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ABSTRACT OF THE DISSERTATION

Existence and Structure of P-Area Minimizing Surfaces

by

Alexander Stephen Rowell

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, December 2022

Dr. Amir Moradifam, Chairperson

This dissertation uses methods from convex analysis and calculus of variations to

find solutions to partial differential equations by proving existence of minimizers for the

associated energy functionals. In the first problem, we study existence and structure of

P−area minimizing surfaces in the Heisenberg group under Dirichlet and Neumann bound-

ary conditions. We show that there exists an underlying vector field, N , that characterizes

existence and structure of P -area minimizing surfaces. This vector field exists even if there

is no P -area minimizing surface satisfying the prescribed boundary conditions. We prove

that if ∂Ω satisfies a so-called Barrier condition, it is sufficient to guarantee existence of

such surfaces. Our approach is completely different from previous methods in the literature

and makes major progress in understanding existence of P -area minimizing surfaces.

The work on the energy functional associated to the P-mean curvature partial

differential equation can be generalized to a class of functionals I(u) =
∫
Ω(φ(x,Du+ F ) +

Hu) dx, where φ(x, ξ) is convex, continuous, and homogeneous with respect to the second

argument. Using the Rockafellar-Fenchel duality, we prove existence and deduce structure
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of solutions to the Dirichlet and Neumann boundary problems associated with minimizers

of the functionals. The case when φ is not strictly convex is a highly non-trivial problem.

We prove the existence of an underlying vector field N , that always exists, and characterizes

the structure of minimizers of I(u).
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Chapter 1

Introduction

The motivation of this thesis arose from interest in two areas of conductivity

imaging, and generalizing the associated least gradient problem. In particular, Electrical

Impedance Tomography (EIT) and its extension to the hybrid method Current Density

Impedance Imaging (CDII). In EIT we seek to determine the electrical conductivity at

every point interior to a body, given the voltage potential at the boundary, following a

corresponding induced current on the boundary. The resulting images of conductivity are

very low resolution due to the EIT problem being severely ill-posed. This inspired the in-

troduction of a hybrid method in which EIT is combined with Magnetic Resonance Imaging

(MRI) to gather high accuracy data interior to the body of interest. The CDII problem

reconstructs the conductivity at every point in the interior, after inducing a current at the

boundary and measuring the corresponding magnitude of the current density vector field

in the interior.
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We are now ready for the statement of the problem. Consider an object represented

by an open, bounded, and connected domain Ω ⊂ R, with isotropic conductivity σ. For a

given voltage f on ∂Ω, J is the current density vector field. The resulting voltage potential

v satisfies the equation

∇ · (σ∇v) = 0, v|∂Ω = f. (1.1)

A substitution is applied using Ohm’s law J = −σ∇v, yielding equation

∇ ·
(

|J |
|∇v|

∇v
)

= 0, v|∂Ω = f. (1.2)

Equation (1.2) has the associated energy functional

E(v) =

∫
Ω
|J ||∇v|. (1.3)

The voltage potential v that minimizes E(v), solves equation (1.2). Then the conductivity

σ is uniquely determined by |J | and v|∂Ω = f .

In research, these problems in EIT and CDII were thoroughly studied in [6, 10, 11,

28, 27], with many interesting results. Furthermore, in [26, 37, 38, 41] the authors worked

on finding minimizers for classes of more generalized version of functional (1.3). They are

often referred to as the least gradient problem, expressed as∫
Ω
a|Dv| or

∫
Ω
φ(x,Dv),

where a ∈ L∞(Ω) is a positive function, and φ : Ω × Rn → R is a convex function sharing

the same properties as norm | · |.

In exploring such problems, we discovered geometers were interested in solving the

P-mean curvature partial differential equation in the rough form

∇ ·
(
a
∇u+ F

|∇u+ F |

)
= H, (1.4)
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where a ∈ L∞(Ω) is a positive function, F ∈ (L2(Ω))n, and H ∈ L2(Ω). Note that equation

(1.4) is itself a slight generalization of the actual P-mean curvature equation, explored

in greater depth in section 1.1. The associated energy functional to the Euler-Lagrange

equation (1.4) is

I(u) =

∫
Ω
(a|∇u+ F |+Hu) dx. (1.5)

One can see that equations (1.2) and (1.3) are special cases of (1.4) and (1.5) respectively, by

setting F ≡ 0, H ≡ 0, and a = |J |. The main substance of this thesis is in proving functional

(1.5) has minimizers under prescribed Dirichlet and Neumann boundary conditions. It can

be shown that minimizers of I(u) solve the associated partial differential equation by the

standard method in Calculus of Variations. For any fixed v ∈ C∞
c (Ω) we define

i(τ) := I[u+ τv] for all τ ∈ R.

Function i has a minimum at zero and i′(0) = 0. Then

i(τ) =

∫
Ω
a|∇u+ τ∇v + F |+Hu+ τHv,

and we compute the component-wise derivative with respect to τ yielding

i′(τ) =

∫
Ω
a
(∇u+ τ∇v + F )

|∇u+ τ∇v + F |
· ∇v +Hv.

Consequently, we use integration by parts

0 = i′(0) =

∫
Ω
a
(∇u+ F )

|∇u+ F |
· ∇v +Hv

=

∫
Ω

[
−∇ ·

(
a
∇u+ F

|∇u+ F |

)
+H

]
v.

Since this holds for all v ∈ C∞
c (Ω), minimizers of I(u) are solutions to equation (1.4) in Ω.
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In a further step of generalization, we endeavor to find existence of minimizers to

a class of integral functionals of the form

I(u) =
∫
Ω
φ(x,Du+ F ) +Hu, (1.6)

where φ : Ω × Rn → R is convex, continuous, and homogeneous function of degree 1 with

respect to the second argument. Moreover, Ω is a bounded open set in Rn with Lipschitz

boundary, F ∈ (L2(Ω))n, H ∈ L2(Ω), and φ satisfies conditions (C1) and (C2), that provide

it with similar properties to the norm | · |. This class of functionals is explored further in

Section 1.2 and Chapter 3.

1.1 P-area minimizing surfaces in the Heisenberg group

Let’s start with some definitions and background of previous research on P-area

minimizing surfaces. The 2m + 1-dimensional Heisenberg group is the manifold Hm =

Cm × R, endowed with the group product

(z, t) · (ζ, τ) =
(
z + ζ, t+ τ + 2Im⟨z, ζ⟩

)
,

where t, τ ∈ R, z, ζ ∈ Cm and ⟨z, ζ⟩ = z1ζ1 + · · · + zmζm. Suppose that Ω is a bounded

region in R2m, and X = (x1, x
′
1, x2, x

′
2, · · · , xm, x′m) ∈ Ω. Let u : R2m → R, and consider

the graph (X,u(X)) in the Heisenberg group of dimension 2m+ 1 with prescribed p-mean

curvature H(X). Then u satisfies the equation

∇ ·
(

∇u−X∗

|∇u−X∗|

)
= H, (1.7)

where X∗ = (x′1,−x1, x′2,−x2, · · · , x′m,−xm). The p-minimal surfaces are the case when

H ≡ 0 (also called H-minimal or X-minimal surfaces [20, 21, 48]), and have been studied by
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many authors. Numerous interesting results have been presented about existence, unique-

ness, and regularity of p-minimal surfaces [5, 12, 13, 14, 15, 20, 21, 48]. A summary of the

most important results are shown below. Note that we solve this problem in Chapter 2 from

the perspective of PDE and Calculus of Variations. In that spirit, notice that equation 1.7

is the Euler-Lagrange equation to the energy functional

E(u) =
∫
Ω
(|∇u−X∗|+Hu) dx1 ∧ dx′1 ∧ · · · ∧ dxn ∧ dx′n. (1.8)

One of the main challenges in studying the equation (1.7) is to deal with the singular set

of solutions, i.e.

{X ∈ Ω : |∇u(X)−X∗| = 0}.

On the other hand, since the energy functional E is not strictly convex, analysis of existence

and uniqueness of minimizers is also a highly non-trivial problem.

In [5] the author studied the size of the singular set of solutions, and showed the

existence of solutions with large singular sets. In Theorem A of [15], the authors proved

existence of minimizers of (1.8) in the special case H ≡ 0, and under the assumption that

Ω is a p-convex domain. Consider the condition on F⃗ , for C1-smooth functions fK ’s:

∂KFI = ∂IfK , I,K = 1, ..., n (1.9)

Theorem 1 ([15]) Let Ω be a p-convex bounded domain in Rn, n ≥ 2, with ∂Ω ∈ C2,α(0 <

α < 1). Let φ ∈ C2,α(Ω). Suppose F⃗ ∈ C1,α(Ω) satisfies the condition (1.9) for C1,α-smooth

and bounded fK ’s in Ω. Then there exists a Lipschitz continuous minimizer u ∈ C0,1(Ω)

for E(·) with H = 0 such that u = φ on ∂Ω.

5



They also proved interesting uniqueness and comparison results for minimizers of Theorem

B and C. Namely,

Theorem 2 ([15]) Let Ω be a bounded domain in R2m. Let u, v ∈ W 1,2(Ω) be two mini-

mizers for E(·) such that u−v ∈W 1,2
0 (Ω). Suppose H ∈ L∞(Ω) and F⃗ ∈W 1,2(Ω) satisfying

div(F⃗ ∗) > 0 (a.e.). Then u ≡ v in Ω (a.e.).

Theorem 3 ([15]) Let Ω be a bounded domain in R2n. Let F ∈W 1,2(Ω) satisfy divF ∗ > 0

(a.e.). Suppose u, v ∈W1, 2(Ω) satisfy the following conditions:

divN(u) ≥ divN(v) in Ω(in the weak sense).

u ≤ v on ∂Ω.

Then u ≤ v in Ω.

In [49], the authors proved existence and uniqueness of minimizers of E for the

case when H ≡ 0 in Ω under the so-called bounded slope condition (as defined in [23]).

Definition 4 We say that the function U : ∂Ω → R satisfies a bounded slope condition

with constant Q > 0 if for every x0 ∈ ∂Ω there exists two affine functions w+ = w+
x0 and

w− = w−
x0 such that

w−(x) ≤ U(x) ≤ w+(x) in ∂Ω :

w−(x0) = U(x0) = w+(x0);

Lip(w−
x0) ≤ Q; Lip(w+

x0) ≤ Q,

where Lip(w) denotes the Lipschitz constant of w.
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Notice that, if φ satisfies the bounded slope condition, then it is Lipschitz continuous on

∂Ω. In this sense, the assumptions on the boundary datum are stronger than those in

Theorem 1. As a result, they were able to obtain uniqueness and Lipschitz regularity of

the minimizer on (possibly) less regular domains. The results from [49] were extended in

[17] to prove existence and uniqueness of minimizers for the more generalized functional,

G(u) =
∫
Ω g(∇u+X

∗)dL2n, where g : R2n → R is convex but not necessarily strictly convex.

In [13], the authors studied uniqueness of minimizers of the functional E. The interesting

results regarding uniqueness have been omitted, as the most relevant research is of existence

of solutions.

In Chapter 2, we study existence and structure of minimizers of the energy func-

tional E from a different point of view, using the Rockafellar-Fenchel duality. We prove

various existence results that are new, even for the case a ≡ 1. Consider the following

weighted form of the functional (1.8)

F(u) =

∫
Ω
(a|∇u−X∗|+Hu) dx1 ∧ dx′1 ∧ · · · ∧ dxn ∧ dx′n, (1.10)

where a ∈ L∞(Ω) is a positive function. Minimizers of this functional will satisfy the

Euler-Lagrange equation

∇ ·
(
a
∇u−X∗

|∇u−X∗|

)
= H, (1.11)

which could be viewed as the p-mean curvature of the function (X,u(X)), with respect

to the metric g = a
2

n−1dx, which is conformal to the Euclidean metric. Our approach is

completely different from the previous ones in the literature and provides major progress

in understanding the existence of P-area minimizing surfaces.
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1.2 Minimizers for a class of integral functionals

The scope of this section addresses minimizers of a class of functionals broadly

explored in Calculus of Variations. In particular, much research has been published on

finding existence, uniqueness, regularity, and continuity of minimizers of functionals of the

form
∫
ΩG(Du(x))+K(x, u) dx, where G is convex and K is locally Lipschitz or identically

zero. For background, one should explore the tree of references stemming from [7, 8, 9, 16,

19, 31, 32, 33, 34]. Our motivation for the research in chapter 3 was inspired by the methods

used in [43], the paper that makes up the contents of chapter 2. Therein, we proved existence

and structure of minimizers of P-area minimizing surfaces in the Heisenberg group. View

the references within [15, 43, 49] on literature about P-minimal surfaces in the Heisenberg

group. The statement of the problem was stated last section, where the goal was to minimize

function F(u) from (1.10). Under prescribed Dirichlet and Neumann boundary conditions,

in Chapter 2 we prove existence and deduce the structure of minimizers of the altered energy

functional,

I(u) =
∫
Ω
(a|∇u+ F |+Hu) dx, (1.12)

where a ∈ L∞(Ω) is a positive function and F ∈ (L∞(Ω))n.

The subject of study in Chapter 3 is a class of functionals that generalize (1.12),

namely

I(u) =

∫
Ω
φ(x,Du+ F ) +Hu, (1.13)

where φ : Ω × Rn → R is convex, continuous, and homogeneous function of degree 1 with

respect the the second argument. Unless otherwise stated, we assume that Ω is a bounded
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open set in Rn with Lipschitz boundary, F ∈ (L2(Ω))n, H ∈ L2(Ω), and φ satisfies the

following conditions:

(C1) There exists α > 0 such that 0 ≤ φ(x, ξ) ≤ α |ξ| for all ξ ∈ Rn.

(C2) ξ 7→ φ(x, ξ) is a norm for every x.

While not generally required, at times we specify the additional condition on φ:

(C3) There exists β > 0 such that 0 ≤ β |ξ| ≤ φ(x, ξ) for all ξ ∈ Rn.

This problem is of particular interest since the energy functional I(u) is not strictly convex.

Analysis of existence and uniqueness of minimizers is a highly non-trivial problem, in which

we address using the Rockafellar-Fenchel duality. In doing so, we prove the existence of an

underlying vector field N , that always exists, and characterizes the structure of minimizers

of (1.13).

It is of interest to investigate [17], where the problem of unique minimizers in

BV (Ω) of (1.13) are found to be Lipschitz continuous. This was for the case where H ≡ 0

and with different assumptions on convex function g : R2n → R, with solutions u under

the bounded slope condition from Definition 4. Note that the authors have two additional

conditions on convex function g, which make it not very dissimilar to a strictly convex

function (in some sense). In turn, they provide the basis for more regularity of minimizers.

Those conditions are

g

(
ξ1 + ξ2

2

)
=
g(ξ1) + g(ξ2)

2
=⇒ ξ1 = λξ2, and (1.14)

[p ∈ ∂g(ξ2) and g
∞(ξ1) = ⟨p, ξ1⟩] =⇒ ξ1 = λξ2. (1.15)
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Consider

GΩ := inf

{
lim inf

h

∫
Ω
g(∇uh +X∗)dL2n : uh ∈W 1,1(Ω), uh → u in L1(Ω)

}
.

Then their main Theorem (4.4) is as follows.

Theorem 5 ([17] ) Let Ω ⊂ R2n be open, bounded and with Lipschitz regular boundary, let

f : ∂Ω → R satisfy the Q-B.S.C. for some Q > 0 and let g : R2n → R be a convex function

with linear growth satisfying conditions (1.14) and (1.15). Then, the minimization problem

min {GΩ : u ∈ BV (Ω), u|∂Ω = f}

admits a unique solution û. Moreover, û is Lipschitz continuous and Lip(û) ≤ Q(Q,Ω).

Another broad area of study is the least gradient problem, a special case of (1.13)

in which F ≡ 0, H ≡ 0, and φ(x, ·) = a| · |, where a ∈ L∞(Ω) is a positive function. It has

applications in conductivity imaging and has been extensively studied by many authors, see

[25, 26, 37, 38, 39, 40, 44, 45, 46, 47, 50, 51, 52, 53]. One such example that provides a use

case of φ, when F ≡ 0 and H ≡ 0, is presented in [25]. Considering J, ξ ∈ (L2(Ω))n and

σ0 ∈ Cα(Ω,Mat(n,Rn)), the authors defined convex function

φ(x, ξ) = a(x)

 n∑
i,j=1

σij0 (x)ξiξj

1/2

,

which satisfies conditions (C1)-(C3), with a =
√
σ−1
0 J · J . They seek unique solutions to

the least gradient problem

argmin

{∫
Ω
φ(x,Dv) : v ∈ BV (Ω), v|∂Ω = f

}
.

The above example displays a non-trivial use case of φ that comes up in conductivity

imaging.

10



Chapter 3 is outlined as follows. It starts with an introduction of preliminary

definitions and concepts, with the aim to set up existence proofs for minimizers of functional

(1.13). In Section 3.1, we prove existence under the Neumann boundary condition. In

Section 3.2, we study existence of minimizers with Dirichlet boundary condition. Finally,

in Section 3.3 we provide existence of P-area minimizing surfaces under a Barrier condition

on the boundary ∂Ω.
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Chapter 2

Existence and structure of P-area

minimizing surfaces in the

Heisenberg group

This chapter is dedicated to the study of the existence and structure of minimizers

of the energy functional

I(u) =

∫
Ω
(a|∇u+ F |+Hu) , (2.1)

to the Euler-Lagrange equation

∇ ·
(
a
∇u+ F

|∇u+ F |

)
= H, (2.2)

where a ∈ L∞(Ω) is a positive function, F ∈ (L2(Ω))n, and H ∈ L2(Ω). Moreover, we look

for solutions u of bounded variation satisfying various Dirichlet and Neumann boundary

conditions. Notice that functional (2.1) and equation (2.2) are slight generalizations of the

12



P-area minimizing problems (1.10) and (1.11) respectively, from Section 1.1. The approach

of proving existence of solution is different from others in the previous research, since we

use the Rockafellar-Fenchel duality. Also, our last existence result puts a new condition on

Ω, the Barrier condition as in Definition (22).

2.1 Existence of P-area minimizing surfaces with Neumann

boundary condition

Let Ω be a bounded open region in Rn, a ∈ L∞(Ω) be a positive function, F ∈

(L2(Ω))n, H ∈ L2(Ω), and consider the minimization problem

inf
u∈B̊V (Ω)

I(u) :=

∫
Ω
a |Du+ F |+Hu, (2.3)

where

B̊V (Ω) = {u ∈ BV (Ω) :

∫
Ω
u = 0}.

In order to study the minimizers of the least gradient problem (2.3), we first analyze

the dual of this problem using Rockafeller-Fenchel duality. Define E(b) : L2(Ω) → R and

G(u) : H̊1(Ω) → R as follows

E(b) =

∫
Ω
a |b+ F | and G(u) =

∫
Ω
Hu,

where H̊(Ω) = {u ∈ H1(Ω) :
∫
Ω u = 0}. Then (2.3) can be rewritten as

(P ) inf
u∈H̊1(Ω)

{E(∇u) +G(u)}. (2.4)

By Rockafellar-Fenchel duality [18], the dual problem associated to (2.4) is

(D) − min
b∈(L2(Ω))n

{E∗(b) +G∗(−∇∗b)} = max
b∈(L2(Ω))n

{−E∗(b)−G∗(−∇∗b)}, (2.5)

13



where E∗ and G∗ are the convex conjugates of the convex functions E and G, and ∇∗ is

the adjoint of the gradient operator ∇ : H̊1(Ω) → L2(Ω). Let us first compute G∗(−∇∗b).

G∗(−∇∗b) = sup
u∈H1(Ω)

{
⟨u,−∇∗b⟩H̊1(Ω)×(H1(Ω))∗ −G(u)

}
= sup

u∈H̊1(Ω)

{
⟨u,−∇∗b⟩H1(Ω)×(H1(Ω))∗ −

∫
Ω
Hu

}

= sup
u∈H̊1(Ω)

{
−
∫
Ω
∇u · b−

∫
Ω
Hu

}
.

Since cu ∈ H̊1 for any u ∈ H̊1 and any c ∈ R,

G∗(−∇∗b) =


∞ if u ̸∈ D0(Ω)

0 if u ∈ D0,

(2.6)

where

D0 :=

{
b ∈ (L2(Ω))n :

∫
Ω
∇u · b+Hu = 0, for all u ∈ H̊1(Ω)

}
. (2.7)

The computation of E∗(b) is gathered from Lemma 2.1 in [39]. The statement and proof

have been included for completeness.

Lemma 6 ([39]) Let a ∈ L2(Ω) be non-negative and F ∈ (L2(Ω))n. Then

E∗(b) =


−⟨F, b⟩ if |b(x)| ≤ a(x) a.e. in Ω

∞ otherwise .

(2.8)

14



Proof. First, consider the case |b(x)| > a(x), on a set of positive Lebesgue measure U ⊂ Ω.

It follows that

E∗(b) = sup
d∈(L2(Ω))n

⟨d, b⟩ −
∫
Ω
a|d+ F |

= −⟨b, F ⟩+ sup
d∈(L2(Ω))n

(
⟨d, b⟩ −

∫
Ω
a|d|dx

)

≥ −⟨b, F ⟩+ sup
λ∈R

λ

∫
U

(
|b|2 − a(x)|b|

)
dx = ∞,

where the second inequality follows from variable substitution. The last inequality is due

to the assumption |b(x)| > a(x) and our choice of of d,

d(x) =


λb(x) for x ∈ U

0 otherwise .

In the second case, consider |b(x)| ≤ a(x), a.e. and we compute

E∗(b) = −⟨b, F ⟩+ sup
d∈(L2(Ω))n

(
⟨d, b⟩ −

∫
Ω
a|d|dx

)
(2.9)

= −⟨b, F ⟩+ sup
d∈(L2(Ω))n

∫
Ω
(b · d− a|d|) dx

≤ −⟨b, F ⟩+ sup
d∈(L2(Ω))n

∫
Ω
|d(x)| (|b(x)| − a(x)) dx

≤ −⟨b, F ⟩.

Choosing d ≡ 0 in (2.9) gives

E∗(b) ≥ −⟨b, F ⟩.

□

Thus, the dual problem (D) can be written as

(D) sup{⟨F, b⟩ : b ∈ D0 and |b| ≤ a a.e. in Ω}. (2.10)
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Let νΩ denote the outer unit normal vector to ∂Ω. Then for every b ∈ (L∞(Ω))n

with ∇ · b ∈ Ln(Ω) there exists a unique function [b, νΩ] ∈ L∞
Hn−1(∂Ω) such that∫

∂Ω
[b, νΩ]u dHn−1 =

∫
Ω
u∇ · bdx+

∫
Ω
b ·Dudx, u ∈ C1(Ω̄). (2.11)

Moreover, for u ∈ BV (Ω) and b ∈ (L∞(Ω))n with ∇ · b ∈ Ln(Ω), the linear functional

u 7→ (b ·Du) gives rise to a Radon measure on Ω, and (2.11) is valid for every u ∈ BV (Ω)

(see [1, 3] for a proof). The following lemma is an immediate consequence of (2.11).

Lemma 7 Let b ∈ (L∞(Ω))n ∩ D0. Then

∇ · b = H −
∫
Ω
Hdx a.e. in Ω,

and

[b, νΩ] = 0 Hn−1 − a.e. on ∂Ω.

Indeed, it follows from the above lemma that for any solution N of the dual

problem (D), ∇ ·N = H −
∫
ΩH a.e. in Ω, and N is orthogonal to the unit normal vector

on ∂Ω in a weak sense. We are now ready to present the main result of this section.

Theorem 8 Let Ω be a bounded domain in Rn, F ∈ (L2(Ω))n, H ∈ L2(Ω), and a ∈ L2(Ω)

be a positive function. Then the duality gap is zero and the dual problem (D) has a solution,

i.e. there exists a vector field N ∈ D0 with |N | ≤ a, |Du+ F | − a.e. in Ω, such that

inf
u∈H̊1(Ω)

∫
Ω
(a |Du+ F |+Hu) dx = ⟨F,N⟩ (2.12)

Moreover

a
Du+ F

|Du+ F |
= N, |Du+ F | − a.e. in Ω, (2.13)

for any minimizer u of (2.4).
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Proof. It is easily verified that I(v) =
∫
Ω a|Dv| is convex, and J : (L2(Ω))n → R with

J(p) =
∫
Ω a|p|dx is continuous at p = 0. Hence, it follows from Theorem III.4.1 in [18] that

the duality gap is zero and the dual problem (D) has a solution N , and consequently (2.12)

holds.

Now let u ∈ H be a minimizer of (2.4). Then

⟨F,N⟩ =

∫
Ω
a |Du+ F |+

∫
Ω
Hu

≥
∫
Ω
|N ||Du+ F |+

∫
Ω
Hu

≥
∫
Ω
N · (Du+ F ) +

∫
Ω
Hu

= ⟨F,N⟩+
∫
Ω
N ·Du+Hu

= ⟨F,N⟩,

since N ∈ D0. Therefore, both the inequalities above are equalities, and hence (2.13) holds.

□

Remark 9 The primal problem (P ) may not have a minimizer in H̊1(Ω), but the dual

problem (D) always has a solution N ∈ (L2(Ω))n. Note also that the functional I(u) is not

strictly convex, and it may have multiple minimizers (see [26]). Theorem 8 asserts that if

u1 and u2 are both minimizers of (P ), then

a
Du1 + F

|Du1 + F |
(x) = a

Du2 + F

|Du2 + F |
(x) = N(x), (2.14)

for a.e. point x ∈ Ω where |Du1 + F | and |Du2 + F | do not vanish.

Next we show that if the primal problem (P ) is bounded below, then it has a

solution in BV (Ω). The proof follows from standard facts about BV functions, and we

sketch it out for the sake of completeness.

17



Proposition 10 There exists a constant C, depending on Ω, such that if

max
x∈Ω

|H(x)| < C, (2.15)

then the primal problem (P) has a minimizer.

Proof. Let un be the minimizing sequence for I(u). Then

∫
|∇un| −

∫
|F | −

∫
|H||un| ≤

∫
|∇un| −

∫
F +

∫
Hun ≤

∫
|∇un + F |+Hun < c,

for some constant c independent of n. Hence

∫
|∇un| ≤ C +

∫
|H||un|+

∫
|F |.

It follows from the Poincaré’s inequality that there exists a constant CΩ, independent of n,

such that ∫
|∇un| ≤ C + ||H||L∞(Ω)CΩ

∫
|∇un|+

∫
|F |

⇒
(
1− CΩ||H||L∞(Ω)

) ∫
|∇un| ≤ C +

∫
|F |.

∫
|∇un| ≤ C ′ =

C +
∫
|F |(

1− CΩ||H||L∞(Ω)

)
provided that 1− CΩ||H||L∞(Ω) > 0 or equivalently

||H||L∞(Ω) ≤ C :=
1

CΩ
.

It follows from standard compactness results for BV functions that un has a subse-

quence, denoted by un again, such that un converges strongly in L1 to a function û ∈ BV ,

and Dun converges to Dû is the sense of measures. Since the functional I(u) is lower

semicontinuous, û is a solution of the primal problem (2.3). □
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This leads directly to the first existence result. There is a solution to an altered

version of PDE (2.2), in the case where a ≡ 1.

Corollary 11 Let Ω be a bounded domain in Rn, F ∈ (L2(Ω))n and a ∈ L2(Ω) be a positive

function. There exists a constant C such that if ||H||L∞(Ω) < C, then the equation

∇ ·
(
a
Du+ F

|Du+ F |

)
= H −

∫
Ω
H

has a solution u ∈ B̊V (Ω), i.e. there exists N ∈ D0 such that

a
Du+ F

|Du+ F |
= N.

2.2 Existence of P-area minimizing surfaces with Dirichlet

boundary condition

In this section we study existence of p-area minimizing surfaces with a given Dirich-

let boundary condition on the boundary ∂Ω. Let Ω be a bounded open region in Rn,

a ∈ L∞(Ω) be a positive function, f ∈ L1(∂Ω), and consider minimization problem

inf
u∈BVf (Ω)

I(u) :=

∫
Ω
a |Du+ F |+Hu, (2.16)

where

BVf (Ω) = {u ∈ BV (Ω) : u|∂Ω = f}.

The function f ∈ L1(∂Ω) can be extended to a function in W 1,1(Ω) (denoted by f again),

and the weighted least gradient problem (2.16) can be written as

inf
u∈BV0(Ω)

I(u) :=

∫
Ω
a
∣∣∣Du+ F̃

∣∣∣+Hu+

∫
Ω
Hfdx,

19



where F̃ = F +∇f , and
∫
ΩHfdx is a constant. Hence the minimization problem (2.16) is

equivalent to the least gradient problem

inf
u∈BV0(Ω)

I(u) :=

∫
Ω
a |Du+ F |+Hu. (2.17)

It is easy to verify that the minimizers of (2.16) in BV0(Ω) satisfy the Euler-Lagrange

equation

∇ ·
(
a
Du+ F

|Du+ F |

)
= H, (2.18)

with u|∂Ω = 0. However, the minimization problems (2.16) and (2.17) do not necessarily have

minimizers even if they are bounded below. This is in contrast with our results in Section

2.1 where boundedness of the functional I(u) in (2.3) from below automatically implies

existence of a minimizer. To see this, suppose un is a minimizing sequence for (2.17) that

converges in L1(Ω) to a function û ∈ BV (Ω). Then it follows from lower semicontinuity of

the functional I(u) that

I(û) ≤ inf
u∈BV0(Ω)

I(u).

However, the trace of û on ∂Ω may not necessarily be equal to zero. This is the main reason

for nonexistence of minimizers for (2.17). Indeed it is well known that (2.17) may not have

a minimizer, and proving existence of minimizers for (2.17) is a challenging problem that

we aim to tackle in this section.

Similar to the our approach in Section 2.1, we first analyze the dual of the relaxed

minimization problem (2.28) from section 2.2.2, which will be a crucial tool in our analysis.

20



2.2.1 The dual problem

As in Section 2.1, let E(b) : (L2(Ω))n → R and G(u) : H1
0 (Ω) → R as

E(b) =

∫
Ω
a |b+ F | and G(u) =

∫
Ω
Hu.

We can rewrite (2.28) as

(P ′) inf
u∈H1

0 (Ω)
{E(∇u) +G(u)}. (2.19)

By Rockafellar-Fenchel duality [18], the dual problem associated to (2.19) is

(D′) − min
b∈(L2(Ω))n

{E∗(b) +G∗(−∇∗b)} = sup
b∈(L2(Ω))n

{−E∗(b)−G∗(−∇∗b)}, (2.20)

where E∗ and G∗ are the convex conjugates of the convex functions E and G, and ∇∗ is the

adjoint of the gradient operator ∇ : H1
0 (Ω) → L2(Ω). Due to the change in our function

space, we update the computation of G∗(−∇∗b).

G∗(−∇∗b) = sup
u∈H1

0 (Ω)

{
⟨u,−∇∗b⟩H1

0 (Ω)×(H1
0 (Ω))∗ −G(u)

}
= sup

u∈H1
0 (Ω)

{
⟨u,−∇∗b⟩H1

0 (Ω)×(H1
0 (Ω))∗ −

∫
Ω
Hu

}

= sup
u∈H1

0 (Ω)

{
−
∫
Ω
∇u · b−

∫
Ω
Hu

}
.

Since cu ∈ H1
0 (Ω) for any u ∈ H1

0 (Ω) and any c ∈ R,

G∗(−∇∗b) =


∞ if u ̸∈ D̃0(Ω)

0 if u ∈ D̃0,

(2.21)

where

D̃0 :=

{
b ∈ (L2(Ω))n :

∫
Ω
∇u · b+Hu = 0, for all u ∈ H1

0 (Ω)

}
⊆ D0. (2.22)
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On the other hand, it follows from Lemma 2.1 in [39] (computation shown in Lemma 6)

that

E∗(b) =


−⟨F, b⟩ if |b| ≤ a a.e. in Ω

∞ otherwise .

(2.23)

Thus the dual problem (D′) can be written as

(D′) sup{⟨F, b⟩ : b ∈ D̃0 and |b| ≤ a a.e. in Ω}. (2.24)

It follows from the integration by parts formula (2.11) that b ∈ (L∞(Ω))n ∩ D̃0 if and only

if

∇ · b = H a.e. in Ω.

We are now ready to prove the following theorem.

Theorem 12 Let Ω be a bounded domain in Rn, F ∈ (L2(Ω))n, H ∈ L2(Ω), a ∈ L2(Ω)

be a positive function, and assume (P ′) is bounded below. Then the duality gap is zero and

the dual problem (D′) has a solution, i.e. there exists a vector field N ∈ D̃0 with |N | ≤ a,

|Du+ F | − a.e. in Ω, such that

inf
u∈H1

0 (Ω)

∫
Ω
(a |Du+ F |+Hu) dx = ⟨F,N⟩ (2.25)

Moreover

a
Du+ F

|Du+ F |
= N, |Du+ F | − a.e. in Ω, (2.26)

for any minimizer u of (2.19).

Proof. It is easily verified that I(v) =
∫
Ω a|Dv| is convex, and J : (L2(Ω))n → R with

J(p) =
∫
Ω a|p|dx is continuous at p = 0. Hence, it follows from Theorem III.4.1 in [18] that
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the duality gap is zero and the dual problem (D) has a solution N , and consequently (2.25)

holds.

Now let u ∈ A0 be a minimizer of (2.19). Since N ∈ D̃0, we have

⟨F,N⟩ =

∫
Ω
a |Du+ F |+

∫
Ω
Hu

≥
∫
Ω
|N ||Du+ F |+

∫
Ω
Hu

≥
∫
Ω
N · (Du+ F ) +

∫
Ω
Hu

= ⟨F,N⟩+
∫
Ω
N ·Du+Hu

= ⟨F,N⟩.

Therefore, both the inequalities above are equalities, and (2.26) holds. □

Remark 13 Note that the primal problem (P ′) may not have a minimizer in H1
0 (Ω), but

the dual problem (D′) always has a solution N ∈ (L2(Ω))n. Note also that the functional

I(u) is not strictly convex, and it may have multiple minimizers (see [26]). Theorem 12

asserts that if u1 and u2 are both minimizers of (P ), then

a
Du1 + F

|Du1 + F |
(x) = a

Du2 + F

|Du2 + F |
(x) = N(x), (2.27)

for a.e. point x ∈ Ω where |Du1 + F | and |Du2 + F | do not vanish.

2.2.2 The relaxed problem

Here we study existence of minimizers for the relaxed least gradient problem

inf
u∈A0

I(u) = inf
u∈A0

∫
Ω
(a|Du+ F |+Hu)dx+

∫
∂Ω
a|u|ds, (2.28)

where

A0 :=
{
u ∈ H1(Rn) : u = 0 in Ωc

}
.

23



Unlike the problem (2.17), any minimizing sequence for (2.28) converges to a minimizer in

A0. Indeed the following proposition holds.

Proposition 14 There exists a constant C, depending on Ω, such that if

max
x∈Ω

|H(x)| < C, (2.29)

then the primal problem (2.17) has a minimizer in A0.

Proof. The proof follows from an argument similar to the one used in the proof of Propo-

sition 10, and the observation that if un ∈ A0 converges to û in L1(Ω), then û ∈ A0.

□

The next theorem characterizes the relationship between these two problems and

sheds light on the challenging problem of existence of minimizers for (2.17).

Theorem 15 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, F ∈ (L2(Ω))n,

and H ∈ L2(Ω). If the minimization problem (2.17) is bounded below, then

min
u∈A0

(∫
Ω
(a|Du+ F |+Hu)dx+

∫
∂Ω
a|u|ds

)
= inf

u∈BV0(Ω)

∫
Ω
a|Du+ F |+Hu (2.30)

Moreover, if u is a minimizer of (2.28), then

−u[N, νΩ] = a|u| Hn−1 − a.e. on ∂Ω. (2.31)

Proof. Since BV0(Ω) can be continuously embedded in A0, we have

min
u∈A0

(∫
Ω
(a|∇u+ F |+Hu)dx+

∫
∂Ω
a|u|ds

)
≤ inf

u∈BV0(Ω)

∫
Ω
a|∇u+ F |+Hu.
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It follows from Theorem 12 that there exists a vector field N with |N | ≤ a a.e. in Ω and

N = a
Du+ F

|Du+ F |
.

Now let u be a minimizer of the relaxed problem with u|∂Ω = g|∂Ω, where g ∈ W 1,1(Ω).

Since u− g ∈ D̃0, we have

min
u∈A0

(∫
Ω
(a|Du+ F |+Hu)dx+

∫
∂Ω
a|u|ds

)
=

∫
Ω
a|∇u+ F |+Hu+

∫
∂Ω
a|u|

≥
∫
Ω
|N ||∇u+ F |+Hu+

∫
∂Ω
a|u|

≥
∫
Ω
N(∇u+ F ) +Hu+

∫
∂Ω
a|u|

=

∫
Ω
N · F +

∫
Ω
N · ∇u+Hu+

∫
∂Ω
a|u|

= ⟨N,F ⟩+
∫
Ω
N · ∇(u− g) +H(u− g)

+

∫
Ω
N · ∇g +Hg +

∫
∂Ω
a|g|

= ⟨N,F ⟩+
∫
Ω
N · ∇g +Hg +

∫
∂Ω
a|g|

= ⟨N,F ⟩+
∫
∂Ω
g[N, νΩ] +

∫
∂Ω
a|g|

≥ ⟨N,F ⟩

= inf
u∈BV0(Ω)

∫
Ω
a|Du+ F |+Hu.

We used integration by parts, and |N | ≤ a a.e. in Ω, to obtain the last inequality, and

hence (2.30) holds. Moreover, all the inequalities in the above computation are equalities.

In particular, (2.31) holds. □

The following theorem is an immediate consequence of both Theorem 12 and

Theorem 15.
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Theorem 16 Let Ω be a bounded domain in Rn, F ∈ (L2(Ω))n, H ∈ L2(Ω), a ∈ L2(Ω)

be a positive function, and assume (P ′) is bounded below. Then there exists a vector field

N ∈ D̃0 with |N | ≤ a, |Du+ F | − a.e. in Ω, such that

a
Du+ F

|Du+ F |
= N, |Du+ F | − a.e. in Ω, (2.32)

for any minimizer u of (2.17). Moreover, every minimizer of (2.17) is a minimizer of

(2.28), and if u is a minimizer of (2.28), then

sign(−u)[N, νΩ] = a Hn−1 − a.e. on ∂Ω. (2.33)

In particular, u = 0 Hn−1 a.e. on the set

{x ∈ ∂Ω : −|N | < [N, νΩ] < |N |}.

The next theorem follows immediately from Theorem 16.

Theorem 17 Let Ω be a bounded domain in Rn, F ∈ (L2(Ω))n, H ∈ L2(Ω), a ∈ L2(Ω) be

a positive function, and assume (P ′) is bounded below. Let N be the solution of the dual

problem guaranteed by Theorem 12 and assume that −N < [N, νΩ] < |N | almost everywhere

on ∂Ω. Then the least gradient problem (2.17) has a minimizer in BV0(Ω).
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2.3 Existence of minimizers under the Barrier condition

Let F ∈ (L1(Ω)n) and a,H ∈ L∞(Ω) with a > 0 in Ω, and define ψ : Rn×BV0(Ω)

as follows

ψ(x, u) := a(x)|Du+ FχEu |+Hu, (2.34)

where Eu is the closure of the support of u in Ω.

Define the ψ-perimeter of E in A, as

Pψ(E;A) :=

∫
A
a(x) |DχE + FχE |+HχE .

Definition 18 1. A function u ∈ BV (Rn) is ψ-total variation minimizing in Ω ⊂ Rn if

∫
Ω
ψ(x, u) ≤

∫
Ω
ψ(x, v) for all v ∈ BV (Rn) such that u = v a.e. in Ωc.

2. A set E ⊂ Rn of finite perimeter is ψ-area minimizing in Ω if

Pψ(E; Ω) ≤ Pψ(Ẽ)

for all Ẽ ⊂ Rn such that Ẽ ∩ Ωc = E ∩ Ωc a.e..

We will show that the super level sets of ψ-total variation minimizing functions in

Ω are ψ-area minimizing in Ω. In order to achieve this, we shall first prove some preliminary

lemmas.

Lemma 19 Let χϵ,λ be defined as in (2.37). Then

Pψ(E,Ω) ≤ lim inf
ϵ→0

∫
Ω
a(x)|Dχϵ,λ + Fχϵ,λ|+Hχϵ,λ.

27



Proof. We have

∫
Ω
a(x)|Dχϵ,λ + Fχϵ,λ|+Hχϵ,λ −

∫
Ω
a(x)|DχE + FχE |+HχE

=

∫
Ω∩{λ−ϵ<u<λ+ϵ}

a|Dχϵ,λ + Fχϵ,λ|+Hχϵ,λ − a|DχE + FχE | −HχE

≥
∫
Ω∩{λ−ϵ<u<λ+ϵ}

a|Dχϵ,λ| − a|Fχϵ,λ|+Hχϵ,λ − a(x)|DχE | − a|FχE | −HχE

=

∫
Ω∩{λ−ϵ<u<λ+ϵ}

a|Dχϵ,λ| − a(x)|DχE |+Hχϵ,λ −HχE − a|Fχϵ,λ| − a|FχE |

=

∫
Ω
a|Dχϵ,λ| −

∫
Ω
a(x)|DχE |+

∫
Ω
(Hχϵ,λ −HχE)

−
∫
Ω∩{λ−ϵ<u<λ+ϵ}

a|Fχϵ,λ|+ a|FχE |.

It is easy to see that the last two integrals converge to zero as ϵ→ 0. Hence

lim inf
ϵ→0

∫
Ω
a(x)|Dχϵ,λ + Fχϵ,λ|+Hχϵ,λ − Pψ(E,Ω)

= lim inf
ϵ→0

∫
Ω
a(x)|Dχϵ,λ + Fχϵ,λ|+Hχϵ,λ −

∫
Ω
a(x)|DχE + FχE |+HχE

≥ lim inf
ϵ→0

∫
Ω
a|Dχϵ,λ| −

∫
Ω
a(x)|DχE | ≥ 0,

where we have used the lower semi-continuity of
∫
Ω a|Dv| to obtain the last inequality (see

[26]). The proof is complete. □

If w ∈ BV (Rn) and Ω is an open set with Lipschitz boundary, we will write w+

and w− to denote the outer and inner trace of w on ∂Ω.
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Lemma 20 Let Ω ⊂ Rn be bounded and open, with Lipschitz boundary. Given g ∈

L1(∂Ω;Hn−1), define

Iψ(v; Ω, g) :=

∫
∂Ω
a|g − v− + Fχv |dHn−1 +

∫
Ω
ψ(x,Dv).

Then u ∈ BV (Rn) is ψ-total variation minimizing in Ω if and only if u|Ω minimizes

Iψ( · ; Ω, g) for some g, and moreover g = u+.

Proof: First note that if v ∈ BV (Rn) then v+, v− ∈ L1(∂Ω;Hn−1), and conversely,

for every g ∈ L1(∂Ω;Hn−1) there exists some v ∈ BV (Rn) such that g = v+. Also∫
∂Ω
ψ(x,Dv) =

∫
∂Ω
a|Dv + Fχv |dHn−1 =

∫
∂Ω
a|v+ − v− + Fχv |dHn−1. (2.35)

To see this, note that |Dv| can only concentrate on a set of dimension n− 1 if that set is a

subset of the jump set of v, so (2.35) follows from standard descriptions of the jump part

of Dv.

Now if u, v ∈ BV (Rn) satisfy u = v a.e. in Ωc, then
∫
Ω̄c φ(x,Du) =

∫
Ω̄c φ(x,Dv).

In addition, u+ = v+, so using (2.35) we deduce that∫
Rn

ψ(x,Du)−
∫
Rn

ψ(x,Dv) = Iφ(u; Ω, u
+)− Iφ(v; Ω, u

+).

The lemma easily follows from the above equality. □

Theorem 21 Consider the bounded Lipschitz domain Ω ⊂ Rn and a ψ-total variation

minimizing function in Ω, u ∈ BV (Rn). Let the super level sets of u to be defined as

Eλ := {x ∈ Rn : u(x) ≥ λ} . (2.36)

Then Eλ is ψ-area minimizing in Ω.
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Proof. This proof closely mirrors that of Theorem 2.6 in [26]. Consider an arbitrary λ ∈ R,

and let u1 = max(u − λ, 0), u2 = u − u1. For any g ∈ BV (Rn) such that supp(g) ⊂ Ω, we

have

∫
Ω
a
∣∣Du1 + Fχ{u≥λ}

∣∣+Hu1 +

∫
Ω
a
∣∣Du2 + Fχ{u<λ}

∣∣+Hu2 =

∫
Ω
a |Du+ F |+Hu

≤
∫
Ω
a |D(u+ g) + F |+H(u+ g)

=

∫
Ω
a
∣∣Du1 +D(gχ{u≥λ}) + Fχ{u≥λ}

∣∣+H(u1 + g)

+

∫
Ω
a
∣∣Du2 +D(gχ{u<λ}) + Fχ{u<λ}

∣∣+Hu2

≤
∫
Ω
a
∣∣Du1 +D(gχ{u≥λ}) + Fχ{u≥λ}

∣∣+H(u1 + g)

+

∫
Ω
a|D(gχ{u<λ})|+

∫
Ω
a
∣∣Du2 + Fχ{u<λ}

∣∣+Hu2

=

∫
Ω
a
∣∣D(u1 + g) + Fχ{u≥λ}

∣∣+H(u1 + g)

+

∫
Ω
a
∣∣Du2 + Fχ{u<λ}

∣∣+Hu2.

Thus ∫
Ω
a |Du1 + Fχu1 |+Hu1 ≤

∫
Ω
a |D(u1 + g) + Fχu1 |+H(u1 + g),

for all g ∈ BV (Rn) with supp(g) ⊂ Ω. Hence u1 is also ψ-total variation minimizing. By

the same process, we can verify that the function defined below is also ψ-total variation

minimizing,

χϵ,λ := min

(
1,

1

ϵ
u1

)
=



0 if u ≤ λ,

1
ϵ (u− λ) if λ < u ≤ λ+ ϵ,

1 if u > λ+ ϵ.

(2.37)
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For a.e. λ ∈ R the boundary of the super level set Eλ is a set of measure zero,

that is,

Ln ({x ∈ Ω : u(x) = λ}) = Hn−1
(
{x ∈ ∂Ω : u±(x) = λ}

)
= 0. (2.38)

On that account

χϵ,λ → χλ := χEλ
in L1

loc(Rn), χ±
ϵ,λ → χ±

λ in L1(∂Ω;Hn−1),

as ϵ→ 0.

It follows from Lemma 19 via quite standard arguments that

Pψ(χλ,Ω) ≤ lim inf
ϵ→0

Pψ(χϵ,λ,Ω); (2.39)

and this, with the L1 convergence of the traces, implies that

Iφ(χλ; Ω, χ
+
λ ) ≤ lim inf

k→∞
Iφ(χϵ,λ; Ω, χ

+
λ,ϵ). (2.40)

Now for any F ⊂ Rn such that χλ = χF a.e. in Ωc,

Iφ(χϵ,λ; Ω, χ
+
ϵ,λ) ≤ Iφ(χF ; Ω, χ

+
ϵ,λ)

≤ Iφ(χF ; Ω, χ
+
λ ) +

∫
∂Ω
a|χ+

λ − χ+
ϵ,λ| dH

n−1

≤ Iφ(χF ; Ω, χλ
+) + C

∫
∂Ω

|χ+
λ − χ+

ϵ,λ| dH
n−1.

It follows from this, (2.40), and χ+
ϵ,λ → χ+

λ in L1(∂Ω;Hn−1) that

Iφ(χλ; Ω, χ
+
λ ) ≤ Iφ(χF ; Ω, χ

+
λ ),

which proves that Eλ is φ-area minimizing in Ω.

In the case where λ does not satisfy (2.38), we can take an increasing sequence

λk → λ as k → ∞, that satisfies (2.38) for each k. This implies that

χλk → χλ in L1
loc(Rn), χ±

λk
→ χ±

λ in L1(∂Ω;Hn−1).
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This once again leads to the conclusion that Eλ is ψ-area minimizing in Ω in view of

Lemma 20. □

Now we are ready to present the main existence results of this section. For any

measurable set E define

E(1) :=

{
x ∈ Rn : lim

r→0

Hn(B(r, x) ∩ E)

Hn(B(r))
= 1

}
.

Definition 22 Suppose that Ω ⊂ Rn is a bounded Lipschitz domain. Then Ω satisfies the

barrier condition if for every x0 ∈ ∂Ω and ϵ > 0 sufficiently small, if V minimizes Pψ(·;Rn)

in

{W ⊂ Ω :W \B(ϵ, x0) = Ω \B(ϵ, x0)}, (2.41)

then

∂V (1) ∩ ∂Ω ∩B(ϵ, x0) = ∅.

Lemma 23 Given a bounded Lipschitz domain Ω ⊂ Rn that satisfies the barrier condition

from Definition 22, and suppose E ⊂ Rn minimizes Pψ(·; Ω). Then

{
x ∈ ∂Ω ∩ ∂E(1) : B(ϵ, x) ∩ ∂E(1) ⊂ Ω for some ϵ > 0

}
= ∅.

Proof. Assume there exists x0 ∈ ∂Ω∩∂E(1) such that B(ϵ, x0)∩∂E(1) ⊂ Ω̄ for some ϵ > 0.

Then Ṽ = E ∩ Ω is a minimizer of Pψ( · ;Rn) in (2.41), and

x0 ∈ ∂Ṽ (1) ∩ ∂Ω ∩B(ϵ, x0) ̸= ∅.

This contradicts the barrier condition and finishes the proof. □

In the last theorem we use the definition

BVf (Ω) :=

{
u ∈ BV (Ω) : lim

r→0
ess sup

y∈Ω,|x−y|<r
|u(y)− f(y)| = 0 for x ∈ ∂Ω

}
.
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Theorem 24 Let ψ : Rn × Rn → R be defined as in (2.34), and Ω ⊂ Rn be a bounded

Lipschitz domain. Suppose ||H||L∞(Ω) is small enough such that Proposition 14 holds. If Ω

satisfies the barrier condition with respect to ψ, as given in Definition 22, then for every

f ∈ C(∂Ω) the minimization problem (2.16) has a minimizer in BVf (Ω).

Proof. Since everyHn−1 integrable function on Ω is the trace of some (continuous)

function in BV (Ωc), without loss of generality we may assume that f ∈ BV (Rn).

Define

Af := {v ∈ BV (Rn) : v = f on Ωc},

and note that BVf (Ω) ↪→ Af , in the sense that any element v of BVf (Ω) is the restriction

to Ω of a unique element of Af . An argument similar to that of Proposition 14 implies that∫
Rn ψ(x, v) has as a minimizer u ∈ Af .

We next use the barrier condition to show that u ∈ BVf (Ω). If not, there exists

some x ∈ ∂Ω and δ > 0 such that

ess sup
y∈Ω,|x−y|<r

(
f(x)− u(y)) ≥ δ or ess sup

y∈Ω,|x−y|<r

(
u(y)− f(x)) ≥ δ (2.42)

for every r > 0. Assume that the latter condition holds. It follows from this and the

continuity of f , that x ∈ ∂E(1) for E := Ef(x)+δ/2. By Theorem 21 E is ψ-area minimizing

in Ω. However, since f is continuous in Ωc and u ∈ Af , it is clear that u < f(x) + δ/2 in

B(ε, x) \ Ω for all sufficiently small ε. This contradicts Lemma 23. If the first alternative

holds in (2.42), then we set E := {y ∈ Rn : u(y) ≤ f(x) − δ/2} and reach a similar

contradiction. Hence u ∈ BVf (Ω), and in view of Theorem 15, it is ψ-total variation

minimizing in BVf (Ω). □
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Chapter 3

Existence and structure of

minimizers for a class of integral

functionals

A few preliminaries are required to interpret and find minimizers of the class of

functionals represented by (1.13). As a brief reminder, the assumptions on these functionals

are that Ω ⊆ Rn is a bounded open set with Lipschitz boundary, F ∈ (L2(Ω))n, H ∈ L2(Ω),

and φ satisfies (C1) and (C2) where

I(u) =

∫
Ω
φ(x,Du+ F ) +Hu.

Recall that (C1) creates bounds on φ and (C2) states that it possesses the properties of a

norm.
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For an arbitrary u ∈ BVloc(Rn), an associated measure φ(x,Du+F ) is defined by

∫
A
φ(x,Du+ F ) =

∫
A
φ(x, vu(x))|Du+ F | for each bounded Borel set A, (3.1)

with the vector-valued measure Du + F having a corresponding total variation measure

|Du + F |, and vu(x) = dDu+F
d|Du+F | is the Radon-Nikodym derivative. We use standard facts

about functions of bounded variation as in [2], and follow the outline in [37]. For any open

set U , we write

∫
U
φ(x,Du+ F ) = sup

{∫
U
(u∇ · Y − Y · F )dx : Y ∈ C∞

c (U ;Rn), supφ0(x, Y (x)) ≤ 1

}
,

(3.2)

where φ(x, ·) has a dual norm on Rn, φ0(x, ·), defined by

φ0(x, ξ) := sup {ξ · p : φ(x, p) ≤ 1} .

As a consequence of condition (C1), the dual norm φ0(x, ·) has the equivalent definition

φ0(x, ξ) = sup

{
ξ · p
φ(x, p)

: p ∈ Rn
}
. (3.3)

Remark 25 In (3.2), we define a notion of integration on φ(x,Du + F ) which applies

to functions u of bounded variation, which may not even be continuous. Furthermore, this

formula still works when the gradient of u has been shifted by a vector within convex function

φ, by utilizing the norm φ0(x, ·), dual to φ(x, ·). The following computations show
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the motivation for (3.2). Since φ0(x, Y ) ≤ 1, we take p = Du+F
|Du+F | and ξ = −Y in (3.3),

which yields

−Y · Du+ F

|Du+ F |
≤ φ

(
x,

Du+ F

|Du+ F |

)
.

This implies ∫
Ω
φ(x,Du+ F ) =

∫
Ω
φ

(
x,

Du+ F

|Du+ F |

)
|Du+ F |

≥
∫
Ω
−Y · Du+ F

|Du+ F |
|Du+ F |

=

∫
Ω
−Y ·Du− Y · F

=

∫
Ω
(u∇ · Y − Y · F ).

3.1 Existence of minimizers with Neumann boundary condi-

tion

The purpose of this section is to solve the minimization problem as stated in (3.4),

where the solution set is restricted to BV functions whose integral is zero. Let Ω, F,H, and

φ be as previously defined, such that φ is not necessarily strictly convex, and consider

inf
u∈B̊V (Ω)

I(u) :=

∫
Ω
φ (x,Du+ F ) +Hu, (3.4)

where

B̊V (Ω) =

{
u ∈ BV (Ω) :

∫
Ω
u = 0

}
.

3.1.1 The dual problem

We commence our study of minimizers of (3.4) by applying the Rockefeller-Fenchel

duality to the problem. It would benefit the reader to view [43], where one can find calcula-
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tions that have been omitted. Consider the functions E : (L2(Ω))n → R and G : H̊1(Ω) → R

defined as

E(b) =

∫
Ω
φ (x, b+ F ) and G(u) =

∫
Ω
Hu,

where H̊(Ω) = {u ∈ H1(Ω) :
∫
Ω u = 0}. Then (3.4) can be equivalently written as

(P ) inf
u∈H̊1(Ω)

{E(∇u) +G(u)}. (3.5)

The dual problem corresponding to (3.5), as defined by Rockafellar-Fenchel duality [18], is

(D) max
b∈(L2(Ω))n

{−E∗(b)−G∗(−∇∗b)}. (3.6)

Note that convex functions E and G have convex conjugates E∗ and G∗. Furthermore,

gradient operator ∇ : H̊1(Ω) → L2(Ω) has a corresponding adjoint operator ∇∗. As in [43],

G∗(−∇∗b) = sup
u∈H̊1(Ω)

{
−
∫
Ω
∇u · b−

∫
Ω
Hu

}
.

This can be more explicitly calculated by noting that for all real numbers c, cu ∈ H̊1(Ω)

whenever u ∈ H̊1(Ω). Thus,

G∗(−∇∗b) =


0 if u ∈ D0,

∞ if u ̸∈ D0

(3.7)

where

D0 :=

{
b ∈ (L2(Ω))n :

∫
Ω
∇u · b+Hu = 0, for all u ∈ H̊1(Ω)

}
. (3.8)

The computations of E∗(b) is shown in Lemma 2.1 of [37], which yields

E∗(b) =


−⟨F, b⟩ if φ0(x, b(x)) ≤ 1 in Ω

∞ otherwise .

(3.9)
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The dual problem can be rewritten as

(D) sup{⟨F, b⟩ : b ∈ D0 and φ0(x, b(x)) ≤ 1 in Ω}. (3.10)

The outer unit normal vector to ∂Ω is denoted by νΩ. There is a unique function

[b, νΩ] ∈ L∞
Hn−1(∂Ω), whenever ∇ · b ∈ Ln(Ω) for every b ∈ (L∞(Ω))n, such that

∫
∂Ω

[b, νΩ]u dHn−1 =

∫
Ω
u∇ · b dx+

∫
Ω
b ·Dudx, u ∈ C1(Ω̄). (3.11)

In [1, 3] it was proved that equation (3.11) holds for every u ∈ BV (Ω), since u 7→ (b ·Du)

gives rise to a Radon measure on Ω for u ∈ BV (Ω), b ∈ (L∞(Ω))n, and ∇ · b ∈ Ln(Ω).

Lemma 26 Let b ∈ (L∞(Ω))n ∩ D0. Then

∇ · b = H −
∫
Ω
Hdx a.e. in Ω,

and

[b, νΩ] = 0 Hn−1 − a.e. on ∂Ω.

The above lemma follows directly from equation (3.11) and the definition of D0.

It also provides the insight that every solution N to the dual problem (D) satisfies equation

∇ ·N = H −
∫
ΩHdx a.e. in Ω. Moreover, at every point on ∂Ω, the unit normal vector

is orthogonal to N in a weak sense.
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Theorem 27 Let Ω be a bounded domain in Rn with Lipschitz boundary, F ∈ (L2(Ω))n,

H ∈ L2(Ω), and φ : Ω× Rn → R be a convex function satisfying (C1) and (C2). Then the

duality gap is zero and the dual problem (D) has a solution, i.e. there exists a vector field

N ∈ D0 with φ0(x,N) ≤ 1 such that

inf
u∈H̊1(Ω)

∫
Ω
(φ (x,Du+ F ) +Hu) dx = ⟨F,N⟩. (3.12)

Moreover

φ

(
x,

Du+ F

|Du+ F |

)
= N · Du+ F

|Du+ F |
, |Du+ F | − a.e. in Ω, (3.13)

for any minimizer u of (3.5).

Proof. It is trivial to show I(v) =
∫
Ω(φ(x,Dv+F )+Hv) is convex, and J : (L2(Ω))n → R

with J(p) =
∫
Ω(φ(x, p + F ) +Hu0)dx is continuous at p = 0, for a fixed u0, due to (C2).

Thus, the conditions of Theorem III.4.1 in [18] are satisfied. We infer that (D) = (P ) and

the dual problem is assured a solution N such that (3.12) holds.

Now let u ∈ H̊1(Ω) be a minimizer of (3.5). Then

⟨N,F ⟩ =
∫
Ω
φ(x,Du+ F ) +Hu

=

∫
Ω
φ

(
x,

Du+ F

|Du+ F |

)
|Du+ F |+

∫
Ω
Hu

≥
∫
Ω
N · Du+ F

|Du+ F |
|Du+ F |+

∫
Ω
Hu

=

∫
Ω
N · (Du+ F ) +Hu

=

∫
Ω
N · F +

∫
Ω
N ·Du+Hu

= ⟨N,F ⟩

since N ∈ D0. Hence, the inequality above becomes an equality and (3.13) holds. □
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Remark 28 The primal problem (P ) may not have a minimizer in u ∈ H̊1(Ω), but the

dual problem (D) always has a solution N ∈ (L2(Ω))n. Note also that the functional I(u) is

not strictly convex, and it may have multiple minimizers (see [26]). Furthermore, Theorem

27 asserts that N determines Du+F
|Du+F | , |Du+ F |−a.e. in Ω, for all minimizers u of (P ). It

does so since a.e. in Ω,

φ0(x,N) ≤ 1 =⇒ φ(x, p) ≥ N · p

for every p ∈ Sn−1. Therefore, the equality in (3.13) indicates that

N · p
φ(x, p)

is maximized by p = Du+F
|Du+F | , |Du + F |−a.e. In the case that F ≡ 0, N determines the

structure of the level sets of minimizers to (P ).

We proceed to show that a solution to primal problem (P ) exists in BV (Ω), provided that

it is bounded below. The proof that follow depends on standard facts about BV functions.

Proposition 29 Let φ : Ω×Rn → R be a convex function satisfying (C1), (C2), and (C3).

If there exists a constant C, depending on Ω, such that

max
x∈Ω

|H(x)| < C, (3.14)

then the primal problem (P) has a minimizer.
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Proof. Consider the minimizing sequence un of functional I(u). By condition (C3) we have

∫
Ω
β|∇un + F |+Hun ≤

∫
Ω
φ(x,∇un + F ) +Hun < c,

for some constant c independent of n. Moreover, the triangle inequality implies

∫
β|∇un|−

∫
β|F |−

∫
|H||un| ≤

∫
β|∇un|−

∫
β|F |+

∫
Hun ≤

∫
β|∇un+F |+Hun < c

and ∫
β|∇un| ≤ C +

∫
|H||un|+

∫
β|F |.

Applying Poincaré’s inequality implies that there exists a constant CΩ, independent of n,

where ∫
β|∇un| ≤ C + ||H||L∞(Ω)CΩ

∫
|∇un|+

∫
β|F |

⇒
(
β − CΩ||H||L∞(Ω)

) ∫
|∇un| ≤ C +

∫
β|F |.

Finally, ∫
|∇un| ≤ C ′ =

C +
∫
β|F |(

β − CΩ||H||L∞(Ω)

)
provided that β − CΩ||H||L∞(Ω) > 0 or equivalently

||H||L∞(Ω) ≤ C :=
β

CΩ
.

It follows from standard compactness results for BV functions that un has a subse-

quence, denoted by un again, such that un converges strongly in L1 to a function û ∈ BV ,

and Dun converges to Dû is the sense of measures. Since the functional I(u) is lower

semicontinuous, û is a solution of the primal problem (3.4). □
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3.2 Existence of minimizers with Dirichlet boundary condi-

tion

Now, let us consider minimizers of the main functional with a given Dirichlet

boundary condition on ∂Ω. Let Ω be a bounded region in Rn with Lipschitz boundary,

F ∈ (L2(Ω))n, H ∈ L2(Ω), f ∈ L1(∂Ω), φ : Ω× Rn → R a convex function satisfying (C1)

and (C2), and the minimization problem becomes

inf
u∈BVf (Ω)

I(u) :=

∫
Ω
φ (x,Du+ F ) +Hu, (3.15)

where

BVf (Ω) = {u ∈ BV (Ω) : u|∂Ω = f}.

We perform the substitution F̃ = F +∇f to rewrite (3.15) in terms of BV functions that

are zero on ∂Ω. Since there always exists a function f ∈ W 1,1(Ω) that is an extension of

any function in L1(Ω), we have.

inf
u∈BV0(Ω)

I(u) :=

∫
Ω
φ
(
x,Du+ F̃

)
+Hu+

∫
Ω
Hfdx.

Note that
∫
ΩHfdx is a constant, which implies (3.15) can be represented by the minimiza-

tion problem

inf
u∈BV0(Ω)

I(u) :=

∫
Ω
φ (x,Du+ F ) +Hu. (3.16)

In section 3.1 boundedness from below of functional I(u) was sufficient to provide existence

of minimizers in B̊V (Ω). This is not the case for (3.15), nor (3.16). The main reason for
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nonexistence of minimizers is that for a given minimizing sequence such that un → û in

L1(Ω) and û ∈ BV (Ω), we have

I(û) ≤ inf
u∈BV0(Ω)

I(u),

by the lower semicontinuity of I(u). However, since ∂Ω is a set of measure zero, the trace

of û is not guaranteed to be zero. Our aim in this section is to find existence of minimizers

for the highly nontrivial problem (3.16), and in turn (3.15).

3.2.1 The dual problem

The setup of the dual problem here is identical to that of Section 2, with the

exception of the function space of potential solutions. We plan to analyze solution to (3.16)

by first undertaking the relaxed problem (3.25) from Section 3.2.2. With this in mind, let

E : (L2(Ω))n → R and G : H1
0 (Ω) → R be defined as

E(b) =

∫
Ω
φ (x, b+ F ) and G(u) =

∫
Ω
Hu.

Then (3.25) can be equivalently written as

(P ′) inf
u∈H1

0 (Ω)
{E(∇u) +G(u)}. (3.17)

The dual problem corresponding to (3.17), as defined by Rockafellar-Fenchel duality [18], is

(D′) sup
b∈(L2(Ω))n

{−E∗(b)−G∗(−∇∗b)}. (3.18)
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The updated the computation of G∗(−∇∗b) is similarly

G∗(−∇∗b) = sup
u∈H1

0 (Ω)

{
−
∫
Ω
∇u · b−

∫
Ω
Hu

}
,

and more explicitly

G∗(−∇∗b) =


0 if u ∈ D̃0

∞ if u ̸∈ D̃0(Ω),

(3.19)

where

D̃0 :=

{
b ∈ (L2(Ω))n :

∫
Ω
∇u · b+Hu = 0, for all u ∈ H1

0 (Ω)

}
⊆ D0. (3.20)

Finally, we use Lemma 2.1 in [37] to get

E∗(b) =


−⟨F, b⟩ if φ0(x, b(x)) ≤ 1 in Ω

∞ otherwise .

(3.21)

We can therefore rewrite the dual problem as

(D′) sup{⟨F, b⟩ : b ∈ D̃0 and φ0(x, b(x)) ≤ 1 in Ω}. (3.22)

A direct application of the integration by parts formula (3.11) implies that b ∈

(L∞(Ω))n ∩ D̃0 if and only if

∇ · b = H a.e. in Ω.

We proceed to prove the analog to Theorem 27.
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Theorem 30 Let Ω be a bounded domain in Rn with Lipschitz boundary, F ∈ (L2(Ω))n,

H ∈ L2(Ω), φ : Ω × Rn → R a convex function satisfying (C1), (C2), and assume (P ′) is

bounded below. Then the duality gap is zero and the dual problem (D′) has a solution, i.e.

there exists a vector field N ∈ D̃0 with φ0(x,N) ≤ 1 such that

inf
u∈H1

0 (Ω)

∫
Ω
(φ (x,Du+ F ) +Hu) dx = ⟨F,N⟩. (3.23)

Moreover

φ

(
x,

Du+ F

|Du+ F |

)
= N · Du+ F

|Du+ F |
, |Du+ F | − a.e. in Ω, (3.24)

for any minimizer u of (3.17).

Proof. It is trivial to show I(v) =
∫
Ω(φ(x,Dv+F )+Hv) is convex, and J : (L2(Ω))n → R

with J(p) =
∫
Ω(φ(x, p + F ) +Hu0)dx is continuous at p = 0, for a fixed u0, due to (C2).

Thus, the conditions of Theorem III.4.1 in [18] are satisfied. We infer that (D) = (P ) and

the dual problem is assured a solution N such that (3.23) holds.

Now let u ∈ A0 be a minimizer of (3.17). Then

⟨N,F ⟩ =
∫
Ω
φ(x,Du+ F ) +Hu

=

∫
Ω
φ

(
x,

Du+ F

|Du+ F |

)
|Du+ F |+

∫
Ω
Hu

≥
∫
Ω
N · Du+ F

|Du+ F |
|Du+ F |+

∫
Ω
Hu

=

∫
Ω
N · (Du+ F ) +Hu

=

∫
Ω
N · F +

∫
Ω
N ·Du+Hu

= ⟨N,F ⟩

since N ∈ D̃0. Hence, the inequality becomes an equality and (3.24) holds. □
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Remark 31 The primal problem (P ′) may not have a minimizer in H1
0 (Ω), but the dual

problem (D′) always has a solution N ∈ (L2(Ω))n. Note also that the functional I(u) is not

strictly convex, and it may have multiple minimizers (see [26]). Furthermore, Theorem 30

asserts that N determines Du+F
|Du+F | , |Du + F |−a.e. in Ω, for all minimizers u of (P ′). It

does so since a.e. in Ω,

φ0(x,N) ≤ 1 =⇒ φ(x, p) ≥ N · p

for every p ∈ Sn−1. Therefore, the equality in (3.24) indicates that

N · p
φ(x, p)

is maximized by p = Du+F
|Du+F | , |Du + F |−a.e. In the case that F ≡ 0, N determines the

structure of the level sets of minimizers to (P ′).

3.2.2 The relaxed problem

Now we investigate the existence of minimizer for the relaxed problem associated

to (3.16), namely

inf
u∈A0

I(u) = inf
u∈A0

∫
Ω
(φ(x,Du+ F ) +Hu)dx+

∫
∂Ω
φ(x, νΩ)|u|ds, (3.25)

where

A0 :=
{
u ∈ H1(Rn) : u = 0 in Ωc

}
.

The benefit of the relaxed problem is that any minimizing sequence of (3.25) converges to

a minimizer in A0. This convergence result is not guaranteed for (3.16). It is easily verified

that Proposition 29 can be adapted to the relaxed problem, and (3.16) has a solution in A0

when bounded below.
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Proposition 32 Let φ : Ω×Rn → R be a convex function satisfying (C1), (C2), and (C3).

If there exists a constant C, depending on Ω, such that

max
x∈Ω

|H(x)| < C, (3.26)

then the primal problem (3.16) has a minimizer in A0.

Proof. Note that û ∈ A0 whenever un ∈ A0 converges to û in L1(Ω). Then the proof

follows as outlined in Proposition 29. □

The stage is now set for the major result of this section. We are able to show the

difficulty of proving existence of minimizers to (3.16), while demonstrating how problems

(3.16) and (3.25) are related.

Theorem 33 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, F ∈ (L2(Ω))n,

H ∈ L2(Ω), and φ : Ω× Rn → R a convex function satisfying (C1), (C2), and (C3). If the

minimization problem (3.16) is bounded below, then

min
u∈A0

(∫
Ω
(φ(x,Du+ F ) +Hu)dx+

∫
∂Ω
φ(x, νΩ)|u|ds

)
= inf

u∈BV0(Ω)

∫
Ω
φ(x,Du+ F ) +Hu

(3.27)

Moreover, if u is a minimizer of (3.25), then

φ(x, νΩ) = [N, sign(−u)νΩ] Hn−1 − a.e. on ∂Ω. (3.28)
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Proof. It can be easily shown that BV0(Ω) has a continuous embedding into A0, which

implies

min
u∈A0

(∫
Ω
(φ(x,Du+ F ) +Hu)dx+

∫
∂Ω
φ(x, νΩ)|u|ds

)
≤ inf

u∈BV0(Ω)

∫
Ω
φ(x,Du+ F ) +Hu.

It follows from Theorem 30 that there exists a vector field N ∈ D̃0 with

φ

(
x,

Du+ F

|Du+ F |

)
= N · Du+ F

|Du+ F |
, |Du+ F | − a.e. in Ω.

Consider minimizer u of the relaxed problem with u|∂Ω = h|∂Ω, where h ∈ W 1,1(Ω). Since

u− h ∈ D̃0, we have

min
u∈A0

(

∫
Ω
(φ(x,Du+ F ) +Hu)dx+

∫
∂Ω
φ(x, νΩ)|u|ds) =

∫
Ω
φ(x,Du+ F ) +Hu+

∫
∂Ω
φ(x, νΩ)|u|

=

∫
Ω
φ

(
x,

Du+ F

|Du+ F |

)
|Du+ F |+

∫
Ω
Hu+

∫
∂Ω
φ(x, νΩ)|u|

≥
∫
Ω
N · Du+ F

|Du+ F |
|Du+ F |+

∫
Ω
Hu+

∫
∂Ω
φ(x, νΩ)|u|

=

∫
Ω
N · (Du+ F ) +Hu+

∫
∂Ω
φ(x, νΩ)|u|

=

∫
Ω
N · F +

∫
Ω
N ·Du+Hu+

∫
∂Ω
φ(x, νΩ)|u|

= ⟨N,F ⟩+
∫
Ω
N ·D(u− h) +H(u− h)

+

∫
Ω
N ·Dh+Hh+

∫
∂Ω
φ(x, νΩ)|h|

= ⟨N,F ⟩+
∫
Ω
N ·Dh+Hh+

∫
∂Ω
φ(x, νΩ)|h|

= ⟨N,F ⟩+
∫
∂Ω

[N, νΩ]h+

∫
∂Ω
φ(x, νΩ)|h|

≥ ⟨N,F ⟩

= inf
u∈BV0(Ω)

∫
Ω
φ(x,Du+ F ) +Hu.
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The last inequality was achieved using integration by parts and the fact that φ0(x,N) ≤

1 =⇒ [N, νΩ] ≤ φ(x, νΩ). Therefore, (3.27) holds and all the inequalities in the above com-

putation are equalities. This provides the relationship
∫
∂Ω[N, νΩ]h +

∫
∂Ω φ(x, νΩ)|h| = 0,

which implies that (3.28) holds. □

The last theorem follows directly from Theorem 30 and Theorem 33.

Theorem 34 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, F ∈ (L2(Ω))n,

H ∈ L2(Ω), φ : Ω × Rn → R a convex function satisfying (C1), (C2), (C3), and assume

(P ′) is bounded below. Then there exists a vector field N ∈ D̃0 with φ0(x,N) ≤ 1 such that

φ

(
x,

Du+ F

|Du+ F |

)
= N · Du+ F

|Du+ F |
, |Du+ F | − a.e. in Ω, (3.29)

for any minimizer u of (3.16). Moreover, every minimizer of (3.16) is a minimizer of

(3.25), and if u is a minimizer of (3.25), then

φ(x, νΩ) = [N, sign(−u)νΩ] Hn−1 − a.e. on ∂Ω. (3.30)

Remark 35 Equation (3.30) asserts where a minimizer u along the ∂Ω will have all its

jumps Hn−1 − a.e. If Ntr ∈ (L∞(∂Ω))n denotes the trace of N , then

{x ∈ ∂Ω : u|∂Ω < 0} ⊆ {x ∈ ∂Ω : φ(x, νΩ(x)) = Ntr · νΩ} and

{x ∈ ∂Ω : u|∂Ω > 0} ⊆ {x ∈ ∂Ω : φ(x, νΩ(x)) = −Ntr · νΩ},

for all minimizers of (3.25), up to a set of Hn−1-measure zero.
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3.3 Existence of minimizers under the Barrier condition

Under the adapted assumptions and definitions that follow, many of the proofs are

similar to those in [43], and are included to aide in understanding. Consider F ∈ (L1(Ω)n),

H ∈ L∞(Ω), and ψ : Rn ×BV0(Ω) given to be

ψ(x, u) := φ(x,Du+ FχEu) +Hu, (3.31)

with Eu representing the closure of the support of u in Ω.

The ψ-perimeter of E in A is denoted by

Pψ(E;A) :=

∫
A
φ (x,DχE + FχE) +HχE .

Definition 36 1. A function u ∈ BV (Rn) is ψ-total variation minimizing in Ω ⊂ Rn if

∫
Ω
ψ(x, u) ≤

∫
Ω
ψ(x, v) for all v ∈ BV (Rn) such that u = v a.e. in Ωc.

2. A set E ⊂ Rn of finite perimeter is ψ-area minimizing in Ω if

Pψ(E; Ω) ≤ Pψ(Ẽ)

for all Ẽ ⊂ Rn such that Ẽ ∩ Ωc = E ∩ Ωc a.e..

We set up for the two major results of Section 4, Theorems 39 and 42, by un-

dertaking preliminary lemmas. For a given function u ∈ BV (Ω), it is useful to define

functions

u1 = max(u− λ, 0) and u2 = u− u1, (3.32)
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for an arbitrary λ ∈ R. Moving forward we use the function

χϵ,λ := min

(
1,

1

ϵ
u1

)
=



0 if u ≤ λ,

1
ϵ (u− λ) if λ < u ≤ λ+ ϵ,

1 if u > λ+ ϵ.

(3.33)

which is shown to be ψ-total variation minimizing in Theorem 39.

Lemma 37 For χϵ,λ as defined in (3.33),

Pψ(E,Ω) ≤ lim inf
ϵ→0

∫
Ω
φ(x,Dχϵ,λ + Fχϵ,λ) +Hχϵ,λ.

Proof. Due to condition (C2) we have

∫
Ω
φ(x,Dχϵ,λ + Fχϵ,λ) +Hχϵ,λ −

∫
Ω
φ(x,DχE + FχE) +HχE

=

∫
Ω∩{λ−ϵ<u<λ+ϵ}

φ(x,Dχϵ,λ + Fχϵ,λ) +Hχϵ,λ − φ(x,DχE + FχE)−HχE

≥
∫
Ω∩{λ−ϵ<u<λ+ϵ}

φ(x,Dχϵ,λ)− φ(x, Fχϵ,λ) +Hχϵ,λ − φ(x,DχE)− φ(x, FχE)−HχE

=

∫
Ω∩{λ−ϵ<u<λ+ϵ}

φ(x,Dχϵ,λ)− φ(x,DχE) +Hχϵ,λ −HχE − φ(x, Fχϵ,λ)− φ(x, FχE)

=

∫
Ω
φ(x,Dχϵ,λ)−

∫
Ω
φ(x,DχE) +

∫
Ω
(Hχϵ,λ −HχE)

−
∫
Ω∩{λ−ϵ<u<λ+ϵ}

φ(x, Fχϵ,λ) + φ(x, FχE).

Since the last two integrals converge to zero as ϵ→ 0,

lim inf
ϵ→0

∫
Ω
φ(x,Dχϵ,λ + Fχϵ,λ) +Hχϵ,λ − Pψ(E,Ω)

= lim inf
ϵ→0

∫
Ω
φ(x,Dχϵ,λ + Fχϵ,λ) +Hχϵ,λ −

∫
Ω
φ(x,DχE + FχE) +HχE

≥ lim inf
ϵ→0

∫
Ω
φ(x,Dχϵ,λ)−

∫
Ω
φ(x,DχE) ≥ 0,

where the lower semi-continuity of
∫
Ω φ(x,Dv) justifies the last inequality (see [26]). □
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The outer and inner trace of w on ∂Ω are denoted by w+ and w− respectively,

under the assumptions that Ω is an open set with Lipschitz boundary and w ∈ BV (Rn).

Lemma 38 Suppose Ω ⊂ Rn is a bounded open region with Lipschitz boundary, g ∈

L1(∂Ω;Hn−1), and define

Iψ(v; Ω, g) :=

∫
∂Ω
φ(x, g − v− + Fχv)dHn−1 +

∫
Ω
ψ(x,Dv).

Then u ∈ BV (Rn) is ψ-total variation minimizing in Ω if and only if u|Ω minimizes

Iψ( · ; Ω, g) for some g, and moreover g = u+.

Proof: Note that v+, v− ∈ L1(∂Ω;Hn−1) whenever v ∈ BV (Rn). Conversely,

there is a v ∈ BV (Rn) with g = v+ for each g ∈ L1(∂Ω;Hn−1). Additionally

∫
∂Ω
ψ(x,Dv) =

∫
∂Ω
φ(x,Dv + Fχv)dHn−1 =

∫
∂Ω
φ(x, v+ − v− + Fχv)dHn−1. (3.34)

To see this, note that |Dv| can only concentrate on a set of dimension n− 1 if that set is a

subset of the jump set of v, so (3.34) follows from standard descriptions of the jump part

of Dv.

Now if u, v ∈ BV (Rn) satisfy u = v a.e. in Ωc, then
∫
Ω̄c φ(x,Du) =

∫
Ω̄c φ(x,Dv).

In addition, u+ = v+, so using (3.34) we deduce that

∫
Rn

ψ(x,Du)−
∫
Rn

ψ(x,Dv) = Iφ(u; Ω, u
+)− Iφ(v; Ω, u

+).

The lemma easily follows from the above equality. □

The theorem that follows shows super level sets of ψ-total variation minimizing

functions in Ω are ψ-area minimizing in Ω.
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Theorem 39 Let Ω ⊂ Rn be a bounded Lipschitz domain and u ∈ BV (Rn) a ψ-total

variation minimizing function in Ω. The super level sets of u are written as

Eλ := {x ∈ Rn : u(x) ≥ λ} . (3.35)

Then Eλ is ψ-area minimizing in Ω.

Proof. For a fixed λ ∈ R, let u1 and u2 be as defined in (3.32). Consider g ∈ BV (Rn) with

supp(g) ⊂ Ω. Then

∫
Ω
φ
(
x,Du1 + Fχ{u≥λ}

)
+Hu1 +

∫
Ω
φ
(
x,Du2 + Fχ{u<λ}

)
+Hu2 =

∫
Ω
φ (x,Du+ F ) +Hu

≤
∫
Ω
φ (x,D(u+ g) + F ) +H(u+ g)

=

∫
Ω
φ
(
x,Du1 +D(gχ{u≥λ}) + Fχ{u≥λ}

)
+H(u1 + g)

+

∫
Ω
φ
(
x,Du2 +D(gχ{u<λ}) + Fχ{u<λ}

)
+Hu2

≤
∫
Ω
φ
(
x,Du1 +D(gχ{u≥λ}) + Fχ{u≥λ}

)
+H(u1 + g)

+

∫
Ω
φ
(
x,D(gχ{u<λ})

)
+

∫
Ω
φ
(
x,Du2 + Fχ{u<λ}

)
+Hu2

=

∫
Ω
φ
(
x,D(u1 + g) + Fχ{u≥λ}

)
+H(u1 + g)

+

∫
Ω
φ
(
x,Du2 + Fχ{u<λ}

)
+Hu2.

This implies

∫
Ω
φ (x,Du1 + Fχu1) +Hu1 ≤

∫
Ω
φ (x,D(u1 + g) + Fχu1) +H(u1 + g),

for any g ∈ BV (Rn) such that supp(g) ⊂ Ω. By definition, u1 is ψ-total variation minimiz-

ing. Using the argument outlined above χϵ,λ, as defined in (3.33), is also ψ-total variation

minimizing.
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The boundary of Eλ has measure zero for a.e. λ ∈ R, which is represented by

Ln ({x ∈ Ω : u(x) = λ}) = Hn−1
(
{x ∈ ∂Ω : u±(x) = λ}

)
= 0. (3.36)

Thus

χϵ,λ → χλ := χEλ
in L1

loc(Rn), χ±
ϵ,λ → χ±

λ in L1(∂Ω;Hn−1),

as ϵ→ 0.

We apply Lemma 37 to get

Pψ(χλ,Ω) ≤ lim inf
ϵ→0

Pψ(χϵ,λ,Ω). (3.37)

It follows from the L1 convergence of the traces that

Iφ(χλ; Ω, χ
+
λ ) ≤ lim inf

k→∞
Iφ(χϵ,λ; Ω, χ

+
λ,ϵ). (3.38)

For an arbitrary F ⊂ Rn with χλ = χF a.e. in Ωc,

Iφ(χϵ,λ; Ω, χ
+
ϵ,λ) ≤ Iφ(χF ; Ω, χ

+
ϵ,λ)

≤ Iφ(χF ; Ω, χ
+
λ ) +

∫
∂Ω
φ(x, χ+

λ − χ+
ϵ,λ) dH

n−1

≤ Iφ(χF ; Ω, χ
+
λ ) +

∫
∂Ω
α|χ+

λ − χ+
ϵ,λ| dH

n−1

≤ Iφ(χF ; Ω, χλ
+) + C

∫
∂Ω

|χ+
λ − χ+

ϵ,λ| dH
n−1.

The inequality that follows is justified by the above, (3.38), and χ+
ϵ,λ → χ+

λ in L1(∂Ω;Hn−1),

Iφ(χλ; Ω, χ
+
λ ) ≤ Iφ(χF ; Ω, χ

+
λ ).

This establishes that Eλ is φ-area minimizing in Ω.
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If λ does not satisfy (3.36), then there exists an increasing sequence λk that con-

verges to λ and satisfies (3.36) for each k. In which case,

χλk → χλ in L1
loc(Rn), χ±

λk
→ χ±

λ in L1(∂Ω;Hn−1).

Thus, by Lemma 38, Eλ is ψ-area minimizing in Ω. □

It remains to lay out a few more definitions, which are key conditions for the last

Lemma and Theorem. Let

BVf (Ω) :=

{
u ∈ BV (Ω) : lim

r→0
ess sup

y∈Ω,|x−y|<r
|u(y)− f(y)| = 0 for x ∈ ∂Ω

}
.

For any measurable set E, consider

E(1) :=

{
x ∈ Rn : lim

r→0

Hn(B(r, x) ∩ E)

Hn(B(r))
= 1

}
.

Definition 40 Let Ω ⊂ Rn be a bounded Lipschitz domain. The barrier condition is satis-

fied for Ω if for every x0 ∈ ∂Ω and ϵ > 0 sufficiently small, V minimizes Pψ(·;Rn) in

{W ⊂ Ω :W \B(ϵ, x0) = Ω \B(ϵ, x0)}, (3.39)

implies

∂V (1) ∩ ∂Ω ∩B(ϵ, x0) = ∅.

Lemma 41 Suppose Ω ⊂ Rn is a bounded Lipschitz domain satisfying the barrier condition,

and E ⊂ Rn minimizes Pψ(·; Ω). Then

{
x ∈ ∂Ω ∩ ∂E(1) : B(ϵ, x) ∩ ∂E(1) ⊂ Ω for some ϵ > 0

}
= ∅.
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Proof. We proceed by contradiction. Suppose there exists x0 ∈ ∂Ω ∩ ∂E(1) such that

B(ϵ, x0)∩∂E(1) ⊂ Ω̄ for some ϵ > 0. Then Ṽ = E ∩Ω is a minimizer of Pψ( · ;Rn) in (3.39),

and

x0 ∈ ∂Ṽ (1) ∩ ∂Ω ∩B(ϵ, x0) ̸= ∅.

This is inconsistent with the conclusion of the barrier condition from Definition 40. □

Finally, we are ready to prove the main existence results of the current section.

Theorem 42 Consider ψ : Rn × Rn → R as defined in (3.31) and bounded Lipschitz

domain Ω ⊂ Rn. Let ||H||L∞(Ω) be small enough that Proposition 32 holds. If Ω satisfies

the barrier condition with respect to ψ, as given in Definition 40, then for every f ∈ C(∂Ω)

the minimization problem (3.15) has a minimizer in BVf (Ω).

Proof. For a given f ∈ C(∂Ω), it can be extended to f ∈ C(Ωc). Furthermore,

we can assume f ∈ BV (Rn) since every Hn−1 integrable function on Ω is the trace of some

(continuous) function in BV (Ωc). We then consider a set of such functions

Af := {v ∈ BV (Rn) : v = f on Ωc},

where any element v of BVf (Ω) is the restriction to Ω of a unique element of Af . Then∫
Rn ψ(x, v) has as a minimizer u ∈ Af due to the assumed condition of Proposition 32 being

satisfied. Only slight adjustments are needed to adapt Proposition 32 for u ∈ Af .

The argument to follow proves that u ∈ BVf (Ω) with the use of the Barrier

condition. Assuming the opposite implies there is an x ∈ ∂Ω and δ > 0 such that

ess sup
y∈Ω,|x−y|<r

(
f(x)− u(y)) ≥ δ or ess sup

y∈Ω,|x−y|<r

(
u(y)− f(x)) ≥ δ (3.40)
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for every r > 0. First, suppose that the latter condition holds. For E := Ef(x)+δ/2 we have

that x ∈ ∂E(1), justified by the second alternative of (3.40) and the continuity of f . Note

that Theorem 39 implies E is ψ-area minimizing in Ω. For some small ϵ, u < f(x) + δ/2

in B(ε, x) \ Ω, since u ∈ Af and f is continuous in Ωc. However, Lemma 41 shows this is

impossible. In the case of the first alternative of (3.40), a similar contradiction arises when

E := {y ∈ Rn : u(y) ≤ f(x)− δ/2}. We conclude that u ∈ BVf (Ω). Moreover, u is ψ-total

variation minimizing in BVf (Ω) by Theorem 33. □
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Chapter 4

Conclusion

This section will serve as a concluding summary of Chapters 2 and 3, followed by

possible future research, which may expand upon the results presented in this Thesis.

4.1 Summary of P-area minimizing surfaces

The problem of finding the existence of P-area minimizing surfaces in the Heisen-

berg Group is of interest for two reasons. The first, is as a generalization of the well studied

least gradient problem, which has many applications in conductivity imaging. The second,

is to gain understanding of P-area minimizing surfaces and to apply a method not previously

used in the literature. The approach of Rockafeller-Fenchel duality yields insight about the

structure of solutions not gathered when approaching the problem from the point of view

of differential geometry.

We began the study of P-area minimizing surfaces under the Neumann boundary

condition. The goal was to find minimizers of I(u) =
∫
Ω a|Du+F |+Hu in the set B̊V (Ω) =
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{u ∈ BV (Ω) :
∫
Ω u = 0}. In applying the Rockafeller-Fenchel duality to the primal problem,

the dual problem was found to always have solution N . However, the primal problem needed

to be bounded below to guarantee a solution exists in H̊1(Ω), in which case the dual and

primal problems were equal. Moreover, when a solution exists, N = a Du+F
|Du+F | determines

the structure of solutions. This is most evident in the case where F ≡ 0 and N determines

the shape of level sets, as N = Du
|Du| is a unit vector orthogonal to a corresponding level set.

Later, we followed the same outline detailed in the preceding paragraph to find

existence of minimizers to I ′(u) =
∫
Ω(a|Du + F | + Hu) +

∫
∂Ω a|u| in the set A0 = {u ∈

H1(Rn) : u = 0 in Ωc}. All the same results were achieved, including the guarantee of

solutions to the primal problem in A0 when it is bounded below. On the other hand, no

such minimizer could be assured for I(u) in the function space BV0(Ω) = {u ∈ BV (Ω) :

u|∂Ω = 0}, even if bounded below. Indeed, a minimizing sequence of I(u) could converge

to a function of bounded variation, whose trace on ∂Ω is not the zero function. A useful

theorem was proved showing the relation of these two problems,

min
u∈A0

I ′(u) = inf
u∈BV0Ω

I(u).

Furthermore, any minimizer of the relaxed problem (on the left) satisfies condition u[N, νΩ] =

|u| Hn−1-a.e. on ∂Ω. This implies that any minimizer of the primal problem (on the right)

is also a minimizer of the relaxed problem and u = 0 Hn−1-a.e. on the set {x ∈ ∂Ω :

[N, νΩ] < |N |}. As before, N always exists and determines the structure of solutions. This

time it can be used as a condition to achieve an existence result for infu∈BV0Ω I(u). That

is, a minimizer exists if N is not in the same direction as the normal vector νΩ. It should
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be noted that minimization problem infu∈BVfΩ I(u) is equivalent to infu∈BV0Ω I(u). There-

fore, we have an existence result to the problem with the Dirichlet boundary condition.

Lastly, we proved existence of minimizers under the barrier condition. We started

by generalizing the notion of total variation, perimeter, and area minimizing sets, relative

to the integrand ψ(x, u) = a(x)|Du + FχEu | +Hu. All the desired properties generalized

nicely to work with ψ-total variation, ψ-perimeter, and ψ-area minimizing sets. Then we

defined what it means for Ω to satisfy the barrier condition. Intuitively, it is a generalized

notion of mean curvature related to ψ, in which the boundary of Ω satisfies a positivity

condition. The main existence result is that infu∈BVf (Ω) I(u) has a minimizer. To prove it,

we outlined that
∫
Rn ψ(x, u) has a minimizer in Af = {u ∈ BV (Rn) : u = f on Ωc} due to

assumed bounds of the functional and H. Finally, it is shown that minimizer u ∈ BVf (Ω),

otherwise a construction of a super level set of u would contradict the barrier condition on

Ω.

Chapter 3 generally follows the same outline as summarized above. That is, we

proved existence of minimizers for
∫
Ω φ(x,Du + F ) + Hu under prescribed Dirichlet and

Neumann boundary conditions. The exception being that as we generalized a| · | to convex

function φ(x, ·), we lost some of the specific concluding Corollaries and Theorems. Namely,

Corollary (11) and Theorem (17), which gave us nice information about existence of solu-

tions. The reason for this loss is a more vague solution to the dual problem N . Rather than

directly impacting the structure of minimizers, N = Du+F
|Du+F | , we got the relation described

in Remark (31). It asserts that N determines Du+F
|Du+F | by equality

φ

(
x,

Du+ F

|Du+ F |

)
= N · Du+ F

|Du+ F |
,
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which indicates N ·p
φ(x,p) is maximized by p = Du+F

|Du+F | , |Du + F |−a.e. Furthermore, N

has a far more vague relation to u on the boundary of Ω, in the form of φ(x, νΩ) =

[N, sign(−u)νΩ] Hn−1 − a.e. on ∂Ω. This still provides us with the jumps of u Hn−1-a.e.

along the boundary of Ω.

4.1.1 Stability in two and three dimensions

Much work has been done on finding uniqueness of solutions to the P-mean curva-

ture equation. It was proven in [49] under the bounded slope condition. Furthermore, the

authors of [13] also achieved uniqueness results. On the other hand, stability has proven

quite difficult. Together with the authors of [30], we began the initial steps in adapting

their stability results for the CDII problem to the P-mean curvature equation from Chapter

2. See concluding remarks for the difficulty of adapting the problem. Consider the restate-

ment of the equation followed by the desired outcome. Let Ω ⊂ Rn, n ≥ 2, be a bounded

open region with connected boundary, a ∈ L∞(Ω) is a positive function, F ∈ (L2(Ω))n, and

H ∈ L2(Ω). Then u satisfies the equation

∇ ·
(
a
∇u+ F

|∇u+ F |

)
= H, u|∂Ω = f, (4.1)

with σ = a
|∇u+F | and J = −a ∇u+F

|∇u+F | . Moreover, u minimizes

I(w) = min
w∈BVf (Ω)

∫
Ω
a|∇w + F |+Hwdx, (4.2)

where a = |J |, and BVf (Ω) = {w ∈ BV (Ω), w|∂Ω = f}.

In light of Theorem 12 from Section 2.2, we are guaranteed the solution to the

dual problem N ∈ D̃0, with |N | ≤ a such that a Du+F
|Du+F | = N , |Du + F |-a.e. in Ω, for any
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minimizer u. For dimensions n = 2, 3, suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω = f

and corresponding current density vector fields N and Ñ , respectively. We aspire to show

∥u− ũ∥L1(Ω) ≤ C∥|N | − |Ñ |∥
1
2

L∞(Ω).

With additional assumption on ∇u and the level sets of u, we would also want to show

∥∇u−∇ũ∥L1(Ω) ≤ C ∥ |N | − |Ñ | ∥
1
4

L∞(Ω) .

Under the assumption that a, ã ∈ C(Ω) with 0 < m ≤ a(x), ã(x) ≤ M, ∀x ∈ Ω,

for some constants m,M , we were able to achieve the following three results.

Lemma 43 ([29]) Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (4.2) with the

weights a and ã, respectively. Then∣∣∣∣∫
Ω
a|Du+ F |+Hudx−

∫
Ω
ã|Dũ+ F |+Hũ dx

∣∣∣∣ ≤ C∥a− ã∥L∞(Ω), (4.3)

for some constant C = C(m,M,Ω, f) independent of u and ũ.

Lemma 44 ([29]) Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (4.2) with the

weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed by

Theorem 12. Suppose 0 ≤ σ(x) = a(x)
|Du+F | ≤ σ1 =

∥a∥L∞(Ω)

δ in Ω for some constant δ, such

that |Du + F | > δ > 0, where σ is the Radon-Nikodym derivative of |J | dx with respect to

|Du+ F |. Then ∫
Ω
|J ||J̃ | − J · J̃ dx ≤ C∥a− ã∥L∞(Ω), (4.4)

where C = C(m,M, σ1,Ω, f, u) is a constant independent of ã.

A way to think about Lemma 44 is that as a → ã, Du+F
|Du+F |(x) becomes roughly

parallel to Dũ+F
|Dũ+F |(x).
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Theorem 45 ([29]) Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (4.2) with

the weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed

by Theorem 12. Suppose 0 ≤ σ(x) = a(x)
|Du+F | ≤ σ1 =

∥a∥L∞(Ω)

δ in Ω for some constant δ,

such that |Du+F | > δ > 0, where σ is the Radon-Nikodym derivative of |J |dx with respect

to |Du+ F | . Then

∥J − J̃∥L1(Ω) ≤ C∥a− ã∥
1
2

L∞(Ω), (4.5)

where C = C(m,M, σ1,Ω, f, u) is a constant independent of ã.

Note that Theorem 12 tells us Du+F
|Du+F | and

Dũ+F
|Dũ+F | are parallel to J and J̃ , respec-

tively. Thus, if ã is close to a, then J is close to J̃ , by Theorem 45. Unfortunately, this is

where our result differs from those in [30]. We do not share the result that ã being close to

a implies the structure of level sets of ũ is close to that of u. This is due to vector field F

serving as a sort of perturbation of the normal vector to the level sets of u and ũ. In the case

F ≡ 0 we maintain the desired structure of level sets. And so, we shift our attention to find

stability of minimizers, given perturbations on a and H. Suppose u and ũ are minimizers

of

inf
w

(∫
Ω
a|∇w|+Hw

)
and inf

w

(∫
Ω
ã|∇w|+ H̃w

)
respectively. We endeavor to show

∥u− ũ∥ ≤ C
(
∥a− ã∥+ ∥H − H̃∥

)
,

for appropriate norms. This concludes the current state of our work on the problem of

stability as applied to the P-mean curvature equation.
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4.1.2 Future direction of P-area minimizing surfaces

In consideration of functional (1.13), under the restraints of condition (C1), it was

desirable to allow for convex functions φ of higher growth. To still get an existence result,

we could consider the case where φ is strictly convex. It is well established in literature that

existence results are easier to come by with such an assumption, and even uniqueness often

follows. In fact, the authors of [17] found if convex function g satisfies conditions (1.14) and

(1.15), it is not too far from a strictly convex function (in some sense). In the case that

H ≡ 0, Theorem 5 proves a unique minimizer exists when convex function g grows linearly,

as stated in Section 1.2. Furthermore, the authors have developed a similar theorem for the

case of superlinear growth of g.

Theorem 46 ([17]) Let g : R2n → R be a convex function satisfying condition (1.14)

and let f : Ω → R satisfy the Bounded Slope Condition (Definition 4) of order Q on the

boundary of Ω. Assume also that g has superlinear growth, i.e., g(ξ) ≥ ψ(|ξ|) for a suitable

ψ : [0,+∞) → R such that

lim
t→+∞

ψ(t)

t
= +∞.

Then the functional

GΩ(u) =

∫
Ω
g(∇u+X∗)dL2n, u ∈ f +W 1,1

0 (Ω) (4.6)

has a unique Lipschitz minimizer, i.e.: there exists u ∈ f +W 1,∞
0 (Ω) such that GΩ(u) ≤

GΩ(v) for every v ∈ f +W 1,1
0 (Ω).

A natural next step would be to develop numerical algorithms to find a minimizer

to (4.6), or the more general version (1.13). The approach to finding such a minimizer
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to the weighted least gradient problem (1.5) was outlined in [39] by my advisor and his

collaborators. Although, it was for the case where F ≡ 0 and H ≡ 0. They proved an

alternating split Bregman algorithm will converge to a minimizer with a given non-negative

a ∈ L2(Ω) and under the boundary condition f ∈ H1/2(∂Ω). Furthermore, the dual problem

provides a way to recover N if first given |N | in the interior and f on the boundary. While

this has real applications to conductivity imaging, others in geometry may be interested in

similar generalized results for the P-mean curvature equation.
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Basel, 2004.

[5] Z.M. Balogh, Size of characteristic sets and functions with prescribed gradient. J. Reine
Angew. Math. 564 (2003), 63-83.

[6] L. Borcea, Electrical impedance tomography, Inverse Problems 18(2002), R99-R136.

[7] P. Bousquet, Boundary continuity of solutions to a basic problem in the calculus of
variations, Adv. Calc. Var. 3 (2010), 1-27.

[8] P. Bousquet and F. Clarke, Local Lipschitz continuity of solutions to a problem in the
calculus of variations, J. Differential Equations 243 (2007), 489–503.

[9] A. Cellina, On the bounded slope condition and the validity of the Euler Lagrange
equation, SIAM J. Control Optim. 40 (2001/02), 1270–1279 (electronic).

[10] M. Cheney and D. Isaacson, An overview of inversion algorithms for impedance imag-
ing, Contemp. Math. (1991) 122, 29-39.

[11] M. Cheney, D. Isaacson, and J. C. Newell, Electrical Impedance Tomography, SIAM
Rev. 41(1999), no.1, 85-101.

[12] J.-H. Cheng and J.-F. Hwang, Properly embedded and immersed minimal surfaces in
the Heisenberg group. Bull. Aus. Math. Soc., 70 (2004), 507-520.

66



[13] J.-H. Cheng and J.-F. Hwang, Uniqueness of generalized P-area minimizers and inte-
grability of a horizontal normal in the Heisenberg group. Calc. Var. Partial Differential
Equations, 50 (2014), no. 3-4, 579-597.

[14] J.-H. Cheng, J.-F. Hwang, A. Malchiodi, and P. Yang, Minimal surfaces in pseudo-
hermitian geometry. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze,
4(5) (2005), 129-177.

[15] J.-H. Cheng, J.-F. Hwang, and P. Yang, Existence and uniqueness for P-area minimiz-
ers in the Heisenberg group. Math. Ann. 337 (2007), no. 2, 253-293.

[16] F. Clarke, Continuity of solutions to a basic problem in the calculus of variations, Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5), 4 (2005), 511–530.

[17] S. Don, L. Lussardi, A. Pinamonti, and G. Treu, Lipschitz minimizers for a class of
integral functionals under the bounded slope condition. Nonlinear Analysis, Theory,
Methods and Applications, 216 (2022), 112689.

[18] I. Ekeland and R. Témam, Convex analysis and variational problems, North-Holland-
Elsevier, 1976.

[19] A. Fiaschi and G. Treu, The bounded slope condition for functionals depending on x, u,
and ∇u, SIAM J. Control Optim., 50 (2012), 991–1011.

[20] B. Franchi, R. Serapioni, and F. Serra Cassano, Rectifiability and perimeter in the
Heisenberg group. Math. Ann. 321, 479-531 (2001).

[21] N. Garofalo and D.-M Nhie, Isoperimetric and Sobolev inequalities for Carnot-
Caratheodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math.
49, (1996), 1081-1144.

[22] E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Boston,
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