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Estimation of tomato water
status with photochemical
reflectance index and machine
learning: Assessment from
proximal sensors and
UAV imagery

Zhehan Tang1*, Yufang Jin 1, Patrick H. Brown2

and Meerae Park2

1Department of Land, Air and Water Resources, University of California, Davis, Davis, CA,
United States, 2Department of Plant Sciences, University of California, Davis, Davis, CA, United States
Tracking plant water status is a critical step towards the adaptive precision

irrigation management of processing tomatoes, one of the most important

specialty crops in California. The photochemical reflectance index (PRI) from

proximal sensors and the high-resolution unmanned aerial vehicle (UAV) imagery

provide an opportunity to monitor the crop water status efficiently. Based on

data from an experimental tomato field with intensive aerial and plant-based

measurements, we developed random forest machine learning regression

models to estimate tomato stem water potential (ystem), (using observations

from proximal sensors and 12-band UAV imagery, respectively, along with

weather data. The proximal sensor-based model estimation agreed well with

the plant ystem with R2 of 0.74 and mean absolute error (MAE) of 0.63 bars. The

model included PRI, normalized difference vegetation index, vapor pressure

deficit, and air temperature and tracked well with the seasonal dynamics of

ystem across different plots. A separate model, built with multiple vegetation

indices (VIs) from UAV imagery and weather variables, had an R2 of 0.81 and MAE

of 0.67 bars. The plant-level ystem maps generated from UAV imagery closely

represented the water status differences of plots under different irrigation

treatments and also tracked well the temporal change among flights. PRI was

found to be the most important VI in both the proximal sensor- and the UAV-

based models, providing critical information on tomato plant water status. This

study demonstrated that machine learning models can accurately estimate the

water status by integrating PRI, other VIs, and weather data, and thus facilitate

data-driven irrigation management for processing tomatoes.

KEYWORDS

photochemical reflectance index, aerial sensing, drone proximal sensors, plant water
stress, machine learning, tomatoes
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1057733/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1057733/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1057733/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1057733/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1057733/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1057733/full
https://orcid.org/0000-0002-9049-9807
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1057733&domain=pdf&date_stamp=2023-04-06
mailto:zhhtang@ucdavis.edu
https://doi.org/10.3389/fpls.2023.1057733
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1057733
https://www.frontiersin.org/journals/plant-science


Tang et al. 10.3389/fpls.2023.1057733
1 Introduction

Declining water availability and increasing water demand

threaten the agricultural sustainability in many arid and semi-arid

regions, such as California’s Central Valley (Faunt et al., 2016).

Growers have to improve water use efficiency to meet the strict

regulation of groundwater usage in the state (Leahy, 2016) and the

increasing water price (Lund et al., 2018) in California. This is

particularly crucial for processing tomatoes (Solanum

lycopersicum), one of the leading high-value agriculture

commodities in California. With a total area of over 92,200 ha,

California produced 11.19 million tons of processing tomatoes in

2019, accounting for more than 90% of the US total production

(CDFA, 2020). California’s Mediterranean climate features a highly

suitable warm and dry growing season ideal for irrigated tomato

production. About 90% of tomato fields in California are irrigated

with furrow, sprinkler, and drip irrigation, with a water usage of

7,314 m3 per hectare (Cody and Johnson, 2015). Data-driven

precision irrigation practices have become increasingly important

for agriculture management amid changing climate and water

shortage (Abioye et al., 2020). Information on plant water status

levels can provide growers with guidance about when to irrigate at

the sub-field scale (Bastiaanssen et al., 2000).

Accurate monitoring of plant water status is a crucial step

toward precision irrigation management. Pressure chambers are the

most accurate and direct measurement of plant water status and are

used by a subset of growers to measure the stem water potential

(ystem) in the field (Duniway, 1971; Turner, 1988). However, ystem

measurements are labor intensive and are usually only conducted

on a small number of plants on infrequent sample dates. Thus, this

method is not useful to map the variability of crop water status

within the field nor to track the temporal change of water status.

Proximal sensing and remote sensing techniques, however, provide

an efficient way to monitor plant status across space and time.

Relatively cheap proximal sensors mounted on stands, typically

including high-frequency-point spectral measurements in the

visible, near infrared, and thermal region, have been used to

estimate the water status of cotton (Mccarthy et al., 2010),

soybean (O’Shaughnessy et al., 2011), and nitrogen status of

spring wheat and corn (Tremblay et al., 2009). Proximal

observations have also been used to detect soybean foliage disease

symptoms (Herrmann et al., 2018) and winter wheat head blight

disease (Dammer et al., 2011).

Recently, the advancement in unmanned aerial vehicle (UAV)

platforms and miniature sensor technology, coupled with the

development of image processing software, has enabled high-

resolution crop imaging (Tsouros et al., 2019). Using vegetation

indices (VIs) related with canopy structure, chlorophyll content,

xanthophyll cycle activity, and sun-induced fluorescence, UAV

systems can provide multispectral and hyperspectral imagery and

have been successfully applied to weed mapping (Peña et al., 2013;

Huang et al., 2018), water stress detection (Suárez et al., 2008; Berni

et al., 2009; Baluja et al., 2012; Zarco-Tejada et al., 2013), and

nitrogen status monitoring (Hunt et al., 2018; Cai et al., 2019) and

have been used for high-throughput phenotyping (Yang et al., 2017;

Xie and Yang, 2020). By making use of the difference between
Frontiers in Plant Science 02
foliage and air temperature (Jackson et al., 1981), UAV-based

thermal cameras were successfully used for crop water stress

monitoring (Zhang et al., 2019), plant disease detection (Calderón

et al., 2015), and phenotyping (Gómez-Candón et al., 2016; Sagan

et al., 2019; De Swaef et al., 2021).

The photochemical reflectance index (PRI) derived from the

decreased reflectance at 531 nm during the de-epoxidation cycle of

xanthophyll (Gamon et al., 1997) has shown potential for plant

stress detection at the early growth stages (Meroni et al., 2008). PRI

values generated from airborne hyperspectral cameras have been

used to estimate the ystem of olive trees with consistent relationships

(R2 = 0.7, n = 10), and the performance of PRI was more consistent

than that of normalized difference vegetation index (NDVI) and

transformed chlorophyll absorption in reflectance index/optimized

soil-adjusted vegetation index (TCARI/OSAVI) (Suárez et al.,

2008). Similarly, PRI imagery from UAV-based hyperspectral and

multispectral cameras was found to be useful to detect olive

verticillium wilt disease (Calderón et al., 2015) and the water

status of five different tree species (Ballester et al., 2018).

However, the relationship between plant stress levels and PRI can

be unstable, as the PRI signal is easily confounded by external or

canopy structural effects such as leaf area index (LAI), shadow

fraction, vegetation cover, and sun and view zenith angles (Barton

and North, 2001; Sims et al., 2011; Moreno et al., 2012; Soudani

et al., 2014; Wu et al., 2015). To resolve these problems, studies have

been conducted to combine PRI with other vegetation indices.

Zarco-Tejada et al. (2013) proposed an index that normalized PRI

with structural index renormalized difference vegetation index

(RDVI) and chlorophyll index R700/R670. This normalized PRI

index outperformed the standard PRI and other VIs in estimating

the crop water status (R2 = 0.77 vs. R2 = 0.49).

While most existing studies only explored the relationship

between individual vegetation indices and water status indicators,

combining information from multiple vegetation indices with

machine learning models may provide a more accurate estimation

of plant water status (Hassan-Esfahani et al., 2015; Poblete et al., 2017;

Loggenberg, 2018; Romero et al., 2018; Das et al., 2021; Tang et al.,

2022). In addition, physiological studies have shown that weather

conditions, including air temperature, and vapor pressure deficit

(VPD) regulate plant stomatal closure and water exchange with the

atmosphere and thus directly affect the plant water status (Garnier

and Berger, 1985; Ferreira and Katerji, 1992; Ortuño et al., 2006).

Weather conditions have not been incorporated with proximal and

remote sensing multispectral data for plant water status monitoring

in most studies (Das et al., 2021; Tang et al., 2022).

This study aims to develop a robust approach for monitoring

the temporal and spatial variability of ystem in a processing tomato

field by utilizing proximal sensing data and UAV multispectral

imagery. The specific objectives of this study include the following:

(1) to evaluate the plant water status monitoring capability of

individual vegetation indices obtained from proximal sensors and

UAV imagery, (2) to develop a machine learning model to integrate

proximal sensing data and weather data to monitor the temporal

change of plant water status throughout the growing season, and (3)

to develop a machine learning model to combine UAV imagery and

weather data for the accurate mapping of plant water status.
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2 Materials and methods

2.1 Study site and experiment design

The study focused on a 1.92-ha processing tomato field in

Sacramento Valley near Davis, California (38.54° N, 122.77° W),

which features a typical Mediterranean climate with a warm and dry

growing season in spring and summer. This site has coarse loamy

sand and silt soils on a very flat topography. The field was irrigated

through a subsurface drip irrigation system based on the actual

evapotranspiration (ETA) measured by in-field surface renewal

sensors (Tule Technologies, San Francisco, CA, USA). We

divided the experimental field into five large blocks, with 720

plots of 30.5 m × 1.5 m arranged in a randomized complete block

design (Figure 1). The processed tomatoes, Heinz Variety 1662,

were transplanted on May 2, 2019. In total, 100 plants were planted

in each plot.

Three irrigation treatments were implemented in 2019

(Figure 1). All plots were fully watered from June 1, 2019 to July

7, 2019 when the plants reached full canopy cover. Afterwards,
Frontiers in Plant Science 03
three types of irrigation treatments were applied to the randomized

plots, with applied water equivalent to 35% (deficit irrigated) and

70% (moderately irrigated), and 100% (well irrigated) of ET.

Irrigation was cut off for all plots on August 26, 2019 for harvest

preparation. The accumulated ET and precipitation were 455 and

1 mm, respectively, during this period (June 1–Aug 26). The

accumulated irrigation depths were 363, 394, and 543 mm for

deficit-irrigated, moderately irrigated, and well irrigated treatments.

All plots were fertilized with 28 kg N/ha before transplant and

174 kg N/ha during the growing season.
2.2 Field measurements

Midday stem water potential (SWP, ystem) was measured with a

pressure chamber (PMS Instrument Company, Albany, OR, USA)

during 13:00 to 16:00, approximately every 2 weeks from late May

to late July and approximately every week from late July to mid-

August (Table 1). For each block, we selected a minimum of three

sample plots for field measurements to represent well-irrigated plots
FIGURE 1

Study area (inset) and experiment design of the processing tomato field in Davis, California. (A) Unmanned aerial vehicle (UAV) and multispectral
camera used in this study. (B) Stands with proximal sensors installed in the field. (C) The five blocks (B1, B2, B3, B4, and B5) of the field and the
irrigation treatments of different plots. The block boundaries are shown as white polygons on top of the true color composite UAV imagery acquired
on June 26, 2019. The blue, yellow, and red colors represent well, moderate, deficit and other irrigation treatments, where 100%, 70%, and 30% of
actual evapotranspiration were applied to the plots between reaching full canopy (July 11, 2019) and irrigation cutoff (Aug 26, 2019), respectively.
The locations of proximal sensors are shown as green dots.
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(hereafter referred to as WI; n = 5), moderately irrigated plots (MI;

n = 5), and most severely deficit-irrigated plots (DI; n = 5), in

addition to other irrigation treatments. The row numbers in the

field and center locations were recorded for each sample plot. Six to

eight plants were randomly chosen for each sample plot; a mature

sunlit leaflet was selected from each sampled plant to be enclosed in

a reflective envelope for 3 h to achieve equilibrium with the water

potential of the stem. The leaflets were then excised and placed into

the pressure chamber for the ystem measurement (Shackel et al.,

1997). For each plot, measurements from all sampled leaves were

averaged to represent the mean water potential.

We obtained the hourly weather data, including air

temperature, relative humidity, and solar radiation, from the

California Irrigation Management Information System program

(https://cimis.water.ca.gov/). The closest station (Davis #6) was

located 0.5 km from the experiment field. Hourly data was

averaged during 13:00–16:00 to represent mean weather

conditions corresponding to field measurements. VPD was also

calculated from the noontime average air temperature and

relative humidity.
2.3 Canopy reflectance measurements
from proximal sensors

Three sets of Spectral Reflectance Sensors (METER Group,

Pullman, WA, USA) were installed in each of the three blocks

(B2, B4, and B5), specifically targeting three WI plots, three MI

plots, and two DI plots (Figure 1). SRS has been used in many

studies for phenotyping and stress detection over agricultural fields

(Bai et al., 2016; Magney et al., 2016; Pérez-ruiz et al., 2020; Saiz-

Rubio et al., 2021) and measuring the light use efficiency and

tracking the pigment change of forests (Gamon et al., 2015;

Castro and Sanchez-Azofeifa, 2018; Eitel et al., 2019). We

installed the SRS sensors 1.1 m above the tomato canopy on fixed

stands after transplanting. They continuously measured the

incident radiation with the upward-looking hemispherical sensors

(180° field-of-view) and the reflected radiation with the downward-

looking field-stop sensors (36° field-of-view) every 5 min. There
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were three tomato plants within the field of view. Each SRS sensor

has four spectral channels centered at 532, 570, 650, and 810 nm,

each with a 10-nm full-width half-maximum band width. The

readings from the paired up- and downward-looking sensors were

combined to calculate the reflectance for each wavelength first and

then PRI and NDVI using the following equations:

PRI = (r532 − r570)=(r532 + r570)

NDVI = (r810 − r650)=(r810 + r650)

For each sensor, the continuous NDVI and PRI data was

averaged using the moving window of every five readings to

reduce the high frequency noise. The NDVI and PRI values

during 12:00–14:00 were averaged to represent the noon time

values, respectively, and to minimize the directional impacts of

changing the sun angle at different times of the day (Magney et al.,

2016). These consistent daily time series of NDVI and PRI around

noon were then used for further analysis. Data from the sensors in

the deficit-irrigated plot in block 5 was excluded in this study due to

the abnormal sensor performance during the mid-season.
2.4 UAV imagery acquisition
and processing

The UAV imaging system consists of a Macaw-12 camera

(Tetracam, Chatsworth, CA, USA), a FirePoint™ GPS unit, and

an incoming light sensor fully integrated on a DJI Matrice 600 Pro

hexacopter (DJI, Shenzhen, China). The multispectral camera

records reflected solar radiation at 12 customized spectral bands

centered at 450, 480, 531, 550, 570, 670, 700, 720, 740, 800, 900, and

970 nm, with 10–20 nm full-width at half-maximum. The light

sensor was installed on the top of the hexacopter to measure the

incoming solar radiation for each of the corresponding bands.

We collected multispectral aerial images on June 26 and August

1 and 14, 2019. All flights were conducted around solar noon to

reduce the impacts of shadows and minimize the variation in light

condition. The same flight plan was designed and executed with

85% front overlap and 85% side overlap. The UAV system was
TABLE 1 Information on the ground measurements of stem water potential (ystem) and 12-band aerial imagery acquisition with unmanned aerial
vehicle (UAV) over the processing tomato field.

Date Number of plots with ystem measurements UAV flights Air temperature (°C) VPD (kPa)

05/31 15 × 27.7 2.34

06/12 15 × 34.1 3.67

06/26 15 ✓ 26.3 2.11

07/17 15 × 29.4 2.32

07/25 15 × 30.4 3.00

08/01 20 ✓ 29.5 2.39

08/08 20 × 26.6 1.83

08/14 25 ✓ 35.9 4.42
f

Also shown are the corresponding air temperature and vapor pressure deficit (VPD) at noon from the California Irrigation Management Information System weather station nearby.
rontiersin.org

https://cimis.water.ca.gov/
https://doi.org/10.3389/fpls.2023.1057733
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1057733
flown at 50 m above ground level, resulting in aerial images at 2.5-

cm resolution. For geo-reference purposes, we placed six highly

visible aluminum flashing targets across the field as ground control

points (GCPs) and recorded their GPS coordinates using Trimble

Geo 7x (Trimble, Westminster, CO, USA).

The raw multispectral images were first imported in

PixelWrench software (Tetracam, Chatworth, CA, USA) to

calculate reflectance from radiance using the smoothed incoming

light sensor data and to align images from different bands. The

preprocessed reflectance images were then stitched together with

Agisoft Metashape Pro (Agisoft, St. Petersburg, Russia). The

software generated automatic tie points initially and used the

coordinates of the GCPs to ensure their geolocation accuracy.

The point clouds, 3D textured mesh, and digital surface model

were subsequently created based on the automatic tie points. The

orthomosaics of reflectance maps were finally generated at 2.5-cm

resolution for each spectral band.
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Multiple widely used VIs were further calculated using the

reflectance from the orthomosaics (Table 2). We included the

indices related to canopy structure—e.g., NDVI, RDVI, and

enhanced vegetation index (Roujean and Breon, 1995; Jiang et al.,

2008), indices based on light absorption by chlorophyll content—

e.g., TCARI, TCARI/OSAVI, red edge ratio (RER), and normalized

difference red edge (NDRE) (Vogelmann et al., 1993; Barnes et al.,

2000; Haboudane et al., 2002), and the VIs based on xanthophyll

cycle activity such as PRI and PRI550 (Gamon et al., 1992) and the

combined index that normalized PRI with structure and

chlorophyll index (Zarco-Tejada et al., 2013).

To separate the tomato leaves from tomato fruits and soil

background, we classified the processed UAV imagery into four

categories (leaf, fruit, soil, and shadow) using a supervised machine

learning approach. We used the support vector machine approach

in ArcGIS Pro (ESRI, Redlands, CA, USA). This method aims to

find the best hyperplane in the multi-spectral feature space that
TABLE 2 The vegetation indices (VIs) calculated in this study, and the coefficients of correlation (r) between each VI derived from unmanned aerial
vehicle imagery and measured stem water potential (ystem) for each individual flight and for all data.

Index Equation June 26
(n = 15)

August 01
(n = 20)

August 14
(n = 25)

3
(n = 60)

Structural index

NDVI R800 − R670

R800 + R670

61** 0.63*** 0.76*** 0.74***

RDVI (Roujean and Breon, 1995) R800 − R670

(R800 + R670)
0:5  

42 0.58** 0.73*** 0.57***

EVI (Jiang et al., 2008)
2:5� R800 − R670

R800 + 6� R670 − 7:5� R450 + 1  
41 0.57*** 0.73*** 0.57***

Chlorophyll index

TCARI (Haboudane et al., 2002) 3½(R700 − R670) − 0:2(R700 − R550)(R700=R670)� 40 0.37 0.15 0.73***

RER1 (Vogelmann et al., 1993) R700=R670 49* 0.77*** 0.71*** 0.40***

RER2 (Vogelmann et al., 1993) R720=R670 56** 0.69*** 0.78*** 0.80***

TCARI/OSAVI (Haboudane et al., 2002) TCARI
(1 + 0:16)*(R800 − R670)=(R800 + R670 + 0:16)

18 0.00 -0.29 -0.76***

NDRE1 (Barnes et al., 2000) R800 − R700

R800 + R700

53** 0.51** 0.71*** 0.75***

NDRE2 (Barnes et al., 2000) R800 − R720

R800 + R720

39 0.44** 0.61*** 0.31**

Xanthophyll index

PRI (Gamon et al., 1997) R531 − R570

R531 + R570

32 0.22 0.71*** 0.84***

PRI550 (Gamon et al., 1992) R531 − R550

R531 + R550

10 -0.55** -0.15 0.10

Combined index

PRInorm1 (Zarco-Tejada et al., 2013) PRI=(NDVI*RER1) 47* 0.40* 0.75*** 0.84***

PRInorm2 (Zarco-Tejada et al., 2013) PRI=(NDVI*RER2) 53** 0.44* 0.78*** 0.86***

PRInorm3 (Zarco-Tejada et al., 2013) PRI=(RDVI*RER1) 54** 0.44* 0.76*** 0.79***

PRInorm4 (Zarco-Tejada et al., 2013) PRI=(RDVI*RER2) 59** 0.46** 0.78*** 0.82***
fro
The significance levels are indicated by *p ≤ 0.1, **p ≤ 0.05, and ***p ≤ 0.01.
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optimally separates classes. It has been widely used for land cover

classification based on satellite (Huang et al., 2002) and UAV

images (Ma et al., 2017). For each class, we randomly selected 20

regions of interest through visual interpretation, and all pixels

within these polygons were then used for training. The pixels

identified as fruits, soil, and shadow from the classified map

(Figure 2) were then masked out, and only the remaining

vegetated pixels were used for further analysis.
2.5 Statistical analysis

We analyzed the statistical relationships between ground-

measured ystem and the VIs derived from the proximal sensors

and UAV imagery, respectively. Univariable linear correlation was

performed first to explore the potential of estimating ystem with

remotely sensed observations. To remove potential uncertainties in

field measurements and location matching errors, the analysis was

done at the individual plot level. Specifically, for each sample plot,

measured ystem was averaged over all sampled plants, representing

the mean water status condition. A single-day analysis was first

performed with proximal sensor data for each of the 8 days when

ground measurements were available, with plot samples ranging
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from 15 to 25. A separate analysis was then done by pooling the

proximal data for three dates before July 7 when the canopy reached

full cover (n = 8 × 3) and for five dates afterwards (n = 8 × 5).

Similarly, correlations between ground-measured ystem and

UAV-based VIs were analyzed for 3 days where UAV flights were

conducted. For each flight, we delineated the boundary for each

sample plot where field measurements of ystem were conducted

based on the UAV imagery and the location of the plot. The values

of spectral reflectance and VIs were extracted and averaged over all

vegetated pixels as described in Section 3.4.
2.6 Water status estimation with remote
sensing methods

We built machine learning models to estimate the midday ystem

of tomato plants based on available remote sensing data, i.e., from

point-based proximal or UAV imagery-based spectral observations,

respectively, considering the complex relationships between remote

sensing observations and water status. In particular, the random

forest regression (RF) algorithm (Breiman, 2001) was used for this

study to combine remote sensing metrics with weather data. Other

machine learning approaches, including support vector regression
FIGURE 2

RGB imagery of the entire experiment field (A) and a subset of the field (C). The supervised classification results of the entire field (B) and a subset of
the field (D) based on the unmanned aerial vehicle imagery on August 10, 2019. The imagery was classified into four categories (leaf, fruit, soil, and
shadow).
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(Smola and Schölkopf, 2004) and extreme gradient boosting

regression (Chen and Guestrin, 2016), were also evaluated but

had lower performance than the RF models. Therefore, only RF

model results were included in the following sections. As an

ensemble learning method, RF produces multiple independent

decision trees, fits them to random subsets of the training set, and

yields optimal results by combining the predictions of the decision

trees (Belgiu and Drăgut, 2016). We used the “Caret” package in R

for the machine learning model development (Kuhn, 2008).

We trained and cross-validated separate RF models to estimate

SWPwith observations from the proximal sensors andUAV imagery,

respectively. For the proximal sensor-based model, besides PRI and

NDVI, air temperature and VPD were also included as predictors to

track ystem throughout the season. For the UAV-based model, we

used the 12-band imagery fromUAV and included additional VIs for

mapping ystem (Table 2). To reduce the number of predictors, the

recursive feature elimination (RFE) method was applied, to reduce

overfitting and improve model performance. The RFE method

iteratively proceeds with the following steps for each specific

model: fit the data with all variables using the model, compute the

variable importance and discard the variable that has the least

importance, and refit the model with the remaining variables.

These iterative steps are performed until the model with the least

RMSE is found. The remaining variables after feature selection with

the RFE method were used for further steps.

The repeated fourfold cross-validation was performed for

model development and evaluation. For each of the four folds,

75% of the dataset were randomly selected as the training set, and

the remaining 25% were used for validation. The model

performance was evaluated using the following statistical metrics

for each fold: coefficient of determination (R2), root mean square

error (RMSE), and mean absolute error (MAE). This process was
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repeated 10 times. The mean values and standard deviation of the

statistical metrics were calculated from the repeated fourfold cross-

validation and reported as model performance summary.
2.7 Variable importance and
response functions

To further understand how each predictor affects the ystem

estimation, we generated the variable importance plots and partial

dependence plots from the RF machine learning models. The

variable importance is quantified by the increase in the mean sum

of squares when an individual variable is excluded from the full

model (Strobl et al., 2008) and thus represents each variable’s

contribution to the improvement of the model. The partial

dependence plots show the relationship between a variable and

the predicted outcome of the model by marginalizing over the

values of other variables in the model (Lemmens and Croux, 2006).
2.8 Stem water potential tracking
and mapping

We estimated daily ystem during the whole growing season over

eight sample plots instrumented with the proximal sensors by

applying the proximal sensor-based model to the daily time series

of PRI and NDVI from proximal sensors, along with weather data.

The UAV-based model was also used to produce the ystem at the

pixel level and averaged to the individual plant level over the entire

field for 3 days with UAV flight. We further aggregated the

predicted ystem for plants under different treatments and different

blocks across 3 days to examine if the predicted ystem matched the

observed spatial and temporal patterns of water status.
A B

FIGURE 3

The seasonal changes of (A) normalized difference vegetation index (NDVI) and (B) photochemical reflectance index (PRI) from the proximal sensors
across different plots. The x-axis represents the day after transplanting (DAT) and Julian day of year. The vertical lines represent the dates when the
stem water potential was measured on the ground.
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3 Results

3.1 Variations of proximal sensor
observations and measured stem
water potential

NDVI from proximal sensors increased rapidly from below 0.25 in

early May to 0.75 in June 12 and slowly reached the plateau in early July

(Figure 3). This agreed well with the field observations that the tomato

plants started to grow fast after being transplanted onMay 2 and reached

the maximum canopy cover by July 11. Afterwards, NDVI decreased

slowly during fruit growth and plant senescence. No significant

differences in NDVI were found among eight sample plots during the

early growing season, but the deficit-irrigated plots had lower NDVI

than the other plots toward the end of the growing season.

The midday stem water potential of processing tomatoes

measured during May 31–August in 2019 showed a clear

seasonality (Figure 4). The plant ystem values were similar among

different plots on the first three sampling days in May and June,

with the mean at approximately -3.4 bars. The average ystem of all

sample plants decreased rapidly from -5.0 to -7.4 bars from July 17

to August 14 after the plants reached full canopy and deficit

irrigation treatments were applied in this period. A difference in

ystem was found across different deficit irrigation treatments after

June 26 and became increasingly significant at the end of growing

season (p< 0.05) based on the analysis of variance (ANOVA)—for

example, the deficit-irrigated plants had lower ystem than

moderately irrigated plants on July 17, but the difference was not

significant (p > 0.05); however, the ystem of deficit-irrigated

treatment became significantly lower than the other treatments

after July 26 (p< 0.05) by 0.64–1.22 bars, while moderately irrigated

plants had the highest ystem.

Similar to NDVI, the PRI values in the eight sample plots

increased rapidly from -0.08 before June 12 and then fluctuated

approximately -0.02 between June 26 and July 17 (Figure 3).

Thereafter, the temporal trajectory of PRI followed similar dynamics
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of the ground measured ystem, decreasing from -0.04 on July 17 to

-0.06 on August 14. The PRI values of plants under deficit-irrigated

treatments were approximately 0.01 lower than those of plants under

the other treatments, after July 17, in both block 2 and block 4.
3.2 Estimating and tracking water status
with proximal sensor observations

Over each individual day after July 17, the PRI from proximal

sensors was highly correlated with themeasuredystem across individual

plants, with correlation coefficients (r) greater than 0.48. However, the

correlation was lower before reaching the maximal canopy cover, e.g., r

= -0.44 on June 26 (Figure 5). When pooling data together from all

days after July 17, we found a significant relationship between the

ground measured ystem and the proximal sensor-measured PRI (R2 =

0.56, p< 0.001) (Figure 6A). This relationship was not significant for the

sample days before full canopy cover (R2 = 0.01, p > 0.1). NDVI and

ystem had low correlation on June 26 and July 17 (|r|< 0.3, p > 0.1) and

had a higher correlation on July 25 and August 8 and 14 (r > 0.58, p<

0.1). Over all 5 days since July 17, there was a significant relationship

between the NDVI from proximal sensors and ground-measuredystem

(R2 = 0.554, p< 0.001) (Figure 6B).

To better estimate daily mid-day ystem from proximal sensor-

measured PRI and NDVI, VPD and air temperature from weather

stations were also added to the random forest model as predictors.

The trained RF model explained more than 73% of variance in the

testing sets (Table 3). The predicted ystem agreed well with the

ground measurements, with RMSE of 0.838 (± 0.123) bars and

MAE of 0.626 (± 0.125) bars (Figure 7A). PRI was found to be the

most important predictor, followed by NDVI (Figure 7B). The

partial dependence plot showed that ystem decreased rapidly when

PRI increased from -0.05 to -0.025 and when NDVI increased from

0.70 to 0.85 (Figure 8). The weather variables VPD and air

temperature were less important than the VIs (Figure 7B); higher

air temperature and VPD decreased ystem dramatically beyond

28.4°C and 2.0 kPa, respectively (Figure 8).
FIGURE 4

The seasonal change of the stem water potential (ystem) in the plots where the proximal sensors were located. The red frames represent the dates
when the unmanned aerial vehicles imageries were acquired.
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The time series of daily ystem predicted by the model captured

the temporal dynamics during the growing season and across

different plots, consistent with field measurements (Figure 9). The

predicted ystem was constant approximately -4 bars before June 26,

decreased slowly to -6 bars between June 26 and July 17, and then

decreased rapidly. The predicted ystem values of plants under well-

irrigated treatments were higher than the plants under moderately

irrigated and deficit-irrigated treatments, which agreed well with

the spatial pattern of the ground-measured ystem. The predicted

ystem underestimated the ystem when the ystem was high (>-4 bars)

and overestimated it when the ystem was very low (<-8 bars).
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3.3 Relationship between water status and
UAV-based VIs

The majority of VIs derived from UAV imagery had a

significant correlation with ystem (p< 0.01) based on the analysis

of the concurrent ground measurements and UAV flights over 3

days (n = 60) (Table 2). Indices related to the xanthophyll cycle,

such as PRI and normalized PRI indices, had the strongest linear

relationship with ystem, with the correlation coefficient higher than

0.80 (Figure 10). VIs representing chlorophyll content, such as

RER2 and NDRE1, also correlated well with ystem correlation
A B

FIGURE 6

Relationships of the mid-day stem water potential (ystem) with concurrent vegetation indices from proximal sensors: (A) normalized difference
vegetation index and (B) photochemical reflectance index after the tomato plants reached maximal canopy size and different irrigation treatments
were applied.
A

B

FIGURE 5

The correlation between (A) photochemical reflectance index and (B) normalized difference vegetation index from proximal sensors and ground
measured stem water potential (ystem) for each individual day.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1057733
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1057733
coefficient ranging from 0.75 to 0.80. The canopy structure-related

VIs had relatively lower correlations with ystem. Among them,

NDVI had the highest correlation coefficient (0.55).

When analyzed over each individual day, the correlation

between VIs and ystem showed varying potential of VIs to

capture the spatial variability across individual plots. Overall,

the correlation coefficient was lower compared with the pooled

data, but the correlation increased as ystem decreased on August

1 and 14 (Table 2). The combined indices were significantly

correlated with ystem in all 3 days (r > 0.4, p< 0.1). Similarly,

structural index such as NDVI and some chlorophyll indices

such as RER1, RER2, and NDRE1 had a significant correlation

with ystem in all these days. Other VIs only had a high
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correlation coefficient on August 14 when the plants had

lower ystem.
3.4 Estimation of stem water potential with
multispectral UAV imagery

The recursive feature elimination process resulted in six

variables for the final full machine learning models, including

four VIs (PRI, RER2, NDRE, and NDVI) and two weather

variables (air temperature and VPD). The predicted ystem by

the RF model matched well with the ground-based measurements

in the testing dataset (Figure 7C). The cross-validation showed
D

A B

C

FIGURE 7

(A) Estimated stem water potential (ystem) by the random forest model with the proximal sensor observations compared with ground measurements.
Ground measurements from multiple dates were randomly split into training (open circles, dashed line) and testing (solid squares, solid line).
(B) Variable importance plot of the proximal sensor-based random forest model. (C) Estimated stem water potential (ystem) by the unmanned aerial
vehicle (UAV)-based random forest model compared with ground measurements. Ground measurements from multiple dates were randomly split
into training (open circles, dashed line) and testing (solid squares, solid line). (D) Variable importance plots of the UAV-based random forest model.
TABLE 3 Random forest model performance in estimating stem water potential (ystem) with proximal sensing data and unmanned aerial vehicle data
as represented by the cross-validated mean of the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) as
well as the standard deviation in the parenthesis.

Model names Predictors R2 RMSE (bars) MAE (bars)

Proximal sensor Full model PRI, NDVI, AirTemp, VPD 0.737 (± 0.123) 0.838 (± 0.168) 0.626 (± 0.125)

NoPRI model NDVI, AirTemp, VPD 0.717 (± 0.129) 0.846 (± 0.158) 0.631 (± 0.138)

UAV Full model PRI, NDVI, NDRE, RER, AirTemp, VPD 0.813 (± 0.066) 0.837 (± 0.124) 0.665 (± 0.105)

NoPRI model NDVI, NDRE, RER, AirTemp, VPD 0.804 (± 0.072) 0.855 (± 0.132) 0.681 (± 0.106)
Results are shown for full models with four predictors and reduced models excluding weather data and photochemical reflectance index (PRI), respectively.
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that the UAV-based RF model captured more than 81% (± 6.7%)

of the total spatial and temporal variation in stem water

potentials, with RMSE of 0.84 (± 0.12) bars and MAE of 0.67

(± 0.11) bars (Table 3).

VPD and PRI were the top two most important variables,

followed by air temperature and RER (Figure 7D). The partial

dependence analysis showed that higher VPD and air temperature
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decreased ystem (Figure 11). The ystem value decreased by

approximately 1 bar, when VPD and air temperature increased

from 2.0 to 2.5 kPa and from 25.0 to 31.0°C, respectively. Higher

PRI, RER2, NDVI, and NDRE were associated with higher ystem

(Figure 11). The ystem decreased rapidly when PRI increased from

-0.05 to -0.04, RER2 from 5 to 10, NDVI from 0.84 to 0.88, and

NDRE from 0.67 to 0.75.
FIGURE 9

Temporal dynamics of the predicted daily mid-day stem water potential (ystem) from the proximal sensor-based random forest model during the
entire growing season. Field-measured ystem values are shown as solid dots.
D

A B

C

FIGURE 8

Partial dependence of stem water potential on four predictors based on the proximal sensor-based random forest model.
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D

A B

C

FIGURE 10

Scatterplots of vegetation indices from the multispectral unmanned aerial vehicle imagery, including (A) normalized difference vegetation index,
(B) Red Edge Ratio 2, (C) photochemical reflectance index, and (D) normalized photochemical reflectance index vs. measured stem water potential
(ystem) over the sampled plots.
D

A B

E F

C

FIGURE 11

Partial dependence plot of the random forest model based on the data from the unmanned aerial vehicle multispectral imagery and weather station.
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3.5 Whole-field stem water potential
mapping at the plant level

For those 3 days where UAV imagery was available, we estimated

ystem for every single tomato plant using the RF full model that we

developed (Figure 12). The maps of the estimated ystem showed a

large spatial heterogeneity within the field, with a coefficient of

variation (CV) ranging from 14% to 17% on 3 days. Block 1 and

block 5, which were located on the north side of the field, generally

had higherystem than the other blocks, in all three days, probably due
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to the different soil properties of the field. The plots under Deficit

Irrigated treatment had significantly lower ystem than plants under

other treatments on August 1st (-6.0 ± 0.8 bars) and August 14 (-7.7 ±

0.9 bars). The Well Irrigated plots had the highest ystem than the

other plots in August 1 (-5.5 ± 0.7 bars) and August 14 (-6.7 ± 0.9

bars). The within-plot variability was also visible from the map. On

June 26, the plants on the side of the plots had lower ystem than the

plants in the center of the plots. This pattern was less prominent on

Aug 1 and Aug 14, as different irrigation treatments contributed more

to the spatial variability of plant water status in the late season.
FIGURE 12

Maps of the plant-level predicted stem water potential (ystem) from the unmanned aerial vehicle-based random forest model for the tomato fields
during three dates: (A) June 26, (B) Aug 1, and (C) Aug 14. Also shown is the detailed plant-level predicted ystem of a sample region in block 2 for the
three dates: (D) June 26, (E) Aug 1, and (F) Aug 14.
FIGURE 13

Statistics of the predicted stem water potential (ystem) from unmanned aerial vehicle-based random forest model summarized over plants with
different treatments. Each boxplot shows the minimum, first quartile, medium, third quartile, and maximum values ystem.
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The water status maps from UAV imagery also captured the

day-to-day changes of ystem. A significant decrease of ystem was

found from June 26 to Aug 14 across the entire field and over plots

with different treatments (Figure 13). The whole field ystem

decreased from 3.5 ± 0.6 bars in June 26 and -5.7 ± 0.8 bars on

August 1 to -7.2 ± 1.0 bars in August 14 (Figure 13). The ystem

progressed more significantly for plants with deficit irrigation, i.e.,

with medium values dropping to -7.9 bars at the end of the growing

season. This temporal trajectory was consistent with the field

measurements of ystem and the predicted seasonal change of

ystem from the proximal sensor-based model. In addition, we also

found a larger spatial variability of water status after deficit

irrigation was applied—for example, the standard deviation across

the entire field increased from 0.64 bars in June 26 to 0.97 bars in

Aug 14; similarly, the interquartile range (IQR) increased from 0.95

bars to 1.61 bars from June 26 to Aug 14.
4 Discussion

4.1 Capability of proximal sensing and UAV
imaging for water status estimation

Our study demonstrated that machine learning models

captured both the spatial and temporal variability of ystem for

processing tomatoes by integrating PRI measurements with other

VIs and weather information. Both random forest models,

developed separately here for the proximal sensor observations

and multispectral UAV imagery, showed comparable or higher

accuracy than previous studies on plant water status estimation

with similar remote sensing observations (Magney et al., 2016; Saiz-

Rubio et al., 2021)—for example, Saiz-Rubio et al. (2021) built a

multivariable model with PRI and NDVI from proximal sensors

and weather variables to estimate the leaf water potential of

grapevines with R2 of 0.69 for the testing set (n = 36). Another

study estimated grapevine ystem using artificial neural networks to

integrate the reflectance at multiple spectral bands including two

PRI-related bands and achieved R2 values ranging from 0.56 to 0.78

(Poblete et al., 2017).
4.2 Impacts of PRI and other VIs on plant
water status estimation

The RF model analysis based on both proximal sensors and

UAV highlighted that PRI was more important than other VIs in

estimating the water status of tomatoes. The univariable linear

analysis suggested that PRI signal from proximal sensors can detect

the spatial differences of water status on July 17, which was 1 week

earlier than NDVI (Figure 4). Similarly, in other studies based on

proximal sensors (Ihuoma and Madramootoo, 2019) and ground-

based spectroradiometer (Alordzinu et al., 2021), it was found that

PRI was among the best VIs to distinguish the water status of

tomato plants. In addition, PRI has also been shown to be more

sensitive than NDVI to water status at the early stages (Rossini et al.,

2013). NDVI and other structure-related VIs are generally good
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indicators of the growth and senescence of green vegetation but

often miss or lag short-term responses to plant status that is related

with photosynthetic activity (Gamon et al., 2015).

Interpreting PRI signal across the growing season can be

challenging due to confounding factors such as canopy structures

and chlorophyll and carotenoid absorption (Zarco-Tejada et al.,

2013). We found that normalizing PRI with structure and

chlorophyll indices can improve the sensitivity to plant water

status across time. This is consistent with the findings by Zarco-

Tejada et al. (2013) from a grapevine leaf water potential study with

multi-spectral airborne imagery.

The chlorophyll-related VIs were also shown to be important

for estimating ystem from UAV imagery. Previous studies have

reported that the red edge reflectances are associated with canopy

chlorophyll content (Barnes et al., 2000). On one hand, lower

chlorophyll content indicates the cumulative impacts of stress on

plants, compared with unstressed plants—for example, Ballester

et al. (2019) monitored the water stress levels of cotton using RER

obtained from UAV imagery, and Eitel et al. (2011) demonstrated

the possibility of using NDRE to detect the early stress of conifer

woodland. On the other hand, adding red edge information can

reduce the confounding factors of PRI and improve the robustness

of our model in predicting the plant water status (Zarco-Tejada

et al., 2013).
4.3 Uncertainties and future work

The remote sensing-based stem water potential monitoring

developed in this study provides water status information to

guide irrigation management. We recognized that, toward or after

the senescence stage, the water status monitoring capability can

potentially be confounded, i.e., due to the slowdown of

photosynthetic activities regulated by crop phenology. Previous

studies suggest that the canopy-level PRI signal, although

influenced by the change of pigment content, can still track the

photosynthetic radiation use efficiency at the senescence stage of

Avena sativa and Setaria italica, but the uncertainty could be larger

(Cordon et al., 2016).

This study focused on time periods when tomato plants reached

full canopy, and therefore the impact of canopy structure and

chlorophyll content was reduced in our data and model. During

the early stage of plant development, the PRI value is sensitive to

changes in canopy cover and LAI, e.g., when LAI<3 (Barton and

North, 2001). Further study is needed to include various growth

stages combined with deficit irrigation treatments to fully understand

the impacts of other confounding factors on PRI and water status.

When the sample size gets bigger, a deep learning approach guided by

plant physiology can potentially lead to more explainable and more

robust models that can be applied to various crop types.

To take advantage of the high temporal frequency of the proximal

sensors, another important step is to explore the potential of a delta

PRI based on the difference between the midday PRI and early

morning PRI for tracking the plant water stress (Magney et al., 2016).

Data fusion approaches can also be applied to make use of the high-

temporal-frequency proximal sensors and large coverage of UAV
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imagery, when both are available, for improved agriculture

management (De Benedetto et al., 2013; Schirrmann et al., 2017;

Castrignanò et al., 2021).

When the sample size gets bigger, deep learning and machine

learning approach guided by plant physiology can potentially lead

to more explainable and more robust models that can be applied to

various crop types.
4.4 Potential application for monitoring
crop water status and irrigation
management

By combining PRI and other multispectral data from proximal

sensors and UAV imagery and weather information with a machine

learning model, we can estimate the tomato water status across the

entire field. This approach can potentially supplement the

traditional ground measurements of ystem over sampled plants

with pressure chambers and scale up to capture the within-field

spatial heterogeneity in a timely and efficient way. With the daily

change of water status derived from the proximal sensors, growers

can track the temporal pattern of irrigation requirements on a daily

basis and manage their irrigation schedule more precisely. The

water status map produced from UAV imagery can also help the

growers to design the irrigation zones and apply informed variable

rate irrigation strategies to save water.
5 Conclusion

We developed and tested the capabilities of proximal sensing

and multispectral UAV imagery for monitoring the water status in a

processing tomato field. We found that the proximal sensor-based

RF model, driven by PRI, NDVI, VPD, and air temperature, can

successfully track the daily change of ystem, with R2 of 0.74 and

MAE of 0.63 bars. By integrating multiple VIs from the 12-band

UAV imagery and weather, the RF model captured the spatial

variability in ystem at the plant level (R2 = 0.81and MAE = 0.67

bars). The xanthophyll index, PRI, was found to be the most

important remote sensing variable in both models, providing

critical information to capture the spatial and temporal variability

of ystem. Our results demonstrated the potential of using PRI and

other VIs from proximal sensors and UAV imagery to monitor

the plant water status and thus contribute to data-driven

irrigation management.
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