
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Contact-Aware Learning in Robotic Grasping, Manipulation and Sensing

Permalink
https://escholarship.org/uc/item/2z77k26t

Author
Zhu, Xinghao

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2z77k26t
https://escholarship.org
http://www.cdlib.org/

Contact-Aware Learning in Robotic Grasping, Manipulation and Sensing

By

Xinghao Zhu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Masayoshi Tomizuka, Chair
Associate Professor Mark W. Mueller

Professor Pieter Abbeel

Spring 2024

Contact-Aware Learning in Robotic Grasping, Manipulation and Sensing

Copyright 2024
By

Xinghao Zhu

1

Abstract

Contact-Aware Learning in Robotic Grasping, Manipulation and Sensing

By

Xinghao Zhu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

In an era where robotic manipulators are increasingly sought after for customized production
and household services, this dissertation delves into the development of advanced skills and
dexterity in robot manipulations. It proposes an innovative approach by integrating physical
principles, particularly contact mechanics, into robot learning. This integration aims to
enhance data efficiency and reliability, moving beyond the current paradigm where learning
agents heavily depend on vast data and extensive exploration.

The dissertation unfolds in three aspects of contact-aware robot learning. Firstly, it pio-
neers the development of robust and sample-efficient grasping frameworks. In Chapter 2,
a contrastive grasp planning module is introduced to mitigate the effects of camera noise
and simulation-to-reality gap, thereby improving grasp robustness. Chapter 3 presents the
Maximum Likelihood Grasp Sampling Loss, achieving an eightfold reduction in training sam-
ple requirements compared to existing methods. Additionally, Chapter 4 explores grasping
planning for multi-fingered hands, expanding the versatility of robotic manipulators. The
second aspect delves into the integration of contact planning into a spectrum of manipula-
tion tasks. Chapter 5 proposes contact-aware learning from demonstrations. This approach
allows robots to assimilate skills by observing human demonstrations, effectively acceler-
ating robotic skill acquisition. Chapter 6 explores the concept of safe contact in robotic
operations, investigating strategies that permit contact with obstacles while ensuring safety.
In Chapter 7, an intelligent robotic assembly framework is introduced, featuring multi-level
reasoning that combines sequence reasoning transformers and meticulous planning of con-
tact points. The third aspect focuses on the sensing of contact through vision-based tactile
sensors, as discussed in Chapter 8. This chapter presents a method for reconstructing con-
tact profiles from image imprints captured by these sensors, providing a crucial feedback
mechanism during manipulation tasks.

Collectively, these contributions present a suite of novel grasping, manipulation, and assem-
bly strategies. They are designed to reduce reliance on hand-engineering, thereby improving

2

the efficiency and stability of robotic systems in diverse applications. This comprehensive
body of work demonstrates the feasibility and benefits of integrating contact into robot learn-
ing. The effectiveness and practical applicability of these methods are rigorously validated
through a series of simulations and real-world experiments involving various manipulators
and hands.

i

To My Family and Friends

ii

Contents

Contents ii

List of Figures iv

List of Tables x

1 Introduction 1
1.1 Background and Motivations . 1
1.2 Dissertation Outlines and Contributions . 3

I Contact Planning 7

2 Robust Grasp Planning with Contrastive Representation Learning 8
2.1 Introduction . 8
2.2 6-DoF Contrastive Grasp Proposal Network 9
2.3 Experiment . 15
2.4 Chapter Summary . 18

3 Sample-Efficient Grasp Learning by Maximum Likelihood Sampling 20
3.1 Introduction . 20
3.2 Grasp Planning with Maximum Likelihood Grasp Sampling Loss 21
3.3 Training Experiments . 26
3.4 Real-World Experiments . 32
3.5 Chapter Summary . 34

4 Grasp Planning for Multi-Fingered Hands 35
4.1 Introduction . 35
4.2 Grasp Planning using Point Cloud . 37
4.3 Training Experiments . 42
4.4 Real-World Experiments . 45
4.5 Chapter Summary . 48

iii

II Contact-Aware Manipulation 49

5 Robot Dexterous Manipulation by Model-Based Learning from Demon-
strations 50
5.1 Introduction . 50
5.2 Diff-LfD: Contact-aware Model-based Learning from Visual Demonstration . 51
5.3 Pose and Shape Estimation with Differentiable SDF 51
5.4 Contact-Aware Manipulation Policy . 54
5.5 Experiments . 58
5.6 Chapter Summary . 65

6 Manipulation with Safe-Contact by Null Space Impedance Control 67
6.1 Introduction . 67
6.2 Contact-Allowed Robotic Goal-Reaching . 69
6.3 Experiments . 74
6.4 Chapter Summary . 77

7 Contact-Aware Robotic Assembly Planning 79
7.1 Introduction . 79
7.2 Assembly Planning . 81
7.3 Experiments . 87
7.4 Chapter Summary . 91

III Contact Sensing 92

8 Contact Synthesize for Tactile Sensors by Graph Neural Network 93
8.1 Introduction . 93
8.2 Learning to Synthesize Volumetric Meshes 95
8.3 Experiments . 99
8.4 Chapter Summary . 105

9 Conclusions and Further Works 106
9.1 Conclusions . 106
9.2 Further Works . 107

Bibliography 109

iv

List of Figures

1.1 Hierarchies of control policies. Left: end-to-end robot manipulation. Middle:
object-centric robot manipulation. Right: contact-aware robot manipulation. . . 2

1.2 Structure of the dissertation. 3

2.1 Grasp Representation (x, y, θ, γ, z, β). The planar pose (x, y, θ) in (a) represents
the center position and orientation of the projected bounding box on the camera
plane. The bounding box’s width w and height h are used in training but not in
representing grasps. The other 3 grasp parameters are shown in (b): tilt angle γ
is the rotation among axis ω, z is the depth of grasp, and gripper angle β is the
rotation among the grasp axis φ. 9

2.2 CGPN Architecture. The 6-DoF contrastive grasp proposal network (CGPN)
is trained offline to infer grasps from depth images using a dataset of synthetic
images and grasps. When an object is presented to the robot, a stereo camera
captures a depth image; CGPN could rapidly generate 6-DoF robust collision-free
grasps, which is executed with the Fanuc robot. 10

2.3 CGPN Network Architecture. During the training, a synthetic depth image of the
object is fed into the network. First, two separate data augmentation operators
t, t′ are applied to the segmented depth image to obtain xq, xk, which are then
input to the contrastive encoders. Second, extracted feature maps q, k are parsed
to the rotated region proposal network (RRPN) to generate grasp regions. Third,
a rotated region pooling (RRPooling) module extracts feature vectors from the
feature map q using the generated grasp regions. Finally, a grasp refinement
network (GRN) infers the tilt angle γ and the depth z using the local feature
vectors. A collision refinement is further added to search the rotation angle β. . 11

2.4 Illustrations of the available data augmentation operators in T . Each augmenta-
tion can transform the original input with some internal parameters (e.g. rotation
degree, flip axis). We use a combination of the first four operations and the sim-
to-real process as a complete augmentation for a single image. 12

2.5 Dataset Samples. This figure shows 12 samples from the generated grasp dataset.
3D grasps are projected to the image plane (red rectangles). The tilt angle γ and
the distance z are neglected in the plot for simplicity. 16

2.6 (1-6) shows a sequence of proposed grasps in a cluttered scene. 16

v

2.7 Two failure modes of CGPN. (a) shows the unmodeled sim-to-real gap on the
object’s surface, and (b) shows the limitation of the depth image in representing
6-DoF grasps. 16

2.8 (1-12) The grasp planning and execution results on 12 objects with a single depth
image. For each column, the top two rows show perceived RGB and depth images
with planned grasps, the third row shows physical grasps reaching the target
grasp, and the bottom row shows the execution results. The tilt angle γ and the
distance z are neglected in the plot for simplicity. 19

3.1 Grasp planning and execution pipeline. When an object is presented in the
workspace, a stereo camera captures a depth image; a trained generative model
fθ(·) rapidly computes grasp configuration maps Qθ, Wθ, and Φθ. The best
grasp is generated based on configuration maps and executed with the robot
manipulator. The grasp model is trained offline with empirical datasets and
proposed maximum likelihood grasp sampling loss. 21

3.2 Grasp Representation g = (p, ϕ, w). The planar pose (p, ϕ, w) in (a) represents
the grasp’s centre position, orientation, and width in the image plane. Grasp g in
(a) has quality q = 1 since it is labeled success. g is executed perpendicular to the
image plane at point pworld in the Cartesian frame, as shown in (b), where pworld

is p in the world frame. The gripper moves ϵ cm below pworld in the direction of
the camera’s z-axis, shown by the blue arrow. 22

3.3 Dataset sample. (a) shows the input depth image I with k = 3 success grasp
labels (red). (b-d) show transferred grasp configuration maps Qlabel,Φlabel,Wlabel

respectively. Each colored pixel represents a successful grasp label glabel,i with
different colors for different values, while white pixels mean there is no label that
exists. Note that scarce labels exist in this sample, referring to sparse label maps. 23

3.4 Comparing the Top-1 prediction success rate of MLGSL with baseline methods.
Models are trained with densely-labeled datasets (16 labels per image). 28

3.5 Predicted grasp distributions with variant models. Predicted grasp qualities are
painted as heatmaps with color listed in the right sidebar. Detected grasps are
labeled with red lines in each image. (First row) input depth images, (Left)
results from models trained with MLGSL, (Right) results from models trained
with ImgMSE, (Second row) results from datasets consisting of 16 labels per
image and 10k data, (Third row) results from datasets consisting of 2 labels per
image and 10k data, (Bottom) results from datasets consisting of 16 labels per
image and 1k data. 29

3.6 Comparing the Top-1 prediction success rate of MLGSL to ImgMSE with different
numbers of labels (n label). Success grasp labels are down-sampled to [2, 4] for
each training data. Solid lines indicate models’ performance trained with MLGSL,
and dashed lines indicate that they trained with ImgMSE. 30

3.7 Comparing the Top-1 prediction success rate of MLGSL to ImgMSE with fewer
training samples (1k data). 31

vi

3.8 Comparing the Top-1 prediction success rate of FCN with MLGSL and different
attention module integration. 32

3.9 (a) shows experimental setups. Our robot operates over a workspace observed by
a statically mounted stereo camera. (b) shows objects used for single/cluttered
grasping experiments. 33

3.10 Two failure cases. (a) shows the object slippage when the robot grasps curved
parts, and (b) shows models mistakenly generate grasps toward deformable thin
covers. 34

4.1 MF-GPD Architecture. Given the objects’ single-view point cloud, the cross-
entropy sampler generates candidates among the object surface. Candidates are
assessed with the evaluation model, which takes in the point cloud representation
of the grasp. A local grasp optimization is introduced to avoid collisions in com-
plex environments and minimize the grasp quality loss. MF-GPD could rapidly
determine the robust grasp candidates, which is executed with a close-and-clamp
strategy using the BarrettHand. 36

4.2 (a) shows the definition of a grasp g, (b) shows the combined point cloud repre-
sentation oinput of the same grasp. 38

4.3 The architecture of the grasp evaluation network based on PointNet++ [96].
Given sampled grasps and the point cloud, the grasp is represented by the com-
bined point cloud. Point normal directions and binary gripper-object masks are
estimated as extra features. After three set-abstraction layers, the global feature
vector is classified with three fully-connected layers (MLP). 39

4.4 Given a grasp (i.e., R, t, θspread), (a) shows fingers’ configuration at the exact
contact (i.e., {θfi} at contact), (b) shows the zero-finger-joint contact (i.e., set
{θfi} = 0), and (c) shows the random-finger-joint contact (i.e., randomly sample
{θfi}). 40

4.5 (a,b) shows the learning curves and the ROC curves for baseline comparisons. . 43
4.6 (a,b) shows the learning curves and the ROC curves for additional features. . . . 44
4.7 (1-11) The grasp planning and execution results on 11 objects with single-view

point clouds. For each column, (Top) shows the perceived point cloud and planned
grasps, (Middle) shows physical grasps reaching the target grasp, and (Bottom)
shows the execution results. 45

4.8 (a,b) shows the learning curves and the ROC curves for different finger contact
phases. 45

4.9 Two failure modes of MF-GPD. (a) shows the object slippage due to lack of
contact detection with incomplete point clouds, and (b) shows the net object
movement when unbalanced forces are applied. 47

4.10 (a-j) show a sequence of detected multi-fingered grasps in a cluttered scene. . . . 47

vii

5.1 The proposed model-based learning from demonstration (LfD) pipeline can be di-
vided into two primary components. The top part focuses on object shape recon-
struction and pose estimation, employing differentiable mesh rendering and signed
distance function (SDF). The bottom part illustrates the process of contact-aware
hierarchical manipulation planning involving contact point localization and dif-
ferentiable wrench optimization. 52

5.2 Contact points inference in the 2D case with n = 2 contact points. (a) Given
object current and target poses Pt,Pt+1, the desired object wrenchW is computed
to produce the transformation. (b) Enumerate all contact points combinations
{pi} (red dots) to find those that can produce the target wrench by applying
contact wrenches {Wpi} (red arrows) within the friction cone (black dashes). The
contact wrenches {Wpi} are equivalently transferred to the object coordinate as
Ŵ to compare with the desired object wrench W 55

5.3 Experimental results from sth-sth (1st & 2nd rows) and in-hand object manipu-
lation (3rd & 4th rows). 60

5.4 Allegro Hand performs in-hand object manipulations. 62
5.5 (a-e) display a trial of a robotic hand rotating a ball. The rotation of the object can be identified

by the position of the logo. The red circles in images (b) and (c) show the change in contact

points. 64

6.1 (a) The robot finds a long and unnatural trajectory to reach the goal (blue),
avoiding the obstacle (green). (b) The goal-reaching robot fails to find a collision-
free trajectory; the red circle indicates collision with the obstacle. By allowing safe
contact, the robot reaches the goal more efficiently (c-e) and finds a trajectory
in the highly collisional scenario (f-h). 68

6.2 The planning loop takes in state s and optimizes reference signals (i.e., operational
space references ∆x and null space references ∆q) for the robot controller, which
generates joint torques τ as actuation commands. 69

6.3 Goal-reaching task environments of different collision complexity levels. The tar-
get is blue, and the obstacles are green. (a) Free space, (b) ball obstacle, (c) wall
obstacle, (d) real-world ball obstacle, and (e) real-world wall obstacle. 73

6.4 Execution trajectories in simulated ball environments. (a-c, e-g) show two tra-
jectories generated by our method, (d, h) show the collision-free trajectories with
the same environmental settings. 75

6.5 Example contact force profile when reaching a goal in the wall environment.
Pictures correspond to the robot configuration induced by our method at time
stamps marked by dotted vertical lines; (a, b) the robot tracks trajectories to
push obstacles in a compliant manner and adjusts its joint configuration in the
null space; (c) the robot reaches the goal while maintaining a minimum contact
force. Compared to the ablations, our method, which controls both operational
and null spaces, results in lower overall contact forces. 76

viii

7.1 Our goal is to facilitate robotic assembly across different target blueprints. Utiliz-
ing point clouds from target blueprints and assembly parts, our method identifies
feasible assembly sequences (indicated by colored numbers), orchestrates part mo-
tions (represented by colored long arrows), and pinpoints contact points (denoted
by short green arrows). 80

7.2 Sequence inference pipeline and PAST architecture. (Top) PAST operates se-
quentially to estimate the assembly probability P(Mi) for each remaining part.
The part with the highest probability is chosen for assembly. (Bottom) Using the
third block as an example, PAST selects one part for assembly from the three
remaining options. PAST also performs pose regression for each part p̂ as an
auxiliary task. 83

7.3 Example assembly sequences in our dataset. For each target blueprint, we enu-
merate all feasible assembly sequences and present one representative sequence
here. The color coding and the numbers beside each part signify the assembly
sequence, as indicated by the color bar. 86

7.4 Assembly planning results (a-f). In each step, the part colored blue indicates the
one in motion, while the yellow parts signify those that are stationary. In (c, d,
e), the dual green spheres denote feasible grasp points. In (f), a solitary green
sphere highlights the designated pushing point. 89

7.5 Sensitivity analysis for sequence inference accuracy and auxiliary pose regression
error. 90

8.1 (a) the GelSlim visual-tactile sensor, (b) the construction of the sensor, with the
elastomer (1), the transparent lens (2), the lights (3), and the camera (4). (c)
a depth image observation obtained from the sensor, and (d) the corresponding
reconstructed volumetric mesh with our method. The red rectangle denotes the
camera’s view range, and the color represents the displacement level. 94

8.2 Training structure. The image-to-mesh projection network is optimized with pre-
trained autoencoders. The self-supervised adaptation transfers the projection
network to various domains with a differentiable render. 96

8.3 Left : Primitive indenters in simulation. Right : Novel contact objects in the real
world. 98

8.4 Data samples. Top: Raw synthetic depth observations, corresponding ground-
truth meshes, and augmented synthetic depth observations. Bottom: Real-world
depth observations for sample indenters. 99

8.5 Image-to-mesh projection results with synthetic data. First row : Input depth
observations. Second row : Corresponding ground-truth mesh. Third row : Re-
constructed volumetric mesh with our approach. 101

8.6 Reconstruction results for the image VAE with real-world images. First row :
Real-world image observations. Second row : Reconstructed image with pre-
trained VAE. The image VAE can effectively remove visual noises for both prim-
itive and novel contacts. 102

ix

8.7 Experiments with real-world primitive contact objects. First row : Input depth
observations. Second row : Reconstructed volumetric meshes. Third row : Ren-
dered depth images from reconstructed meshes. 103

8.8 Experiments with real-world novel contact objects. First row : Input depth ob-
servations. Second row : Reconstructed volumetric mesh from the network. . . . 104

8.9 First row : Reconstructed meshes and estimated contact forces with the proposed
approach, Volumetric Mesh. Second row : Comparison with baseline method,
Surface Mesh [115]. 105

x

List of Tables

2.1 Performance analysis of the CGPN and baselines on single object grasping tasks. 17

3.1 Training performance of MLGSL and baselines (Mean %) 28
3.2 Training performance of MLGSL with single and cluttered datasets (Mean %) . 31
3.3 Real-World performance of MLGSL and Baselines 33

4.1 Performance analysis of MF-GPD and baselines on single object grasping tasks. 46
4.2 Performance analysis of MF-GPD and baselines on cluttered objects removing

tasks. 48

5.1 Baseline comparisons on LfD framework. Each cell represents the success rate of
the manipulation. 60

5.2 Baseline comparisons on contact-aware manipulation policy. The first element in
each cell is the mean/variance for the computation time (s); the second is the
difference between the target and final object rotation (◦). 61

5.3 Shape Reconstruction and Pose Estimation Error. CD represents Chamfer Distance 62
5.4 Computation time (s) on the in-hand manipulation task with a rotation target

of 180◦. Ablation on the contact force optimization methods. 63
5.5 Error between the target and final object rotation angle (◦) on the in-hand ma-

nipulation task with a target of 180◦. Ablation on whether to include the global
planning (GP) module and random contact transition (RCT) module. 64

5.6 Error between the target and final object rotation (◦) angle under variant noises.The
manipulation trajectory is generated by the closed-loop policy trained to rotate
objects. 64

6.1 Comparison of trajectory efficiency and safety metrics in simulated and real-world
environments. In each cell, the first element is the task execution time (s); the
second is the maximum contact force on the robot body in simulation (N) or the
maximum computed external torque on robot joints in the real-world (Nm). . . 74

7.1 Quantitative results on assembly sequence inference. We report three metrics:
one-step prediction accuracy (1-Acc), full sequence prediction accuracy (Seq-Acc),
and the computation time (CT). 88

xi

8.1 Experiments with synthetic data pairs. The root-mean-square error (RMSE, in
cm) is measured between the ground-truth vertex positions M and predicted
vertex positions M̂. The results with different dimensions of latent space. . . . 100

8.2 Experiments with synthetic data pairs. The results with different loss weights. 100
8.3 Experiments with real-world data. The root-mean-square error (RMSE) is mea-

sured between reconstructed images Ĩ and rendered images Î. Ablation studies
for adaptation, data augmentation, and VAE filtering. 102

8.4 Experiments with real-world data. Domain adaptation results. 103

xii

Acknowledgments

It has been an extraordinary journey spanning five and a half years at Berkeley. This
period has been marked by profound learning, discovery, and the privilege of encountering
remarkable individuals.

Foremost, I extend my deepest and most sincere gratitude to my advisor, Prof. Masayoshi
Tomizuka. His exceptional professionalism and dedication as a scholar, coupled with his
enthusiasm and patience as a mentor, have been pivotal in my academic journey. Prof.
Tomizuka’s humour and optimism have been beacons during challenging times, while his
unwavering support and trust have empowered me to venture into uncharted territories and
persevere through setbacks. The completion of this dissertation owes a great deal to his
consistent support and encouragement.

I am also profoundly grateful to my dissertation and qualifying committee members:
Prof. Mark Mueller, Prof. Pieter Abbeel, Prof. Kameshwar Poolla, Prof. Somayeh Sojoudi,
and Prof. Anil Aswani. Their insightful counsel and invaluable guidance have significantly
shaped the direction of my research and the fruition of this dissertation.

My heartfelt thanks are extended to the FANUC Corporation for their generous funding
of my research. The engaging and insightful discussions with the researchers at the FANUC
Advanced Research Laboratory, particularly Mr. Tetsuaki Katou, Mr. Kaimeng Wang,
Dr. Yongxiang Fan, Dr. Te Tang, Dr. Yu Zhao, and Dr. Hsien-chung Lin, have been
instrumental throughout these years.

The opportunity to spend enriching summers at Google X and Mitsubishi Electric Re-
search Laboratories (MERL) is also deeply appreciated. Collaborating with Dr. Bodi Yuan
and Prof. Wenzhao Lian at Google X was enlightening; their visionary perspectives and
passion for innovation have left an indelible mark on me. Similarly, working alongside Dr.
Jeroen van Baar, Dr. Siddarth Jain, Dr. Anoop Cherian, Dr. Devesh K. Jha, and Dr.
Diego Romeres at MERL was an extraordinary experience, thanks to their sharp intellect
and warm camaraderie.

I extend a special acknowledgment to my collaborators for their invaluable contributions
and thought-provoking discussions. Profound appreciation goes to Prof. Jianyu Chen, Prof.
Lin Shao, Prof. Wenzhao Lian, Prof. Cewu Lu, Dr. Yongxiang Fan, Dr. Te Tang, Dr. Bodi
Yuan, Dr. Daniel Freeman, Dr. Shiyu Jin, Dr. Changhao Wang, Dr. Chen Tang, Dr. Jeroen
van Baar, Dr. Siddarth Jain, Dr. Anoop Cherian, Dr. Devesh K. Jha, Dr. Diego Romeres,
Lingfeng Sun, Mingyu Ding, Ran Tian, Chengfeng Xu, Chenran Li, Xiang Zhang, Yefan
Zhou, Jinghan Ke, Zhixuan Xu, Zhixin Sun, Bizhe Bai, Jun Lv, Qingtao Liu, Yuwei Zeng,
Qi Ye, and Wu-Te Yang. Their insights have substantially enriched my research experience.

My time as a member of the Mechanical Systems Control (MSC) laboratory over the past
five years has been invaluable. I am grateful for the advice and support from both former
and current members of the group, including Prof. Changliu Liu, Dr. Daisuke Kaneishi, Dr.
Wei Zhan, Dr. Zining Wang, Dr. Kiwoo Shin, Prof. Jiachen Li, Dr. Yeping Hu, Dr. Zhuo
Xu, Dr. Yujiao Cheng, Dr. Saman Fahandezhsaadi, Dr. Jessica Leu, Dr. Yiyang Zhou,
Dr. Huidong Gao, Dr. Hengbo Ma, Jining Li, Catherine Weaver, Akio Kodaira, Qiyang

xiii

Qian, Jen-Wei Wang, Yichen Xie, Wei-Jer Chang, Keita Kobashi, Yiheng Li, Yuxin Chen,
Boyuan Liang, Yixiao Wang, Chensheng Peng, Shuqi Zhao, Yutaka Shimizu, Mingrui Yu,
and Mingxiao Huo. Their collective support has been a cornerstone of my academic pursuit.

I would also like to express my heartfelt appreciation to all the friends and colleagues I en-
countered at Berkeley, Google, and MERL. The moments shared have been both memorable
and enjoyable, contributing significantly to my personal and professional growth.

Lastly, but most importantly, my deepest gratitude is reserved for my parents, Mr.
Zhongzhi Huang and Mrs. Huilan Zhu, and my beloved girlfriend, Yiling Fang. Your un-
wavering presence, whether in times of triumph or adversity, has been my greatest source
of strength and inspiration. It is your unconditional love and support that have been the
bedrock of my accomplishments.

1

Chapter 1

Introduction

1.1 Background and Motivations

Robotic manipulators, a cornerstone in the automation industry for decades, have been tradi-
tionally deployed in mass production environments, excelling in tasks like painting, welding,
and machining due to their reliability and efficiency. These manipulators, however, face
significant challenges in the emerging domains of customized production and household ser-
vices. The inherent unpredictability and diversity of these unstructured environments render
traditional, hand-engineered systems inadequate. Moreover, the demand for manipulators
capable of performing multifaceted tasks, including unforeseen ones, necessitates a broader
and more adaptable skill set.

Amidst these challenges, the field of robot learning has gained prominence, aiming to
endow robots with a versatile array of skills that are both efficient and robust. The core of
robot learning revolves around developing control policies – essentially, skills that enable a
robot to execute appropriate actions based on observed system states to fulfill specific tasks.

There are multiple hierarchies to develop control policies, as shown in Fig. 1.1. Some
researchers advocate for end-to-end learning to deduce direct control signals. However, this
black-box approach often compromises reliability due to reduced system transparency and
interoperability. Alternatively, object-centric planning methods prioritize generating object
motions and subsequent robot controls in a sequential manner, simplifying the planning pro-
cess and circumventing the need for robot-specific datasets. While these strategies, typically
leveraging neural networks, have shown promise in handling complex tasks, they are often
data-intensive and necessitate extensive exploration to tackle out-of-distribution scenarios.

In contrast, physics-inspired methodologies, grounded in long-established theorems, offer
structured knowledge and explanations of system dynamics, prioritizing stability and safety.
These mathematically derived controllers, however, struggle with high-dimensional problems
due to the curse of dimensionality, often resulting in inefficiency.

This dissertation posits that integrating physics-inspired concepts with data-driven con-
trol policies represents a promising avenue for enhancing data efficiency in robotics. It

CHAPTER 1. INTRODUCTION 2

Robot Controls

Sensors

Object Motions

Contacts

Robot Controls

Sensors

Object Motions

Robot Controls

Sensors

Figure 1.1: Hierarchies of control policies. Left: end-to-end robot manipulation. Middle:
object-centric robot manipulation. Right: contact-aware robot manipulation.

focuses on incorporating contact models in robot manipulation learning. This approach
eschews direct planning of atomic control signals from raw sensor data or predetermined ob-
ject motions. Instead, it introduces a contact-aware methodology, incorporating additional
contact planning for more nuanced control, as shown in Fig. 1.1.

Consider the task of in-hand object reorientation: The multi-fingered robotic hand must
rotate the object, creating continuous yaw motions. The contact planning involves identifying
feasible contact points on the object’s surface and enabling the robot to apply contact forces
for rotation. The robot then computes joint torque commands to reach these contact points
and exert the necessary forces for object reorientation.

This contact-aware approach, distinct from other methods, seamlessly integrates analyt-
ical contact models into control policies. The inference of object motions remains consistent
across various actuators and can be learned from extensive human demonstrations, such
as those available on YouTube. The contact points and forces are efficiently determined
from desired object motions through contact planning, exemplified by force closure grasps in
robotic bin-picking or finger gaits for in-hand manipulation. The execution of these contacts
leverages established algorithms in motion planning and optimal control.

Moreover, this dissertation acknowledges the crucial role of contact sensing in manipula-
tion. Despite the prevalent use of force-torque sensors, recent advancements in vision-based
tactile sensors offer heightened resolution and sensitivity, crucial for discerning subtle con-
tact differences and shear forces. This research explores the synthesis of contact profiles from
such sensors, enhancing feedback accuracy in contact-aware manipulations.

CHAPTER 1. INTRODUCTION 3

Chapter 2
Grasp Planning for

Multi-Fingered Hands

Chapter 3
Contrastive Grasp

Planning

Chapter 4
Sample-Efficient Grasp

Learning

Chapter 5
Dexterous

Manipulation

Chapter 6
Manipulation w/

Safe-Contact

Chapter 7
Assembly Planning

Chapter 8
Contact Synthesize for Vision-based Tactile Sensors

Part 1
Contact Planning

Part 2
Contact-Aware
Manipulation

Part 3
Contact Sensing

Figure 1.2: Structure of the dissertation.

1.2 Dissertation Outlines and Contributions

In general, the objective of this dissertation is to incorporate contact modeling in learn-
ing robot manipulations. Contact planning is first discussed and explored from Chapter 2
to Chapter 3, indicating the reasoning from object motions to contacts. Various scenar-
ios of contact-aware manipulations are demonstrated from Chapter 5 to Chapter 7 with
experiments on different manipulators and end-effectors. Contact sensing is illustrated in
Chapter 8. Figure 1.2 shows the structure overview of the dissertation. The chapter outline
is as follows.

Robust Grasp Planning with Contrastive Representation Learning

While the existing grasp planning algorithm demonstrates proficiency with high-quality ob-
servations, its performance is notably compromised under noisy visual observations. Such
conditions are frequently encountered due to factors like robot vibration and camera miscal-
ibration. To address this limitation, Chapter 2 introduces a novel contrastive grasp proposal
network specifically designed to enhance the robustness of the grasp planner in the face of vi-
sual noise. This grasp planer is trained using a synthetic grasp dataset, employing contrastive
learning techniques. A key feature of this training process is the deliberate augmentation
of each dataset sample to replicate real-world camera noise and extract noise-invariant fea-
tures. The result is a network capable of reliably identifying 6D collision-free grasps from a

CHAPTER 1. INTRODUCTION 4

single-view depth image. Rigorous experiments conducted with a physical robot validate its
effectiveness, underscoring its potential to improve grasp planning reliability in real-world
scenarios where visual noise is an unavoidable challenge. This research was published in [138].

Sample-Efficient Grasp Learning by Maximum Likelihood
Sampling

The training of grasp planning networks, as explored in Chapters 2, typically demands a
substantial volume of data, encompassing scene images and annotations of successful grasps.
While simulation-based synthetic data is commonly employed in many studies, the intricate
constraints of industrial bin-picking scenarios, such as specific grasp locations and workpiece-
picking sequences, necessitate the involvement of human operators for annotating real-world
successes. This requirement presents a significant challenge for efficient learning with min-
imal reliance on human-labeled data. Chapter 3 addresses this challenge by introducing
a novel maximum likelihood grasp sampling loss. This method postulates that successful
grasps can be viewed as samples drawn from a predicted grasp distribution. The primary
objective is to maximize the likelihood of observing these successful grasps. Empirical results
validate the efficacy of this method, demonstrating an 8-fold reduction in the need for train-
ing samples compared to existing approaches. Furthermore, the practical applicability of this
methodology is confirmed through physical robot experiments, which yield a 90.7% success
rate in grasp execution on household objects. This research has been published in [142].

Grasp Planning for Multi-Fingered Hands

The multi-fingered robotic hand, with its applications spanning industrial manufacturing and
household services, presents a unique blend of opportunities and challenges. Its human-like
morphology enables seamless integration into environments and tasks originally designed for
human hands, including the use of conventional tools. However, this anthropomorphic design
also introduces complexities in decision-making and control, attributed to its high degree of
freedom. In addressing these complexities, Chapter 4 introduces an innovative grasp pose
detection algorithm tailored for multi-fingered robotic hands. The algorithm takes a single-
view point cloud of the scene as input, generates grasp candidates, and assesses them with an
evaluation model. The top-ranked candidates undergo a local refinement process, enhancing
their practicality by mitigating collision risks and bolstering robustness. The effectiveness
of this approach is rigorously validated through extensive experiments utilizing the three-
fingered Barrett Hand.

CHAPTER 1. INTRODUCTION 5

Robot Dexterous Manipulation by Model-Based Learning from
Demonstrations

Chapters 2 to 4 advance the field of robotic manipulation by developing sophisticated grasp-
ing algorithms for both parallel jaw grippers and multi-fingered hands, focusing primarily
on enhancing kinematic dexterity. However, the scope of broad-scale robotic manipulation
extends beyond grasping to encompass post-grasp skills. In order to obtain extensive manip-
ulation skills efficiently, Chapter 5 introduces an innovative Learning from Demonstration
(LfD) framework. This framework enables robots to acquire manipulation skills by observ-
ing human-performed actions in videos, thereby circumventing the need for labor-intensive
reward design. The proposed LfD framework is underpinned by two pivotal components.
The first is a self-supervised pose and shape estimation module that employs differentiable
rendering techniques. The second component involves the generation of contact sequences,
achieved through an iterative optimization process that uses differentiable simulation to re-
fine contact points and forces. Empirical experiments show the remarkable capability of the
LfD framework, object tracking, and contact sequence inference. Notably, the framework
maintains its performance even in environments with significant noise, underscoring its prac-
tical applicability in real-world scenarios. This research was published in [140] as an oral
presentation.

Manipulation with Safe-Contact by Null Space Impedance Control

While Chapter 5 and preceding efforts have made significant strides in developing manip-
ulation planning algorithms, they predominantly operate under the paradigm of avoiding
contact between robot arms and their environment. This approach, however, diverges from
the intricacies of human manipulation, where contact with obstacles is not only common
but often strategically utilized. Chapter 6 marks a paradigm shift in this domain, delving
into the potential benefits of incorporating safe contact within robotic manipulation. This
chapter introduces an approach that advocates for the generation and tracking of compliance
reference signals in the operational and null spaces of the robot. This dual-space considera-
tion is pivotal for enhancing the safety and efficiency of robotic manipulation in contact-rich
environments. To optimize trajectories where collisions are permitted, the research proposes
a hybrid solver, combining the strengths of sampling- and gradient-based methods. The
practical effectiveness of this method is evaluated through a series of goal-reaching tasks set
in five distinct environments, both simulated and real-world, each presenting different colli-
sional challenges. The results from these evaluations demonstrate that enabling safe contact
not only improves the efficiency of goal-reaching tasks but also provides viable solutions in
scenarios heavily constrained by collisions. Furthermore, the inclusion of null space planning
alongside operational space planning emerges as a key factor in enhancing the safety of the
generated trajectories. The findings of this study can be found in [139].

CHAPTER 1. INTRODUCTION 6

Contact-Aware Robotic Assembly Planning

Beyond the primitive manipulation tasks explored in previous chapters, Chapter 7 addresses
the complex and industrially significant challenge of automating the assembly process of
objects from their individual components. This task, with its vast applications in manu-
facturing, maintenance, and recycling, requires a nuanced approach that goes beyond the
scope of existing research, which predominantly focuses on target segmentation, pose regres-
sion, or the utilization of fixed target blueprints. This chapter presents a holistic multi-level
framework that integrates part assembly sequence inference with advanced part motion plan-
ning and robot contact optimization techniques developed in Chapters 6 and 5, respectively.
Central to this framework is the introduction of the Part Assembly Sequence Transformer
(PAST), an innovative sequence-to-sequence neural network designed to recursively infer as-
sembly sequences from a given target blueprint. Following sequence inference, the framework
employs a motion planner and contact optimization algorithms to generate the movements
and contacts necessary for assembling the parts. To facilitate the training of PAST, Chap-
ter 7 introduces D4PAS, a large-scale Dataset for Part Assembly Sequences. This dataset
is unique in its provision of physically valid assembly sequences for a variety of industrial
objects. Empirical evaluations of the proposed framework underscore its enhanced general-
ization capabilities and reduced computational burden compared to previous works. This
research has been published in [144].

Contact Synthesize for Tactile Sensors by Graph Neural Network

In the progression from Chapter 5 to Chapter 7, where contact planning plays a pivotal role
in robotic manipulations, Chapter 8 introduces an innovative approach to contact synthesis
using vision-based tactile sensors. These sensors, characterized by a deformable elastomer
and an overhead camera, provide high-resolution visual observations of contact events. A
critical advancement in utilizing these sensors is the accurate reconstruction of volumetric
meshes corresponding to the elastomer’s deformation, which offers direct contact information
crucial for subsequent manipulation tasks. Chapter 8 is dedicated to the development of a
method for synthesizing these volumetric meshes from the sensor’s image imprints. This
process involves collecting synthetic image-mesh pairs generated using 3D finite element
methods (FEM) alongside real-world images captured from physical sensors. To learn the
complex image-to-mesh mappings, the chapter introduces graph neural networks (GNN)
trained through supervised learning using synthetic and real-world data. Recognizing the
challenges in transferring theoretical models to practical applications, the chapter proposes
a self-supervised adaptation method and image augmentation techniques. These strategies
are essential for adapting the network from simulated to real-world settings, enabling it to
handle a diverse range of contact scenarios and different sensor types. The findings of this
study appear in [143].

7

Part I

Contact Planning

8

Chapter 2

Robust Grasp Planning with
Contrastive Representation Learning

2.1 Introduction

Robotic grasping in unstructured environments can benefit applications in manufacturing,
retail, service, and warehousing. Grasping unseen objects is, however, highly challenging due
to the limitations in perceptions. When objects are cluttered in a bin, the exact geometry
and position of objects are obscured. Sensing imprecision and deficiency then leads to poor
grasp planning execution.

Model-based and learning-based methods could be used to plan grasps across a wide
variety of objects. Existing physical grasp analysis techniques, such as grasp quality met-
rics [100], template matching [109], and wrench space analysis [77], can be used to search
for the optimal grasp. These approaches, however, can be less robust in practice due to
perception limitations. Incompletion of the object surface can lead to flawed analysis. An
alternative approach is to plan grasps with supervised deep learning. Current methods show
that it is preferable to learn to grasp quality functions and optimize them at the runtime [68,
67, 75, 76, 91, 26, 29, 27, 57]. Learning intermediary information, such as grasp qualities and
success rate, can improve training efficiency and prediction accuracy. However, the require-
ment of the sampling or optimization makes the algorithm time-consuming. To tackle this,
other methods use end-to-end learning to infer grasp poses from the sensor inputs directly [82,
110]. Nevertheless, these algorithms require larger datasets and elaborate hyperparameter
tuning to reduce the training variance.

Ideally, the grasp planning algorithm generates 6 degrees of freedom (DoF) grasps. Pre-
vious works have proposed models that can detect top-down grasps using depth images [68,
44, 90]. However, the top-down nature of such grasps does not allow robots to pick up
objects from different orientations, which limits its application in cluttered environments.
In this chapter, we propose to use six variables (x, y, θ, γ, z, β) to represent a 6-dimensional
grasp in a depth image, as shown in Fig. 2.1. The planar pose (x, y, θ) in Fig. 2.1(a) is the

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 9

(a) (b)(a)

𝑧
γ

Camera

Gripper

𝜔𝜑

Depth Image

ℎ𝑤

𝜃 𝑥, 𝑦

Figure 2.1: Grasp Representation (x, y, θ, γ, z, β). The planar pose (x, y, θ) in (a) represents
the center position and orientation of the projected bounding box on the camera plane. The
bounding box’s width w and height h are used in training but not in representing grasps.
The other 3 grasp parameters are shown in (b): tilt angle γ is the rotation among axis ω, z
is the depth of grasp, and gripper angle β is the rotation among the grasp axis φ.

center position and orientation of the bounding box in the image plane. The bounding box’s
width w and height h are used in training but not in representing grasps. Three spatial
grasp parameters shown in Fig. 2.1(b) are the tilt angle γ among axis ω, the rotation angle
β among the grasp axis φ, and the depth of the grasp z.

In previous works [68, 67, 75, 76], the strategy to train on synthetic datasets and apply
them to reality has been heavily used. It has been shown that rendered images with numeri-
cally computed grasp qualities can ease the data preparation process. The simulation-to-real
(sim-to-real) gap, however, is still an open problem for grasp planning. Synthetic data have
better resolution and less noise than real images. To tackle this problem, we introduce
contrastive learning with sim-to-real-depth image processing in this chapter. Contrastive
learning aims to extract invariant features from augmented images, which improves the
overall performance of modeling under vision noise.

In this chapter, we propose an end-to-end 6-DoF contrastive grasp proposal network
(CGPN). The general framework is shown in Fig 2.2. When an object is presented in the
scene, a stereo camera captures a depth image; CGPN rapidly generates 6-DoF robust grasps,
which are executed with the Fanuc robot. CGPN is trained with synthetic grasp images with
variant augmentation techniques to bridge the sim-to-real gap.

2.2 6-DoF Contrastive Grasp Proposal Network

General Framework

This section introduces the framework of the 6-DoF contrastive grasp proposal network, as
shown in Fig. 2.3. The input to the whole pipeline is a single-view depth image of the scene.

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 10

Input Depth Image

CGPN

Robust Collision-
Free Grasp

Robust Grasp Dataset
Scene Execution

Figure 2.2: CGPN Architecture. The 6-DoF contrastive grasp proposal network (CGPN)
is trained offline to infer grasps from depth images using a dataset of synthetic images and
grasps. When an object is presented to the robot, a stereo camera captures a depth image;
CGPN could rapidly generate 6-DoF robust collision-free grasps, which is executed with the
Fanuc robot.

Segmentation is first applied to the image to separate objects. The CGPN model generates
grasps for the object using its segmented depth image.

Training phase. During training, the CGPN algorithm works as follows. First, two sep-
arate data augmentation operators t, t′ are sampled from the augmentation family T . Aug-
mentations are applied to the segmented depth image to obtain two correlated views xq, xk

regarded as a positive pair in the contrastive learning module. Similar to [39], the other
inputs in the same batch are viewed as negative samples. Second, the positive and negative
samples are fed into the contrastive encoder. We get query q from xq with query encoder
and keys {ki}N1 from xk and other negative samples with key encoder. The key encoder is a
slowly updated query encoder with no gradient update. Contrastive loss is calculated using
these queries and keys, with more information introduced in the loss section. The purpose
of this module is to maximize the agreement of encoded feature maps q, k. We assume the
encoder can learn invariant representations of the depth images under different augmentation
operations, and the query q is the feature we use for downstream tasks. Third, a rotated
region proposal network (RRPN) is introduced to propose 3-DoF grasp regions based on
the feature map q. The output of RRPN determines 3-DoF grasp (x, y, θ) and a box shape
(w, h). We still need local features to determine other grasp parameters. Fourth, a rotated
region pooling (RRPooling) module extracts feature vectors from the feature map q using
the predicted rotated bounding box from RRPN. These local feature maps contain depth
and other features around the proposed grasp position. Finally, a grasp refinement network
(GRN) is designed to infer the tilt angle γ and the depth z using the local feature vectors.

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 11

GRN

RRPN

Momentum
Encoder Contrastive	Loss

Object	Depth	Image

Grasp

Encoder RRPooling

CR

Figure 2.3: CGPN Network Architecture. During the training, a synthetic depth image
of the object is fed into the network. First, two separate data augmentation operators
t, t′ are applied to the segmented depth image to obtain xq, xk, which are then input to
the contrastive encoders. Second, extracted feature maps q, k are parsed to the rotated
region proposal network (RRPN) to generate grasp regions. Third, a rotated region pooling
(RRPooling) module extracts feature vectors from the feature map q using the generated
grasp regions. Finally, a grasp refinement network (GRN) infers the tilt angle γ and the
depth z using the local feature vectors. A collision refinement is further added to search the
rotation angle β.

This completes a 5-DoF grasp pose together with (x, y, θ). The last DoF β is searched with a
collision refinement (CR) module and thus is neglected in the training process. The training
loss is the weighted combination of contrastive loss, region proposal loss, and grasp refine-
ment loss. After training, we get a query encoder, an RRPN module, and a GRN module
used for online testing.

Testing phase. During the testing phase, we do not need to create positive pairs for the
contrastive modules. Instead, we directly put the input depth image into the query encoder.
The following process is the same as training. The output of the CGPN model is valid grasp
poses for each object. After that, the 5-DoF grasps for each object are projected back to the
original cluttered scene. The last DoF β is determined according to the collision constraints.

Data Augmentation and Contrastive Learning

The instability in real-world grasping is usually brought by occlusion in cluttered scenes,
background noise in the environment, and the sim-to-real gap. To overcome this, we design
multiple data augmentation operations T for the input depth image.

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 12

Original Rotation Flip Dropout Sim-to-Real

Figure 2.4: Illustrations of the available data augmentation operators in T . Each augmen-
tation can transform the original input with some internal parameters (e.g. rotation degree,
flip axis). We use a combination of the first four operations and the sim-to-real process as a
complete augmentation for a single image.

Spatial/geometric transformation. Spatial operations include rotation, flip, and dropout
on the original synthetic depth image. Each augmentation can transform the input image
stochastically with some internal parameters. We use a composition of these operations
to create different observations for the same grasp object. Note that, unlike classification
labels in vision, the ground-truth high-quality grasp poses would change along with these
augmentation operations.

Sim-to-real processing. Similar to [114], we design a sim-to-real transfer operation by
leveraging several image processing techniques. We randomly paint the pixels black in areas
of high Laplacian gradient and edges of the object detected by Canny edge detector[2].
Then we inject realistic noise into the image. The operation is parameterized by a threshold
of black painting areas. Compared to spatial transforms, the sim-to-real process does not
change the ground-truth pose in the image.

Illustrations of the data augmentation operators are shown in Figure 2.4. Using the
introduced operations, we extend the training dataset and create positive pairs from the
same input depth image for the contrastive training process. The transformation family T
is created by a random combination of the spatial operations and the sim-to-real transfer as
the last operation. All of the operations have an execution probability. In this way, we can
train on synthetic data generated in the simulator and use the model to predict valid grasp
in real-world scenarios.

Regarding the contrastive learning module in the pipeline, as described in previous sec-
tions, we use separate encoders for query input xq and other positive or negative samples as
suggested in [39]. Note that some operations in the data augmentation change the ground
truth in the downstream grasping tasks (e.g. spatial operations), directly maximizing the
similarity between q and k+ might not be suitable for grasping regression. As suggested
in [12], we add a multi-layer perceptron (MLP) after the query and key encoders as a pro-
jecting head and get q̂, k̂i. This is neglected in the network architecture but implemented
in experiments. The query and key vector q, ki can keep the differences in grasping, but

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 13

the projecting head would catch the invariant properties among positive pairs. We use q for
downstream grasping tasks but use q̂ and k̂i for calculating contrastive loss.

Rotated Region Proposal

Another core part of our architecture is the rotated region proposal network. Similar to
the architecture in [66], which output detected a bounding box for scene text, our network
receives feature maps from the learned contrastive encoder and output candidate region
proposals with class labels and parameters of the positions. The class label determines if
the proposal fits any robust grasp and the parameters (x, y, w, h, θ) gives a rotated bounding
box.

Unlike text detection, we do not have a fixed number of non-overlapping labeled bounding
boxes for each input image. For each object and its depth image, the high-quality grasp poses
may overlap with others. When matching the ground-truth grasps with proposed regions,
overlapped grasps may have similar skew intersection over union (IoU) results. Directly
choosing the one with the highest IoU may cause all proposals to match the “largest” grasp
(i.e., large w, h). To avoid such mode collapse, we introduce random selection among top-k
grasps based on IoU during matching.

For parameters of the proposed region, although only (x, y, θ) is used in a grasp pose, the
box’s width w and height h indicate the range of local features used in the following GRN.
The GRN model first aligns, and extracts rotated regions of interest by projecting proposals
from the RRPN onto the feature map and then uses the local features to predict the tilt
angle and relative depth of the grasp, which finalizes the 5-DoF grasp (x, y, θ, γ, z).

Collision Refinement

The grasp proposal models mentioned above are used for 5-DoF grasps for a single object. To
use the proposed grasps in a cluttered scene, we use collision constraints to infer all 6 DoFs.
The proposed 5-DoF grasp g = (x, y, θ, γ, z) ∈ G are frozen, and a posterior optimization
process is used to search for the last rotation angle β:

min
β

N∑
i

C(g, β, xi) (2.1)

where C is the collision check score for a 6-DoF grasp (g, β) and surrounding objects. {xi}Ni=1

is the segmented depth image for the N object in the scene.
Sign-distance field is introduced in this chapter to model the collision score:

C(g, β, xi) = −SD(FK(g, β), xi) (2.2)

where FK(·) denotes the forward kinematics function of the robot. SD(·) denotes the
signed-distance function of the robot and the object xi. Given a 5-DoF grasp, there are

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 14

infinitely many grasp candidates since the rotation among the grasp axis φ is free-floating.
By minimizing the negative signed distance between the robot and the object, a unique
6-DoF grasp can be determined.

Loss Design

Region proposal loss. Despite the randomness we introduced in positive region matching,
most of the models we use in RRPN are similar to [66]. The loss function for the proposal
takes the form of:

Lp = − log spos +
∑

v∈{x,y,θ,h,w}

λismoothL1(v
∗ − v) (2.3)

where spos is the matching IoU for positive pairs, v∗ is the ground-truth value for correspond-
ing variable. The smoothed L1 loss is:

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(2.4)

The output (x, y, θ) is the grasp parameter, and (w, h) are parameters for local feature ranges
in the original feature map. Therefore we assign more weight on λx, λy and λθ and less on
λw, λh.

Grasp refinement loss. To find the best grasp pose, we need not only the rotated planar
grasp position proposed by RRPN but also the tilt angle γ and depth z of grasp. While
RRPN gives us a rough estimation of grasp positions, GRN uses the proposed region of
interest (ROIs) to generate accurate grasp poses with local features. We formulate a weighted
refinement loss in (2.5) to minimize the L1 error of tilt and depth.

Lr = λγ∥γ̂ − γ∥1 + λz∥ẑ − z∥1 (2.5)

Contrastive loss. Unlike regression loss, the contrastive loss does not have supervised
signals. For simplicity, we use q, ki to represent q̂, k̂i after the projecting head. Consider
a query q encoded from sample x and a dictionary of N keys {k1, k2, ..., kN} encoded from
different samples. Among all keys, there is one positive key k+ encoded from xk similar to xq

and N−1 negative keys from other samples in the batch. Using dot product as the similarity
metric, the loss function is defined as (2.6), where τ is a temperature hyper-parameter.

Lq = − log
exp(q · k+)∑N
i=1 exp(q · ki)

(2.6)

This is the log loss of a N -way softmax-based classifier that tries to classify q as k+, intro-
duced as InfoNCE in [85].

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 15

The overall loss function used to train the contrastive grasp proposal model is:

Loverall = λpLp + λrLr + λqLq (2.7)

We adjust the relative weight of the three losses at different stages of training. In the
beginning, we set the loss of RRPN and GRN low to reduce the contrastive loss. After we
get a stable encoder, we increase the weight of RRPN loss but keep the GRN loss weight
low to train the 3-DoF grasp position and local feature bounding box. We then gradually
increase the weight of GRN to train the overall pipeline for the final 5-DoF grasp. The high
weight of GRN loss at an early stage would affect RRPN’s training since the models work
in series.

2.3 Experiment

Dataset Generation

To generate the grasp sets, we need to sample a large number of grasps for single objects and
label the top-ranked robust grasps as ground truths. This is unrealistic for real robots but
not hard in simulation environments. We train our CGPN model on the generated single
object grasp dataset and use it on real robots. Similar to [68], 1,366 objects are selected
from the 3DNet [129] as the object set. 100 antipodal grasps are evenly sampled among
the surface of each object. Each grasp is labeled with the robust force closure metric and is
represented by its contact points (c1, c2) in 3D. Since the CGPN algorithm requires depth
images as input, objects, and grasps are projected to the image plane. For each selected
object, 20 synthetic depth images are rendered from different angles. The object is placed at
the center of a regular icosahedron; cameras are placed at each face’s center and point to the
origin. The distance between the camera and the object is sampled from U(

√
3robj, 2robj),

where U denotes the uniform distribution and robj is the object bounding ball’s radiance.
Such selection makes sure that the full object is visible in the camera.

Each grasp (c1, c2) is then projected to the depth image using projective transformations:[
ui vi f

]T
= K ·

[
R t

]
·
[
Xi Yi Zi 1

]T
(2.8)

where Xi, Yi, Zi are positions of the contact point {ci}2i=1 in the camera frame, K,
[
R t

]
are

the camera’s intrinsic and extrinsic matrices, respectively. ui, vi are pixel’s locations at the
image for point ci. The bounding box’s other parameters are then computed. The width w
and the height h of the box is set to ∥[u2 − u1, v2 − v1]∥2 and 20 respectively. Grasp depth
z, rotation angle θ, and tilt angle γ are computed as z = 1

2
(Z1 + Z2), θ = tan−1 u2−u1

v2−v1
and

γ = tan−1 Z2−Z1

w
respectively.

Ground truth grasps for each image are selected as the top 20% from 100 samples. In
this chapter, we limit the tilt angle’s range to [−30◦, 30◦]. To give rotation angle θ and tilt
angle γ unique definition, we set constraints on the grasp points in the image plane, such

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 16

Figure 2.5: Dataset Samples. This figure shows 12 samples from the generated grasp dataset.
3D grasps are projected to the image plane (red rectangles). The tilt angle γ and the distance
z are neglected in the plot for simplicity.

(1) (2) (3)

(4) (5) (6)

Figure 2.6: (1-6) shows a sequence of
proposed grasps in a cluttered scene.

(a) (b)

Figure 2.7: Two failure modes of CGPN. (a)
shows the unmodeled sim-to-real gap on the
object’s surface, and (b) shows the limita-
tion of the depth image in representing 6-DoF
grasps.

that v2 > v1. In other words, the point [u2, v2]
T is always on the right of the point [u1, v1]

T .
Then, we bound θ in the range of [−90◦, 90◦], and γ is relabeled with the corresponding sign.
The generated training dataset has 24,723 depth images with labeled ground truth grasps.
Fig. 2.5 shows some samples from the dataset.

Experiment Results

The proposed CGPN is run on a desktop with GTX2080Ti GPU, 32GB RAM, and a 4.0GHz
CPU. For the experiment, we use a FANUC LRMate 200iD/7L industrial manipulator with
a SMC LEHF20K2-48-R36N3D parallel-jaw gripper for grasping. A Kinect v2 camera is
used to capture depth images of the scene. The point cloud library [103] implementation of
the region growing method is utilized to pre-process and segment the object.

We leverage state-of-the-art model architectures for each submodel. ResNet-50 [38] and
rotated region proposal networks [66] are utilized as the encoder and downstream models.

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 17

Table 2.1: Performance analysis of the CGPN and baselines on single object grasping tasks.

Success Rate Time (sec/grasp)

GPD 72.2% 1.84
CGPN w/o Contrastive 69.4% 0.46
CGPN w/o Data Augmentation 66.7% 0.46
CGPN 75.0% 0.46

The hyper-parameter for RRPN and contrastive learning are mostly the same as introduced
in [66, 39] and λx = λy = λθ = 5 and λw = λh = 1. We design the anchor aspect ratio
as [0.5, 2] to fit to grasp poses better. During the first 20 epochs, λp, λr, λq take values of
(1, 1, 5) respectively. After that, they are modified to (5, 5, 2) to stabilize the training.

As introduced above, the distance between the object and the camera is drawn from
U(
√
3robj, 2robj). In reality, such a condition is hard to achieve since the camera is usually

fixed at a particular point. To tackle this, we propose to re-project the depth image into a
virtual camera. The object’s point cloud is first generated based on the depth image. robj is
then computed as the radiance of the point cloud’s bounding ball. Next, the virtual camera’s
position is determined by the sampled camera-object distance. Finally, the generated point
cloud is projected to the virtual camera to obtain the normalized depth image.

Fig. 2.8 shows the grasp planning and grasp execution results on 12 different objects
with a single stereo camera. The top two rows of the figure show the captured RGB-Depth
images. Located grasps are labeled in the depth image with red rectangles. The tilt angle
γ and the distance z are neglected in the plot. The physical grasp poses and the execution
result of the planned grasp are shown in the bottom two rows. The algorithm is able to
find robust grasps for a) small objects close to the ground, b) large objects with graspable
regions, and c) objects with complex surfaces.

Table 2.1 compares CGPN with the grasp pose detection (GPD) [91] algorithm, which
also focuses on 6-DoF grasp planning with a single camera. To adopt GPD, we train a
point-cloud-based grasp evaluation network with the same dataset as CGPN. Each object is
grasped three times, resulting in 36 trials for each algorithm. From experiments, we observe
that CGPN outperforms GPD in both the grasp success rate and the computation time. One
reason behind this might be the robustness of our model under the various camera angles
we set during the experiment. Regarding time cost, CGPN generates valid grasps in an
end-to-end manner, it does not require the sampling and evaluation procedure and therefore
takes less time to plan a grasp.

For the ablation study on the data augmentation and contrastive learning module, Ta-
ble 2.1 also compares the effectiveness of adding augmentation operations on training data
and using contrastive loss in the sense of object grasp success rate. As can be seen, the
sim-to-real gap significantly affects the performance of the grasp proposal network. Ignoring
vision noises and training on the synthetic dataset may yield poor results in practice.

Figure 2.6 shows a sequence of proposed grasps in a cluttered environment. The grasp

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 18

sequence is selected according to the graspability, or whether a collision-free grasp exists for
a particular object.

Figure 2.7 displays two typical failures for CGPN, in which no grasp is proposed. The
first failure mode occurs because of the unmodeled sim-to-real gap. The object surface’s
resolution and distance noise are not appropriately handled. The second type of failure
occurs when no robust grasp exists with γ ∈ [−30◦, 30◦]. Compared to 3D representations,
the image includes less geometric information, making the end-to-end model hard to infer
6-DoF grasp. It appears that the performance could be improved with comprehensive data
augmentations and other grasp representations.

2.4 Chapter Summary

This chapter presents a 6-DoF contrastive grasp proposal network (CGPN) to generate robust
grasps on single-view depth images. CGPN is composed of a grasp planning module for 6-
DoF grasp detection and a contrastive learning module for sim-to-real gap reduction. The
grasp planning module infers 6-DoF grasps based on detected robust grasp regions. An image
encoder is used to extract the feature map, followed by a rotated region proposal network to
propose planar grasps. Feature vectors are then extracted and refined to 6-DoF grasps. To
transfer grasp skill trained in simulation, a contrastive learning module and variant depth
image processing techniques are introduced during the training. CGPN can locate 6-DoF
collision-free grasps using a single-view depth image within 0.5 seconds. Experiment results
show that CGPN outperforms previous grasping algorithms. The experimental videos are
available at [120].

CHAPTER 2. ROBUST GRASP PLANNING WITH CONTRASTIVE
REPRESENTATION LEARNING 19

(7) (8) (9) (10) (11) (12)

(1) (2) (3) (4) (5) (6)

Figure 2.8: (1-12) The grasp planning and execution results on 12 objects with a single
depth image. For each column, the top two rows show perceived RGB and depth images
with planned grasps, the third row shows physical grasps reaching the target grasp, and the
bottom row shows the execution results. The tilt angle γ and the distance z are neglected
in the plot for simplicity.

20

Chapter 3

Sample-Efficient Grasp Learning by
Maximum Likelihood Sampling

3.1 Introduction

In Chapter 2, we introduce a novel approach to grasp planning utilizing contrastive represen-
tation learning. This method notably enhances both robustness and success rates in grasp
executions. However, a significant drawback is its dependency on extensive training data.
This requirement is not unique to our approach but is a common characteristic shared by
other supervised learning methods in grasp planning, as evidenced in studies such as [68,
67, 75, 76, 110, 73, 74, 134, 107]. These approaches necessitate large datasets comprising
sensor inputs and corresponding grasp annotations, which can be either synthesized[68, 67]
or collected empirically [75, 76, 20, 52].

A notable challenge in end-to-end training models is the requirement for densely labeled
ground truth samples, a condition scarcely met by existing datasets [20, 52]. Addressing
the issue of label scarcity, some researchers have proposed a ’center-third grasp generation’
technique [73, 74]. This method operates under the assumption that grasp positions proxi-
mate to successful labels are inherently robust, thereby incorporating these near-miss grasps
into the ground truth. Furthermore, it presumes that areas without labels are invalid for
grasping. However, this technique may inadvertently introduce inaccuracies. On one hand,
it risks creating false positives, where generated grasps, despite being near successful labels,
may actually be unstable. On the other hand, it may lead to false negatives, overlooking
robust grasps that do not align closely with existing labels. This problem is exacerbated in
datasets with a limited number of grasp labels, thus raising concerns about the reliability of
the generated labels.

This chapter proposes a maximum likelihood grasp sampling loss (MLGSL) to improve
the data efficiency in training generative grasp planners. The proposed method recovers
dense ground-truth grasp distributions from sparse labels. We use this method to train an
efficient grasping model based on Fully Convolutional Networks (FCN) that has recently

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 21

Scene Input Depth Best Grasp

Execution

FCN

Figure 3.1: Grasp planning and execution pipeline. When an object is presented in the
workspace, a stereo camera captures a depth image; a trained generative model fθ(·) rapidly
computes grasp configuration maps Qθ, Wθ, and Φθ. The best grasp is generated based on
configuration maps and executed with the robot manipulator. The grasp model is trained
offline with empirical datasets and proposed maximum likelihood grasp sampling loss.

shown promising results for learning to grasp [73, 74, 107]. We develop a novel variant of the
proposed loss and model architecture that predicts planar grasps with a single-view depth
image. To improve the models’ collision avoidance ability, we construct a cluttered dataset
consisting of multiple-object scenes and collision-free success grasp labels.

We evaluate the proposed loss in training and physical experiments. Fig. 3.1 shows the
experimental grasp planning pipeline. Training results demonstrate that models based on
this loss can learn to grasp with datasets consisting of two labels per image, which implies that
it is 8× more data-efficient than previous methods [73, 74]. Meanwhile, physical experiments
show a similar grasp success rate in single and cluttered scenes.

3.2 Grasp Planning with Maximum Likelihood Grasp

Sampling Loss

This section first introduces notations and states the problem. The proposed loss function is
then illustrated and compared with previous works. Finally, the network architectures and
training datasets are presented.

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 22

Camera

Gripper

Depth Image

(a) (b)

Figure 3.2: Grasp Representation g = (p, ϕ, w). The planar pose (p, ϕ, w) in (a) represents
the grasp’s centre position, orientation, and width in the image plane. Grasp g in (a) has
quality q = 1 since it is labeled success. g is executed perpendicular to the image plane at
point pworld in the Cartesian frame, as shown in (b), where pworld is p in the world frame.
The gripper moves ϵ cm below pworld in the direction of the camera’s z-axis, shown by the
blue arrow.

Notations

As in previous literature, the grasp planning problem is detecting a grasp configuration that
allows the robot to pick up objects. Moreover, no explicit knowledge of the object is given
beyond camera readings.

Grasp. Let I ∈ RH×W define a given depth image with height H and width W . The i-th
grasp is defined in the image I and denoted by

gi = (pi, ϕi, wi) (3.1)

where pi = (ui, vi) is a pixel in the image representing the grasp centre. ϕi ∈ [−π
2
, π
2
] is the

gripper’s rotation, and wi ∈ [0, 150] is the gripper’s width in the image frame (Fig. 3.2).
Each grasp has a quality measurement qi ∈ [0, 1] indicates the success rate. Each grasp is
executed perpendicular to the image plane at point pworld,i in the Cartesian frame, where
pworld,i is computed by transforming pi to the world frame with the object’s surface distance.
During grasp executions, the gripper attempts to move ϵcm below pworld,i in the direction of
the camera’s z-axis.

Grasp configuration maps. Similar to [73], instead of selecting grasps at specific pixels
to evaluate, we compute a grasp for each pixel of I, which results in dense grasp configuration
maps G = (Q,Φ,W) ∈ R3×H×W . In other words, Q,Φ,W contain values of qi, ϕi, wi at each
pixel of I. Because antipodal grasps are symmetric, we use two components Φs = sin(2Φ)

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 23

(a) (b) (c) (d)

Figure 3.3: Dataset sample. (a) shows the input depth image I with k = 3 success grasp
labels (red). (b-d) show transferred grasp configuration maps Qlabel,Φlabel,Wlabel respectively.
Each colored pixel represents a successful grasp label glabel,i with different colors for different
values, while white pixels mean there is no label that exists. Note that scarce labels exist in
this sample, referring to sparse label maps.

and Φc = cos(2Φ) to resolve the ambiguity as suggested in [73]. The following sections use
Φ to represent angle maps for simplicity.

Grasp planning models. We assume there exists a ground-truth grasp gGT,i of quality
qGT,i at each pixel of I, and gGT = {gGT,i} for i ∈ [1, ..., H ×W], which can be transferred
to dense configuration maps GGT = (QGT ,ΦGT ,WGT). Ground-truth configuration maps
GGT are approximated by a grasp model fθ(·), with θ being the parameters of the model.
The model predicts Gθ = (Qθ,Φθ,Wθ) by Gθ = fθ(I). Predicted grasps are gθ = {gθ,i}
for i ∈ [1, ..., H × W]. At runtime, a pixel is sampled based on quality distribution Qθ,
corresponding ϕθ, wθ are extracted from Φθ,Wθ.

Datasets. Empirical datasets typically consist of depth image I and k success grasp labels
glabel = {glabel,i} for i ∈ [1, ..., k]. Note qlabel,i = 1 since they are guaranteed to succeed.
Labeled grasp configuration maps are denoted by Glabel = (Qlabel,Φlabel,Wlabel). Different
from [73], this chapter does not require local padding to create dense ground-truth labels.
Fig. 3.3 shows a sample of Glabel used in training.

For readability, the following sections use abbreviated variables

GGT 7→ G = (Q,Φ,W), gGT,i 7→ gi = (qi, ϕi, wi)

Glabel 7→ G̃ = (Q̃, Φ̃, W̃), glabel,i 7→ g̃i = (q̃i, ϕ̃i, w̃i)

Gθ 7→ Ĝ = (Q̂, Φ̂, Ŵ), gθ,i 7→ ĝi = (q̂i, ϕ̂i, ŵi)

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 24

Maximum Likelihood Grasp Sampling Loss

The ground-truth maps G are different from the labeled maps G̃. The former maps are
supposed to be densely labeled, while the latter maps have inadequate labels, as shown
in Fig. 3.3. The objective of the grasp model is to approximate ground-truth maps G by
Ĝ = fθ(I). This chapter assumes the labeled grasps {g̃i} are a subset of the dense ground-
truth grasps {gi}, and {g̃i} are sampled from {gi} based on a probability P (G) parameterized
by ground-truth quality map Q. This implies that at pixels where labels exist, ground-truth
maps G and label maps G̃ share the same values.

The probabilities of observing a grasp label g̃i from ground-truth maps G and predicted
maps Ĝ are described by P (g̃i|G) and P (g̃i|Ĝ), respectively. In order to approximate the
ground-truth mapsG, one choice is to maximize the agreement between P (g̃i|G) and P (g̃i|Ĝ).
This objective requires configuration maps to agree at specific pixels where labels exist. Since
unlabeled pixels are ambiguous, it can be too radical to assign grasps in those areas, making
sense to provide supervision only in labeled areas. Each successful grasp label g̃i has quality
q̃i = 1, leading large values for Q at the labeled pixels, thus resulting in a high probability
for P (g̃i|G), where P (g̃i|G) denotes the probability of g̃i being selected as a label. Therefore,
the objective becomes a maximum likelihood estimation (MLE):

max
θ

P (g̃i|Ĝ)

=max
θ

P (p̃i, ϕ̃i, w̃i|Ĝ) (3.2a)

=max
θ

P (p̃i|Ĝ) · P (ϕ̃i|p̃i, Ĝ) · P (w̃i|ϕ̃i, p̃i, Ĝ) (3.2b)

≈max
θ

P (p̃i|Q̂) · P (ϕ̃i|p̃i, Φ̂) · P (w̃i|p̃i, Ŵ) (3.2c)

In (3.2a), g̃i is replaced with grasp configurations. Chain rules are then applied to ob-
tain (3.2b). For (3.2c), grasp configurations are regarded as random variables and have
different distributions. Grasp location p̃i is conditioned on the quality map Q̂. P (p̃i|Q̂) rep-
resents the likelihood of sampling a robust grasp at pixel p̃i. Categorical distribution is used
to describe its probability, where each pixel is a category with a discrete-event probability
that is proportional to the predicted quality q̂i. The second and third terms maximize the
chance of observing ϕ̃i and w̃i at labeled pixels in predicted Φ̂ map and Ŵ map. Moreover,
this chapter assumes that networks can encode conditioned probability by sharing layers and
simplifies the second and third terms.

Equation (3.2c) is jointly optimized for all grasp labels. We further assume each label is

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 25

independent, which leads to

max
θ

k∏
i=1

P (g̃i|Ĝ) (3.3a)

≈max
θ

k∏
i=1

P (p̃i|Q̂) · P (ϕ̃i|p̃i, Φ̂) · P (w̃i|p̃i, Ŵ) (3.3b)

∝max
θ

k∑
i=1

logP (p̃i|Q̂) + logP (ϕ̃i|p̃i, Φ̂) + logP (w̃i|p̃i, Ŵ) (3.3c)

Three terms need to be maximized in (3.3c). The first term detects the best grasp
pixel after applying the log(·) operation. The second and third terms are simplified to
minimize the mean square error (MSE) between predictions and labels, as [136] suggests.
Such modifications stabilize the training process without loss of generality. Different from
the previous work, gradients are computed only at labeled pixels instead of the whole map,
i.e.,

max
θ

k∑
i=1

logP (p̃i|Q̂)−MSE(ϕ̂i, ϕ̃i)−MSE(ŵi, w̃i) (3.4)

From all above, the grasp model fθ(·) is trained to minimize the negative of the objective
function in (3.4), i.e.

θ = argmin
θ
L(G̃, Ĝ) (3.5)

where
Ĝ = (Q̂, Φ̂, Ŵ) = fθ(I)

L(G̃, Ĝ) =
k∑

i=1

− logP (p̃i|Q̂) + MSE(ϕ̂i, ϕ̃i) + MSE(ŵi, w̃i)

As can be seen, the maximum likelihood grasp sampling loss (MLGSL) minimizes a
pixel classification loss and two pixel-wise regression losses. Previous works [73, 74, 99,
135] use regression or spatial cross-entropy losses for all three objectives, making networks
estimate pixel-wise grasp stability. In contrast, the proposed MLGSL predicts grasp success
distributions using pixel classifications and aims to locate the most robust grasp in the image.

Model Architectures

The grasp planning model is used to predict dense ground-truth configuration maps G,
consisting of Q,Φc,Φs,W , which have the same sizes as the input depth image I. Note that
angle maps Φ is calculated by Φ = 1

2
tan−1 Φs

Φc
. The model uses a fully convolutional topology

identical to [74]. The architecture includes four downsampling layers, two dilated layers,
and two upsampling layers. Downsampling layers use kernel size of [11, 5, 5, 5] respectively,

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 26

activated by ReLU and max-pooling. Two dilated layers apply [5, 5] kernels with dilation
[2, 4]. Upsampling layers employ transpose convolutional kernels with size 3 and striding 2.

Despite FCNs, SAM blocks are added after convolution layers as described in [130]. SAM
utilizes both max-pooling and average-pooling along the channel axis and forwards them to
a convolution layer. Outputs are then integrated into input features.

Dataset

Single object dataset. Jacquard [20] is a large-scale empirical dataset for robotic grasp
detection. We directly adopt Jacquard as our single object dataset. The dataset contains
more than 50k images of 11k objects and 1 million unique success grasp labels. We split the
dataset into 90% and 10% for training and validation. We apply random rotation and zoom
to each data and resize the image to 300× 300.

Cluttered object dataset. A cluttered dataset is generated based on Jacquard. We ran-
domly select a few images from the single object dataset and combine them into a cluttered
sample. Before combining, each single object data is segmented, rotated, zoomed, and trans-
lated in the image plane. Success grasp labels are then combined and pruned according to
collision constraints. Since data in Jacquard includes images from different viewpoints, such
operation well reflects the geometry of cluttered scenes.

3.3 Training Experiments

We trained a series of models to test the proposed approach. The goals of the experiments
are three-fold: 1) to demonstrate that the proposed loss function can increase the grasp
performance with fewer labels and samples, 2) to determine whether attention modules help
in learning dense grasp configurations, and 3) to inspect the collision-avoidance ability in
cluttered scenes.

Evaluation Metrics

Two metrics are utilized to evaluate models’ performance: predictions’ success rate and pre-
dictions’ accuracy and recall. For prediction success rate, a predicted grasp ĝi is considered
success if

∃g̃j ∈ g̃, ∋ IoU(g̃j, ĝi) ≥ δIoU ; and |ϕ̃j, ϕ̂i| ≤ δϕ

where IoU(·) represents the intersection over union ratio between two grasps. g̃ is the set
of success grasp labels. In this chapter, we select top one (Top-1) and top five (Top-5)
grasps to measure the success rate and choose δIoU = 25% and δϕ = 30◦ as in [73, 74, 20].
These criteria predict the models’ precision. In other words, they evaluate the ratio of true
positives among grasps with predicted positive labels and thus offer an estimation of grasp
distributions.

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 27

Despite the grasp success rate, we propose to measure predictions’ accuracy and recall.
We pre-train a grasp quality discriminator [68] to evaluate the robustness of certain grasps.
For each validation data, n predicted grasps ĝi for i ∈ [1, ..., n] are first uniformly sampled in
the image, including predicted quality q̂i. Then, the discriminator evaluates quality for ĝi,
obtaining ground-truth quality label qi. Prediction accuracy and recall are measured based
on qi and q̂i for i ∈ [1, ..., n]. This chapter chooses n = 100. The classification threshold for
the binary label is selected as δcls = 0.5, in which we observe the best classification results;
accuracy and recall are averaged among the whole validation batch.

Baseline Methods

We compare the training performance of MLGSL in (3.5) to the following baseline ap-
proaches:

Image-wise MSE (ImgMSE). ImgMSE is introduced in [73] that uses the same pre-
dicted grasp configuration maps Ĝ as our method. This baseline resolves the label sparsity
problem by local padding. It uses the center third of each positive grasping label as the
training ground truth Ḡ. Note Ḡ is not the same as G introduced in this chapter. Instead,
it is an approximation of G. The loss used to train the model is

LImgMSE = MSE(Q̂, Q̄) + MSE(Φ̂, Φ̄) + MSE(Ŵ , W̄)

Maximum likelihood sampling with LogMSE (MLGSL+Log). MLGSL+Log can
be derived from (3.3c), which uses MSE(·) to replace P (·) instead of logP (·), i.e.

LMLGSL+Log =
k∑

i=1

− logP (p̃i|Q̂) + logMSE(ϕ̂i, ϕ̃i) + logMSE(ŵi, w̃i)

Pixel-wise MSE (PixMSE). PixMSE removes the maximum likelihood sampling term
from (3.5). Instead, it applies supervision on labeled pixels with MSE loss, i.e.

LPixMSE =
k∑

i=1

MSE(q̂i, q̃i) + MSE(ϕ̂i, ϕ̃i) + MSE(ŵi, w̃i)

Results

For comparisons, we train 110 models with different loss functions and architectures. Each
model is trained with different seeds for 50 epochs to select the best one.

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 28

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8
P

re
d

ic
ti

o
n

S
u

cc
e

ss
 R

a
te

MLGSL

MLGSL+ Log

Im gMSE

PixMSE

Figure 3.4: Comparing the Top-1 prediction success rate of MLGSL with baseline methods.
Models are trained with densely-labeled datasets (16 labels per image).

Table 3.1: Training performance of MLGSL and baselines (Mean %)

Method Top-1 Top-5 Accuracy Recall
MLGSL 82.8 91.0 80.2 75.7

MLGSL (2 labels) 81.6 90.3 77.3 73.4
ImgMSE [74] 82.5 89.7 85.2 92.3

ImgMSE [74] (2 labels) 42.4 45.2 41.9 17.4

Baseline comparisons. Our first experiment compares MLGSL to three baseline methods
with a single object dataset, in which each training sample includes 16 success grasp labels.
Top-1 and Top-5 prediction success rates are shown in Fig. 3.4 and Table 3.1. We see that
MLGSL has similar performances compared to previous ImgMSE, while MLGSL shows a
higher convergency rate at first a few epochs. MLGSL with logarithm converges to a similar
point as the previous two methods but with a slower rate, which might occur because the
log(·) operation lowers the gradient in each training step. PixMSE performs the worst
among the four approaches. This is likely due to it only applying supervision on specific
pixels, resulting in unbounded other areas.

We also compare MLGSL to ImgMSE on prediction accuracy and recall. Results are
shown in Table 3.1. It is interesting to observe that models trained with MLGSL have lower
accuracy and recall. To seek reasons for such phenomenon, we plot several predicted Ĝ in

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 29

0.4

0.6

0.8

1.0

MLGSL ImgMSE
0.0

0.2

#label/img = 2
#data = 10k

#label/img = 16
#data = 1k

#label/img = 16
#data = 10k

Figure 3.5: Predicted grasp distributions with variant models. Predicted grasp qualities are
painted as heatmaps with color listed in the right sidebar. Detected grasps are labeled with
red lines in each image. (First row) input depth images, (Left) results from models trained
with MLGSL, (Right) results from models trained with ImgMSE, (Second row) results from
datasets consisting of 16 labels per image and 10k data, (Third row) results from datasets
consisting of 2 labels per image and 10k data, (Bottom) results from datasets consisting of
16 labels per image and 1k data.

the second rows of Fig. 3.5. As can be seen, models trained with MLGSL have a conservative
estimation of the grasp quality. They prefer to grasp each part’s center, which is consistent
with labels’ distributions in training datasets. Such behavior leads to false-negative labels
in measurements and, thus, the observed results.

Less training labels per sample. We then investigate whether our method can learn
grasping with fewer labels. For this study, we down-sample success grasp labels to [2, 4]
in each training data and still use all labels for validation. It is a more difficult setting;
the grasp planning model learns to effect change only through inadequate demonstrations.
We report results in Fig. 3.6 and Table 3.1. In the figure, models trained with MLGSL
are evaluated with the Top-1 prediction success rate, indicated by solid lines. Dashed lines
indicate the performances of models trained with ImgMSE.

From these results, we see that MLGSL is capable of learning to grasp with 2 labels per
image, achieving prediction success rates at 81.6% for Top-1 and 90.3% for Top-5, which is
similar to models trained with 16 labels. The third row in Fig. 3.5 shows predicted Ĝ by
models trained with 2 labels per image. We also notice that ImgMSE under-performances
MLGSL in such settings. This is attributed to the center-third padding used by ImgMSE,
which generates false negatives. Padded Ḡ may mistakenly label high-quality grasps as
negatives since they are not close to existing success labels. Moreover, due to the fact
that ImgMSE applies gradients to each pixel in the image, grasp planning models can be

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 30

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8
P

re
d

ic
ti

o
n

 S
u

cc
e

ss
 R

a
te

n_label= 16

n_label= 4

n_label= 2

Figure 3.6: Comparing the Top-1 prediction success rate of MLGSL to ImgMSE with dif-
ferent numbers of labels (n label). Success grasp labels are down-sampled to [2, 4] for each
training data. Solid lines indicate models’ performance trained with MLGSL, and dashed
lines indicate that they trained with ImgMSE.

confused for ambiguous labels. For MLGSL, supervisions are only applied to specific pixels,
while other pixels are regulated indirectly with the probabilistic objective. This procedure
minimizes assumptions toward unlabeled areas and, thus, does not suffer from insufficient
labels.

Less training samples. We next train models with a smaller dataset (1k data) using
MLGSL and ImgMSE and report their performances in Fig. 3.7. The results suggest that
less training data makes it harder to learn grasping strategies for both methods. However, we
still observe our MLGSL outperforms ImgMSE by about 10%. We visualize prediction results
at the bottom in Fig. 3.5. Compared to ImgMSE, MLGSL predicts more reasonable grasp
distributions with less training data. The less accurate predictions from ImgMSE may be
due to false training labels. The center third method can construct false positives. Models
may require more data to compensate for such errors; thus, we observe better prediction
results in previous experiments with more training data.

Different attention module integration. Besides loss designs, we compare the effective-
ness of attention modules by adding SAM blocks to 1) downsampling convolutional layers
(DsATT), 2) upsampling transpose convolutional layers (UsATT), 3) both downsampling

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 31

0 10 20 30 40 50
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

d
ic

ti
o

n
 S

u
cc

e
ss

 R
a

te

MLGSL

Im gMSE

Figure 3.7: Comparing the Top-1 prediction success rate of MLGSL to ImgMSE with fewer
training samples (1k data).

Table 3.2: Training performance of MLGSL with single and cluttered datasets (Mean %)

Training Datasets Collision-Free Ratio Top-1
Single Datasets 67.3 78.9

Cluttered Dataset 84.2 74.4

and upsampling layers (DsUsATT), and 4) no attention modules (NoATT). Interestingly,
results in Fig. 3.8 suggest that the attention module is not a contributor to the performance
of grasp planning. This could be because the backbone FCN architecture is simple, consist-
ing of 10 layers, which do not allow SAM blocks to take effect. Furthermore, as suggested
in [35, 34], attention modules help to reduce the action sampling complexity by providing a
region of importance, which might have a similar effect to quality map Q̂ in our FCN models.

Collision avoidance with collision-free cluttered datasets. Networks in [73, 74] are
trained with single object datasets and demonstrate promising grasp success rates in the
clutter. However, we observe collisions during grasp prediction in the clutter. To improve
this, we train models with MLGSL and collision-free cluttered object datasets. Results are
shown in Table 3.2. Both metrics are computed using cluttered object datasets. Although
we observe a 5% down on prediction success rate, models trained with proposed datasets
improve collision detection ability by 25%. It suggests that models trained with MLGSL are

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 32

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8
P

re
d

ic
ti

o
n

 S
u

cc
e

ss
 R

a
te

NoATT

DsATT

UsATT

DsUsATT

Figure 3.8: Comparing the Top-1 prediction success rate of FCN with MLGSL and different
attention module integration.

capable of both predicting grasp robustness and detecting collisions.

3.4 Real-World Experiments

Trained models are run on a laptop with GTX1060 GPU, 16GB RAM, and 2.5GHz CPU.
Experimental setups are shown in Fig. 3.9(a), we use a FANUC LRMate 200iD/7L manip-
ulator with an SMC LEHF20K2-48-R36N3D parallel-jaw gripper for grasping. An Ensenso
N35 camera is used to capture depth images of the scene. Depth images are cropped and
resized to 300× 300. We paint invalid depth values using OpenCV [9]. During experiments,
the algorithm selects one best grasp ĝ. Selected ĝ is projected to the Cartesian space with
calibrated camera matrices. Robots then execute the grasp with an offset ϵ = 1cm along the
camera’s z-axis.

17 household and 1 adversarial object were selected to test the grasp success rate of
our approach (Fig. 3.9(b)). Household objects contain items of varying sizes and shapes.
Most of the items (staple, tape, cube, robots, sprayers, glue stick) appear in previous works.
We used several additional objects that are deformable (cable) and perceptually challenging
(thin edges on the cup, helmet, board eraser, scissor, and reflective zinc container). We also
added an adversarial object, which is proposed in [68], to verify models’ robustness with a
complex geometry.

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 33

(a) (b)

Camera

Robot

Workspace

Figure 3.9: (a) shows experimental setups. Our robot operates over a workspace observed
by a statically mounted stereo camera. (b) shows objects used for single/cluttered grasping
experiments.

Table 3.3: Real-World performance of MLGSL and Baselines

Method Required Data SR (%) CTPG (ms)
MLGSL 10k × 2 91.8 (78/85) 21

GGCNN [74] 10k × 16 92.1 (47/51) 21
FC-GQCNN [107] 7m × 1 94.1 (32/34) 29

Require data represents the size of required training datasets (number of images × number
of labels per image); SR and CTPG represent grasp success rate and computation time per

grasp, respectively.

We performed physical grasping experiments with two arrangements: 1) isolated single
objects and 2) cluttered objects. For single-object grasping, we trained a model with ML-
GSL and a dataset consisting of 2 labels per image. We compared our approach with two
baselines [74, 107]. Results are reported in Table 3.3, which are consistent with training
results. Note that for [74] and [107], they require larger well-labeled datasets to achieve
listed performances.

For cluttered scenarios, objects were randomly placed inside the workspace. The robot
attempted one grasp each time, and the grasped object was removed from the scene. This
procedure continues until all objects are removed or consecutively failed five times. We ran
this experiment 10 times to measure performance. Models trained with MLGSL and cluttered
datasets achieved an object removal rate of 90%, compared to 70% in models trained with

CHAPTER 3. SAMPLE-EFFICIENT GRASP LEARNING BY MAXIMUM
LIKELIHOOD SAMPLING 34

(a) (b)

Figure 3.10: Two failure cases. (a) shows the object slippage when the robot grasps curved
parts, and (b) shows models mistakenly generate grasps toward deformable thin covers.

single datasets, mainly due to undetected collisions. Compared to [74], we observed similar
results that models trained with cluttered datasets outperform those with single datasets.

Figure 3.10 displays two common failures of MLGSL. One failure mode occurs when the
robot grasps curved surfaces. Utilized models can only predict planar grasps. Grasp depth
is set as a hyperparameter. Such limitations make it hard to grasp ball-shaped objects with
a uniform grasp depth; models can generate tenuous grasps. The second type of failure
occurs when a thin deformable layer is on top of the object’s main body. It is challenging
to distinguish thin layers from solid cubes with a single vision sensor. Such ambiguity tricks
the model into generating a grasp toward those unfavorable areas.

3.5 Chapter Summary

This chapter proposes a Maximum Likelihood Grasp Sampling Loss (MLGSL) to tackle
the data sparsity issue in grasp planning. The proposed method regards successful grasp
labels are sampled from a ground-truth grasp distribution and aims to recover such dense
distribution. Training results suggest that FCN models based on MLGSL can learn to
grasp with datasets composed of 2 labels per image, considering 8× more data-efficient than
current state-of-the-art techniques. Meanwhile, physical robot experiments demonstrate a
91.8% grasp success rate on household objects. Experimental videos are available at [122].

35

Chapter 4

Grasp Planning for Multi-Fingered
Hands

4.1 Introduction

Earlier chapters have delineated the development of grasp planning networks specifically
tailored for parallel grippers. While parallel grippers exhibit commendable reliability in
mass-production scenarios, their compatibility is limited when it comes to customized pro-
duction and household services. In contrast, the domain of grasp planning for multi-fingered
hands assumes critical importance in robotic grasping and manipulation, primarily due to
its potential to augment dexterity and facilitate human-robot collaboration. The primary
advantage of multi-fingered hands lies in the increased number of joints, offering a greater
range of degrees of freedom (DOFs). This enhancement not only elevates the manipulability
of the system but also ensures a more dexterous grasp compared to parallel-jaw grippers.
Additionally, the incorporation of multiple contact points allows these multi-fingered grasps
to withstand larger disturbances during various grasping and manipulation tasks. The de-
velopment of a versatile, multi-fingered hand would significantly streamline operational pro-
cedures and bolster adaptability to a diverse array of tasks. However, the task of devising
grasp planning strategies for general-purpose multi-fingered hands is fraught with challenges.
These challenges stem primarily from the extensive variation in object shapes and sizes, the
intricate coupling dynamics between the hand and objects, and the high-dimensional com-
plexity inherent in the hand-object system. Addressing these issues is imperative for the
advancement of robotic manipulation.

In general, there are mainly three categories of approaches to solving the grasp planning
problem: grasp optimization in an online manner [28, 30, 27], grasp candidate sampling
with learning-based grasp evaluation [68, 76, 75], and end-to-end learning-based grasp gen-
eration from raw inputs [82, 110]. While the above approaches have demonstrated promising
performance on parallel grippers with low DoFs, some works leverage these pipelines with
multi-fingered hands. First, optimization methods are proposed to maximize a manually

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 36

Cluttered	Scene Input	Point	Cloud Grasp	Sequence

Grasp	Sampler
Grasp

Evaluation	with
Combined
Point	Cloud

Grasp
OptimizationR

an
k

R
ob
us
t	G

ra
sp

Su
cc
es
s	R

at
e

Grasp	Evaluation	Model

Figure 4.1: MF-GPD Architecture. Given the objects’ single-view point cloud, the cross-
entropy sampler generates candidates among the object surface. Candidates are assessed
with the evaluation model, which takes in the point cloud representation of the grasp. A local
grasp optimization is introduced to avoid collisions in complex environments and minimize
the grasp quality loss. MF-GPD could rapidly determine the robust grasp candidates, which
is executed with a close-and-clamp strategy using the BarrettHand.

designed grasp quality while avoiding collisions in an online manner [26, 29]. However, the
grasp quality heuristics cannot reflect the real-world grasp success, and such online opti-
mization typically requires dense surface information and extensive computation. Second,
some methods try to recognize the best grasp among sampled candidates with learned quality
metrics (sample-then-evaluate) [63, 62]. Nevertheless, grasp representations used to estimate
the grasp quality are hard to design, and the grasp candidate sampler can be inefficient and
prone to collisions. Third, end-to-end grasp planners have been used to infer grasp poses
directly from raw sensor inputs [110, 58]. These methods, however, always require delicate
parameter tuning and large datasets and suffer from the curse of dimensionality.

This chapter aims to detect multi-fingered hand grasps reliably and efficiently. To enable
reliable grasp evaluation, we consider a novel representation of the multi-fingered grasps.
Some works [91, 57] represent grasps by their local contact areas. Despite good performance
for parallel-jaw grippers, experiments in this chapter show that this representation is not
sufficient for multi-fingered grasps. Compared to parallel-jaw grippers that grasp objects
by clamping, multi-fingered grippers typically have higher DoFs and more contact points.
While higher DoFs offer more dexterity, it is difficult to find proper contact points and
exert balanced contact forces that stabilize the object. This chapter combines the object
point cloud with the rendered gripper as the input to evaluate grasps. To improve the
prediction accuracy for grasping with multi-fingered hands, we add extra features, including
the point normals and a binary object-gripper mask. We demonstrate in experiments that
these features are crucial for reliable grasp evaluation.

To detect multi-fingered grasps efficiently, we consider a method that combines the

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 37

sample-then-evaluate and optimization methods. On one hand, the sample-then-evaluate
approach can learn accurate grasp quality, but it is time-consuming to provide collision-free
samples in high dimensions. On the other hand, the optimization method is not sensitive
to dimensionality and can easily adjust grasp away from collisions, but it suffers from the
inaccurate quality metric design. This chapter leverages an evaluation model that combines
the sample-then-evaluate and optimization methods for efficient and high-quality grasp eval-
uation, as shown in Fig. 4.1. An evaluation network takes the grasp samples (represented
by the aforementioned grasp representation) from a sampling module as inputs and learns
the highly accurate grasp qualities as outputs. We further design a local grasp optimization
to address the time complexity to sample feasible grasps in complex environments. The
optimization utilizes the evaluation network as the cost function to avoid inaccuracy from
the manually designed heuristics [26]. Moreover, the optimization is defined in the entire
robots’ configuration space, making the problem harder to solve compared to local search as
in [75, 76].

The contributions of this chapter are two-fold. First, we introduce a point-cloud-based
grasp representation to embed multi-fingered grasps. The grasp representation incorporates
normals and binary masks to find reliable contacts that can exert effective and balanced forces
to stabilize the object. Experiments demonstrate the proposed representation outperforms
the feature representations from previous multi-fingered grasping works. Second, we propose
a grasp detection structure that combines an evaluation network and an optimization model
for efficient collision avoidance and grasp refinement. The evaluation-refinement structure
can take advantage of both the learning-based evaluation and the optimization for accurate
quality prediction and efficient grasp adjustment. Experiments suggest such a structure
significantly reduces the computation time.

4.2 Grasp Planning using Point Cloud

Notation

We define the grasp planning problem as finding a grasp configuration that allows the robot
to pick up the object without collisions. We focus on scenarios where the target object is
isolated or in the clutter with others. Object segmentations are computed based on raw
camera readings. Some notations are introduced here.

Point cloud. Let o ∈ R3×n denotes the point cloud captured by the depth camera. oi ∈
R3×ni for i = 1, 2, ...,m denote the point clouds for m different objects in the scene. ni

represents the number of points for the ith object. The point cloud of the target object is
otarget.

Grasp. A grasp g is determined by the palm pose (R, t) and the gripper joint angles θ.
The palm pose (R, t) is given in SE(3), specifying the 3D orientation and 3D translation of

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 38

(a) (b)

Figure 4.2: (a) shows the definition of a grasp g, (b) shows the combined point cloud repre-
sentation oinput of the same grasp.

the gripper’s base. The joint angles θ ∈ Rj represent the angle of j joints in the gripper. We
further define the palm pose (R, t) = (p, n, d, r) as Fig. 4.2(a) shows. Here p = (px, py, pz) ∈
R3 is the grasp point on the point clouds otarget. n = (nx, ny, nz) ∈ R3 and d ∈ R are the
unit approaching vector and the offset distance, respectively. To simplify the representation,
the approaching direction n is computed as the object’s surface normal at point p similar
to [82, 91, 57]. r ∈ R is the rotation angle of the palm.

For joint angles θ, some assumptions are made in this chapter. First, we assume that
the gripper joint angles are determined by the spread angle θspread ∈ R and the finger joint
angles θfi for i ∈ [1, ..., k], where k is the number of fingers. Second, we assume each finger
only has one degree of freedom such that θfi ∈ R for i ∈ [1, ..., k]. This assumption resolves
the ambiguity: since finger joint angles can be uniquely determined after contact without
ambiguity, their values are neglected for simplification.

Grasp quality metric. Numerical grasp quality metrics are used to measure how likely
the grasp can succeed. In this chapter, we directly utilize the simulated grasp success rate
as our metric Qrate. Since approximating a continuous value is challenging, we formulate the
quality estimation as a classification task with a binary metric Qsucc:

Qsucc =

{
1 if Qrate ≥ δ
0 otherwise

(4.1)

Cross-Entropy Grasp Sampler

The grasp candidate sampler iteratively generates grasp candidates g, which is parameterized
by (R, t), θ. The grasp point p is iteratively fitted with Gaussian distributions while d, r, θ
are uniformly sampled from the configuration space.

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 39

Object's	Point	Cloud

Sampled	Grasps
Combined	Point	Cloud

PointNet++
Encoder MLP

Estimated
Grasp
Success
Rate

Figure 4.3: The architecture of the grasp evaluation network based on PointNet++ [96].
Given sampled grasps and the point cloud, the grasp is represented by the combined point
cloud. Point normal directions and binary gripper-object masks are estimated as extra
features. After three set-abstraction layers, the global feature vector is classified with three
fully-connected layers (MLP).

The procedure is described as follows: First, given the object’s point cloud, the normal
direction n of each point is estimated. Second, a probability grid is constructed to model each
point’s sampling chance with a Gaussian distribution. Grasp points are then sampled based
on the probability grid. Third, for each grasp point, d, r, θ are drawn from the configuration
space with a pre-defined uniform distribution. A grasp g can be determined by combining
grasp point p with d, r, θ. Fourth, each sampled grasp is assessed and ranked with the
evaluation network. Top 10% grasp samples are used to update the grasp point distribution.
Such a procedure repeats until a robust grasp has been proposed.

For the joint angles θ = [θspread, θf1, ..., θfk]
T , this chapter assumes each finger has one

DoF, suggesting finger joints {θfi} can be uniquely determined once the spread angle θspread
is chosen. In other words, when the palm poses and the spread angle are fixed, each finger
is closed until contact to find {θfi}. Finding such exact contact joints, however, is time-
consuming in practice. Each finger should be iteratively tested for collisions in order to
find the contact configuration. To tackle this problem, we propose to set finger joints {θfi}
at zero as shown in Fig 4.4(b). Consequently, the grasp evaluator is designed to estimate
the grasp quality in such a non-exact contact scenario. The exact contact configuration is
determined afterward.

Grasp Evaluation with Point Cloud

The grasp sampler fits the posterior distribution P (g|otarget) to propose grasp candidates g.
These contain both poor and good grasps. Poor samples need to be identified and pruned

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 40

(a) (b) (c)

Figure 4.4: Given a grasp (i.e., R, t, θspread), (a) shows fingers’ configuration at the exact
contact (i.e., {θfi} at contact), (b) shows the zero-finger-joint contact (i.e., set {θfi} = 0),
and (c) shows the random-finger-joint contact (i.e., randomly sample {θfi}).

out. To achieve this, we need an evaluation model to assign a grasp success rate to each
grasp candidate as P (s|g, otarget), where s is the execution success rate. The evaluation model
takes in the object point cloud otarget and the sampled grasp g. We use the PointNet++
architecture to classify the grasp with Qsucc metric as Fig. 4.3 shows.

There are multiple ways to represent the grasp of the object. First, the gripper contact
areas of each grasp can be extracted [91, 57]. The contact area is an intersection of the
gripper’s closing volume with the object point cloud. Second, the pose of the grasp g can
be associated with the point cloud otarget in a latent space [63, 62]. Our training results
show that such two encoding methods lead to a relatively worse classification accuracy.
Instead, we represent a grasp g more tied to the object point cloud: robot gripper’s point
cloud ogripper is rendered according to the grasp configuration g. The gripper’s point cloud
ogripper and the object point cloud otarget are combined to oinput as the input to the network
(Fig. 4.2(b)). Besides the point position, the estimated normal direction for each point and
binary masks are used as extra features. The binary mask indicates whether a point belongs
to the object or the gripper. The PointNet++ processes extra features according to the
spatial relationship of points. In other words, neighbor points are encoded together, making
it natural to use all the relative information.

As discussed above, we would like the grasp evaluator to predict Qsucc with a non-exact
contact. To do so, gripper configurations g in the training data (Fig. 4.4(a)) are perturbed
in two ways. First, finger’s joint angles {θfi} are set to zero with the probability ξ, as shown
in Fig. 4.4(b). Second, the finger’s joint angles {θfi} are uniformly drawn from zero to the
exact-contact angles (Fig. 4.4(c)). The grasp evaluation model is trained with the standard
cross-entropy loss:

Leval = −y · log(s)− (1− y) · log(1− s) (4.2)

where y is the binary grasp quality metric Qsucc and s is the predicted success rate by the
evaluator.

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 41

Local Grasp Optimization

Although the sampling module and the evaluation network recognize plausible grasps, colli-
sions and object potential slippages during execution are not considered. The sampler alone
can perform poorly in narrow spaces. It may produce grasps that collide with the ground or
the surrounding objects. With small objects and cluttered environments, the collision-free
regions around the target are narrow, making many sampled grasp candidates infeasible.
Besides, the gripper may slip on object surfaces if the planned grasps are executed by close-
and-clamp strategy. Different fingers may have asynchronous contacts without a complete
point cloud. The clamp approach may further exert non-internal forces on the object, which
causes unexpected object movements. To tackle this, we introduce grasp optimization.

If there exists one top-ranked candidate who is collision-free, the local refinement will be
bypassed, and that grasp will be executed. Otherwise, grasp optimization will be used to
avoid collisions and object slippages:

max
g=(R,t,θ)

P (s|g, otarget)

s.t. SD(FK(g), oi) ≥ 0, for i = 1, ...,m

∥θ − θcenter∥2 ≤ ϵ

∥R−R0∥2 ≤ ςR, ∥t− t0∥2 ≤ ςt

(4.3)

where g is the top-ranked grasp candidate, otarget is the point cloud of the target object,
P (s|g, otarget) predicts the grasp success rate. FK(·) denotes the forward kinematics function.
SD(·) denotes the signed-distance function of the robot and the surrounding object oi. θcenter
is the center of the gripper’s joints and bounds the gripper’s configuration as suggested in [26].
R0, t0 represents the palm pose of the grasp candidate, which serves as the initial state in
the optimization. The optimization is solved locally to guarantee the final grasp is still close
to the robust candidate.

Dataset Generation

To generate multi-fingered grasp sets, we use the PyBullet [17] physics engine to simulate
grasps. 556 objects from the 3DNet [129] are selected as the object set. Comparing to newer
datasets [68, 67], selected datasets contain household objects with suitable dimensions for
multi-fingered grippers. These objects have demonstrated promising grasp learning perfor-
mance in [63, 62]. To generate the object point cloud otarget, 12 synthetic depth images are
rendered from different angles. The object is placed at the center of a regular dodecahedron;
cameras are placed at each face’s center and point to the origin. Depth images are then
projected to 3D space to obtain the point cloud. 295,403 grasps are sampled with uniform
distributions and simulated in the physics engine.

The simulation has a free-floating multi-fingered gripper and free-floating objects. The
simulator’s gravity is set to [0, 0,−10]Tm/s2 with a 1m/s2 variance in each direction. Surface
friction and the object mass are kept constant. To simulate a grasp, the gripper first reaches

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 42

the sampled contact configuration R, t, θ, and grasp forces are then applied to the object.
Instead of tracking constant contact forces, we close each finger by ∆θfi to clamp the object.
A grasp is labeled success if the object is kept in the gripper after 3 CPU seconds with
Gaussian white external forces. As in [68, 75], such a procedure injects dynamical noise
into the simulation and generates a robust label for each grasp, narrowing the dynamical
simulation-to-reality (sim-to-real) gap. The same procedure is repeated for 5 times to obtain
the grasp success rate Qrate. Overall, 103,561 grasps have Qrate larger or equal to 0.8.

4.3 Training Experiments

We trained a series of evaluation models with variant grasp representations. The goals of the
experiments are three-fold: 1) to determine whether combined point cloud representation is
efficient for multi-fingered grasps, 2) to demonstrate whether point normals and masks can
help in evaluating multi-fingered grasps, and 3) to inspect the influence of in-exact contacts.

Training Details

The object point cloud otarget is selected from 12 candidates according to the grasp config-
uration. We choose the point cloud to have the smallest angle between its corresponding
camera view angle and the gripper’s z-axis n. The position of the object otarget is jittered
and rotated to simulate the sensor noise. A zero-mean Gaussian noise with a 2 mm variance
is applied to simulate the visual sim-to-real gap. The object point cloud is then down-
sampled to 2048 points. The gripper’s point cloud is uniformly sampled from the robot
mesh file, denoted as ogripper ∈ R3×512. Normalization is applied to all the training data.
Combined with the estimated point normals and the binary mask, the input data has 7
features: oinput = ogripper

⋃
otarget ∈ R7×2560.

The evaluation network takes the 7-dimensional combined point cloud oinput as input
and predicts a binary grasp success rate. The grasp evaluator leverages the PointNet++
architecture with 3 set-abstraction (SA) layers and 3 fully connected (FC) layers as in [96].
Each SA layer samples and groups 512, 128, and all points within the radius of 10cm,
40cm, and 1m in the input space. Standard PointNet [95] is used to extract grouped inputs
followed by 3 FC layers. The dimension of the FC layers are [128, 128, 256], [256, 256, 512],
and [512, 512, 512], respectively. Another 3 FC layers with the dimension of [512, 256, 2] are
utilized to predict the grasp success label. ReLU is used as the activation function in the
whole network.

Baselines

We compare the training performance of the proposed combined point cloud representation
with the following baseline methods:

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 43

(a) (b)

Figure 4.5: (a,b) shows the learning curves and the ROC curves for baseline comparisons.

Contact area. Contact area representation is widely used for parallel-jaw grippers as
in [68, 91, 57]. We extract contact area points for each grasp to adopt such a method.
Moreover, we add point normals and object-gripper masks to the input points. The resulting
7-dimensional point clouds are fed into evaluation models to predict the grasp success rate.

Grasp as latent variable. Instead of combining grasps with objects at the input space,
[62] propose to concatenate encoded objects and grasps in a latent space. It is not clear
whether this representation can perform better than interpretable representations (i.e., com-
bining in the input space). We adopt similar model architectures in [62] to inspect such a
question. We replace the original voxel encoder with a PointNet++ encoder for objects and
keep other layers the same for a fair comparison.

Results

We trained multiple evaluation models with different input designs. Each input design was
trained with different seeds for 200 epochs to select one with the best performance. We used
1,200 samples that were held out during the training for validation. Models were optimized
with SGD and a constant learning rate of 0.001. Each model took 6 hours to converge with
two GTX1080Ti GPUs. Prediction accuracy and receiver operating characteristic (ROC)
curves are used to measure the performance.

Baseline comparisons. Our first experiment compares the combined point cloud rep-
resentation with baseline methods. Fig. 4.5(a) shows the validation accuracy across the
training epochs. Fig. 4.5(b) shows the ROC curves. As can be seen, the combined point
cloud performs the best among all three embedding methods. As suggested by geometric
quality metrics [26], the gripper’s configuration is related to grasp success. By combining the
point cloud, we encode the gripper’s kinematics information into the input. Furthermore, the

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 44

(a) (b)

Figure 4.6: (a,b) shows the learning curves and the ROC curves for additional features.

combined representation intrinsically includes the contact area. In the PointNet++ architec-
ture, there is a neighbor grouping operation at every SA layer. Thus, the evaluation model
would take advantage of the contact area using the combined representation, together with
the geometric heuristics. Moreover, we observe the latent representation performs worse than
the combined point cloud. This suggests contact information, which interpretable represen-
tations encode, contributes to the prediction performance, and is essential for multi-fingered
grasp planning.

Additional features. We then investigate whether point normal directions and binary
gripper-object mask can improve the evaluation performance. As analytical grasp met-
rics [100] suggest, the grasp success rate is strongly related to the contact force and the
object’s normal directions. For example, the grasp map matrix [77] is essential to analyze
a grasp’s wrench space. Contact normal and forces are required to compute the grasp map
matrix and characterize the force-closure constraint. Experiments support such reasoning as
shown in Fig. 4.6. Extra features improve the prediction accuracy with point cloud repre-
sentations. Moreover, adding normal directions yields better performance than only adding
binary masks. This might be because the network can learn to segment the point cloud,
while it is harder to regress normal directions for each point [96].

In-exact finger contacts. We next train models with in-exact finger contacts as shown
in Fig. 4.4. The objective of using in-exact contacts is to speed up the sampling procedure
and increase the evaluator’s robustness. In this experiment, finger joints θ are jittered in the
training dataset. Fig. 4.8 demonstrates the results. The exact contact scenario is added for
comparison. The proposed two jittering techniques have similar performances in the sense
of prediction accuracy. Although they both take a long time to converge and underperform

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 45

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Figure 4.7: (1-11) The grasp planning and execution results on 11 objects with single-view
point clouds. For each column, (Top) shows the perceived point cloud and planned grasps,
(Middle) shows physical grasps reaching the target grasp, and (Bottom) shows the execution
results.

(a) (b)

Figure 4.8: (a,b) shows the learning curves and the ROC curves for different finger contact
phases.

the exact contact, they have lower time complexity in practice. The slow convergence might
be due to the irrelevant variables that confuse the network.

4.4 Real-World Experiments

The proposed MF-GPD is run on a desktop with a GTX1080Ti GPU, 32GB RAM, and
a 4.0GHz CPU. For the experiment, we use a BarrettHand BH8-282 multi-fingered hand
attached to a FANUC LRMate 200iD/7L manipulator for grasping. An Ensenso N35 camera
is used to capture the point cloud. The region-growing approach implemented in the point
cloud library [103] is utilized to pre-process and segment objects. The sign-distance field

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 46

Table 4.1: Performance analysis of MF-GPD and baselines on single object grasping tasks.

Success Rate Time (sec/grasp)

GPD (position only) [57] 57.6% (19/33) 2.89
GPD (position and normal) [57] 65.5% (36/55) 2.89
GPI [62] 69.1% (38/55) 1.37
PPO-JPO [26] 66.7% (22/33) 3.26
MF-GPD w/ Exact Contact 74.7% (74/99) 2.82
MF-GPD w/o Exact Contact 71.7% (71/99) 1.07
MF-GPD w/o Extra Features 63.6% (21/33) 2.82

in (4.3) is computed using the flexible collision library [88]. Hyperparameters are chosen as
δ = 0.8, ϵ = 30, ςR = 30, ςt = 0.05, ξ = 0.5, and ∆ffi = 0.1.

Fig. 4.7 shows the grasp planning and grasp execution results on 11 different objects
with the zero-finger-joint contact evaluation model. The point cloud is captured using one
depth camera. The object’s point cloud and the located grasp are shown on the top of each
subfigure. The physical grasp poses, and the execution result of the planned grasp are shown
in the middle and bottom, respectively. The algorithm is able to find collision-free grasps
for a) small objects, b) objects with complex surfaces, and c) objects with sharp edges.
Comparing to experimental results of parallel grippers in previous chapter 2, it can be seen
that multi-fingered grippers have advantages in grasping objects with curved and complex
surfaces, such as cylinders and toys. This might be due to the fact that the extra finger
provides additional contact and thus makes the grasp stable.

Table 4.1 compares MF-GPD with baseline methods in single object grasping tasks.
Grasp pose detection (GPD [57]) and grasp pose probability inference (GPI [62]) were im-
plemented and compared. Each object was grasped for even times. Besides these two base-
lines, the palm pose optimization joint pose optimization (PPO-JPO) [26] is implemented
and compared, which solves the grasp planning problem using runtime optimization. In
the experiments, grasp candidates are sampled with the cross-entropy sampler. Grasps in
collisions are pruned before the execution. Table 4.1 also compares different input feature
selections and contact phases. Normal directions and the binary mask are added by default.
The results show that additional point normals and masks improved the evaluation accuracy;
the non-exact contact reduces the computation complexity.

Fig. 4.9 displays two typical failures of MF-GPD. One failure mode occurs when the
object’s point cloud is significantly incomplete. The exact contact configuration is hard to
determine under such circumstances, which yields asynchronous contact. The second type of
failure occurs when the gripper is placed in sharp regions of the object. The gripper might
exert unbalanced contact forces on the object when in those areas and cause object motions,
yielding object slippage. It appears that the performance could be improved with an object
completion and adaptive clamp policy.

Fig. 4.10 shows a sequence of detected grasps in a cluttered environment. The robot

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 47

(a) (b)

Figure 4.9: Two failure modes of MF-GPD. (a) shows the object slippage due to lack of
contact detection with incomplete point clouds, and (b) shows the net object movement
when unbalanced forces are applied.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.10: (a-j) show a sequence of detected multi-fingered grasps in a cluttered scene.

attempts one grasp each time, and the grasped object is removed from the scene. This
procedure continues until all objects are grasped and removed or consecutively failed five
times. The grasp sequence is selected according to the graspability or whether a collision-free
grasp exists for a particular object. The local grasp optimization (4.3) is solved using the
gradient descent algorithm, and the grasp trajectory is planned using the RRT-Connect [50].
Table 4.2 shows the task completion rate, the required computation time, and the grasp
success rate for 10 trials. A trial is completed if all objects are removed from the scene, and
the grasp success rate is measured for each grasp execution. MF-GPD uses inexact contact
and extra features to evaluate each candidate. As can be seen, MF-GPD with local grasp
optimization has the highest task completion rate and requires the least computation time.
From experiments, we observe the major bottleneck for sample-then-evaluate methods is the
collision. GPD and GPI both require numerous iterations and samples to find a collision-free
robust grasp, while MF-GPD resolves such a cumbersome procedure by local optimization.
Moreover, finding exact contact configurations takes time for multi-fingered grippers: we
observe longer computation time for GPD and GPI than MF-GPD, which uses in-exact

CHAPTER 4. GRASP PLANNING FOR MULTI-FINGERED HANDS 48

Table 4.2: Performance analysis of MF-GPD and baselines on cluttered objects removing
tasks.

Time (sec/grasp) CR SR
GPD [57] 3.2 70% 60.4% (32/53)
GPI [62] 3.0 80% 63.5% (33/52)
PPO-JPO [26] 3.3 60% 58.7% (27/46)
MF-GPD w/o Opt. 2.9 80% 64.3% (36/56)
MF-GPD 1.7 90% 72.4% (42/58)

CR for scene removal completion rate and SR for grasp success rate.

contact to reduce the sampling complexity. The performance of PPO-JPO is compromised
due to the inaccurate grasp quality estimation and incomplete point cloud.

4.5 Chapter Summary

In this chapter, we propose a multi-fingered grasp pose detection (MF-GPD) algorithm
to plan grasps in clutter. The algorithm generates grasp candidates using a cross-entropy
sampler and assesses them with an evaluation model. Gripper’s point cloud is rendered
and combined with that of the object before feeding into the evaluation model. Top-ranked
grasps are refined with a local grasp optimization to avoid collisions in clutter. MF-GPD
can locate a collision-free grasp in the clutter with 72.4% success rate in reality.

49

Part II

Contact-Aware Manipulation

50

Chapter 5

Robot Dexterous Manipulation by
Model-Based Learning from
Demonstrations

5.1 Introduction

Chapters 2 through 4 present a series of algorithms focused on robust and sample-efficient
robotic grasp planning and execution. To extend the capabilities of robots to more complex
and general tasks, there is a necessity to equip them with advanced manipulation skills. These
skills include actions such as pushing, pivoting, and in-hand reorientation of objects. Recent
advancements in reinforcement learning (RL) algorithms have shown promising outcomes in
mastering these complex tasks. However, a significant limitation of RL is its dependence on
extensive reward engineering, which challenges its scalability in learning a broad spectrum of
skills. In this context, Learning from Demonstration (LfD) emerges as a potent alternative.
LfD enables robots to assimilate policies from expert demonstrations, including those sourced
from platforms like YouTube [141], potentially diminishing the human labor required in the
robotic skill acquisition process [112, 113].

This chapter specifically focuses on the development of a model-based LfD framework
that utilizes raw RGB video data as input. Although model-based learning approaches are
recognized for their superior sample-efficiency and generalization capabilities over model-free
counterparts [86, 45], the domain of model-based LfD has not been extensively explored and
remains a burgeoning field. We identify and discuss several major challenges that currently
impede the widespread adoption of model-based LfD in real-world applications.

One challenge is how to automatically and efficiently develop a model that scales to
high-dimensional input such as raw images or videos [43]. To tackle this, we introduce a self-
supervised modelling pipeline that leverages recent advancements in differentiable rendering
and signed distance functions. This pipeline estimates both the geometric shape of the object
and its associated 6D poses, forming an explicit representation. A second challenge lies in

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 51

enabling robots to effectively utilize physical models to generate efficient policies. This
is particularly critical for robots operating in real-world contact-rich manipulation tasks
where the physical interaction between the robot and its environment is a key factor. To
address this, we develop a hierarchical LfD framework that integrates low-level modules
for contact-point localization and contact-force optimization with a high-level module for
contact sequence planning. These modules work in concert to plan manipulative actions.
To ensure robust and real-time deployment, we further incorporate a neural policy designed
to imitate the outcomes of planning algorithms. This enables the robot to execute complex
tasks with high reliability and efficiency.

We have evaluated our pipeline on two datasets, including the sth-sth dataset [33] con-
taining basic manipulation actions on various objects and a small recorded video dataset
showing a human performing dexterous in-hand manipulation with primitive objects. The
results, derived from rigorous simulation and real-world experiments, bear testament to the
effectiveness of our proposed pipeline, available on our website [125].

5.2 Diff-LfD: Contact-aware Model-based Learning

from Visual Demonstration

The overall framework is illustrated in Fig. 5.1. Given a demonstrated RGB video consisting
of N frames denoted as V = {It}Nt=1, we prepossess the video to segment and identify the
most relevant objects with masks {Mt}Nt=1, exploiting the SAM [49]. The local frame of the
object is randomly defined at the first frame. Our Diff-LfD calculates the object’s relative
pose transformation in the demonstration and jointly estimates the object’s mesh O and
the associated 6D poses {Pt}Nt=1 at each frame. If the robot is provided with a similar but
different object from the object recorded in the video, we align the pose of the provided
manipulated object with the reconstructed object. Next, our pipeline infers the wrench (a
combination of external forces and torques) required to complete the pose transformation
across two consecutive time steps and generates feasible robot actions to accomplish the
pose transformation. This planning includes both the low-level contact-point localization
and contact-force optimization and high-level contact sequence planning to chain the whole
(long-horizon) manipulation sequences. The manipulation actions are then utilized to train
a neural network for robust real-world execution and generalization.

5.3 Pose and Shape Estimation with Differentiable

SDF

This subsection introduces the pipeline for pose estimation and shape reconstruction from
raw videos. We adopt the differentiable SDF (Diff-SDF) [119] to represent the object ge-
ometry, which has a large representation capability to model diverse objects with various

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 52

Figure 5.1: The proposed model-based learning from demonstration (LfD) pipeline can be
divided into two primary components. The top part focuses on object shape reconstruction
and pose estimation, employing differentiable mesh rendering and signed distance function
(SDF). The bottom part illustrates the process of contact-aware hierarchical manipulation
planning involving contact point localization and differentiable wrench optimization.

topology structures. Moreover, Diff-SDF enables smooth image-based optimization to the
images due to its inherent convexity [119]. The explicit surface mesh O can be extracted
from the SDF using the marching cube method [61].

Ideally, given an initialization of an SDF parameterized by ϕ and its associated 6D
poses at each frame {Pt}Nt=1, the differentiable renderer R produces a sequence of images
{I(ϕ,Pt)t}Nt=1 = {R(ϕ,Pt)}Nt=1. Diff-SDF optimizes the SDF parameters to reconstruct the
object shape by reducing the reconstruction loss:

LR =
N∑
t=1

||I(ϕ,Pt)t − It|| (5.1)

However, this approach encounters difficulties when applied to real-world videos due to
the following reasons: unknown camera poses and lack of views for unseen regions. Because
the SDF optimization presumes that camera poses of It are known in advance, which is not
valid for real-world videos where camera poses are not provided. To estimate camera poses

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 53

{P−1
t }Nt=1, we employ differentiable rendering to hierarchically produce an explicit surface

mesh Ô with texture denoted as T̂ , and jointly estimate the objects poses {P̂t}Nt=1 over
multiple images.

According to the first frame I1, our pipeline estimates the object shape at the coarse level
denoted as Ocoarse and selects the local frame as the geometry center of its bounding box.
Based on the reconstructed mesh Ocoarse, we estimate the sequence of object poses among
each frame denoted as {Pt}Nt=1. With the reconstructed mesh Ocoarse and associated poses
{Pt}Nt=1, we can render the sequences of images denoted as {Ît}Nt=1. Starting from Ocoarse, we
then refine the mesh so that the loss between rendered video and real video is reduced. In
this stage, the mesh is refined according to loss between the whole sequence of images. With
the updated mesh Ô, we render a sequence of new images and refine the poses to minimize
the loss LR. We iteratively refine the object meshes and poses until the loss LR is smaller
than a given threshold or the process reaches the max iteration number. An overview of our
pipeline is summarized in Alg 1. Details are available on the project website [125].

Algorithm 1 Shape and Pose Estimation

1: Input: {It}Nt=1 RGB video and {Mt} segmented object masks, loss threshold ϵ, max
iteration L, current iteration l

2: Output: reconstructed mesh Ô and the sequence of object poses {Pt}Nt=1

3: Estimate the coarse object mesh denoted as Ocoarse based on the first image and define
the object’s local frame (for example, the geometry center of the bounding box)

4: Estimate the sequence of object poses denoted as Pt based on Ocoarse. Render the whole
sequence of images and compare the loss LR

5: while LR ≥ ϵ and l < L do
6: Refine object mesh Ô to minimize the loss LR

7: Refine object poses {Pt}Nt=1 to mimimize the loss LR

8: l← l + 1
9: end while
10: Return Ô and the sequence of object poses {Pt}Nt=1

We denote the optimized mesh, textures, and poses from differentiable rendering as
Ô∗, T̂ ∗, {P̂∗

t }, respectively, and their associated rendered images Î∗t = R(Ô∗, T̂ ∗, {P̂∗
t }) as:

Ô∗, T̂ ∗, {P̂∗
t } = argmin

Ô,T̂ ,{P̂t}

N∑
t=1

∥Ît − It∥ where Ît = R(Ô, T̂ , {P̂t}) (5.2)

The quality of mesh Ô∗ is usually not satisfying. We then optimize the Diff-SDF to get
an optimized SDF ϕ∗ by setting the camera pose to be {P̂−∗

t } to reduce the projection loss:

ϕ∗ = argmin
ϕ

N∑
t=1

∥I(ϕ, P̂∗
t)t − Î∗t ∥ where Î∗t = R(Ô∗, T̂ ∗, {P̂∗

t }) (5.3)

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 54

After the Diff-SDF optimization, the resulting surface mesh Ô∗∗ is then extracted from
the SDF ϕ∗. The Ô∗∗ is then leveraged to optimize the object poses {P̂∗∗

t } as below. The
process above iterates until we get a small loss below a given threshold or reach the maximum
iteration number.

{P̂∗∗
t }, T̂ ∗∗

t = argmin
{P̂t},T̂

N∑
t=1

∥Ît − It∥ where Ît = R(Ô∗∗, T̂ , {P̂t}) (5.4)

Although each video contains multiple frames, there are still cases that lack sufficient
views, resulting in poorly reconstructed unseen regions of the object. To address the incom-
plete views, we adopt a diffusion model [59] to infer the unseen areas. Our model takes the
first real image I1 with a known camera pose and synthesizes images from different view-
points around the object. We then combine these synthetic views with others for a complete
object-shape reconstruction.

After solving the optimization, we apply P−1 to the tracked object pose P̂∗∗
t to obtain

the pose of the manipulation object for the contact-aware manipulation Pt.

5.4 Contact-Aware Manipulation Policy

Building on the estimated object’s pose and shape, this subsection delves into the process of
manipulating an object between two consecutive poses Pt and Pt+1. If the robot is provided
with a similar but different object from the object recorded in the video, we align the pose
of the provided manipulated object with the reconstructed object. The alignment is solved
as a pose estimation problem:

argmin
P

d(P̂∗∗
0 Ô∗∗,PO) (5.5)

where d is the chamfer distance between two meshes, P̂∗∗
0 is the pose of the reconstructed

mesh at the first frame, Ô∗∗ is the reconstructed mesh, P is a transformation to the manip-
ulation object, and O is the manipulation object.

Our framework employs a hierarchical structure consisting of low-level modules for con-
tact point localization and contact-force optimization, as well as high-level contact sequence
planning. The low-level modules serve dual purposes: contact-point localization allows the
robot to establish new contacts while keeping the object stationary, whereas contact-force
optimization enables the robot to manipulate the object toward its target and maintain sta-
ble contact. These low-level actions are then orchestrated by the high-level contact sequence
planning module to form a cohesive sequence of actions. To facilitate efficient and robust
real-time deployment, we also incorporate a neural policy designed to imitate the planned
trajectories.

Contact point localization. Contact point localization enables the robot to change con-
tact points on the object, which encompasses two critical steps: the generation of the tran-
sition target and the execution of the transition. As shown in Fig. 5.2, the transition target

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 55

is calculated analytically with the desired object transformation wrench W . Wrench W is
located at the objects’ center and represents the necessary wrench to facilitate the transfor-
mation from Pt to Pt+1. It is determined using a Proportional-Derivative (PD) controller:
W = kp ∗ (Pt+1−Pt)−kdṖt+g, where kp, kd are the proportional and derivative gains, and g
signifies the gravitational and external forces acting upon the object. Following this, we use
an enumeration process to identify all plausible contact combinations that can generate the
desired wrench W . Initially, all potential contacts are assessed to single out those capable
of producing the desired object wrench W through contact points {pi} for i ∈ [1..n]. The
number of contact points n is pre-determined based on the manipulation task. Further fil-
tering processes are implemented to ascertain contacts that meet kinematic and stationary
constraints: the inverse kinematics are solved to verify kinematic feasibility, and only one
contact point can move at a given time while the remaining contact points hold the object
immobile. Although multiple contact points could theoretically move while maintaining the
object stationary, we found that planning is considerably more complex due to the enlarged
search space, and the objects are prone to unintended movement due to execution errors. To
execute the transition, we use the Rapidly-exploring Random Tree (RRT) motion planner to
generate a feasible trajectory for the moving contact and the gravity compensation wrench
on the remaining contacts to hold the object.

Curr. obj. pose

(a) (b)
Target obj. pose

Figure 5.2: Contact points inference in the 2D case with n = 2 contact points. (a) Given
object current and target poses Pt,Pt+1, the desired object wrench W is computed to pro-
duce the transformation. (b) Enumerate all contact points combinations {pi} (red dots) to
find those that can produce the target wrench by applying contact wrenches {Wpi} (red ar-
rows) within the friction cone (black dashes). The contact wrenches {Wpi} are equivalently
transferred to the object coordinate as Ŵ to compare with the desired object wrench W .

Contact wrench optimization. Once the contact points p = {pi} are determined, the
robot exerts contact wrenches Wp = {Wpi} at contact points to manipulate the object
toward its target. The objective and loss functions to optimize the contact wrenches are
defined in (5.6).

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 56

min
Wp
L(Wp) = λP ∥P ′ ⊖ Pt+1∥+ λv

∥∥∥Ṗ ′
∥∥∥+ λW ∥Wp∥ subject to P ′ = F(P ,Wp) (5.6)

where F represents the contact dynamics, P ′ is the 6D object pose after applying the
wrench Wp from the initial object pose P . Pt+1 is the target object pose, ⊖ represents
subtraction for 6D poses. Ṗ ′ represents the object’s velocity and is added to damp the
object’s speed, making the manipulation more stable [97]. λP , λv, λW are hyperparameters
standing for loss weights.

We propose using gradient-based methods to optimize the objective function, (5.6), with
differentiable simulation in Nimble Physics[83] to approximate the forward dynamics F . We
use s = (P , p) as the concatenated state of the system in the following of this chapter.
The gradient of the objective can be computed as ∇ = ∂L

∂Wp from the simulation. However,
gradients near the contact are often nonlinear, sensitive, and discontinuous, posing challenges
for vanilla gradient descent optimization methods. To address this issue, this chapter draws
inspiration from [89, 102, 1, 139] and proposes computing the gradient expectation at each
point with Gaussian noises, as shown in (5.7). The contact wrench is then updated using
a step size α along the gradient direction. In this chapter, we use the analytical contact
wrench computed during the contact point localization as the initial solution point for the
optimization process.

∇ = Ens,nW∼N

[
∂L(F(s+ ns,Wp + nW),Wp + nW)

∂Wp

]
(5.7)

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 57

Algorithm 2 Global Planning for Manipulation Sequences

1: Input: s0 = (Pt, pt), target object pose Pt+1

2: Output: R = {s}
3: Q ← {s0}, R ← {∅} ▷ Init.
4: while Q is not empty do
5: s← SelectNode(Q)
6: if IsSuccess(s,Pt+1) then
7: Return R ▷ Exit if success
8: end if
9: s′ ← OptWrench(s,Pt+1) ▷ Opt. wrench
10: if OptIsSuccess(s, s′) then
11: Q ← Q∪ s′; R ← R∪ s′

12: else
13: S ← ContactLoc(s,Pt+1) ▷ Loc. contacts
14: for s′ ∈ S do
15: Q ← Q∪ s′, R ← R∪ s′

16: end for
17: end if
18: end while
19: Return R

High-level planning. Our global contact sequence planning, as detailed in Algorithm 2,
employs hierarchical planning to identify viable manipulation sequences, utilizing the previ-
ously introduced contact point localization (ContactLoc) and contact wrench optimization
(OptWrench). While the exertion of contact wrenches allows the robot to perform manipu-
lation tasks involving nearby target poses, switching between multiple contacts is necessary
when dealing with distant targets due to kinematic limitations.

Every node s in the planning tree encapsulates the object pose P and contact p. The
tree begins with a start node that represents the initial object pose and robot contact,
with the goal of reaching the target object pose Pt+1. At each iteration, a node s is cho-
sen and expanded using ContactLoc or OptWrench following A* search [37]. If the object
has been successfully manipulated through the exertion of an optimized contact wrench
(OptIsSuccess), the resulting node s′, containing the manipulated object pose and contact
points, is expanded. Conversely, if the exertion fails, contact localization is performed by
identifying a new set of contacts and expanding them in the tree. This planning algorithm
continues until either the target object pose is reached (IsSuccess) or all nodes within the
tree have been explored. The search procedure we propose focuses on optimizing contact
wrenches at first and resorts to locating new contacts only if the exertion fails. Although
this approach narrows down the search space, it may also prune potentially valid and op-
timal paths. For instance, transiting contacts before reaching the kinematic limit might
result in a shorter trajectory with fewer contact switches. To address this, we introduce a

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 58

random chance for each node to transition contacts, regardless of the wrench optimization
outcome. This design promotes exploration within the planning process, enabling a more
comprehensive discovery of the entire search space.

Sim2Real: closed-loop policy with domain randomization. Despite its efficacy in
generating viable manipulation trajectories, the above-described planning algorithm is com-
putationally demanding as it requires online enumeration of contacts and wrench optimiza-
tion, rendering it unsuitable for real-time applications. To surmount this challenge, we utilize
deep learning to approximate the manipulation policy. We leverage a fully connected net-
work to learn the robot control commands that were derived from the high-level planning
algorithm. This network ingests the object pose and joint angles as inputs and outputs of
robot joint torques. These torques are obtained by mapping the contact wrenches into joint
torques, courtesy of the Jacobian. Our training dataset is generated by solving the planning
problem under conditions of noisy initial and target positions and perturbed system dynam-
ics. This process results in a set of state-torque training pairs. We further augment each
sample by introducing noise into the states and optimizing the joint torques to adhere to the
planned trajectory. It’s noteworthy that for domain randomization, we optimize the contact
wrench to reach the next state along the trajectory rather than solving the original planning
problem with a distant target. This makes the data augmentation process more efficient. In
a bid to further enhance performance, we fine-tune the network within a Markov Decision
Process (MDP) framework using the REINFORCE algorithm [126]. During the fine-tuning
process, the state and action spaces maintain the same setup as described earlier, while the
reward function is defined as r(s, τ) = −λP ∥s⊖ Pt+1∥−λv ∥ṡ∥−λW ∥τ∥ , where Pt+1 is the
target object pose, and ṡ denotes the object velocity [97]. λP , λv, λτ are hyperparameters.

5.5 Experiments

This section offers both quantitative and qualitative assessments of our proposed methodol-
ogy. Our experiments are designed to address the following research questions: 1) How does
our Diff-LfD framework compare to baselines that also rely on visual demonstrations? 2)
What is the efficacy of our contact-aware manipulation algorithm in generating long-horizon
trajectories? 3) Is our approach feasible for deployment in real-world scenarios? 4) How
accurate is our self-supervised object reconstruction and tracking? 5) What is the utility of
the views synthesized by the diffusion model? 6) What impact do gradient-based optimiza-
tion, global planning, and random contact transition have on performance? 7) How robust
are the generated trajectories and the closed-loop policy?

Experimental setups and hyperparameters. In this work, we evaluated the proposed
algorithms through two experimental settings: 1) basic manipulation actions on primitive
objects and 2) in-hand object manipulation. For the basic manipulation tasks, we created
environments using the Nimble Physics engine based on the 20BN-something-something

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 59

(sth-sth) dataset [33]. The dataset contains labeled video clips of human demonstrations
performing pre-defined basic manipulations. These environments were equipped with a Ki-
nova MOVO robotic manipulator and primitive objects placed on a table. For the in-hand
manipulation, we utilized the Allegro Hand to rotate objects. The Allegro Hand has four
fingers, each with four joints controlled independently. The palm of the robotic hand is
maintained in a fixed position, and fingers grasp the object. In comparison to previous
studies such as [89, 11], our experiments involved lifting the object off the palm rather than
having it lie on the palm, thus increasing the challenge for the hand to maintain its grasp
on the object during the manipulation process. For the baseline comparison, the human
demonstrated an in-hand object rotation of 180 degrees.

We do not derive the physical parameters, such as mass, from observations. Instead, for
each planning trial, they are sampled from a uniform distribution. In real-world experiments,
we employ these randomized physical parameters during planning to amass a dataset, which
is then used to train the closed-loop policy.

All computations were performed using an Intel 3.6GHz CPU with 64GB RAM, with
the exception of the closed-loop policy, which was trained using a GTX3080 GPU. The
simulation time step was set to 1e-4 in the Nimble simulation for dynamical stability and
accuracy. Each experiment was conducted seven times with different seeds to report the mean
and variance in the following experiments. The hyperparameters are as follows: kp = 200
and kd = 10 were used for desired wrench computation; n = 1 was used for manipulation of
primitive objects and n = 4 for in-hand manipulation. A threshold of δ = 0.01 was set for
wrench projection error. We set λP = 2.0, λv = 0.3, and λW = λτ = 0.5. Gaussian noise
was injected to smooth the gradient with ns ∼ N (0, 0.01) and nW ∼ N (0, 0.1). Contact
wrench optimization was deemed successful (OptIsSuccess) if |P ⊖ P ′| ≥ 0.05, and the
search algorithm was successful (IsSuccess) if |P ⊖ Pg| ≤ 0.02. During each iteration of
the tree search, we randomly selected a node to transit contact with a probability of 0.3 to
balance exploration and exploitation.

To account for the fragility and time-sensitive nature of in-hand manipulation, we trained
the closed-loop policy specifically for this task. For the manipulation of primitives, we used
the search algorithm for iterative replanning. Our trajectory dataset comprises 200 trajec-
tories for each initial and target pose and 87, 300 state-wrench pairs. To ensure variability,
object initial rotations were noised, with rotational offset drawn around the demonstrated ini-
tial pose within 10◦. We also determined the initial contact to stably grasp the object. Each
transition was augmented by uniformly distributed noise with 5◦ on rotation and 0.005cm
on translation. The closed-loop policy takes the state input s ∈ R6+16 and determines the
contact wrench Wp ∈ R4∗6, as the Allegro Hand has 16 DoFs and 4 fingers. We fine-tuned
the policy for 20, 000 steps in the simulation to obtain a robust policy. During training and
fine-tuning, we used the Adam optimizer with a learning rate of 1e−4 and a linear schedule.

Baseline comparisons on LfD framework. We compare our model-based approach
with the method introduced in [92], which presents an optimization-based method to esti-
mate a coarse 3D state representation, using a cylinder for the hand and a cuboid for the

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 60

Figure 5.3: Experimental results from sth-sth (1st & 2nd rows) and in-hand object manip-
ulation (3rd & 4th rows).

Table 5.1: Baseline comparisons on LfD framework. Each cell represents the success rate of
the manipulation.

Pull Right Pull Left Push Right Push Left

Baseline [92] 0.976 0.992 0.994 0.946
Ours 1.000 1.000 1.000 1.000

manipulated object(s). Such coarse approximation limits the representation capability and
the quality of the state estimation. We utilize our object reconstruction and tracking to
estimate the object trajectory and use contact planning to find a path. We select videos
of 4 classes from the sth-sth dataset [33]: ”Pull Right” with 164 videos, ”Pull Left” with
130 videos, ”Push Right” with 89 videos, and ”Rush Left” with 253 videos. We report the
results as in Fig. 3. Our approach successfully finished all the classes and slightly outper-
formed the method introduced in [92]. One explanation is that these four types of videos
are simple for our proposed pipeline to imitate. Thus, we also apply our method for in-hand
manipulation tasks from raw videos to test the limits of our proposed framework. Fig. 5.3
shows the manipulation trajectory in two environments generated by our method.

Baseline comparisons on shape reconstruction and pose estimation. In contrast
to other learning-based approaches for shape reconstruction and pose estimation, such as
Neural Radiance Fields (NeRF), our perception module operates under a distinct task set-
ting. Specifically, our input consists of a single-object RGB video featuring objects that
undergo both rotation and translation. Most NeRF-based methods, on the other hand, rely

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 61

Table 5.2: Baseline comparisons on contact-aware manipulation policy. The first element
in each cell is the mean/variance for the computation time (s); the second is the difference
between the target and final object rotation (◦).

RRT CITO PGDM iLQR Ours

Ball 122± 20 7.2◦ 52± 8 16.7◦ 2.14± 0.4 2.4◦ 57± 10 11.2◦ 62± 12 2.6◦

Cube 136± 16 9.0◦ 60± 7 18.5◦ 2.16± 0.3 4.1◦ 70± 19 13.3◦ 78± 16 3.8◦

Capsule 127± 24 8.4◦ 63± 4 15.2◦ 2.18± 0.3 9.3◦ 80± 6 12.2◦ 81± 8 7.7◦

on multiple static object poses with known camera positions. Some NeRF implementations
utilize COLMAP [108] to initialize camera poses. However, this approach is less effective in
our setting, where the background remains largely unchanged and the frame count is lim-
ited. These factors hinder COLMAP’s ability to accurately estimate object poses, leading
to unstable object surface reconstructions from NeRF. Further experimental comparisons
with Nope-NeRF [7], which also employs COLMAP for initialization, are available on the
website [125]. Our findings indicate that Nope-NeRF fails to converge in more than half of
the test cases (5 out of 9), resulting in empty reconstructions. The remaining cases yielded
incorrect pose estimations and reconstructions when compared to our method.

Baseline comparisons on the contact-aware manipulation policy. In this study, we
evaluate our contact-aware trajectory planning algorithm against four established baselines
within the context of in-hand object rotation tasks. The baselines are as follows: 1) The
Rapidly-Exploring Random Tree (RRT) planner, as outlined in [89], employs random sam-
pling within a configuration space defined by both robot joint positions and object poses
to identify feasible trajectories. 2) Contact-Implicit Trajectory Optimization (CITO) [11]
first establishes a predefined trajectory for the object, then identifies optimal contact points
along this path before calculating the requisite control inputs for trajectory tracking. 3)
Pre-Grasp Informed Dexterous Manipulation (PGDM) [18] utilizes reinforcement learning
to train manipulation agents, incorporating pre-computed grasp data to achieve the desired
manipulation trajectory. 4) The Iterative Linear Quadratic Regulator (iLQR) [89] employs
local approximations of the dynamical system to iteratively solve for optimal manipulation
strategies through quadratic planning. For the purposes of this experiment, our algorithm
operates without the closed-loop policy. We apply baselines on three in-hand manipulation
tasks associated with the ball, the cube, and the capsule. We adopt two evaluation metrics:
the averaging planning time and the difference between the target rotation and the final
object rotation. Results are reported in Fig. 4.

While both PGDM and iLQR boast the quickest inference times, it’s crucial to highlight
that PGDM requires approximately 5 hours of training for each task, and iLQR suffers from
a higher tracking error compared to our method. The RRT approach uniformly expands its
search tree, thereby increasing the probability of encountering unstable contacts and conse-
quently requiring the most time to complete the task. In contrast, our algorithm and CITO
focus on a more constrained search space where stable grasping is feasible, thereby simpli-

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 62

Table 5.3: Shape Reconstruction and Pose Estimation Error. CD represents Chamfer Dis-
tance

Chamfer Distance Translation Error Rotation Error
After Stage a 4.9 - -
After Stage b 2.1 2.0 0.27

Iterative Refinement 1.7 0.5 0.25

fying the search complexity. Furthermore, our empirical results indicate that the final error
rates for all baseline methods were consistently higher than our algorithm. Specifically, the
RRT approach lacks a guarantee for optimal trajectory sampling, CITO overlooks physical
dynamics during the planning phase, and iLQR struggles with optimization over nonlinear
loss contours. These limitations render the baseline methods susceptible to failure due to
dynamic uncertainties and execution errors.

Figure 5.4: Allegro Hand per-
forms in-hand object manipula-
tions.

Real-world experiments. We conducted real-world exper-
iments for in-hand object manipulation. The experimental se-
tups are illustrated in Fig. 5.4. We trained the closed-loop
policy to imitate a human rotating a cube and deployed it as
the robot controller. This network receives the current joint
angles of the robot, and the current object poses as input and
outputs the joint torques. We performed the in-hand manipu-
lation task with the Allegro Hand for different primitive objects
and initial poses. During supervised learning, convergence of
the policy is achieved in approximately 9.3 minutes, while fine-
tuning takes an average of 50.1 minutes. The results of the
difference between the target and final object rotation errors
are Cylinder (3.8◦), Ball (2.4◦), Lemon (6.3◦), and Avocado
(5.9◦), which further underscore the ability of our closed-loop
policy to generalize across similar but distinct geometries.

Ablation studies of shape reconstruction and pose esti-
mation. We randomly select 50 daily objects from Shapenet,
generating 6D trajectories and rendering videos as demonstrations. We apply our pro-
posed approach and report the shape reconstruction error and pose estimation error at
different stages in Table 5.3. For the 6D pose estimation error, we report both the
translation error and rotation error. The rotation error denoted as eω is represented as
min(||qpred − qgt||2, ||qpred + qgt||2). We adopt the quaternion representation for qpred and qgt,
which stands for the predicted and ground truth quaternion, respectively. As the results
show, the iterative refinement stage (which jointly optimizes object shape and pose within
the whole sequence of images) significantly reduces the shape reconstruction error, rotation
error, and translation error.

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 63

Table 5.4: Computation time (s) on the in-hand manipulation task with a rotation target
of 180◦. Ablation on the contact force optimization methods.

CMA-ES GD Ours
Ball 104± 15 84± 8 62± 12
Cube 121± 18 95± 11 78± 16

Capsule 129± 10 103± 16 81± 8

To evaluate the effect of the synthesized views, we perform an ablation comparison for the
diffusion model. Visual demonstrations are available on our website [125]. The hallucinated
or unseen side of the object is more reasonable with the diffusion model. Specifically, we
propose to utilize the pre-trained Zero 1-to-3 diffusion model in our approach. Zero 1-to-3 is a
specialized framework designed for novel view synthesis from a single RGB image. During the
inference phase, the Zero 1-to-3 diffusion model takes the input view and a relative viewpoint
as conditional information, synthesizing the corresponding novel view. It’s important to note
that we do not train diffusion models within our pipeline. Instead, we leverage these pre-
trained diffusion models, honed on extensive datasets, to provide supervision on unseen
views.

Ablation studies of contact-aware planning. To evaluate the benefit of using differen-
tiable simulation for contact force optimization, we compare the smooth gradient technique
to the sampling-based and vanilla gradient descent (GD) methods. For the sampling-based
solver, we used the covariance matrix adaptation evolution strategy (CMA-ES) to optimize
the contact force. For the vanilla GD, we computed the explicit gradient and updated the
contact force with a fixed step size α = 0.1. These methods have experimented with the
in-hand manipulation task with a rotation target of 180 degrees. The closed-loop policy is
not employed, and each experiment is repeated seven times with different seeds to report
the mean and variance of the results. From experiments, we observed that all three meth-
ods yield a similar solution given adequate computation time. A similar phenomenon has
been observed in [139]. This is because solvers can converge to a close point after itera-
tive optimization. Thus, Table 5.4 reports the computation time required to converge. An
experimental trial planned by our method is displayed in Fig. 5.5.

The results of our experiments indicate that our method requires 1.6× and 1.4× less
computation time compared to the sampling-based and vanilla gradient descent (GD) op-
timizers, respectively. Additionally, the gradient-based methods (i.e., vanilla GD and our
proposed method) were found to converge faster than the sampling-based approach due to
their ability to leverage the first-order local gradient information. Furthermore, the results
show that the trajectories optimized using gradient-based methods are less jerky compared
to those optimized using the sampling-based approach. This is likely due to the smooth
gradients provided by the optimizers.

In addition, this experiment evaluated the effectiveness of the global planning module

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 64

(a) (b) (c) (d) (e)

Figure 5.5: (a-e) display a trial of a robotic hand rotating a ball. The rotation of the object can be
identified by the position of the logo. The red circles in images (b) and (c) show the change in contact
points.

Table 5.5: Error between the target and final object rotation angle (◦) on the in-hand
manipulation task with a target of 180◦. Ablation on whether to include the global planning
(GP) module and random contact transition (RCT) module.

Ours Ours w/o GP Ours w/o RCT

Ball 2.6± 2.5 127.2± 5.8 27.5± 13.5
Cube 3.8± 3.2 139.7± 7.1 31.6± 17.8

Capsule 7.7± 10.4 156.8± 9.0 35.1± 14.4

Table 5.6: Error between the target and final object rotation (◦) angle under variant
noises.The manipulation trajectory is generated by the closed-loop policy trained to ro-
tate objects.

No Noise State Execution Inertial Friction

4.7± 0.3 4.7± 0.5 4.8± 0.4 5.3± 0.7 5.7± 0.5

and the random contact transition in the same in-hand manipulation task. Table 5.5 shows
the final rotation error for each ablation. The results demonstrate that the global planning
module significantly improves the object rotation angle through finger gaiting. Manipulation
towards a distant target is challenging with only contact wrench optimization. However,
our proposed method addresses this challenge by combining both local optimization and
global contact switching. The combination of these two strategies leads to improved results.
Additionally, the study shows that the random contact transition improves the results by
exploring a larger search space. We hypothesize that the random transition can locate better
manipulation sequences with a larger set of visited states, thus increasing the probability of
finding feasible paths.

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 65

Robustness to the noise. The aim of this experiment is to evaluate the stability and
robustness of the closed-loop policy for in-hand manipulation. Despite the availability of
adequate trajectories around the manipulation sequence in the training dataset, the closed-
loop policy assumes known state and deterministic dynamics, as explained in the previous
section. Such an assumption can render the policy susceptible to failure in the face of out-of-
distribution uncertainties, such as state observation noises, execution errors, and frictional
and inertial uncertainties. State noises arise from object tracking issues and noisy sensor
readings, while execution errors stem from robot controller and motor movement errors.
Frictional and inertial uncertainties typically result from inaccurate system identification
and the gap between simulation and reality.

To assess the robustness of the closed-loop policy, we added artificial Gaussian noises to
the system during the manipulation to test the performance, including state noises, contact
wrench noises, object friction noises, and inertia noises. Specifically, the state noise was
sampled from N (0, 0.01), the contact wrench noise from N (0, 0.1), the object friction noise
from N (0, 0.3), and the inertial noises from N (0, 1e−5). We deployed the closed-loop policy
to perform the rotation task with different types of noise. The policy knows neither the
noise type nor the noise value during execution. The experiments showed that the closed-
loop policy could achieve the manipulation task without the object falling. Table 5.6 presents
the average final rotation error for the fine-tuned policy.

The results suggest that the closed-loop policy can handle state and execution noises
effectively, with consistent errors across experiments. One possible explanation for this is
that we trained the policy on a dataset with randomized states and augmented trajectories
with noise. Moreover, the training dataset for the contact strategy was collected using
a smooth gradient approximation, which may have contributed to its robustness against
execution noises, as demonstrated in [89]. However, we did observe that introducing noise
to the friction and inertia coefficients affected the planning results, likely because the policy
was not trained to account for such shifts in dynamics. Nonetheless, we believe that fine-
tuning the policy could mitigate these covariant shifts, as shown in [97]. While this is
beyond the scope of our learning from the demonstration algorithm, we acknowledge that
such experiments could be explored in future work.

5.6 Chapter Summary

This chapter investigates the use of model-based learning from demonstrations for robotic
manipulation tasks, contributing several significant aspects to the field. First, we introduce
a new framework for learning from human visual demonstrations in a self-supervision man-
ner, which has the potential to generate robot skills at a large scale. Second, we utilize
differentiable rendering to track object poses in a self-supervised manner. Third, we design
a high-level planning framework that employs differentiable simulations to generate long-
horizon contact actions. This includes inferring and transitioning contact points, optimizing
contact forces, and exerting them. The manipulation trajectories are then approximated

CHAPTER 5. ROBOT DEXTEROUS MANIPULATION BY MODEL-BASED
LEARNING FROM DEMONSTRATIONS 66

by a neural network. Finally, we conduct experiments to evaluate the effectiveness of our
approach from multiple angles. Our results demonstrate the robustness and efficiency of our
proposed method to learn from human demonstrations and outperform existing approaches
by a large margin. Experimental videos are available on the project website [125].

67

Chapter 6

Manipulation with Safe-Contact by
Null Space Impedance Control

6.1 Introduction

While Chapter 5 and related studies [137, 70] have contributed significantly to the develop-
ment of manipulation planning algorithms, their primary focus has been on strategies that
avoid contact between robot arms and their surrounding environment. This conventional
approach, however, does not fully encapsulate the nuances of human manipulation strate-
gies, where contact with obstacles is not merely incidental but often deliberately employed.
For instance, in tasks like shelf picking, robots may need to make contact with surrounding
obstacles to effectively grasp the target object [22, 135]. Similarly, in agricultural contexts
such as harvesting, robots can benefit from pushing aside occluding elements like petioles
and leaves to access produce [84].

In this chapter, we advocate for a paradigm shift in robotic manipulation by proposing
the integration of contact as a strategic element. This approach aims to enhance robotic effi-
ciency and expand capabilities by broadening the range of feasible actions [94]. The benefits
of allowing contact are twofold, as illustrated in Fig. 6.1. Firstly, it facilitates the genera-
tion of more efficient trajectories in terms of both length and smoothness, compared to the
trajectories produced under strict collision-free constraints. Secondly, in scenarios densely
populated with obstacles, where collision-free solutions are unattainable, this approach en-
ables the creation of viable manipulation strategies.

One of the most critical concerns in contact-allowed manipulation is safety. Without
considering safety, the robot can hit obstacles heavily and damage the hardware. Safety
constraints can be imposed by restricting the contact forces [101], and we impose this con-
straint by online generating and tracking of the reference signals. For the prior, a constraint
can be applied during trajectory optimization to limit the contact forces. For the latter, a
robot controller can leverage null space compliance to reduce the contact force while tracking
the desired trajectory [104].

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 68

Figure 6.1: (a) The robot finds a long and unnatural trajectory to reach the goal (blue),
avoiding the obstacle (green). (b) The goal-reaching robot fails to find a collision-free tra-
jectory; the red circle indicates collision with the obstacle. By allowing safe contact, the
robot reaches the goal more efficiently (c-e) and finds a trajectory in the highly collisional
scenario (f-h).

This chapter studies the safe contact-allowed robotic goal-reaching problem with two
feedback control loops. The outer loop optimizes the time-varying operational and joint
trajectories in a receding horizon manner. The dynamics model of the robot and objects
is approximated with a differentiable simulator, Brax [31], and utilized to impose contact
constraints. The inner loop tracks the trajectory using an impedance controller. This chapter
focuses on redundant manipulation, where the robot is kinematically redundant to the task,
and includes a null space projector in addition to an operational space control. Compared
with other works, our method optimizes joint configuration as extra decision variables and
actively explores the null space for a safer motion. To solve the trajectory planning, we
propose a hybrid algorithm that integrates sampling- and gradient-based methods, gaining
the benefit of scalability and differentiability.

We empirically evaluate the proposed method in various simulation and real-world en-
vironments to demonstrate the effectiveness of contact-allowed planning and control. In
summary, our work makes the following contributions: First, we state the contact-allowed

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 69

Figure 6.2: The planning loop takes in state s and optimizes reference signals (i.e., oper-
ational space references ∆x and null space references ∆q) for the robot controller, which
generates joint torques τ as actuation commands.

robotic goal-reaching task with safety constraints. We provide open-source environments
and benchmarks for the task. Second, we propose a time-varying trajectory planner and
tracking controller for the contact-allowed problem. The planner optimizes both operational
and null space reference signals to achieve the goal efficiently and safely. Third, we present
a hybrid optimization solver for the trajectory planner. The superiority of the proposed
algorithm is evaluated in diverse experiments ranging from free space to highly collisional.

6.2 Contact-Allowed Robotic Goal-Reaching

Problem Formulation

This chapter chooses goal-reaching as the operational manipulation task. It requires the end-
effector to reach a given goal pose, while the manipulator can collide with the environment
with a maximum permitted contact force. Relating to the formalisms above, a hierarchical
framework is utilized to generate and track robotic motions, as shown in Fig. 6.2. The outer
planner takes the robotic and environmental state s as input and optimizes operational and
joint space motions a = {∆x,∆q}; the input includes robot joints and obstacle information1.
The inner robot controller computes joint torques τ based on the references to actuate the
robot.

The 3D goal pose is denoted as sg. The success criteria is defined as ∥st − sg∥ ≤ δ
(δ = 0.01m in this chapter), where ∥·∥ computes the translational distance from the end-
effector to sg. The system propagates with the transfer function T (st, τt) as the robot
executes the torque command at t, which computes the successive state st+1 and the contact
force. The maximum permitted contact force is written as ε.

1Poses for rigid obstacles; node positions for deformable obstacles represented by node graphs, as in
Fig. 6.3(c).

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 70

Operational and Null Space Impedance Control

In this chapter, we adopt operational space computed torque control [41] for the manipulation
task and introduce null space projection [104] for safe contact. Previous works have shown the
advantage of planning task-related motions in the operational space over the joint space [70].
Not only the manipulation tasks are typically defined in the operational space, but also it
is straightforward to adapt the controller among different robots. Moreover, null space
projection allows compliance at the joint level for a redundant robot without disturbing the
operational task, thus improving safety by reducing contact forces.

This chapter uses the computed torque control [77] as the operational space controller.
It first calculates the wrench for the end-effector based on the desired motion and then maps
the wrench to joint torques. The control law is written as (6.1).

τop = J(q)TΛ(q) (−Kp∆x−Kdẋ) + C(q, q̇) + g(q) (6.1)

For a robotic manipulator with n joints, q ∈ Rn is the joint angle, x ∈ SE(3) is the
end-effector pose, J(q) is the task Jacobian, Λ(q) = (J(q)M−1(q)J(q)T)−1 is the operational
space inertial matrix and M(q) ∈ Rn×n is the robot inertial matrix, C(q, q̇) ∈ Rn is the
Coriolis and Centrifugal forces, g(q) ∈ Rn is the robot gravity vector. We use ∆x = x⊖ xd

to represent the error in SE(3), where xd is a desired operational pose. Kp, Kd ⪰ 0 are PD
gains for the controller. The following sections will drop the dependencies in q, q̇ for better
readability.

The null space control projects joint torques into the null space with the projector N =
I−J†J , where J† = M−1JTΛ is the dynamically consistent inverse of the Jacobian [47, 137].
The projected torque does not affect the motion in the operational space. We implement a
joint space PD controller to generate and project the torque:

τnull = NT (−Kqp∆q −Kqdq̇) (6.2)

, where ∆q = q − qd and qd is a desired joint posture. Kqp, Kqd ⪰ 0 are control gains in the
joint space.

Combining the operational space control (6.1) with the null space projection (6.2), the
final control output is defined as:

τ = τop + τnull. (6.3)

Contact-Allowed Motion Planning

Section 6.2 introduces an operational space controller with null space compliance. The
control law (6.1, 6.2, 6.3) takes in the reference signals a = {∆x,∆q} to compute the
actuation torque. This section introduces how to find the time-varying reference signals for
efficient and safe robotic manipulation.

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 71

The problem is formulated in a receding horizon manner. For each time step k, the
optimization is written as follows.

min
ak:k+H−1

k+H−1∑
t=k

λ1 ∥st+1 − sg∥ − λ2 ∥st+1 − sk∥ (6.4a)

s.t. τt = f(at) ▷ (6.3) (6.4b)

st+1 = T (st, τt) (6.4c)

contact(st, at) ≤ ε for t ∈ [k, ..., k +H − 1] (6.4d)

The objective function (6.4a) minimizes costs over the horizon H. sk is the initial state at
the current planning horizon. λ1, λ2 > 0 are hyper-parameters. ∥·∥ measures the distance of
end-effectors between states. The first term minimizes the distance to the goal, representing
the objective to reach the destination efficiently. The second term encourages exploration by
forcing the robot away from the initial state. In practice, it helps to escape from the local
minimum.

Constraint (6.4b) stands for the control law in (6.3). Constraint (6.4c) represents the
transfer function. Constraint (6.4d) encodes the safety requirement, where contact(st, at)
measures the contact force while executing the robot control; the contact force is constrained
by the maximum bound ε.

The transfer function T (st, τt) approximates the system propagation in (6.4c) and esti-
mates the contact force in (6.4d). We use the Brax physics engine [31] as the transfer function.
Brax is designed for performance and parallelism on accelerators, allowing a large sample
size for sampling-based optimization solvers. Moreover, it supports auto-differentiation of
the dynamics, which makes it possible to use gradient-based solvers. The next section intro-
duces how we solve the optimization problem by leveraging the parallelism and differentiable
properties of the Brax engine.

Solving the Optimization Problem

The optimization (6.4) is first written in a non-constraint form by plugging dynamics (6.4b,
6.4c) into the objective (6.4a) and simplifying contact constraints (6.4d):

min
ak:k+H−1

k+H−1∑
t=k

λ1 ∥T (st, f(at))− sg∥ − λ2 ∥T (st, f(at))− sk∥+ λ3 (contact(st, at)− ε) (6.5)

To solve (6.5), this chapter proposes a hybrid solver that integrates the covariance matrix
adaptation evolution strategy (CMA-ES, [36]) and the gradient descent method, as outlined
in Algorithm 3. The cost function in (6.5) is denoted as L.

Compared to others [36, 1], our method uses a larger population size, bounds the decision
variables, and applies an additional gradient descent step. The boundary constrains the
robot’s movement in operational and joint space. A penalty is added to the cost function,

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 72

Algorithm 3 Hybrid Optimization Solver

1: Initialize m = 0, σ = 0.01, C = I, pσ = pc = 0
2: k = 200, ktop = 50 ▷ Population size
3: γ, βmax = 1 ▷ Boundaries & max grad. step
4: for step = 1 to max step do
5: for i ∈ {1, ..., k} do
6: ai ∼ N (m,σ2C) ▷ Sample candidates
7: ar = clip(ai,−γ, γ) ▷ Repair candidates
8: di = ∥ai − ar∥2

9: α =

{
exp(logL(ai)− log di) if di > 0

0 otherwise
10: li = L(ar) + α · di ▷ (6.5) w/ penalty
11: end for
12: abest = argsort(l1:k) ▷ Find ktop best candidates
13: m = mean(abest) ▷ CMA-ES mean

14: ∇L = ∂L(m)
∂a

▷ Diff. w/ Brax
15: β1, ..., βk ∼ U [0, βmax]
16: m = m+ argminβ1:k

L(m+ βj · ∇L) · ∇L
17: m = clip(m,−γ, γ)
18: Update σ, C, pσ, pc ▷ CMA-ES update [36]
19: end for
20: Return m

which is the distance to the boundary. A tradeoff weight α is adaptively selected so that the
cost and the penalty are similar in magnitude. Moreover, we add a gradient descent step
before refitting distributions in CMA-ES. The gradient step optimizes the solution locally.
Similar ideas have been utilized in [13, 1] and have shown improved performance over CMA-
ES alone. Nevertheless, our method does not iterate the gradient descent until convergence.
We sample a population of neighbors in the gradient direction and find the best one as the
local optimal, similar to [13]. Such a design gains an advantage in computation speed as
the evaluation of the cost is much faster than that of the gradient. Thus, we sample more
candidates and only apply the gradient descent once per step. The algorithm is halted if the
maximum step has been reached or the cost stagnates for three steps. Readers are referred
to [36] for details of the CMA-ES. Although this chapter initializes the solution to zeros
for convenience, it can be easily replaced by solutions obtained from other motion planners.
However, due to the large population size used in the solver, we did not observe significant
improvements by changing the initial values.

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 73

Figure 6.3: Goal-reaching task environments of different collision complexity levels. The
target is blue, and the obstacles are green. (a) Free space, (b) ball obstacle, (c) wall obstacle,
(d) real-world ball obstacle, and (e) real-world wall obstacle.

Environments

This section introduces the simulation and the real-world environments in which we evalu-
ate and compare different control and planning methods, as visualized in Fig. 6.3. These
environments span different levels of collision conditions, ranging from free space to highly
collisional.

The simulation environments are built with Brax [31], where the robot is modeled with
cylinder links to imitate the kinematics and dynamics of a real one (i.e., Kuka iiwa 14). Such
modeling significantly reduces the computation time with simpler contact dynamics. The
following sections introduce the detailed configurations for each environment.

Free space. This environment aims to measure the performance of the proposed method
in a collision-free condition. The target is randomly placed inside the robot manipulability
ellipsoid. Since there is no obstacle, the optimal trajectory in the operational space is a
straight line, as defined in (6.4, 6.5).

Ball obstacle. This environment intends to show that it is more efficient to accomplish
certain manipulation tasks by allowing safe contacts. In this environment, a ball with a 0.1m
radius is added as an obstacle. The target is randomly placed within a workspace, varying
from [0.2,−0.3, 0.0] to [0.6, 0.3, 0.5] in [x, y, z], respectively. The obstacle is placed to collide
with the robot in the free space trajectory. Specifically, the optimal path is first computed
without the obstacle. Then the ball is added to hamper the optimal path by colliding with
the robot’s middle body. Although the obstacle makes the free space trajectory infeasible,
other collision-free paths exist.

Wall obstacle. This environment demonstrates that allowing safe contacts enables highly
constrained manipulation tasks where collision-free paths cannot be found [101]. The envi-

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 74

Table 6.1: Comparison of trajectory efficiency and safety metrics in simulated and real-world
environments. In each cell, the first element is the task execution time (s); the second is
the maximum contact force on the robot body in simulation (N) or the maximum computed
external torque on robot joints in the real-world (Nm).

Free Space Ball Obstacle Wall Obstacle Ball Obstacle Real Wall Obstacle Real

Collision-Free 11.4± 1.4 0 37.8± 3.9 0 Fail 38.4± 7.9 0 Fail
Ref. Posture 11.4± 1.4 0 13.1± 0.4 4.7± 2.3 21.3± 2.0 1.9± 0.7 15.2± 1.7 1.6± 0.2 18.7± 1.1 1.1± 0.1

Ours 11.4± 1.6 0 12.8± 0.5 2.8± 1.2 17.5± 1.5 0.5± 0.3 14.7± 1.6 0.7± 0.1 15.0± 1.0 0.5± 0.1

ronment puts two 1×0.1×0.2m walls between the robot and the target. The walls obstruct
all collision-free paths.

The deformable wall is modeled as a mass-spring system in the Brax simulator. The wall
is tessellated to volumetric finite element meshes, including vertices and edges. We use small
rigid spheres to represent the mesh vertices and spring joints to represent the mesh edges.
The simulation can mimic the physical deformation by carefully parameterizing the sphere
mass and the spring stiffness. The robot’s initial joint configuration is fixed through trials,
while the target pose is randomized in front of the robot.

Real-world. Besides the simulation, we create physical environments with foam balls and
walls to evaluate the proposed method in the real world. The foam ball has a 0.1m radius,
whose position is generated similarly as in the simulation. The foam walls are positioned
with fixtures as shown in Fig. 6.3(e) and have the same effective dimensions as in the sim-
ulation. Since tracking the real-world system is not the main focus of this work, we assume
the position and deformation of the foam obstacles are known. We manually tuned the
coefficients in the dynamics approximator (i.e., Brax) to obtain an accurate transfer func-
tion (6.4c). In practice, the transfer function and the system state can be estimated with an
additional observer, as suggested in [143]. In our real-world experiments, we utilized joint
torque sensors to measure external contact torques and scaled the threshold in (6.4d) to
address the gap between simulation and reality.

6.3 Experiments

The goal of the experiments is three-fold. First, we demonstrate the advantage of allowing
contacts in multiple collisional scenarios. Second, we show the benefit of generating and
tracking both the operational and null space reference signals. Third, we provide empirical
evaluations for the proposed hybrid optimization solver.

The hyperparameters used throughout our experiments are set as follows. λ1,2,3 =
{1, 0.2, 5}, H = 3, ε = 10N , max step = 100, γ = [0.01m, 0.2rad, 0.2rad] where the first
two represent the end-effector maximum movement and the last limits the null space mo-
tion. In this chapter, we do not infer control gains; instead, they are set to constants:
Kp = 880I,Kd = 100I,Kqp = 30I,Kqd = I. On the one hand, gains work as a scaling

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 75

Figure 6.4: Execution trajectories in simulated ball environments. (a-c, e-g) show two
trajectories generated by our method, (d, h) show the collision-free trajectories with the
same environmental settings.

factor for ∆x,∆q in (6.3), thus implicitly optimized. We did not observe improvement by
including gain to the decision variables in our experiments. On the other hand, including
gain inference makes the algorithm less stable and harder to solve. The control torque is
prone to going unbounded with the inferred scaling.

Collision-free or contact-allowed. This experiment compares the performance of our
contact-allowed planner with a collision-free trajectory planner. We used the RRT∗ [48]
to generate the collision-free trajectory in the joint space and our controller to track the
path without replanning. Each experiment was repeated three times to record the average
task completion time in Table 6.1. The maximum contact force throughout the execution
is reported in simulated environments. A torque observer was implemented to measure the
external torque in the real world [137].

For contact-allowed goal-reaching, an alternative to the receding horizon planning is to
plan the whole trajectory before moving the robot [25, 101]. However, the large search
space, from allowing contact and additional null space motion, makes the planning problem
intractable. Thus, we do not include such a planning framework in the comparison.

As seen in the ball obstacle experiment in Table 6.1, allowing safe contact improves
the task efficiency with the ball obstacle. Although contact forces appeared during the
execution, our method reduces the task completion time by 2.6x. Fig. 6.4 visualizes two
example executions in the simulated environment. In a highly collisional environment, i.e.,
wall obstacles, a collision-free trajectory cannot be found to reach the target. In contrast,

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 76

Figure 6.5: Example contact force profile when reaching a goal in the wall environment.
Pictures correspond to the robot configuration induced by our method at time stamps marked
by dotted vertical lines; (a, b) the robot tracks trajectories to push obstacles in a compliant
manner and adjusts its joint configuration in the null space; (c) the robot reaches the goal
while maintaining a minimum contact force. Compared to the ablations, our method, which
controls both operational and null spaces, results in lower overall contact forces.

our method completes the task by pushing the obstacles away. These results indicate that
allowing collision relaxes the optimization constraints and provides a larger feasible motion
set. Lastly, in the free-space environment comparison, we observed the same performance,
suggesting that allowing contact does not change the behavior in unconstrained scenarios.

Different control laws and decision variables. This experiment provides ablation stud-
ies to the control laws and decision variables in (6.4). The ablation method applies a reference
posture torque in the null space to track a joint reference. We set the desired joint posture
qd = 0 in (6.2). The control law is written as:

τposture = τop +NT (−Kqpq −Kqdq̇) (6.6)

The trajectory planner only optimizes the operational space motion ∆x and has no control
over the null space.

Based on the results in Table 6.1, our method outperforms the reference posture control
method in all environments. Fig. 6.5 shows the contact force profile for an experiment in
the wall environment. Our method reduces the contact force by almost 4x in the simulated

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 77

wall environments and 1.7x in the ball environments. Our method also reduces the task
execution time by generating shorter operational trajectories. The real-world experiments
further support the findings that considering additional null space motions increases task
safety. These results validate the necessity of optimizing the null space motion. Since the
null space behavior is neither optimized nor controlled in the ablation method, it has a
tighter search space than ours and often cannot find a trajectory with the same performance
as ours.

Another approach to planning robot trajectories is to directly optimize the motor torque.
We implemented a joint torque planner and observed similar performance compared to our
method. In contrast, our approach involves mapping the planned trajectory to motor torque
using a control law defined in (6.3). This structured design can be viewed as a specific
instance of direct torque planning. However, optimizing joint torques directly leads to a
more complex optimization problem and requires more computation to solve. For instance,
in the wall obstacle environment, our method took an average of 0.47s to converge for
each step, whereas direct torque planning took 1.34s. Similar results were reported in [70].
Furthermore, as manipulation tasks like our goal-reaching problem are typically defined in
the operational space, it is more intuitive and explicit to search for actions in the operational
space.

With or without gradient descent. This experiment analyzes the proposed hybrid
optimization solver in the wall obstacle environment. We demonstrate the effectiveness of
the bounded CMA-ES and single-step gradient descent, line 7-9 and 16 in Algorithm 3. Two
baselines were used for comparison. The first only uses the vanilla CMA-ES to search for
the optimal reference signals [36], while the second involves multiple gradient steps until
convergence, similar to [13].

Interestingly, all solvers yield similar trajectories given the same environmental config-
uration, suggesting that they have converged to close solutions. Thus, we use the average
cost decrease after 10 optimization steps as the comparison metric. Results showed that
our method (0.34) outperforms the vanilla CMA-ES (0.22). This validates the benefit of
integrating gradient descent with the sampling-based approach; it expedites the convergence
by locally refining the solution. Meanwhile, we observed further improved performance with
multiple gradient steps (0.40). However, the iterative gradient calculation requires a much
longer computation time and significantly reduces the planning frequency. With the con-
sideration of real-time performance, we applied single-step gradient descent in our proposed
solver.

6.4 Chapter Summary

This chapter investigates the problem of contact-allowed robotic goal-reaching with oper-
ational and null space control and makes several key contributions. Firstly, we formulate
the contact-allowed robotic manipulation problem with safety constraints and provide a set

CHAPTER 6. MANIPULATION WITH SAFE-CONTACT BY NULL SPACE
IMPEDANCE CONTROL 78

of open-source environments for contact-allowed goal-reaching. These environments have
different collision conditions, ranging from free space to highly collisional. Secondly, we
propose a receding horizon trajectory planner to generate and track reference signals for
collision-allowed motion. This planner optimizes the operational and null space reference
signals and tracks the reference using an impedance controller. Finally, we present a hybrid
solver to optimize the reference signals. Simulation and real-world experiments demonstrate
that by allowing contact, our proposed algorithm enables efficient and safe achievement of
the manipulation goal.

79

Chapter 7

Contact-Aware Robotic Assembly
Planning

7.1 Introduction

The preceding chapters have delved into foundational manipulation tasks such as grasping,
pushing, in-hand object reorientation, and goal-reaching. While these tasks pose significant
challenges in the planning and control aspects for robots, they do not necessitate advanced,
complex reasoning. In contrast, this chapter shifts the focus to the intricate task of robotic
assembly, which requires a deeper understanding of part geometries, sophisticated reasoning
about physical interactions and collisions, and the execution of assembly plans bolstered by
robust sensing capabilities.

The task of assembling parts in alignment with a specified target blueprint represents a
pivotal area of research within the fields of robotics and machine learning. This endeavor
is not only a valuable function that autonomous robots can perform but also encapsulates
a multifaceted problem domain fraught with unpredictable complexities. To effectively nav-
igate this complex landscape, robots must acquire a diverse set of competencies that are
essential for successful assembly. These competencies include accurately deciphering the se-
quence of assembly, coordinating the trajectories of the parts, identifying optimal points of
contact, and physically executing these processes with precision. Furthermore, it is impera-
tive for robots to not only master these skills in specific scenarios but also to generalize these
competencies across a wide range of assembly tasks, adapting to different configurations and
requirements.

Previous investigations in robotics and computer vision have tackled this multifaceted
challenge of part assembly through diverse methodological lenses. For example, one line of
research attempts to sidestep the complexities of physics, electing to focus on more special-
ized tasks, such as the segmentation of target blueprints [55, 54] or the estimation of part
poses [42, 14]. A second vein of research emphasizes the importance of physical interactions,
specializing in the assembly of predetermined targets [78]. A third category adopts different

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 80

Blueprint

Parts

Assembly Plan

1

2

3

4

5

Opt.

Figure 7.1: Our goal is to facilitate robotic assembly across different target blueprints. Uti-
lizing point clouds from target blueprints and assembly parts, our method identifies feasible
assembly sequences (indicated by colored numbers), orchestrates part motions (represented
by colored long arrows), and pinpoints contact points (denoted by short green arrows).

target blueprints but imposes simplifying assumptions on part geometries (i.e., blocks) [32]
or restricts its scope to a seen set of blueprint categories (e.g., chairs) [132]. The use of
reinforcement learning (RL) has seen success in this space [32, 132]. However, RL-based
solutions face challenges in terms of computational resources and efficiency. For instance,
Ghasemipour et al. [32] requires an elaborate computational infrastructure involving thou-
sands of CPUs and billions of steps for training, raising concerns about the practicality of the
system. Our work aims to advance the field of robotic assembly by holistically considering
intricate physical interactions between parts and designing a supervised training paradigm,
while our approach is applicable to a broad spectrum of practical target blueprints.

To achieve successful robotic assembly, this study breaks down the task into three distinct
and key sub-tasks: 1) inferring the sequence in which the parts should be assembled, guided
by the target blueprint, part shapes, and assembled poses; 2) coordinating the movements
of the individual parts; and 3) identifying viable contact points for robotic manipulation.
An illustration of these steps is provided in Fig. 7.1. Addressing the first challenge involves
contending the physical interactions between parts and the inherent ambiguities. The former
is due to the collision between parts that prevent arbitrary assembly order, and the latter
arises due to multiple viable assembly sequences. Can we learn the order of assembling
the parts statistically from their geometry and their locations in the target assembly? For
example, it is clear in Fig. 7.1 that the red screw can only be inserted if the orange piece
is in place – the target blueprint and individual pieces collectively establish a specific order

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 81

for assembly. We use this insight towards designing an implicit neural planning network
using Transformers [118], dubbed Part Assembly Sequence Transformer (PAST) that takes
as input point clouds of the target blueprint and the assembled parts and identifies the next
parts to be assembled. Then, it is applied to generate the full sequence in an autoregressive
fashion. For training our PAST model, we construct a benchmark dataset for part assembly
sequences, dubbed D4PAS, by enumerating feasible assembly sequences [117].

To solve the problem of part motion planning for assembly, we leverage the RRT-
connect [50] to generate trajectories from each part’s resting pose to its assembled pose.
Concurrently, we conduct an efficient physics-inspired multi-scale optimization of potential
contact points on the part’s surface to identify those that are most effective in achieving
the desired part movement. Upon generating the assembly plan through the aforementioned
steps, prior research has explored the use of reinforcement learning [18], model-predictive
control [139], and diffusion policies [15] for its execution. However, the focus of this work is
not on physical execution, which is earmarked for future investigation.

In summary, our primary contributions are as follows. First, we present an assembly
planning algorithm to generate feasible part assemblies based on target blueprints, including
inference of assembly sequences, planning of part movements, and optimization of contact
points. Second, we introduce the Part Assembly Sequence Transformer (PAST) to infer
assembly sequences in an autoregressive fashion. PAST is designed to generalize to novel,
diverse, and practical blueprints and part geometries. Third, we provide a dataset for part
assembly sequences (D4PAS), replete with assembly trajectories, enumerated assembly se-
quences, and viable contact points, thereby providing a foundation for future studies in
robotic assembly. The experimental videos are available at [121].

7.2 Assembly Planning

Problem Overview

This work employs a part assembly formulation consistent with [117, 132], as shown in
Fig. 7.1. Given M part meshes M = {Mi}Mi=1 and their respective 6D assembled poses in
the target blueprints ptgt = {ptgti }Mi=1, the algorithm plans the assembly trajectories (p0, p1, ...)
for each part from their resting poses p0 = {p0i }Mi=1. We use pti to represent the pose of part
Mi at time t and use pt to represent poses of all parts at time t. The algorithm assumes,
at each time step, that only one part is in motion while the others remain stationary [117].
The work breaks down the complex task of assembly planning into three sub-tasks: assembly
sequence inference, part motion planning, and contact point selection.

For one possible assembly, let the assembly sequence be denoted by m = (mk)
M
k=1, speci-

fying the order of part assembly. Each mk belongs to the setM and identifies the kth part
to be assembled. Part movements are represented by T = (pmk

)Mk=1, where pmk
details the

trajectory of parts when part mk is moving throughout its moving horizon. Contact points
facilitating these movements pmk

are indicated by C = (cmk
)Mk=1. The assembly planning

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 82

problem is formulated as follows:

P(p0, p1, ..., ptgt) = P(m, T , C) = P(m) · P(T |m) · P(C|m, T)

where in this work, we assume a multi-level solution approach by sequentially solving for the
sub-problems of (i) assembly inference, (ii) motion planning, and (iii) contact selection, in
that order.

It is crucial to recognize that feasible assembly sequences are a subset of all possible part
permutations. This constraint arises from the potential for part collisions, which precludes
arbitrary assembly sequences. For instance, a washer must be in place before tightening a
screw. To address this combinatorial inference problem approximately, we introduce the Part
Assembly Sequence Transformer (PAST) to learn statistical correlations between the parts
and the target blueprint to produce physically viable assembly sequences P(m). The network
ingests both target blueprints and unassembled parts, outputting the next feasible parts for
assembly. This iterative process determines the full assembly sequence, as in Fig. 7.2.

Upon establishing the assembly sequence m, part movement can be planned using es-
tablished motion planning algorithms P(T |m). Following that, the algorithm optimizes the
contact points that the robot can utilize to execute these movements, P(C|m, T), thus cul-
minating in a coherent assembly process.

Part Assembly Sequence Transformer (PAST)

The preceding section outlines our multi-level approach to assembly planning. This section
delves into the details of each of the three planning levels.

The transformer ingests the target assembly blueprint and the remaining unassembled
parts, outputting a probability for each part’s suitability for assembly at the current step.
The part with the highest probability is chosen for assembly and removed from the list of
remaining parts. This iterative process continues until all parts are assembled, yielding one
assembly sequence m = (mk)

M
k=1. Fig. 7.2 illustrates this recursive planning approach.

PAST takes two branches of inputs: a target assembly blueprint and unassembled re-
maining parts, both represented using point clouds. For an assembly comprising M parts,
the target blueprint is rendered with the 6D assembled poses ptgt of all parts, resulting in
a point cloud PCtgt ∈ RNt×6. This point cloud consists of Nt sampled points, each with
positional and normal features. During the kth step of assembly, PAST selects the next part
to assemble from the M−k remaining parts. These remaining parts are input as M−k indi-
vidual point clouds, denoted as {PCr,i}M−k

i=1 , where PCr,i ∈ RNr×6 and contains Nr sampled
points.

A key design question for PAST is which neural model to use for representing the input
point clouds. Among point cloud encoders, such as PointNet and its variants [95, 96], it
was shown in [14] that dynamic graph CNN (DGCNN) [124] offers superior efficiency and
representational capabilities in assembly segmentation. To this end, we employ DGCNN to
derive target features v ∈ RNt×h from the target blueprint (one feature for every sample

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 83

Target Assembly
Blueprint

Remaining
Unassembled Parts

DGCNN + MaxPool

Pose + Sequence MLPs

PAST

DGCNN

Transformer x L

Sequence Inference with PAST

PAST PAST

PAST Architecture

Figure 7.2: Sequence inference pipeline and PAST architecture. (Top) PAST operates
sequentially to estimate the assembly probability P(Mi) for each remaining part. The part
with the highest probability is chosen for assembly. (Bottom) Using the third block as an
example, PAST selects one part for assembly from the three remaining options. PAST also
performs pose regression for each part p̂ as an auxiliary task.

point) and part features ui ∈ Rh from each remaining part (i.e., one feature for every part
after max-pooling the features from all samples belonging to that part). Here, h is the hidden
feature dimension and i ∈ {1, ...,M − k}.

Once the features are extracted, our PAST model then jointly refines these features
through L transformer blocks, as illustrated in Fig. 7.2. As is well-known, transformers use
self- and cross-attention to learn correlations between their inputs and have demonstrated
state-of-the-art performances in generating sequential outputs (e.g., language). Our key in-

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 84

sight is to use such attention to learn physically plausible assembly sequences in a supervised
setting. Mathematically, suppose for a query set q and a key set k, let the transformer dot-

product attention operator be defined as Attention(q,k) = Wv(k)
T softmax

(
Wk(k)Wq(q)√

h

)
,

where Wq,Wk,Wv are matrices embedding the query and the key sets in a common latent
space. Our PAST transformer blocks utilize a two-stage approach for feature refinement be-
tween the target and parts. The first stage independently processes and updates the features
with self-attention; that is,

v = Attention(v, v) and ui = Attention(U, ui),

where U = {ui}M−k
i=1 denotes all part point cloud features. The second stage applies cross-

attention between the target features and part features [10], updating them to:

v̂ = Attention(U, v) and ûi = Attention(v, ui).

where v̂ and ûi are fed into the next block. We use the same attention expression for all blocks
except for replacing u and v updated to û and v̂ from the previous block. In the final step,
PAST calculates the assembly probability for each part using the formula P(Mi) = MLP(ui).
The part to be assembled next is then selected based on the maximum probability, denoted
as mk = argmaxi P(Mi). In addition to predicting the assembly sequence, the transformer
also estimates the 6D assembled pose ptgti for each part as an auxiliary task, represented as
p̂i = MLPp(ui). The inclusion of this auxiliary task enhances the network’s capability to
comprehend the geometric interrelations between parts, a technique that has proven effective
in [14, 55].

We use supervised learning for training PAST via estimating the predicted assembly
probability P(Mi) with mean squared error loss MSE(yi,P(Mi)) with the feasibility of as-
sembling a part Mi at a given step is denoted yi. Additionally, the pose regression task
aims to minimize the difference between the actual 6D assembled pose ptgti and the pre-
dicted pose p̂i. The difference is calculated with

∑
i

∥∥ptgti,tra − p̂i,tra
∥∥+

∥∥ptgti,rot − p̂i,rot
∥∥, where

ptgti,tra, p̂i,tra indicate target and predicted translation for each part and ptgti,rot, p̂i,rot represent
the axis-angle.

Dataset for Part Assembly Sequences (D4PAS)

To train PAST, we introduce a new dataset for part assembly sequences or D4PAS. Each
sample in the assembly sequence dataset comprises multiple components, namely: (i) the
target blueprint point cloud PCtgt, (ii) point clouds for M − k remaining parts {PCr,i}M−k

i=1 ,
and (iii) the feasibility of assembly for each part {yi}M−k

i=1 . The feasibility yi specifies whether
a part Mi can be assembled at the current step and can subsequently lead to a successful
final assembly. Note that there can be many viable part candidates at every step, derived
from all possible sequence enumerations using the scheme in assembly-by-disassembly [117],
as described in Algorithm 4 and illustrated in Fig. 7.3.

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 85

Algorithm 4 Disassembly Planning

1: Input: part meshes {Mi}Mi=1 and inertias {Ii}Mi=1

2: Input: target part pose ptgt, empty queue J
3: Output: sequence of disassembly
4: J .enq(ptgt, f j

i) for f
j
i ∝ Ii and i ∈ {1, · · · ,M}

5: while not finish do ▷ In parallel
6: (pt, f j

i) = J .deq ▷ BFS
7: if success(pt) then
8: return GetSequence(ptgt, pt)
9: end if
10: pt−1 = simulate(pt, f j

i) ▷ Disassembly attempt
11: if isNovel(pt−1) and isExec(pt, pt−1) then
12: J .enq(pt−1, f j

i) for all unassembled part i
13: end if
14: end while

The disassembly planning algorithm operates in a search-based manner, where the set of
parts poses’ at time t, pt = {pti}Mi=1, serves as the search state. At each step, the algorithm
selects an unassembled part i (line 6) and attempts to remove it from the blueprint with
a physical simulation (line 10). The selection of the moving part follows a breadth-first
search (BFS) scheme, ensuring a comprehensive enumeration of all possible disassembly
sequences. The chosen part i is moved in the direction of its moment of inertia Ii with force
f j
i , calculated as f j

i = ΛiejIi, where Λi is the mass of the part and ej is a one-hot vector with
nonzero element at j ∈ {1, 2, 3}. Torque is also applied to enable rotational movement and
is computed similarly to f j

i . The search queue is expanded only if the disassembly attempt
results in novel part poses and is executable by a robot (line 11). Part poses are regarded as
novel (isNovel) if they lead to a new location for one of the parts. The feasibility of execution
(isExec) is confirmed by determining whether there exists collision-free grasp or push points
on the part’s surface. After each disassembly attempt, the remaining unassembled parts are
added back to the queue, considering all possible dragging forces (line 12).

Compared to [117], the dataset generation algorithm in this work incorporates several
advancements. First, we employ a parallel simulation (Isaac Gym [69]) to expedite the
dataset generation and allow future studies on assembly planning with RL [32]. Second,
unlike [117] that use arbitrary force directions, our algorithm applies disassembly forces
along the part’s moment of inertia, aligning with the physical properties of the parts. Third,
we incorporate additional constraints to ensure that the generated plans are executable by
robots (isExec), making our dataset more practical for further robotic applications.

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 86

1 2 3 4 5

1
2

3
5

4 1

1

1

1

1
1

1

1

1

1

1

22

2

2

2

2
22

2
2

2

3 3

3

3

3

3
3

3

3

3

3

4

4

4

4

4

4

44
4 4

4

5

5

5

5

5

5
5

5

55

5

Figure 7.3: Example assembly sequences in our dataset. For each target blueprint, we
enumerate all feasible assembly sequences and present one representative sequence here. The
color coding and the numbers beside each part signify the assembly sequence, as indicated
by the color bar.

Part Motion and Contact Planning

Once the sequence is determined by the PAST transformer, the next steps involve planning
the movements of the parts and identifying suitable contact points for robotic manipulation.
For part movements, we use the RRT-connect [50] to search for a collision-free path for each
part in line with the inferred assembly sequence.

For contact points planning, this work first plans robust grasps for each part with two
contact points and filters out those in collision with other parts. To do this, we enumerate all
grasp pairs from the part point cloud PCr,i and use the Ferrari Canny metrics to determine
their robustness [26]. We then identify the feasibility of execution using FCL [88] to check
the collision between grasp points and the assembled parts along the assembly trajectory. If
no feasible grasps are found, we resort to optimizing for a single pushing point c by solving
the optimization [140]:

min
c,Fc

Fc

s.t. Fc ∈ FC(c)

G(c)Fc = W

(7.1)

where Fc is the pushing force at c. FC(c) is the friction cone at point c and is expressed
by F 2

c,1 + F 2
c,2 ≤ µF 2

c,3 with µ being the friction coefficient. G(c) ∈ R6×3 is the grasp map
which maps the contact force to the part movement force [8]. W is the part movement force
derived from the part movement [140]. We observe that the optimization problem (7.1) can
be cast as a semi-definite program (SDP) once the pushing point c is specified. To solve this

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 87

problem, we employ a hybrid approach that combines sampling with an SDP solver [140]:
the pushing point c is sampled from the part’s point cloud and held constant during the
optimization of Fc as SDP. The outcomes are iteratively updated across all sampled pushing
points to identify the optimal solution.

7.3 Experiments

This section offers details of our model, dataset, and empirically validates our approach
against the related methods.

Dataset and Network Details

Both disassembly planning and PAST training were performed using a single RTX3090
GPU. During the disassembly planning, properties of parts Λi, Ii were extracted from the
simulation. The friction µ = 0.2. Our dataset comprises 8,670 target blueprints and a total of
84,326 assembly sequences, broken down as follows: 7,278 are 3-step sequences, 54,612 range
from 4 to 7 steps, and 22,436 have more than seven steps. These sequences can be further
augmented with varying choices of the remaining (unassembled) parts. Specifically, for an
assembly sequence with M parts, we randomly split the sequence into two segments with
size k and M − k, respectively. Parts in the second segment are regarded as unassembled,
and the first part in the second segment is the part that can be assembled with yM−k = 1.
Additionally, we gather segments from all viable sequences to identify all potential parts
that can be assembled for a specific unassembled segment.

During the training of PAST, two-part assemblies were only used to train the auxiliary
pose regression. The target blueprint was sampled at Nt = 1024 points, and each part
mesh was sampled at Nr = 512 points. The DGCNN encodes point clouds with dimension
h = 256. PAST uses L = 8 transformer blocks and was implemented in PyTorch and was
trained with the AdamW optimizer using the One-Cycle learning rate scheduler. The target
blueprints were re-centered and normalized to a unit ball and randomly rotated and jittered
as augmentation. We allocate 500 multi-part assemblies for the test set, reserving others for
training.

Baselines and Ablations

The baseline and ablation studies aim to evaluate the efficacy of PAST and the overall
algorithm.
Metrics. We employ two key metrics to assess the performance of assembly sequence
inference: one-step prediction accuracy (1-Acc) and sequence prediction accuracy (Seq-Acc).
A one-step prediction is deemed correct if the selected part, sampled based on predicted
assembly probabilities, belongs to the set of possible parts for assembly. In addition, we
apply PAST in an autoregressive fashion to generate a full assembly sequence, which is

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 88

Table 7.1: Quantitative results on assembly sequence inference. We report three metrics:
one-step prediction accuracy (1-Acc), full sequence prediction accuracy (Seq-Acc), and the
computation time (CT).

1-Acc (%) Seq-Acc (%) CT (ms)
NSM [14] 75.0 57.8 58.5
DGL [42] 77.4 54.1 104.4
ATA [117] NA NA 24312.6
Seg-PAST 90.3 80.4 52.2

NoAux-PAST 79.1 58.4 52.2
PAST 91.7 82.9 52.2

considered correct if it aligns with any of the possible assembly sequences for that object in
our dataset. In addition, we also report the computational time (CT) taken for full sequence
inference.
Compared algorithms. Given that no existing solutions are tailored specifically for part
assembly sequence inference, we adapt methods from part segmentation and pose regression
as baselines, and compare against various ablations.

• NSM (Neural Shape Mating [14]) uses a transformer to address two-part shape mating.
We adapt this network to accommodate multiple part inputs.

• DGL (Dynamic Graph Learning [42]) employs a graph neural network to perform
assembly pose regression. We use a global node to represent target assembly [3], which
facilitates assembly sequence inference.

• ATA (Assemble-Them-All [117]) solves assembly through runtime physical simulation.
The assembly process aligns with Algorithm 4.

• Seg-PAST: We substitute the final pose regression layer in PAST to predict blueprint
segmentation during the pretraining, as advised in [55].

• NoAux-PAST: We eliminate the auxiliary pose regression task, focusing solely on pre-
dicting the assembly sequence using the same network.

Experimental Results

Table 7.1, Fig. 7.4, and Fig. 7.5 summarize the quantitative and qualitative results, which
are elaborated upon in this section. For more results, we refer readers to our video.
Multi-level assembly planning. Our methodology breaks down assembly planning into
three distinct phases. This approach achieved assembly planning in 1565.9 ms, with an
82.9% success rate across our 500 multi-part assemblies test set. Figure 7.4 illustrates an
example of assembling parts from scratch. Specifically, part movement planning averaged

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 89

(c)

(d) (f)(e)

(a) (b)

Figure 7.4: Assembly planning results (a-f). In each step, the part colored blue indicates
the one in motion, while the yellow parts signify those that are stationary. In (c, d, e), the
dual green spheres denote feasible grasp points. In (f), a solitary green sphere highlights the
designated pushing point.

1476.9 ms with a 100% success rate, while contact point optimization took 36.8 ms with
100% success rate using multi-threaded computation and the CVXPY solver [21]. Unlike
our method, RL-based assembly planning [132] exhibits inferior performance when evaluated
in our setting, achieving a 63.9% assembly success rate. While prior works showed promise
with simpler geometries [132, 32], we posit that end-to-end policies may struggle to handle
complex geometries and assembly reasoning simultaneously.
Generalization to novel assemblies. From Table 7.1, we see that PAST consistently
outperforms other neural sequence inference models, such as NSM, DGL, Seg-PAST, and
NoAux-PAST in both one-step and full-sequence prediction tasks. Unlike NSM, which em-
ploys a discriminator for target shape understanding and fails to capture the assembly geome-
tries’ distribution, PAST leverages the target assembly blueprint as input and can extract
direct features from the target assembly. DGL, which represents parts as a graph and updates
features at the node level, struggles to model geometries from other parts and the target
shape. In contrast, PAST aggregates features at the point level, thus enhancing geometric
understanding, consequently yielding superior learning outcomes.

Further, from Table 7.1, we also see from the ablated PAST variants that incorporating
auxiliary tasks, such as pose regression or part segmentation, significantly improves net-
work performance. This improvement is attributed to the additional guidance these tasks
offer, enhancing the network’s understanding of part interactions, which are key for assem-

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 90

Num. of Assembly Parts

Se
q-

A
cc

 (%
)

Po
se

 R
eg

. E
rr

or
 (1

e-
3)

Seq-Acc Pose Reg. Error

Figure 7.5: Sensitivity analysis for sequence inference accuracy and auxiliary pose regression
error.

bly sequence inference. Interestingly, target segmentation underperforms compared to pose
regression, possibly because some points in the target assembly, like those corresponding to
assembled parts, are not supervised during training. Further, as is expected, ATA takes sig-
nificant computing as it uses enumeration and simulation for assembly sequences. Instead,
PAST, which shows promising accuracy, has a dramatically short computing time, making it
well-suited for real-world robotic assembly. In Figure 7.5, we analyze the impact of the num-
ber of parts on sequence inference accuracy and auxiliary pose regression error. The results
indicate that increased part count leads to reduced sequence accuracy and higher pose error,
corroborating results from [32]: the complexity of the assembly problem increases with the
number of parts in the target blueprint.
Disassembly Planning. As noted earlier, while our D4PAS construction bears similarities
to [117], we enhance disassembly planning through (i) employing GPU-accelerated simula-
tion and (ii) applying part-centric forces. Enabling parallel computations, thereby reducing
compute time for disassembly planning to 3592.0 ms against 24312.6 ms. This efficiency not
only allows for the enumeration of feasible assembly sequences within a manageable time-
frame but also establishes a performance benchmark for future research in end-to-end robotic
assembly learning [32]. Second, we apply part-centric disassembly forces aligned with the
parts’ inertia axes, as supported by findings in [127, 128]. Although this adjustment in the
force application coordinate system may seem minor, it led to a notable increase in planning
success rate: 92.7% in our approach versus 83.8% in [117].

CHAPTER 7. CONTACT-AWARE ROBOTIC ASSEMBLY PLANNING 91

7.4 Chapter Summary

This chapter makes several key contributions to robotic assembly. First, we introduce a
multi-level framework for generating assembly plans, encompassing part sequences, motions,
and contact points. Second, we unveil the Part Assembly Sequence Transformer (PAST)
for inferring feasible assembly sequences based on target blueprints and part geometries.
Third, we offer a large-scale benchmark dataset for part assembly sequence (D4PAS) featur-
ing thousands of physically validated sequences. Post-sequence inference, we employ motion
planning and contact optimization to complete part assembly. Our evaluations show that
PAST and the overall algorithm match previous simulation-based methods but with signifi-
cantly reduced computation time.

92

Part III

Contact Sensing

93

Chapter 8

Contact Synthesize for Tactile Sensors
by Graph Neural Network

8.1 Introduction

Feedback signals are essential in control theory, closing the loop and significantly enhancing
robustness. Throughout the progression in previous chapters, where contact planning is cen-
tral to robotic manipulations, the direct sensing and utilization of contact signals have been
notably absent. This chapter focuses on sensing contact with vision-based tactile sensors in
robotic applications. Tactile sensors play a crucial role in providing direct and tangible infor-
mation about contacts during the processes of robotic grasping and manipulation. Among
various tactile sensor designs, vision-based tactile sensors represent a unique and innovative
category [133, 24, 65, 115, 71, 72, 51, 87]. These sensors employ a camera to capture high-
resolution images of the contact-induced deformations on a specialized sensing surface. This
surface typically consists of an elastomeric gel coated with an opaque material designed to
effectively visualize and measure contact interactions. The operational principle and design
of these sensors are illustrated in Fig. 8.1 (a) and (b). Vision-based tactile sensors stand out
for their ability to provide detailed spatial information about the contact, a feature that is
essential for enhancing the precision and adaptability of robotic manipulations in a variety
of contexts.

Obtaining a mesh representation of the contact elastomer can advance the development
of applications with vision-based tactile sensors since meshes can provide accurate contact
information. For instance, meshes of the elastomer have enabled in-hand object localiza-
tion [4, 80, 5], vision-free manipulation [23, 40, 111], and contact profile reconstruction [65,
115, 53, 64, 123]. Also, meshes can be used for precise dynamics simulation [93, 105, 106]
and future state estimation [6, 56].

Previous simulation studies [65, 115] for vision-based sensors focus on reconstructing the
surface mesh by tracking markers on the sensor. This can provide the surface displacement
fields of the elastomer. However, to better simulate the dynamics, a volumetric mesh is pre-

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 94

1 2

3

3

4

(a) (b) (c) (d) 0

2

mm

Figure 8.1: (a) the GelSlim visual-tactile sensor, (b) the construction of the sensor, with the
elastomer (1), the transparent lens (2), the lights (3), and the camera (4). (c) a depth image
observation obtained from the sensor, and (d) the corresponding reconstructed volumetric
mesh with our method. The red rectangle denotes the camera’s view range, and the color
represents the displacement level.

ferred [105]. Compared to the surface mesh, the volumetric mesh contains internal vertices
and edges, thus can better encode the dynamics and estimate the contact profile with the
Finite Element Method (FEM) [81, 116, 93]. Nevertheless, internal elements also challenge
the reconstruction of the volumetric mesh due to additional dimensions. This chapter ad-
dresses that challenge and proposes a method to directly predict the volumetric mesh from
images using vision-based tactile sensors, such as the GelSlim [115], in a sim-to-real setting.
Moreover, our approach does not rely on fiducial sensor markers to synthesize a volumetric
mesh.

We first employ 3D FEM simulations of the GelSlim sensor’s elastomer to collect image-
mesh data pairs. The FEM simulations compute volumetric deformation fields for the elas-
tomer with arbitrary contacts. The depth image observation is then rendered with synthetic
cameras. The contact experiments are also executed in the real world with physical GelSlim.
However, real-world contacts only provide images since ground-truth meshes are unprocur-
able. We then learn mappings from real-world images to mesh deformations (as shown in
Fig. 8.1 (c) and (d)) by leveraging supervised pre-training and self-supervised adaptations.
Specifically, we learn an image-to-mesh projection in latent space with synthetic data pairs.

Sim-to-real approaches have to overcome the distribution differences between the two
domains, that is the sim-to-real gap. We propose data augmentation of the synthetic images
together with a self-supervised adaptation method on real-world images to address this gap.
The adaptation uses a differentiable renderer to project the network output into images
and minimize the difference between projected and input images. We demonstrate that this
adaptation can transfer networks for sim-to-real, seen contact objects to novel contact objects
and between different GelSlim sensor instances. In this chapter, our goal is to introduce the
synthesis of volumetric meshes from tactile imprints and will address applications with our
approach in future work.

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 95

Our work makes the following contributions: first, We provide a FEM model for GelSlim
tactile sensors with a GPU-based simulator and propose a method to calibrate the FEM
model with physical GelSlim sensors. Second, we collect contact datasets from synthetic
and real-world contact experiments for GelSlim sensors. Third, we present an image-to-
mesh projection network to reconstruct the volumetric mesh of the elastomer without the
need for fiducial sensor markers. Fourth, we further propose a self-supervised adaptation
method and image augmentation techniques to mitigate the domain shift of sensor readings.

8.2 Learning to Synthesize Volumetric Meshes

This section first introduces the problem statement and preliminaries. Next, the image-to-
mesh projection and self-supervised adaptation methods are discussed. Finally, the datasets
are described, including synthetic labeled data, real-world unlabeled data, and data aug-
mentation techniques.

Problem Statement and Preliminaries

This chapter focuses on the problem of reconstructing an elastomer’s volumetric mesh with
image observations for vision-based tactile sensors. The non-injective projection (or map-
ping) from surface images to volumetric vertex positions makes this problem nontrivial.
Some preliminaries are described below:

Image observations. Visual tactile sensors typically contact objects with a silicone elas-
tomer and use a camera to capture the deformation of the surface, as shown in Fig 8.1. The
captured RGB image can be used to construct a depth map of the contact surface using
shape from shading [46, 115]. It establishes a mapping from the RGB color to the surface
normals with a marble of known dimension. During runtime, surface normals are retrieved
and integrated into the depth map I. Compared to raw RGB images, depth maps contain
2.5D information and can better represent the geometry of the contact surface [138]. More-
over, depth maps are much easier to simulate using synthetic cameras and thus have less
sim-to-real gap. Therefore, in this chapter, we use (128×128) depth maps I as the image
observations.

Volumetric meshes with FEM. The FEM is a mathematical tool to solve complex
partial differential equations (PDEs) [81]. In the FEM, geometrical shapes are represented by
volumetric meshesM, which consist of 3D elements, such as tetrahedrons and hexahedrons.
With high-resolution meshes and small computation steps, FEM can estimate the forward
dynamics of soft bodies [116, 93].

This chapter uses graphs to represent volumetric meshes. Specifically, volumetric meshes
are defined as a set of vertices and edges, M = (V ,A), with n vertices in 3D Euclidean

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 96

Image/Mesh Autoencoders

Image-to-Mesh Projection

DR

Self-Supervised Adaptation

Image Encoder/Decoder

Mesh Encoder/Decoder

,

,

, Image/Mesh Latent Vector

Image-to-Mesh Projector

Frozen Network
Trainable Network

DR Differentiable Render

COMA

Figure 8.2: Training structure. The image-to-mesh projection network is optimized with
pre-trained autoencoders. The self-supervised adaptation transfers the projection network
to various domains with a differentiable render.

space, V ∈ Rn×3. The adjacency matrix A ∈ {0, 1}n×n represents the edges. If vertices i and
j are connected by an edge, Aij = 1, and Aij = 0 otherwise.

Supervised Image-to-Mesh Projection

Our goal is to map an input depth map I to a volumetric meshM. Although depth maps
provide geometrical information for the contact surface, the projection from surface images
to volumetric vertex positions is not injective and is hard to analyze. Specifically, different
displacements can generate the same surface observation. Thus, in this chapter, we assume
a fixed mesh tessellation (i.e., A fixed) to enforce the injective mapping and use a neural
network to learn the underlying projection M̂ = fθ(I), with θ being the parameters of the
network.

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 97

The image-to-mesh projection is learned with latent representations. Compared to pre-
vious work [79], the image observations have higher variance and more noise. This chapter
introduces elaborate model designs, data augmentations, and self-supervised adaptations to
resolve such difficulties.

Fig. 8.2 shows the training structure of the network. The image variational autoencoder
(VAE) (in green) reconstructs depth maps I to Î and is trained as a β-VAE:

ℓI = MSE(I − Î) + λIKL(q(zI |I) ∥ N (0, 1)) (8.1)

where q is the image encoder, λI is the weight for the KL divergence term, and zI is the
latent vector.

We adopt the convolutional mesh autoencoders (COMA)[98] for the volumetric mesh
VAE (shown in blue). COMA uses spectral graph convolutional networks [19] to extract
features and a hierarchical pooling operation to reduce vertices. The network is trained
with:

ℓM = MSE(M−M̂) + λMKL(h(zM |I) ∥ N (0, 1)) (8.2)

where h is the mesh encoder, λM is the KL loss weight, zM is the latent vector, and the MSE
is computed based on corresponding vertex positions (V , V̂).

The latent projection model (shown in orange) is comprised of three fully connected
layers. It is trained in a supervised manner with the encoder and decoder frozen. The
details for the network, the latent dimensions, and weights are chosen via hyperparameter
search, which is discussed in the following.

Self-Supervised Adaptation

When deploying the trained network to the real world, covariate shift problems may reduce
the performance significantly [138]. Moreover, the real-world data only has depth maps {Ij},
and the ground-truth volumetric meshes are not available, making it hard to fine-tune the
network in a supervised manner. Thus, we propose a self-supervised adaptation framework
(Fig. 8.2) to resolve the covariate shift.

Specifically, the reconstructed volumetric mesh M̂ is rendered to the image Ĩ using a
differentiable renderer, which allows gradients to propagate backward. In parallel, we use
the pre-trained image VAE to reconstruct the input depth map Î. The image VAE works
as a noise filter as suggested in [60]. In practice, removing the image VAE can lead to poor
adaptation results. The network is adapted using the mesh decoder with frozen weights to
minimize the loss:

ℓadapt = MSE(Ĩ − Î) (8.3)

Datasets

Labeled synthetic data {(Ii,Mi)} and unlabeled real-world data {(Ij)} are required to train
the image-to-mesh projection and adapt the network among different domains.

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 98

Figure 8.3: Left : Primitive indenters in simulation. Right : Novel contact objects in the real
world.

Synthetic data. Labeled image-mesh pairs {(Ii,Mi)} for i ∈ [1, ..., N] can be simulated
using FEM and synthetic cameras. In this work, FEM is performed using the GPU-based
Isaac Gym [69]. Isaac Gym models the dynamics of deformable bodies using linear-elastic
models and assumes isotropic Coulomb contacts. The results of the simulation are optimized
to match the real-world deformation.

A FEM model for the GelSlim is created with a similar procedure as [79]. The elastomer
pad is modeled as a cylinder with a 1.75cm radius and 0.3cm height. The volumetric mesh
has 5,415 nodes and 23,801 edges. A rigid backplate is added to imitate the structure of the
physical GelSlim, Fig 8.1(b). To generate labeled data pairs, 16 primitive indenters (Fig. 8.3–
Left) are utilized to interact with the elastomer at randomized positions and rotations. The
primitive shapes contain a variety of complexity, texture, and geometry to reflect daily
household objects.

The Isaac Gym simulator collects vertex positions M at each contact trajectory. The
depth map I is then rendered based on the meshM with a synthetic camera. This chapter
uses an orthographic camera with a ±1.75cm view range, which aligns with the specifications
of the physical GelSlim. To optimize the FEM model in Isaac Gym, this chapter reuses the
calibration data, contact images of a marble of known dimensions. From the depth map I, the
contact position can be accurately estimated by finding the maximum displacement point.
The contact trajectory can then be reproduced in the simulation, which yields a deformed
meshM. Then, a depth image Ĩ is rendered based on the simulated meshM. The elastic
modulus E, Poisson’s ratio ν, and surface friction µ are designated as free parameters in the
simulator. A cross-entropy search strategy is used to find the best parameters:

E, ν, µ = arg min
E,ν,µ

∥∥∥I − Ĩ
∥∥∥

The optimal values for E, ν, µ are 145MPa, 0.32, and 0.94, respectively. Fig. 8.4 shows
examples of synthetic data pairs with the calibrated FEM model.

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 99

Figure 8.4: Data samples. Top: Raw synthetic depth observations, corresponding ground-
truth meshes, and augmented synthetic depth observations. Bottom: Real-world depth
observations for sample indenters.

Real-world data. Real-world datasets {Ij} are obtained with physical GelSlim sensors
and various indenters (Fig. 8.4). Primitive indenters are 3D printed, and interaction with
the sensor is randomized. Besides primitive shapes, several household and industrial objects
are used as a novel set (Fig. 8.3–Right). The novel set represents common objects that the
GelSlim will work with. Moreover, we use two GelSlim sensors to collect real-world data.

Image augmentations. As shown in Fig. 8.4, the appearance of synthetic images is quite
different from that of real-world depth maps. The depth reconstruction process for the
physical GelSlim introduces significant noise into the image, enlarging the sim-to-real gap.
To enhance the performance in the real world, this chapter injects Perlin noise and adds a
real-world reference noise image into the synthetic images [138]. The Perlin noise provides
a realistic gradient for the image and imitates the real-world camera noise. The reference
image provides sensor-specific noise. Fig. 8.4 provides examples of the noised images.

In total, 1.28M unique labeled image-mesh pairs were obtained from the simulator, and
1,651 real-world images were obtained for 2 GelSlim sensors with 19 indenters.

8.3 Experiments

In this section, we present the network details, experiments for supervised image-to-mesh
projection, self-supervised adaptation, and a comparative evaluation with a baseline.

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 100

Table 8.1: Experiments with synthetic data pairs. The root-mean-square error (RMSE, in
cm) is measured between the ground-truth vertex positionsM and predicted vertex positions
M̂. The results with different dimensions of latent space.

λI

λM 0 200 400 800

0 0.141 0.073 0.124 0.150
100 0.082 0.012 0.025 0.037
200 0.094 0.035 0.031 0.046

Table 8.2: Experiments with synthetic data pairs. The results with different loss weights.

λI

λM 0 200 400 800

0 0.141 0.073 0.124 0.150
100 0.082 0.012 0.025 0.037
200 0.094 0.035 0.031 0.046

Network Details

As described above, we use an image VAE, a mesh VAE, and a latent projection module. In
the image VAE, the encoder includes five downsampling layers with feature sizes 32, 64, 128,
256, 512 and two fully connected layers with 128 neurons each. In the volumetric mesh VAE,
the encoder consists of four Chebyshev convolutional filters [19] with feature sizes 16, 16,
16, 32 and an output fully connected layer with 128 neurons. Each Chebyshev convolution
is down-sampled by a factor of four. The image and mesh decoder are symmetric with the
encoders. The latent projection module has three fully connected layers with 256, 512, and
256 neurons. All networks use the Adam optimizer with a learning rate of 1e− 3 and decay
of 0.99.

Supervised Projection

Our proposed supervised image-to-mesh projection depends on several hyperparameters. In
this section, we empirically estimate these. Furthermore, we pre-train the VAEs prior to
training the image-to-mesh projection. We evaluate the pre-training by comparing with
training the image-to-mesh projection directly from scratch.

The results reported here use a 80/20 split on the synthetic dataset for training and
validation. Each model was trained for 300 epochs. We report the mean validation root-
mean-square-error (RMSE) for the projected meshes.

Latent dimensions. We compare the image-to-mesh projection results for a 64, 128, and
256-dimensional latent space for each VAE, shown in Table 8.1. The 128-dimensional latent

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 101

Figure 8.5: Image-to-mesh projection results with synthetic data. First row : Input depth
observations. Second row : Corresponding ground-truth mesh. Third row : Reconstructed
volumetric mesh with our approach.

space for both VAEs gives the best results.

Loss weights. We also compared the effectiveness of different values for λI , λM , from (8.1)
and (8.2), shown in Table 8.2. We can see that the variational encoding, i.e., λI > 0, λM > 0,
significantly improves the performance of latent projection, with the best performance for
λI = 100, λM = 200. This suggests that the KL divergence term enforces a more meaningful
latent distribution compared to a vanilla autoencoder. Fig. 8.5 shows a batch of projection
results using the best-performing model.

Pre-training. Given the best-performing model, we investigate the usefulness of the VAE
pre-training. We trained the image-to-mesh network from scratch with variational encoding.
The training and validation errors were 0.009cm and 0.085cm, respectively. This suggests
that the network overfits without the pre-training, which aligns with the findings presented
in [79].

Self-Supervised Adaptation

We propose a self-supervised adaptation method and synthetic data augmentations to re-
solve the covariate shift problem. This section provides results and ablation studies for the
proposed method. We show that neither adaptation nor augmentation can achieve the ob-
jective alone, and the image VAE improves the adaptation results. Finally, we demonstrate
that the proposed methods can adapt networks from simulation to reality, from primitive to
novel contacts, and from one sensor to another.

The adaptation is performed with the real-world dataset {Ij}, without ground-truth mesh

availability. To evaluate the performance of the adaptations, we use the RMSE between Î

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 102

Figure 8.6: Reconstruction results for the image VAE with real-world images. First row :
Real-world image observations. Second row : Reconstructed image with pre-trained VAE.
The image VAE can effectively remove visual noises for both primitive and novel contacts.

Table 8.3: Experiments with real-world data. The root-mean-square error (RMSE) is mea-
sured between reconstructed images Ĩ and rendered images Î. Ablation studies for adapta-
tion, data augmentation, and VAE filtering.

RMSE (cm)

Adapt + Aug. 0.12
No Aug. No Adapt 1.03
Only Aug. 0.57
Only Adapt 0.79
Adapt + Aug. w/o VAE 0.87

and Ĩ as the evaluation metric, where Î is the reconstructed input depth map via the pre-
trained image VAE. As shown in Fig. 8.6, we can observe that the image VAE is robust
in different domains and can effectively remove noise. Specifically, we tested the VAE on
augmented synthetic images. Results show that the pre-trained image VAE can reconstruct
the clean depth map with an RMSE of 0.07cm.

Ablation studies. We compare the effects of the adaption model, synthetic data augmen-
tations, and image VAE filtering. The results are listed in Table 8.3. As the table shows,
data augmentation and self-supervised adaptation both contribute to resolving the sim-to-
real gap. We observe that using only adaptation, or only augmentation, results in lower
performance. The reason for higher performance when both are combined is two-fold. On
one hand, the data augmentation enlarges the distribution of the synthetic dataset, which
causes the real-world data to be within distribution (or close to). On the other hand, the
adaptation model transfers the network from the simulated distribution to the real-world
distribution, ensuring invariant feature encodings. Table 8.3 also shows that the VAE filter
improves adaptation performance. It removes visual noises in real-world data and stabilizes

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 103

Table 8.4: Experiments with real-world data. Domain adaptation results.

Source → Target RMSE before/after Adaptation (cm)

Sim-Prim. → Real-Prim 0.57 → 0.12
Sim-Prim → Real-Prim-2 0.77 → 0.20
Real-Prim → Real-Prim-2 0.35 → 0.16
Real-Prim → Real-Novel 0.64 → 0.41
Sim-Prim → Real-Novel 1.30 → 0.62

Networks were trained or tuned on source domains and then adapted to target domains.
The RMSEs were measured before and after the adaptation.

Figure 8.7: Experiments with real-world primitive contact objects. First row : Input depth
observations. Second row : Reconstructed volumetric meshes. Third row : Rendered depth
images from reconstructed meshes.

the adaptation process. A batch of qualitative reconstruction examples is shown in Fig 8.7.

Domain adaptations. Previous sections introduce various data domains, including simu-
lated data with primitive contact objects (Sim-Prim), real-world data with primitive contact
objects (Real-Prim), real-world data with novel contact objects (Real-Novel), and real-world
primitive data with a second GelSlim sensor (Real-Prim-2).

While we showed the performance of the Sim-Prim → Real-Prim experiment above, Ta-
ble 8.4 and Fig. 8.8 show the transfer results among other domains. The networks were first
pre-trained or fine-tuned on source domains and then adapted to target domains. Exper-
iments Sim-Prim → Real-Prim, Sim-Prim → Real-Prim-2, and Real-Prim → Real-Prim-2
were executed with the same primitive shapes. The adaptation improves performance in all
cases. For experiment Real-Prim → Real-Novel, the acquisition was done with the real sen-
sor, but adaptation now is for primitive to novel shapes. From Table 8.4, we see that while

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 104

Figure 8.8: Experiments with real-world novel contact objects. First row : Input depth
observations. Second row : Reconstructed volumetric mesh from the network.

the performance improves, improvement is less compared to the prior experiments. For the
final experiment, Sim-Prim → Real-Novel transfer is both from sim-to-real, as well as from
primitive to novel shapes, and thus is the hardest. Again, adaptation significantly improves
performance, and predicted deformations were visually accurate (see Fig. 8.8). The results
suggest that the proposed adaptation method can effectively improve the performance of the
network under both visual noise and shape differences.

Overall performance for experiment Sim-Prim→ Real-Novel is less compared to the other
experiments. The covariate shifts for visual noise and shape differences are not correlated,
and adaptation for each separately performs better compared to adaptation for both. Further
optimizing performance for both in a self-supervised manner is a challenging topic for future
work.

Baseline Comparisons

For regression from image observations to mesh deformations, two methods were evaluated:
1) our proposed method, denoted as Volumetric Mesh, and 2) a surface reconstruction base-
line [65, 115], denoted as Surface Mesh. The latter uses tracking markers to determine the
movement of the elastomer surface. Note that the Surface Mesh method does not estimate
the volumetric mesh directly but rather gives a sparse surface deformation field for each
contact.

Fig. 8.9 shows the reconstructed meshes with both methods. Interestingly, the compu-
tation takes 0.02 sec. for the Volumetric Mesh synthesis with our proposed approach versus
0.04 sec. for the Surface Mesh method (potentially due to the requirement of marker detec-
tion). Fig. 8.9 shows correspondences between the Volumetric Mesh and the Surface Mesh
on the elastomer surface. In addition, we also conducted contact force estimations of the
GelSlim based on the predicted meshes. An inverse FEM was used to compute the contact
force with a linear-elastic model [115]. Compared to the Surface Mesh method, our method
constructed more plausible and denser force distributions with the volumetric FEM mesh
(Fig. 8.9). For example, predictions around contact edges were more realistic and had higher

CHAPTER 8. CONTACT SYNTHESIZE FOR TACTILE SENSORS BY GRAPH
NEURAL NETWORK 105

0 mm

2 mm

0.4 mm

0.8 mm

1.2 mm

1.6 mm

0 N

1.1 N

0.22 N

0.44 N

0.66 N

0.88 N

Figure 8.9: First row : Reconstructed meshes and estimated contact forces with the pro-
posed approach, Volumetric Mesh. Second row : Comparison with baseline method, Surface
Mesh [115].

resolution. Predicted force profiles were also smoother, which was due to the influence of
internal vertices. We hypothesize that such denser force distributions obtained from our
method may help improve policy learning for robotic manipulation tasks.

8.4 Chapter Summary

This chapter presents a framework to synthesize volumetric meshes of vision-based tactile
sensors for novel contact interactions. Our work has several key contributions. First, we
present a 3D FEM simulator for vision-based tactile sensors and a simulator calibration
approach. Second, we generate a dataset for the GelSlim sensor with both simulated and
real-world contacts using primitive and novel shapes. Third, we propose a label-free adap-
tation method and image augmentations for domain transfers; we show that this approach
can effectively transfer networks to various visual and different shape scenarios. Lastly, our
network efficiently reconstructs the volumetric mesh with depth images and precisely esti-
mates the contact profiles of different shapes. Using these learned and adapted networks, our
method can reconstruct the deformations of the elastomer for vision-based tactile sensors in
various domains, as indicated by the quantitative and qualitative results.

106

Chapter 9

Conclusions and Further Works

9.1 Conclusions

In general, the objective of this dissertation is to incorporate contact modeling in learning
robot manipulations. Robotic grasp planning is first introduced in Chaters 2, 3, and 4.
Various scenarios were then investigated in Chapters 5, 6, and 7 for contact-aware robotic
manipulation. Eventually, contact sensing was discussed in Chapter 8.

Chapter 2 introduced the contrastive grasp proposal network (CGPN), a novel approach
for generating robust 6-DoF grasps. By leveraging contrastive learning and variant depth im-
age processing, CGPN effectively bridges the sim-to-real gap, achieving superior performance
over existing grasping algorithms in real-world scenarios.

In Chapter 3, we tackled the issue of data sparsity in grasp planning with the Maximum
Likelihood Grasp Sampling Loss (MLGSL). This approach significantly improved data effi-
ciency, allowing FCN models to learn effective grasping strategies from minimal labels and
achieve a high grasp success rate on household objects.

Chapter 4 focused on multi-fingered grasp pose detection in cluttered environments. The
proposed MF-GPD algorithm, integrating cross-entropy sampling and local optimization,
demonstrated a high success rate in locating collision-free grasps, marking a substantial
advancement in multi-fingered hand manipulation.

The dissertation then expanded its scope in Chapter 5, exploring model-based learning
from demonstrations for diverse robotic manipulation tasks. Here, we introduced a frame-
work that combines differentiable rendering and simulations, enabling efficient learning of
complex manipulation skills from human demonstrations.

Chapter 6 addressed contact-allowed robotic goal-reaching with operational and null
space control. The proposed receding horizon trajectory planner and hybrid solver showcased
efficient and safe manipulation strategies in varied collision conditions.

Chapter 7 focused on robot assembly planning. We introduced the Part Assembly Se-
quence Transformer (PAST), a multi-level framework for generating assembly plans that in-
clude part sequences, motions, and contact points. PAST infers feasible assembly sequences

CHAPTER 9. CONCLUSIONS AND FURTHER WORKS 107

based on target blueprints and part geometries, marking a substantial advancement in au-
tomated assembly. The development of a large-scale benchmark dataset for part assembly
sequences further underscores the impact of this work.

In Chapter 8, we investigated contact sensing in manipulation, focusing on synthesiz-
ing volumetric meshes of vision-based tactile sensors for novel contact interactions. The
contributions of this chapter are manifold: the development of a 3D FEM simulator for
vision-based tactile sensors, the creation of a comprehensive dataset for the GelSlim sen-
sor, and the proposal of a label-free adaptation method for domain transfers. Our method
effectively reconstructs the deformations of the elastomer for vision-based tactile sensors,
showcasing its efficacy through quantitative and qualitative results.

In conclusion, this dissertation presented a series of interconnected advancements in
the field of robotic manipulation with contact modeling. Each chapter contributed unique
methodologies and insights, cumulatively pushing the boundaries of what robotic systems
can achieve in terms of dexterity, efficiency, and adaptability.

9.2 Further Works

In addition to the research presented in this dissertation, the application of contact mechan-
ics and other physical principles offers promising avenues for enhancing robot learning in
areas such as representation learning, the development of generalist robot policies, and skill
transfer.

In the realm of robot representation learning, we postulate that focusing the network on
human-environment interactions can yield more generalizable visual representations. This
idea is crystallized in our work presented in [43], where we advocate for a human-oriented
multi-task fine-tuning approach on pre-trained visual encoders. Each task in this approach
represents a critical perceptual skill in everyday scenarios. We introduce the Task Fusion
Decoder, a novel tool designed as a plug-and-play embedding translator. It leverages the
interrelationships among these perceptual skills to guide the representation learning process,
ultimately enhancing the encoding of structures crucial for robotic manipulation tasks. This
methodology has demonstrated substantial improvements in the representation capabilities of
three state-of-the-art visual encoders across a diverse array of robotic tasks and embodiments,
both in simulations and real-world settings.

Moreover, the incorporation of physical principles in robot learning can be greatly facil-
itated by large-scale data. Real-world datasets inherently encode physical laws, and models
trained on such datasets have shown remarkable efficiency in various applications. This
leads to an intriguing question: can we establish a ’generalist’ robot policy adaptable across
diverse robots, tasks, and environments, akin to the consolidation of pre-trained models in
NLP and Computer Vision? In [16], we explore this possibility by providing standardized
datasets and models that encompass a wide range of robotic manipulation scenarios. Our
dataset, assembled from 22 different robots across 21 institutions, showcases 527 skills across
160266 tasks. The resulting high-capacity model, RT-X, demonstrates the feasibility of posi-

CHAPTER 9. CONCLUSIONS AND FURTHER WORKS 108

tive transfer, enhancing multiple robots’ capabilities by drawing on experiences from various
platforms.

Finally, physical models can play a pivotal role in facilitating the transfer of robotic
skills. In [131], we introduce DiffTransfer, a framework that leverages differentiable physics
simulation for efficient skill transfer in robotics. DiffTransfer utilizes a novel path-planning
method, incorporating Q-learning, to navigate through the task space, adapting actions
from one sub-task to another. This method is grounded in the gradient information gleaned
from differentiable physics simulations. Our implementation of DiffTransfer in simulation
experiments, and its application to four challenging robotic manipulation transfer tasks,
underscores its effectiveness and sets the stage for further explorations in skill transfer for
intelligent robots.

109

Bibliography

[1] Rika Antonova et al. “Rethinking Optimization with Differentiable Simulation from
a Global Perspective”. In: 6th Annual Conference on Robot Learning. 2022.

[2] P. Bao, L. Zhang, and X. Wu. “Canny Edge Detection Enhancement by Scale Multi-
plication”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence 27.09
(2005), pp. 1485–1490. issn: 1939-3539. doi: 10.1109/TPAMI.2005.173.

[3] Peter Battaglia et al. “Relational inductive biases, deep learning, and graph net-
works”. In: arXiv (2018).

[4] Maria Bauza, Oleguer Canal, and Alberto Rodriguez. “Tactile Mapping and Local-
ization from High-Resolution Tactile Imprints”. In: 2019 International Conference on
Robotics and Automation (ICRA). 2019. doi: 10.1109/ICRA.2019.8794298.

[5] Maria Bauza et al. “Tactile Object Pose Estimation from the First Touch with Geo-
metric Contact Rendering”. In: ArXiv Preprint (2020). eprint: 2012.05205.

[6] Filipe de Avila Belbute-Peres, Thomas D. Economon, and J. Zico Kolter. “Combining
Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction”.
In: ICML. 2020.

[7] Wenjing Bian et al. “Nope-nerf: Optimising neural radiance field with no pose prior”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2023, pp. 4160–4169.

[8] Stephen Boyd and Ben Wegbreit. “Fast Computation of Optimal Contact Forces”.
In: Robotics, IEEE Transactions on 23 (Jan. 2008).

[9] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

[10] Chun-Fu (Richard) Chen, Quanfu Fan, and Rameswar Panda. “CrossViT: Cross-
Attention Multi-Scale Vision Transformer for Image Classification”. In: International
Conference on Computer Vision (ICCV). 2021.

[11] Claire Chen et al. “TrajectoTree: Trajectory Optimization Meets Tree Search for
Planning Multi-contact Dexterous Manipulation”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2021, pp. 8262–8268. doi:
10.1109/IROS51168.2021.9636346.

https://doi.org/10.1109/TPAMI.2005.173
https://doi.org/10.1109/ICRA.2019.8794298
2012.05205
https://doi.org/10.1109/IROS51168.2021.9636346

BIBLIOGRAPHY 110

[12] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Represen-
tations”. In: Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learn-
ing Research. PMLR, 2020, pp. 1597–1607. url: http://proceedings.mlr.press/
v119/chen20j.html.

[13] Xuefeng Chen, Xiabi Liu, and Yunde Jia. “Combining evolution strategy and gradi-
ent descent method for discriminative learning of Bayesian classifiers”. In: 11th An-
nual Genetic and Evolutionary Computation Conference, GECCO-2009. Jan. 2009,
pp. 507–514. doi: 10.1145/1569901.1569972.

[14] Yun-Chun Chen et al. “Neural Shape Mating: Self-Supervised Object Assembly with
Adversarial Shape Priors”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2022.

[15] Cheng Chi et al. “Diffusion Policy: Visuomotor Policy Learning via Action Diffusion”.
In: Proceedings of Robotics: Science and Systems (RSS). 2023.

[16] Embodiment Collaboration et al. “Open X-Embodiment: Robotic Learning Datasets
and RT-X Models”. In: arXiv Preprint. 2023. eprint: 2310.08864 (cs.RO).

[17] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation in
robotics, games and machine learning. 2017.

[18] Sudeep Dasari, Abhinav Gupta, and Vikash Kumar. “Learning Dexterous Manipu-
lation from Exemplar Object Trajectories and Pre-Grasps”. In: 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 3889–3896.

[19] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering”. In: Advances in Neural
Information Processing Systems. 2016.

[20] Amaury Depierre, Emmanuel Dellandréa, and Liming Chen. “Jacquard: A Large Scale
Dataset for Robotic Grasp Detection”. In: 2018 IROS. 2018, pp. 3511–3516. doi:
10.1109/IROS.2018.8593950.

[21] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling lan-
guage for convex optimization”. In: Journal of Machine Learning Research 17.83
(2016), pp. 1–5.

[22] Mehmet R. Dogar and Siddhartha S. Srinivasa. “Push-grasping with dexterous hands:
Mechanics and a method”. In: 2010 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. 2010, pp. 2123–2130. doi: 10.1109/IROS.2010.5652970.

[23] Siyuan Dong et al. “Tactile-RL for Insertion: Generalization to Objects of Unknown
Geometry”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). 2021.

http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1145/1569901.1569972
2310.08864
https://doi.org/10.1109/IROS.2018.8593950
https://doi.org/10.1109/IROS.2010.5652970

BIBLIOGRAPHY 111

[24] Elliott Donlon et al. “GelSlim: A High-Resolution, Compact, Robust, and Calibrated
Tactile-sensing Finger”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018.

[25] Hugh Durrant-Whyte, Nicholas Roy, and Pieter Abbeel. “Motion Planning under
Uncertainty in Highly Deformable Environments”. In: Robotics: Science and Systems
VII. 2012, pp. 241–248.

[26] Yongxiang Fan, Xinghao Zhu, and Masayoshi Tomizuka. “Optimization Model for
Planning Precision Grasps with Multi-Fingered Hands”. In: 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 2019, pp. 1548–1554.
doi: 10.1109/IROS40897.2019.8967560.

[27] Yongxiang Fan et al. “Grasp planning for customized grippers by iterative surface
fitting”. In: 2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE). IEEE. 2018, pp. 28–34.

[28] Yongxiang Fan et al. “Real-time finger gaits planning for dexterous manipulation”.
In: IFAC 50.1 (2017), pp. 12765–12772.

[29] Yongxiang Fan et al. “Real-time grasp planning for multi-fingered hands by finger
splitting”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 4045–4052.

[30] Yongxiang Fan et al. “Real-time robust finger gaits planning under object shape and
dynamics uncertainties”. In: 2017 IROS. IEEE. 2017, pp. 1267–1273.

[31] C. Daniel Freeman et al. Brax - A Differentiable Physics Engine for Large Scale Rigid
Body Simulation. Version 0.0.15. 2021. url: http://github.com/google/brax.

[32] Seyed Kamyar Seyed Ghasemipour et al. “Blocks Assemble! Learning to Assemble
with Large-Scale Structured Reinforcement Learning”. In: International Conference
on Machine Learning. 2022.

[33] Raghav Goyal et al. “The ”something something” video database for learning and
evaluating visual common sense”. In: CoRR abs/1706.04261 (2017). url: https:
//20bn.com/datasets/something-something.

[34] Marcus Gualtieri and Robert Platt. “Learning 6-DoF Grasping and Pick-Place Using
Attention Focus”. In: Conference on Robot Learning. Vol. 87. 2018, pp. 477–486.

[35] Marcus Gualtieri and Robert Platt. “Learning Manipulation Skills via Hierarchical
Spatial Attention”. In: IEEE Transactions on Robotics 36.4 (), pp. 1067–1078. issn:
1941-0468. doi: 10.1109/tro.2020.2974093.

[36] Nikolaus Hansen. “The CMA Evolution Strategy: A Tutorial”. In: arXiv Preprint.
2016. doi: 10.48550/ARXIV.1604.00772.

https://doi.org/10.1109/IROS40897.2019.8967560
http://github.com/google/brax
https://20bn.com/datasets/something-something
https://20bn.com/datasets/something-something
https://doi.org/10.1109/tro.2020.2974093
https://doi.org/10.48550/ARXIV.1604.00772

BIBLIOGRAPHY 112

[37] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science
and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/tssc.1968.300136. url:
https://doi.org/10.1109/tssc.1968.300136.

[38] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. doi: 10.
1109/CVPR.2016.90. url: https://doi.org/10.1109/CVPR.2016.90.

[39] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Representation
Learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2020.

[40] Francois R. Hogan et al. “Tactile Dexterity: Manipulation Primitives with Tactile
Feedback”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). 2020. doi: 10.1109/ICRA40945.2020.9196976.

[41] Neville Hogan. “Impedance Control: An Approach to Manipulation: Part I—Theory”.
In: Journal of Dynamic Systems, Measurement, and Control 107.1 (Mar. 1985), pp. 1–
7. issn: 0022-0434. doi: 10.1115/1.3140702.

[42] Jialei Huang et al. “Generative 3D Part Assembly via Dynamic Graph Learning”. In:
Advances in Neural Information Processing Systems. 2020.

[43] Mingxiao Huo et al. “Human-oriented Representation Learning for Robotic Manipu-
lation”. In: arXiv preprint arXiv:2310.03023 (2023).

[44] Shan Jiang et al. “Single-Grasp Detection Based on Rotational Region CNN”. In:
Advances in Computational Intelligence Systems. Cham: Springer International Pub-
lishing, 2020, pp. 131–141. isbn: 978-3-030-29933-0.

[45] Shiyu Jin et al. “Contact pose identification for peg-in-hole assembly under uncer-
tainties”. In: 2021 American Control Conference (ACC). IEEE. 2021, pp. 48–53.

[46] Micah K. Johnson and Edward H. Adelson. “Retrographic sensing for the measure-
ment of surface texture and shape”. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition. 2009. doi: 10.1109/CVPR.2009.5206534.

[47] Mikael Jorda, Elena Galbally Herrero, and Oussama Khatib. “Contact-Driven Posture
Behavior for Safe and Interactive Robot Operation”. In: International Conference on
Robotics and Automation (ICRA). 2019, pp. 9243–9249. doi: 10.1109/ICRA.2019.
8793691.

[48] Sertac Karaman and Emilio Frazzoli. “Sampling-based Algorithms for Optimal Mo-
tion Planning”. In: arXiv Preprint. 2011. doi: 10.48550/ARXIV.1105.1186.

[49] Alexander Kirillov et al. “Segment Anything”. In: arXiv:2304.02643 (2023).

https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICRA40945.2020.9196976
https://doi.org/10.1115/1.3140702
https://doi.org/10.1109/CVPR.2009.5206534
https://doi.org/10.1109/ICRA.2019.8793691
https://doi.org/10.1109/ICRA.2019.8793691
https://doi.org/10.48550/ARXIV.1105.1186

BIBLIOGRAPHY 113

[50] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient approach to single-query
path planning”. In: 2000 ICRA. Vol. 2. 2000, 995–1001 vol.2. doi: 10.1109/ROBOT.
2000.844730.

[51] Mike Lambeta et al. “Digit: A novel design for a low-cost compact high-resolution
tactile sensor with application to in-hand manipulation”. In: IEEE Robotics and Au-
tomation Letters 5.3 (2020), pp. 3838–3845.

[52] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: The International Journal of Robotics Research 34.4-5 (), pp. 705–724.
doi: 10.1177/0278364914549607.

[53] Nathan F. Lepora et al. “From Pixels to Percepts: Highly Robust Edge Perception and
Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor”.
In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 2101–2107. doi: 10.1109/
LRA.2019.2899192.

[54] Yichen Li et al. “Learning 3D Part Assembly from a Single Image”. In: European
conference on computer vision (2020).

[55] Yulong Li, Andy Zeng, and Shuran Song. “Rearrangement Planning for General Part
Assembly”. In: Conference on Robot Learning. PMLR. 2023.

[56] Yunzhu Li et al. “Visual Grounding of Learned Physical Models”. In: ICML. 2020.

[57] Hongzhuo Liang et al. “PointNetGPD: Detecting Grasp Configurations from Point
Sets”. In: 2019 International Conference on Robotics and Automation (ICRA) (2019).
doi: 10.1109/icra.2019.8794435. url: http://dx.doi.org/10.1109/ICRA.
2019.8794435.

[58] Min Liu et al. “Deep Differentiable Grasp Planner for High-DOF Grippers”. In: 2020
Robotics: Science and Systems (RSS) (2020).

[59] Ruoshi Liu et al. “Zero-1-to-3: Zero-shot One Image to 3D Object”. In: arXiv:2303.11328
(2023).

[60] Romain Lopez et al. “Information Constraints on Auto-Encoding Variational Bayes”.
In: Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018, pp. 6117–6128.

[61] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”. In: SIGGRAPH ’87. New York, NY, USA:
Association for Computing Machinery, 1987, pp. 163–169. isbn: 0897912276. doi:
10.1145/37401.37422. url: https://doi.org/10.1145/37401.37422.

[62] Qingkai Lu et al. “Multi-Fingered Grasp Planning via Inference in Deep Neural Net-
works”. In: IEEE robotics automation magazine (2020).

[63] Qingkai Lu et al. “Planning Multi-Fingered Grasps as Probabilistic Inference in a
Learned Deep Network”. In: Robotics Research (2020), pp. 455–472.

https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1177/0278364914549607
https://doi.org/10.1109/LRA.2019.2899192
https://doi.org/10.1109/LRA.2019.2899192
https://doi.org/10.1109/icra.2019.8794435
http://dx.doi.org/10.1109/ICRA.2019.8794435
http://dx.doi.org/10.1109/ICRA.2019.8794435
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422

BIBLIOGRAPHY 114

[64] Daolin Ma, Siyuan Dong, and Alberto Rodriguez. “Extrinsic Contact Sensing with
Relative-Motion Tracking from Distributed Tactile Measurements”. In: ArXiv Preprint
(2021). eprint: 2103.08108.

[65] Daolin Ma et al. “Dense Tactile Force Estimation using GelSlim and inverse FEM”.
In: 2019 International Conference on Robotics and Automation (ICRA). 2019.

[66] Jianqi Ma et al. “Arbitrary-Oriented Scene Text Detection via Rotation Proposals”.
In: IEEE Transactions on Multimedia 20.11 (2018), pp. 3111–3122. issn: 1941-0077.
doi: 10.1109/tmm.2018.2818020. url: http://dx.doi.org/10.1109/TMM.2018.
2818020.

[67] J. Mahler et al. “Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets
in Point Clouds Using a New Analytic Model and Deep Learning”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). 2018, pp. 5620–5627.
doi: 10.1109/ICRA.2018.8460887.

[68] Jeffrey Mahler et al. “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Syn-
thetic Point Clouds and Analytic Grasp Metrics”. In: Robotics: Science and Systems
(RSS). 2017.

[69] Viktor Makoviychuk et al. “Isaac Gym: High Performance GPU-Based Physics Sim-
ulation For Robot Learning”. In: arXiv preprint arXiv:2108.10470 (2021).

[70] Roberto Mart́ın-Mart́ın et al. “Variable Impedance Control in End-Effector Space. An
Action Space for Reinforcement Learning in Contact Rich Tasks”. In: International
Conference of Intelligent Robots and Systems (IROS). 2019.

[71] Carolyn Matl, Josephine Koe, and Ruzena Bajcsy. “StRETcH: a Soft to Resistive
Elastic Tactile Hand”. In: arXiv preprint arXiv:2105.08154 (2021).

[72] Benjamin W. McInroe et al. “Towards a Soft Fingertip with Integrated Sensing and
Actuation”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2018. doi: 10.1109/IROS.2018.8594032.

[73] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach”. In: Robotics: Science
and Systems (RSS) (2018).

[74] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Learning robust, real-time, re-
active robotic grasping”. In: The International Journal of Robotics Research 39.2-3
(). doi: 10.1177/0278364919859066.

[75] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. “6-DOF GraspNet: Variational
Grasp Generation for Object Manipulation”. In: 2019 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019. IEEE, 2019, pp. 2901–2910. doi: 10.1109/ICCV.2019.00299. url:
https://doi.org/10.1109/ICCV.2019.00299.

2103.08108
https://doi.org/10.1109/tmm.2018.2818020
http://dx.doi.org/10.1109/TMM.2018.2818020
http://dx.doi.org/10.1109/TMM.2018.2818020
https://doi.org/10.1109/ICRA.2018.8460887
https://doi.org/10.1109/IROS.2018.8594032
https://doi.org/10.1177/0278364919859066
https://doi.org/10.1109/ICCV.2019.00299
https://doi.org/10.1109/ICCV.2019.00299

BIBLIOGRAPHY 115

[76] A. Murali et al. “6-DOF Grasping for Target-driven Object Manipulation in Clutter”.
In: International Conference on Robotics and Automation (ICRA). 2020.

[77] Richard M Murray et al. A mathematical introduction to robotic manipulation. CRC
press, 1994.

[78] Yashraj Narang et al. “Factory: Fast contact for robotic assembly”. In: Robotics:
Science and Systems. 2022.

[79] Yashraj Narang et al. “Sim-to-Real for Robotic Tactile Sensing via Physics-Based
Simulation and Learned Latent Projections”. In: Proceeding of the 2021 International
Conference on Robotics and Automation (ICRA) (2021).

[80] Yashraj S. Narang et al. “Interpreting and Predicting Tactile Signals via a Physics-
Based and Data-Driven Framework”. In: ArXiv Preprint (2020). eprint: 2006.03777.

[81] Maria Augusta Neto et al. “Finite Element Method for 3D Solids”. In: Engineering
Computation of Structures: The Finite Element Method. Cham: Springer International
Publishing, 2015, pp. 233–263. isbn: 978-3-319-17710-6. doi: 10.1007/978-3-319-
17710-6_7.

[82] Peiyuan Ni et al. “PointNet++ Grasping: Learning An End-to-end Spatial Grasp
Generation Algorithm from Sparse Point Clouds”. In: 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). 2020, pp. 3619–3625. doi: 10.1109/
ICRA40945.2020.9196740.

[83] nimble. Nimble Physics Documentation. https://nimblephysics.org/docs.

[84] Yuki Onishi and et al. “An automated fruit harvesting robot by using deep learning”.
In: Robomech. 2019. doi: https://doi.org/10.1186/s40648-019-0141-2.

[85] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with
Contrastive Predictive Coding. 2019. arXiv: 1807.03748 [cs.LG].

[86] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In: Founda-
tions and Trends® in Robotics 7.1-2 (2018), pp. 1–179.

[87] Akhil Padmanabha et al. “Omnitact: A multi-directional high-resolution touch sen-
sor”. In: 2020 IEEE International Conference on Robotics and Automation (ICRA).
2020.

[88] J. Pan, S. Chitta, and D. Manocha. “FCL: A general purpose library for collision and
proximity queries”. In: 2012 ICRA. 2012, pp. 3859–3866. doi: 10.1109/ICRA.2012.
6225337.

[89] Tao Pang et al. Global Planning for Contact-Rich Manipulation via Local Smoothing
of Quasi-dynamic Contact Models. 2022. doi: 10.48550/ARXIV.2206.10787.

[90] Dongwon Park and Se Young Chun. “Classification based Grasp Detection using
Spatial Transformer Network”. In: CoRR abs/1803.01356 (2018). arXiv: 1803.01356.
url: http://arxiv.org/abs/1803.01356.

2006.03777
https://doi.org/10.1007/978-3-319-17710-6_7
https://doi.org/10.1007/978-3-319-17710-6_7
https://doi.org/10.1109/ICRA40945.2020.9196740
https://doi.org/10.1109/ICRA40945.2020.9196740
https://nimblephysics.org/docs
https://doi.org/https://doi.org/10.1186/s40648-019-0141-2
https://arxiv.org/abs/1807.03748
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.48550/ARXIV.2206.10787
https://arxiv.org/abs/1803.01356
http://arxiv.org/abs/1803.01356

BIBLIOGRAPHY 116

[91] Andreas ten Pas et al. “Grasp Pose Detection in Point Clouds”. In: The Interna-
tional Journal of Robotics Research 36.13-14 (2017), pp. 1455–1473. doi: 10.1177/
0278364917735594. url: https://doi.org/10.1177/0278364917735594.

[92] Vladimı́r Petŕık et al. “Learning object manipulation skills via approximate state es-
timation from real videos”. In: Conference on Robot Learning. PMLR. 2021, pp. 296–
312.

[93] Tobias Pfaff et al. “Learning Mesh-Based Simulation with Graph Networks”. In: In-
ternational Conference on Learning Representations. 2021.

[94] Calder Phillips-Grafflin and Dmitry Berenson. “A representation of deformable ob-
jects for motion planning with no physical simulation”. In: 2014 IEEE International
Conference on Robotics and Automation (ICRA). 2014, pp. 98–105. doi: 10.1109/
ICRA.2014.6906595.

[95] Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on Point Sets for 3D Clas-
sification and Segmentation”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Com-
puter Society, 2017, pp. 77–85. doi: 10.1109/CVPR.2017.16. url: https://doi.
org/10.1109/CVPR.2017.16.

[96] Charles Ruizhongtai Qi et al. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space”. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA. 2017, pp. 5099–5108. url: https://proceedings.
neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.

html.

[97] Haozhi Qi et al. “In-Hand Object Rotation via Rapid Motor Adaptation”. In: Con-
ference on Robot Learning (CoRL). 2022.

[98] Anurag Ranjan et al. “Generating 3D faces using Convolutional Mesh Autoencoders”.
In: European Conference on Computer Vision (ECCV). 2018.

[99] Joseph Redmon and Anelia Angelova. “Real-time grasp detection using convolutional
neural networks”. In: 2015 ICRA. 2015, pp. 1316–1322. doi: 10.1109/ICRA.2015.
7139361.

[100] Maximo Roa and Raul Suarez. “Grasp Quality Measures: Review and Performance”.
In: Autonomous Robots 38 (2014), pp. 65–88. doi: 10.1007/s10514-014-9402-3.

[101] S. Rodriguez, Jyh-Ming Lien, and N.M. Amato. “Planning motion in completely
deformable environments”. In: 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. 2006, pp. 2466–2471. doi: 10.1109/ROBOT.2006.
1642072.

https://doi.org/10.1177/0278364917735594
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1109/ICRA.2014.6906595
https://doi.org/10.1109/ICRA.2014.6906595
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://doi.org/10.1109/ICRA.2015.7139361
https://doi.org/10.1109/ICRA.2015.7139361
https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1109/ROBOT.2006.1642072
https://doi.org/10.1109/ROBOT.2006.1642072

BIBLIOGRAPHY 117

[102] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. “A Reduction of Imitation Learn-
ing and Structured Prediction to No-Regret Online Learning”. In: Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics. Ed. by
Geoffrey Gordon, David Dunson, and Miroslav Dud́ık. Vol. 15. Proceedings of Ma-
chine Learning Research. Fort Lauderdale, FL, USA: PMLR, Nov. 2011, pp. 627–635.
url: https://proceedings.mlr.press/v15/ross11a.html.

[103] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL)”.
In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China, 2011.

[104] Hamid Sadeghian et al. “Multi-priority control in redundant robotic systems”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011, pp. 3752–
3757. doi: 10.1109/IROS.2011.6094609.

[105] Alvaro Sanchez-Gonzalez et al. “Graph networks as learnable physics engines for
inference and control”. In: ArXiv Preprint (2018). eprint: 1806.01242.

[106] Alvaro Sanchez-Gonzalez et al. “Learning to Simulate Complex Physics with Graph
Networks”. In: International Conference on Machine Learning. 2020.

[107] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. “On-Policy Dataset Synthesis for
Learning Robot Grasping Policies Using Fully Convolutional Deep Networks”. In:
IEEE Robotics and Automation Letters (2019).

[108] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Revis-
ited”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[109] N. Shafii, S. H. Kasaei, and L. S. Lopes. “Learning to grasp familiar objects using
object view recognition and template matching”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2016, pp. 2895–2900. doi:
10.1109/IROS.2016.7759448.

[110] Lin Shao et al. “UniGrasp: Learning a Unified Model to Grasp With Multifingered
Robotic Hands”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2286–
2293. issn: 2377-3774. doi: 10.1109/lra.2020.2969946. url: http://dx.doi.
org/10.1109/LRA.2020.2969946.

[111] Yu She et al. “Cable Manipulation with a Tactile-Reactive Gripper”. In: Robotics:
Science and Systems (RSS). 2020.

[112] Lingfeng Sun et al. “Efficient Multi-Task and Transfer Reinforcement Learning With
Parameter-Compositional Framework”. In: IEEE Robotics and Automation Letters
8.8 (2023), pp. 4569–4576.

[113] Lingfeng Sun et al. “PaCo: Parameter-Compositional Multi-task Reinforcement Learn-
ing”. In: NeurIPS. 2022.

[114] Priya Sundaresan et al. Learning Rope Manipulation Policies Using Dense Object
Descriptors Trained on Synthetic Depth Data. 2020. arXiv: 2003.01835 [cs.RO].

https://proceedings.mlr.press/v15/ross11a.html
https://doi.org/10.1109/IROS.2011.6094609
1806.01242
https://doi.org/10.1109/IROS.2016.7759448
https://doi.org/10.1109/lra.2020.2969946
http://dx.doi.org/10.1109/LRA.2020.2969946
http://dx.doi.org/10.1109/LRA.2020.2969946
https://arxiv.org/abs/2003.01835

BIBLIOGRAPHY 118

[115] Ian Taylor, Siyuan Dong, and Alberto Rodriguez. “GelSlim3.0: High-Resolution Mea-
surement of Shape, Force and Slip in a Compact Tactile-Sensing Finger”. In: ArXiv
Preprint abs/2103.12269 (2021).

[116] Erik G. Thompson. Introduction to the Finite Element Method: Theory, Programming
and Applications. Wiley Text Books, 2004. isbn: 0471267538.

[117] Yunsheng Tian et al. “Assemble Them All: Physics-Based Planning for Generalizable
Assembly by Disassembly”. In: ACM Trans. Graph. 41.6 (2022).

[118] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems. Vol. 30. 2017.

[119] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. “Differentiable Signed Distance
Function Rendering”. In: Transactions on Graphics (Proceedings of SIGGRAPH) 41.4
(July 2022), 125:1–125:18. doi: 10.1145/3528223.3530139.

[120] Video for paper: 6-DoF Contrastive Grasp Proposal Network. https://www.youtube.
com/watch?v=rXldZyf6Kks.

[121] Video for paper: 6-DoF Contrastive Grasp Proposal Network. https://www.youtube.
com/watch?v=XNYkWSHkAaU.

[122] Video for paper: Learn to Grasp with Less Supervision using MLGSL. https://www.
youtube.com/watch?v=vHTMWdj4n7o.

[123] Chen Wang et al. “SwingBot: Learning Physical Features from In-hand Tactile Explo-
ration for Dynamic Swing-up Manipulation”. In: 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 2020. doi: 10.1109/IROS45743.
2020.9341006.

[124] Yue Wang et al. “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM
Transactions on Graphics (TOG) (2019).

[125] Website for paper: Diff-LfD. https://sites.google.com/view/diff-lfd.

[126] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for Connec-
tionist Reinforcement Learning”. In: Mach. Learn. 8.3–4 (May 1992), pp. 229–256.
issn: 0885-6125. doi: 10.1007/BF00992696.

[127] Karl D. D. Willis et al. “Fusion 360 Gallery: A Dataset and Environment for Program-
matic CAD Construction from Human Design Sequences”. In: ACM Transactions on
Graphics 40.4 (2021).

[128] Karl D.D. Willis et al. “JoinABLe: Learning Bottom-Up Assembly of Parametric CAD
Joints”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022, pp. 15849–15860.

[129] W. Wohlkinger et al. “3DNet: Large-scale object class recognition from CAD models”.
In: 2012 IEEE International Conference on Robotics and Automation. 2012, pp. 5384–
5391.

https://doi.org/10.1145/3528223.3530139
https://www.youtube.com/watch?v=rXldZyf6Kks
https://www.youtube.com/watch?v=rXldZyf6Kks
https://www.youtube.com/watch?v=XNYkWSHkAaU
https://www.youtube.com/watch?v=XNYkWSHkAaU
https://www.youtube.com/watch?v=vHTMWdj4n7o
https://www.youtube.com/watch?v=vHTMWdj4n7o
https://doi.org/10.1109/IROS45743.2020.9341006
https://doi.org/10.1109/IROS45743.2020.9341006
https://sites.google.com/view/diff-lfd
https://doi.org/10.1007/BF00992696

BIBLIOGRAPHY 119

[130] Sanghyun Woo et al. “CBAM: Convolutional Block Attention Module”. In: European
Conference on Computer Vision (ECCV). Sept. 2018.

[131] Yuqi Xiang et al. Diff-Transfer: Model-based Robotic Manipulation Skill Transfer via
Differentiable Physics Simulation. 2023. arXiv: 2310.04930 [cs.RO].

[132] Mingxin Yu et al. “RoboAssembly: Learning Generalizable Furniture Assembly Pol-
icy in a Novel Multi-robot Contact-rich Simulation Environment”. In: International
Conference on Robotics and Automation (ICRA). 2022.

[133] Wenzhen Yuan, Siyuan Dong, and Edward H. Adelson. “GelSight: High-Resolution
Robot Tactile Sensors for Estimating Geometry and Force”. In: Sensors 17.12 (2017).
issn: 1424-8220.

[134] Andy Zeng and et al. “Robotic Pick-and-Place of Novel Objects in Clutter with
Multi-Affordance Grasping and Cross-Domain Image Matching”. In: 2018 ICRA.
2018, pp. 3750–3757. doi: 10.1109/ICRA.2018.8461044.

[135] Andy Zeng et al. “Learning Synergies between Pushing and Grasping with Self-
supervised Deep Reinforcement Learning”. In: IROS. 2018.

[136] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks”. In: 2017 IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 2242–2251. doi: 10.1109/ICCV.2017.244.

[137] Xiang Zhu, Shucheng Kang, and Jianyu Chen. “A Contact-Safe Reinforcement Learn-
ing Framework for Contact-Rich Robot Manipulation”. In: arXiv Preprint. 2022. doi:
10.48550/ARXIV.2207.13438.

[138] Xinghao Zhu et al. “6-DoF Contrastive Grasp Proposal Network”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). 2021, pp. 6371–6377.
doi: 10.1109/ICRA48506.2021.9561954.

[139] Xinghao Zhu et al. “Allowing Safe Contact in Robotic Goal-Reaching: Planning and
Tracking in Operational and Null Spaces”. In: IEEE International Conference on
Robotics and Automation (ICRA), 2023.

[140] Xinghao Zhu et al. “Diff-LfD: Contact-aware Model-based Learning from Visual
Demonstration for Robotic Manipulation via Differentiable Physics-based Simulation
and Rendering”. In: Conference on Robot Learning. PMLR. 2023.

[141] Xinghao Zhu et al. “Fanuc Manipulation: A Dataset for Learning-based Manipulation
with FANUC Mate 200iD Robot”. In: 2023.

[142] Xinghao Zhu et al. “Learn to grasp with less supervision: A data-efficient maximum
likelihood grasp sampling loss”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 721–727.

[143] Xinghao Zhu et al. “Learning to Synthesize Volumetric Meshes from Vision-based
Tactile Imprints”. In: 2022 International Conference on Robotics and Automation
(ICRA). 2022, pp. 4833–4839. doi: 10.1109/ICRA46639.2022.9812092.

https://arxiv.org/abs/2310.04930
https://doi.org/10.1109/ICRA.2018.8461044
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.48550/ARXIV.2207.13438
https://doi.org/10.1109/ICRA48506.2021.9561954
https://doi.org/10.1109/ICRA46639.2022.9812092

BIBLIOGRAPHY 120

[144] Xinghao Zhu et al. “Multi-level Reasoning for Robotic Assembly: From Sequence
Inference to Contact Selection”. In: 2024 IEEE International Conference on Robotics
and Automation (ICRA).

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivations
	Dissertation Outlines and Contributions

	Contact Planning
	Robust Grasp Planning with Contrastive Representation Learning
	Introduction
	6-DoF Contrastive Grasp Proposal Network
	Experiment
	Chapter Summary

	Sample-Efficient Grasp Learning by Maximum Likelihood Sampling
	Introduction
	Grasp Planning with Maximum Likelihood Grasp Sampling Loss
	Training Experiments
	Real-World Experiments
	Chapter Summary

	Grasp Planning for Multi-Fingered Hands
	Introduction
	Grasp Planning using Point Cloud
	Training Experiments
	Real-World Experiments
	Chapter Summary

	Contact-Aware Manipulation
	Robot Dexterous Manipulation by Model-Based Learning from Demonstrations
	Introduction
	Diff-LfD: Contact-aware Model-based Learning from Visual Demonstration
	Pose and Shape Estimation with Differentiable SDF
	Contact-Aware Manipulation Policy
	Experiments
	Chapter Summary

	Manipulation with Safe-Contact by Null Space Impedance Control
	Introduction
	Contact-Allowed Robotic Goal-Reaching
	Experiments
	Chapter Summary

	Contact-Aware Robotic Assembly Planning
	Introduction
	Assembly Planning
	Experiments
	Chapter Summary

	 Contact Sensing
	Contact Synthesize for Tactile Sensors by Graph Neural Network
	Introduction
	Learning to Synthesize Volumetric Meshes
	Experiments
	Chapter Summary

	Conclusions and Further Works
	Conclusions
	Further Works

	Bibliography

