OE THE T MESON*
Perre L. Aatien, J. Peter Berge,Orin I. Dahl, Massimiliano Ferro-Luzzi, Donald H. Miller. Joseph J. Murray, Axthux H. Rosenfeld, and Mason B. Watson

Lawrence Radiation Laboratory and Department of Physice University of California, Zerkeley, California

December 27, 1961

In a atudy of multipion final atates produced by $1.23-\mathrm{Bev} / \mathrm{c} \mathrm{m}^{+}$interactions in deuterium, Pevsner et al. have reported that, in addition to a peaking in the mase distribution for neutral three-pion systerns at $M=764 \mathrm{Mev}$ observed previously in antiproton annihilations, a marked peaking occurs at $M=546 \mathrm{Mev}$ with a full width at half-maximum $\mathrm{C}<25 \mathrm{Mev} .{ }^{1}$ This latter peaking has been interpreted by them as evidence for the decay, via stroag interactions, of an unstable particle, the η meson, into a three-pion atate whose isotopic spin, angular momentum, and parity remain undetermiaiedrı̂.
$-\quad \therefore$ The threshold for η production by K^{-}mesons on protons 4

$$
\begin{equation*}
K^{-}+p \rightarrow A+\eta^{0} \tag{1}
\end{equation*}
$$

is at a K^{-}momentum of $725 \mathrm{Mev} / \mathrm{c}$. Feaction (1) with subsequent three-pion decay of η^{0} via the charged mode, $\eta_{c h}^{0}$ produces the final state

$$
\begin{equation*}
K^{-}+p \rightarrow \Lambda+\pi^{+}+\pi^{-}+\pi^{0} . \tag{2}
\end{equation*}
$$

while a neutral decay $\eta_{\text {neut }}^{0}$ yields

$$
\begin{equation*}
K^{-}+P \rightarrow A+\text { neutrals } \tag{3}
\end{equation*}
$$

We have observed a total of 606 event of the topology of types (2) and (3) produced by 760 and $850 \mathrm{Mev} / \mathrm{c} \mathrm{K}^{-}$meoong in the Lawrence Radiation Laboratory $15-\mathrm{in}$. hydrogen bubble chamber. On the basis of the mase distributions hown in Fige. 1 and 2, we conclude that η^{0} production is involved in both reactions (2) and (3). As indicated in the summary given in Table I we find the croes section for η^{0} production at $760 \mathrm{Mev} / \mathrm{c}$ to be (0.63 ± 0.11) mb , and yet, eisconcertingly, at $850 \mathrm{Mev} / \mathrm{co(ni}$ appears to be $\leqslant 0.04 \mathrm{mb}$. The branching ratio $\eta_{c h}^{0} / \eta_{\text {neut }}^{0}$ at $760 \mathrm{Mev} / \mathrm{c}$ is $0.31 \neq 0.11$.

Figure 1 and Fig. 2 (bottom) are histograme of the mass of the neutrals in reaction (3). Figure 2 (top) bhows a hintogram of the effective mass $\mathrm{M}_{3 \mathrm{r}}$ of the three pions in reaction (2). Using the errors calculated by the fitting program KICK, we have obtained the resolution of our oyatem from a resolution function generated in a manner degcribed in detail by Maglic et al. ${ }^{2}$ We have further callbrated our errors by uging the reaction

$$
\begin{equation*}
\mathbf{K}^{-}+p-\mathbf{R}^{0}+n \tag{4}
\end{equation*}
$$

to calculate the mass of the neutron and its error. The central velues were obtained by plotting Gauedian ideograme. The results are summarized in our experimental
 estimate an upper limit of $\mathrm{\Gamma}=7 \mathrm{Mev}$ on the width.

It is of interest to determine the extent to which our data may be used to constrain the assignment of possible epin-parity states to the η. We assume that the η has $I=0^{3}$ and consider two canes, charge conjugation $C=-1$ and +1 . Since the G parity of a neutral meson obeys the rule $G=C(-1)^{I}$, then for $I=0$, we have $G=C$. For $C=C=-1$, decay into $\pi^{+} \pi^{-} \pi^{0}$ represents an allowed transition. However, the complete spatial antis ymmetry of the $1=0$ three-pion state (a) forbids decay into $\pi_{\pi}^{0} 0_{\pi}^{0}$ and (b) ensures six-fold symmetry for the density of points on a Dalitz plot. Though this latter condition is not well-satiafied by our data (see Fig. 3),
we may tentatively assume that the deviation represent a atatiotical Huctuation, and examine the consistency of the data with the aimplest epinparity, G parity assignmenta for the three-pion ayatern: $0^{+-}, 1^{-\cdots}, 1^{+*}$. The general behavior of these spatial states has been discuased by Miglic ot al. ${ }^{2}$ In particular, the matrix element for she 1^{--}. otate must vanish at the boundery of the Dalitz plot, while for the 0^{-0} and 1^{+-}atates, its value must tend to zero in the center of the Dalita plot. Though of immited statistical significance, our data do not favor any of these hypothenes. 4, 5 If C and G for the η are +1 , decay into two or four pions might be expected but has not been observed. Four-pion decays may be absent because the Q value in that case is approsimately zero. For $J \leqslant 1$, there are four spint-parity assignmenta: $0^{+}, 0^{-}, 1^{+}, 1^{-}$. The first. 0^{+}. would decay into strongiy $\operatorname{man}^{2 \pi}$; the last three cannot. Decay into three pions may still occur, but only via virtual electromagnetic eransitione, which change C to -1 and Ito $1 .^{6}$ With $1=1$, decay into $\pi \pi_{\pi}^{0} 0^{0}$ is poosible with the branching ratio
 leach to the conclusion that radiative decays must be present. Since the decay reactions are invariem under charge conjugation, the neutral decay mode $\eta \rightarrow Y \rightarrow$ any number of $\pi /$ while $\eta \rightarrow w^{+}+\pi^{-}+\gamma$ and $\eta \rightarrow \gamma+\gamma$ (the latter only for 0^{-t}) are allowed. We have syetematically examined all events leading to $\Lambda \pi^{+} \pi^{-}$in the final atate for consiatency with the hypotheais $K^{-}+P \rightarrow \Lambda+\eta$ followed by $\eta^{\rightarrow} \pi^{+}+\pi^{-}+\gamma$ with a negative result. We conclude that
 It is unexpected, but not impossible, that theisetwo radiative modes are as the G-for-bidden slow as $\wedge^{3 \pi}$ mode.

Table If liata the impleat forms of the matrit alements for the three cases under consideration. The simpleat matrix element for the case 0^{-+}is a conctant. We see from Fig. 3 that the Dalitz plot is not uniform,
but rather favora Low-energy $\mathrm{T}_{\mathrm{t}} 0^{\circ}$. Howover thia result could atill be consistent with a $0^{+\boldsymbol{+}}$ meson. That is, the population of the Dalite plot in the simplest case of a forbtdden thret-pion decay could be nonuniform for varioum reamons; for example, a a result of strong final-state interactione or because of the offects of electromagnetic interactions in the decay procest itaelf (for example, if the three pions are formed between the omission and absorption of the virtual photon, thea the reabsorption of the photon would diatinguish botwoen charged and neutral pione).

The simpleat matrix element for the case 1^{-4} requires that the population of the Dalitz plot tend to wero along the $T_{\pi} 0^{\text {axis and the boundary. Slmilarly, }}$ for the case $1^{+\dagger}$ one wrould expect a vaniching population at $T_{0}=0$. Again with limited atatiatical significance, the Dalita plot in Fig. 3 does not favor either of theqe posoiblities. ${ }^{8}$

We conclude that our results are most consietent with the quantum numbers 0^{-t} for the η (these are the onme an the quantum numbers of the X meson introduced in the "eight-fold way" of Gell-Mann). 9 Statistical limitations and background do not permit us to rule out the case 1^{-4} with certainty.

We wioh to acknowledge the help of Profensors L. W. Alvarez, M. Gell-2ann, and M. L. Stevenson Dr. R. W. Hiaff, and Mr. J. Kirz.

FOOTNOTES AND REFERENCES

*Work oupported by U. S. Atomic Energy Commiasion.
†National Academy of Science Fellow.

1. A. Pevsner, R. Kraemer, M. Nuesbum, C. Richardson, P. Schlein, R. Strend, T. Toohig. M. Block, A. Engler, R. Cessaroli, and C. Meltzer. Phys. Rev. Letters 7. 421 (1961).
2. E. C. Maglic, L. W. Alvarez, A. H. Rosenfeld, and M. L. Stevenson, Phys. Rev. Letter: Z. 178 (1961); M. L. Steveneon, L. W. Alvarez. B. C. Maglic, and A. H. Rosenfeld, Fhya. Rev. (to be published);
3. D. D. Carmony, A. F. Rosenfeld, and R. T. Van de Walle, gubmitted to Phys. Rev. Letters; also D. Prowse, U.C.L.A. , private communication.
4. The authors of reference 1 inform us that, within their equally limited statistice, their Dalite plot is consistent with 1^{--}.
5. If η is 1^{--}(like w) then the following comparieon ouggeote that its width should indeed be much lete than our 7 -hev upper limit. It is known that $\Gamma_{\omega}<24$ Mev, and $\Gamma \propto\left|F_{1} P_{2} P_{3}\right|^{2} Q^{2}$ the matrix element M is proportional to $E_{1}\left(\vec{P}_{2} \times \vec{P}_{3}\right)$ and the area of the Dalite plot varies as $\left.Q^{2}=\left(m_{\omega}-m_{3^{\prime}}\right)^{2}\right)$ which drops by a factor of ~ 100 when we substitute $m_{n}=550 \mathrm{Mav}$ instead of $\mathrm{m}_{\omega}=780 \mathrm{Mev}$. Thus we expect a partial width $\Gamma<0.24$ Mev. Presumably the dominant decay rate id $\Gamma\left(\eta^{0} \rightarrow y^{0}+y\right)$. which hag been eatimated at 0.03 Mev [see J. J. Sakural, Phys. Rev. Letters 1, 355 (1961)] in which case $\Gamma\left(\eta_{c h}^{0}\right)$ is about 0.01 Mev.
6. The 3π final state must have $G=-1$, but C must still be +1 . By the ruie $G=C(-1)^{1}$ for neutral particles, 1 must then have changed to an odd number. We assume emisetion and absorption of a single photon ($\Delta \mathrm{l} \leqslant 1$ for each process). so $1=0$ can lead only to $1=1$. This analysis is equivalent so thatis of EL. P. Duerr and W. Heisenberg (The Quansum Numbers of the Ω Meson, " unpubliehed work) Max-Planck-Indtitut für Physik und Astrophysik, München, Cermany.
7. M. Gell-Mann (Califoraia Institute of Technology, Pacadena, private communication) has estimated $\Gamma(y \gamma) / \Gamma\left(\gamma^{+} \pi^{+}\right) \approx{ }^{4}$ not not unater onconsistent witlz our data.
8. Another argument againot 1^{-+}and 1^{++}ie that they bave no way to decay copiously into neutrals. $\Gamma\left(\pi^{0} \psi^{0} \eta^{0}\right) / \Gamma\left(\pi^{+} \nabla^{-}{ }^{0}\right)$ munt be $\ll 1$. and $\quad \frac{6}{6}+\psi^{0}, \gamma+n_{\pi}^{0}$, and $\gamma+\gamma$ are all forbidden.
9. M. Gell-Mann, California Institute of Technology Becientific Laboratory Report GT-SL-20, (unpublished).

Table 1. Production of 7 mesons and background ${ }^{3}$

	$760 \mathrm{Mov} / \mathrm{c}$		850 dev/c	
	$\theta(x a b)$	Events	$\sigma(\mathrm{mb})$	Evente
$\sigma(\Lambda \text { tacutral })^{\prime}$	6.0 ± 0.4	408	4.1 1 ± 0.4	148
σ ($\eta^{\circ} \mathrm{nous}$)	0.48 ± 0.10	33	<0.0240.02	$\leqslant 1$
$\sigma\left(\Lambda \pi^{+}-\pi^{0}\right)$	0.20 ± 0.05	27	$0.15 * 0.05$	23
O($\left.\eta^{\circ} \mathrm{ch}\right)$	0.15 ± 0.05	20	<0.02*0.02	<3
Exc. min - man^{+m}	$20 \text { Mev }^{8}$		63 Mov	

a. The path lengtho acamed for reactions (2) and (3) were ta the rato of $1.64 / 1.0$
b. This row it the 0 value for $A+\eta$ production

Table II. Calculations of massen and widths

Table III. The G-forbiden 3 recays ${ }^{\text {a }}$

Meson	1.L	Simpleat matrix element	Vanishea at	Dominant radiative decay modes
0^{-4}	0.0	$a \cdot 1^{\text {b }}$	nowhere	$2 \gamma_{0} \pi^{+} \pi^{-1}$
1^{++}	1.0	a. $\mathrm{p}^{\text {p }}$	$\mathrm{T}_{\mathrm{T}} \mathbf{0}=0$	
1^{-t}	2.2	$a(\vec{p} \times \vec{q}) \cdot(\vec{p} \cdot \vec{w})$	To axis and boundary	$8^{+1 \times 1}$

a. The matrisc element is analyzed in terms of a $\pi^{+} \pi^{-}$pair and a π^{0}. The $\pi^{+}{ }^{+}{ }^{*}$ pair is assigned momentum $\overrightarrow{9}$ and anguler momentum \vec{L}. The remaining ${ }^{0}{ }^{0}$ is described in the 3π reat frame by momentum $\overrightarrow{\mathrm{p}}$ and angular momentum \mathbf{T}.
B. The factor a (fine-structure constanf) appaze aince G-forbidden tranditions require that the decay proceed via electromagnetic interaction.

FIGURE LEGENDS

Fig. 1. Missing-mass eptetrum for 408 eventscorresponding to reaction (3). The peak to the left corresponde to the final state $\Lambda \pi^{\circ}$. Mostig of the events to the right of the π^{0} peak and below a mass of 434 Mev correspondisto $\Sigma^{0}{ }^{0}$ production where $\mathbb{z}^{0} \rightarrow \Lambda+\frac{y_{3}}{}$. In the poak to the right 33 events have been attributed to $\eta^{\prime} s$ (gee Fig. 2, bottom). The other posaible final states are $\Sigma^{0} 0^{0} 0^{0}$. $A r^{0} 0^{0}$, and $A r^{0} \pi^{0} 0^{0}$. The dashed curve represents the phase ppace allowable by charge fadependence
 (i.e., no η production) then charge independence requires $\sigma\left(\Lambda \pi^{+} \nabla^{*} \pi^{0}\right) / \sigma\left(\Lambda \pi^{0} \pi^{0} \pi^{0}\right)>2 / 3$.) Phase epace for $A \pi^{0} \pi^{0}$ starta at $2 \pi^{0}$. and phase space for $\mathrm{Zr}_{\pi}{ }^{0}{ }^{0}$ at 285 Mev . It ahould be noted that the
 the ratio at $\left.{ }^{-} p \rightarrow \Lambda \pi^{0} \eta^{-}\right) / \sigma\left(\operatorname{tr}^{-} p \rightarrow \Lambda r^{+} t^{-}\right)=1.4$ from K^{-}in deuterium at $760 \mathrm{Mev} / \mathrm{c}$ (Prowse et al., UGLA, private communication). We know further that $\left.\sigma \operatorname{dic}^{*} p \rightarrow \Lambda r^{+}{ }^{-1}\right)=2.9$ frb from K^{-}in hydrogen at $760 \mathrm{Mev} / \mathrm{c}$. Uaing these facts and charge independence, one gets a maximum cross section for $A r^{0}{ }^{0}$ of about 0.35 mb .

Fig. 2. (Top) The $M_{3 \pi}$ spectrum from reaction (2). The solid curve is Lorenta-invariant phase space normalized to the $27 \Lambda \Psi^{+} \mathbb{T}^{-}{ }^{0}$ events. Such a curve predicts 14 events below 530 Mov which ara not there. Consequently another dashed curve has been drawn normalised to the four eventa to the left of 530 Mev . This implies that there are three background events above 530 Mev. It chould be remarked further that the cross section for $\mathrm{K}^{*} \mathrm{n}_{\mathrm{n}} \rightarrow \mathrm{A} \mathrm{r}^{+}{ }^{+}{ }^{*}{ }^{\circ}{ }^{0}$ at $760 \mathrm{Mev} / \mathrm{c}$ is about zero [D. Prowse!, U.C.L.A., private communication], meaning that
the $\Lambda 3_{n}$ channel seems to $\mathrm{d}=0$ at that momentum. Therefore there should not be ayy $\mathrm{K}^{-} p \rightarrow \mathrm{Y}_{0}^{* * 0} 0$ final state present at $760 \mathrm{Mev} / \mathrm{C}$. (Bottom) The high-energy part of Fig. 1. The fact that the widi of the resolution function is larger than the hiotogram with can be astributed to a atatiatical fuctustion or a slight miesseignment of our errors.

Fig. 3. Nommaliced Dalita plot for 23 of the 27 events of Fig. 2 (top). The Cour events with $M_{3 \pi}<530 \mathrm{Mev}$ were interpreted as background and excluded. As shown in Fig. 2 (top), three or four of the remaining events are probebly also background. Charge-conjugation invariance allows us to fold the plot about the $\mathrm{T}_{\mathrm{F}} \mathrm{O}^{\text {axim. For } \mathrm{C}}$ (b) arid (c) -1 . the plot can be folded again about the $\mathrm{T}_{\mathbf{T}^{+}}$and $\mathrm{T}_{\mathrm{H}^{-}}$axse. \wedge No control-region plot io presented, since we have only four event clearly outside the $n_{\text {ch }}^{0}$ peak.

$$
\begin{aligned}
& K^{-}+P-\Lambda+\text { neutrals (408 events) } \\
& 38 \text { events in } \eta \text { peak } \\
& \sigma_{\eta \text { neut }}=0.48 \pm .10 \mathrm{mb}
\end{aligned}
$$

$7 i n 3$

