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Neurotoxic protein oligomers—what you see is not always what you get

GAL BITAN, ERICA A. FRADINGER, SEAN M. SPRING, & DAVID B. TEPLOW

Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Keywords: Amyloid, oligomer, SDS-PAGE, protofibril

Abbreviations: AD=Alzheimer’s disease; TTR= transthyretin; SDS-PAGE= sodium dodecylsulfate-polyacrylamide gel
electrophoresis; LMW= low molecular weight; PF= protofibrils; DLS=dynamic light scattering; AFM=atomic force
microscopy; EM= electron microscopy; SEC= size exclusion chromatography

Abstract
An increasing body of evidence suggests that soluble assemblies of amyloid proteins are the predominant neurotoxic species
in many amyloid-related diseases. Consequently, the focus of research on pathologic mechanisms underlying amyloidoses
has shifted from amyloid fibrils to oligomers. Biophysical characterization of oligomers is difficult due to their metastable
nature. The most popular experimental method for detection of oligomers has been SDS-PAGE. However, we provide
experimental evidence that SDS-PAGE is not a reliable method for characterization of amyloid protein oligomers and
discuss alternative approaches. In addition, we discuss how inconsistent nomenclature has obfuscated our understanding of
the process and products of protein assembly. The goals of this paper are to identify pitfalls associated with the methods and
language used to study protein oligomers and to provide alternatives, thereby facilitating successful elucidation of the
mechanisms controlling amyloid protein oligomer assembly and toxicity.

Introduction

Amyloidoses are a group of human diseases char-

acterized by harmful accumulation of protein

aggregates termed ‘‘amyloids.’’ In amyloidoses,

proteins of various native structures and functions

transform into amyloid. In their amyloid form, these

proteins share a structure characterized by fibrillar

morphology and cross b-sheet conformation [1] and

deposit both intra- and extracellularly causing

cytotoxicity and tissue damage.

Amyloidoses are classified by anatomic distribu-

tion and protein type. Systemic amyloidoses include

light-chain amyloidosis, dialysis-related amyloidosis,

and senile systemic amyloidosis. These diseases are

caused by aggregation and deposition of immuno-

globulin light chains, b2-microglobulin, and

transthyretin (TTR), respectively [2]. Other amyloi-

doses affect particular organs. Brain-specific diseases

include Alzheimer’s Disease (associated with the

amyloid b-protein (Ab) and tau), Parkinson’s disease

(a-synuclein), Huntington’s disease (huntingtin),

transmissible spongiform encephalopathies (prion

proteins), and amyotrophic lateral sclerosis (super-

oxide dismutase) [3].

Amyloidogenic proteins normally exist in a soluble

form. For some, the physiologic function is known

and the three-dimensional structure of the native

state has been determined [4—11]. However, in each

amyloidosis, the pathologic lesions characterizing the

disease comprise mainly aggregates of the respective

protein. When isolated from lesions or prepared

from synthetic or recombinant sources, the amyloid

protein fibrils are cytotoxic, regardless of the specific

protein from which they are derived [12–19]. For this

reason, fibrils historicially were considered to be the

causes of the respective disease. In the Alzheimer’s

disease (AD) field, this was a key element of the

‘‘amyloid cascade hypothesis [20]’’. However, an

increasing body of evidence from studies in humans,

normal rodents, transgenic mice, cultured cells, and

in vitro systems suggests that soluble assembly

intermediates of amyloidogenic proteins are the

primary pathogenetic effectors in AD and other

amyloidoses (Figure 1). A paradigm shift in the field

[21], and an updated version of the hypothesis [22],

thus have emerged. This pardigm shift has had two

significant consequences: (1) biophysical studies

have moved from the investigation of fibril elonga-

tion kinetics and thermodynamics to identification
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and characterization of oligomeric assemblies of

amyloidogenic proteins; and (2) biological studies

addressing protein toxicity now emphasize the

assembly state of the protein, focusing on small,

soluble assemblies. These shifts pose a challenge,

particularly for laboratories specializing in functional

biological studies. Amyloidogenic protein oligomers

are often metastable and oligomers of various sizes

exist in heterogeneous mixtures with monomers.

Therefore, oligomers are difficult to analyze by

classical methods used for studies of stable protein

assemblies or of unassembled proteins. This com-

plicates structure–activity studies, which are central

for correct targeting of therapeutic agents. In this

paper, we discuss: (1) caveats associated with

identifying small oligomers using the ubiquitous

protein fractionation technique SDS-PAGE; and

(2) inconsistent nomenclature used to describe

particular assemblies. The lessons learned with Ab
are equally relevant to studies elucidating the

assembly pathways and function of other amyloido-

genic proteins.

Results and discussion

Potential pitfalls in characterization of oligomers of

amyloidogenic proteins

A survey of the recent literature reveals that the most

common method for characterization of toxic protein

oligomers is SDS-PAGE (Figure 2A). In studies of

several different amyloidogenic proteins (Figure 2B),

the sole evidence for the existence of oligomers is the

presence of gel bands of apparent molecular mass

higher than that of the monomeric protein. How

reliable are these data and the conclusions based

upon them? Biochemical and chemical data suggest

that in the absence of covalent stabilization of protein

oligomers, SDS-PAGE is unsuitable for revealing

distributions of native oligomers.

SDS-PAGE has been an attractive analytical

method for many reasons. It is a well-established,

common, and inexpensive method for protein

fractionation that offers high resolution and the

ability to observe and quantify oligomers of similar

molecular weight. In comparison, the other methods

Figure 1. Number of publications on amyloidogenic protein

oligomers per year between 1990—2004. The numbers were

obtained by a PubMed Boolean search for the terms ‘‘amyloid*’’

and ‘‘oligomer*,’’ where ‘‘*’’ is a wild card designator. Data for the

first 6 months of 2004 were extrapolated linearly to 12 months.

Figure 2. Biophysical methods used for studies of amyloidogenic

protein oligomers. Within the first six months of 2004, 49

publications contained both the words ‘‘amyloid*’’ (1239 pub-

lications) and ‘‘oligomer*’’ (804 publications). Ten of these

publications were not included in the analysis because they either

were review articles or were related to non-amyloidogenic

proteins. The charts represent the remaining 39 publications.

(A) Methods used for oligomer detection and characterization. (B)

Proteins studied. Amyloid protein names [79] are: Ab, amyloid b-
protein; APrP, prion; ATTR, transthyretin; ACys, cystatin C;

Ab2M, b2-microglobulin; AIAPP, islet amyloid polypeptide; AIns,

insulin; ABri, the amyloid protein derived from the precursor

ABriPP; ADan, the amyloid protein derived from the precursor

ADanPP; AL, immunoglobulin light chain; ALys, lysozyme.

ADan and ADanPP are tentative designations [79].

Neurotoxic protein oligomers 89
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presented in Figure 2A provide lower resolution and

require specialized equipment or reagents. SDS

binds to proteins through its hydrophobic dodecyl

tail, leaving its sulfate head group solvent exposed

and creating a negatively charged ‘‘envelope’’ sur-

rounding the protein molecule [23]. An absolute

requirement for molecular weight determination by

SDS-PAGE is that this binding denatures the protein

and prevents protein–protein interactions [24]. In

doing so, a constant SDS:protein weight ratio is

established, resulting in electrophoretic migration

rates determined solely by polypeptide chain length

(mass). Proper complexation underlies the exquisite

resolving power and general applicability of SDS-

PAGE.

A caveat of SDS-PAGE that requires greater

recognition, especially in the study of protein

oligomerization, is that not all proteins bind stoichio-

metric amounts of SDS. In some cases, rather than

denaturing a protein, SDS can induce or stabilize

secondary and quaternary structures. For example,

numerous studies have established that proteins may

form a-helices in the presence of SDS [25]. The

effect of SDS on protein quaternary structure is less

well understood. Most protein complexes and

oligomers dissociate when treated with SDS. Ob-

servation of monomers or of low molecular weight

oligomers by SDS-PAGE, therefore, does not reveal

whether larger assemblies existed under native

conditions pre facto, i.e., in the absence of SDS.

SDS may also have the opposite effect, inducing

artificial oligomerization, particularly of amphipathic

peptides and proteins. The basis for this phenomen-

on is partitioning of the amphipathic polypeptide into

SDS micelles followed by kinetically-controlled

formation of oligomers due to the high local

monomer concentration within the micelle. In the

absence of micelles, if the peptide concentration is

kept below a certain threshold, monomer assembly is

too slow to be observed. But in the presence of SDS

micelles, oligomerization occurs rapidly. Oligomers

formed in the presence of SDS micelles may be

stable during SDS-PAGE, thus misrepresenting the

natural assembly state of the peptide or protein prior

to treatment with SDS. Artifactual aggregation

induced by SDS has been observed for Hepatitis B

surface antigen polypeptides [26], bradykinin [27],

b(2)-glycoprotein I [28], and collagen [29]. In

addition to aggregation, conformational changes in

the presence of SDS may cause aberrant electro-

phoretic mobility, a phenomenon that has been

reported for various proteins [30,31], including Ab
[32].

Amyloidogenic proteins may be more prone to

SDS-induced artefactual assembly than non-amyloi-

dogenic proteins due to stabilization of partially

(un)folded structures with high propensities for self-

association. For example, transthyretin and prions

have stable, native three-dimensional structures, but

under pathologic conditions can undergo partial

unfolding leading to oligomerization and aggregation

[33,34]. ‘‘Natively unstructured’’ proteins, such as a-
synuclein and Ab, partially fold during amyloid

assembly [35]. Pathologic oligomerization and fibril

formation of both types of proteins thus involve

formation of partially folded structures [36]. Such

partially folded structures may be stabilized or

induced by SDS [37], leading to misrepresentation

of the bonafide assembly state of the protein.

SDS-PAGE induces formation of high molecular weight

Ab assemblies

In our studies of early Ab oligomerization using

SDS-PAGE, a question arose as to whether a

particular gel band represented a genuine oligomer

or an SDS-induced artefact. Using 10–20% gradient,

Tris-tricine gels, the 40-amino acid alloform of Ab
(Ab40) migrated as a monomer [38], whereas the 42-

amino acid alloform (Ab42) yielded monomer and a

diffuse band consistent with a mixture of trimer and

tetramer (Figure 3A) [39]. Ab is an amphipathic

protein that has been reported by many groups,

including our own [40], to form SDS-stable oligo-

mers. In fact, SDS-induced aggregation of Ab has

been used to purify the peptide from brain homo-

genates [41]. Similarly, sodium dodecyl sarcosinate,

a derivative of SDS, was found to induce prion

protein aggregation [42].

To examine whether the observed Ab42 oligomers

(Figure 3A) were formed artefactually, we used size-

exclusion chromatography (SEC) to separate pro-

teins by size. The separation mechanism of SEC,

Stokes’ radius-dependent differential gel permeation

[43,44], does not depend on SDS binding and can

be performed both in the absence and the presence

of SDS. In SDS-PAGE, the sample loading buffer

usually contains 2% (w/v: 69 mM) SDS, a concen-

tration above the critical micellar concentration

(cmc) of SDS (*8.5 mM). The running (tank)

buffer usually contains 0.1% (w/v) SDS. To study

the SDS concentration-dependence of Ab assembly,

SEC was performed in the presence of either 0.1%

(w/v: sub-cmc) or 2% (w/v: supra-cmc) SDS. In the

absence of SDS, Ab42 yielded a small peak contain-

ing protofibrils (PF) and a large peak containing low

molecular weight (LMW) Ab (Figure 3B) [39].

LMW Ab has been defined as a single peak in SEC

that has an elution position consistent with monomer

or low-order oligomers [40]. Addition of 0.1% (w/v)

SDS to the mobile phase produced aggregation

leading to the elution of 4 95% of the peptide in

the void volume or the PF peak. The remaining

peptide migrated as LMW Ab (Figure 3B). In the

90 G. Bitan et al.
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presence of 2% SDS, a large (*30%) PF peak was

observed and *60% of the peptide migrated as a

broad peak between PF and LMW Ab. A small

(*10%) LMW peak was also observed. Similar

results were obtained for Ab40 (data not shown).

This aggregation effect was not observed using a

non-surfactant-type chaotrope, guanidine hydro-

chloride (Gu�HCl). At all concentrations of

Gu�HCl examined (0.5–8.0 M), Ab42 migrated as

a single peak in the LMW region, consistent with

monomer behavior (Figure 3B). These results

demonstrate that Ab assembles rapidly into high

molecular weight aggregates when treated with sub-

micellar concentrations of SDS, whereas in the

presence of SDS micelles, PF and intermediate-

sized aggregates form. In SDS-PAGE, during

electrophoresis, these aggregates may partially dis-

sociate to give rise to the diffuse Ab42 trimer/

tetramer band observed.

SDS- and non-SDS-based methods for monitoring

oligomerization

The data presented above and other published work,

indicate that SDS-PAGE is not a useful method for

identification and quantitation of non-covalently

associated protein oligomers. SDS-PAGE can be

used to detect oligomers when the oligomers are

stabilized by covalent cross-linking [38,45,46]. Once

cross-linked, oligomers do not dissociate in the

presence of SDS. However, in principle, small,

cross-linked protein oligomers may form higher

order assemblies induced by the presence of SDS

in a similar fashion to non-cross-linked proteins. In

fact, when cross-linked Ab40 oligomers are purified

using SEC and then analyzed by SDS-PAGE, each

oligomer shows, in addition to a band corresponding

to the expected molecular mass, a small band

corresponding to double that mass (i.e. the dimer

produces small amounts of tetramer, the trimer

produces small amounts of hexamer, etc. (data not

shown)). Native (non-SDS) PAGE is an alternative

to SDS-PAGE for characterization of amyloid

protein oligomers. However, because different oli-

gomers and monomer may have identical mass-to-

charge ratio, the resolution of native gels is inferior to

that of SDS-PAGE [47,48]. Improved molecular

weight determination in the absence of SDS may be

achieved by systematically changing the polyacryla-

mide concentration (Ferguson gels [49]) or by using

urea-containing gels.

As discussed above, SEC is a very useful chroma-

tographic method for oligomer characterization, and

may in fact, be the best non-SDS-based method for

doing so. However, SEC is a relatively low resolution

method, especially compared to SDS-PAGE.

Ultracentrifugation is a highly sensitive method for

study of amyloid proteins [50—52]. However, the

resolution provided by the method may not be

sufficient for distinguishing among oligomers of

small proteins that are close in molecular weight.

Based on experimental analytical ultracentrifugation

data fitted to theoretical multistate association

models, Huang et al. suggested that Ab40 exists as

an equilibrium mixture of monomer, dimer, and

tetramer [53]. However, other equilibrium systems.

including monomer–dimer, monomer–trimer, or

monomer–tetramer [53] produced equivalent resi-

duals (errors), making determination of the

oligomerization state of the peptide difficult.

Figure 3. Analysis of Ab by SDS-PAGE and SEC. (A) SDS-PAGE

of low molecular weight (LMW [40]) Ab40 and Ab42. Positions of
molecular weight markers are shown on the left. (B) SEC analysis

of Ab42 using a 10/30 Superdex 75 HR column (Amersham

Biosciences) eluted at 0.5 ml/min with 10 mM sodium phosphate,

pH 7.4, in the presence of 0.1% (w/v) SDS, 2% (w/v) SDS, 2M

Gu�HCl, or no additives. The void volume, protofibril (PF), and

low molecular weight (LMW) peaks are indicated.

Neurotoxic protein oligomers 91
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A spectroscopic method that measures assembly

size directly is dynamic light scattering (DLS) [54].

DLS offers the advantage of being non-invasive and

therefore is most suitable for kinetic measurements.

Analysis of polydisperse scatterer populations is

challenging with DLS and the method has an

intrinsic bias in favor of large assemblies (which

can be advantageous when observation of scarce

large assemblies on a background of abundant small

assemblies is desired). Other spectroscopic methods

commonly used for characterization of fibrillar

protein assemblies, such as circular dichroism and

thioflavin T fluorescence, measure protein confor-

mation rather than size and therefore are not useful

for oligomer size determination.

Electron microscopy (EM) and atomic force

microscopy (AFM) provide powerful tools for

distinguishing fibrillar, protofibrillar, and small

oligomeric species and therefore are becoming

increasingly popular for defining protein prepara-

tions as ‘‘oligomeric.’’ It is important to note that

EM and AFM detect only that portion of the protein

sample that adheres to the appropriate support (e.g.,

carbon-coated grids or mica, respectively) and that

different assemblies have distinct adherence proper-

ties that can skew the observed results. EM and AFM

have relatively low size resolution and cannot

distinguish well among similarly-sized oligomers of

small proteins (e.g., between dimers and trimers).

Recently, immunoglobulins capable of recognizing

protein oligomers, but not monomers or fibrils, have

been developed by several laboratories [55–57].

These antibodies are highly effective for detection

of oligomers in vivo and also can be used for

oligomer identification in vitro. They are not

oligomer size specific and do not provide information

about the presence or absence of other assemblies.

In summary, the resolution of SDS-PAGE is

superior to that of the other methods listed above

for separation and characterization of protein oligo-

mers. However, because SDS-PAGE may

misrepresent the native oligomerization state of

particular proteins, the use of additional methods,

including non-SDS-PAGE, SEC, ultracentrifuga-

tion, DLS, EM, AFM, immunochemical detection,

or chemical cross-linking, as discussed above, is

required for accurate determination of oligomeriza-

tion state.

Assembly nomenclature

The use of proper terminology to describe particular

amyloid assemblies is essential. This semantic issue

is important because imprecise nomenclature leads

to confusion among laboratories and to strategic and

experimental planning based on false premises. The

use of multiple names for the same entity and the use

of a single term for multiple entities are two major

problems that occur frequently. For example, apoli-

poprotein J commonly is designated not only by the

acronym ApoJ, but also by the names complement-

associated protein SP-40, complement cytolysis

inhibitor (CLI), clusterin, sulphated glycoprotein 2

(SGP-2), dimeric acid glycoprotein (DAG), and

glycoprotein III (GpIII) (see The Dictionary of Cell

and Molecular Biology, http://www.mblab.gla.ac.uk/

*julian). Although this multiplicity of terms is

confusing, researchers in the ApoJ field generally

are aware of the problem and know that all terms

refer to the same protein. Such is not the case in

studies of the structural biology of Ab. Ab self-

assembly, a process archetypical for amyloidosis-

related protein folding and aggregation, produces a

myriad of neurotoxic oligomeric forms, including PF

[58,59], dimers and trimers [60], Ab-derived diffu-

sible ligands (ADDLs) [61], and ADDL-like

spherical aggregates [62,63]. A toxic conformer of

monomeric Ab also has been reported [64]. Addi-

tional oligomeric forms of Ab were described without

establishing their biological activity directly, includ-

ing paranuclei [39] ‘bamyballs’’ [65], annular, pore-

like structures [66], and an a-helix-rich assembly

intermediate [67]. All these structures are oligomers.

However, using the single term ‘‘oligomers’’ to

describe these assemblies may be misleading for at

least three reasons: (1) the morphologies of each of

the assemblies are unique; (2) the pathways of

formation of each assembly may differ (e.g., some

assemblies are ‘‘on pathway’’ for fibril formation

whereas others are not); and (3) the biological

activities of each assembly may differ and similar

activities, e.g., neurotoxicity, may be mediated

through different pathways (e.g., direct membrane

damage, redox activity, receptor-mediated induction

of apoptosis).

Distinguishing oligomers of similar morphology

prepared in different laboratories is also problematic.

For example, ADDLs [61], amylospheroids [63],

paranuclei [39], and spheroidal oligomers reported

by the LaDu [62] and Glabe [55] laboratories are all

Ab oligomers with spheroidal morphologies. How-

ever, they may differ in the number of Ab monomers

they contain or in their toxicity. A systematic

nomenclature enabling distinction among such

assemblies does not exist. In such cases, the general

term ‘‘oligomer’’ is appropriate, provided that an

adequate description of the unique biological and

structural features of the assembly is given (e.g.,

annulus, protofibril, a-helix-rich intermediate).

Otherwise, only references to the general morpholo-

gic class of non-monomeric, non-fibrillar assemblies

should be included under the rubric ‘‘oligomer.’’

The (mis)use of the term ‘‘protofibril’’ also

illustrates inappropriate generalization of a specific

92 G. Bitan et al.
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term. A variety of assemblies have been termed

‘‘protofibrils,’’ though they exhibit morphologies

distinct from that upon which the term protofibril

was based [40,68]. For example, annular, pore-like

structures were designated ‘‘annular protofibrils’’

[69,70]. Spherical oligomers have also been desig-

nated protofibrils. PF were described originally as

elongated, fibril-like Ab assemblies that had curvi-

linear morphology, a diameter of *5 nm, and length

not exceeding 100–200 nm [40,68], compared to the

*10 nm diameter and indeterminate lengths (often

exceeding 1 mm) of mature fibrils. PF also displayed

specific secondary structure characteristics [40] and

biological activity [71]. Protofibrillar structures have

been described for most amyloidogenic proteins,

including a-synuclein [72] huntingtin [73], islet

amyloid polypeptide (IAPP) [74], prion proteins

[75], and TTR [76]. In all cases the PF were

cytotoxic. Annular and spherical structures differ

morphologically from protofibrils, have different

assembly pathways (by definition), and may cause

neuronal injury by distinct mechanisms. Therefore,

the use of the term ‘‘protofibril’’ to describe these

assemblies is inaccurate and misleading.

The nomenclature of polymer chemistry

We as amyloidologists are indebted to polymer

chemists for the terms we use to describe amyloid

assemblies. These terms have been standardized by

the Commission on Macromolecular Nomenclature

(now the Subcommittee on Macromolecular Ter-

minology of Division IV) of the International

Union of Pure and Applied Chemistry (IUPAC)

[77] and provide a solid foundation for under-

standing critical aspects of amyloid monomer self-

assembly. The definitions of polymer (a molecule of

high relative molecular mass, the structure of which

essentially comprises the multiple repetition of units

derived, actually or conceptually, from molecules of low

relative molecular mass) and oligomer (a molecule of

intermediate relative molecular mass, the structure of

which essentially comprises a small plurality of units

derived, actually or conceptually, from molecules of

lower relative molecular mass) are particularly rele-

vant to the prior discussion. However, what are the

definitions of the relative terms ‘‘high’’ and

‘‘intermediate’’? For non-monomeric amyloid as-

semblies, we suggest that the appellation

‘‘oligomer’’ be applied to a specific assembly if

the assembly is not a ‘‘polymer’’. All fibrils are

polymers, both because of their high relative

molecular mass, but also, and importantly, because

addition or removal of monomer units does not

alter their morphological or functional properties.

This is not the case for low-order assemblies,

including paranuclei [39], ADDLs [61], and annuli

[78]. For PF, and other high-order assemblies, a

distinction between oligomer and polymer is more

difficult, but also unnecessary, if one defines the

moiety using a clearly defined combination of

biophysical characteristics (see above).

Conclusions

The recognition that protein oligomers may be the

primary cytotoxic agents in amyloid-related diseases

makes them key targets for biological research and

drug development. For these efforts to be successful,

the structural details of the target oligomers must be

elucidated. It is thus imperative that methodologies

be used which can reveal native assembly states and

resolve oligomer order. Equally important is a

systematic and consistent linkage between the defin-

ing structural and functional characteristics of each

assembly type and its appellation. The use of proper

terminology is critical for describing and distinguish-

ing structural relationships among different

amyloidogenic proteins and for directing future

studies of the adverse consequences of these assem-

bly events. No better advice can be proffered than

‘‘be specific!’’.
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