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Parallel evolution of the summer steelhead ecotype from multiple populations in 

Oregon and Northern California 

Martha A. Arciniega-Hernández 

Abstract  

Parallel adaptive divergence of migratory and reproductive behavior can occur in 

multiple populations when similar selection is acting on these traits. Timing of migration, 

sexual maturity, and reproduction can have major impacts on the dynamics and viability 

of a population.  Life-history variation in steelhead, Oncorhynchus mykiss, including 

variation in anadromous run timing, reproductive maturity and spawn timing, represents 

an important aspect of their biology and adaptation to local habitats. Here we present a 

genetic analysis of naturally spawning steelhead to evaluate the genetic relationships and 

ancestry of summer- and winter-run reproductive ecotypes from multiple river basins in 

Oregon and Northern California. We infer the phylogeographic relationships among 

populations of both summer- and winter-run steelhead ecotypes using 12 microsatellite 

loci and 90 single nucleotide polymorphisms. Phylogenetic trees and analysis of 

molecular genetic variance revealed that pairs of phenotypically and genetically distinct 

reproductive ecotypes within rivers were each other’s closest relatives. Isolation by 

distance was also observed, confirming that genetic relatedness was strongly associated 

with geographic distance, and indicating limited migration or gene flow among river 

basins. These patterns support the hypothesis that the summer-run steelhead ecotype has 

repeatedly evolved through parallel evolution in multiple river basins. These results, 

together with further investigation of the underlying molecular basis for the divergence of 
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winter- and summer-run steelhead life-history traits, will inform management and 

conservation efforts for these ecotypes and improve our understanding of the role of 

adaptive variation in conservation genetics. 
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Introduction 

Variability in life-history traits can allow species to exploit diverse natural 

resources and may confer resilience to the potentially negative impacts of 

environmental change (eg. Price et al. 1984; Winemiller 1989; Dionne et al. 2008). 

Understanding the evolutionary basis of such variability is important for management 

and conservation purposes. However, changes in the expression of morphological, 

phenotypic, and behavioral traits can result from both plastic and evolutionary 

responses, making it difficult to identify the underlying genetic basis of phenotypic 

expression in an uncontrolled environment. Parallel evolution of phenotypic traits 

often occurs in association with similar selective pressures in distant habitats and can 

have a similar heritable component in closely related species (Haldane 1932). 

Similarities in the selective pressures experienced by populations or species can lead 

to convergent phenotypes (Pearse and Pogson 2000; Steiner et al. 2009; Rosenblum et 

al. 2010), although the underlying genetic change associated with the phenotypic trait 

may be the same (Cresko et al. 2004; Mundy et al. 2004; Colosimo et al. 2005; Gross 

et al. 2009; Miller et al. 2012; Hohenlohe et al. 2012; Protejo-Garcia et al. 2013; 

Pearse et al. 2014), or different (Jessen et al. 1991; Chen et al. 1997; Hoekstra and 

Nachman 2003). Thus, a first step in understanding the evolution of phenotypic 

variation in life-history traits is to compare the genetic relationships among 

populations with the same, and different, phenotypes. These relationships can then 
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provide a framework with which to test hypotheses about the evolutionary history of 

a specific phenotype (Harvey and Pagel 1991). 

Species in the family Salmonidae are widely studied due to their importance 

in fisheries, aquaculture, and conservation. The complex spectrum of life-history 

traits in salmonid fishes (Quinn and Myers 2004) can be highly heritable (Bentzen et 

al. 2001; Nichols et al. 2008; Haidle et al. 2008; Miller et al. 2012; Abadía-Cardoso et 

al. 2013) and can change rapidly under strong selection (Hendry et al. 2000; Martínez 

et al. 2011; Pearse et al. 2014). Among the most variable and widely distributed of 

these species is Oncorhynchus mykiss, which is termed steelhead if it migrates to sea 

before returning to freshwater to spawn, and rainbow or redband trout when it does 

not.  In California and Oregon, steelhead populations are categorized into distinct 

population segments (DPSs) for management and conservation purposes. The DPS 

boundaries are based on many factors, including geography, migratory behavior, 

spawn timing, and genetic structure (Busby et al. 1996; Garza et al. 2014). Because of 

spatial differences in temperature, water flow, sediment type, sedimentation rate, and 

other characteristics among rivers, divergent selection may drive the adaptation of 

steelhead to their local environment (Taylor 1991; Narum et al. 2008b; Narum et al. 

2013; Matala et al. 2014). Instances of local adaptation in salmonid fishes have been 

found to occur at spatial scales of a few kilometers (Fraser et al. 2011; Bond et al. 

2014) and have been shown to affect migratory timing (Major and Mighell 1966; 

Quinn and Adams 1996; Quinn et al. 1997; Robards and Quinn 2002). Thus, in order 

to manage O. mykiss effectively, it is important to understand both the geographic and 
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genetic structure of its life-history variation and the adaptive evolutionary processes 

that give rise to it. 

Anadromous migratory behavior can also differ by the season in which adult 

fish return to freshwater to spawn, or run timing. Run timing is commonly used to 

describe populations of anadromous fish, and such temporal differences in migration 

and reproduction have been shown to reduce gene flow and increase divergence 

among populations within a basin (Quinn et al. 2000; Hendry et al. 2002; Waples et 

al. 2004; Clemento 2006). This temporal divergence in patterns of life-history traits 

may reflect either the effects of local adaptation or phenotypic plasticity, or some 

combination of the two. Winter-run steelhead typically return to their natal river 

already sexually mature during the months of November to May and spawn shortly 

after entry into freshwater (Shapovalov and Taft 1954; Withler 1966; Busby et al. 

1996). In contrast, summer-run steelhead return sexually immature from April to 

June, hold in cool pools during summer and fall, then mature and spawn in the winter 

or the following spring, often moving upstream into headwater habitat as they do so 

(Everest 1973; Moyle 2002). Timing of migration is therefore decoupled from timing 

of sexual maturity for the summer-run ecotype, but not for the winter-run ecotype. 

Although these summer- and winter-run phenotypes usually occur within the same 

river, they may be effectively allopatric, due to spatial and temporal separation in 

migration timing and spawning habitat. Such spatial and temporal differences have 

been found to exist between winter- and summer-run steelhead populations in British 

Columbia (Smith 1968) and the Rogue River (Everest 1973), with earlier returning 
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fish spawning farther upstream than later returning fish (Briggs 1953). In the summer, 

stream conditions tend to restrict steelhead to the lower part of the river and, when 

water flow increases in the fall or winter, summer-run fish move further upstream 

(Behnke 1992). Although there is overlap in spawn time, winter-run fish are just 

entering the river when the summer-run fish are moving further upstream, creating 

spatial separation.  In Capilano River, British Columbia, the two races of summer- 

and winter-run steelhead are mutually viable, however, their behavior would indicate 

that they do not interbreed and there are large differences in the fat and gonad weights 

between them (Smith 1969). The morphological appearance of summer steelhead, 

such as pronounced hooking of the snout and lower jaw, also suggests something 

about their behavior.  It is possible that summer steelhead may get territorial and 

defend their spawning sites against winter steelhead (Smith 1969). Thus, pairs of 

populations of these two ecotypes from the same river offer the opportunity to 

investigate the genetic basis of migratory/reproductive strategies. 

In California, summer-run steelhead are currently found primarily in the 

tributaries of the Eel and Klamath river basins, although historically they were more 

widespread (Bjorkstedt et al. 2005). Further to the north, populations of summer-run 

steelhead are more common, particularly in the Columbia River basin, where the 

inland populations are derived from a distinct lineage of the species (Allendorf 1975). 

If these ecotypes evolved independently multiple times, then the summer- and winter-

run steelhead from the same river would be expected to be each other’s closest 

relative. In the Middle Fork Eel (MFE) River, winter-run steelhead populations are 
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more closely related to the sympatric summer-run populations than to winter-run 

populations in neighboring tributaries (Clemento 2006), and the time of divergence 

between ecotypes has been estimated as 16,000-28,000 years (Nielsen and Fountain 

1999). Additionally, Clemento (2006) suggested that the summer phenotype has a 

heritable component because multiple generations of summer steelhead were each 

other’s closest relatives when compared to neighboring O.mykiss populations. 

Although this evidence suggests that the summer ecotype has independently evolved 

within the Eel River, the population genetic relationships among sympatric summer- 

and winter-run steelhead populations in other basins remain unknown. 

Microsatellite markers are highly polymorphic and informative, have a long 

history of use in population genetics (Sunnucks 2000), and have been used 

extensively to study O. mykiss populations (e.g Heath et al. 2002; Hauser et al. 2006; 

Pearse et al. 2007, 2009; Clemento et al. 2009; Martínez et al. 2011; Garza et al. 

2014). However, because of the ease of genotyping and portability of the resulting 

data, single nucleotide polymorphism (SNP) markers are increasingly used in 

population genetic investigations (Morin et al. 2004), including to assess population 

demography, estimate phylogenetic relationships and for parentage analysis (e.g. 

Anderson and Garza 2006; Morin et al. 2009; Abadía-Cardoso et al. 2011, 2013; 

Hansen et al. 2011; Helyar et al. 2011; Anderson 2012).  However, Narum et al. 

(2008a) concluded that although microsatellites had a higher accuracy than SNPs 

alone, using both types of markers in combination can yield higher assignment 

accuracy and provide the most power to determine population genetic relationships. 
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Here we use 102 polymorphic markers, 12 microsatellites and 90 SNPs, to 

investigate the relationships between and evolution of summer- and winter-run 

ecotypes of naturally spawning steelhead. We examine the genetic structure of 

steelhead from summer- and winter-run populations in multiple rivers in Oregon and 

Northern California and place their relationships in a geographic context to test the 

hypothesis that the summer-run steelhead ecotype has evolved in parallel in multiple 

river basins from distinct local winter-run steelhead populations. 

 

Methods 

Sampling 

Samples were obtained from four pairs of summer- and winter-run steelhead 

populations in the Columbia, Umpqua, Klamath, and Eel rivers (Table 1; Figure 1) in 

Oregon and Northern California through trapping and net capture of adults in holding 

pools or at weirs.  Sampling at weirs was done during the peak time of river entry 

during each run, while summer-run adults were sampled in summer holding pools.  

For comparison of genetic distance and diversity, samples from winter-run steelhead 

from 17 additional locations in California were used (Table 1), as a way of 

visualizing how sympatric populations clustered relative to other coastal winter-run 

populations that are not in sympatry with summer steelhead. 

 

Genetic Data Collection 
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DNA was extracted from dried fin clips using the DNeasy 96 filter-based 

nucleic acid extraction system on a BioRobot 3000 (Qiagen, Inc.), following the 

manufacturer’s protocols.  Extracted DNA was diluted 10:1 (microsatellites) or 2:1 

(SNPs) with distilled water and used for polymerase chain reaction (PCR) 

amplification of 12 microsatellites and 90 SNPs (Supplemental Table 1). For 

microsatellites, PCR products of samples from the Columbia, Umpqua, Rogue and 

Trinity rivers were electrophoresed on ABI 377 sequencers (Applied Biosystems, 

Inc.).  The same protocol and equipment was used to collect microsatellite genotypes 

for the other populations that were previously published based on data collected in the 

same laboratory (Clemento 2006; Garza et al. 2014).  Genotypes were determined 

using Genescan 3.0 and Genotyper 2.1 software (Applied Biosystems).  Two people 

scored all microsatellite genotypes independently, and discrepancies in the scores 

were resolved either by consensus or by re-genotyping.  Otherwise, that genotype was 

deleted from the data set. SNPs were assayed with high throughput 96.96 dynamic 

genotyping arrays on an EP1 instrument (Fluidigm, Inc.), and genotypes called using 

Fluidigm SNP Genotyping Analysis software. 

 

Data analysis 

The microsatellite and SNP data were combined for all analyses. Basic 

population genetic statistics, and test for departures from Hardy-Weinberg and 

linkage equilibria were estimated using the GENEPOP program (v4.2; Rousset 2008).   

Allelic richness for microsatellites was calculated using FSTAT 2.9.3 (Goudet 2001).  
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Individual fish were assigned to their most likely population of origin and individual 

migration between populations assessed using the Bayesian method for estimating 

population allele frequencies (Rannala and Mountain 1997) implemented in the 

program GeneClass2 (Piry et al. 2004). Pairwise differentiation between all pairs of 

populations was evaluated using FST, as estimated by Weir and Cockerham (1984) in 

ARLEQUIN (v3.11, Excoffier et al. 2007).  Cavalli-Sforza and Edwards (1967) chord 

distances were calculated and used to generate a neighbor joining phylogram of 

populations, with the statistical support for population relationships evaluated by 

taking 1000 bootstrap samples from the dataset, all with the software package 

PHYLIP (Felsenstein 2005). The resulting phylogram was visualized using 

Dendroscope 3 (Huson and Scornavacca 2012).  Isolation by distance (IBD) analysis 

was performed using GENEPOP with a Mantel test (1000 iterations) used to evaluate 

significance of relationships between FST and distance (km).  To evaluate fractional 

ancestry of individuals, clustering analyses were conducted using the program 

STRUCTURE (v2.0; Pritchard et al. 2000), which allows migrants and individuals of 

mixed ancestry to be identified without a priori designation of defined populations 

(Pritchard 2000; Pearse and Crandall 2004). Clustering analyses were done with a 

range of values for the number of genetic clusters (K = 2 - 10), with 10 runs of each 

K value to evaluate consistency of patterns of genetic association. Results from the 

STRUCTURE runs were compiled and visualized using CLUMPP (Rosenberg 2004) 

and DISTRUCT (Jakobsson and Rosenberg 2007). ARLEQUIN was used to perform 

an analysis of molecular variance (AMOVA; Excoffier et al. 1992) for different a 
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priori groupings of population samples to evaluate the distribution of genetic 

variation among and between basins and ecotypes.  Finally, to evaluate the neutrality 

of our loci, FST outlier tests were done using FDIST2 (Beaumont & Nichols 1996) as 

implemented in LOSITAN (Antão et al. 2008).  

 

Results 

Genotyping and Population Statistics 

A total of 730 individual fish were successfully genotyped, with samples sizes 

from each population ranged from 18 to 47, and averaged 29 individuals (Table 1). 

The missing data rate over all loci was <1.3%, and all individuals were genotyped at a 

minimum of 90 loci. No consistent, significant deviations from Hardy-Weinberg or 

linkage equilibria were found.  Observed heterozygosity ranged from 0.263 to 0.448 

across all loci, and allelic richness for the microsatellites ranged from 5.9 to 8.1 

(Table 1). 

 

Genetic structure 

A combined dataset with 12 microsatellite loci and 88 SNPs was used to 

construct an unrooted neighbor-joining phylogram (Figure 2). Two SNP markers 

were excluded from this analysis because they failed entirely in more than one 

population. Phylograms were also constructed using the microsatellite and SNP loci 

separately, and revealed no significant differences in topology (results not shown). 

The population clustering pattern in all analyses was consistent with the geographic 
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locations of river basins (Figure 2). Summer- and winter-run steelhead from the same 

river basin were each other’s closest relatives in all basins, and all steelhead 

populations generally clustered according to geographic proximity. For example, 

within the Eel River, winter-run steelhead from the upper mainstem (Van Arsdale) 

grouped more closely with summer-run steelhead from the Middle Fork Eel River 

than they did with winter-run steelhead from the Lawrence Creek and Hollow Tree 

Creek tributaries, which have their confluences with the mainstem Eel River much 

closer to its mouth. Similarly, winter-run steelhead from the South Fork Trinity River 

grouped more closely with summer-run steelhead from the New River tributary of the 

Trinity River than with winter-run steelhead in other basins.  This pattern was also 

consistent for the Umpqua and Columbia River pairs of steelhead ecotypes. 

 

Individual assignments 

Assignment tests reliably distinguished individuals sampled from various river 

locations in Oregon and California. Using a 90% probability confidence criteria, the 

accuracy with which fish were assigned to their population and basin of origin was 

90.7% and 95.8%, respectively (data not shown). Misassignments between ecotypes 

were reflective of the population divergence, with 11, 6, and 1 summer/winter cross-

assignments in the Umpqua, Klamath, and Eel population pairs, respectively. When 

no probability criterion was used, mean self-assignment percentage to population was 

87% and ranged from 42-100% (Table 1). In addition, 66 of 730 fish(9.0%) were 
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misassigned to a population location other than the one where they were sampled and 

of those, 38 (5.2%) were assigned to a location outside their basin of origin. 

 

Genetic differentiation 

The proportion of genetic variation partitioned between population samples, 

pairwise FST, was significantly different from zero (p = 0.000) for all comparisons 

except that between the Umpqua summer- and winter-run fish. The samples from the 

Umpqua River were collected at the same weir, so were separated only temporally. 

Pairwise FST values between all population pairs ranged from 0.037 - 0.312, while FST 

values between ecotypes within basins were generally lower (0 – 0.069; Table 2). A 

pattern of isolation by distance was indicated by a strong relationship between genetic 

and geographic distance (FST vs. distance, r2 = 0.479, Mantel test: P < 0.000; Figure 

3). 

 

STRUCTURE analyses 

Model-based clustering analyses with STRUCTURE of the four regional 

ecotype pairs revealed distinct genetic groupings (Figure 4), concordant with the 

groupings in the phylogenetic tree; in every case, clusters were defined 

geographically by basin and not by ecotype. Multiple iterations for each value of K = 

2 -10, showed consistent patterns of population genetic division. At low hypothesized 

K (i.e., < 5), geographic proximity was the primary determinant of genetic similarity 
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(Figure 4).   As K increased to K > 5, subdivision and fractional ancestry that no 

longer made biological sense was apparent. 

 

 

Analysis of molecular variance 

AMOVA was used to partition and assess the significance of the variance at 

different levels of genetic structure with two hierarchal groupings. When populations 

were grouped by ecotype, the variance partitioned among groups was not 

significantly different from zero (p = 0.943), whereas when they were grouped by 

basin, it was 12.82% of the total genetic variance among groups, and highly 

significant (p=0.009; Table 3). Similarly, the variance among populations within 

groups categorized by ecotype and by basin were both significantly different from 

zero, representing 15.74 and 2.25% of the total variance, respectively (Table 3). 

Finally, the balance of the variance was partitioned within populations and accounted 

for 88.16 and 84.93% of the total variance for the ecotype and basin groups, 

respectively. 

 

FST-outlier test 

In order to identify loci that may not conform to neutral expectations, we 

conducted FST outlier tests on all genetic markers in this study.  No consistent outlier 

loci were detected across multiple pairs of ecotype populations, confirming the 
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apparent selective neutrality of these loci and validating their use for population 

genetic inference (Supplemental table 2). 

 

 

 

Discussion 

In this study, the genetic structure of naturally spawning summer- and winter-

run steelhead in multiple rivers of Oregon and Northern California was investigated 

using genotype data from 102 SNP and microsatellite loci. All analyses supported the 

hypothesis that populations of the two ecotypes within the same river basin are each 

other’s closest relatives and that the summer-run life-history strategy has arisen 

multiple times independently in these basins. The close relationships of 

geographically proximate populations of both ecotypes indicate that local adaptation 

and genetic drift are more important for the evolution of the summer-run strategy than 

migration among populations of the same ecotype from different river basins. For 

example, the summer- and winter-run steelhead populations in the Klamath River 

basin are more closely related to each other than either one is to summer- and winter-

run steelhead populations in the Eel River. These results suggest that isolation by 

distance (IBD) is a more important factor than ecotype in the genetic relationships of 

steelhead. IBD analysis found that almost 50% of the variation in genetic 

differentiation among populations from all sampling sites was explained by 

geographic distance (Figure 3). This pattern is consistent with previous studies of 
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coastal steelhead, which found similar signals of IBD (Pearse et al. 2011; Garza et al. 

2014). A similar pattern of structuring by geography and not phenotype has also been 

observed in other anadromous and resident O.mykiss populations (Docker et al. 2003; 

Olsen et al. 2006; Pearse et al. 2007; Clemento et al. 2009). 

The STRUCTURE analyses were concordant with the phylogram, with 

populations partitioned geographically by basin and not by ecotype. STRUCTURE 

can be used to identify recent migrants through individual assignment, but there was 

no evidence of recent migration of summer-run steelhead between rivers. The 

consistent grouping of the winter- and summer-run steelhead ecotypes within rivers 

with multiple iterations at different values of K is further evidence for a lack of gene 

flow among populations of the same ecotype from different rivers.  The AMOVA 

analysis found that none of the total variation was distributed among groups when 

they are defined by ecotype, whereas when groups were defined by basins, a 

significant proportion was, concordant with the IBD and STRUCTURE results.  In 

addition, approximately 85% of the molecular variance was contained within 

individual populations (Table 3). Finally, individual assignment tests yielded a high 

accuracy of assignment of individual samples to their corresponding populations of 

origin, with ~91% of fish accurately assigned to population and ~96% to basin of 

origin when a probability criterion was used.  Additionally, the neutrality of the 

genetic markers used in this study was confirmed with the FST outlier test.  Taken 

together, these results strongly support the hypothesis that the summer-run steelhead 

populations studied were more genetically similar to winter-run populations within 
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the same basin than to more geographically distant summer-run populations. 

Similarly, winter-run populations grouped with other populations of either ecotype 

primarily on the basis of geographic distance. 

The mechanisms by which parallel evolution of the summer steelhead ecotype 

has occurred are not known. However, as these summer, or “early”, returning 

steelhead populations colonized new habitat in the headwaters of these rivers, 

selection on migration timing, sexual maturity, and breeding date could potentially 

have been quite strong, with offspring viability increasing the earlier they returned 

from sea.  Instances of adaptation of migration timing due to environmental change(s) 

are not uncommon in other salmonids.  For example, pink salmon from Auke Creek, 

AK, have been observed to adapt to warmer water conditions by migrating earlier in 

the season in combination with a decrease in the number of very late returning fish 

(Kovach et al. 2012). Because of the tight coupling of run and spawn timing in 

Pacific salmonids (Flagg et al. 1995, Quinn et al. 2002), such divergent selection on 

run timing in may help facilitate differentiation between ecotypes, and the extent of 

reproductive isolation may be increased if individuals who disperse or reproduce at an 

intermediate time, especially hybrids, are maladapted and therefore have lower fitness 

(Crispo et al. 2006). Further work will help elucidate the underlying genetic basis of 

the observed differences in timing of return to freshwater and reproductive maturity. 

Although summer- and winter-run steelhead appear to be discrete populations 

because of differences in timing of migration and spawning (Shapolov & Taft 1954; 

Royal 1972; Burgner et al. 1992; Hendry et al. 2005), as well as spawning location 
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(Everest 1973), the extent of gene flow between ecotypes in the same basin is 

unknown and the ecotypes have been found to be genetically very similar in some 

cases (Allendorf 1975; Nielsen & Fountain 1999; Clemento 2006).  Chilcote et al. 

(1980) found that genetic heterogeneity did not differ significantly between summer- 

and winter-run steelhead in the Kalama River. In contrast, Leider et al. (1984) found 

genetic exchange was restricted between these populations because of spatial and 

temporal factors. In the Middle Fork Eel River, a landslide that formed a dam and 

paleolake during the Pleistocene era has been suggested to have facilitated gene flow 

between the two ecotypes by limiting upstream migration of summer-run steelhead 

and forcing both ecotypes to spawn in the same habitat (Mackey et al. 2011). 

However, the genetic divergence between summer- and winter-run steelhead 

populations in the other basins is similarly shallow, even though no such geologic 

explanation has been proposed, so it is not necessary to invoke a physical barrier to 

explain the contemporary genetic structure of steelhead ecotypes in the Eel River, 

even though gene flow may have been influenced by geologic events in the past. 

 

Conservation Implications 

Thus, the relationships between summer- and winter-run steelhead 

populations in the same basin have important management implications. In the United 

States, steelhead populations are administratively designated and managed as distinct 

population segments (DPSs), which are delineated on the basis of geographical, 

ecological, and genetic variation (Busby et al. 1996; Garza et al. 2014). Habitat loss, 
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poor water quality, and other factors have led to the decline of many steelhead 

populations and some populations are now listed as threatened species under the US 

Endangered Species Act (NOAA 2006). However, ecotypic run-timing differentiation 

is not specifically accounted for in considering DPS designations, despite the fact that 

access to summer-run habitat has been dramatically reduced by dam construction. 

Such habitat modifications may increase the potential for gene flow among ecotypes, 

leading to changes in their relationships. Finally, hatchery supplementation programs 

that support wild populations of summer or winter steelhead need to consider if 

individuals from different run timings represent distinct sub populations in order to 

effectively maintain this phenotypic variation in captive broodstock. 
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Table 2. Pairwise FST values for the eight focal winter- and summer-run 
steelhead population pairs. * = significant (P < 0.05).  S = summer 
ecotype 
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Table 3. AMOVA results evaluating different hypotheses for groupings of the 
focal populations. Nb = number of groups, Var = covariance component, % = 
percent overall genetic variance, and F-statistics (FCT, FSC, FST) appropriate for 
each level of comparison.  Bold values are significantly different from zero (P < 
0.05).  
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Supplemental Material Table 1.

Assay ID Assay Target Reference
Omy1011 (CAGA)11 Spies et al. 2005
OtsG243 (TAGA)63(CAGA)12(GACA)7(GA)22 Williamson et al. 2002
OtsG253B (GACA)10(GATA)14 Williamson et al. 2002
One11 (CA)13 Scribner et al. 1996
OtsG249B (TAGA)19 Williamson et al. 2002
OtsG43 (GACA)13(GATAGACA)2(GATA)25 Williamson et al. 2002
OtsG85 (GATA)19 Williamson et al. 2002

Oki23 Spidle et al. unpublished, GenBank 
AF272822

One13 (GA)20 Scribner et al. 1996
OtsG3 (GATA)30(TAGA)1 Williamson et al. 2002
OtsG409 (GA)9(TAGA)6-GGTA-(GATA)16 Williamson et al. 2002
Ssa289 (GT)12 McConnell et al. 1995
OMGH1PROM1-SNP1 A/T Abadía-Cardoso et al. 2011
Omy_AldA T/C Aguilar & Garza 2008
Omy_arp-630 T/C Campbell et al . 2009
Omy_aspAT-123 T/C Campbell et al . 2009
Omy_COX1-221 T/A Campbell et al . 2009
Omy_g12-82 G/A WSU - J. DeKoning unpubl.
Omy_gh-475 G/A Campbell et al . 2009
Omy_gsdf-291 T/C WSU - J. DeKoning unpubl.
Omy_mapK3-103 T/A CRITFC - N. Campbell unpubl.
Omy_mcsf-371 G/A WSU - J. DeKoning unpubl.
Omy_nramp-146 T/C Campbell et al . 2009
Omy_Ogo4-304 T/C Campbell et al . 2009
OMY_PEPA-INT6 T/C Aguilar & Garza 2008
ONMYCRBF_1-SNP1 T/C Aguilar & Garza 2008
SH100771-63 T/A Abadía-Cardoso et al. 2011
SH100974-386 T/C Abadía-Cardoso et al. 2011
SH101554-306 T/C Abadía-Cardoso et al. 2011
SH101770-410 T/C Abadía-Cardoso et al. 2011
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Supplemental Material Table 1 continued from last page.

Assay ID Assay Target Reference
SH101832-195 T/C Abadía-Cardoso et al. 2011
SH101993-189 A/T Abadía-Cardoso et al. 2011
SH102420-634 T/G Abadía-Cardoso et al. 2011
SH102505-102 A/G Abadía-Cardoso et al. 2011
SH102510-682 T/G Abadía-Cardoso et al. 2011
SH102867-443 T/G Abadía-Cardoso et al. 2011
SH103350-395 A/C Abadía-Cardoso et al. 2011
SH103577-379 T/A Abadía-Cardoso et al. 2011
SH103705-558 T/C Abadía-Cardoso et al. 2011
SH104519-624 T/C Abadía-Cardoso et al. 2011
SH105075-162 T/G Abadía-Cardoso et al. 2011
SH105105-448 C/T Abadía-Cardoso et al. 2011
SH105115-367 C/G Abadía-Cardoso et al. 2011
SH105385-406 T/C Abadía-Cardoso et al. 2011
SH105386-347 A/C Abadía-Cardoso et al. 2011
SH105714-265 C/T Abadía-Cardoso et al. 2011
SH106172-332 T/G Abadía-Cardoso et al. 2011
SH106313-445 T/G Abadía-Cardoso et al. 2011
SH107074-217 A/G Abadía-Cardoso et al. 2011
SH107285-69 C/G Abadía-Cardoso et al. 2011
SH108735-311 C/T Abadía-Cardoso et al. 2011
SH109243-222 A/C Abadía-Cardoso et al. 2011
SH109525-403 A/G Abadía-Cardoso et al. 2011
SH109651-445 C/T Abadía-Cardoso et al. 2011
SH109693-461 T/A Abadía-Cardoso et al. 2011
SH109874-148 A/G Abadía-Cardoso et al. 2011
SH110064-419 T/G Abadía-Cardoso et al. 2011
SH110078-294 A/G Abadía-Cardoso et al. 2011
SH110201-359 T/G Abadía-Cardoso et al. 2011
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Supplemental Material Table 1. Table 1 continued from last page

Assay ID Assay Target Reference
SH110362-585 G/A Abadía-Cardoso et al. 2011
SH110689-148 A/C Abadía-Cardoso et al. 2011
SH111666-301 T/A Abadía-Cardoso et al. 2011
SH112208-328 T/C Abadía-Cardoso et al. 2011
SH112301-202 T/G Abadía-Cardoso et al. 2011
SH112820-82 G/A Abadía-Cardoso et al. 2011
SH113109-205 T/G Abadía-Cardoso et al. 2011
SH113128-73 C/G Abadía-Cardoso et al. 2011
SH114315-438 T/G Abadía-Cardoso et al. 2011
SH114587-480 T/G Abadía-Cardoso et al. 2011
SH114976-223 T/G Abadía-Cardoso et al. 2011
SH115987-812 C/T Abadía-Cardoso et al. 2011
SH116733-349 C/T Abadía-Cardoso et al. 2011
SH117259-96 T/C Abadía-Cardoso et al. 2011
SH117286-374 A/T Abadía-Cardoso et al. 2011
SH117370-400 A/G Abadía-Cardoso et al. 2011
SH117540-259 T/G Abadía-Cardoso et al. 2011
SH117815-81 C/T Abadía-Cardoso et al. 2011
SH118175-396 T/A Abadía-Cardoso et al. 2011
SH118654-91 A/G Abadía-Cardoso et al. 2011
SH118938-341 A/T Abadía-Cardoso et al. 2011
SH119108-357 T/C Abadía-Cardoso et al. 2011
SH119892-365 T/G Abadía-Cardoso et al. 2011
SH120255-332 A/T Abadía-Cardoso et al. 2011
SH120950-569 T/G Abadía-Cardoso et al. 2011
SH123044-128 C/T Abadía-Cardoso et al. 2011
SH125998-61 T/G Abadía-Cardoso et al. 2011
SH127510-920 C/T Abadía-Cardoso et al. 2011
SH128851-273 T/A Abadía-Cardoso et al. 2011
SH129870-756 C/T Abadía-Cardoso et al. 2011
SH130524-160 C/G Abadía-Cardoso et al. 2011
SH130720-100 C/T Abadía-Cardoso et al. 2011
SH131460-646 C/T Abadía-Cardoso et al. 2011
SH131965-120 C/T Abadía-Cardoso et al. 2011
SH95318-147 C/T Abadía-Cardoso et al. 2011
SH95489-423 T/C Abadía-Cardoso et al. 2011
SH96222-125 T/C Abadía-Cardoso et al. 2011
SH97077-73 T/A Abadía-Cardoso et al. 2011
SH97954-618 C/T Abadía-Cardoso et al. 2011
SH98188-405 T/C Abadía-Cardoso et al. 2011
SH98409-549 A/G Abadía-Cardoso et al. 2011
SH98683-165 A/C Abadía-Cardoso et al. 2011
SH99300-202 T/A Abadía-Cardoso et al. 2011
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 Supplemental Material Table 2.

Drainage  Markers  Sim. Fst  Outliers (Y/N)  Loci [He/Fst/P]  
Columbia  Msats  0.0676  N  N/A  
Umpqua  Msats  0.0041  N  N/A  
Trinity  Msats  0.0172  N  N/A  
Eel  Msats  0.0266  N  N/A  

Columbia  SNPs  0.0703  Y  SH106313-445 [0.08/0.064/1],  
SH110064-419 [0.10/0.085/1]  

Umpqua  SNPs 0.0023  Y  
Omy_nramp-146 
[0.04/0.021/1], 
SH106172-332 [0.04/0.021/1]  

Trinity  SNPs 0.0137  N  N/A  

Eel  SNPs 0.0259  Y  SH112301-202 
[0.25/0.234/0.999]  

Columbia  Both  0.0758  Y  SH106313-445 [0.08/0.064/1]  

Umpqua  Both  0.0008  Y  
Omy_nramp-146 
[0.04/0.021/1],  
SH106172-332 [0.04/0.021/1]  

Trinity  Both  0.0130  N  N/A  

Eel  Both  0.0269  Y  SH112301-202 
[0.25/0.234/0.999]  
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Supplemental Figure 1. Plots made by the program Distruct representing results 

of STRUCTURE analyses for the winter- and summer-run steelhead populations 

from the Columbia, Umpqua, Klamath, and Eel rivers, with each fish represented 

by a thin, vertical bar.  K = number of genetic clusters. 
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