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Online-compatible Unsupervised Non-resonant Anomaly Detection

Vinicius Mikuni,1, ∗ Benjamin Nachman,2, 3, † and David Shih4, ‡
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2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA
4NHETC, Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA

There is a growing need for anomaly detection methods that can broaden the search for new
particles in a model-agnostic manner. Most proposals for new methods focus exclusively on signal
sensitivity. However, it is not enough to select anomalous events - there must also be a strategy
to provide context to the selected events. We propose the first complete strategy for unsupervised
detection of non-resonant anomalies that includes both signal sensitivity and a data-driven method
for background estimation. Our technique is built out of two simultaneously-trained autoencoders
that are forced to be decorrelated from each other. This method can be deployed offline for non-
resonant anomaly detection and is also the first complete online-compatible anomaly detection
strategy. We show that our method achieves excellent performance on a variety of signals prepared
for the ADC2021 data challenge.

I. INTRODUCTION

Despite the compelling indirect evidence for new fun-
damental particles from astrophysical and other obser-
vations, no direct discoveries have been confirmed since
the identification of the Higgs boson [1, 2]. This means
that the new physics is either rare, inaccessible, or we
are looking in the wrong place for it. This last possi-
bility has motivated a new anomaly detection research
program at particle colliders by which search strategies
are constructed with less model dependence than pre-
vious approaches. Many of these new methods employ
modern machine learning to achieve broad sensitivity to
unforeseen scenarios [3–59] (list from Ref. [60]).

A complete anomaly detection algorithm is required to
have two attributes: it should be sensitive to anomalous
events and it should be possible to estimate the rate of
Standard Model (SM) events that are labeled as anoma-
lous (false positive rate) [6]. Complete anomaly detec-
tion methods have so far primarily focused on resonant
anomalies, where data sidebands can be used as reference
samples to both construct signal-sensitive classifiers and
to estimate the SM background [3–12, 18, 19].

Much less well-explored so far has been complete
anomaly detection methods for non-resonant anoma-
lies. One widely studied approach based on unsuper-
vised learning that does not require the new physics to
be resonant is the autoencoder [13–54]. The idea is to
build models for compressing and uncompressing events,
trained directly on the (mostly background) data. Events
that have a low probability density tend to be poorly re-
constructed when compressing and uncompressing com-
pared with events that have a relatively higher probabil-
ity density. If anomalous events are located in regions
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of low data probability density, then the reconstruction
quality can be used as an anomaly score.

However, autoencoders by themselves are not a com-
plete anomaly detection algorithm - they provide a
method for achieving signal sensitivity, but they do not
have a natural background estimation component. In
the non-resonant case, one could compare the spectrum
of anomalous events with background-only simulations,
but this requires an excellent model of the background.
Given that we expect the unexpected to occur in regions
that are poorly modeled, this is unlikely to be a viable
strategy in general.

In this paper, we introduce a new method for detecting
non-resonant anomalies, based on autoencoders, that is
complete in the sense that it includes both signal sensitiv-
ity and simulation-free background estimation. Instead
of constructing one autoencoder, we advocate for train-
ing two or more autoencoders. The set of autoencoders
are trained to be as independent of each other as possible.
While many methods for decorrelating neural networks
exist [61–77] and could be used here, we chose to em-
ploy the DisCo decorrelation method first developed in
Ref. [68] and explored for simultaneous background es-
timation in Ref. [75]. Events are labeled as anomalous
if the reconstruction quality is poor for all autoencoders.
Events labeled as anomalous by one, but not all, of the
autoencoders provide the context needed to estimate the
Standard Model background in a model independent way,
via the ABCD method.

An additional benefit of our method is that it can be
run equally well online or offline; indeed this forms a
second major motivation for our work. Typically, a key
assumption is that anomalous events will be saved by the
detectors for offline analysis. Due to the immense data
rate at the Large Hadron Collider (LHC), it is not pos-
sible to save every collision event for offline processing.
Instead, a system of triggers are used to save interesting
events [78, 79]. The definition of interesting is model de-
pendent and therefore the new physics may be thrown
away in real time. It is therefore of utmost importance
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to design model independent strategies for saving anoma-
lous events.

Autoencoders can be run online because they do not re-
quire comparing data to a reference sample [28–31]. How-
ever, no autoencoder-based trigger proposal so far has
been complete in the sense introduced above. Many con-
ventional triggers are complemented by support triggers
which provide the context needed for data-driven back-
ground estimation offline. Our method provides the first
complete anomaly detection strategy in a similar way to
these conventional methods. By using two decorrelated
autoencoders, we can trigger on potentially anomalous
events and then additionally save (at a reduced rate)
anti-tagged events in a way that background estimation
is possible offline.

This paper is organized as follows. First, we introduce
the technique of decorrelated autoencoders in Sec. II. Nu-
merical results with the ADC2021 dataset are presented
in Sec. III. By definition, this demonstration highlights
an offline application of our approach. Section IV pro-
vides a discussion about the online-compatibility of our
technique for experimental integration online. The paper
ends with conclusions and outlook in Sec. V.

II. DECORRELATED AUTOENCODERS

A vanilla autoencoder is a composition of two func-
tions, an encoder g and a decoder f . These two functions
are parameterized as neural networks and are optimized
to minimize the reconstruction loss:

L[f, g] =
∑
i

(f(g(xi))− xi)2 , (1)

where x ∈ Rn, g : Rn → Rm, and f : Rm → Rn. In
order to encourage compression, the latent space dimen-
sion is chosen such that m < n. A popular variation on
this setup is the variational autoencoder [80, 81], whereby
the encoding and decoding are probabilistic and the la-
tent space has well-defined statistical properties. The
methods proposed here are compatible with variational
autoencoders, and while preliminary studies indicate that
the results are similar, we leave a full exploration to fu-
ture work.

Instead of training a single autoencoder as in Eq. 1,
we propose to train two (or more) statistically indepen-
dent autoencoders at the same time, in order to enable
data-driven background estimation. Following [68, 75],
we achieve the decorrelation of the autoencoders by in-
cluding in the training a regularizer term based on the
distance correlation (DisCo) measure of statistical depen-
dence. Focusing on the case of two autoencoders (f1, g1)
and (f2, g2) for simplicity, we consider the following loss

function:

L[f1, f2, g1, g2] =
∑
i

R1(xi)
2 +

∑
i

R2(xi)
2

+ λDisCo2[R1(X), R2(X)] , (2)

where Ri(x) = (fi(gi(x)) − x)2, λ > 0 is a hyperpa-
rameter, and DisCo is the distance correlation [82–85].
DisCo is between 0 and 1 and is zero if and only if
its arguments are independent. The capital X is used
in the last term of Eq. 2 to indicate that the distance
correlation is computed at the level of a batch of ex-
amples x, which are realizations of the random variable
X. Given autoencoders trained via Eq. 2, we can de-
fine counts N≶,≶(~c) =

∑
i I[R1(xi) ≶ c1] I[R2(xi) ≶ c2],

where ~c = (c1, c2) are given thresholds and I[·] is the in-
dicator function that is zero when its argument is false
and one otherwise. The signal sensitive region is N>,>(~c)
and the other three regions can be used to estimate the
background:

Npredicted
>,> (~c) =

N>,<(~c)N<,>(~c)

N<,<(~c)
. (3)

Equation 3 is known as the ABCD method and the
N>,>(~c) is exactly the background in the signal-sensitive
region if there are enough events and if the two dimen-
sions are effective at rejecting the background.

III. EMPIRICAL RESULTS

The performance of the double autoencoder and decor-
relation strategy is tested on the ADC2021 dataset,
which was created for unsupervised anomaly detec-
tion [31, 86]. In the dataset, proton-proton collisions
at the LHC are simulated at center-of-mass energy of
13 TeV. Collision events are required to contain at least
one electron (e) or muon (µ) with transverse momenta
pT > 23 GeV. A set of various Standard Model processes
are generated with Pythia 8.240 generator [87, 88] with
detector response modeled by Delphes 3.3.2 [89–91] us-
ing the Phase-II CMS detector card. During the training,
2 million events are used while results are reported using
an independent validation set containing 800k SM events.

Four benchmark scenarios containing new physics pro-
cesses are used to evaluate the performance of the algo-
rithm: a leptoquark (LQ) with 80 GeV mass decaying
to a b-quark and a τ lepton, a neutral scalar boson (A)
of 50 GeV mass decaying to a pair of off-shell Z bosons,
which in turn are forced to decay to leptons (A → 4l),
a scalar boson h0 of 60 GeV mass decaying to a pair
of τ leptons (h0 → ττ), and a charged scalar boson h±

with 60 GeV mass, decaying to a τ lepton and a neu-
trino (h± → τν). In the performance evaluation, each
new physics scenario is considered independently, with
total amount of events fixed to 0.1% of the total sample
size.
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The autoencoders are trained on a sample of pure back-
ground events. In practice, this corresponds to the case
of training on simulation and testing on data. Differences
between data and simulation (which are not modeled or
taken into account in the ADC2021 dataset used here)
may degrade the autoencoder performance if background
data events are not reconstructed as well by the autoen-
coder as background simulation events. Fortunately, it is
well-known from previous studies (see e.g. [13, 14, 29])
that autoencoder training is highly insensitive to low
amounts of signal contamination. This means that au-
toencoders can be trained directly on data with a small
amount of signal contamination without a significant
change in the learned neural networks. We have explicitly
verified this in the case of the decorrelated autoencoders
using the A→ 4l signal.

Each autoencoder architecture is built using deep neu-
ral networks containing five fully connected layers. The
encoders have 256, 128, 64, 32, and 5 hidden nodes, while
the decoder is simply the mirrored version of the en-
coder. The inputs given to the training are the four-
momenta of jets [92, 93] and leptons in (pT, η, φ, m)
coordinates. Only the first (sorted by pT) four muons,
four electrons, and 10 jets in the event are kept with zero
padding if fewer objects are present. The implementa-
tion is carried out with Tensorflow [94] optimized with
the Adam [95]. Even though all new physics scenarios
considered here contain a mass resonance, no invariant
mass information is directly used in the training process.
The λ parameter from Eq. 2 is fixed to 100 and train-
ing batch size fixed to 10k to improve the decorrelation
performance. The double autoencoder structure is then
trained for a total of 1000 epochs, or stopped if the overall
training loss does not improve in an independent testing
set for 10 consecutive epochs. The complete model uses
230k trainable weights with a total of 460k floating point
operations. The neural network architecture and training
procedure were not extensively optimized, due in part to
the unsupervised nature of this task.

The performance of each autoencoder for anomaly de-
tection is assessed by using the reconstruction loss as
the main discriminator. The significance improvement
characteristic (SIC) curves are built for each new physics
scenario shown in Fig. 1. The comparison with a sin-
gle autoencoder trained without the decorrelation loss is
also shown. We also show in Fig. 1 the combined per-
formance of both autoencoders, where a “diagonal” cut
that yields the same SM background efficiency for each
autoencoder is employed. We see that the signal sensi-
tivity of the combined autoencoders is greater than (in
fact roughly double) that of each autoencoder individu-
ally, indicating that the decorrelation was successful and
each autoencoder learned something independent about
the BSM anomalies in question. The SIC distribution for
different combinations of thresholds in each autoencoder
is shown in App. A.

The independence between reconstruction losses is
more fully validated by estimating the difference be-
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FIG. 1. Top: significance improvement characteristic (SIC)
curves of the individual, decorrelated autoencoders, for each
new physics benchmark scenario. Bottom: SIC curves for the
“diagonal” combination of both decorrelated autoencoders,
compared with that of a single autoencoder (obviously trained
without any decorrelation). In both panels, the SIC curves
are cut off at lower true positive rates due to low background
yields.

tween the background predicted using the ABCD method
(Eq. 3) and the real number of background events in the
region of interest. The ratio between the two quanti-
ties is shown in Fig. 2. Multiple choices of ~c yielding the
same SM efficiency are tested (represented as multiple en-
tries in Fig. 2) for samples containing only SM processes
(purple) and mixtures of SM and a new physics process.
At lower SM efficiencies, departures from unity (overesti-
mated background [75]) are observed in all mixed samples
while the highest variation for a sample containing only
SM events is 2.5%, compatible the statistical uncertainty
of the sample.

These differences can also be quantified in terms of the
signal significance for each benchmark process by com-
paring the observed and predicted number of background
events from the ABCD method. Given N observations
in the region of interest with predicted number of back-
ground events B, the significance is defined as N−B√

N
if

N − B > 0 and 0 otherwise. With the initial signal
fraction fixed, the total sample significance is around 0.8
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FIG. 2. Closure test of the ABCD estimation method for dif-
ferent SM efficiencies and benchmark scenarios. Different se-
lection combinations yielding the same background efficiency
are shown as independent entries.

prior to the application of the method. As pointed out in
Ref. [75], unaccounted contamination from the signal of
interest in the ABCD sidebands may result in different
significance values when compared to the correct estima-
tion of the background. While this issue can be accounted
when performing model specific exclusion limits, we also
show in Fig. 3 (top) the significance obtained using the
ABCD method with and without correcting the number
of background events. To avoid fine tuning, the thresh-
old applied to each autoencoder reconstruction loss is the
one where both autoencoders have the same SM rejection
efficiency.

In all new physics benchmark scenarios, the uncor-
rected significance for SM efficiencies above 1.5% is lower
than the corrected for SM efficiencies. Nevertheless, all
new physics scenarios show significance between 1 to 4
while the SM only sample has a maximum deviation be-
low 1. We have also probed the stability of the method
by performing five independent trainings with different
random weight initialization. The standard variation of
the average significance was below 6% for all benchmark
scenarios tested.

The additional distance correlation loss leads to in-
creased reconstruction loss in the background training
sample, resulting in decreased performance compared to
a single autoencoder training. This difference is illus-
trated in Fig. 3 (bottom) where the significance is com-
pared with the values obtained from training a single
autoencoder with same network architecture. Since the
ABCD method is only applicable in the double autoen-
coder case, no background estimation method is used
in the comparison. In all cases, the difference in sig-
nificance of the double and single autoencoders is less
than 30%. While the single autoencoder consistently out-
performs the double autoencoder, the lack of dedicated
background estimation might lead to unattainable per-

formances when applied to real particle collisions.

0.01 0.02 0.03 0.04 0.05
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FIG. 3. Signal significance for each benchmark scenario (top)
when the ABCD method is used to predict the background
level (solid lines) compared to the real significance value
(dashed lines). In the bottom panel, the comparison of the
significance between a single autoencoder (dashed lines) and
the double autoencoder (solid lines) is shown. In this case,
no background estimation method is used.

IV. ANOMALY DETECTION ONLINE

The discussion so far has demonstrated that the decor-
related autoencoder protocol is an effective tool for
simulation-free, non-resonant anomaly detection. This
section briefly describes how this technique is also online
compatible. We envision that in an actual trigger system,
we would save all events in the signal sensitive region
defined by the two autoencoders and then save a ran-
dom fraction (‘prescale’) of events in the three other re-
gions for offline background estimation (similar to exist-
ing ‘support triggers’ for certain background processes).
The prescale would be set so that the statistical uncer-
tainty on the background prediction is smaller than the
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statistical uncertainty from events in the signal region.
If the SM efficiency in the signal region is ε, the trigger
rate would scale approximately as 4ε, including events
saved from the background-dominated regions. The au-
toencoders themselves could be trained directly on data.
These data could be from a previous run or from earlier in
a given run. We note that this is the first complete online
compatible anomaly detection protocol to be proposed -
previous proposals have used single autoencoders and do
not come with a method for estimating the background.

Moreover, each of our autoencoders is built using only
a set of fully connected layers to allow for a memory and
time efficient implementation. There have been many
recent demonstrations of ultra low-latency implementa-
tions of these and related architectures on Field Program-
able Gate Arrays (FPGAs) [30, 96–101]. For studies
with more computational resources available, the base-
line performance of each autoencoder may be enhanced
using more complex reconstruction strategies, as studied
in [34–36, 102, 103].

The ADC2021 community challenge dataset was used
in part because it was created for the purpose of de-
veloping online methods [31, 86] as summarized by the
challenge title: Unsupervised New Physics detection at 40
MHz. However, there are some features of this dataset
which limit direct connection to online algorithms. For
example, ATLAS and CMS have single lepton triggers
that would likely save all of the challenge events for of-
fline processing. Figure 3 indicates that our decorrelated
autoencoder trigger reduces the bandwidth by nearly two
orders of magnitude. This is not necessarily relevant for
the lepton-triggered data, but it is a common reduction
for dedicated triggers. Another issue is, as we have al-
ready noted above, that the ADC2021 dataset does not
distinguish between “data” and “simulation”; this could
be an issue for machine learning methods, which gener-
ally require a representative sample for the training data.

Expanding the online challenge to other datasets would
be interesting for the future.

V. CONCLUSIONS AND OUTLOOK

We have proposed a first complete online-compatible
unsupervised non-resonant anomaly detection method
that achieves signal sensitivity and can be used to es-
timate the SM background1. Autoencoders, a popular
choice of anomaly detection algorithm, are used to iden-
tify anomalous events through a reconstruction loss. We
advocate for the combination of two or more autoen-
coders that are trained simultaneously while a distance
correlation (DisCo) regularizer term is added to make
their reconstruction losses statistically independent. In
this strategy, the background from SM events can be es-
timated with the ABCD method. In the absence of new
physics, the method shows a good agreement between the
predicted and observed amount of background events. In
the presence of new physics, the signal significance varies
between 1 and 4 for multiple new physics scenarios with
initial contribution amounting to only 0.1% of all events.
Given that our method is architecture agnostic, it can be
readily generalized for other anomaly detection methods
whose output is an anomalous score capable of discerning
new physics scenarios from background events.
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FIG. 4. Significance improvement characteristic for differ-
ent new physics benchmark scenarios. The lower edges of
each bin represents the selection threshold applied for each
autoencoder loss function.

Appendix A: Significance improvement
characteristic for different selection thresholds

The studies presented in this work use the “diagonal”
cut as the representative selection for the combined per-
formance. Different choices, leading to different results,
can be used when a particular new physics scenario is un-
der study. To exemplify this difference, we show in Fig. 4
the SIC curve for different selections applied to the recon-
struction loss of each autoencoder. While a symmetric
selection results in maximum SIC values for all bench-
marks, the exact threshold resulting in maximum SIC is
different for each benchmark scenario.
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