
UCLA
UCLA Electronic Theses and Dissertations

Title
High-Precision Calibration and Reduction Techniques for Molecular Line Emission in Radio
Astronomy & Their Application to the Galactic Chemical Evolution of Silicon

Permalink
https://escholarship.org/uc/item/2z8961sh

Author
Monson, Nathaniel

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2z8961sh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

High-Precision Calibration and Reduction Techniques for

Molecular Line Emission in Radio Astronomy

&

Their Application to the Galactic Chemical Evolution of Silicon

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Geochemistry

by

Nathaniel Nels Monson

2019

c© Copyright by

Nathaniel Nels Monson

2019

ABSTRACT OF THE DISSERTATION

High-Precision Calibration and Reduction Techniques for

Molecular Line Emission in Radio Astronomy

&

Their Application to the Galactic Chemical Evolution of Silicon

by

Nathaniel Nels Monson

Doctor of Philosophy in Geochemistry

University of California, Los Angeles, 2019

Professor Edward Donald Young, Co-Chair

Professor Mark R. Morris, Co-Chair

A report on the relative abundances of the three stable isotopes of silicon, 28Si, 29Si and 30Si,

across the Galaxy using the v = 0, J = 1 → 0 transition of silicon monoxide. The chosen

sources represent a range in Galactocentric radii (RGC) from 0 to 9.8 kpc. The high spectral

resolution and sensitivity afforded by the Robert C. Byrd Green Bank Telescope (GBT)

permit isotope ratios to be corrected for optical depth, using a novel method developed as

part of this study. The optical-depth-corrected data indicate that the secondary-to-primary

silicon isotope ratios [29Si]/[28Si] and [30Si]/[28Si] vary much less than predicted on the basis

of other stable isotope ratios in the Galaxy. Indeed, there is no detectable variation in Si

isotope ratios with RGC. This lack of an isotope ratio gradient stands in stark contrast to the

monotonically decreasing trend with RGC in published secondary-to-primary oxygen isotope

ratios. These results, when considered in the context of the expectations for galactic chemical

evolution, suggest that the reported isotope ratio trends in oxygen, and likely carbon as well,

may be in error and require further investigation. The methods developed in this study for

SiO isotopologue ratio measurements are equally applicable to Galactic oxygen, carbon and

nitrogen isotope ratio measurements, and should prove useful for future observations of these

isotope systems.

ii

The dissertation of Nathaniel Nels Monson is approved.

Benjamin M. Zuckerman

Kevin D. McKeegan

David Clifford Jewitt

Mark R. Morris, Committee Co-Chair

Edward Donald Young, Committee Co-Chair

University of California, Los Angeles

2019

iii

To my friend Juno. . .

For her spirit, which never faltered; even when mine did.

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Previous Work . 4

2.1 Stellar Metallicity . 4

2.2 Galactic Chemical Evolution of Light Stable Isotopes 5

2.2.1 Primary Nuclides . 6

2.2.2 Secondary Nuclides . 8

2.3 Previous Observations . 12

3 Testing GCE using Silicon . 16

4 Observations . 20

5 Calibration and Data Reduction . 23

5.1 Flux Calibration . 23

5.2 Baselines . 25

5.2.1 Interfering Lines . 25

5.3 Optical Depth Effects . 26

5.3.1 The Shape Parameter . 27

5.4 Extracting Column Densities from Line Intensities 35

5.4.1 Correcting for Finite Optical Depth 36

5.4.2 Excitation Effects . 37

5.5 Evaluation of Uncertainties . 40

6 Results . 42

v

7 Discussion . 47

7.1 Secondary/Primary Si Isotope Ratios . 47

7.2 Secondary/Secondary Si Isotope Ratios . 49

8 Future Work . 52

9 Conclusions . 54

Appendix A . 55

A.1 Preface . 55

A.2 Calculating Abundance Ratios . 57

A.2.1 Accounting for Beam-Weighting . 57

A.2.2 Correcting for Optical Depth . 60

A.3 The Principle of Detailed Balance . 65

A.3.1 The Excitation Temperature . 65

A.3.2 The Critical Density . 68

10 HYDRA User’s Guide & Cookbook . 70

10.1 User Agreement . 72

11 The HYDRA Program Suite . 73

11.1 Preface . 73

12 HYDRA Cookbook . 75

12.1 Installing HYDRA . 75

12.2 Setting Up HYDRA . 77

12.2.1 Setdir.pro . 77

12.2.2 Getfits.pro . 78

vi

12.3 Managing Data With HYDRA . 80

12.3.1 Gather.pro . 80

12.4 Calibrating Data With HYDRA . 83

12.4.1 Dreamcatcher.pro . 83

12.5 Reducing Data With HYDRA . 86

12.5.1 Outerlimits.pro . 86

12.5.2 Polybase.pro . 87

12.5.3 Dreamweaver.pro . 89

13 How HYDRA Calibrates Data . 92

13.1 Calibration Sources . 92

13.2 The Noise Diodes . 94

13.3 Calibrating Science Data . 95

14 HYDRA Source Code . 98

14.1 Hydra.pro . 98

14.2 Getfits.pro . 106

14.3 Setdir.pro . 116

14.4 Gather.pro . 120

14.5 Extract.pro . 139

14.6 Dreamcatcher.pro . 151

14.7 Outerlimits.pro . 183

14.8 Polybase.pro . 198

14.9 Dreamweaver.pro . 214

14.10 Looper.pro . 235

14.11 Accessory Programs And Definitions . 245

vii

LIST OF FIGURES

2.1 Stellar Metallicity vs. Galactocentric Radius . 5

2.2 δ′18O vs. RGC . 13

2.3 δ′17O vs. δ′18O in the ISM . 15

3.1 Predicted Dependence of O and Si Isotopic Ratios on Stellar Metallicity. 17

3.2 Silicon Isotope Ratios in Mainstream Presolar SiC Grains 19

5.1 Interfering H(83)δ Emission in W51e2 . 25

5.2 Full vs. Optically-Thin Approximation of the Opacity Term 28

5.3 Fractional Error in the Optically-Thin Approximation of the Opacity Term . . . 28

5.4 Scaled 29,30SiO Emission Lines in L1157 and GCM-0.13-0.08 29

5.5 Effects of Optical Depth on Emission Line Profiles 30

5.6 Quasilinear Relation Between Γ′′ and τ0 . 34

5.7 Polynomial Fit to dτ0/dΓ′′ . 34

5.8 Contours of SiO Isotopologue Ratio Errors from RADEX 39

6.1 Calibrated and Baseline-Corrected 28,29,30SiO Emission Lines 43

6.2 Uncorrected SiO Silicon Isotope Abundance Ratios 45

6.3 Optical-Depth-Corrected SiO Silicon Isotope Abundance Ratios 45

6.4 δ′29Si vs. Rgc . 46

viii

LIST OF TABLES

4.1 List of Sources and Observed SiO v=0, J=1→ 0 Emission Lines 21

6.1 Corrected and Uncorrected SiO Isotopologue Abundance Ratios 44

6.2 Corrected and Uncorrected SiO δ′29Si and δ′30Si Values 44

ix

ACKNOWLEDGMENTS

This work was supported by a grant from the NASA Origins program (NNX10AH35G) and

from the NASA Emerging Worlds program (NNX17AE78G). Chapters one through nine of

this work constitute a revised and expanded version of Monson et al. (2017).

My thanks and appreciation are extended to (in no particular order): Mark Morris, Edward

Young, Benjamin Zuckerman, David Jewitt, Kevin McKeegan, Lauri Holbrook, Issaku Kohl,

Coleen Young, Françoise Quéval, Ron Maddalena, Alexandra Schneider, Bonnie Zucker,

Lucas Monson, Margaret Maldonado, Steven Monson, Siyi Xu, the staff at the Green Bank

Observatory, the Arizona Radio Observatory, the W. M. Keck Observatory and the European

Southern Observatory.

x

VITA

2011 B.A. (Biochemistry), University of Colorado Boulder.

Boulder, Colorado

2013–2015 Teaching Assistant: Earth, Planetary & Space Sciences, UCLA.

Los Angeles, California.

2015–2016 Teaching Assistant: Physics and Astronomy, UCLA.

2016 M.A. (Geochemistry),University of California, Los Angeles.

2016 Visiting Research Assistant: The European Southern Observatory.

Garching bei München, Germany.

2016–present Research Assistant: Earth, Planetary & Space Sciences,

UCLA. Los Angeles, California

PUBLICATIONS

Monson, N. N., Morris, M. R., and Young, E. D. Uniform Silicon Isotope Ratios Across

the Milky Way Galaxy. The Astrophysical Journal, 839:123, April 2017. doi:10.3847/1538-

4357/aa67e6.

xi

CHAPTER 1

Introduction

The utility of interstellar isotope abundance ratios as diagnostic tools for probing metallicity

variations across the Galaxy was realized well over thirty years ago (e.g. Frerking et al.,

1980; Linke et al., 1977; Penzias, 1981a,b; Wilson et al., 1981; Wolff, 1980). In conjunction

with models for galactic chemical evolution (GCE), the distribution of stable isotopes with

distance from the Galactic center provides a quantitative probe into stellar nucleosynthesis

(Henkel et al., 2014; Prantzos et al., 1996; Timmes et al., 1995), galaxy formation and

evolution (Kobayashi et al., 2006; Mart́ın et al., 2009, 2010; Prantzos et al., 1996; Spite

et al., 2006) and levels of heterogeneity in the interstellar medium (ISM) (Lugaro et al.,

2003; Nittler, 2005; Young et al., 2011). For these purposes, Galactocentric radius (RGC)1

serves as a proxy for time because stellar processing of material increases with both time

and decreasing RGC.

Galactic chemical evolution of light stable isotopes leads to shifts in isotope ratios over

time in what should be broadly predictable ways. The shifts are especially pronounced for

ratios of secondary nuclides to primary nuclides, and the details of the process are clearer

where two or more such ratios are available. For example, Riquelme et al. (2010a,b) used

[12C]/[13C] ratios to trace the infall of more chemically primitive gas in the halo and the

outer disk into the Galactic center region. Their study illustrates the utility of GCE of

stable isotopes as tracers of gas motions over time. When studied as functions of RGC,

isotopic abundance ratios delineate the extent of stellar processing within the Galaxy, and

serve as signposts for chemical variations with time (Clayton, 1984; Clayton and Pantelaki,

1986; Kobayashi et al., 2011; Prantzos, 2008; Prantzos et al., 1996; Timmes et al., 1995).

1 i.e. distance from the Galactic center

1

The ratios of secondary to primary silicon isotopes in the Solar System are surprisingly low

compared with older presolar SiC grains found in meteorites. This aberration has been used

as possible evidence for extraordinary enrichment of the primary isotope 28Si by supernovae

in the region in which the Sun formed (Alexander and Nittler, 1999; Young et al., 2011).

In order to verify or contravene the idea that the birth environment of the Solar System

was atypical of the Galaxy 4.6 Gyr before present, one needs an understanding of how the

relevant stable isotope ratios have evolved with time and place in the Galaxy (i.e. over

the last 4.6 Gyrs). We need to understand whether the Solar System formed from typical

material and by typical processes, or whether it formed in some atypical environment and/or

by unusual processes. In other words, are we normal in the context of the isotopic evolution

of our local Galactic environs?

The Solar System is expected to be representative of the interstellar medium at RGC ≈ 8

kpc, 4.6 Gyr before present, in the absence of some extraordinary local enrichment processes

during its formation. GCE over this time interval must be accounted for before drawing

comparisons between the Solar System and the present-day ISM in a meaningful way. Studies

of isotope ratios vs. RGC therefore provide the context for interpreting the significance of

Solar System stable isotope ratios. If the Solar System fits with the general picture of secular

variations in stable isotope ratios in the Galaxy, then it would suggest that the Solar System

formed under conditions that were unremarkable. Conversely, if the Solar System exhibits

significant departures from the averages expected from an analysis of the distribution and

evolution of isotopes in the Galaxy, then one would be impelled to search for extraordinary

circumstances to explain these departures in isotopic abundances (enrichment by nearby

supernovae is the most obvious example). Isotopes of silicon are thought to be an example

of the latter case but a firm Galactic reference frame for interpretation of the Solar data is

not in place.

Studies of isotope ratios vs. Galactocentric radius therefore help place the Solar System

in a Galactic perspective, and provide the context for interpreting the significance of stable

isotope ratios in the Solar System. The first step is to establish the baseline isotopic char-

acteristics of the Galaxy, which in turn involves defining the mean distributions of isotope

2

ratios as functions of RGC, and establishing the magnitude of dispersion about this trend.

This is the objective of the present study.

Secondary isotopes are typically rare, often comprising a couple percent or less of the total

abundance of the element of interest. As a result, signal-to-noise ratio (SNR) for emission

lines from rare isotopologues are typically poor and contribute significantly to the error

budgets. Measurements of the abundance ratios of the three stable isotopes of silicon by

Wolff (1980) and soon after by Penzias (1981a), using the v = 0, J = 2→ 1 and J = 3→ 2

lines of SiO, were hampered by low signal-to-noise. However, modern cryogenic high-electron-

mobility transistor (HEMT) amplifiers and superconducting tunnel junction (STJ) mixers

provide such exceptionally low noise that sensitivities have been increased in excess of an

order of magnitude since those early studies. The data reported by Penzias (1981a) and

Wolff (1980) have statistical errors as high as 40%. The measurements of [29Si]/[28Si] and

[30Si]/[28Si] ratios based on the v = 0, J = 1→ 0 transitions of SiO reported herein have 1σ

statistical errors one tenth of that value. In part for this reason, stable isotope abundance

ratios as tracers for variations in the degree of astration across the Galaxy should see a

resurgence (e.g., Adande and Ziurys, 2012; Henkel et al., 2014).

3

CHAPTER 2

Previous Work

2.1 Stellar Metallicity

To first order, metallicity is known to increase towards the Galactic center. Recent studies

of H II regions (Balser et al., 2011) and classical Cepheids (Pedicelli et al., 2009) define a

clear gradient in metallicity in the Galactic disk (Figure 2.1). This gradient is traced by

iron and the α-elements O, Ca, Si, Mg and Ti, all relative to H. However these gradients are

slight, and measurements indicate that [α/H] and [Fe/H] 1deviate from the Solar value by

little more than 0.5 dex as far out as 16 kpc from the Galactic center.

For the outer disk (RGC > 8 kpc), [Fe/H] ratios in Cepheids increase with decreasing

RGC with a gradient of ≈ −0.05 dex kpc−1. Between 8 and 4 kpc from the Galactic Center

the [Fe/H] gradient is observed to be ≈ −0.02 dex kpc−1 with a maximum of 0.3± 0.1 dex

at RGC ≈ 4 kpc (Figure 2.1). Inside of RGC = 4 kpc the [Fe/H] trend seems to “roll over,”

and decrease as RGC decreases, as evidenced by luminous blue variables (LBVs) and red

supergiants (RSGs) in the Galactic center having observed values of [Fe/H] within error of

the Solar value (Cunha et al., 2007). Measurements of oxygen and the other α-elements

exhibit slightly more variability, with estimated maxima in [O/H] and [α/H] at the Galactic

center of ≈ 0.5 dex, and values near 0.2 dex being more typical (Davies et al., 2009; Najarro

et al., 2009). These results imply that the outer disk evolves somewhat differently than the

inner disk and Galactic center.

1Brackets are used to distinguish atomic abundances from mass abundances. In this context, [x/y]
represents the atomic abundance ratio of element x to element y in dex units

4

Figure 2.1: Stellar metallicity (with respect to the Solar value) vs. Galactocentric radius
with a fit (± 95% confidence) for illustrative purposes. Data represent Cepheids, Quintuplet
cluster LBVs and the Scutum Red Supergiant clusters (Andrievsky et al., 2002a,b,c; Luck
et al., 2006; Pedicelli et al., 2009).

2.2 Galactic Chemical Evolution of Light Stable Isotopes

Ratios of the stable isotopes of oxygen, carbon and nitrogen have been used as tracers of

GCE. Galactic chemical evolution leads to time dependent shifts in the isotopic makeup of

the Galaxy, and this variability that results from the varying rates of astration and produc-

tion should also be evident in variations with RGC. Isotope ratios have the advantage of

normalizing some of the vagaries associated with production terms for the elements. Tinsley

(1975) provided a basis for a mathematical formalism to describe the GCE of nuclides. In

this treatment and those that followed, the rate of nuclide growth in the Galaxy is expressed

as a function of both the star formation rate (SFR) within the Galaxy, Ψ(t), and the initial

mass function (IMF), φ(m), for the stellar sources.

5

2.2.1 Primary Nuclides

Nucleosynthetic processes requiring only primordial matter are termed primary processes,

and produce primary nuclides. Assuming that Mgas(0) = Mtot and the mass of nuclide i at

time zero Mi(0) = 0, the equation for the evolution of the mass of a primary nuclide p takes

the form
d

dt
(MgasXp(t)) = −ψ(t)Xp(t) + Ep(t) + [finX

′
p − foutXp(t)]. (2.1)

In this expression ψ is the star formation rate and Xp is the fractional abundance of nuclide

p in the ISM, the product of which is the rate of sequestration of nuclide p due to new star

formation and the ejection rate Ep(t) is the rate at which both enriched and unenriched mass

is returned to the ISM by supernovae and stellar winds. The last two terms (in brackets)

account for infalling and outflowing gas, i.e. infalling gas adds nuclide p to the system at

the rate finX
′
p and outflowing gas removes it at the rate foutXp. Often, the infalling gas

is assumed to be primordial, in which case X ′p = 0 and infall has no effect on the mass of

nuclide p in the system.

The ejection rate Ep(t) can be written as

Ep(t) =

∫ mu

m(t)

Yp(m)ψ(t− τm)φ(m) dm, (2.2)

where m is the mass of a star with lifetime τm, Yp(m) is the stellar yield of nuclide p for a

star of mass m, and ψ(t− τm) is the star formation rate at time of birth of the star of mass

m. The stellar yield Yp(m) is

Yp(m) = (m−mr) Xp(t− τm) + yp(m), (2.3)

where yp(m) is the mass of newly formed and ejected nuclide p, m−mr is the difference in

mass between a star and it’s stellar remnant and thus (m−mr) Xp(t− τm) accounts for the

mass of pristine, unprocessed nuclide p restored to the ISM.

Substituting Equation (2.3) into Equation (2.2) and integrating over the chosen SFR and

6

IMF yields an integro-differential equation which can be difficult to solve analytically. For

presentation purposes the simplifying assumption that all stars with m < m� are immortal

and all others die instantly is often made and is known as the “instantaneous recycling

approximation” (IRA). By invoking the IRA and neglecting stellar lifetimes τm, the return

fraction can be defined as

R =

∫ mu

m�
(m−mr)φ(m) dm, (2.4)

which is the total fraction of mass returned to the ISM after each stellar generation. By

applying the IRA and substituting Equation (2.4), Equation (2.2) can be rewritten as

Ep(t) =

∫ mu

m(t)

Yp(m)ψ(t)φ(m) dm

=

∫ mu

m(t)

[(m−mr)Xp(t) + yp(m)] ψ(t)φ(m) dm

=RXp(t)ψ(t) + (1−R)ρpψ(t),

(2.5)

where ρp is the galactic yield of nuclide p, equal to the ratio of ejected to sequestered mass

of nuclide p integrated over the range of stellar masses assumed to die instantaneously under

the IRA and normalized by the IMF, namely

ρp =
1

1−R

∫ mu

m�
yp(m)φ(m) dm. (2.6)

Substituting Equation (2.5) into Equation (2.1) and rearranging yields an equation which

can be solved analytically

d

dt
(MgasXp(t)) = −(1−R)Xp(t)ψ(t) + (1−R)ρpψ(t) + finX

′
p − foutXp(t). (2.7)

Using the identity dMgasXp(t)/dt = Mgas dXp(t)/dt + Xp(t) dMgas/dt, Equation (2.7) can

be re-written as

Mgas(t)
dXp(t)

dt
= −(1−R)Xp(t)ψ(t) + (1−R)ρpψ(t)

+ [finX
′
p − foutXp(t)]−Xp(t)

dMgas

dt
.

7

Knowing that dMgas/dt = −(1 − R)ψ(t) + fin − fout, this expression can be simplified to

obtain

Mgas(t)
dXp

dt
= (1−R)ρpψ(t) + fin(X ′p −Xp(t)) (2.8)

where (1−R) is the fraction of mass sequestered in stellar remnants, ρp is the IMF-integrated

yield of new nuclide p per unit stellar remnant mass, fin is the flux of fresh gas to the

Galaxy, and X ′p is the abundance of nuclide p for the infalling material. In this expression

(1−R)ρpψ(t) is the mass of newly produced nuclide p ejected from stars into the ISM per unit

time. Thus, under the IRA, primary nuclide production is decoupled from stellar metallicity

and is proportional to the star formation rate ψ(t) and inversely proportional to the mass of

gas remaining in the galaxy. The solution to Equation (2.8) for a simple closed box model

where fin = 0 is

Xp(t)−Xp(0) = ρp ln

(
Mtot

Mgas

)
= ρp ln

(
1

µgas

)
, (2.9)

where µgas is the fraction of total mass that is gas in the system (Prantzos, 2008; Searle

and Sargent, 1972; Tinsley and Cameron, 1974). A commonly used parameterization for

the decrease in gas in the Galaxy with time is µgas(t) = µgas(0) exp(−t/T) where T is a

characteristic timescale that scales with the terminal age of the Galaxy. In such a case,

Xp(t)−Xp(0) = ρp(t/T) where µgas is unity at t = 0, showing that the amount of a primary

nuclide grows roughly linearly with time. For convenience of presentation in what follows,

it is assumed that Xp(0) = 0.

2.2.2 Secondary Nuclides

Odd-Z and neutron-rich nuclides are often not accessible via primary nucleosynthetic pro-

cesses, and production is dependent on presence of primary ”seed” nuclei synthesized in

previous stellar generations. As before, the equation for the evolution of mass of a secondary

nuclide s with abundance Xs takes the form

d

dt
(MgasXs) = −ψ(t)Xs + Es(t) + [finX

′
s − foutXs] (2.10)

8

where the first term is the rate of sequestration of nuclide s due to new star formation,

the ejection rate Es(t) is identical to Equation (2.2), and the terms in brackets account for

gas entering and exiting the system. Because production rates of secondary nuclides are

dependent on the presence of primary seed nuclei, the stellar yield Ys(m) of nuclide s differs

from that seen previously in Equation (2.2), specifically

Ys(m) =(m−mr) Xs(t− τm) + ys(m)

=(m−mr) Xs(t− τm) + αXp(t− τm),
(2.11)

where it is assumed the net yield ys(m) of nuclide s scales linearly with Xp(t − τm), the

abundance of the primary ”seed” nuclei present when the star formed, via the proportionality

constant α.

By adopting the IRA, the ejection rate Es(t) of secondary nuclide s can be written

Es(t) =

∫ mu

m(t)

Ys(m)ψ(t)φ(m) dm

= RXs(t)ψ(t) + (1−R)αXp(t)ψ(t).

(2.12)

Notice that in this case the galactic yield ρs is equivalent to αXp(t), and is therefore time

dependent. This is not the case for primary nuclide production. Equation 2.10 thus becomes

d

dt
(MgasXs) = −(1−R)Xs(t)ψ(t) + (1−R)αXp(t)ψ(t) + [finX

′
s(t)− foutXs(t)]. (2.13)

Following the example set in Equation 2.8, the solution to equation 2.13 can shown to be

Mgas(t)
dXs

dt
= (1−R)αXp(t)ψ(t) + fin(X ′i(t)−Xi(t)). (2.14)

Again adopting the assumption that fin = 0, the solution to equation 2.14 for a simple closed

box model (Prantzos, 2008) is

Xs(t)−Xs(0) = αXp(t) ln(
1

σgas

) =
α

ρp
Xp(t)

2. (2.15)

9

Since Xp, the fractional abundance of primary nuclide p, is expected to vary roughly linearly

with time, Equation (2.15) shows that the abundance of the secondary nuclides should vary

roughly as t2 because Xs = αρp(t/T)2. Finally, the ratio of secondary to primary metallicity

can be shown to be
Xs

Xp

=
αXp(t)

ρp
∝ Z (2.16)

where Z is the metallicity. From Equation (2.16), it can be shown that Xs/Xp = α(t/T) and

therefore, under the IRA, any given stable isotope system containing members synthesized

via both production modes will evolve with time such that ratios of primary to secondary

isotopes will rise linearly with time and that the ratio of one secondary isotope to another

will remain constant.

The variation in molecular gas surface density across the Galaxy resembles the metallicity

variation with RGC shown in Figure 2.1 (Heyer and Dame, 2015) in showing a monotonic

increase moving inward from ≈ 10 kpc to ≈ 5 kpc, and a decrease between ≈ 5 kpc and

the the Galactic center. This correspondence between metallicity and molecular gas surface

density in the Milky Way suggests a link between time-averaged stellar processing and gas

density, as suggested by the Schmidt-Kennicutt relationship between star formation rate

and gas surface density (Kennicutt and Evans, 2012; Kennicutt, 1998). As with overall

metallicity Z, the abundances of primary nuclides of particular interest are also expected to

vary with RGC. In a closed system, µgas is expected to decline towards the Galactic center.

Comparisons between the sharp decline in the surface density of stars with increasing RGC

(Kent et al., 1991) and the more gradual declines in molecular and total gas surface densities

withRGC (Heyer and Dame, 2015) show that µgas does indeed decrease with smaller RGC in

the Milky Way. This is also the case for other, nearby spiral galaxies (Leroy et al., 2008).

For illustration purposes, a function for µgas(RGC) with a range of 0 to 1 from the Galactic

center to the outer Galactic disk can be written as

µgas = 1− 1

RGC + 1
(2.17)

where RGC is in kpc. Substituting Equation (2.17) into Equation (2.9) with Xi(0) = 0 yields

10

Xp(t) = ρp ln

(
RGC + 1

RGC

)
(2.18)

which reduces to Xp(t) ≈ ρp/RGC for RGC � 1 kpc, showing that the relative abundances

of primary nuclides should increase towards the Galactic center. Further, by combining

Equations (2.16) and (2.18) it is clear that the ratio of secondary nuclides to primary nuclides

should also vary inversely with RGC

Xs

Xp

=
α

RGC

. (2.19)

From these closed-system IRA equations, dating back to Tinsley and Cameron (1974) and

Tinsley (1975), there is a basis for the expectation that at any given time in the Galaxy,

secondary-to-primary isotope ratios should increase towards the Galactic center. A corollary

is that two distinct ratios, Xs′/Xp and Xs′′/Xp, composed of two distinct secondary nuclides

s′ and s′′ and a single primary nuclide (e.g., [18O]/[16O] and [17O]/[16O] or [30Si]/[28Si] and

[29Si]/[28Si]) will tend to grow in lockstep. The apparent chemical and isotopic “age” of the

ISM should increase with decreasing RGC in a manner that mimics the effects of time. For

this reason, Galactocentric radius is in principle a proxy for time, and variations in isotope

ratios with RGC can be used as models for temporal variations in Galactic isotope ratios.

There are a number of factors that complicate the simple picture developed above. Fore-

most among them is that the Galactic disk is not a closed system. The effects of infalling gas

towards the center of the Galaxy may be evidenced in Figure 2.1 where metallicity is seen to

level off or even decline near the Galactic center. Despite these complicating factors, there

should be a general relationship between metallicity and secondary/primary stable isotope

ratios, and that a trend similar to that shown in Figure 2.1 should also obtain for these

isotope ratios as well. If this prediction is verified, it would serve as good evidence that our

understanding of the isotopic effects of GCE is reasonable, permitting the extrapolation of

stable isotope ratios back in time, for example. Conversely, if a comparable trend is not

observed, then the significance of isotope ratio variations with RGC, as well as the validity of

any inferences made about the time evolution of stable isotope ratios, should be reconsidered.

11

2.3 Previous Observations

The secondary/primary isotopic abundance ratios of oxygen (e.g., Penzias, 1981b; Wilson

et al., 1981) and carbon (e.g., Langer and Penzias, 1990, 1993; Milam et al., 2005; Savage

et al., 2002; Wilson et al., 1981; Wilson and Rood, 1994) have have been used extensively

to trace variations in the degree of astration across the Galaxy. The primary nuclide 12C

is produced during the helium-burning phase by the triple-alpha process (Burbidge et al.,

1957) and is the second most abundant non-primordial nuclide in the galaxy (Clayton, 2003).

The only other stable isotope of carbon, 13C, is a secondary nucleosynthetic product which

requires pre-existing 12C for efficient production (Burbidge et al., 1957). Approximately half

of the carbon in the ISM originates from Type II supernovae, while the remainder is produced

by intermediate mass (1.5 - 6 M�) asymptotic giant branch (AGB) stars (Clayton, 2003).

Milam et al. (2005) showed that the [13C]/[12C]2 ratios in Galactic molecular clouds increase

towards the Galactic center, consistent with the qualitative expectations of GCE. Based on

this agreement between data and GCE predictions, the authors suggested that the higher

[13C]/[12C] value of ≈ 1/65 in the present-day ISM (relative to the Solar value of 1/89) could

be the consequence of 13C enrichment relative to 12C over the last 4.6 Gyrs.

The oxygen isotope system differs from the carbon system in that it has two stable heavy

isotopes, 17O and 18O. The most abundant isotope of oxygen, 16O, is a primary nuclide

produced during He burning. The rare isotopes, 17O and 18O, are secondary nuclides. 17O is

the daughter product of 17F, which undergoes rapid β+ decay after being produced as part

of the CNO tricycle. Similarly, the majority of 18O is produced by α addition to 14N, via

the formation and subsequent β+ decay of 18F. 14N is in turn produced from 12C during the

CNO tricycle. 18O is also produced from 17O via neutron capture (Burbidge et al., 1957).

The existence of two secondary isotopes makes the oxygen system particularly attractive

for tracing GCE. Optical depth effects have hampered efforts to determine C16O column

densities within sources. However, one can use estimates for the [13C]/[12C] ratio within the

2Brackets are used to distinguish atomic abundances from mass abundances. Note that [x]/[y] should not
be confused with [x/y], where only the latter is in dex units

12

Figure 2.2: [18O]/[16O] as δ′18O in permil vs Galactocentric radius. References in text.

source to calculate the C16O column density from 13C16O observations. Using this approach,

Galactic oxygen isotope abundances can be extrapolated from the 13CO, C18O, and C17O

column densities reported by Wouterloot et al. (2008) and the [13CO]/[12CO] vs. RGC data

from Milam et al. (2005). For this and other purposes in this paper, δ′ notation is used to

compare isotope ratios expressed as permil differences from a reference ratio R0. That is

δ′XZ = 103 ln(R/R0), (2.20)

where R is the isotope ratio [XZ]/[Y Z] and Y Z and XZ are the light and corresponding heavy

isotopes of element Z, respectively3. The resulting [18O]/[16O] ratios, normalized to the ISM

value reported by Wilson (1999), vs. RGC are shown in Figure 2.2. These extrapolated

data indicate that [18O]/[16O] ratios increase linearly with decreasing RGC, in qualitative

agreement with the predictions of secondary/primary increases with GCE. However, the

observed values in Galactic [18O]/[16O] range by greater than a factor of 10, or > 900% (a

3The logarithmic form of the δ notation is used to accommodate the large variations in isotope ratios
across the Galaxy.

13

factor of 10 corresponds to 2300 per mil on the ordinate in Figure 2.2) which exceeds the

theoretical predictions of Prantzos et al. (1996) by a factor of ≈ 2 to 3 (Young et al., 2011).

Additionally, the trend observed in [18O]/[16O] appears to extend unabated into the Galactic

center, contrasting with the ”downturn” seen in both the [O/H] and [Fe/H].

The two oxygen secondary/primary isotope ratios can also be used in concert to evaluate

the presence or absence of GCE in the oxygen isotopologue data. On a so-called three-isotope

plot in which [17O]/[16O] is plotted against [18O]/[16O], both normalized to a suitable refer-

ence, the first-order prediction based on GCE is that data representing a range of localities

across the Galaxy will define a slope of unity. Quantitative GCE models for the oxygen

isotopes are in general agreement with the simplified equations presented above and show

that even as [17O]/[16O] and [18O]/[16O] have risen with time, the ratio of the two secondary

nuclides, [18O]/[17O], should have been constant after the first billion years (Prantzos et al.,

1996; Timmes et al., 1995). This is because both secondary nuclides have a similar depen-

dency on metallicity in these models. Figure 2.3 (after Young et al., 2011) illustrates that

the [17O]/[16O] and [18O]/[16O] ratios across the galaxy define a slope in triple-isotope space

of 1.11 ± 0.08 (2σ) that is practically indistinguishable from the unity value predicted by

closed-system IRA GCE. Also shown in Figure 2.3 are infrared absorption data for young

stellar objects that show less of a spread in oxygen isotope ratios, albeit in part because they

are from sources near the Solar circle.

The validity of the combined carbon/oxygen data sets has been questioned on the basis

that there is good reason to believe that 17O is produced mainly in intermediate-mass stars

(Romano and Matteucci, 2003) while 18O is produced in more massive stars. In this case

the progenitors of 17O live longer than those of 18O, allowing for deviations from expecta-

tions of nearly constant [18O]/[17O] with time (in effect altering α for the two secondary

nuclides in Equation 2.19). Nittler and Gaidos (2012) also question the veracity of the δ′18O

vs RGC trend, referring to “chemical” rather than isotopic partitioning to account for vary-

ing [13C16O]/[12C18O]. It should be noted that both the spatial and spectral resolution in

the previous studies limited the ability to detect optical depth effects that might spuriously

enhance the recovered [18O]/[16O] and [17O]/[16O] ratios, artificially translating any affected

14

Figure 2.3: Oxygen triple-isotope plot comparing molecular clouds obtained by a combi-
nation of radio observations (circles), IR absorption (error ellipses), and the Solar System
materials (squares). The best fit line has a slope of 1.11 ±0.08 (2σ). References in text.

sources up a slope-1 trajectory in triple-isotope space. Additionally, some 12C nuclei pro-

duced in the He-burning shells of AGB stars are conveyed to the outer envelopes of these

stars during convective instability “dredge-up” events. A portion of these newly-synthesized

12C nuclei undergo neutron capture to form 13C. Consequently, a considerable amount of

what is effectively primary 13C is created in the He intershell, some of which is then convec-

tively transported to the surface and shed in stellar winds (Gallino et al., 1998; Straniero

et al., 1997). The degree to which this effect biases Galactic carbon isotope ratios is not

well quantified, and complicates the interpretation of these isotopes in the ISM. For these

reasons, the veracity of the oxygen trend as evidence of GCE (Figures (2.2) and (2.3)) is

called into question.

15

CHAPTER 3

Testing GCE using Silicon

While interstellar oxygen isotopes have been extensively studied (Wilson, 1999, e.g.), the

same is not true of the other light-element systems having 3 stable-isotopes; 24,25,26Mg and

28,29,30Si. Magnesium is poorly suited to widespread interstellar observations, however silicon

is readily observed in molecular clouds at millimeter wavelengths.

A number of silicon-bearing molecular species, including SiC, SiS, SiCN and SiNC, have

been detected in the circumstellar envelopes of AGB stars, however the possibility of local

nucleosynthesis makes these unsuitable proxies for the average interstellar abundances. SiO

is commonly observed to trace shocks in dense, turbulent cloud cores and molecular outflows

(Caselli et al., 1997; Mart́ın et al., 2009; Schilke et al., 1997; Ziurys et al., 1989) where it is

thought to dominate the gaseous silicon budget and the chances that observational measure-

ments are not representative of the bulk silicon composition are minimized. For this reason,

SiO is well suited for probing isotopic GCE. Because silicon is a relatively refractory element

and is largely sequestered in silicate dust, SiO column densities are typically modest in com-

parison to common molecules, such as CO, CS, or HCN, and observed SiO line intensities

are similarly modest. As a consequence of requiring relatively dynamic physical conditions,

most sources of SiO emission are compact and efficient observation requires large telescopes

to achieve favorable beam-filling factors. Fortunately, 29Si and 30Si are relatively abundant

(with Solar [28Si]/[29Si] = 19.7 and [28Si]/[30Si] = 29.8), allowing the weaker isotopologue

lines to be accurately measured with feasible integration times.

The silicon isotope system is largely analogous to that of oxygen, in that it contains one

primary and two secondary nuclides. The primary silicon isotope, 28Si, is an alpha process

nuclide and is by far the most prevalent, with a Solar abundance of 92.23% (Clayton, 2003).

16

Figure 3.1: Predicted dependence of oxygen and silicon isotope abundance ratios on local
stellar [Fe/H], relative to the Solar value (Timmes and Clayton, 1996; Timmes et al., 1995).
Secondary to primary isotopic ratio values on the ordinate are expressed as δ′ = 103 ln(R/R0),
where R and R0 respectively refer to the Galactic values and the initial reference value (see
Equation (2.20)).

29Si and 30Si are both secondary, forming largely from 25Mg and 26Mg during neon burning,

as well as during core-collapse Type II supernovae. Both rare isotopes also form from 28Si in

the He-burning shells of AGB stars. While contributions from He-burning AGB stars could

alter local compositions, such a source likely has little effect on the overall isotopic budget of

the interstellar medium (Clayton, 2003). GCE models predict that, to first order, the silicon

and oxygen isotope ratios should evolve in parallel. Therefore, based on the oxygen data

(e.g., Figures 2.2 and 2.3), one expects nearly constant [29Si]/[30Si] across the Galaxy, as well

as radial gradients in the [29Si]/[28Si] and [30Si]/[28Si] ratios that increase with decreasing

RGC.

Predictions for the magnitude of the variations in [29Si]/[28Si] and [30Si]/[28Si] relative to

the variations in the oxygen isotope system can be made using the silicon isotope GCE model

17

of Timmes and Clayton (1996) and the oxygen isotope GCE model of Timmes et al. (1995)1.

The predicted dependencies of isotope ratios on metallicity are d[XSi/28Si]/d[Fe/H] = 0.43

and d[XO/16O]/d[Fe/H] = 1.27 where X represents the heavy isotopes and all ratios are in

dex. If the Galactic center is no greater than≈ 0.5 dex in [Fe/H], as suggested by the observed

metallicities of Quintuplet cluster LBVs (Cunha et al., 2007), then one predicts an increase

in [18O]/[16O] expressed as δ′18O relative to the Solar value of approximately 1500 permil

between the Solar circle and the Galactic center. The corresponding increase in [29Si]/[28Si]

expressed as δ′29Si is predicted to be ≈ 500 permil (Figure 3.1). As described above, this

prediction is similar to, but approximately 3× smaller than, the observed variation for the

oxygen isotopes (Wilson, 1999; Young et al., 2011).

Additional motivation for establishing the Galactic distribution of silicon isotopes can be

garnered from the [29Si]/[28Si] and [30Si]/[28Si] isotope abundance ratios found in presolar SiC

grains. These grains predate the Sun and are thought to have condensed out of the winds

expelled from ancient asymptotic giant branch (AGB) stars. The mainstream SiC grains

(> 90% of all presolar SiC grains) define a spread in [29Si]/[28Si] (as δ′29Si) and [30Si]/[28Si]

(as δ′30Si) along a slope of ≈ 1.2 (Figure 3.2). The variation in silicon isotope ratios is an

order of magnitude larger than that expected from nucleosynthesis in a single AGB star

and it is generally agreed that the spread in [29Si]/[28Si] and [30Si]/[28Si] predates the AGB

parents of these grains (Lugaro et al., 1999, and references therein).

The considerable spread in the presolar SiC grain [29Si]/[28Si] and [30Si]/[28Si] ratios

represents either a manifestation of GCE as sampled by AGB stars with different birth dates,

or heterogeneity in the ISM material from which the AGB stars formed. GCE predicts that

Solar [29Si]/[28Si] and [30Si]/[28Si] ratios, representing the ISM when the Sun formed 4.6 Gyr

before present, should be larger than the [29Si]/[28Si] and [30Si]/[28Si] ratios found in presolar

SiC grains that predate the Sun, but this is not observed. This apparent excess in 28Si

(or depletion in 29Si and 30Si) in the Sun is a conundrum. Alexander and Nittler (1999)

suggested that the Solar System was enriched in 28Si by supernova ejecta. A model for that

1The results from Timmes and Clayton (1996) and Timmes et al. (1995) are typical of other models for
[Fe/H] ≥ Solar (Lewis et al., 2013).

18

Figure 3.2: Silicon isotope ratios of mainstream presolar SiC grains (grey filled circles)
expressed as per mil deviations from the Solar ratios, i.e. δ′29Si vs. δ′30Si (data from Ernst
Zinner, pers. comm.). The white circle with the center dot indicates present-day Solar
abundances and defines the origin. The best-fit line has a slope of 1.22 ±0.02(2σ).

enrichment was given by Young et al. (2011). Alternatively, Lugaro et al. (1999) suggested

that the distribution of data in Figure 3.2 can be explained simply by dispersion resulting

from incomplete mixing of stellar sources, although this model fails to reproduce correlations

between Ti and Si isotope ratios in the SiC grains (Nittler, 2005). More recently, Lewis et al.

(2013) used the SiC grain data and GCE models to derive the metallicity [Fe/H] and ages

of the SiC parent stars. Their results suggest a distribution in [Fe/H] with a mean near the

Solar value and a 1σ error of about 0.2 dex with a skew towards higher [Fe/H]. Their derived

range in metallicity is less than that observed in the Solar neighborhood today. Mapping

the distribution of Galactic Si isotope ratios as a function of RGC will provide much needed

context for the questions raised by the comparison of Si isotope ratios between presolar SiC

grains and the Sun.

19

CHAPTER 4

Observations

Initial observations of the v = 0, J = 1 → 0 transition of the three silicon isotopologues

of SiO were carried out at the Robert C. Byrd Green Bank radio telescope (GBT) in May

of 2013 (project GBT13A-415). Additionally, several weeks were spent in Green Bank in

January and February of 2014 making follow-up observations (project GBT14A-431). Seven

sources with known radial distances from the Galactic center and brightness temperatures

between 1 and 3 Kelvin were selected (see Table 4.1).

AGFL 5142 (RGC = 9.8 kpc) is a cluster of high-mass protostars (Zhang et al., 2007).

DR21(OH) (RGC = 7.9 kpc) is a site of dense molecular clouds within Cygnus X where several

OB stars are resident (Duarte-Cabral et al., 2014). L1157 (RGC = 8.1 kpc) is a dark cloud

in Cepheus harboring young protostars with chemically active outflows (Nisini et al., 2007).

NGC 7538S (RGC = 9.3 kpc) is a high-mass accretion disk candidate comprising a compact

H II region surrounding a nascent O star in the Perseus spiral arm (Naranjo-Romero et al.,

2012). W51e2 (RGC = 6.4 kpc) is a bright ultracompact H II region in the W51 star-forming

region. Hints of bipolar outflows perpendicular to a rotating ionized disk are reported, as

is evidence for a newly formed O star or cluster of B stars (Shi et al., 2010). SiO in the

Galactic center traces shocked high-velocity molecular cloud gas there. GCM−0.13 − 0.08

(RGC . 0.1 kpc), also known as the 20 km/s cloud, is one of the densest clouds in the

Sagittarius A complex (Tsuboi et al., 2011). GCM 0.11 − 0.11 (RGC . 0.1 kpc) is also a

member of the Sagittarius A complex (Handa et al., 2006).

Data for all three isotopologues of SiO were collected simultaneously using the Q-band

receiver and autocorrelation spectrometer backend. The autocorrelation spectrometer ac-

commodated four spectral windows, one for each of the three silicon isotopologues of SiO,

20

S
o
u

rc
e

α
β

P
oi

n
ti

n
g

O
ff

se
t

S
p

ec
ie

s
T

m
b

∆
v 1
/
2

∫ T m
b

d
v

V
L

S
R

(J
2
0
00

)
(J

20
0
0)

(”
,”

)
(K

)
(k

m
s−

1
)

(K
k
m

s−
1
)

(k
m

s−
1
)

D
R

21
(O

H
)

2
0:

39
:0

1
.0

+
4
2
:2

2:
50

(0
,

-5
)

2
8
S

iO
1.

48
4
±

0.
01

9
5.

14
±

0.
03

9.
62

6
±

0.
02

5
-4

.6
9
±

0.
17

2
9
S

iO
0.

08
1
±

0.
01

6
5.

40
±

0.
29

0.
52

9
±

0.
01

6
-4

.6
2
±

0.
17

3
0
S

iO
0.

05
7
±

0.
01

7
5.

02
±

0.
41

0.
34

8
±

0.
01

6
-4

.4
6
±

0.
17

L
11

5
7

B
1

20
:3

9
:0

6.
4

+
6
8:

02
:1

3
(0

,
0)

2
8
S

iO
3.

37
6
±

0.
01

9
3.

63
±

0.
01

14
.0

80
±

0.
01

6
1.

80
±

0.
17

2
9
S

iO
0.

28
0
±

0.
01

6
3.

19
±

0.
08

1.
07

4
±

0.
01

3
1.

87
±

0.
17

3
0
S

iO
0.

18
9
±

0.
01

6
3.

27
±

0.
10

0.
70

3
±

0.
01

3
1.

76
±

0.
17

N
G

C
7
5
38

S
2
3:

13
:4

4
.8

+
6
1
:2

6:
51

(0
,

-5
)

2
8
S

iO
1.

78
3
±

0.
02

2
4.

83
±

0.
03

11
.8

23
±

0.
04

3
-5

4.
22
±

0.
17

2
9
S

iO
0.

11
8
±

0.
02

0
4.

58
±

0.
18

0.
72

9
±

0.
02

3
-5

4.
21
±

0.
17

3
0
S

iO
0.

08
9
±

0.
02

0
4.

41
±

0.
25

0.
52

2
±

0.
02

3
-5

4.
19
±

0.
17

A
F

G
L

51
4
2

05
:3

0
:4

5
.9

+
3
3:

47
:5

6
(+

25
,

-5
)

2
8
S

iO
0.

92
0
±

0.
01

3
5.

93
±

0.
04

7.
46

7
±

0.
03

7
-2

.7
1
±

0.
17

2
9
S

iO
0.

05
2
±

0.
01

3
5.

74
±

0.
57

0.
40

1
±

0.
01

6
-2

.4
1
±

0.
17

3
0
S

iO
0.

03
5
±

0.
01

2
6.

12
±

0.
72

0.
28

9
±

0.
01

5
-1

.8
8
±

0.
17

W
51

e2
1
9
:2

3:
42

.0
+

14
:3

0
:0

0
(+

25
,

+
30

)
2
8
S

iO
2.

25
7
±

0.
01

4
8.

22
±

0.
02

21
.6

20
±

0.
04

2
-5

6.
30
±

0.
17

2
9
S

iO
0.

14
2
±

0.
01

1
7.

63
±

0.
19

1.
26

4
±

0.
01

3
-5

6.
33
±

0.
17

3
0
S

iO
0.

09
4
±

0.
01

2
8.

35
±

0.
24

0.
85

6
±

0.
01

4
-5

5.
98
±

0.
17

G
C

M
0
.1

1
-0

.1
1

17
:4

6
:1

8
.0

-2
8
:5

4:
00

(+
40

,
+

35
)

2
8
S

iO
1.

79
1
±

0.
02

6
19

.3
8
±

0.
14

43
.6

85
±

0.
41

1
-2

3.
37
±

0.
67

2
9
S

iO
0.

16
8
±

0.
03

1
16

.3
7
±

2.
48

3.
33

9
±

0.
11

7
-2

2.
66
±

0.
67

3
0
S

iO
0.

10
6
±

0.
02

0
17

.0
9
±

1.
01

2.
24

0
±

0.
11

1
-2

3.
67
±

0.
67

G
C

M
-0

.1
3-

0.
08

17
:4

5
:2

5
.2

-2
9
:0

5:
30

(+
18

0,
+

70
)

2
8
S

iO
4.

19
5
±

0.
02

8
19

.8
8
±

0.
04

91
.1

33
±

0.
51

0
-1

7.
25
±

0.
67

2
9
S

iO
0.

36
1
±

0.
03

6
17

.4
5
±

0.
43

6.
95

0
±

0.
12

9
-1

6.
54
±

0.
67

3
0
S

iO
0.

25
0
±

0.
02

4
17

.1
3
±

0.
41

4.
53

2
±

0.
09

0
-1

7.
36
±

0.
67

T
ab

le
4.

1:
L

is
t

of
S
ou

rc
es

an
d

O
b
se

rv
ed

S
iO

v
=

0,
J
=

1
→

0
E

m
is

si
on

L
in

es

21

and a ’spare’ that was put to use in several capacities that will be addressed in subsequent

sections. The two Galactic center sources were observed using 200 MHz bandpass windows

with 24.4 kHz wide channels yielding ≈ 340 m/s resolution, and all other sources utilized

50 MHz bandpass windows with 6.1 kHz channels, yielding ≈ 85 m/s resolution. These

spectral resolutions translate to resolving powers of approximately 8.8 × 105 and 3.5 × 106

respectively; the emission lines from all sources are well resolved.

Pointing was checked against nearby 7 mm continuum sources every hour, and errors were

typically 3 arcseconds or less. All observations were made using in-band frequency switching,

and all switching was by 40% of the bandpass at a rate of 2 Hz. System temperatures

hovered around ≈ 80 K for most observations, but varied from lows of about 70K to highs

of 130K at low elevations or in inclement weather. It was found that most sources required

approximately 3 hours of integration time to achieve the desired signal-to-noise ratio for the

emission line from the rarest isotopologue. Noise temperatures (prior to resampling) on the

order of 20mK were achieved in most sources.

Four additional sources were observed in May and June of 2015 (project GBT15A-350),

however the project was crippled by a hardware failure at the GBT. The autocorrelator

spectrometer backend used during the two previous projects was replaced by the VErsatile

GBT Astronomical Spectrometer (VEGAS) at the beginning of the 2015A semester. While

VEGAS provides greater flexibility and throughput than the autcorrelator it superseded,

hardware faults rendered much of it inoperational soon after it was commissioned. Only four

of the eight FFT spectrometers that comprise VEGAS were available for use, and due to

the intricacies of how data from the telescope is routed to the spectrometers, the in-band

frequency-switching technique used previously could not be reimplemented. The only way

to simultaneously observe both polarizations of all three isotopologues without doubling

the required integration time was to use an unconventional out-of-band frequency-switching

technique wherein two spectral windows were assigned to each emission line. While this

technique, dubbed “band swapping” by the Author, was successful in circumventing the

limitations imposed by VEGAS, it has severely complicated data reduction. Consequently,

isotopic abundance ratios for these new sources are not presented here.

22

CHAPTER 5

Calibration and Data Reduction

The calibration and reduction of all data reported here were done using a novel suite of IDL

programs (the HYDRA software package) written by the Author and verified by consultation

with GBT staff astronomers (these functions expand upon the basic data reduction afforded

by the GBTIDL software package). The procedures include several vectorized approaches to

the calibrations that enhance accuracy and precision of the extracted line profiles.

5.1 Flux Calibration

As a consequence of the sensitive nature of the measurements being made, special attention

was paid to flux calibration to ensure that any drift in receiver performance between obser-

vations could be corrected. Differences in receiver gain between spectral windows were also

of special concern.

The primary concern with the standard approach for calculating system temperatures,

Tsys, and calibration temperatures, Tcal, is that any information about frequency-dependent

gain within the bandpass is lost. Although atmospheric opacity and aperture efficiency are

largely invariant across 50 MHz and 200 MHz spectral windows, noise diode power output

and LO/IF system response are not. Left unaccounted for, these frequency dependencies

are an unacceptably large source of potential error. In order to mitigate these effects, the

standard calibration protocol has been adapted to account for channel-by-channel variations

in the system response by substituting array valued, or vectorized, versions of calibration and

system temperatures, Tcal(ν) and Tsys(ν), for their standard scalar valued counterparts. Vec-

torized calibration routines were developed expressly for this survey as part of the HYDRA

23

data pipeline, allowing gain profiles to be determined pixel-by-pixel across the entire band-

pass, thereby accommodating any frequency dependence that may be present. Further, gain

profiles for each IF, polarization, noise diode state and frequency position were calculated

independently to ensure uniform calibration.

The GBT Q-band receiver was calibrated using a noise diode integrated into the primary

signal path. The diode was calibrated against nearby radio-loud active galactic nuclei, 3C48,

3C147 or 3C286, at the beginning and end of each observing period. The spectral flux density

of the calibrator, ~Ssource, was calculated using the polynomial expression and coefficients

reported by Perley and Butler (2013, 2017) and converted to corrected antenna temperature

with the expression

T ∗a (ν) =
Ag

2kb

~Sν ~ηa exp

(
−~τz

sin (θ)

)
, (5.1)

where Ag is the geometric collecting area of the antenna, ~τz is the zenith atmospheric opacity

estimated from ~τz = 0.008 + exp(
√
~ν)/8000 evaluated over the frequency band ~ν (in GHz),

~ηa is aperture efficiency, and θ is the elevation in radians. Aperture efficiency is estimated

using Ruze’s equation with the GBT-specific peak aperture efficiency of 0.71 and RMS surface

accuracy of 390 microns. The calculated source temperature was then used to convert the

power output of the noise diode to a calibration temperature profile:

Tcal(ν) = T ∗a (ν)

[
Srcon − Srcoff + Skyon − Skyoff

Srcon − Skyon + Srcoff − Skyoff

]
. (5.2)

In Equation (5.2) “Src” and “Sky” refer to the source and sky positions and superscripts

“on” and “off” refer to the state of the noise diode. Calibration temperatures are obtained

for each polarization and frequency position. The flux calibrators were observed for either

two or four 30 second integrations followed by an equal number of sky integrations offset by

−0.5 degrees in azimuth, and the noise diode calibration temperature for each polarization

and frequency position was independently calculated for each of the either four or sixteen

possible Src/Sky integration pairs. For more information on data calibration/reduction,

please refer to the HYDRA User’s Guide and Cookbook, located in Appendix 11.

24

Figure 5.1: The 29SiO emission line from W51e2 with underlying H(83)δ recombination line
fitted (smooth curves) for subtraction. Line intensities are shown in antenna temperature in
this figure.

5.2 Baselines

The vectorized calibration routine tamed the baselines but did not eliminate all structure.

Typical low frequency (ν ≈ bandpass) baselines were fit with low-order polynomials for

subtraction. However, differentiating between baseline structure and emission-line structure

was challenging in the low-brightness sources DR21(OH) and AFGL 5142. In order to avoid

confusing line wings with baselines, all velocities from the baseline fits that lay within ±3

times the full-width half-maximum (FWHM) of the 28SiO line were omitted. Ultimately,

each fit was subject to a Monte Carlo analysis wherein random draws of the boundaries of

each region were made, with the standard deviation set to either 5% or 10% of the width of

each region (see Section 5.5). Flux-calibrated spectra with baselines subtracted are shown

for each of the seven sources in this study in Figure 6.1. The 29SiO and 30SiO line intensities

are exaggerated by a factor of 7 for presentation.

5.2.1 Interfering Lines

Extraneous emission lines are seen in most sources, however these extraneous lines generally

do not interfere with the SiO lines. Notable exceptions include the six blended 2(0,2) →

25

1(0,1) hyperfine lines of formamide (methanamide) between 42385.06 MHz and 42386.68

MHz, which were seen in the 30SiO spectra of both Galactic center sources. The brightness

of the formamide line exceeded that of 30SiO in both cases and its effects on the 30SiO

lines were removed using the methods described above for baselines. Formamide emission

was seen in W51e2 as well, but was rather weak in this source. There was an additional

interfering line in W51e2 which appears on the low-velocity wing of the 30SiO line and had

to be removed. The poor SNR of the line made identification difficult, although the line is

fairly broad and is possibly a blend of the 13(3, 11) → 12(4, 8) EA and 13(3, 11) → 12(4,

8) AE emission lines of dimethyl ether at 42371.58 MHz and 42372.16 MHz, respectively.

The H(83)δ recombination line in the 29SiO spectrum is also visible in W51e2. The

H(83)δ recombination line lies well within 1 MHz of the 29SiO emission line, is thermally

broadened, and is easily mistaken as being part of the 29SiO emission line wings (Figure 5.1).

Without removal of this overlapping line, the measured [29SiO]/[28SiO] would be in error by

over 40%. The H(83)δ recombination line was effectively removed by using the ’spare’ IF

to observe the nearby and stronger H(53)α recombination line, which was then used as a

template profile to fit and subtract the H(83)δ line from the 29SiO spectrum (e.g., Figure

5.1). As a precaution, the H(53)α line was monitored in all other sources, although it was

only observed in W51e2.

5.3 Optical Depth Effects

Historically, SiO emission has been assumed to be optically thin (Wolff, 1980) due to the

modest brightness of the observed lines. However, Penzias (1981) was quick to demonstrate

that SiO thermal emission often contravenes this assumption, and the same was found to

be true for this survey. Many studies of interstellar isotope ratios categorize emission lines

into one of two groups; optically thin (τ0 � 1) and optically thick (τ0 � 1) (e.g., Adande

and Ziurys, 2012; Milam et al., 2005; Savage et al., 2002). Lines are then analyzed in the

appropriate limit. This approach has the convenience of simplicity and is a concession to the

difficulty in assessing optical depth in radio emission lines (Goldsmith and Langer, 1999).

26

Many emission lines, however, will not be patently either thick (τ0 � 1) or thin (τ0 � 1),

and instead are likely to exhibit some finite intermediate values for τ (e.g., Milam et al., 2005;

Penzias, 1981a; Savage et al., 2002). This should be especially true for emission from dense

gas tracers like SiO, where even moderately bright lines from highly subthermal populations

require appreciable optical depths (Shirley, 2015).

Knowing this, the assumption that the myriad of emission lines from dense gas tracers

bin neatly into either the optically thin or optically thick limit seems unreasonable. Doing so

will likely result in significant errors. Use of the thin limit appears particularly problematic

as error grows rapidly with optical depth, reaching ≈ 10% for even a moderate optical depth

at line center of τ0 = 0.2. Optical depth must be addressed directly if the precision required

to produce useful isotopic ratio measurements is to be attained. To this end, a novel metric

for the direct determination of optical depth was developed as part of this study.

5.3.1 The Shape Parameter

For any given source, optical depth in the emission line of the common isotopologue can

be assessed via comparison to the (presumably) thin emission line of one or more rare iso-

topologues. Both peak intensity T0 and integrated area W of a spectral line are non-linearly

dependent on peak optical depth, with peak intensity exhibiting a stronger dependence than

integrated area. This is a consequence of the fact that optical depth varies across the line

profile. The line wings will remain thin even as the line center depth increases, and the

contribution of optically thin emission desensitizes the integrated area of the line with re-

spect to line center optical depth τ0. As a result high optical depth in the emission line of

the common isotopologue will manifest as broadening relative to the rarer isotopologue lines

that is obvious when the emission are scaled by intensity (Figure 5.5b).

By first integrating the emission lines of all isotoplogues through the same velocity range

(∆vr = ±3 FWHM from line center, as defined by the 28SiO line) the lines of the rare

isotopologues can then be scaled by the ratio of the common-to-rare integrated main beam

temperatures. For example the scaled temperature of the 29SiO emission line is given by

27

Figure 5.2: The line-center value of the opacity term in the solution to the radiative transfer
equation, given as a function of peak optical depth. The black solid line is the exponentiated
opacity term from the plane-parallel solution to the radiative transfer equation, i.e., the
bracketed term in Iν = Bν [1 − exp(−τ0)]. The red dashed line is the linear opacity term
from the optically-thin approximation to the solution, Iν = Bντ0. The ordinate is unitless.

Figure 5.3: The fractional error of the line-center value of the optically-thin approximation
of the opacity term relative to the full solution, again as a function of peak optical depth. It
is clear that the optically-thin approximation rapidly accumulates error as τ0 increases.

28

GCM	 -‐0.13-‐0.08	
τo	 =	 1.23	 +/-‐0.25	

L1157	
τo	 =	 0.67	 +/-‐0.09	

28SiO	
29SiO	
30SiO	

28SiO	
29SiO	
30SiO	

Figure 5.4: Area-scaled emission line profiles for the v = 0, J = 1 → 0 transitions for the
three SiO silicon isotopologues observed in L1157 (left) and GCM-0.13-0.08 (right). The
black lines are the 28SiO lines. The red and blue profiles are the 29SiO and 30SiO lines,
respectively. Each line has been scaled by integrated intensity relative to the28SiO integrated
intensity as in Equation (5.3). The disparities between line-center Tmb values for the 28SiO
lines and the scaled 29SiO and 30SiO lines are indicative of appreciable optical depths in the
28SiO lines (see text).

T
29SiO

scaled (vr) = T
29SiO

mb (vr)

(∫
T

28SiO
mb (vr) dvr∫
T

29SiO
mb (vr) dvr

)
. (5.3)

With this method, optical depth in the 28SiO emission line is determined by analyzing

the difference between the 28SiO main beam temperature and 29SiO and/or 30SiO scaled

temperatures for the same source under the assumption that the latter is effectively optically

thin. Because the scaled 29SiO and 30SiO lines have comparable (presumably low) optical

depths based on their normal abundances, any broadening in the 28SiO line is immediately

obvious as an apparent deficit in peak temperature at line center when the scaled 29SiO and

30SiO lines are superimposed on the 28SiO line (Figure 5.5c and Figure 5.4).

The ratio of the main beam temperature at line center to the velocity-space integrated

main beam temperature, denoted Γ, can be expressed as

Γ =
Tmb(0)∫
Tmb(vr) dvr

=
Tmb(0)

Wmb

(5.4)

where Wmb =
∫
Tmb(vr) dvr is the velocity-space integrated main beam temperature.

29

(a) Three synthetic emission lines at various values of τ0. All three features are normalized to the
value of the τ0 = 2.0 feature at line center. Thus, being of lesser intensity than the τ0 = 2.0 feature
at line center, the τ0 = 0.2 and τ0 = 0.5 features take on values < 1.

Figure 5.5: The visible effects of optical depth, seen here in a trio of synthetic line profiles.
These plots are non-physical, and are intended only as a visual aid. All three features in
Subfigures 5.5a, 5.5b and 5.5c are normalized to the value of the τ0 = 2.0 feature at line
center; thus all ordinates are unitless.

30

(b) The three emission lines from Subfigure 5.5a, but with the τ0 = 0.2 and τ0 = 0.5 features scaled
to be equal in peak intensity to the τ0 = 2.0 feature. The τ0 = 0.2 and τ0 = 0.5 features are scaled
by factors of 4.77 and 1.37, respectively. The broadening effect of increased optical depth is clearly
visible.

(c) The three emission lines from Subfigure 5.5a, but with the τ0 = 0.2 and τ0 = 0.5 features scaled
to be equal in integrated area to the τ0 = 2.0 feature. The τ0 = 0.2 and τ0 = 0.5 features are
scaled by factors of 5.96 and 1.53, respectively. The difference between the shape parameter of each
feature is clearly visible.

Figure 5.5: (cont) The visible effects of optical depth. All three subfigures are normalized
to the value of the τ0 = 2.0 feature at line center. All ordinates are unitless.

31

The value Γ, dubbed the shape parameter, is of critical importance as it can be used

to quantify optical depths. As optical depth increases, the shape parameter Γ decreases

(the profile shape becomes fatter). The optical depth of an emission line can therefore be

quantitatively determined by comparing the line shape parameter of the suspected optically

thick line (for the abundant isotopologue) with that for a line that is presumed to be optically

thin (corresponding to the rare isotopologues). For moderate optical depths, the optical

depth at line-center for the optically thick line is a function of the fractional difference

between shape parameters for the thick and thin lines:

τ0 = f

(
Γthin

Γthick
− 1

)
= f(Γ′′) (5.5)

where the value Γ′′ is dubbed the shape parameter excess. Evaluation of synthetic data indi-

cates that the empirically-derived proportionality of dτ0/dΓ′′ = 6.829− 0.879 Γ′′+ 4.698 Γ′′2

produces results with exceptional accuracy (� 1%) up to values of τ0 = 2 when used in con-

junction with Equation (5.5). It should be noted that this polynomial equation was derived

from synthetic gaussian lineshapes relative to a perfectly optically-thin line.

A previously derived proportionality constant of ≈ 5 was reported by Monson et al.

(2017). The proportionality function presented here, if correct, would push the δ′29Si and

δ′30Si values of optically-thick sources (e.g. L1157) closer to the Solar value (see Figures

6.2 and 6.3). Such a shift would likely reduce the difference between the reported values of

δ′29Si and δ′30Si in all seven sources to well less than 1σ; effectively eliminating any evidence

of a gradient in both [29SiO]/[28SiO] and [30SiO]/[28SiO] with respect to RGC. Clearly the

disparity between the value given here and the value reported by Monson et al. (2017) is

non-trivial.

A concerted effort by the Author to determine the exact nature of the relationship be-

tween Γ′′ and τ0 using RADEX is currently underway. However, it seems likely that the

difference between the proportionality function reported here and that reported by Monson

et al. (2017) is due to a combination of factors. The model used by Monson et al. (2017)

to to derive a proportionality constant of ≈ 5 was somewhat oversimplified, and differences

32

in natural linewidth between isotopologues and the effect of the frequency-cubed term in

Equation (5.6) were omitted from the modeling presented here. Modeling based on RADEX

will be free of these errors and will decisively resolve the issue. RADEX is also being used

to evaluate the relationship between Γ′′ and τ0 for values of τ0 > 2.

All of the line-center optical depths obtained as part of this study are < 1.5 (see Tables 6.1

and 6.2). The process of determining τ0 using Γ′′ was tested using synthetic data and found to

be robust against irregular line profiles and even cryptically overlapping velocity components

from separate clumps within a complex source. It is worth emphasizing that influences of

velocity structure on line shapes are not isotope specific, and forward calculations verify

that optical depth effects alone result in the departures from line shape coincidence when

normalized to area. A caveat is that there are hypothetical circumstances where one can

imagine localized velocity features that affect the rare isotopologues differently than the

abundant species, but these will be pathological circumstances.

Another caveat is that, if there are strong gradients in excitation temperature along the

line of sight, then an optically thick line for the abundant species will favor the foreground

values of excitation temperature for that species only, leading to an error in the abundance

ratio. This is a known and important effect for very optically thick lines like those of 12C16O;

indeed, in the absence of a velocity gradient along the line of sight, one is typically observing

only the surface layers of a cloud in the most abundant isotopologue of CO. However, for

SiO this effect is minimized because of the comparatively modest values of optical depth for

the SiO lines. Furthermore, there is little reason to expect strong line-of-sight excitation

gradients in the kinds of sources that give rise to SiO emission; the SiO molecules are likely

intermixed with the shocks that liberate or form them.

Failures of Equation (5.5), by my observation, require models that invoke rather unlikely

circumstances. Further, forward calculations demonstrate further that details of line shapes

(e.g., skewness) do not significantly alter the relationship between Γ and line-center optical

depth as long as the line profile is not flat-topped.

33

Figure 5.6: The quasilinear relation between optical depth at line center and the shape
parameter excess, defined as Γ′′ = (Γthin/Γthick)−1 (equivalent to Equation (5.5)). The shape
parameter excess was calculated using gaussian lineshapes relative to a perfect optically-thin
line, i.e. τ0 = 0.

Figure 5.7: The first derivative of τ0 with respect to Γ′′, plotted as a function of Γ′′. Like
Figure 5.6, the value of Γ′′ was calculated using gaussian lineshapes relative to a perfectly
optically-thin line. It is clear from the small range of the ordinate that the relation between
Γ′′ and τ0 is very nearly linear. The polynomial fit (in red) is given by dτ0/dΓ′′ = 6.829 −
0.879 Γ′′ + 4.698 Γ′′2.

34

5.4 Extracting Column Densities from Line Intensities

In order to extract isotopologue ratios from line intensities, one should forgo the Rayleigh-

Jeans approximation1and express the upper level population column density ratio of sec-

ondary (i.e., rare in this application) and primary (abundant in this application) isotopo-

logues N s
u/N

p
u as

N s
u

Np
u

=
ΛsW s

ΛpW p

(
νpu`
νsu`

)3 [1− nγ(Tcrf)/n
p
γ(Tex)

1− nγ(Tcrf)/nsγ(Tex)

]
. (5.6)

As in Equation (5.4), Wp and Ws are the integrated line intensities for the primary and sec-

ondary silicon isotopologues, p and s respectively. The photon occupation numbers npγ(Tex)

and nsγ(Tex) correspond to the excitation temperatures for isotopologues p and s, and nγ(Tcrf)

corresponds to the radiation temperature of the local continuum radiation field. The factors

Λp and Λs correct for optical depth in the emission lines for the two isotopologues and are

described in the following section. For a full derivation of Equation (5.6) please refer to

Appendix A.2.2.

The term in brackets in Equation (5.6) is a consequence of forgoing the assumption

that nγ(Tex) � nγ(Tcrf) and allowing nγ = (nγ(Tex) − nγ(Tcrf))[1 − exp(−τν)] rather than

assuming that nγ ≈ nγ(Tex)[1 − exp(−τν)]. However, because of the likelihood for sub-

thermal populations of SiO emitters, the excitation temperature Tex, and thus nγ(Tex), is

not known a priori and may differ between the three silicon isotopologues of SiO. Further,

one should note that the flux contributions from the local continuum radiation field are

effectively invariant between isotopologues, but the contributions of the line emission itself

are not. While this additional term is undoubtedly of consequence, it cannot be put to direct

use when extracting column densities using Equation (5.6) without extensive modeling. The

implications of this additional term and the effect it has on measuring isotopologue ratios

are discussed at in Section 5.4.2.

1The Rayleigh-Jeans approximation is inappropriate in these circumstances; for a highly sub-thermal
emission from SiO, hν0 ≈ kbTex and thus the Rayleigh-Jeans approximation does not apply.

35

5.4.1 Correcting for Finite Optical Depth

The optical-depth correction Λ for measured column densities for 28SiO takes the form

Λ28 =
N28

corrected

N28
uncorrected

=

∫
τvrdvr∫

(1− exp(−τvr)) dvr

. (5.7)

The integrals in this expression are obtained from the optical depths at line center derived

using Equation (5.5) and the line profile functions defined by the 29SiO lines (assumed

to be optically thin). Although this correction factor was derived independently by the

Author, one could use equations 83-85 from Mangum and Shirley (2015) to derive the same

expression; however, in the text they instead appeal to an expression analogous to Equation

(5.7) attributable to Goldsmith and Langer (1999) that is not correct for application with

Equation (5.6). For a full derivation of Equation (5.7), please again refer to Appendix A.2.2.

Equations (5.4), (5.5), and (5.7) are used to determine optical depths for the 28SiO lines

for all sources reported here. In all cases the two derived τ0 values, based on the 29SiO and

30SiO shape parameters, are in agreement within uncertainties; the SNR-weighted average

of the two is used to calculate the τ0 value reported for each source. Values for τo differ for

the different sources, with values ranging from below detection to slightly greater than unity.

The 28SiO lines from DR21(OH) and AFGL 5142 have optical depths below detection, with

a noise-limited detection limit of τ0 ≈ 0.2. The Tmb values for the 28SiO lines are less than

1K in both sources. The peak Tmb of the 28SiO emission line in W51e2 is ≈ 3K and is also

relatively optically thin, with an estimated optical depth of 0.4. The two Galactic center

sources and L1157, by contrast, all show evidence for appreciable optical depth in the main

28SiO emission line, with estimated optical depths of 1.0, 1.2, and 0.7, respectively (Tables

6.1 and 6.2).

36

5.4.2 Excitation Effects

The bracketed term in Equation (5.6) is included to account for the possibility of isotopologue-

specific subthermal excitation effects. Although the flux contribution from the local contin-

uum radiation field, expressed here as nγ(Tcrf), is effectively invariant between isotopologues,

feedback in the line radiation field (called line trapping) will have a differential effect on emis-

sion any time local thermodynamic equilibrium (LTE) does not obtain.

Though typically ignored when optical depths are low, trapping of line radiation will

have an effect on the level populations; the net effect of which is to increase the excitation

temperature of any affected transitions relative to the excitation temperature that would

occur if the only radiative contribution was the continuum radiation field. Clearly, the mag-

nitude of this effect is proportional to the intensity of the radiation field (both continuum

and line contributions) within the emission line profile. Assuming that the continuum radi-

ation field is isothermal, differences in emission line strength, and hence differences in the

degree of radiative trapping, will differ between isotopologues. That is to say, although the

flux contribution from the local continuum radiation field is effectively invariant between

isotopologues, the contribution of the line emission itself is not, and this will cause their

excitation temperatures to diverge. This conclusion is of critical importance.

Emission from SiO is typically modest in strength, the effect of line trapping on nγ(Tex)

will be comparably modest. So, for a highly excited population, the increase in excitation

as a consequence of line trapping is small enough to have little or no effect observable on

emission, even considering nγ(Tex) will vary between isotopologues. However, this is not

the case for highly sub-thermal populations (Tex � Tk) where the radiation field plays

a dominant role in determining the excitation. If nγ(Tcrf) is low (e.g., approaching the

cosmic microwave background), even small differences in nγ(Tex) can effect large changes in

emission line intensity. I.e. line trapping can pump up the isotopologue-dependent excitation

temperatures and produce inaccuracies in the derived isotopologue ratios.

The conditions that foster the isotopologue-selective excitation effects can be illustrated

using an expression for excitation temperature for a two-level system (e.g. Goldsmith, 1972):

37

Tex =
∆Eu`
kb

[
ln

(
Au`(1 + n̄γ) + Cu`

n̄γAu` + Cu` exp(−∆Eu`/kbTk)

)]−1

, (5.8)

where Au` is the Einstein coefficient for spontaneous emission and Cu` is the collisional

de-excitation rate, n̄γ is the radiative contribution to the excitation temperature in the

transition, Tk is the kinetic temperature, and the other symbols have their usual meanings.

A derivation of Equation (5.8) can be found in Appendix A.3.1.

In Equation (5.8), the line-weighted photon occupation number n̄γ is comprised of two

separate components; nγ(Tcrf) and nγ(Tline) corresponding to the bacrground continuum radi-

ation and line radiation components respectively. The collisional de-excitation rate depends

on the number density of molecules,2 thus as number density tends to zero, Cu` → 0, and

Tex → (Tcrf + Tline). In this sub-thermal limit, nγ(Tcrf) and nγ(Tline) compete for dominance

in determining the excitation temperature Tex.

Recall that for an emission line from an isothermal source, the observed photon occupa-

tion number is given by

nγ = [nγ(Tex)− nγ(Tcrf)](1− exp(−τν). (5.9)

Thus, when the incident continuum radiation field nγ(Tcrf) is weak (at or just above the cos-

mic microwave background), even small differences in nγ(Tex), e.g. between isotopologues,

constitute large fractional changes in the difference between nγ(Tex) and nγ(Tcrf). This in

turn effects significant differences in the photon occupation nγ of the emergent line. To

reiterate, because nγ ∝ nγ(Tex) − nγ(Tcrf), nγ becomes increasingly sensitive to small dif-

ferences in nγ(Tex) as nγ(Tex)/nγ(Tcrf) → 1. An analytical expression quantizing this effect

was presented in Section 5.6. It is clear to see that this effect is most significant in envi-

ronments with weak continuum radiation fields, but diminishes rapidly as the intensity of

the continuum radiation field increases. Conversely, as the number density tends to infinity

and thus Cu` → ∞, Tex → Tk and the system is in LTE and, assuming optical depth is

2See Appendix A.3.1

38

Figure 5.8: Contours of errors in SiO isotopologue ratios obtained from integrated J = 1→ 0
emission line areas as a function of collision partner number density and the temperature of
the incident continuum radiation field, Tcrf , expressed in multiples of the cosmic microwave
background temperature, Tcmb. As indicated in the inset, the kinetic temperature of the gas
and the column density of 28SiO are fixed at 30 K and 1 × 1014 respectively. The ratios
are fully corrected for optical depth, thus the error is due purely to disparate excitation
between the 28SiO and 29SiO isotopologues. Solid contours are fractional differences between
the [28Si] / [29Si] extracted from the model and the input parameters (Solar in all cases) in
increments of ±0.1. Dashed contours represent midpoints between solid contours, and are
plotted only where the magnitude of the fractional error is < 0.1, as the gradient in the
data is comparatively shallow in that region. Radiative transfer calculations were made with
RADEX using the large velocity gradient approximation (van der Tak et al., 2007).

not extreme, there are no significant isotopologue-specific effects due to line trapping. In

summary, Equation (5.8) shows that sub-thermal excitation and low continuum radiation

temperatures facilitate isotopologue-specific emission effects driven by line trapping.

Because the rotational states of SiO are subthermally populated in at least some (likely

all) of the observed sources (e.g., Amo-Baladrón et al., 2009; Nisini et al., 2007), and

probably in all (Harju et al., 1998), the potential biases in the derived isotopologue ratios

attributable to this phenomenon were evaluated. RADEX (van der Tak et al., 2007) was

used to constrain the magnitude of error induced by divergent excitation temperatures among

39

isotopologues as a function of H2 density and continuum radiation field intensity. The large

velocity gradient approximation was used for the calculations presented here. Calculations

using alternate geometries do not yield appreciably different results from those shown here.

Figure 5.8 shows contours of fractional deviations in measured optical-depth-corrected

isotopologue ratios from the true ratios as a function of collision partner number density and

the temperature of the local continuum radiation field. The kinetic temperature is assumed

to be 30K, but the results are insensitive to the kinetic temperature as long as Tk & 10K.

The contours illustrate that errors well in excess of 20% are expected in low H2 density,

low continuum flux environments (e.g., for H2 number densities nH2 < 5× 103 and Tcrf less

than twice the CMB) if the excitation effects go unrecognized. Published descriptions of the

targets in this study report strong sources of millimeter continuum emission in proximity

to the SiO emission sources, typically in the form of either ultra-compact H II regions or

winds from nearby high-mass young stellar objects (e.g., Araya et al., 2009; Hunter et al.,

1999; Luisi et al., 2016; Zapata et al., 2009). Therefore, the temperatures of the contin-

uum radiation within the observed sources are by all evidence well in excess of the CMB,

mitigating isotope-specific excitation effects. Similarly, for the SiO sources reported here

104 . nH2 . 106 cm−3 and so the environs of these sources correspond to conditions where

systematic errors are likely to be < 10% (Figure 5.8), commensurate with the measurement

errors. While radiation field effects are an important consideration, they do not appear to be

sufficient to significantly alter the isotopologue ratios extracted from the data in this study.

5.5 Evaluation of Uncertainties

In order to account for both measurement uncertainties and the uncertainties imparted by

the estimates of optical depth, the entire data reduction pipeline and correction scheme for

each source was subjected to a pair of Monte Carlo error analyses. To assess the errors

imparted by noise in each spectrum, random draws of each channel in each spectrum were

made, where the measured value of each channel used as the mean and the standard deviation

set equal to the calculated RMS noise temperature. A total of 500 draws were made for each

40

spectrum, and every trio of draws was fully reduced and corrected for the calculated optical

depth. The use of the measured values as means (rather than smoothed values) results in

the uncertainties in the derived isotopologue ratios being overestimated by ≈ 5%.

Due to the somewhat subjective nature of selecting the region used to fit the baseline of

each spectrum, this process was subject to a similar Monte Carlo error analysis. Line free

regions of each spectrum were fit by hand, then random draws of the boundaries of each

region were made, with the standard deviation set to either 5% or 10% of the width of each

region. A total of 400 draws were made for each spectrum. These two analyses were nested

in such a way that Monte Carlo analysis of the noise temperature was performed for each

random draw of the baseline limits. The result is 200, 000 instances of each of the three SiO

lines for each source, each fully reduced and corrected for the calculated optical depth.

The corrections for optical depth in the 28SiO lines (Tables 6.1 and 6.2) generally increase

the uncertainties in isotopologue ratios by factors of approximately 2 to 3. Because of the

additional uncertainty in the abundant isotologue column densities, the correlation coeffi-

cients between the [29SiO]/[28SiO] and [30SiO]/[28SiO] ratios increase from < 0.1 to 0.85±0.2

in all of the sources.

Adapting the Monte Carlo codes to the “band swapped” data obtained in 2015 (AGBT15A-

350) has proven troublesome. Combining data from the two spectral windows for each line

effectively doubles the baselines in the reduced data, severely complicating the process of

fitting and removing them. Additionally, the frequency windows themselves are relatively

narrow, and as a result there is little space on either side of the SiO emission line for fitting

the baseline structure. Attempts to find acceptable solutions to these issues are ongoing.

41

CHAPTER 6

Results

A summary of the results is given in Tables 6.1 and 6.2 and shown in Figures 6.2 and 6.3.

The uncorrected data exhibit a spread up and down the slope-1 line in Si three-isotope

space, anchored by the two Galactic center sources and crudely resembling the predictions

from GCE (Figure 6.2). The trend with RGC is broken by the high [29SiO]/[28SiO] and

[30SiO]/[28SiO] ratios for L1157 at Solar RGC. However, correcting for optical depth removes

the spread in data, resulting instead in a clustering of the data spanning the range defined

by the mainstream SiC presolar grain trend (Figure 6.3). I find, not surprisingly, that

optical depths on the order of unity can strongly bias extracted isotope ratios. These results

indicate that uncorrected optical depth effects were responsible for the prior evidence of

high [29SiO]/[28SiO] and [30SiO]/[28SiO] ratios in the present-day ISM relative to Solar and

meteoritical values (Penzias, 1981a; Wolff, 1980). The prior measurements were suggestive

of GCE over the ≈ 4.6 Gyrs since the birth of the Sun and the formation of the presolar SiC

grains. These new results suggest instead that silicon isotope ratios have been minimally

affected by GCE over this time interval.

Correcting for optical depth removes the evidence for a variation in silicon isotope ratios

with RGC (Figure 6.4). Regression of the uncorrected δ′29Si values vs RGC gives a negative

slope (slope = −27 ± 12 per mil kpc−1, Figure 6.4) while regression of the corrected data

yields a slope indistinguishable from zero (slope = −0.2± 6.8 per mil kpc−1, Figure 6.4).

It is worth noting that, with the exception of L1157, the sources that exhibit the highest

optical depths are also the most distant, namely GCM -0.13-0.08 and GCM 0.11-0.11 which

are both at a distance of ≈ 8 kpc. At this distance linear beam size is significant, and as both

sources are large (≈ 105M�) filaments of the Sagatarius A GMC, the telescope beam likely

42

AFGL	 5142	 DR21(OH)	 28SiO	
29SiO	
30SiO	

GCM	 0.11-‐0.11	 GCM	 -‐0.13-‐0.08	

L1157	 NGC	 7538	 S	

W51e2	

Figure 6.1: Calibrated and baseline-corrected 28SiO, 29SiO, and 30SiO emission lines for the
seven sources in this study. The grey lines show the unsmoothed, full-resolution spectra
while the solid black, dashed blue, and dashed red lines are the smoothed data for 28SiO,
29SiO, and 30SiO respectively. Main beam temperatures apply to 28SiO while the 29SiO and
30SiO lines are scaled by a factor of 7 for presentation. The baseline at the low-velocity
extreme of the 30SiO spectrum for GCM0.11-0.11 is outside the range used to determine the
baseline underlying the 30SiO line itself.

43

U
n
co

rr
ec

te
d

R
at

io
s

C
or

re
ct

ed
R

at
io

s

S
ou

rc
e

τ 0
Λ

2
8

[2
8
S
i]
/[

2
9
S
i]

[2
8
S
i]
/[

3
0
S
i]

[2
8
S
i]
/[

2
9
S
i]

[2
8
S
i]
/[

3
0
S
i]

D
R

21
(O

H
)

0.
08
±

0.
21

1.
03
±

0.
08

17
.5

3
±

0.
54

25
.7

3
±

1.
18

18
.0

6
±

1.
68

26
.5

2
±

2.
65

L
11

57
B

1
0.

67
±

0.
09

1.
25
±

0.
04

12
.6

3
±

0.
15

18
.6

1
±

0.
35

15
.7

6
±

0.
57

23
.2

3
±

0.
92

N
G

C
75

38
S

0.
49
±

0.
22

1.
18
±

0.
08

15
.6

2
±

0.
49

21
.1

0
±

0.
92

18
.4

8
±

1.
69

24
.9

7
±

2.
47

A
F

G
L

51
42

0.
12
±

0.
26

1.
04
±

0.
09

17
.9

5
±

0.
73

24
.2

6
±

1.
32

18
.7

7
±

2.
22

25
.3

7
±

3.
03

W
51

e2
0.

39
±

0.
09

1.
14
±

0.
04

16
.4

7
±

0.
17

23
.4

6
±

0.
39

18
.8

3
±

0.
69

26
.8

4
±

1.
03

G
C

M
0.

11
-0

.1
1

1.
23
±

0.
25

1.
47
±

0.
10

12
.6

1
±

0.
46

18
.1

7
±

0.
91

18
.6

1
±

1.
74

26
.8

2
±

2.
90

G
C

M
-0

.1
3-

0.
08

0.
97
±

0.
13

1.
37
±

0.
05

12
.6

3
±

0.
24

18
.6

9
±

0.
39

17
.2

7
±

0.
85

25
.5

6
±

1.
31

T
ab

le
6.

1:
T

h
e

ca
lc

u
la

te
d

op
ti

ca
l

d
ep

th
,

co
rr

ec
ti

on
fa

ct
or

Λ
,

co
rr

ec
te

d
an

d
u
n
co

rr
ec

te
d

S
iO

is
ot

op
ol

og
u
e

ra
ti

os
fo

r
ea

ch
so

u
rc

e.

U
n
co

rr
ec

te
d
δ′

V
al

u
es

C
or

re
ct

ed
δ′

V
al

u
es

S
ou

rc
e

τ 0
Λ

2
8

δ′
2
9
S
i

δ′
3
0
S
i

δ′
2
9
S
i

δ′
3
0
S
i

D
R

21
(O

H
)

0.
08
±

0.
21

1.
03
±

0.
08

11
7
±

31
15

0
±

46
90
±

93
12

4
±

99
L

11
57

B
1

0.
67
±

0.
09

1.
25
±

0.
04

44
5
±

12
47

3
±

19
22

3
±

36
25

2
±

39
N

G
C

75
38

S
0.

49
±

0.
22

1.
18
±

0.
08

23
2
±

32
34

9
±

44
67
±

91
18

4
±

98
A

F
G

L
51

42
0.

12
±

0.
26

1.
04
±

0.
09

94
±

40
20

9
±

54
55
±

11
7

17
0
±

11
9

W
51

e2
0.

39
±

0.
09

1.
14
±

0.
04

17
9
±

11
24

2
±

16
45
±

36
10

8
±

38
G

C
M

0.
11

-0
.1

1
1.

23
±

0.
25

1.
47
±

0.
10

44
6
±

36
49

9
±

50
61
±

93
11

3
±

10
8

G
C

M
-0

.1
3-

0.
08

0.
97
±

0.
13

1.
37
±

0.
05

44
4
±

19
46

9
±

21
13

3
±

49
15

7
±

51

T
ab

le
6.

2:
T

h
e

sa
m

e
as

T
ab

le
6.

1,
b
u
t

w
it

h
δ′

va
lu

es
in

p
er

m
il

fo
r

ea
ch

so
u
rc

e
in

li
eu

of
is

ot
op

ol
og

u
e

ra
ti

os
.

44

Figure 6.2: Uncorrected SiO silicon isotope abundance ratios for the seven sources observed
as part of this survey. Mainstream SiC grain data are shown for reference (grey circles). The
solid line is the slope-unity line through the Solar composition. The white circle with dot
indicates present-day Solar abundances and defines the origin. Error ellipses are 1σ.

Figure 6.3: SiO silicon isotope ratios after correcting for optical depth effects. Error ellipses
are 1σ determined by Monte Carlo simulations including the uncertainty in the optical depth
corrections.

45

Figure 6.4: δ′29Si in permil vs. Galactocentric distance from this study. Uncorrected data
are shown as open symbols. Data corrected for optical depth are shown as black symbols.
Error bars are 1σ. Linear regression for the uncorrected data (grey) and corrected data
(black) are shown together with 95% confidence bands. The corresponding [28SiO]/[29SiO]
ratios are shown on the right-hand ordinate.

encompasses regions of both optically thin and thick gas. As noted by Wouterloot et al.

(2008), such effects do not facilitate comparison of sources at differing heliocentric distances

and likely constitute a significant contribution to the overall error budget. Attempts to

quantify any correlation between heliocentric distance and optical thickness are ongoing.

The mean corrected [28SiO]/[29SiO] ratio for the sources reported here is 17.9± 1.1 (1σ)

and is 9% lower than the Solar value of 19.7 (i.e., the average measured values are enriched

in 29SiO by 97 per mil, relative to the Solar value). The mean of the SiO measurements is

slightly further up the slope-1 line in Figure 6.3 than the mean of the presolar SiC grains,

although the difference is within 2σ defined by the spread in SiC data (mean [28SiO]/[29SiO]

= 18.9 ± 0.5 (1σ) for SiC grains). The spread in Si isotope ratios from RGC = 10 kpc

to the Galactic center is comparable to the spread in isotope ratios observed in presolar

mainstream SiC grains (Figure 6.3) but considerably smaller than predictions based on the

apparent variations in oxygen isotope ratios (Figure 3.1). It is not known if the displacement

up the slope-1 line in Figure 6.3 is real, or represents some form of systematic error. One

possible source of systematic error is discussed in Appendix A.2.1

46

CHAPTER 7

Discussion

7.1 Secondary/Primary Si Isotope Ratios

The somewhat higher [29Si]/[28Si] and [30Si]/[28Si] ratios of the present-day ISM relative to

Solar values presumably represents GCE over the last 4.6 Gyrs. The finding that there is

no resolvable variation in silicon isotope ratios across the Galaxy is important because it

conflicts with expectations from oxygen and carbon secondary/primary isotope ratio trends.

The implication is that in the present-day Milky Way, stars are forming with similar average

silicon isotope ratios regardless of their distance from the Galactic center.

The explanation for the lack of a radial gradient in this isotope system remains elusive.

One possibility is mixing by radial gas flows (Tinsley and Larson, 1978). Simulations suggest

that spiral arm - bar resonances and infall of gas can result in flattening in metallicity

gradients with RGC in both stars and gas on timescales of < 1 Gyr (Cavichia et al., 2014;

Minchev et al., 2011). If mixing is the cause of the flat gradient for silicon isotope ratios, it

would imply that gradients in metallicity and gradients in other isotopic indicators of GCE

have also been at least partially flattened by mixing.

Despite no evidence of a gradient, Galactic silicon isotopic abundances may not be entirely

static, in so far as the present-day Galaxy appears to be isotopically heavy with respect to

both the Sun and the mainstream presolar SiC grains (the latter representing the ISM ≥

4.6 Gyr before present). However the evidence in support of this claim is scant at best; the

silicon isotope ratios in the preponderance of presolar SiC grains lie just outside of error in

some reported sources sources, while well within error of others (see Figure 6.3). Clearly,

there is additional work to be done; the 30SiO data suffer from poor signal to noise ratios

47

in many sources, and the precision is insufficient to draw any robust conclusions on the

difference between the isotopic composition of silicon in the present-day ISM, and the ISM

as it existed ≥ 4.6 Gyr before present (as represented by SiC grains). Further, the survey

lacks sources in theRGC = 2 to 5 kpc region, a shortcoming that can be corrected with

additional observations.

An alternative explanation is a temporal change in the sources of silicon isotopes that is

peculiar to silicon. Zinner et al. (2006) reconstructed the GCE of Si isotopes using the mea-

sured isotope ratios in Z-type presolar SiC grains and models to filter out the nucleosynthetic

effects of the AGB stellar progenitors of this rare class of SiC grains. They oncluded that

there was a rapid rise in secondary/primary Si isotope ratios early in the Galaxy followed

by a leveling off in the rate of change in these ratios when total metallicity (Z) began to

exceed 0.01. These authors suggested that late additions of nearly pure 28Si by Type Ia

supernovae, as suggested by Gallino et al. (1994), may have contributed to the slowing in

the rise of [29SiO]/[28SiO] and [30SiO]/[28SiO] with metallicity (and time). In this scenario,

the addition of 28SiO to the Galaxy was delayed because of the relatively long timescales re-

quired for the evolution of Type Ia supernova progenitors (e.g. Tsujimoto et al., 1995). Late

addition of 28SiO could have minimized the change in Galactic [29Si]/[28Si] and [30Si]/[28Si]

over time, perhaps explaining the modest difference between the Solar and present-day ISM

values.

Suppression of a Si isotope gradient with RGC by a rise in the influence of Type Ia

supernovae would require that the relative contribution of 28Si from these products of white-

dwarf-bearing binary systems is greater towards the Galactic center, counterbalancing the

overall rise in metallicity and secondary isotope formation with decreasing RGC. Scannapieco

and Bildsten (2005) developed a model for Type Ia formation rate in terms of star formation

rate and total stellar mass, implying an overall increase in the rate of Type Ia formation

towards the Galactic center. An accelerated decrease in [O/Fe] with increasing [Fe/H] toward

the Galactic center is a signature of the influence of Type Ia supernovae owing to the large

mass of Fe released in Type Ia events (e.g., Matteucci et al., 2006). It is conceivable that

an analogous excess in Type Ia-produced 28Si may exist towards the Galactic center.

48

7.2 Secondary/Secondary Si Isotope Ratios

The weight of the data for the seven sources is slightly displaced in triple isotope space from

the presolar mainstream SiC data, with the former having higher [30Si]/[28Si] for the same

[29Si]/[28Si] ratios (i.e., the SiO data lie to the right of the SiC data in Figure 6.3). This

displacement, representing a higher [30Si]/[29Si] in SiO than both the Sun and the presolar

mainstream SiC grains, could reflect a difference in the GCE of the two secondary silicon

isotopes. Presolar SiC grains of types Y and Z have large excesses in [30Si]/[29Si] resulting

from neutron capture in low-mass, low-metallicity AGB stars (Zinner et al., 2006). These

grains represent a mechanism for altering the ratio of secondary silicon isotopes with time.

However, the AGB source of Si is thought to be relatively minor (Clayton, 2003; Timmes

and Clayton, 1996) and so the influence of AGB stars in shifting ISM [30SiO]/[29SiO] over

time is expected to be limited.

An enhanced [30Si]/[29Si] in interstellar SiO could be indicative of a mass-dependent

isotope partitioning (fractionation) because mass-dependent fractionation trends in Figure

6.3 have slopes of approximately 1/2 rather than unity, altering the secondary/secondary

[30SiO]/[29SiO] ratios; the offset between the presolar SiC data and the ISM data could be

explained if the the ISM SiO experienced mass-dependent heavy isotope enrichment.

SiO is commonly associated with both C-type and J-type shocks in the ISM, where it is

produced through non-thermal sputtering processes with heavy neutral species (He, C, O &

Fe), vaporization by grain-grain collisions and thermally-driven sublimation or evaporation

of silicate grains (Nichols et al., 1995).

Si-bearing species enter the gas phase as either SiO or neutral Si, depending on the

grain composition and the production mechanism (Caselli et al., 1997; Mart́ın et al., 2009;

Schilke et al., 1997; Ziurys et al., 1989). In the case of sputtering, yields are known to vary

with impact energy and are mass dependent; consequently sputtering should result in mass-

dependent isotope fractionation in which the heavy isotopes are enriched in the condensed

phase residues. The magnitudes of the isotope fractionations associated with sputtering of

silicates, which are believed to be the main reservoir of refractory silicon in the ISM, are not

49

well constrained in the environments studied here (Schilke et al., 1997).

Although grain loss is believed to be non-thermal in the environments observed in this

study (Caselli et al., 1997; Gusdorf et al., 2008; Schilke et al., 1997), there may be parallels

in the isotope systematics of thermal evaporation/sublimation and sputtering given that the

rate of the latter depends on a mass-dependent cohesive binding energy barrier. Thermal

evaporation or sublimation of condensed silicates is known to cause Si isotope enrichment in

the evaporative residues up to a few per cent where the distillation is extreme. These results

are well documented from theory, experiments, and observations of meteoritical materials

(Shahar and Young, 2007). The effects of partial evaporation of grains would leave the gas

depleted in the heavy, secondary Si isotopes and the residual grains enriched in the heavy

isotopes with the relative changes in [30Si]/[28Si] ratios being twice those for [29Si]/[28Si] as a

consequence of the different vibrational frequencies of ruptured bonds (vibrational frequen-

cies are proportional to the inverse square root of reduced mass). For example, evaporation

of 90% of the Si from a typical silicate should yield an increase in [29Si]/[28Si] of ≈ 4% in the

residual condensed material and a corresponding increase in [30SiO]/[28SiO] of ≈ 8% (Knight

et al., 2009; Richter et al., 2007; Shahar and Young, 2007). This magnitude of fractionation

would be sufficient to explain the offset between the SiC and ISM data. However, the sign is

wrong for a simple single stage of grain evaporation. Rather than the SiO gas being depleted

in the heavy isotopes, the data imply enrichment relative to the older SiC grains (Figure 6.3).

If grain evaporation/sublimation is an explanation for the offset between SiC grains and SiO

gas in Figure 6.3, it would require extreme distillation by Rayleigh-like processes or multiple

discrete steps of partial Si loss so that the observed SiO derives from grains that had a prior

history of evaporation and hence heavy isotope enrichment. Naturally, such fractionations

are only possible in scenarios where grains are only partially ablated, and would not affect

the SiO isotopologue abundance ratios when grains are subject to complete destruction.

Once liberated from grains, via sputtering or otherwise, neutral Si in the gas phase is

oxidized to SiO by either molecular oxygen or the hydroxyl radical via (Caselli et al., 1997;

Gusdorf et al., 2008; Schilke et al., 1997)

50

Si + O2 → SiO + O (7.1)

Si + OH· → SiO + H·. (7.2)

The SiO/H2 abundance ratio in shocked regions is enhanced by up to 105 relative to the

ambient medium, but quickly declines in the cooling post-shock material. The rates of these

gas-phase reactions depend on collisional frequencies, which are in turn proportional to µ−1/2

where µ is the reduced mass of the collisional system. This raises the possibility that the

product SiO might be affected by mass-dependent fractionation relative to the parent grains.

Here again, the sign of the expected shifts is the opposite of that required to explain the

offset between SiC grains and SiO gas in Figure 6.3.

The archetypal destruction pathway of SiO to form SiO2 is the reaction

SiO + OH· → SiO2 + H· (7.3)

occurring in the post-shock gas, where OH· is abundant (Schilke et al., 1997). Similar to the

sputtering process, oxidation in the cool post-shock gas has the potential to produce isotope

fractionations in SiO. The higher zero-point energy of 28SiO could potentially produce a

non-equlibrium, Rayleigh-type fractionation as SiO is oxidized to SiO2 and condenses into

grains. However, even in molecular clouds, the collision frequency between SiO and OH· will

be low enough that this effect is likely to be of limited significance.

In all cases, the clustering of the data representing a wide variety of astrophysical environ-

ments from the Galactic center to the outer disk makes large differences in mass fractionation

effects seem unlikely. The possibility for a decoupling of the growth of the two secondary

Si isotopes remains. However, none of these factors could have modified the isotope ratios

of SiO sufficiently to alter the conclusion that the variations in [29SiO]/[28SiO] ratios and

[30SiO]/[28SiO] ratios across the Galaxy are surprisingly small.

51

CHAPTER 8

Future Work

I have three immediate observational goals with the GBT. Firstly, I seek to continue obser-

vations of the J = 1 → 0 rotational transition of the three silicon isotopologues of SiO in

order to fill in the large gap of data between the Galactic center and RGC ≈ 5 kpc. My goal

is to establish the degree of silicon isotope variability across the Galaxy and compare this

result with existing data for metallicity and for other isotopic systems, namely oxygen and

carbon (e.g., Figures 2.3 and 2.2). To this end, additional observations with the GBT were

proposed, and accepted with an ”A” rating by the GBT time allocation committe, with a

total of 18 hours of telescope time granted during the 2018a and 2018b semesters. However,

due to the vicissitudes of the dynamic scheduling system at the GBT, these observations

were not carried out.

Secondly, it is unknown if there are spatial variations in optical depth and isotopic ra-

tios within each source. SiO emission often arises in hot, star-forming cores where shocks

and high temperatures remove the usually refractory SiO molecule from grains. The typical

angular size of these hot cores tends to be comparable to the beam size of the GBT, so the

GBT observations represent an average over a potentially complex source region. Model-

ing indicates this complexity does not affect conclusions about isotope abundances in most

cases, so long as the lines are optically thin. However, if there is significant variation within

extended sources (i.e. those that are larger than the FWHM beam), then it can not be as-

sumed that the isotopic ratios extracted from one location within the source is appropriately

representative of the source as a whole. I therefore propose observing multiple locations

within an extended source. L1157 seems a perfect candidate, as it is large, bright and is well

studied, including observations of the J = 2 → 1 transition (Nisini et al., 2007). Fusion of

52

the J = 2→ 1 data with observations of the J = 1→ 0 line would also provide good insight

into the excitation temperature of the source.

Lastly, I plan to carry out measurements of some of the higher-order rotational transitions

of SiO. The motivation to include additional, high-order rotational transitions is twofold; to

enhance the completeness and Galactocentric coverage of the survey by including higher

excitation sources inaccessible via the J = 1→ 0 transition, and to constrain the excitation

temperature in previously observed sources. The W-Band receiver on the GBT is capable

of observing the J = 2 → 1 line, and data could be reduced with the same pipeline as the

J = 1 → 0 data. Telescope time will also be sought at the Institut de Radioastronomie

Millimétrique’s 30m telescope on Pico Veleta to observe the J = 3 → 2 line, as well as the

Arizona Radio Observatory’s Submillimeter Telescope on Mt. Graham for the J = 5 → 4

and J = 4→ 3 lines.

53

CHAPTER 9

Conclusions

The finding that secondary/primary Si isotope ratios have no detectable variation across

the Galaxy within ≈ 20% does not comport with expectations from the large variation in

secondary/primary O isotope ratios of ' 900%. Even when accounting for the prediction

that the growth of secondary/primary ratios for Si isotopes should be approximately 1/3

that for O over the same range in metallicity, the observed variation is surprisingly small.

The modest increase in secondary/primary Si isotope ratios and the lack of a signifi-

cant gradient with Galactocentric distance may be qualitatively consistent with previous

suggestions that the increase in secondary/primary silicon isotope ratios has slowed with

the increased influence of Type Ia supernovae. This result is in apparent conflict with the

hypothesis that Solar Si is substantially and anomalously enriched in 28Si relative to the ISM

at the time of the birth of the Solar System (e.g., Alexander and Nittler, 1999; Young et al.,

2011). In light of these conclusions, a careful reexamination of the Galactic distribution of

oxygen isotopes seems well warranted.

54

Appendix A

A.1 Preface

The power of interstellar isotope abundance ratios as a diagnostic tool was realized nearly

thirty years ago (Frerking et al., 1980; Linke et al., 1977; Penzias, 1981a,b; Wilson et al.,

1981; Wolff, 1980). Used in conjunction with the theory of GCE, a knowledge of Galactic

isotope abundance ratios would provide a powerful contextual reference for other astrophys-

ical disciplines including nucleosynthesis, the composition of extrasolar planetary systems,

as well as the origin and nature of the own Solar system.

Both precision and accuracy of data are of prime importance where isotopic ratios are

concerned. Rare isotopes, as their name suggests, comprise only a small fraction of the total

atomic abundance; often only single digit percentages. As such, signal to noise ratios for

emission lines from rare isotopologues are typically poor and contribute significantly to the

error budgets. Measurements of the abundance ratios of the three stable isotopes of silicon

by Wolff (1980) and Penzias (1981a) are typical of such early attempts, in which the error

budget dominated by noise in the data.

While this is still true, especially for rare isotopologues, modern cryogenic high-electron-

mobility transistor (HEMT) amplifiers and superconducting tunnel junction (STJ) mixers

provide such exceptional performance that it is possible to lower the noise floor for such ob-

servations by over two orders of magnitude (Monson et al., 2017). Measurements of 29Si, [28Si

and 30Si emission in the ISM reported by Monson et al. (2017) have RMS noise temperatures

similar to those reported by Penzias (1981a) and Wolff (1980), but with frequency resolution

≈ 200× higher. Although statistical error has been greatly reduced, little attention has been

given to sources of systematic error. With noise statistics no longer controlling the error

budget of isotopic studies and other high-precision spectroscopic measurements, recognizing

55

the effects of these secondary sources of error is paramount.

Examples of such sources of error are examined in the appendices that follow. A number

of common simplifying approximations are shown to be considerable sources of error, namely

the Raleigh-Jeans approximation and those associated with the optically thin limit. The

applicability of Local Thermodynamic Equilibrium (LTE) is also considered, and non-LTE

excitation effects are also shown to be of consequence and are addressed in some detail.

Admittedly, stripping all assumptions from the commonly used equations of radiative

transfer is, in many ways, a purely academic exercise; some assumptions need to be made.

Variables like kinetic temperature, collision partner density etc. are often poorly constrained,

if at all, and approximations are necessary to make the transfer equation solvable. However

it seems prudent that even those approximations that are strictly required be incorporated

with a grain of salt, as they will invariably come with consequences. The magnitude of the

induced error is not especially large in all cases, however as receiver technology advances

and researchers claim higher and higher precision in their measurements, a point has been

reached when such nuances can no longer be ignored. Although developed as part of a

survey to make high-precision, high-accuracy isotope ratio measurements of silicon in the

interstellar medium, the techniques discussed herein are equally applicable to Galactic (and

extragalactic) oxygen, carbon and nitrogen isotope ratio measurements.

56

A.2 Calculating Abundance Ratios

A.2.1 Accounting for Beam-Weighting

Following Baars (2007), The total power per unit frequency Pν collected by an antenna with

an effective reception pattern A(θ, φ) from a source at a large distance with the photon

occupation number distribution nγ(θ, φ) is given as

Pν =
hν3

u`

c2

x

4π

nγ(θ, φ)A(θ, φ) dθdφ. (A.1)

Here θ and φ are the respective azimuthal and polar angular displacements from the main

beam axis. The reciprocity theorem states that the reception and transmission parameters

of an antenna must be linearly related. With a little algebra it can be shown that

G(θ, φ) =
4πν2

c2
A(θ, φ) (A.2)

where G(θ, φ) is the antenna gain (Baars, 2007, chap. 5). Like the effective reception

pattern A(θ, φ), the antenna gain G(θ, φ) is also a function of the angular displacement from

the main beam axis. Gain is proportional to the power emitted (or received) per steradian

from direction (θ, φ) divided by the full-sphere average power per steradian, i.e.

G(θ, φ) = ηr
4πPn(θ, φ)s

4π
Pn(θ, φ) dθdφ

(A.3)

where ηr is the radiation efficiency of the antenna and Pn(θ, φ) is the antenna power pattern,

normalized to Pn(0, 0) = 1. The integral in the denominator of Equation (A.3) is equivalent

to the total solid angle of the antenna Ωa, i.e.

Ωa =
x

4π

Pn(θ, φ) dθdφ. (A.4)

Combining Equations (A.2), (A.3) and (A.4) yields

57

A(θ, φ) =

(
ηrc

2

ν2Ωa

)
Pn(θ, φ), (A.5)

an expression that can be substituted back into Equation (A.1) to give

Pν =
ηnhνu`

Ωa

x

4π

nγ(θ, φ)Pn(θ, φ) dθdφ. (A.6)

If it can be assumed that the emission source is isothermal and well resolved by the

antenna main beam (defined as the half-power beam width (HPBW) of the central diffraction

spike of the antenna) then the flux density Sν of the source can be approximated as

Sν =
2hν3

u`

c2

x

4π

nγ(θ, φ) dθdφ

≈ 2hν3
u`

c2
nγ

x

Ωs

ψ(θ, φ) dθdφ

(A.7)

where ψ(θ, φ) is the normalized photon occupation distribution of the source, and Ωs is

the total solid angle subtended by the source (Baars, 2007). Knowing that that the source

brightness distribution ψ(θ, φ) is normalized, it follows that

Ωs =
x

4π

ψ(θ, φ) dθdφ. (A.8)

Substituting Equations (A.7) and (A.7) into Equation (A.6) in conjunction with making use

of the Nyquist theorem and the definition of main-beam efficiency, ηmb = Ta/Tmb, gives

Tmb =
ηnSνc

2

2kbΩmbν2
u`

(
ΩΣ

Ωs

)
=

Sνc
2

2kbΩmbν2
u`

K (A.9)

where Ωmb is the solid angle subtended by the main beam of the antenna and ΩΣ is the

beam-weighted source solid angle

ΩΣ =
x

Ωs

ψ(θ, φ)Pn(θ, φ) dθdφ (A.10)

58

and the factor K ≡ ηnΩΣ/Ωs corrects the main-beam temperature Tmb for the weighing of

the source photon occupation distribution by the telescope beam.

This correction factor K is often assumed to be unity, as is the case from this point

forward. This factor is normalized out when calculating isotopic ratios, so as long as it can

be assumed to be the same for all three isotopologues, which is unlikely to be the case.

The effect of the beam-weighted solid source angle was not accounted for by Monson

et al. (2017) when reducing SiO data; the correction factor K was assumed to be unity, as

is typically done. It was argued that K would normalize out when calculating abundance

ratios, so long as so as long as it can be assumed to be invariant between isotopologues.

However this was a short-sighted assumption, and cannot be assumed to be true; ΩΣ is a

function of the antenna power pattern Pn(θ, φ) which is governed by diffraction and will vary

with frequency. Consequently the correction factor K could be a contributing factor to the

apparent excess of 29Si and 30Si in the ISM relative Sun and the preponderance of presolar

SiC grains reported by Monson et al. (2017). It was suspected by the Author that the

systematic enhancement of δ′29Si and δ′30Si in the reported sources was due to a calibration

error; although no errors were found, omitting the correction factor for K seems likely to

have contributed. Further investigation seems well warranted, and attempts to quantify the

effects of beam-weighted source solid angle on abundance ratios are ongoing.

59

A.2.2 Correcting for Optical Depth

Setting the concept of beam-weighted source solid angle aside for the moment, a relatively

straightforward correction factor for optical depth can be derived by assuming that the solid

angle subtended by the source is much less than the antenna solid angle (i.e. Ωs � Ωa). In

this limit K approaches unity, and if it is assumed the source is isothermal and radially uni-

form and there no other sources in the telescope beam, then the double integral in Equation

(A.6) reduces to Ωsnγ, and in analogy to Equation (A.9) the main beam temperature of the

telescope can be written

Tmb =
Pν
kηmb

=
Ωs

Ωmb

hνu`
k
nγ. (A.11)

The photon occupation number nγ in Equation (A.11) can be expressed as a solution to

the equation of radiative transfer. For a transition v = 0, J = u → ` with an excitation

temperature Tex
1, the solution takes the form

nγ = [nγ(Tex)− nγ(Tcrf)] (1− exp(−τν)) (A.12)

where τν is the optical depth of the line profile as a function of frequency. τν is equal to the

integral of the absorption coefficient kν along the optical path and is given by

τν =

s∫
s0

kν(s
′) ds′. (A.13)

For evaluating molecular column densities, it is convenient to define the absorption coefficient

kν in terms of the associated Einstein coefficients. By the definition of these coefficients,

agreement with the standard formulation of the equation of radiative transfer is necessitates

kν =
hνu`
4π

(n`B`u − nuBu`)φ(ν) (A.14)

1See Appendix A.3.1

60

where gu and g` are the degeneracies for the upper and lower states, and nu and n` are the

fractional level populations for the upper and lower states.

When the source is isothermal along the optical path, the integral in Equation (A.13)

becomes strictly proportional to the total column density of the excited state Nu, and the

optical depth can be expressed as

τν =

s∫
s0

kν(s
′) ds′ =

c2

8πν2
u`

NuAu`

[
n`gu
nug`

− 1

]
φ(ν). (A.15)

At this point, it is common to apply the Rayleigh-Jeans approximation. However, for a

subthermal population of emitters, hνu`/kTex might not be� 1 and thus the Rayleigh-Jeans

approximation may not apply. Avoiding the Rayleigh-Jeans approximation, the main beam

temperature Tmb can be written in a form that allows for subthermal excitation explicitly.

I start by substituting n`gu/nug` − 1 = 1/nγ(Tex) into Equation (A.15), yielding

τν =
c2

8πν2
u`

NuAu`

(
1

nγ(Tex)

)
φ(ν). (A.16)

By combining Equations (A.12) and (A.11), multiplying by τν/τν and substituting Equation

(A.16), one obtains

Tmb =
Ωs

Ωmb

(
hc2NuAu`

8πkνu`

)[
nγ(Tex)− nγ(Tcrf)

nγ(Tex)

](
1− exp(−τν)

τν

)
φ(ν). (A.17)

Converting this equation to a function of radial velocity vr via the relation dvr/c = dν/νu`

and solving for the total column density yields

Nuφ(vr) =
Ωmb

Ωs

(
8πkν2

u`

hc3Au`

)[
nγ(Tex)

nγ(Tex)− nγ(Tcrf)

]
Tmb

(
τvr

1− exp(−τvr)

)
. (A.18)

Knowing that
∫
φ(vr) dv

′
r = 1, an expression for the total column density in terms of the in-

tegrated main beam temperature and optical depth can be obtained by integrating Equation

(A.18) over the line profile, yielding

61

Nu =
Ωmb

Ωs

(
8πkν2

u`

hc3Au`

)[
nγ(Tex)

nγ(Tex)− nγ(Tcrf)

] ∫
line

Tmb

(
τvr

1− exp(−τvr)

)
dvr. (A.19)

The photon occupation numbers nγ(Tcrf) and nγ(Tex) in Equation (A.19) are effectively

invariant across the line profile, and thus left outside the integral. Similarly, the frequency

variation across the line profile is sufficiently small that the frequency factor can be evaluated

at line center, and left out of the integral.

The optical depth correction factor Λ can be extracted by evaluating Equation (A.19) at

finite optical depth in comparison with the optically thin limit. In the optically thin limit,

where τvr/(1− exp(−τvr))→ 1 as τvr → 0, Equation (A.19) reduces to

N τvr→0
u =

Ωmb

Ωs

(
8πkν2

u`

hc3Au`

)[
nγ(Tex)

nγ(Tex)− nγ(Tcrf)

]
W, (A.20)

where W =
∫
Tmb dvr is the integrated main beam temperature. In this case the column

density is directly proportional to the integrated line intensity.

In the more realistic case of finite optical depth, where τvr > 0, Equation (A.19) can be

written

Nu =
N
τvr→0
u

W

∫
line

Tmb

(
τvr

1− exp(−τvr)

)
dvr. (A.21)

Note that this is not equivalent to the optically thick limit, where τvr/(1− exp(−τvr))→ τvr

as τvr →∞.

Considering that the thin limit N
τvr→0
u is the ideal case and that Nu is the more general

case, their ratio defines the correction factor for optical depth Λ:

Nu

N
τvr→0
u

=
1

W

∫
line

Tmb

(
τvr

1− exp(−τvr)

)
dvr ≡ Λ. (A.22)

Note that the definition of Λ in Equation (A.22) is equivalent to the ratio Nu/N
τvr→0
u given

by Mangum and Shirley (2015). This can be seen by recalling that Tmb is a function of Tex,

as evidenced by Equations (A.11) and (A.12).

62

Mindful of the definition of W and that Tmb ∝ 1 − exp(−τvr), Equation (A.22) can be

rewritten as
Nu

N
τvr→0
u

=

∫
line

τvrdvr∫
line

(1− exp(−τvr)
)
dvr

= Λ, (A.23)

which is the same as Equation (5.7).

Substituting Equation (A.20) into Equation (A.23) reveals a general equation relating

column density to integrated main beam temperature:

Nu = Λ
Ωmb

Ωs

(
8πkν2

u`

hc3Au`

)[
nγ(Tex)

nγ(Tex)− nγ(Tcrf)

]
W. (A.24)

Recall from Equation (A.11) that Ωmb/Ωs is the ratio of the solid angle subtended by the

main beam of the antenna to that of the source. Unlike Ωs, the size of the main beam

of the antenna is frequency dependent and differences in beam size between isotopologues

must be accounted for. Utilizing the antenna theorem, Agηaηmb = λ2/Ωmb, where ηa ηmb are

the aperture and main beam efficiencies, respectively, the ratio of main beam solid angles

Ωs
mb/Ω

p
mb for the same transition between two isotopologues, here denoted p and s (for

primary and secondary nuclides, respectively) can now be expressed

Ωs
mb

Ωp
mb

=
(νpu`)

2ηpaη
p
mb

(νsu`)
2ηsaη

s
mb

. (A.25)

The ratio of aperture and main beam efficiencies are both very nearly unity and are safely

ignored when the difference between the transition frequencies of isotopologues p and s is

small and Equation (A.25) can be reduced to the close approximation

Ωs
mb

Ωp
mb

≈
(
νpu`
νsu`

)2

. (A.26)

By substituting this expression into Equation (A.24), the column density ratio of the excited

states of isotopologues p and s can now be expressed as

N s
u

Np
u

=
ΛsW sApu`
ΛpW pAsu`

[
1− nγ(Tcrf)/n

p
γ(Tex)

1− nγ(Tcrf)/nsγ(Tex)

]
. (A.27)

63

Equation (A.27) can be reduced further by expanding the Einstein A coefficient as

Aul =
64π4ν3

ul

3hc3gu
|〈ψu|R|ψl〉|2 , (A.28)

where |〈ψu|R|ψl〉|2 is the transition dipole moment matrix element from state vector ψu to

state vector ψl. With this final substitution, assuming the transition dipole moment matrix

element is invariant between isotopologues, Equation (A.27) becomes

N s
u

Np
u

=
ΛsW s

ΛpW p

(
νpu`
νsu`

)3 [1− nγ(Tcrf)/n
p
γ(Tex)

1− nγ(Tcrf)/nsγ(Tex)

]
, (A.29)

which is Equation (5.6) in the main text, and is the same as Equation (13) in Monson et al.

(2017).

64

A.3 The Principle of Detailed Balance

In cases where LTE does not apply, the specific processes affecting energy level populations

must be expressly considered. More succinctly,

dni
dt

= 0 =
∑
j 6=i

nj
∑
k

Rk
ji − ni

∑
j 6=i

∑
k

Rk
ij (A.30)

where ni is the number density of state i and Rk
ij is the transition probability for the i→ j

via process k (Wilson et al., 2009). Equation (A.30) is aptly named the principle of detailed

balance. It is implicit that the summed number density of all states remains constant. Since

no assumption about the population of state i on any other has been imposed, save that

some form of transition between them is permitted, generality is maintained. As such, the

principle of detailed balance applies universally.

A.3.1 The Excitation Temperature

Transition probabilities can be formulated for any number of processes affecting state pop-

ulations. However, Equation (A.30) is a sum of two double series and rapidly becomes

intractable as the number of processes considered increases. Fortunately, collisions between

molecules and coupling with radiation are the only relevant processes in this context. The

balance of a simple two-level system, the populations of which are governed only by colli-

sions and coupling with radiation, can be expressed as a function of the Einstein A, B and

C coefficients The upper and lower states are denoted u and `, respectively.

dnu
dt

= n`
[
B`uŪ + C`u

]
− nu

[
Au` +Bu`Ū + Cu`

]
, (A.31)

where the upper and lower states are denoted u and `, respectively.

The collisional excitation coefficient C`u, in s−1, is the product of volumetric number

density of the colliding species nc and the collisional rate coefficient q`u

65

C`u = ncq`u = nc

∫ ∞
v0

f(v)vσ`u dv. (A.32)

Here f(v) is the velocity distribution function of the colliding particles, σ`u is the cross section

between the species of interest and the collision parter for the ` → u transition, and v is

defined by (µv2
0)/2 = ∆Eu` where µ is the reduced mass of the collisional system. Similarly,

the rate of de-excitation is given as

Cu` = ncqu` = nc

∫ ∞
0

f(v)vσu` dv. (A.33)

The colliding particles are most often assumed to be either electrons or diatomic hydrogen

molecules. However, electrons are not of particular importance in molecular cloud cores,

where ionization is low and collision rates with molecular hydrogen outpace collisions with

other species by many orders of magnitude.

The net energy density Ū from Equation (A.31) is defined

Ū =
1

c

x
Iνφν dνdΩ =

4π

c

∫
Jνφν dν (A.34)

where φ(ν) is the normalized line profile function. The net energy density Ū is equivalent

to the total energy density U , albeit that net energy density is weighted by φ(ν). This

desensitizes Equation (A.31) to the intensity of the radiation field outside of the line profile;

the importance of which is self evident. It is convenient to replace the net energy density Ū

with the dimensionless photon occupation number

Ū =
c2

2hν3
u`

∫
Jνφν dν =

8πhν3
u`

c3
n̄γ, (A.35)

equal to the number of photons per degree of degeneracy per frequency mode within the line

profile. Rearranging Equation (A.35), substituting into Equation (A.31) and recalling that

g`B`u = guBu` and Au` = (8πhν3
u`/c

3)Bu`, the rate equation reduces to

66

dnu
dt

= n`

[
gu
g`
n̄γAu` + C`u

]
− nu [Au`(1 + n̄γ) + Cu`] , (A.36)

the steady-state solution to which is easily shown to be

nu [Au`(1 + n̄γ) + Cu`] = n`

[
gu
g`
n̄γAu` + C`u

]
.2 (A.37)

It can be shown the collisional rate coefficients are related by a Boltzmann distribution at

the kinetic temperature of the gas (Draine, 2011)

q`u
qu`

=
gu
g`

exp

(
−∆Eu`
kbTk

)
. (A.38)

Using this expression along with Equations (A.32) and (A.33), Cu` can be substituted for

C`u in Equation (A.37), yielding an expression exclusively in terms of the radiative and

collisional de-excitation rates, i.e.

nu [Au`(1 + n̄γ) + Cu`] =
n`gu
g`

[
n̄γAu` + Cu` exp

(
−∆Eu`
kbTk

)]
. (A.39)

It is clear to see that a Equation (A.39) can be rearranged and set equal to Boltzmann’s

factor
Au`(1 + n̄γ) + Cu`

n̄γAu` + Cu` exp(−∆Eu`/kbTk)
=
n`gu
nug`

= exp

(
∆Eu`
kbTex

)
(A.40)

where the excitation temperature Tex is the thermodynamic temperature corresponding to

the level populations nu and n`. Solving Equation (A.40) for Tex, one obtains

Tex =
∆Eu`
kb

[
ln

(
Au`(1 + n̄γ) + Cu`

n̄γAu` + Cu` exp(−∆Eu`/kbTk)

)]−1

(A.41)

which is Equation (5.8) in Section 5.4.2 of the main text, and is equivalent to Equation (19)

in Goldsmith (1972).

2It is worth noting that the derivations the equations g`B`u = guBu` and Au` = (8πhν3u`/c
3)Bu` do

invoke thermodynamic equilibrium, however, the Einstein coefficients are determined solely by the quantum
mechanical properties of the atom, hence the ratios hold in general

67

A.3.2 The Critical Density

The critical density ncrit is defined as the volumetric number density of the colliding species

such that the radiative and collisional de-excitation rates are equal, i.e.

Cu` = Au`(1 + n̄γ) (A.42)

which is simply the radiative and collisional terms de-excitation terms from Equation (A.36)

set equal. Recalling that the collisional de-excitation coefficient Cu`, in s−1, is the product of

volumetric number density of the colliding species (ncrit in this instance) and the collisional

rate coefficient qu`, Equation (A.42) can be rewritten

ncritqu` = ncrit〈vσu`〉 = Au`(1 + n̄γ) (A.43)

where σ`u is the cross section between the species of interest and the collision parter for

the ` → u transition, and v is defined by µv2
0 = 2∆Eu` where µ is the reduced mass of the

collisional system. The angle brackets indicate the average over all applicable velocities of the

integral term in Equation (A.33). From Equation (A.43), the stimulated-emission-corrected

expression for critical density is

ncrit =
Au`(1 + n̄γ)

〈vσu`〉
, (A.44)

from which it is readily apparent that molecules with large Einstein A coefficients have

correspondingly large critical densities, which is in keeping with expectations. Since Equation

(A.44) includes the correction for stimulated emission, it is therefore sensitive to the intensity

of ambient radiation within the line profile. Further, as evidenced by Equation (A.35), both

Equations (A.44) and (A.40) are sensitive to the degree by which the photon occupation

number nγ varies over the line profile φν .

The correction for stimulated emission is typically forgone in reported values of ncrit, and

critical densities are calculated as

68

ncrit =
Au`
〈vσu`〉

. (A.45)

However for sub-thermal emission lines from dense gas tracers, like those seen in SiO, the

effects of stimulated emission are not so easily ignored.

Molecules with large dipole moments couple strongly with radiation, increasing the rate

of spontaneous emission and effectively pumping thermal energy out of the gas and into the

radiation field, drawing the excitation temperature towards the radiation temperature. This

effect dominates the excitation of lines at cm wavelengths. So long as nγ at the transition

frequency remains high (i.e nγ ≥ 1), rates of stimulated emission are appreciable even in the

the λ = 3 mm window, where most molecules don’t thermalize until their critical densities

(as defined by Equation (A.45)) are exceed by ≈ 2 orders of magnitude. For molecules with

already high critical densities, i.e. SiO, CN−, HCN, HNC and CS, the effect is enhanced,

becoming significant enough boost the effective thermalization density (the density at which

LTE can be considered to apply) to values in the 107 cm−3 to 108 cm−3 range. While such

H2 densities are not unheard of they are are not typical of molecular clouds. Consequently,

sub-thermal excitation is typical for most low J transitions of dense gas tracers in the ISM

(Shirley, 2015).

69

CHAPTER 10

HYDRA User’s Guide & Cookbook

Copyright c© 2019, N.N. Monson

Hydra version 5.1

70

Revision History

• Written by: N.N. Monson (UCLA) 14 August, 2013

• Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

• Version 2.1 written by: N.N. Monson (UCLA). 5 June, 2014

• Version 2.2 written by: N.N. Monson (UCLA). 12 October, 2014

• Version 2.3 written by: N.N. Monson (UCLA). 19 June, 2015

• Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

• Version 3.1 written by: N.N. Monson (UCLA). 9 December, 2016

• Version 4.0 (VEGAS spec) written by: N.N. Monson (UCLA). 30 April, 2017

• Version 4.1 (VEGAS spec) written by: N.N. Monson (UCLA). 17 September, 2017

• Version 4.2 (VEGAS spec) written by: N.N. Monson (UCLA). 30 May, 2018

• Version 5.0 (VEGAS spec) written by: N.N. Monson (UCLA). 23 December, 2018

• Version 5.1 (VEGAS spec) written by: N.N. Monson (UCLA). 11 February, 2019

71

10.1 User Agreement

The HYDRA program suite and runtime environment is the intellectual property of the

original author(s), all rights reserved. The redistribution and use of HYDRA, in any form,

with or without modification, is permitted provided that the following conditions are met:

• Any publication in a peer reviewed scientific journal that utilizes a distribution HYDRA

to an appreciable degree must include a reference to this program and it’s original

author(s).

• Redistributions in any form must reproduce the entirety of this usage agreement, the

complete revision/modification history (including all authorship information) of each

component program, and all documentation and/or other materials provided with the

original distribution.

• Neither the name of original author nor the names of any contributors may be used

to endorse or promote products derived from HYDRA without first acquiring explicit

written permission from the original author.

HYDRA is provided “as is” and any express or implied warranties are disclaimed. In no

event shall the author be liable for any form of damages, however caused, that arise in any

way out of the use of HYDRA.

72

CHAPTER 11

The HYDRA Program Suite

11.1 Preface

HYDRA is an IDL runtime environment designed and built for the express purpose of cal-

ibrating and reducing Q-band spectral line measurements of the three silicon isotopologues

of SiO made with the Greenbank Telescope (GBT). While GBTIDL1contains some excellent

tools for visualizing and manipulating a data collected with the GBT, the package emphasizes

speed and ease of use over precision. HYDRA was written with the opposite intent, and is

comprised of two main components: a vectorized high-precision data calibration routine and

a Monte Carlo based data reduction pipeline. With this advanced functionality, HYDRA

is capable of extracting high-precision and optical depth corrected primary to secondary

silicon isotope ratios with fully quantified errors from raw, uncalibrated frequency-switched

observations.

This document is intended to serve as a guide to the proper use of HYDRA and it’s

features. The individual programs that comprise HYDRA are explained in sufficient detail to

enable their use. The proper order of execution, syntax and calling sequences are addressed.

As HYDRA was designed with a strong emphasis on precision, it deviates from the

’standard’ approach to temperature calibration in several notable ways. Some key aspects of

how HYDRA calibrates and reduces data are mentioned and explained explicitly; however

the vast majority of the code is not covered in such detail. For additional details and

documentation on the inner workings of HYDRA, please refer to the code itself, which is

1The National Radio Astronomy Observatory publishes GBTIDL, it’s own IDL programs for manipulating
and reducing data.

73

well annotated and most details of its operation are addressed in-situ. As such, anyone

interested in implementing HYDRA or any of it’s components are encouraged to throughly

examine the source code before doing so.

In it’s current condition HYDRA is hardcoded to reduce frequency switched SiO data

only, however reconfiguring HYDRA to be compatible with different molecules or different

observational setups would not be especially difficult. As previously mentioned, The HYDRA

source code is well annotated, and includes additional notes in locations where hardcoded

values would need to be changed in order to adapt HYDRA to handle data for different

observational setups. HYDRA is intended to be freely modified, used and distributed, given

the conditions of the User’s Agreement are met.

74

CHAPTER 12

HYDRA Cookbook

12.1 Installing HYDRA

Much like GBTIDL package published by the National Radio Astronomy Observatory, HY-

DRA operates in a modified IDL runtime environment (RTE). This is required for a number

of technical reasons and, beyond the fact that some setup is required, is of little relevance to

the end-user. Once properly installed, the HYDRA RTE is automatically configutrf when

the initialization procedure, Hydra.pro, is called from within IDL.

Installation is relatively straight-forward. After downloading the HYDRA tar ball, move

it to the default IDL workspace directory and unpack it. This is easily done using the desktop

environment (e.g. Finder, GNOME, KDE etc.) or via the following terminal commands.

• After downloading the HYDRA tar ball, make a directory named ’hydra’ in the default

IDL workspace, move the HYDRA tar ball there and unzip it. The directory must be

named ’hydra’ or the HYDRA RTE will fail to initialize.

mkdir /users/bruce lee/idlworkspace/hydra

cd /users/bruce lee/downloads

mv hydra 5.1.0.tgz /users/bruce lee/idlworkspace/hydra

cd /users/bruce lee/idlworkspace/hydra

tar −zxvf hydra 5.1.0.tgz

Note that the directories shown are for illustrative purposes only; they need to be

replaced with the names of the appropriate directories on the local machine.

75

• Unpacking the HYDRA tar ball creates several new directories. Go to the directory

“startup” and open Hydra.pro with emacs:

cd startup/

emacs hydra.pro

• There is a string in Hydra.pro that HYDRA uses to locate it’s own installation di-

rectory. The variable name is “hydrapath” and is defined on line 47, just below the

procedure definition. Set “hydrapath” equal to a string containing the full path to the

local installation directory.

hydrapath = ’/users/bruce lee/idlworkspace/hydra’

• Once this is complete, add Hydra.pro to the default IDL path so that it can be called

from the IDL workbench. Amend the idl path preference to include a string contain-

ing the full path to the HYDRA startup directory using the pref set command:

IDL> Pref set, ’idl path’, ’<idl default>: $

+/users/bruce lee/idlworkspace/hydra/startup’, /commit

• After completing the above steps, test the validity of the installation by restarting IDL

and calling Hydra.pro from the console.

IDL> .Full reset session

IDL> Hydra

If initialization is successful, a stylized HYDRA logo will print to the console and the IDL

prompt will change from ’IDL>’ to ’HYDRA>’.

76

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

12.2 Setting Up HYDRA

The HYDRA RTE is initialized by calling Hydra.pro from the IDL console. As noted above,

a stylized HYDRA logo will print to the console and the IDL prompt will change from ’IDL>’

to ’HYDRA>’ if initialization is successful. Once Hydra initializes, there are a few setup

steps to completed before any science data can be calibrated or reduced.

12.2.1 Setdir.pro

• Setdir, path

Reducing data with HYDRA is a multi-step process, with most steps creating a number of

.txt.gz files to which data are written. This is done to preserve computing resources, but

also to give the end user the ability to repeat steps with alternate keywords, or even to exit

HYDRA without fear of loosing data stored in memory. HYDRA does the lion’s share of

managing the files it creates, but it does require the user to use Setdir.pro to define the path

to a “home” directory (called the working directory) it can write to. Be sure that HYDRA

has both read and write privileges to the chosen directory.

HYDRA> Setdir, ’/users/bruce lee/myresults/obs 01’

HYDRA records details on it’s in the file headers, as well as in in separate reference files

that it writes after critical steps. These features are designed to allow any individual data

reduction to be fully reproducible, and is invaluable as an investigative tool when examining

old or aberrant results. For this reason it is highly recommended that the user give each

source object and reduction attempt it’s own unique directory. If this is not done, any

preexisting data or reference files in the specified directory will be overwritten and lost. This

may seem trivial, but it is cheap insurance, and highly recommended.

77

Arguments And Keywords

• path: Set the path argument to a string containing the full path to the working

directory. Be sure that HYDRA has both read and write privileges to the chosen

directory. It is highly recommended that the user give each source object and reduction

attempt it’s own unique directory.

12.2.2 Getfits.pro

• Getfits, path [, /BYPASS, /SILENT]

The next step to any reduction is to load the appropriate .sdfits file to memory. HY-

DRA uses the procedure Getfits.pro to accomplish this. Only one .fits file can be loaded at

any given time. If the data to be reduced is spread across multiple .fits files, this can be

accommodated but the files must still be loaded individually. Details on how to reduce data

spread across multiple observations or .fits files is addressed in the next section, as part of

the documentation for Gather.pro. Once an .fits file has been copied to memory, Getfits.pro

will print a summary of the copied scan data to the console. This summary data can be

displayed again at any time by calling Summary.pro.

Arguments And Keywords

• path: Set the path argument to a string containing the full path to the .fits file

containing the science data to be reduced. If there are multiple .fits files for each

observation (as is the case with the VEGAS spectrometer backend at the GBT; The

number of .fits files generated depends on settings but is typically one file per IF) all

the files must be in the same directory. HYDRA will automatically switch between

.fits file when necessary.

• bypass: This keyword is optional. The bypass keyword is used to suppress a

warning that prints to the console if Getfits.pro is called before Setdir.pro. In normal

78

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

usage, Setdir.pro should be the first HYDRA routine called after startup. This is not

critical, but is recommended, as a number of variables are initialized by Setdir.pro that

HYDRA uses for housekeeping. The default value is bypass = 0 (off).

• silent: This keyword is optional. The silent keyword is used to suppress the

output from summary.pro, which is called when Getfits.pro loads a new .fits file to

memory. This keyword is used when other HYDRA programs call Getfits.pro, and

should not be used when calling Getfits.pro from the console. The default value is

silent = 0 (off).

79

12.3 Managing Data With HYDRA

As previously stated, HYDRA does not read data from .fits files directly, but instead reads

and writes .txt.gz files from the working directory specified using Setdir.pro. For each .fits file

containing science data to be reduced, the scans of the calibrator source and science target

contained therein are extracted and written to the working directory using Gather.pro and

it’s subroutine, Gather.pro.

12.3.1 Gather.pro

• Gather, session, ONSCANS=array, ONINTS=list, OFFSCANS=array,

OFFINTS=list, SRCSCANS=array, ISO=value{28,29,30} [, /RRL, /JUSTCAL]

Gather.pro locates the required data in the .fits file in memory, and (if required) resamples

and averages the raw data before writing it to .txt.gz files in the working directory. In

essence, Gather.pro is a fancy wrapper for Extract.pro, which does all the real work. It

should never be necessary for the user to call Extract.pro directly, and attempting to do so

will almost certainly fail. The calling sequence for Gather.pro has some special requirements;

namely that the keywords onints and offints must each be a LIST.

Arguments And Keywords

• session: The session argument is used to organize data when a source is observed

multiple times. The actual value of session is irrelevant, so long as it is a longword

and is unique to each observation. For example, consider a source that was observed on

two separate occasions; the data for each occasion can be written to the same working

directory by calling Gather.pro twice:

HYDRA −> Getfits, ’/users/bruce lee/mydata/orion kl/obs 0’

HYDRA −> Gather, 1, oncalscans=[10, 12], oncalints=LIST([3], [0,1])...

HYDRA −> Getfits, ’/users/bruce lee/mydata/orion kl/obs 02’

HYDRA −> Gather, 2, oncalscans=[2, 3], oncalints=LIST([0,1], [0,1])...

80

https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

where Getfits.pro is called between calls of gather.pro in order to load the .fits file for

the second observation to memory. The data for these two observations would be saved

to separate directories labeled “Session 01” and “Session 02” respectively.

• iso: The iso keyword is used to specify the atomic mass number of the silicon

isotope for which data will be extracted from the .fits file and written to the working

directory. Data from multiple values of iso can not be extracted with a single call of

Gather.pro; data must be organized and written to the working directory one value of

iso at a time. The iso keyword has no default (therefore it must always be specified)

and must be a longword scalar. Any other data type will be converted to a longword

(if possible). This keyword is overridden by the rrl keyword.

• onscans: The onscans keyword is used to select the scan numbers that will be

saved to the working directory. The onscans keyword has no default (therefore it

must always be specified) and must be a longword ARRAY. Any other data type will

be converted to a longword ARRAY (if possible).

• onints: The onints keyword must be a LIST with one entry per scan specified

with the onscans keyword. A LIST is similar to an ARRAY, but unlike an ARRAY

a LIST can contain elements of any dimension. The onints and offints keywords

must each be a LIST in order to allow the user to pick individual integrations out of

calibration scans. For example, consider two on-source calibration scans (numbers 10

and 12) each with 4 integrations. An ARRAY would not allow one integration to be

used out of scan 10, and two out of scan 12; entries in an ARRAY must have the same

dimension. A LIST does not have that requirement, so the integrations for scans 10

and 12 can be specified as

HYDRA −> Gather, 1, oncalscans=[10, 12], oncalints=LIST([3], [0,1])...

Most users do not need to use this functionality; even so, onints and offints must

always be a LIST with one entry per scan. The default value for onints is to use the

first (and only the first) integration of each scan specified with onscans.

81

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/LIST.html

• offscans: The syntax and function of the offscans keyword is identical to

the onscans keyword, except it is used to specify the scan numbers of the off-source

calibration data. The offscans keyword has no default (therefore it must always be

specified) and must be a longword ARRAY. Any other data type will be converted to

a longword ARRAY (if possible).

• offints: The syntax and function of the offints keyword is identical to the

onints keyword, except it is used to specify the integration numbers of the off-source

calibration data. If set, the offints keyword must be a LIST. The default value for

offints is to use the first (and only the first) integration of each scan specified with

offscans.

• srcscans: Similar to the onscans and offscans keywords, the srcscans key-

word is used to specify the science data scans to be excised from the .fits file and saved

to the working directory. The srcscans keyword has no default (therefore it must

always be specified) and must be a longword ARRAY. Any other data type will be

converted to a longword ARRAY (if possible).

• rrl: This keyword is optional. Set the rrl keyword to override the iso keyword,

and direct gather.pro to extract data for the fourth IF. The rrl keyword should only

be used if there is concern that the 29SiO emission is contaminated with emission from

the H(83)δ radio recombination line. The default value is rrl = 0 (off).

• justcal: This keyword is optional. Set the justcal keyword to override the src-

scans keyword and cause gather.pro to exit after it has finished writing the specified

on-source and off-source calibration data to the working directory. This keyword is

useful when the data for a given observation has already been extracted and written

to the working directory, but the user wishes to modify or change the calibration data.

The default value is justcal = 0 (off).

82

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/LIST.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html

12.4 Calibrating Data With HYDRA

As noted in Monson et al. (2017), the primary concern with the standard approach to

calculating Tsys and Tcal is that any information about frequency dependent gain within the

bandpass is destroyed. Although atmospheric opacity and aperture efficiency are largely

invariant across MHz scale spectral windows, noise diode power output and LO/IF system

response are not, and this frequency dependence needs to be accounted for when making

high precision spectral measurements. To this end, the standard calibration protocol is

adapted to account for channel by channel variations in the system response by substituting

array valued, or ’vectorized’, incarnations of Tcal and Tsys for their standard scalar valued

counterparts.

In order to retain information about frequency-dependent gain within the bandpass,

HYDRA implements a fully vectorized calibration routine that calculates gain profiles pixel-

by-pixel across the entire bandpass, thereby accommodating any frequency dependence that

is present. Further, gain profiles for each IF, polarization, noise diode state and frequency

position are calculated independently to ensure uniform calibration.

12.4.1 Dreamcatcher.pro

• Dreamcatcher, sesnums, ISO=value{28,29,30} [, FITORDER=integer{1 to 7},
CALFITORDER=integer{1 to 7}, /RRL, /PLOTCAL, /PRINTCOLOR]

Data calibration in HYDRA is handled by a single, comprehensive program that cali-

brates the noise diodes, calculates the system and main beam temperatures, combines polar-

izations and frequency positions, and finally averages each scan together to produce a single

spectrum for each source. This program, Dreamcatcher.pro, is likely the most important

(and largest) HYDRA program. Although the inner-workings of most HYDRA programs

are not discussed here1, the operation of Dreamcatcher.pro is covered in Chapter 13.

1For details about the operation of a particular program, users are encouraged to consult that program’s
source code (which is included with this manual, see Chapter 14). The source code is well annotated, and
easily navigable by an experienced IDL user.

83

Arguments And Keywords

• sesnums: The sesnums argument specifies the observations that will be calibrated

and averaged. Recall that when calling Gather.pro, each individual observation is

given a unique integer value via the session argument; these values are passed to

Dreamcatcher.pro using the sesnums argument. For example, if a source was observed

twice and the data from the two observations are given session values of 1 and 2

respectively, the appropriate sesnums argument when calling Dreamcatcher.pro is

HYDRA> Dreamcatcher, [1,2], iso=28, fitorder...

The sesnums argument must be a longword ARRAY, even if it is only a single value.

• iso: The iso keyword is used to specify the atomic mass number of the silicon isotope

for which be read from the working directory and calibrated. Data from multiple values

of iso can not be calibrated with a single call of Dreamcatcher.pro; data must be read

from the working directory and calibrated one value of iso at a time. The iso keyword

has no default (therefore it must always be specified) and must be a longword and a

scalar. Any other data type will be converted to a longword (if possible). This keyword

is overridden by the rrl keyword.

• rrl: This keyword is optional. This keyword overrides the iso keyword. Setting the

rrl keyword directs dreamcatcher.pro to calibrate data for the fourth IF. This keyword

Ssould only be used when there is concern that the 29SiO emission is contaminated with

emission from the H(83)δ radio recombination line. The default value is rrl = 0 (off).

• fitorder: This keyword is optional. The fitorder keyword is used to set the

order of the polynomial fit to the system temperature Tsys(ν) for each integration of

each science data scan being calibrated. This is done to avoid introducing unnecessary

noise when calculating the antenna temperatures Ta(ν) (see Equation (13.7)). If set,

the fitorder keyword must be a longword and a scalar. The acceptable range of

values is 1 ≤ fitorder ≤ 7. The default value is fitorder = 4.

84

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/Creating_Arrays.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

• calfitorder: This keyword is optional. The calfitorder keyword is used

to set the order of the polynomial fit to the diode calibration temperature Tcal(ν) for

each integration of each calibration scan being used. This is done to avoid introduc-

ing unnecessary noise when calculating the system temperatures Tsys(ν) (see Equation

(13.6)). If set, the calfitorder keyword must be a longword and a scalar. The ac-

ceptable range of values is 1 ≤ calfitorder ≤ 7. The default value is calfitorder

= 3.

• plotcal: This keyword is optional. The plotcal keyword prompts dream-

catcher.pro to plot and save (as .png files) additional information about the calibration

process; namely calculating the diode calibration temperatures. Use of the plotcal

keyword is highly recommended. Using the plotcal keyword does impose a small

time penalty (it takes a couple seconds for each .png image to save). The default value

is plotcal = 0 (off).

• printcolor: This keyword is optional. The printcolor keyword can be used

to change the background color of the plots produced by dreamcatcher.pro from black

to white. Black is the preferred color, as it is easier to distinguish between colors on

busy or crowded plots. The default value is printcolor = 0 (off).

85

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

12.5 Reducing Data With HYDRA

Utilizing a vector valued calibration routine helps to keep baseline structure to a minimum

but does not eliminate it completely. Typical low frequency (ν ≈ IF bandpass) baselines are

handled with relative ease, however differentiating between baseline structure and emission

line structure can be tedious when lines are weak or system temperatures are high. In most

cases, a simple low-order polynomial fit is adequate to fit baselines, provided that any lines

in the spectrum are given an adequate birth in order to avoid fitting and subtracting line

wings. Extraction of accurate isotopic ratios depends critically on proper baseline removal,

and great care should be taken in this respect.

12.5.1 Outerlimits.pro

• Outerlimits, ISO=value{28,29,30} [, /RRL, /LOWSNR, /CRAPSHOOT, /ZOOM]

HYDRA has a special GUI as part of Outerlimits.pro that enables emission-free regions

of each spectrum to be selected using the mouse and keyboard. Once the GUI has launched,

regions can be selected by holding the “CTRL” key and clicking the left mouse button. After

selecting the desired regions, exit the GUI by holding the “ALT/CMD” key and again clicking

the left mouse button. The boundaries of a fitting region appear as dashed vertical lines once

the region has been selected. HYDRA stores the values from the last time Outerlimits.pro

was called (if applicable) and plots them as dotted vertical lines to aid in making fine

adjustments to the fitting regions. Outerlimits.pro will only accept an even number of

boundaries for fitting, and if an odd number have been set when Outerlimits.pro exits, the

las boundary will be discarded. NOTE: If possible, position the GUI window such that the

IDL console is visible; Outerlimits.pro prints warnings, reminders etc. to the console when

the GUI is in use.

86

Arguments And Keywords

• iso: The iso keyword should be set equal to the atomic mass number of the silicon

isotope for which data will be read from the working directory and plotted. The iso

keyword has no default (therefore it must always be specified) and must be a longword

scalar. Any other data type will be converted to a longword (if possible). This keyword

is overridden by the rrl keyword.

• rrl: This keyword is optional. This keyword overrides the iso keyword. Setting

the rrl keyword directs outerlimits.pro to plot data for the fourth IF. Should only

be used when there is concern that the 29SiO emission is contaminated with emission

from the H(83)δ radio recombination line. The default value is rrl = 0 (off).

• lowsnr: This keyword is optional. Set the lowsnr keyword to increase the degree

to which the spectrum is smoothed before it is plotted. The lowsnr keyword is useful

when fitting noisy spectra from rare isotopologues or weak sources.

• crapshoot: This keyword is optional. Set to the crapshoot keyword to dras-

tically increase the degree to which the spectrum is smoothed before it is plotted.

Overrides lowsnr keyword. NOTE: This much smoothing should be avoided when-

ever possible.

• zoom: This keyword is optional. Set the zoom keyword to restrict the range of the

ordinate when plotting. NOTE: This keyword is buggy; use with caution.

12.5.2 Polybase.pro

• Polybase, ISO=value [, /RRL, /LOWSNR, /CRAPSHOOT, /ZOOM]

Once the fitting regions are set with Outerlimits.pro, HYDRA uses Polybase.pro fit and

subtracts a polynomial baseline from each spectrum. The user is prompted to define the

order of the polynomial fit on the console, after which the fit is calculated and displayed

87

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

using a GUI similar to that used by Outerlimits.pro. Each polynomial fit can be rejected if

it is deemed unsuitable, and the spectrum refitted until an appropriate fit is found. Again,

this functionality is controlled with console prompts, so the GUI window must be positioned

such that the IDL console is visible. The fitting regions selected for each spectrum using

Outerlimits.pro are displayed for convenience. The current polynomial fit is plotted as a solid

white line once it has been calculated. Additionally, HYDRA stores the last fit that was

calculated (if applicable) and plots it as a dotted white line to aid in making fine adjustments

In most cases, a simple low-order polynomial fit can be used to subtract baselines, pro-

vided that any lines in the spectrum are given an adequate birth in order to avoid fitting

and subtracting line wings. The fitting process can be severely complicated if portions of

emission line wings are included in the fitting regions, especially if lines are weak or system

temperatures are high. Care should be taken to avoid this.

Arguments And Keywords

• iso: The iso keyword should be set equal to the atomic mass number of the silicon

isotope for which data will be read from the working directory and plotted. The iso

keyword has no default (therefore it must always be specified) and must be a longword

scalar. Any other data type will be converted to a longword (if possible). This keyword

is overridden by the rrl keyword.

• rrl: This keyword is optional. This keyword overrides the iso keyword. Setting

the rrl keyword directs polybase.pro to fit a polynomial to the data for the fourth IF.

Should only be used when there is concern that the 29SiO emission is contaminated

with emission from the H(83)δ radio recombination line. The default value is rrl = 0

(off).

• lowsnr: This keyword is optional. Set the lowsnr keyword to increase the degree

to which the spectrum is smoothed before it is plotted. The lowsnr keyword is useful

when fitting noisy spectra from rare isotopologues or weak sources.

88

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

• crapshoot: This keyword is optional. Set to the crapshoot keyword to dras-

tically increase the degree to which the spectrum is smoothed before it is plotted.

Overrides lowsnr keyword. NOTE: This much smoothing should be avoided when-

ever possible.

• zoom: This keyword is optional. Set the zoom keyword to restrict the range of the

ordinate when plotting. NOTE: This keyword is buggy; use with caution.

12.5.3 Dreamweaver.pro

• Dreamweaver, NLOOPS=integer, NSUBLOOPS=integer [, NSIGMA=integer,

/KILL RRL, /LOWSNR, /CRAPSHOOT]%, /PLOTSTUFF]

After the data for all three isotopologues are calibrated, they can be reduced to produce

[29Si]/[28Si] and [30Si]/[28Si] ratios. HYDRA uses Dreamweaver.pro to both reduce data, as

well as to estimate and correct for the effect of optical depth in the 28SiO emission line

(see Sections 5.4, 5.4.1 and Appendix A.2.2). In order to account for both measurement

uncertainties and the uncertainties imparted by fitting baselines by hand, the entire data

reduction pipeline and optical depth correction scheme is built around a pair of nested

Monte Carlo error analyses. The “outer” Monte Carlo simulation makes random, normally-

distributed draws to the boundaries of each fitting region (set via Outerlimits.pro). The

boundaries of each individual region are resampled with σ = 5% of the width of that region.

Dreamweaver.pro then fits and subtracts a polynomial baseline from each spectrum using

the new fitting regions. The data are then passed to the “inner” Monte Carlo simulation,

which calculates the root mean square (RMS) noise temperature Trms for each spectrum, then

makes normally distributed random draws of each channel in each spectrum with σ = Trms

to assess the errors imparted by noise. The use of unsmoothed spectra when resampling the

noise results in an ≈ 5% overestimation of the uncertainty in each derived isotopologue ratio.

After resampling the noise, Dreamweaver.pro calculates the [29Si]/[28Si] and [30Si]/[28Si], then

estimates and corrects for optical depth before proceeding with the next loop. The total

number of simulations is equal to the product of the nloops and nsubloops keywords.

89

Despite being computationally intensive, Dreamweaver.pro is a relatively fast program

with a full reduction taking no more than a few minutes (each loop takes an average of

2.5 milliseconds on the Author’s computer). Memory usage is also fairly low, so running

Dreamweaver.pro should not pose a problem for most users, even those running HYDRA on

underpowered hardware.

Arguments And Keywords

• nloops: This keyword is optional. The nloops keyword is used to specify the

number of times the “outer” Monte Carlo simulation will be looped, and thus the

number of times the baseline fitting regions will be altered, and a new baseline will be

fit and subtracted from each spectrum (this action is performed simultaneously for all

three values of iso). If set, the nloops keyword must be a longword scalar. Any other

data type will be converted to a longword (if possible). The default value is nloops

= 200.

• nsubloops: This keyword is optional. The nsubloops keyword is used to specify

the number of times the “inner” Monte Carlo simulation will be looped, and thus

the number of times the noise will be resampled and the isotopologue ratios will be

calculated before a new baseline will be fit and subtracted from each spectrum (this

action is performed simultaneously for all three values of iso). If set, the nsubloops

keyword must be a longword scalar. Any other data type will be converted to a

longword (if possible). The default value is nsubloops = 200.

• kill rrl: This keyword is optional. Setting the kill rrl keyword directs Dreamweaver.pro

to use reduced data from the fourth IF to fit and remove the H(83)δ emission feature

from the 29SiO spectrum. NOTE: This functionality is not currently supported. Bet-

ter results will be obtained from fitting and removing the interfering H(83)δ emission

manually prior to calling Dreamweaver.pro.

• nsigma: This keyword is optional. The nsigma keyword is used to specify the

number of σ widths through which the spectra are integrated when calculating the

90

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

isotopologue ratios. Use of this keyword is not advised, the default value should be

sufficient. If set, the nsigma keyword must be a longword scalar. Any other data type

will be converted to a longword (if possible). The default value is nsigma = 3.

• lowsnr: This keyword is optional. The lowsnr keyword is used to increase the

degree to which each spectrum is smoothed. Dreamweaver.pro() uses the smoothed

spectra for a number of operations related to estimating optical depth, but does not

use smoothed spectra to calculate isotopologue ratios. The lowsnr keyword can help

when reducing noisy spectra from weak sources. The default value is lowsnr = 0

(off).

• crapshoot: This keyword is optional. Set to the crapshoot keyword to drasti-

cally increase the degree to which the spectrum is smoothed. Dreamweaver.pro() uses

the smoothed spectra for a number of operations related to estimating optical depth,

but does not use smoothed spectra to calculate isotopologue ratios. The crapshoot

keyword can help when reducing nightmarish spectra from weak sources or sources

with interfering lines. Overrides the lowsnr keyword. NOTE: This much smoothing

should be avoided whenever possible. The default value is crapshoot = 0 (off).

91

https://www.harrisgeospatial.com/docs/IDL_Data_Types.html
https://www.harrisgeospatial.com/docs/IDL_Data_Types.html

CHAPTER 13

How HYDRA Calibrates Data

In order to retain information about frequency-dependent gain within the bandpass, Dream-

catcher.pro implements a fully vectorized calibration routine that calculates gain profiles

pixel-by-pixel across the entire bandpass, thereby accommodating any frequency dependence

that may be present. Further, gain profiles for each IF, polarization, noise diode state and

frequency position are calculated independently to ensure uniform calibration.

13.1 Calibration Sources

Absolute spectral flux densities for commonly used calibration sources are determined by

flux density ratio measurements (typically using WMAP observations of Mars or Venus as

the standard) and reported as coefficients to a polynomial expression. Dreamcatcher.pro

calculates the spectral flux density ~Sν of the calibrator over observed frequency band ~ν using

the polynomial coefficients reported by Perley and Butler (2013, 2017)

log (~Sν) = a0 + a1 log (~ν) + a2[log (~ν)]2 + a3[log (~ν)]3... (13.1)

up to a total of six coefficients for some sources. In it’s current state, Dreamcatcher.pro is

hardcoded to accept a limited number of calibration sources (3C48, 3C147, 3C196, 3C286,

3C295 and 3C380) although this list can be easily expanded.

The spectral flux density of the calibration source is then converted to corrected antenna

temperature, T ∗a (ν), with the expression

92

T ∗a (ν) = 2.85 ~Sν ~ηa exp

(
−~τz

sin (θ)

)
, (13.2)

where ~τz is the zenith atmospheric opacity and ~ηa is aperture efficiency, both evaluated over

the frequency band ~ν. The elevation of the source, θ, is in radians. The exponential term in

this equation is a geometric factor that accounts for the increased airmass when observing

at low elevations, and The GBT-specific gain constant of 2.85 = (Ag/2kb) accounts for

the Boltzmann constant kb and geometric area Ag of the telescope. While both aperture

efficiency and zenith opacity are seen here implemented as vectors, any variation of these

values across a MHz scale spectral window is likely exceedingly small.

The aperture efficiency ~ηa is stimated using the Ruze equation, seen here with the GBT-

specific peak aperture efficiency of 0.71

~ηa = 0.71 exp

(
−4πε~ν

c

)
, (13.3)

where ν is the frequency in GHz and the RMS surface accuracy ε is ≈ 390 microns for the

GBT. Dreamcatcher.pro uses a simple equation published by the NRAO to estimate zenith

opacity ~τz as a function of frequency:

~τz = 0.008 +
exp(
√
~ν)

8000
. (13.4)

It should be noted that the NRAO advises against using this equation for high precision

calibration, suggesting instead that zenith opacity be measured directly using tipping oper-

ations. However, any variations in either zenith opacity or aperture efficiency are assumed

to be the same for all three isotopologues, and are normalized out when calculating iso-

topic ratios, therefore the accuracy of the equation is not of particular importance in this

application.

93

13.2 The Noise Diodes

Once calculated, the antenna temperature of the source is used to convert the power output

of the noise diodes to a vectorized calibration temperature profile

Tcal(ν) = T ∗a (ν)

[
Srcon − Srcoff + Skyon − Skyoff

Srcon − Skyon + Srcoff − Skyoff

]
, (13.5)

where “Src” and “Sky” refer to the source and sky positions and superscripts “on” and

“off” refer to the state of the noise diode. The calibration temperature Tcal(ν) is calculated

separately for each frequency position and polarization.

Note that the formulation of Equation (13.5) is somewhat non-standard, and differs from

the GBTIDL calibration guide in that both the source and sky positions are used to calculate

the noise diode calibration temperature. Typically only one position is used. However,

assuming the amplifier is linear in it’s response, there should be no relevant difference in

the the noise diode calibration temperatures between the source and sky positions. Even in

the event that using Equation (13.5) introduced additional error, it would be equal between

intermediate frequencies (and thus equal between isotopologues) and wouldnot affect isotope

ratio calculations. Short integration times yield a vectorized Tcal(ν) has a relatively low

signal-to-noise ratio; thus the increase in the signal to noise ratio is well worth the additional

effort.

Since only large-scale variations in Tcal(ν) are of concern, Dreamcatcher.pro fits each

solution with a low-order polynomial expression, f(Tcal(ν)), which is used in all subsequent

calculations. This step retains the relevant information about Tcal(ν) across the bandpass,

while effectively filtering out any high-frequency or transient variations that may introduce

additional noise into the science data during calibration. Care must be taken when fitting

Tcal(ν), as any errors made here would be propagated through the rest of the reduction

pipeline. Each fit should be examined manually, and the degree of the polynomial used can

be controlled using the calfitorder keyword when calling Dreamcatcher.pro.

Up to this point a single generalized case of the calibration process has been explic-

94

itly demonstrated. It is important to note that for actual observations four independent

temperatures are calculated for each IF, one for each polarization and frequency position

combination. There is no difference in calibration procedure between the polarizations, how-

ever the equations for calibrating the signal and reference frequency positions differ slightly,

so they are shown for clarity from this point forward.

13.3 Calibrating Science Data

With the calibration temperature Tcal(ν) in hand, the system temperature Tsys(ν) is calcu-

lated for each frequency position, polarization, and IF. Further, Tsys(ν) is calculated sepa-

rately for each integration, to capture any time dependent drift in the system response. The

system temperatures for the signal and reference frequency positions are calculated using

the equations

T sig
sys(ν) =

f(T sig
cal (ν))

2

[
Sigon + Sigoff

Sigon − Sigoff

]
T ref

sys(ν) =
f(T ref

cal (ν))

2

[
Refon + Refoff

Refon − Refoff

] (13.6)

where “Sig” and “Ref” indicate the signal and reference frequency positions respectively,

and the superscripts refer to the state of the noise diode.

The antenna temperatures Ta(ν) of the two frequency positions is then calculated via the

expressions

T sig
a (ν) = f(T ref

sys(ν))

[
Sig −Ref

Ref

]
T ref

a (ν) = f(T sig
sys(ν))

[
Ref − Sig

Sig

] (13.7)

where f(T ref
sys(ν)) and f(T sig

sys(ν)) are polynomial fits to the system temperature profiles T sig
sys(ν)

and T ref
sys(ν) calculated in Equation (13.6). It is the net shape of the system temperature

profiles that are valuable, so a low-order polynomial can be used to capture all relevant

information, and doing so avoids introducing unnecessary noise when calculating the antenna

95

(a) Visualized in channel-space, the emission features in the signal and reference spectra are offset
by the number of channels corresponding to the frequency offset between the frequency positions.

(b) Visualized in frequency-space, the emission features in the signal and reference spectra are no
longer offset and can be properly folded together. The final spectrum is equivalent to the region
where both phases overlap.

Figure 13.1: The solid black and dashed red lines represent the the signal and reference
frequency positions, respectively. The small vertical offset is for visual clarity only.

temperatures T sig
a (ν) and T ref

a (ν) in the steps that follow. The order of these polynomial fits

can be controlled with the fitorder keyword when calling Dreamcatcher.pro.

It is recommended that considerable care be taken at this juncture; Dreamcatcher.pro

will plot the polynomial fits to T sig
sys(ν) and T ref

sys(ν) and one should take care to ensure that

the fits between integration are consistent. Fluctuation in the shape of the fit from one

integration to the next is a good indication that T sig
sys(ν) and T ref

sys(ν) are being over-fitted.

At this point, Dreamcatcher.pro displays and saves a number of diagnostic plots, including

the calculated antenna temperature profiles for the two frequency positions, after which the

frequency positions are combined, or folded, to increase the SNR of the final spectrum by a

factor of
√

2, assuming they have equal system temperatures (see Equation (13.8)). Because

the bandpass of the signal and reference frequency positions differ by the frequency offset

between them, one of the two profiles must be shifted before they can be properly folded.

Dreamcatcher.pro performs this action in frequency-space, so no actual shifting is required;

96

Dreamcatcher.pro instead selects different portions of the signal and reference spectra such

that the selected regions correspond to each other channel-by-channel in frequency-space,

and discards the remainder (see Figure 13.1).

Typically, the antenna temperature profiles are folded with a simple, unweighted average,

and any difference in system temperature between the two frequency positions is ignored.

However, the system temperature profiles often differ between the signal and reference fre-

quency positions, a fact that must be considered when making high precision spectral line

measurements. To account for the disparate system temperatures between frequency po-

sitions, they are folded using a channel-by-channel weighted mean, where each channel is

weighted by the the inverse square of the corresponding system temperature for that channel.

Ta(ν) =
T sig

a (ν)(T sig
sys(ν))−2 + T ref

a (ν)(T ref
sys(ν))−2

(T ref
sys(ν))−2 + (T sig

sys(ν))−2
(13.8)

All subsequent averaging operations between polarizations, integrations, scans and obser-

vations are done using the same channel-by-channel weighted mean as shown in Equation

(13.8). Finally, the folded antenna temperature is corrected for the zenith opacity in a man-

ner analogous to the calibrator source (Equations (13.2) and (13.4) and converted to main

beam temperature via the equation

Tmb(ν) =
Ta(ν)

~ηmb

exp

(
−~τz

sin (θ)

)
(13.9)

where ~ηmb is the main beam efficiency, which for the GBT, is ≈ 1.3ηa.

97

CHAPTER 14

HYDRA Source Code

14.1 Hydra.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Hydra

; HYDRA Version 5.1

;

; PURPOSE:

; −> Initiates the HYDRA runtime.

;

; CALLING SEQUENCE:

; −> Hydra [, /Radpath]

;

; ARGUMENT(S):

; −> None

;

; KEYWORD(S):

; −> None

;

; OPTIONAL KEYWORD(S):

; −> Radpath: Rebuild default shell path to inclide the local

; RADEX installation. Needed to run RADEX simulations in HYDRA.

;

; EXAMPLE(S):

98

; −> Hydra, /Radpath

;

; OUTPUT(S):

; −> None

;

; COMMENTS:

; −> Hydra.pro must be modified to include the path to the local

; HYDRA and RADEX installation directory paths.

;

; PROCEDURES/FUNCTIONS CALLED:

; −> None

;−

Pro Hydra, Radpath=radpath

Compile opt IDL2

On error, 0

!Except = 1

;∗∗∗ Provide the full filepath to the HYDRA installation directory here ∗∗∗
hydrapath = ’/Users/Onyx/IDLWorkspace/hydra’

;∗∗∗ Provide the full filepath to the RADEX installation directory here ∗∗∗
radexpath = ’ignore me’

radpath = 0

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 2.1 written by: N.N. Monson (UCLA). 5 June, 2014

;>>>>> Version 2.2 written by: N.N. Monson (UCLA). 12 October, 2014

;>>>>> Version 2.3 written by: N.N. Monson (UCLA). 19 June, 2015

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 3.1 written by: N.N. Monson (UCLA). 9 December, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 4.1 (V−spec) written by: N.N. Monson (UCLA). 17 September, 2017

;>>>>> Version 4.2 (V−spec) written by: N.N. Monson (UCLA). 30 May, 2018

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

99

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Check to see if radpath is set.

If Keyword set(radpath) Then Begin

;If radpath is set to anything other than 1, change it to 1 to

;ensure compatibility with logical operators.

If radpath Ne 1 Then Begin

Print, ’>>>>> Alert: radpath is a binary keyword’

Print, ’>>>>> setting radpath accordingly ...’

Print, ’’

radpath = 1

Endif

Endif

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Build HYDRA path cache.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

100

;Print some stuff...

Print, ’>>>>> Initializing HYDRA Runtime...’

Wait, 0.5

Print, ’>>>>> Building Path...’

;Add HYDRA installation directory to existing path and rebuild

!Path = Expand path(’+’ + Strtrim(hydrapath,2) + ’:+’ + Strtrim(!Dir, 2))

Path cache, enable = 1, /rebuild

;Make sure the directory is the correct one,

;i.e. is properly labeled as ’Hydra’. If not, throw an error.

scrap = Strsplit(Strtrim(hydrapath, 2), ’/’, /extract)

If ˜Strcmp(scrap[−1], ’hydra’, /fold case) Then Begin

Print, ’>>>>> Error: Root Directory Invalid’

Return

Endif

;Make sure directory is not empty.

files = File search(Strtrim(hydrapath, 2) + ’/SiO Pipeline’, $

’∗.pro’, /fully qualify path)

If files.length Eq 0 Then Begin

Print, ’>>>>> Error: Root Directory Empty’

Return

Endif

;Pick out all the filenames in the HYDRA directory & compile the files.

;!quiet is set to 0 just to avoid printing everything to the command line.

files = Strsplit(Transpose(files), ’/.’, /extract)

proname = Strarr(files.length)

For i = 0, files.length−1 Do proname[i] = files[i,−2]

!Quiet=1

Resolve routine, proname, /either, /compile full file

!Quiet=0

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Include RADEX in shell path cache.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;use setenv to insert the locar RADEX installation into the default shell path

If Keyword set(radpath) Then Begin

101

Setenv, ’PATH=/usr/bin:/bin:/usr/sbin:/sbin:’ + Strtrim(radexpath, 2)

Print, ’>>>>> Setting path for RADEX...’

Print, ’’

Endif Else Setenv, ’PATH=/usr/bin:/bin:/usr/sbin:/sbin’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 3: − Build common variables

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some stuff...

Print, ’>>>>> ...Done’

Print, ’’

Print, ’>>>>> Initializing Common Block Variables...’

;Initialize common variables.

;The variables that are in these common blocks are here because they need

;to be available to several different HYDRA programs.

;initialize overlord common variable block.

;this variable is used to store .fits file data.

;The summary and sdfdata variables are arrays of structures,

;the size of which changes depending on the data being read.

;This makes them cumbersome to incorporate into the OVERLORD

;structure, so I left them independent.

Common Overlord, Overlord, olord summary, olord sdfdata

overlord = {overlord, dirloc: ’’, $

sumsize: 0, $

scanloc: [0], $

scannum: [0], $

sdfsize: 0, $

sdfname: ’’, $

sdfpath: ’’}

;Initialize RTYPE common variable block.

;This variable is used to store information on array/structure sizes and

;file formatting. Since it will be accessible to all HYDRA programs,

;future changes to sizes and/or formatting will only need to be made here,

;and will be applied uniformly across the whole pipeline.

102

Common Rtype, rtype

rtype = { sml: 6000, $

med: 8192, $

lrg: 65536, $

format: ’e17.9’, $

adtypes: [’INT’, ’LONG’, ’LONG64’, ’FLOAT’, ’DOUBLE’], $

aivals: [28,29,30], $

aifvals: [0,1,2,3] }

;Initialize LSPEX common variable block.

;This variable is used to store information on the baseline fits to the

;reduced spectra. i.e. regions used in the fit, and the polynomial order.

Common Lspex, lspex

lspex = { s28: { xlims: List(), $

numlims: 0, $

order: 0 }, $

s29: { xlims: List(), $

numlims: 0, $

order: 0 }, $

s30: { xlims: List(), $

numlims: 0, $

order: 0 }, $

rrl: { xlims: List(), $

numlims: 0, $

order: 0 } }

;Initialize MCSPEX common variable block.

;This variable is used to pass data around during monte−carlo simulations.

Common Mcspex, mcspex

mcspex = { s28: { wild: Dblarr(rtype.sml, /nozero), $

tame: Dblarr(rtype.sml, /nozero), $

vlsr: Dblarr(rtype.sml, /nozero), $

vbin: Dblarr(rtype.sml, /nozero), $

rmsnt: 0d }, $

s29: { wild: Dblarr(rtype.sml, /nozero), $

tame: Dblarr(rtype.sml, /nozero), $

vlsr: Dblarr(rtype.sml, /nozero), $

103

vbin: Dblarr(rtype.sml, /nozero), $

rmsnt: 0d }, $

s30: { wild: Dblarr(rtype.sml, /nozero), $

tame: Dblarr(rtype.sml, /nozero), $

vlsr: Dblarr(rtype.sml, /nozero), $

vbin: Dblarr(rtype.sml, /nozero), $

rmsnt: 0d }, $

rrl: { wild: Dblarr(rtype.sml, /nozero), $

tame: Dblarr(rtype.sml, /nozero), $

vlsr: Dblarr(rtype.sml, /nozero), $

vbin: Dblarr(rtype.sml, /nozero), $

rmsnt: 0d } }

;Initialize PSPEX common variable block.

Common Pspex, pspex

;Initialize structure(s) in PSPEX

pspex = { windim: [1900,800], $

icolors: { white: [0,0,0], $

black: [255,255,255], $

teal: [250,0,0], $

aqua: [250,0,125], $

green: [250,0,250], $

puke: [125,0,250], $

yellow: [0,0,250], $

orange: [0,125,250], $

red: [0,250,250], $

pink: [0,250,125], $

violet: [0,250,0], $

purple: [125,250,0], $

blue: [250,250,0], $

sky: [250,125,0] }, $

rcolors: { white: [255,255,255], $

black: [0,0,0], $

teal: [0,250,250], $

aqua: [0,125,250], $

green: [0,0,250], $

puke: [125,250,0], $

yellow: [250,250,0], $

orange: [250,125,0], $

104

red: [250,0,0], $

pink: [250,0,125], $

violet: [250,0,250], $

purple: [125,0,250], $

blue: [0,0,250], $

sky: [0,125,250] } }

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 4: − Print cool banner.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Change prompt and error message prefix, just for fun.

!Prompt = ’HYDRA> ’

!Error state.msg prefix = ’>>>>> ’

Print, ’>>>>> ...Done’

Print, ’’

;HYDRA logo omitted for brevity

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’>>>>> HYDRA Online <<<<<’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’Version 5.1’

Print, ’’

Print, ’>>>>> Please Consult The Supplied User Guide For F.A.Qs’

Print, ”>>>>> Type ’.RESET SESSION’ To Exit To Primary Runtime”

Print, ’’

Wait, 0.5

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

105

14.2 Getfits.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME

; Summary

; HYDRA Version 5.1

;

; PURPOSE

; −> Prints a summary of the .sdfits data currently in memory.

;

; CALLING SEQUENCE

; −> Summary

;

; ARGUMENT(S)

; −> None

;

; KEYWORD(S)

; −> None

;

; OPTIONAL KEYWORD(S)

; −> None

;

; EXAMPLE(S)

; −> Summary

;

; OUTPUT(S)

; −> None.

;

; COMMENTS

; −> Operates only within the HYDRA 5.1 RTE.

; −> Filepath for the input/output directory is stored in OVERLORD

; and must be set using setdir.pro

;

; PROCEDURES/FUNCTIONS CALLED

; −> None.

;−

106

Pro Summary

Compile opt IDL2

Common overlord

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

107

Print, ’’

;Initialize variable(s).

keymaster = 0

;Ensure OVERLORD has already been created by getfits.pro.

;If not, then throw an error.

If ˜ Isa(olord sdfdata) Then Begin

Print, ’>>>>> Error: No .sdfits file in memory’

Print, ’>>>>> Alert: Please load an .sdfits file before calling summary’

Print, ’’ & ++ keymaster

Endif Else Begin

If Overlord.dirloc Eq ’’ Then crap = ’∗∗∗ NOT SET ∗∗∗’ $

Else crap = Overlord.dirloc

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Print .sdfits summary data.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Use a proxy of the OVERLORD variable ’summary’, so nothing is

;inadvertently altered.

sumprox = olord summary

;Print some stuff.

108

Print, ’>>>>> Current working directory: ’ + Strtrim(crap, 2)

Print, ’’

Print, ’ scan source int mode’

Print, ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

Print, ’’

;Loop to print the data in overlord.summary for each scan in the .sdfits file.

For i=0, sumprox.length−1 Do Begin

Print, sumprox[i].scan, Strtrim(sumprox[i].object,2), sumprox[i].nrec, $

sumprox[i].mode, format = ’(3x,i−3,4x,a−16,5x,i−3,3x,a−8)’

Endfor

;Print some stuff and end.

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME

; Getfits

; HYDRA Version 5.1

;

; PURPOSE

; −> Load the contents of a .fits file to memory.

;

; CALLING SEQUENCE

; −> Getfits, path [, /BYPASS, /SILENT]

;

; ARGUMENT(S)

; −> Path: Full filepath to the GBT .fits file to be read and stored in memory.

;

; KEYWORD(S)

; −> None

;

; OPTIONAL KEYWORD(S)

; −> Silent (binary): Suppresses print commands & Modifies how summary data

; are stored. Only to be used when other HYDRA programs call getfits.

109

; Getfits.pro should NOT be called from the command line using this keyword.

; −> Bypass (binary): Suppresses the warning for not yet having set the working

; directory with setdir.pro.

;

; EXAMPLE(S)

; −> getfits, ’/Users/Bruce Lee/GBT/AGBT110 05/AGBT110 05.raw.vegas.D.fits’

;

; OUTPUT(S)

; −> None. Stores all data in the OVERLORD common variable.

;

; COMMENTS

; −> Operates only within the HYDRA 5.1 RTE.

; −> Filepath for the input/output directory is stored in OVERLORD

; and must be set using setdir.pro prior

;

; PROCEDURES/FUNCTIONS CALLED

; −> summary define.pro

;−

Pro Getfits, path, Bypass=bypass, Silent=silent

Compile opt IDL2

Common overlord

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 March, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

110

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

If Not Keyword set(silent) Then Print, ’’

;Inialize structure(s) and/or array(s).

keymaster = 0

;Use /bypass to circumvent this check

If ˜ Keyword set(bypass) Then Begin

;Check to see if the working directory has been set by setdir.pro

If Array equal(’’, overlord.dirloc) Then Begin

Print, ’>>>>> Alert: Working directory not set’

Print, ’’

Endif

Endif

;Check if the PATH argument is a string and a scalar.

If Isa(path, /string, /scalar) Then Begin

;If it is, ensure the path argument leads to a real file.

;If not, then throw an error.

If ˜ File test(path, /regular) Then Begin

Print, ’>>>>> Error: Invalid path’

Print, ’’ & ++ keymaster

Endif

111

;Chop up the given pathname to determine the file extension.

;If the file doesn’t have a .fits extension, thow an error.

dummy = Strsplit(path, ’.’, /extract)

If dummy[−1] Ne ’fits’ Then Begin

Print, ’>>>>> Error: Improper file extension.’

Print, ’>>>>> Alert: File must be a .fits file’

Print, ’’ & ++ keymaster

Endif

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Alert: Path argument type = ’ + Strtrim(Typename(path),2)

Print, ’>>>>> Alert: Path argument dimension = ’ + Strtrim(path.length,2)

Print, ’>>>>> Error: Path argument must be a string and a scalar’

Print, ’’ & ++ keymaster

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise continue & print some stuff if /silent is not set.

If Not Keyword set(silent) Then Begin

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Print, ’>>>>> Message: .sdfits file confirmed’

Print, ’>>>>> Message: Initializing data import’

Print, ’’

Endif

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Separate the .fits filename from the directory path.

112

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Getfits should only be called w/ the silent keyword set by extract.pro,

;in which case overlord.sdfname and overlord.sdfpath need to remain unchanged.

;If /silent is not set, extract the name of the actual .sdfits file,

;as well as the directory it is in.

If ˜ Keyword set(silent) Then Begin

junk = Strsplit(path, ’/’, /extract)

morejunk = Strsplit(junk[−1], ’.’, /extract)

Overlord.sdfname = morejunk[0]

Overlord.sdfpath = ’/’ + Strjoin(junk[0:−2], ’/’)

Endif

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Read .fits data using MRDFITS

; − Determine the number location and size of the scans.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Pull data out of .sdfits file using MRDFITS, which is part of

;NASA’s IDL Astronomy Users Library. go to idlastro.gsfc.nasa.gov

;for further information & to download.

sdfdata = Mrdfits(Strtrim(filepath, 2), 1, header)

;Fix error in how the .sampler values are assigned by MRDFITS.

sdfdata.sampler = Strtrim(sdfdata.sampler, 2)

;Use a proxy of sdfdata, so nothing is inadvertently altered.

datprox = sdfdata

;Find the number of each scan, and the start location in sdfdata.

scanloc = Where(datprox.scan Ne Shift(datprox.scan, 1))

scannum = datprox[scanloc].scan

;Initialize structure(s) and/or array(s).

num = Lonarr(scanloc.length)

;determine number of corresponding sdfdata entries for each scan,

;and divide by 8 to get the number of integrations per scan.

;note: the datprox.length bit is there only so the size of the

113

;last scan can be calculated. See extract.pro.

num = Shift([scanloc, datprox.length] − Shift([scanloc, datprox.length], 1), −1)

num = Temporary(num) / 8

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 3: − Create and fill olord summary

; − File everything away in OVERLORD.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s).

summary = Replicate(Create struct(name = ’summary’), scanloc.length)

;Fill the summary structure with the relevant data.

For j=0, scanloc.length−1 Do Begin

summary[j].scan = datprox[scanloc[j]].scan

summary[j].object = datprox[scanloc[j]].object

summary[j].nrec = num[j]

tmode = Strsplit(datprox[scanloc[j]].obsmode, ’:’, /extract)

summary[j].mode = tmode[0]

Endfor

;OVERLORD is initialized by hydra.pro and should already exist.

;So, update its values, except overlord.dirloc, which is controlled

;and updated by setdir.pro.

Overlord.sumsize = scanloc.length

Overlord.scanloc = scanloc

Overlord.scannum = scannum

Overlord.sdfsize = datprox.length

;The summary and sdfdata variables are arrays of structures,

;the size of which changes depending on the data being read.

;This makes them cumbersome to incorporate into the OVERLORD

;structure, so I left them independent.

olord summary = summary

olord sdfdata = sdfdata

;Print some stuff, call summary and end.

Print, ’>>>>> ...Done’

Print, ’’

Print, ”>>>>> Message: Sdfits data stored as ’olord.sdfdata’”

114

Print, ”>>>>> Message: Summary of data stored as ’olord.summary’”

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Summary

End

115

14.3 Setdir.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME

; Setdir

; HYDRA Version 5.1

;

; PURPOSE

; −> Sets the path to the directory that other HYDRA programs will

; write data to, and read data from. Other HYDRA programs will

; create various subdirectories as required.

;

; CALLING SEQUENCE

; −> setdir, path

;

; ARGUMENT(S)

; −> Path: The full path to the directory that other HYDRA programs

; read and write data to.

;

; KEYWORD(S)

; −> None

;

; OPTIONAL KEYWORD(S)

; −> None

;

; EXAMPLE(S)

; −> setdir, ’/Users/Bruce Lee/Data/Orion KL’

;

; OUTPUT(S)

; −> None

;

; COMMENTS

; −> Operates only within the HYDRA 5.1 RTE.

116

;

; PROCEDURES/FUNCTIONS CALLED:

; −> None

;−

Pro Setdir, path

Compile opt IDL2

Common overlord

On error, 1

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

117

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Initialize variable(s).

keymaster = 0

;Check if the PATH argument is a string and a scalar.

If Isa(path, /string, /scalar) Then Begin

;If it is, ensure the path argument leads to a real directory.

;If not, then throw an error.

If ˜ File test(path, /directory) Then Begin

Print, ’>>>>> Error: Invalid path’

Print, ’’ & ++ keymaster

Endif

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Alert: Path argument type = ’+Strtrim(Typename(path),2)

Print, ’>>>>> Alert: Path argument dimension = ’+Strtrim(path.length,2)

Print, ’>>>>> Error: Path argument must be a string and a scalar’

Print, ’’ & ++ keymaster

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise, continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Endelse

118

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Save filepath

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Put path into the OVERLORD structure.

Overlord.dirloc = path

;Print some stuff and end.

Print, ’>>>>> Alert: Read/Write filepath set to: ’

Print, ’>>>>> ’ + Strtrim(Overlord.dirloc,2)

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

119

14.4 Gather.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Gather

; HYDRA Version 5.1

;

; PURPOSE:

; −> Retreives data from a sdfits file and rewrites them as ascii .dat files.

; It writes separate subdirectories for each source, and will organize

; the output files within their respective subdirectories.

;

; CALLING SEQUENCE:

; −> Gather, session, Onscans=vector, Onints=list, Offscans=vector,

; Offints=list, Srcscans=vector, Iso=integer [, /Rrl, /Justcal]

;

; ARGUMENT(S):

; −> Session: An arbitrary integer assigned to the data being extracted.

; Used toorganize data from different observations.

;

; KEYWORD(S):

; −> Onscans: A longword vector of the calibrator scans to be extracted.

;

; −> Offscans: A longword vector of the reference scans to be extracted.

;

; −> Iso: The mass number of the isotope to be reduced and calibrated.

; This keyword is ignored if the /RRL keyword is set.

; ∗ Acceptable values: ’28’, ’29’, ’30’.

;

; OPTIONAL KEYWORD(S):

; −> Onints: A list containing the integrations of each calibrator scan

; to be extracted. If not set, the first integration of each scan

120

; will be used by default.

;

; −> Offints: A list containing the integrations of each calibrator

; reference scan to be extracted. If not set, the first integration

; of each scan will be used by default

;

; −> Rrl (binary): Set to extract rrl data. Overrides ISO keyword.

;

; −>Justcal (binary): Set to extract calibrator and calibrator offset

; data only. Overrides SRCSCANS keyword.

;

; EXAMPLE(S):

; −> Gather, 0, Onscans=[12,14], Onints=List([0,1],[1]), Offscans=[13,15], $

; Offints=List([0,1],[0]), Srcscans=[22,23,24,25], Iso=28

;

; OUTPUT(S):

; −> A single compressed data file for the calibrator and reference scans,

; as well as one per source scan. output files are organised within

; their respective subdirectories.

;

; COMMENTS:

; −> Operates only within the HYDRA 5.1 RTE.

; −> Filepath for the input/output directory is stored in OVERLORD

; and must be set using setdir.pro

;

; PROCEDURES/FUNCTIONS CALLED:

; −> Extract.pro

; −> Scdata s define.pro

;−

Pro Gather, session, Onscans=onscans, Onints=onints, Offscans=offscans, $

Offints=offints, Srcscans=srcscans, Iso=iso, Rrl=rrl, Justcal=justcal

Compile opt IDL2

Common overlord

Common rtype

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

121

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 2.1 written by: N.N. Monson (UCLA). 5 June, 2014

;>>>>> Version 2.2 written by: N.N. Monson (UCLA). 12 October, 2014

;>>>>> Version 2.3 written by: N.N. Monson (UCLA). 19 June, 2015

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 3.1 written by: N.N. Monson (UCLA). 9 December, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 4.1 (V−spec) written by: N.N. Monson (UCLA). 17 September, 2017

;>>>>> Version 4.2 (V−spec) written by: N.N. Monson (UCLA). 30 May, 2018

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None Known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Inialize structure(s) and/or array(s).

122

keymaster = 0

callsign = ’’

fext = ’’

ifreq = 0

;Check to see if the working directory has been set by setdir.pro

If Array equal(’’, overlord.dirloc) Then Begin

Print, ’>>>>> Error: Common directory not set’

Print, ’>>>>> Set common directory using Setdir.pro’

Print, ’’ & ++ keymaster

Endif

;Ensure the SESSION argument is a scalar and

;is a longword integer, or can be converted to one.

;If SESSION is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(session, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(session)), /not equal) Then Begin

Print, ’>>>>> Alert: Session argument dimension = ’+Strtrim(Session.length,2)

Print, ’>>>>> Error: Session argument type = ’+Strtrim(Typename(session),2)

Print, ’>>>>> Alert: Session argument must be a longword or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else session = Long(session)

;Check if the ONSCANS keyword it set.

If Keyword set(onscans) Then Begin

;If it is, ensure the ONSCANS keyword is a vector and

;is a longword integer, or can be converted to one.

;If ONSCANS is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(onscans, /vector)) || $
Array equal(1, rtype.adtypes.Contains(Typename(onscans)), /not equal) Then Begin

Print, ’>>>>> Alert: Onscans keyword type = ’+Strtrim(Typename(onscans),2)

Print, ’>>>>> Error: Onscans keyword must be a longword or floating−point vector’

Print, ’’ & ++ keymaster

Endif Else onscans = Long(onscans)

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Onscans keyword not set’

Print, ’’ & ++ keymaster

Endelse

123

;Check if the OFFSCANS keyword it set.

If Keyword set(offscans) Then Begin

;If it is, ensure the OFFSCANS keyword is a vector and

;is a longword integer, or can be converted to one.

;If offscans is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(offscans, /vector)) || $
Array equal(1, rtype.adtypes.Contains(Typename(offscans)), /not equal) Then Begin

Print, ’>>>>> Alert: Offscans keyword type = ’+Strtrim(Typename(onscans),2)

Print, ’>>>>> Error: Offscans keyword must be a longword or floating−point vector’

Print, ’’ & ++ keymaster

Endif Else offscans = Long(offscans)

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Offscans keyword not set’

Print, ’’ & ++ keymaster

Endelse

;Make sure the onscans and offscans have the same length.

;If not, then throw an error.

If onscans.length Ne offscans.length Then Begin

Print, ’>>>>> Error: Onscans and offscans keywords must have equal dimiensions’

Print, ’’ & ++ keymaster

Endif

;Check if the ONINTS keyword is set

If Keyword set(onints) Then Begin

;If it is, ensure the ONINTS keyword is a list. If not, then throw an error.

If Typename(onints) Ne ’LIST’ Then Begin

Print, ’>>>>> Alert: Onints keyword type = ’+Strtrim(Typename(onints),2)

Print, ’>>>>> Error: Onints keyword must be a list’

Print, ’’ & ++ keymaster

Endif

;And make sure the ONINTS and ONSCANS keywords have the same length.

;If not, then throw an error.

If onints.length Ne onscans.length Then Begin

Print, ’>>>>> Error: Onscans and onints keywords must have equal dimiensions’

124

Print, ’’ & ++ keymaster

Endif

Endif Else Begin

;Otherwise, set the default value.

Print, ’>>>>> Alert: Onints keyword not set’

Print, ’>>>>> Using default values ...’

onints = List(Lonarr(onscans.length), /extract)

Endelse

;Check if the OFFINTS keyword is set

If Keyword set(offints) Then Begin

;If it is, ensure the OFFINTS keyword is a list. If not, then throw an error.

If Typename(offints) Ne ’LIST’ Then Begin

Print, ’>>>>> Alert: Offints keyword type = ’+Strtrim(Typename(offints),2)

Print, ’>>>>> Error: Offints keyword must be a list’

Print, ’’ & ++ keymaster

Endif

;And Make sure the OFFINTS and OFFSCANS keywords have the same length.

;If not, then throw an error.

If offints.length Ne offscans.length Then Begin

Print, ’>>>>> Error: Offscans and offints keywords must have equal dimiensions’

Print, ’’ & ++ keymaster

Endif

Endif Else Begin

;Otherwise, set the default value.

Print, ’>>>>> Alert: Offints keyword not set’

Print, ’>>>>> Using default values ...’

offints = List(Lonarr(offscans.length), /extract)

Endelse

;Check if the /JUSTCAL keyword is set.

If Keyword set(justcal) Then Begin

;If it is, check to see if the /JUSTCAL keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If justcal Ne 1 Then Begin

Print, ’>>>>> Alert: Justcal is a binary keyword’

Print, ’>>>>> Setting justcal accordingly ...’

125

Print, ’’ & justcal = 1

Endif

;Ignore SRCSCANS keyword if the JUSTCAL keyword is set

If Keyword set(srcscans) Then Begin

Print, ’>>>>> Alert: Justcal keyword set, ignoring srcscans keyword’

Print, ’’

Endif

Endif Else Begin

;Otherwise, ensure the SRCSCANS keyword is set.

If Keyword set(srcscans) Then Begin

;If it is, ensure the SRCSCANS keyword is a vector and

;is a longword integer, or can be converted to one.

;If SRCSCANS is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(srcscans, /vector)) || $
Array equal(1, rtype.adtypes.Contains(Typename(srcscans)), /not equal) Then Begin

Print, ’>>>>> Alert: Srcscans keyword type = ’+Strtrim(Typename(srcscans),2)

Print, ’>>>>> Error: Srcscans keyword must be a longword or floating−point vector’

Print, ’’ & ++ keymaster

Endif Else srcscans = Long(srcscans)

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Srcscans keyword not set’

Print, ’’ & ++ keymaster

Endelse

Endelse

;Check if the /RRL keyword is set.

If Keyword set(rrl) Then Begin

;If it is, check to see if the /RRL keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If rrl Ne 1 Then Begin

Print, ’>>>>> Alert: Rrl is a binary keyword’

Print, ’>>>>> Setting rrl accordingly ...’

Print, ’’ & rrl = 1

Endif

;Ignore iso keyword if RRL keyword is set

126

If Keyword set(iso) Then Begin

Print, ’>>>>> Alert: Rrl keyword set, ignoring iso keyword’

Print, ’’

Endif

;set the callsign, file extension and ifreq values.

callsign = ’rrl’

fext = ’.raw.vegas.C.fits’

ifreq = 2

Endif Else Begin

;Otherwise, Check if the ISO keyword is set

If Keyword set(iso) Then Begin

;Ensure the ISO keyword is a scalar and

;is a longword integer, or can be converted to one.

;If ISO is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(iso, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(iso)), /not equal) Then Begin

Print, ’>>>>> Alert: Iso keyword dimension = ’+Strtrim(iso.length,2)

Print, ’>>>>> Alert: Iso keyword type = ’+Strtrim(Typename(iso),2)

Print, ’>>>>> Error: Iso Keyword must be a longword or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert ISO to a longword

iso = Long(iso)

;And check to see if ISO is in range. If not, then throw an error.

If Array equal(iso, rtype.aivals, /not equal) Then Begin

Print, ’>>>>> Error: Iso keyword out of range’

Print, ’’ & ++ keymaster

Endif Else Begin

;If it is, set the file extension and ifreq values.

;NOTE: these values are specific to the q−band/VEGAS setup

;used to collect SiO data. These values will almost certainly

;be different for other setups!

Case iso Of

28:Begin

fext = ’.raw.vegas.D.fits’

ifreq = 0

127

End

29:Begin

fext = ’.raw.vegas.B.fits’

ifreq = 1

End

30:Begin

fext = ’.raw.vegas.A.fits’

ifreq = 3

End

Endcase

;set the callsign

callsign = Strtrim(iso,2) + ’sio’

Endelse

Endelse

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Iso keyword is not set’

Print, ’’ & ++ keymaster

Endelse

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise, continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Extract calibrator data and header.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

128

;Call getfits to load the correct data to memory.

Getfits, overlord.sdfpath + ’/’ + overlord.sdfname + fext, /silent

;Print some jazz

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Print, ’>>>>> Extracting calibrator data ...’

Print, ’’

;Inialize variable(s).

advance = 0

icount = 0

;Count the total number of integrations (for all scans) to be extracted.

For jj=0, onscans.length−1 Do icount = Temporary(icount) + onints[jj].length

;Initialize structure(s) and/or array(s).

proncal = Replicate(Create struct(name = ’scdata s’), icount)

oncal = Create struct(name = ’scdata s’)

;Begin loops for the calibrator data.

;Run this loop once for each scan called with onscans.

For master=0, onscans.length−1 Do Begin

;Get header and data for the calibrator scans,

;All polarizations, frequency positions and calstates.

numints = 0

result = Extract(onscans[master], ifreq, numints, onhead, /resample)

If numints Eq 0 Then Message, ’>>>>> Error: Extraction failure’

;Print number of integrations

Print, ’>>>>> ’ + Strtrim(result.length,2) + ’ integration(s) retrieved’

Print, ’’

;Take the data out of ’result’ and file it away in proncal.

Foreach pp, onints[master] Do Begin

proncal[advance] = result[pp]

;Print some jazz & Incriment the loop counter

Print, ’>>>>> Keeping integration ’ + Strtrim(pp,2)

129

++ advance

Endforeach

Endfor

;Print some stuff.

Print, ’>>>>> Averaging ’ + Strtrim(advance,2) + ’ (of ’ + $

Strtrim(icount,2) + ’ commanded) integrations’

Print, ’’

;Average integrations and insert in to the new data structure.

If icount Eq 1 Then Begin

oncal = proncal

Endif Else Begin

oncal.sig.left.tube on = Mean(proncal.sig.left.tube on, dimension=2, /double)

oncal.sig.left.tube off = Mean(proncal.sig.left.tube off, dimension=2, /double)

oncal.sig.right.tube on = Mean(proncal.sig.right.tube on, dimension=2, /double)

oncal.sig.right.tube off = Mean(proncal.sig.right.tube off, dimension=2, /double)

oncal.ref.left.tube on = Mean(proncal.ref.left.tube on, dimension=2, /double)

oncal.ref.left.tube off = Mean(proncal.ref.left.tube off, dimension=2, /double)

oncal.ref.right.tube on = Mean(proncal.ref.right.tube on, dimension=2, /double)

oncal.ref.right.tube off = Mean(proncal.ref.right.tube off, dimension=2, /double)

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Create directories

; − Write calibrator data to ascii files.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Define path to the folder to save the data to, and create the directory.

rootpath = Strtrim(overlord.dirloc, 2) + ’/session 0’ + $

Strtrim(session,2) + ’/’ + callsign

If ˜Keyword set(justcal) Then File mkdir, rootpath, /noexpand path

;Create directory to write onsource calibrator scan data to.

File mkdir, Strtrim(rootpath, 2) + ’/calibrator’, /noexpand path

;Print some jazz

Print, ’>>>>> Writing data to .gzip file ...’

Print, ’’

130

;Write signal phase data to an ascii datafile for the onsource

;calibration scans, noisetube on & off, both polarizations.

Openw, lun, Strtrim(rootpath, 2) + $

’/calibrator/sig phase.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[icount], [N tags(onhead.sig)]]

;Build & insert standard size header.

Help, onhead.sig, output = output

head = Strsplit(output[1:∗], ” ’”, /extract)

Foreach part, head Do Printf, lun, part

;Write structure tags and data.

Printf, lun, [[’sig.left.tube on’], $

[’sig.left.tube off’], $

[’sig.right.tube on’], $

[’sig.right.tube off’]]

Printf, lun, Transpose([[oncal.sig.left.tube on], $

[oncal.sig.left.tube off], $

[oncal.sig.right.tube on], $

[oncal.sig.right.tube off]]), $

format = ’(4’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Write reference phase data to an ascii datafile for the onsource

;calibration scans, noisetube on & off, both polarizations.

Openw, lun, Strtrim(rootpath, 2) + $

’/calibrator/ref phase.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[icount], [N tags(onhead.ref)]]

;Build & insert standard size header.

Help, onhead.ref, output = output

head = Strsplit(output[1:∗], ” ’”, /extract)

Foreach part, head Do Printf, lun, part

;Write structure tags and data.

Printf, lun, [[’ref.left.tube on’], $

131

[’ref.left.tube off’], $

[’ref.right.tube on’], $

[’ref.right.tube off’]]

Printf, lun, Transpose([[oncal.ref.left.tube on], $

[oncal.ref.left.tube off], $

[oncal.ref.right.tube on], $

[oncal.ref.right.tube off]]), $

format = ’(4’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Print some stuff.

Print, ’>>>>> ... Done’

Print, ’’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 3: − Extract calibrator offset data and header.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some jazz

Print, ’>>>>> Extracting reference data ...’

Print, ’’

;Inialize variable(s).

advance = 0

icount = 0

;Count the total number of integrations (for all scans) to be extracted.

For jj=0, offscans.length−1 Do $

icount = Temporary(icount) + offints[jj].length

;Initialize structure(s) and/or array(s).

proffcal = Replicate(Create struct(name = ’scdata s’), icount)

offcal = Create struct(name = ’scdata s’)

;Begin loops for calibrator reference data import.

;Run this loop once for each scan called with offscans.

For master=0, offscans.length−1 Do Begin

;Get header and data for the offsource calibrator scans,

;All polarizations, frequency positions and calstates.

132

numints = 0

result = Extract(offscans[master], ifreq, numints, offhead, /resample)

If numints Eq 0 Then Message, ’>>>>> Error: Extraction failure’

;Print number of integrations

Print, ’>>>>> ’ + Strtrim(result.length,2) + ’ integration(s) retrieved’

Print, ’’

;Take the data out of ’result’ and file it away in proffcal.

Foreach pp, offints[master] Do Begin

proffcal[advance] = result[pp]

;Print some jazz & Incriment the loop counter

Print, ’>>>>> Keeping integration ’ + Strtrim(pp,2)

++ advance

Endforeach

Endfor

;Print some stuff.

Print, ’>>>>> Averaging ’ + Strtrim(advance,2) + ’ (of ’ + $

Strtrim(icount,2) + ’ commanded) integrations’

Print, ’’

;Average integrations and insert in to the new data structure.

If icount Eq 1 Then Begin

offcal = proffcal

Endif Else Begin

offcal.sig.left.tube on = Mean(proffcal.sig.left.tube on, dimension=2, /double)

offcal.sig.left.tube off = Mean(proffcal.sig.left.tube off, dimension=2, /double)

offcal.sig.right.tube on = Mean(proffcal.sig.right.tube on, dimension=2, /double)

offcal.sig.right.tube off = Mean(proffcal.sig.right.tube off, dimension=2, /double)

offcal.ref.left.tube on = Mean(proffcal.ref.left.tube on, dimension=2, /double)

offcal.ref.left.tube off = Mean(proffcal.ref.left.tube off, dimension=2, /double)

offcal.ref.right.tube on = Mean(proffcal.ref.right.tube on, dimension=2, /double)

offcal.ref.right.tube off = Mean(proffcal.ref.right.tube off, dimension=2, /double)

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 4: − Create directories

133

; − Write calibrator offset data to ascii files.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some jazz

Print, ’>>>>> Writing data to .gzip file ...’

;Create directory to write offsource calibration scan data to.

File mkdir, Strtrim(rootpath, 2) + ’/cal offset’, /noexpand path

;Write signal phase data to an ascii datafile for the offsource

;calibration scans, noisetube on & off, both polarizations.

Openw, lun, Strtrim(rootpath, 2) + $

’/cal offset/sig phase.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[icount], [N tags(offcal head.sig)]]

;Build & insert standard size header.

Help, offcal head.sig, output = output

head = Strsplit(output[1:∗], ” ’”, /extract)

Foreach part, head Do Printf, lun, part

;Write structure tags and data.

Printf, lun, [[’sig.left.tube on’], $

[’sig.left.tube off’], $

[’sig.right.tube on’], $

[’sig.right.tube off’]]

Printf, lun, Transpose([[offcal.sig.left.tube on], $

[offcal.sig.left.tube off], $

[offcal.sig.right.tube on], $

[offcal.sig.right.tube off]]), $

format = ’(4’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Write reference phase data to an ascii datafile for the offsource

;calibration scans, noisetube on & off, both polarizations.

Openw, lun, Strtrim(rootpath, 2) + $

’/cal offset/ref phase.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[icount], [N tags(offcal head.ref)]]

134

;build & insert standard size header.

Help, offcal head.ref, output = output

head = Strsplit(output[1:∗], ” ’”, /extract)

Foreach part, head Do Printf, lun, part

;Write structure tags and data.

Printf, lun, [[’ref.left.tube on’], $

[’ref.left.tube off’], $

[’ref.right.tube on’], $

[’ref.right.tube off’]]

Printf, lun, Transpose([[offcal.ref.left.tube on], $

[offcal.ref.left.tube off], $

[offcal.ref.right.tube on], $

[offcal.ref.right.tube off]]), $

format = ’(4’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Print some stuff

Print, ’>>>>> ... Done’

Print, ’’

Print, ’>>>>> All calibrator data has been extracted’

Print, ’’

;If justcal is set, end here and dont write new source data.

If Keyword set(justcal) Then Begin

Print, ’>>>>> Alert: Justcal keyword is set...’

Print, ’>>>>> No source data has been extracted’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 5: − Extract sorce data and header.

; − Create directories

; − Write calibrator offset data to ascii files.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

135

;Print some stuff.

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Print, ’>>>>> Extracting source data ...’

Print, ’’

;Create directory to write source scan data to.

File mkdir, Strtrim(rootpath, 2) + ’/source’, /noexpand path

;begin loops for source scan data import and ascii file export.

;Run this loop once for each scan called with srcscans.

For master=0, srcscans.length−1 Do Begin

;Get header and data for the source scans.

;All polarizations, frequency positions and calstates.

numints = 0

source = Extract(srcscans[master], ifreq, numints, shead, /resample)

If numints Eq 0 Then Message, ’>>>>> Error: Extraction failure’

;Print some stuff.

Print, ’>>>>> Writing scan ’ + Strtrim(srcscans[master],2) $

+ ’ data to .gzip file ...’

;Write signal phase data to ascii datafile for the source scans,

;noisetube on & off, both polarizations.

Openw, lun, Strtrim(rootpath, 2) + ’/source/sigphase ’ + $

Strtrim(master, 2) + ’.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[numints], [N tags(shead.sig)]]

;build & insert standard size header.

Help, shead.sig, output = output

head = Strsplit(output[1:∗], ” ’”, /extract)

Foreach part, head Do Printf, lun, part

;Write structure tags and data.

Printf, lun, [[’sig.left.tube on’], $

[’sig.left.tube off’], $

[’sig.right.tube on’], $

[’sig.right.tube off’]]

136

Printf, lun, Transpose([[source.sig.left.tube on], $

[source.sig.left.tube off], $

[source.sig.right.tube on], $

[source.sig.right.tube off]]), $

format = ’(’ + Strtrim(4∗numints,2) + rtype.format + ’)’

Close, lun

Free lun, lun

;Write reference phase data to ascii datafile for the source scans,

;noisetube on & off, both polarizations.

Openw, lun, Strtrim(rootpath, 2) + ’/source/refphase ’ + $

Strtrim(master, 2) + ’.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[numints], [N tags(shead.ref)]]

;build & insert standard size header.

Help, shead.ref, output = output

head = Strsplit(output[1:∗], ” ’”, /extract)

Foreach part, head Do Printf, lun, part

;Write structure tags and data.

Printf, lun, [[’ref.left.tube on’], $

[’ref.left.tube off’], $

[’ref.right.tube on’], $

[’ref.right.tube off’]]

Printf, lun, Transpose([[source.ref.left.tube on], $

[source.ref.left.tube off], $

[source.ref.right.tube on], $

[source.ref.right.tube off]]), $

format = ’(’ + Strtrim(4∗numints,2) + rtype.format + ’)’

Close, lun

Free lun, lun

;Print some stuff

Print, ’>>>>> ... Done’

Print, ’’

Endfor

;Print some stuff and end.

Print, ’>>>>> All source data has been extracted’

137

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

138

14.5 Extract.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Extract

; HYDRA Version 5.1

;

; PURPOSE:

; −> Retreives all data for a single ’FSW’ scan from an .sdfits file.

;

; CALLING SEQUENCE:

; −> output = Extract p(scan, ifreq, numints, header [, /Resample])

;

; ARGUMENT(S):

; −> Scan: Specifies the scan number in the .sdfits file for which data

; will be to be returned.

;

; −> Ifreq: Specifies the intermediate frequency of the data to be returned.

; ∗ Acceptable values: ’0’, ’1’, ’2’, ’3’.

;

; −> Numints: Set to pass back a long integer containing the total

; number of integrations in the scan.

;

; −> Header: A single ’schead’ structure containing the header pulled

; from the scan in the .sdfits file. Set to pass back header

; information to the calling program.

;

; KEYWORD(S):

; −> None

;

; OPTIONAL KEYWORD(S):

; −> Resample: Binary. Resample the data from 65.6k to 8.2k pixels via

139

; bilinear interpolation. Requires each integration to be separately

; resampled in a loop, which may incur a time penalty.

;

; EXAMPLE(S):

; −> output = Extract p(27, 2, integrations, scanhead, /resample)

;

; OUTPUT(S):

; −> A vector of ’scdata m’ structures. The length of the vector is

; determined by the number of integrations in the scan.

;

; COMMENTS:

; −> Operates only within the HYDRA 5.1 RTE.

; −> Filepath for the input/output directory is stored in OVERLORD

; and must be set using setdir.pro

;

; PROCEDURES/FUNCTIONS CALLED:

; −> scdata l define.pro

; −> scdata m define.pro

; −> schead define.pro

;−

Function Extract, scan, ifreq, numints, header, RESAMPLE=resample

Compile opt IDL2

Common overlord

Common rtype

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 2.1 written by: N.N. Monson (UCLA). 5 June, 2014

;>>>>> Version 2.2 written by: N.N. Monson (UCLA). 12 October, 2014

;>>>>> Version 2.3 written by: N.N. Monson (UCLA). 19 June, 2015

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 3.1 written by: N.N. Monson (UCLA). 9 December, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 4.1 (V−spec) written by: N.N. Monson (UCLA). 17 September, 2017

;>>>>> Version 4.2 (V−spec) written by: N.N. Monson (UCLA). 30 May, 2018

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

140

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Currently hardcoded to work ONLY with the receiver/spectrometer setup

;used to observe the J= 1−>0 transition of SiO. Using this program w/

;other setups will require some tweaks, namely, changing the array sizes

;(including arrays in structures), and the sampler values.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Inialize structure(s) and/or array(s).

keymaster = 0

;Ensure OVERLORD has already been created by getfits.pro.

;If not, then throw an error.

If ˜ Isa(olord summary) Then Begin

Print, ’>>>>> Error: No .sdfits file in memory’

Print, ’>>>>> Alert: Please load a .sdfits before calling Extract p.pro’

Print, ’’ & ++ keymaster

Endif Else Begin

;Use a proxy for olord summary so nothing is inadvertently altered.

141

sumprox = olord summary

Endelse

;Ensure the SCAN argument is a scalar and

;is a longword integer, or can be converted to one.

;If SCAN is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(scan, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(scan)), /not equal) Then Begin

Print, ’>>>>> Alert: Scan argument dimension = ’+Strtrim(scan.length,2)

Print, ’>>>>> Alert: Scan argument type = ’+Strtrim(Typename(scan),2)

Print, ’>>>>> Error: Scan argument must be an integer or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert SCAN to a longword.

scan = Long(scan)

;Check that SCAN is within the bounds of the data held in OVERLORD.

If Array equal(scan, sumprox.scan, /not equal) Then Begin

Print, ’>>>>> Error: Scan argument out of range’

Print, ’’ & ++ keymaster

Endif

Endelse

;Ensure the IFREQ argument is a a scalar and

;is a longword integer, or can be converted to one.

;If IFREQ is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(ifreq, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(ifreq)), /not equal) Then Begin

Print, ’>>>>> Alert: Ifreq argument dimension = ’+Strtrim(ifreq.length,2)

Print, ’>>>>> Alert: Ifreq argument type = ’+Strtrim(Typename(ifreq),2)

Print, ’>>>>> Error: Ifreq argument must be an integer or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert IFREQ to a longword

ifreq = Long(ifreq)

;Check that IFREQ is within the bounds of the data held in OVERLORD.

;NOTE: these values are specific to the q−band/VEGAS setup used to collect

;SiO data. These values will almost certainly be differentfor other setups!

If Array equal(ifreq, rtype.aifvals, /not equal) Then Begin

142

Print, ’>>>>> Error: Ifreq argument out of range’

Print, ’’ & ++ keymaster

Endif

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: −Index data in OVERLORD.

; −Find & copy the indicated scan number.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;NOTE: I adjusted how this works, previously I had put an extra

;value at the end of overlord.scanloc to accomodate the last value,

;but this new code should eliminate the need to do that.

;In essence, I’m doing the same thing, but I do it here

;instead of in getfits.pro.

;Locate target scan in the sdfdata structure.

spot = Where(scan Eq overlord.scannum)

;If SCAN is the last in the observation, use the total size of the

;sdfdata structure to define the upper bound of the ’scan’ data,

;otherwise use the first entry of the subsequent scan.

If scan Eq overlord.scannum[−1] Then Begin

endspot = overlord.sdfsize

Endif Else Begin

endspot = overlord.scanloc[spot+1]

143

Endelse

;generate index for the locatinon of all the

;data for SCAN in sdfdata.

iindex = Lindgen(endspot − overlord.scanloc[spot], $

start=overlord.scanloc[spot])

;Search newly indexed data array for blanked spectra by checking if

;the middle element in each data array (i.e. each integration) is finite.

;If the middle element is not finite, assume the array is blanked.

blindex = Where(Finite(olord sdfdata[iindex].data[32768]) Ne 1)

;Check if there are any blanked integrations. If there are, remove them.

;Recall there are 8 data arrays per integration

;2 positions, 2 polarizations & 2 cal states)

If Array equal(blindex, −1, /not equal) Then Begin

;set BLANKEY, for use later.

blankey = 1

;Im assuming the blank spectra is the last in the scan.

;NOTE: This likely isn’t universally true, but it is for my data.

;Other users will need to modify this section of code accordingly.

skindex = iindex[0:−((8 ∗ Ceil(blindex.length / 8.0)) + 1)]

Endif Else Begin

;Otherwise, keep all of IINDEX.

blankey = 0

skindex = iindex

Endelse

;Final data index excluding blanked spectra.

;Use a proxy of oolord sdfdata, so nothing is inadvertently altered.

datprox = olord sdfdata[skindex]

;Calc. ’numints’ keyword value to pass back to calling routine.

;Eight phases per integration: 2 polarizations, 2 cals, 2 frequency positions.

numints = skindex.length / 8d

If numints Mod 1.0 Ne 0.0 Then Begin

Message, ’>>>>> Error: Incorrect number of phases per integration’

Endif Else numints = Long(numints)

144

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Define ’SAMPLER’ values.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Establish .sampler values for different polarizations and IF nums.

;These values were pulled from the .sdfits headers using GBTIDL.

;NOTE: these values are specific to the q−band/VEGAS setup used to

;collect SiO data. These values will almost certainly be different

;for other setups!

Case ifreq Of

0:sam = [’D1 0’, ’D2 0’]

1:sam = [’B1 0’, ’B2 0’]

2:sam = [’C1 0’, ’C2 0’]

3:sam = [’A1 0’, ’A2 0’]

Endcase

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 3: − Execute grid search for separate integrations (LL Pol)

; − File data into the appropriate structures.

; − Copy header to structure.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Inialize structure(s) and/or array(s).

master = Replicate(Create struct(name = ’scdata l’), numints)

header = Create struct(name = ’schead’)

;Search index and narrow to only lpol, sig position ints. Tube on.

master[∗].sig.left.tube on = datprox[Where((datprox.sig Eq ’T’) And $

(datprox.sampler Eq sam[0]) And (datprox.cal Eq ’T’))].data

;Re−search index and narrow to only lpol, sig position ints. Tube off.

master[∗].sig.left.tube off = datprox[Where((datprox.sig Eq ’T’) And $

(datprox.sampler Eq sam[0]) And(datprox.cal Eq ’F’))].data

;Search index and narrow to only rpol, sig position ints. Tube on.

master[∗].sig.right.tube on = datprox[Where((datprox.sig Eq ’T’) And $

(datprox.sampler Eq sam[1]) And (datprox.cal Eq ’T’))].data

;Re−search index and narrow to only rpol, sig position ints. Tube off.

master[∗].sig.right.tube off = datprox[Where((datprox.sig Eq ’T’) And $

145

(datprox.sampler Eq sam[1]) And(datprox.cal Eq ’F’))].data

;Inialize structure(s) and/or array(s).

scrapper = Lonarr(numints)

;Find one of the rpol, sig position integrations.

scrapper = Where((datprox.sig Eq ’T’) And $

(datprox.sampler Eq sam[1]) And(datprox.cal Eq ’F’))

;Put its header into a separate header structure.

Struct assign, datprox[scrapper[0]], header.sig

;Calculate LSR frequency & convert elevation to radians

header.sig.lsrfreq = (((−1d ∗ header.sig.rvsys) / (!Const.c)) + 1d) ∗ header.sig.obsfreq

header.sig.elevatio = header.sig.elevatio ∗ (!Dpi / 180d)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 4: − Execute grid search for separate integrations (RR Pol)

; − File data into the appropriate structures.

; − Copy header to structure.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Search index and narrow to only lpol, ref position ints. Tube on.

master[∗].ref.left.tube on = datprox[Where((datprox.sig Eq ’F’) And $

(datprox.sampler Eq sam[0]) And (datprox.cal Eq ’T’))].data

;Re−search index and narrow to only lpol, ref position ints. Tube off.

master[∗].ref.left.tube off = datprox[Where((datprox.sig Eq ’F’) And $

(datprox.sampler Eq sam[0]) And (datprox.cal Eq ’F’))].data

;Search index and narrow to only rpol, ref position ints. Tube on.

master[∗].ref.right.tube on = datprox[Where((datprox.sig Eq ’F’) And $

(datprox.sampler Eq sam[1]) And (datprox.cal Eq ’T’))].data

;Re−search index and narrow to only rpol, ref position ints. Tube off.

master[∗].ref.right.tube off = datprox[Where((datprox.sig Eq ’F’) And $

(datprox.sampler Eq sam[1]) And (datprox.cal Eq ’F’))].data

;Inialize structure(s) and/or array(s).

crapper = Lonarr(numints)

146

;Find one of the rpol, ref position integrations.

crapper = Where((datprox.sig Eq ’F’) And $

(datprox.sampler Eq sam[1]) And (datprox.cal Eq ’F’))

;And put its header into a separate header structure.

Struct assign, datprox[crapper[0]], header.ref

;Calculate LSR frequency & convert elevation to radians

header.ref.lsrfreq = (((−1d ∗ header.ref.rvsys) / (!Const.c)) + 1d) $

∗ header.ref.obsfreq

header.ref.elevatio = header.ref.elevatio ∗ (!Dpi / 180d)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 5: − Print information on data being returned.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some jazz

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Print, ’>>>>> Source: ’ + Strtrim(header.sig.object, 2)

Print, ’>>>>> Accessing scan number ’ + Strtrim(header.sig.scan,2) + ’ ...’

;If blanked integrations were found, say so.

If Keyword set(blankey) Then Begin

Print, ’>>>>> Warning: blanked spectra detected!’

Print, ’>>>>> Warning: ’ + Strtrim(Ceil(blindex.length / 8.0), 2) + $

’ integration(s) excluded’

Endif

;Print number of non−blank integrations being returned,

Print, ’>>>>> Returning ’ + Strtrim(numints,2) + ’ integration(s) − all phases’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 5: − Resample data to 8.2k pixels.

; − Check for any errors & return.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Inialize new variable(s)

147

;Inialize structure(s) and/or array(s).

blaster = Replicate(Create struct(name = ’scdata m’), numints)

gatekeeper = 0

cryptkeeper = 0

;Resample to 8.2k pixels using linear interpolation.

For ii=0, numints−1 Do Begin

blaster[ii].sig.left.tube on = Rebin(master[ii].sig.left.tube on, rtype.med)

blaster[ii].sig.left.tube off = Rebin(master[ii].sig.left.tube off, rtype.med)

blaster[ii].sig.right.tube on = Rebin(master[ii].sig.right.tube on, rtype.med)

blaster[ii].sig.right.tube off = Rebin(master[ii].sig.right.tube off, rtype.med)

blaster[ii].ref.left.tube on = Rebin(master[ii].ref.left.tube on, rtype.med)

blaster[ii].ref.left.tube off = Rebin(master[ii].ref.left.tube off, rtype.med)

blaster[ii].ref.right.tube on = Rebin(master[ii].ref.right.tube on, rtype.med)

blaster[ii].ref.right.tube off = Rebin(master[ii].ref.right.tube off, rtype.med)

Endfor

;Check to make sure no integrations have been missed or overwritten.

If numints Gt 1 Then Begin

For ii=0, numints−2 Do Begin

For jj=ii+1, numints−1 Do Begin

If Array equal(blaster[ii].sig.left.tube on, blaster[jj].sig.left.tube on) Then $

++ gatekeeper

If Array equal(blaster[ii].sig.left.tube off, blaster[jj].sig.left.tube off) Then $

++ gatekeeper

If Array equal(blaster[ii].sig.right.tube on, blaster[jj].sig.right.tube on) Then $

++ gatekeeper

If Array equal(blaster[ii].sig.right.tube off, blaster[jj].sig.right.tube off) Then $

++ gatekeeper

If Array equal(blaster[ii].ref.left.tube on, blaster[jj].ref.left.tube on) Then $

++ gatekeeper

If Array equal(blaster[ii].ref.left.tube off, blaster[jj].ref.left.tube off) Then $

++ gatekeeper

If Array equal(blaster[ii].ref.right.tube on, blaster[jj].ref.right.tube on) Then $

++ gatekeeper

If Array equal(blaster[ii].ref.right.tube off, blaster[jj].ref.right.tube off) Then $

++ gatekeeper

148

If gatekeeper Ne 0 Then Message, ’>>>>> Error: Data extraction failure’

Endfor

Endfor

Endif

;check each array for nasty little devil pixels!

;Devil pixels are defined as having a value greater than 3x the average of the spectrum.

;If found, they are replaced with the same value as a nearby, non−devil pixel.

;This is a crude way of going about this, but it it’s good enough.

f1 = Where(blaster.sig.left.tube on.Compare(3d ∗ Mean(blaster.sig.left.tube on)) Eq 1)

If Array equal(f1, −1, /not equal) Then $

blaster.sig.left.tube on[f1] = blaster.sig.left.tube on[f1+10] & ++ cryptkeeper

f2 = Where(blaster.sig.left.tube off.Compare(3d ∗ Mean(blaster.sig.left.tube off)) Eq 1)

If Array equal(f2, −1, /not equal) Then $

blaster.sig.left.tube off[f2] = blaster.sig.left.tube off[f2+10] & ++ cryptkeeper

f3 = Where(blaster.sig.right.tube on.Compare(3d ∗ Mean(blaster.sig.right.tube on)) Eq 1)

If Array equal(f3, −1, /not equal) Then $

blaster.sig.right.tube on[f3] = blaster.sig.right.tube on[f3+10] & ++ cryptkeeper

f4 = Where(blaster.sig.right.tube off.Compare(3d ∗ Mean(blaster.sig.right.tube off)) Eq 1)

If Array equal(f4, −1, /not equal) Then $

blaster.sig.right.tube off[f4] = blaster.sig.right.tube off[f4+10] & ++ cryptkeeper

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

f5 = Where(blaster.ref.left.tube on.Compare(3d ∗ Mean(blaster.ref.left.tube on)) Eq 1)

If Array equal(f5, −1, /not equal) Then $

blaster.ref.left.tube on[f5] = blaster.ref.left.tube on[f5+10] & ++ cryptkeeper

f6 = Where(blaster.ref.left.tube off.Compare(3d ∗ Mean(blaster.ref.left.tube off)) Eq 1)

If Array equal(f6, −1, /not equal) Then $

blaster.ref.left.tube off[f6] = blaster.ref.left.tube off[f6+10] & ++ cryptkeeper

f7 = Where(blaster.ref.right.tube on.Compare(3d ∗ Mean(blaster.ref.right.tube on)) Eq 1)

If Array equal(f7, −1, /not equal) Then $

blaster.ref.right.tube on[f7] = blaster.ref.right.tube on[f7+10] & ++ cryptkeeper

f8 = Where(blaster.ref.right.tube off.Compare(3d ∗ Mean(blaster.ref.right.tube off)) Eq 1)

149

If Array equal(f8, −1, /not equal) Then $

blaster.ref.right.tube off[f8] = blaster.ref.right.tube off[f8+10] & ++ cryptkeeper

;Print some jazz

If cryptkeeper Ne 0 Then Begin

Print, ’>>>>> Alert: Nasty little devil pixels found & replaced!’

Endif Else Print, ’>>>>> Alert: Rejoice! No nasty little devil pixels found!’

;return data structure. header is passed back via ’header’ argument.

Return, blaster

End

150

14.6 Dreamcatcher.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Dreamcatcher

; HYDRA Version 5.1

;

; PURPOSE:

; −> Calibrates the noise diodes using scans of a standard Q−band

; flux calibrator, then reduces the frequency−switched science

; data and applies a vectorized temperature calibration calculated

; using scans of a standard Q−band flux calibrator.

;

; CALLING SEQUENCE:

; −> Dreamcatcher, sesnums, Iso=value [, Fitorder=integer, $

; Calfitorder=integer, /Rrl, /Plotcal, /Printcolor]

;

; ARGUMENT(S):

; −> Sesnums: An integer vector containing the observation number(s)

; to be reduced. These numbers are defined when calling gather.pro.

; If more than oneobservation is called, all data from all observations

; will be reduced independently and then averaged

;

; KEYWORD(S):

; −> Iso: The mass number of the isotope to be reduced and calibrated.

; ∗ Acceptable values: ’28’, ’29’, ’30’.

;

; OPTIONAL KEYWORD(S):

; −> Plotcal (binary):Produces and saves plots of the vectorized

; calibration temperatures for each scan, polarization and position.

; ∗ note: Enabled by default, set to ’0’ to disable plotting.

;

151

; −> Fitorder: Set to specify the polynomial order used when fitting the

; vectorized system temperatures.

; ∗ Default: 4

; ∗ Acceptable values: any positive integer < 8

;

; −> Calfitorder: Set to specify the polynomial order used when fitting the

; vectorized calibration temperatures.

; ∗ Default: 3

; ∗ Acceptable values: any positive integer < 8

;

; −> Printcolor (binary): Changes the color scheme of the plots produced.

;

; EXAMPLES:

; −> Dreamcatcher, [0,1], Iso=28, Fitorder=3, /Plotcal, /Printcolor

;

; OUTPUTS:

; −> A single compressed data file named ”calibrated ∗∗sio.dat.gzip”

; containing the reduced and calibrated science data in the

; directory ”∗∗sio/” wher ∗∗ is the mass number of the

; isotope set with the ’ISO’ keyword.

;

; COMMENTS:

; −> Only operates within the HYDRA 5.1 RTE.

; −> Filepath for the output directory is stored in OVERLORD and must

; be set using setdir.pro

; −> Currently only calibrates data from 3C286, 3C48 & 3C147

;

; PROCEDURES/FUNCTIONS CALLED:

; −> scdata m define.pro

; −> schead define.pro

; −> redata s define.pro

; −> redata m define.pro

;−

Pro Dreamcatcher, sesnums, Iso=iso, Rrl=rrl, Plotcal=plotcal, $

Printcolor=printcolor, Fitorder=fitorder, Calfitorder=calfitorder

Compile opt idl2

Common overlord

Common rtype

Common pspex

152

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 2.1 written by: N.N. Monson (UCLA). 5 June, 2014

;>>>>> Version 2.2 written by: N.N. Monson (UCLA). 12 October, 2014

;>>>>> Version 2.3 written by: N.N. Monson (UCLA). 19 June, 2015

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 3.1 written by: N.N. Monson (UCLA). 9 December, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 4.1 (V−spec) written by: N.N. Monson (UCLA). 17 September, 2017

;>>>>> Version 4.2 (V−spec) written by: N.N. Monson (UCLA). 30 May, 2018

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 December, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 February, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Currently hardcoded to work ONLY with the receiver/spectrometer setup

;used to observe the J= 1−>0 transition of SiO. Using this program w/

;other setups will require some tweaks, namely, changing the array sizes.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

153

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Ensure input/output filepath had been set, and is in stored

;in OVERLORD. If not, then throw an error.

If Array equal(’’, overlord.dirloc) Then Begin

Print, ’>>>>> Error: Common directory not set’

Print, ’>>>>> Set common directory using Setdir.pro’

Print, ’’ & ++ keymaster

Endif

;Inialize structure(s) and/or array(s).

keymaster = 0

callsign = ’’

;Check if the /RRL keyword is set.

If Keyword set(rrl) Then Begin

;If it is, check to see if the /RRL keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If rrl Ne 1 Then Begin

Print, ’>>>>> Alert: Rrl is a binary keyword’

Print, ’>>>>> Setting rrl accordingly ...’

Print, ’’ & rrl = 1

Endif

;Ignore iso keyword if RRL keyword is set

If Keyword set(iso) Then Begin

Print, ’>>>>> Alert: Rrl keyword set, ignoring iso keyword’

Print, ’’

Endif

;set the callsign, file extension and ifreq values.

callsign = ’rrl’

Endif Else Begin

;Otherwise, Check if the ISO keyword is set

If Keyword set(iso) Then Begin

154

;Ensure the ISO keyword is a scalar and

;is a longword integer, or can be converted to one.

;If ISO is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(iso, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(iso)), /not equal) Then Begin

Print, ’>>>>> Alert: Iso keyword dimension = ’+Strtrim(iso.length,2)

Print, ’>>>>> Alert: Iso keyword type = ’+Strtrim(Typename(iso),2)

Print, ’>>>>> Error: Iso Keyword must be a longword or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert ISO to a longword

iso = Long(iso)

;And check to see if ISO is in range. If not, then throw an error.

If Array equal(iso, rtype.aivals, /not equal) Then Begin

Print, ’>>>>> Error: Iso keyword out of range’

Print, ’’ & ++ keymaster

Endif

;set the callsign

callsign = Strtrim(iso,2) + ’sio’

Endelse

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Iso keyword is not set’

Print, ’’ & ++ keymaster

Endelse

Endelse

;Check to see if FITORDER keyword has been used

If Keyword set(fitorder) Then Begin

;Ensure the FITORDER keyword is a scalar and

;is a longword integer, or can be converted to one.

;If FITORDER is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(fitorder, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(fitorder)), /not equal) Then Begin

Print, ’>>>>> Alert: Fitorder keyword dimension = ’+Strtrim(fitorder.length,2)

Print, ’>>>>> Alert: Fitorder keyword type = ’+Strtrim(Typename(fitorder),2)

155

Print, ’>>>>> Error: Fitorder Keyword must be a longword or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert FITORDER to a longword

fitorder = Long(fitorder)

;And check to see if FITORDER is in range. If not, then throw an error.

If (fitorder Lt 1) Or (fitorder Gt 7) Then Begin

Print, ’>>>>> Error: Fitorder keyword out of range’

Print, ’’ & ++ keymaster

Endif

Endelse

;Otherwise, set default value

Endif Else fitorder = 4

;Check to see if CALFITORDER keyword has been used

If Keyword set(calfitorder) Then Begin

;Ensure the CALFITORDER keyword is a scalar and

;is a longword integer, or can be converted to one.

;If CALFITORDER is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(calfitorder, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(calfitorder)), /not equal) Then Begin

Print, ’>>>>> Alert: Calfitorder keyword dimension = ’+Strtrim(calfitorder.length,2)

Print, ’>>>>> Alert: Calfitorder keyword type = ’+Strtrim(Typename(calfitorder),2)

Print, ’>>>>> Error: Calfitorder Keyword must be a longword or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert CALFITORDER to a longword

calfitorder = Long(calfitorder)

;And check to see if CALFITORDER is in range. If not, then throw an error.

If (calfitorder Lt 1) Or (calfitorder Gt 7) Then Begin

Print, ’>>>>> Error: Calfitorder keyword out of range’

Print, ’’ & ++ keymaster

Endif

Endelse

;Otherwise, set default value

Endif Else fitorder = 3

156

;Check if the /PLOTCAL keyword is set.

If Keyword set(plotcal) Then Begin

;If it is, check to see if the /PLOTCAL keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If plotcal Ne 1 Then Begin

Print, ’>>>>> Alert: Plotcal is a binary keyword’

Print, ’>>>>> Setting plotcal accordingly ...’

Print, ’’ & plotcal = 1

Endif

Endif

;Set colors to use when plotting. Inverted colors used by default.

If Keyword set(printcolor) Then Begin

pcolors = pspex.rcolors

Endif Else pcolors = pspex.icolors

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Create required directories.

; − Initialize structures for loops.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Close any open graphics windows

Purge

;Create new directory to write calibrated data to.

newdir = Strtrim(Overlord.dirloc, 2) + ’/’ + Strtrim(callsign, 2)

157

File mkdir, newdir, /noexpand path

;identify number of observations being calibrated

nsessions = sesnums.length

;Initialize structure(s) and/or array(s) for use later in the ’Kappa’ loop.

obs wtmb = Replicate(Create struct(name = ’redata s’), nsessions)

obs wtsfit = Replicate(Create struct(name = ’redata s’), nsessions)

obs twt = Replicate(Create struct(name = ’redata s’), nsessions)

keeper = Findgen(rtype.sml)

bigkeeper = Findgen(rtype.med)

;Use ’Kappa’ to keep track of which observation is being reduced.

For kappa=0, nsessions−1 Do Begin

rootpath = Strtrim(Overlord.dirloc, 2) + ’/session 0’ + $

Strtrim(sesnums[kappa],2) + ’/’ + Strtrim(callsign, 2)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Import Calibrator Data

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some jazz

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’>>>>> Importing calibrator data ...’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Print, ’>>>>> Indexing onsource spectra ...’

;Import data for the on−source calibrator scan as written by Gather.

;Repeat twice, once for the reference phase, and once for the signal phase.

Foreach phase, [’sig’, ’ref’] Do Begin

Openr, lun, Strtrim(rootpath, 2) + ’/calibrator/’ + $

Strtrim(phase, 2) + ’ phase.dat.gzip’, /get lun, /compress

time = ’’

Readf, lun, time

ncalints = 0

Readf, lun, ncalints

numtags = 0

158

Readf, lun, numtags

header = Strarr(numtags)

Readf, lun, header

tnames = Strarr(4)

Readf, lun, tnames

data = Dblarr(4, rtype.med, /nozero)

Readf, lun, data, format = ’(4’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Transpose data array

data = Transpose(data)

;Split the header into a string array

header = Strsplit(header, ’ ’, /extract)

;Make structures to put all onsource calibrator scan data into

;Do the same for the onsource calibrator scan header

If PHASE Eq ’sig’ Then Begin

oncal = Create struct(name = ’scdata m’)

oncal head = Create struct(name = ’schead’)

Endif

;Put the header into it’s structure & check for errors.

;Using EXECUTE is a little clunky, but i see no other option

;short of explicitly listing everything.

For i=0, (numtags−1) Do Begin

exe chk = Execute(’oncal head.’ + Strtrim(phase, 2) + ’.’ + $

Strtrim(header[i, 0],2) + ’ = header[i, 2]’)

If exe chk Ne 1 Then Message, ’>>>>> Error: Execution failure’

Endfor

;Put the data into it’s structure & check for errors.

;Using EXECUTE is a little clunky, but i see no other option

;short of explicitly listing everything.

For i=0, 3 Do Begin

exe chk = Execute(’oncal.’ + Strtrim(tnames[i],2) + ’ = data[∗, i]’)

If exe chk Ne 1 Then Message, ’>>>>> Error: Execution failure’

Endfor

159

Endforeach

;Print some jazz

Print, ’>>>>> ...Done’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 3: − Import Calibrator Offset Data

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some jazz

Print, ’’

Print, ’>>>>> Indexing offsource spectra ...’

;Import data for the off−source calibrator scan as written by Gather.

;Repeat twice, once for the reference phase, and once for the signal phase.

Foreach phase, [’sig’, ’ref’] Do Begin

Openr, lun, Strtrim(rootpath, 2) + ’/cal offset/’ + $

Strtrim(phase, 2) + ’ phase.dat.gzip’, /get lun, /compress

time = ’’

Readf, lun, time

ncalints = 0

Readf, lun, ncalints

numtags = 0

Readf, lun, numtags

header = Strarr(numtags)

Readf, lun, header

tnames = Strarr(4)

Readf, lun, tnames

data = Dblarr(4, rtype.med, /nozero)

Readf, lun, data, format = ’(4’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Transpose data array

data = Transpose(data)

;Split the header into a string array

header = Strsplit(header, ’ ’, /extract)

;Make structures to put all offsource calibrator scan data into

160

;Do the same for the offsource calibrator scan header

If PHASE Eq ’sig’ Then Begin

offcal = Create struct(name = ’scdata m’)

offcal head = Create struct(name = ’schead’)

Endif

;Put the header into it’s structure & check for errors.

;Using EXECUTE is a little clunky, but i see no other option

;short of explicitly listing everything.

For i=0, (numtags−1) Do Begin

exe chk = Execute(’offcal head.’ + Strtrim(phase, 2) + ’.’ + $

Strtrim(header[i, 0],2) + ’ = header[i, 2]’)

If exe chk Ne 1 Then Message, ’>>>>> Error: Execution failure’

Endfor

;Put the data into it’s structure & check for errors.

;Using EXECUTE is a little clunky, but i see no other option

;short of explicitly listing everything.

For i=0, 3 Do Begin

exe chk = Execute(’offcal.’ + Strtrim(tnames[i],2) + ’ = data[∗, i]’)

If exe chk Ne 1 Then Message, ’>>>>> Error: Execution failure’

Endfor

Endforeach

;Print some jazz

Print, ’>>>>> ...Done’

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 4: − Calculate Calibrator Temp

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s).

vrange = Create struct(name = ’sigref m’)

flux = Create struct(name = ’sigref m’)

tau = Create struct(name = ’sigref m’)

eta = Create struct(name = ’sigref m’)

tsrc = Create struct(name = ’sigref m’)

161

;Calculate the frequency range covered by the spectral windows

;for both frequency phases.

vrange.sig = [oncal head.sig.lsrfreq − (oncal head.sig.bandwid ∗ 0.6d) : $

oncal head.sig.lsrfreq + (oncal head.sig.bandwid ∗ 0.4d) : $

(oncal head.sig.bandwid) / rtype.med] / 1d9

vrange.ref = [oncal head.ref.lsrfreq − (oncal head.ref.bandwid ∗ 0.4d) : $

oncal head.ref.lsrfreq + (oncal head.ref.bandwid ∗ 0.6d) : $

(oncal head.ref.bandwid) / rtype.med] / 1d9

;Calculate calibrator flux.

Case oncal head.sig.object Of

’3C286’: Begin

;3c286 flux density as function of frequency: via Perley & Butler, 2017.

flux.sig = 10.0d ˆ ((1.2481d) + $

(−0.4507d) ∗ Alog10(vrange.sig) + $

(−0.1798d) ∗ (Alog10(vrange.sig) ˆ 2d) + $

(0.0357d) ∗ (Alog10(vrange.sig) ˆ 3d))

flux.ref = 10.0d ˆ ((1.2481d) + $

(−0.4507d) ∗ Alog10(vrange.ref) + $

(−0.1798d) ∗ (Alog10(vrange.ref) ˆ 2d) + $

(0.0357d) ∗ (Alog10(vrange.ref) ˆ 3d))

End

’3C48’: Begin

;3c48 flux density as function of frequency: via Perley & Butler, 2017.

flux.sig = 10.0d ˆ ((1.3253d) + $

(−0.7553d) ∗ Alog10(vrange.sig) + $

(−0.1914d) ∗ (Alog10(vrange.sig) ˆ 2d) + $

(0.0498d) ∗ (Alog10(vrange.sig) ˆ 3d))

flux.ref = 10.0d ˆ ((1.3253d) + $

(−0.7553d) ∗ Alog10(vrange.ref) + $

(−0.1914d) ∗ (Alog10(vrange.ref) ˆ 2d) + $

(0.0498d) ∗ (Alog10(vrange.ref) ˆ 3d))

End

’3C147’: Begin

;3c147 flux density as function of frequency: via Perley & Butler, 2017.

flux.sig = 10.0d ˆ ((1.4516d) + $

(−0.6961d) ∗ Alog10(vrange.sig) + $

162

(−0.2007d) ∗ (Alog10(vrange.sig) ˆ 2d) + $

(0.0640d) ∗ (Alog10(vrange.sig) ˆ 3d) + $

(−0.0464d) ∗ (Alog10(vrange.sig) ˆ 4d) + $

(0.0289d) ∗ (Alog10(vrange.sig) ˆ 5d))

flux.ref = 10.0d ˆ ((1.4516d) + $

(−0.6961d) ∗ Alog10(vrange.ref) + $

(−0.2007d) ∗ (Alog10(vrange.ref) ˆ 2d) + $

(0.0640d) ∗ (Alog10(vrange.ref) ˆ 3d) + $

(−0.0464d) ∗ (Alog10(vrange.ref) ˆ 4d) + $

(0.0289d) ∗ (Alog10(vrange.ref) ˆ 5d))

End

Endcase

;Caluclate aperture efficiency and zenith opacity − EXCISED FROM GBTIDL CODE

;Tau is a function of frequency and is ˜ 0.095 for SiO J = 1−0. Eta is ˜ 0.6

;Both calculations are vectorized, although I doubt it matters much

tau.sig = 0.008d + Exp(Sqrt(vrange.sig)) / (8000.0d)

tau.ref = 0.008d + Exp(Sqrt(vrange.ref)) / (8000.0d)

eta.sig = 0.71d ∗ Exp(−((4d ∗ !Dpi ∗ (vrange.sig ∗ 1d9) ∗ 3.9d−4) / (!Const.c)) ˆ 2d)

eta.ref = 0.71d ∗ Exp(−((4d ∗ !Dpi ∗ (vrange.ref ∗ 1d9) ∗ 3.9d−4) / (!Const.c)) ˆ 2d)

;Average elevation data from headers.

;It should all be the same anyway.

elev = Mean([[oncal head.sig.elevatio], $

[oncal head.ref.elevatio],$

[offcal head.sig.elevatio], $

[offcal head.ref.elevatio]])

;Calculate source temperature

;I dug this out of the NRAO’s GBTIDL calibration guide, It should

;be verifible, although I haven’t actually double checked this.

tsrc.sig = 2.84d ∗ flux.sig ∗ eta.sig ∗ Exp(−1d ∗ (tau.sig / Sin(elev)))

tsrc.ref = 2.84d ∗ flux.ref ∗ eta.ref ∗ Exp(−1d ∗ (tau.ref / Sin(elev)))

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 5: − Calculate noise tube calibration temperatures.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

163

;Initialize structure(s).

cal = Create struct(name = ’redata m’)

tcal = Create struct(name = ’redata m’)

;Calculate vector T cal & smooth, sig phase, LL pol.

;Use some gaussian smoothing to keep noise down.

cal.sig.left = ((offcal.sig.left.tube on − offcal.sig.left.tube off) + $

(oncal.sig.left.tube on − oncal.sig.left.tube off)) / $

(Gauss smooth((oncal.sig.left.tube off − offcal.sig.left.tube off) + $

(oncal.sig.left.tube on − offcal.sig.left.tube on), 3d, /edge mirror))

;Fit low order polynomial to smoothed T cal, sig phase, LL pol.

;keyword calfitorder controls polynomial order. dafault is 3.

result = Poly fit(bigkeeper[200:−201], cal.sig.left[200:−201], calfitorder, /double)

tcal.sig.left = Poly(bigkeeper, result) ∗ tsrc.sig

;Calculate vector T cal & smooth, ref phase, LL pol.

;Use some gaussian smoothing to keep noise down.

cal.ref.left = ((offcal.ref.left.tube on − offcal.ref.left.tube off) + $

(oncal.ref.left.tube on − oncal.ref.left.tube off)) / $

(Gauss smooth((oncal.ref.left.tube off − offcal.ref.left.tube off) + $

(oncal.ref.left.tube on − offcal.ref.left.tube on), 3d, /edge mirror))

;Fit low order polynomial to smoothed T cal, ref phase, LL pol.

;keyword calfitorder controls polynomial order. dafault is 3.

result = Poly fit(bigkeeper[200:−201], cal.ref.left[200:−201], calfitorder, /double)

tcal.ref.left = Poly(bigkeeper, result) ∗ tsrc.ref

;Print mean T cal values, both phases, LL pol.

Print, ’’

Print, format = ’(”>>>>> mean T cal (Sig − LL Pol) = ”, f−15.2)’, $

Mean(tcal.sig.left[277:6276])

Print, format = ’(”>>>>> mean T cal (Ref − LL Pol) = ”, f−15.2)’, $

Mean(tcal.ref.left[1915:7914])

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Calculate vector T cal & smooth, sig phase, RR pol.

;Use some gaussian smoothing to keep noise down.

164

cal.sig.right = ((offcal.sig.right.tube on − offcal.sig.right.tube off) + $

(oncal.sig.right.tube on − oncal.sig.right.tube off)) / $

(Gauss smooth((oncal.sig.right.tube off − offcal.sig.right.tube off) + $

(oncal.sig.right.tube on − offcal.sig.right.tube on), 3d, /edge mirror))

;Fit low order polynomial to smoothed T cal, sig phase, RR pol.

;keyword calfitorder controls polynomial order. dafault is 3.

result = Poly fit(bigkeeper[200:−201], cal.sig.right[200:−201], calfitorder, /double)

tcal.sig.right = Poly(bigkeeper, result) ∗ tsrc.sig

;Calculate vector T cal & smooth, ref phase, RR pol.

;Use some gaussian smoothing to keep noise down.

cal.ref.right = ((offcal.ref.right.tube on − offcal.ref.right.tube off) + $

(oncal.ref.right.tube on − oncal.ref.right.tube off)) / $

(Gauss smooth((oncal.ref.right.tube off − offcal.ref.right.tube off) + $

(oncal.ref.right.tube on − offcal.ref.right.tube on), 3d, /edge mirror))

;Fit low order polynomial to smoothed T cal, ref phase, RR pol.

;keyword calfitorder controls polynomial order. dafault is 3.

result = Poly fit(bigkeeper[200:−201], cal.ref.right[200:−201], calfitorder, /double)

tcal.ref.right = Poly(bigkeeper, result) ∗ tsrc.ref

;Print mean T cal values, both phases, RR pol.

Print, ’’

Print, format = ’(”>>>>> mean T cal (Sig − RR Pol) = ”, f−15.2)’, $

Mean(tcal.sig.right[277:6276])

Print, format = ’(”>>>>> mean T cal (Ref − RR Pol) = ”, f−15.2)’, $

Mean(tcal.ref.right[1915:7914])

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 5b: − Plot the noise tube calibration data.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

If Keyword set(plotcal) Then Begin

;Close any open graphics windows

Purge

;Sig phase, raw data

165

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot the R & L polarizations together & save as a .png.

;remember the ’sig’ and ’ref’ indicies are [277:6276] & [1915:7914].

pcs sl = Plot(offcal.sig.left.tube off[277:6276], xrange=[0,6d3], xstyle=1, xminor=3, $

xmajor=7, ymajor=5, yminor=1, title=’Sig − LL Pol’, ytitle=’Counts’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,1], /current)

pcs sl = Plot(offcal.sig.left.tube on[277:6276], color=pcolors.pink, layout=[1,2,1], $

/current, /overplot)

pcs sl = Plot(oncal.sig.left.tube off[277:6276], color=pcolors.teal, layout=[1,2,1], $

/current, /overplot)

pcs sl = Plot(oncal.sig.left.tube on[277:6276], color=pcolors.orange, layout=[1,2,1], $

/current, /overplot)

ax = pcs sl.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

pcs sr = Plot(offcal.sig.right.tube off[277:6276], xrange=[0,6d3], xstyle=1, xminor=3, $

xmajor=7, ymajor=5, yminor=1, title=’Sig − RR Pol’, ytitle=’Counts’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,2], /current)

pcs sr = Plot(offcal.sig.right.tube on[277:6276], color=pcolors.pink, layout=[1,2,2], $

/current, /overplot)

pcs sr = Plot(oncal.sig.right.tube off[277:6276], color=pcolors.teal, layout=[1,2,2], $

/current, /overplot)

pcs sr = Plot(oncal.sig.right.tube on[277:6276], color=pcolors.orange, layout=[1,2,2], $

/current, /overplot)

ax = pcs sr.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/raw ’ + Strtrim(callsign, 2) + ’ sig run’+ $

Strtrim(kappa,2) + ’.png’

w.Save, Strtrim(pic name,2), resolution = 100

166

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Ref phase, raw data

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot the R & L polarizations together & save as a .png.

;remember the ’sig’ and ’ref’ indicies are [277:6276] & [1915:7914].

pcs rl = Plot(offcal.ref.left.tube off[1915:7914], xrange=[0,6d3], xstyle=1, xminor=3, $

xmajor=7, ymajor=5, yminor=1, title=’Ref − LL Pol’, ytitle=’Counts’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,1], /current)

pcs rl = Plot(offcal.ref.left.tube on[1915:7914], color=pcolors.pink, layout=[1,2,1], $

/current, /overplot)

pcs rl = Plot(oncal.ref.left.tube off[1915:7914], color=pcolors.teal, layout=[1,2,1], $

/current, /overplot)

pcs rl = Plot(oncal.ref.left.tube on[1915:7914], color=pcolors.orange, layout=[1,2,1], $

/current, /overplot)

ax = pcs rl.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

pcs rr = Plot(offcal.ref.right.tube off[1915:7914], xrange=[0,6d3], xstyle=1, xminor=3, $

xmajor=7, ymajor=5, yminor=1, title=’Ref − RR Pol’, ytitle=’Counts’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,2], /current)

pcs rr = Plot(offcal.ref.right.tube on[1915:7914], color=pcolors.pink, layout=[1,2,2], $

/current, /overplot)

pcs rr = Plot(oncal.ref.right.tube off[1915:7914], color=pcolors.teal, layout=[1,2,2], $

/current, /overplot)

pcs rr = Plot(oncal.ref.right.tube on[1915:7914], color=pcolors.orange, layout=[1,2,2], $

/current, /overplot)

ax = pcs rr.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/raw ’ + Strtrim(callsign, 2) + ’ ref run’+ $

167

Strtrim(kappa,2) + ’.png’

w.Save, Strtrim(pic name,2), resolution = 100

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Sig & Ref phases, calibration temps

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot the calculated calibration temps together & save as a .png.

;remember the ’sig’ and ’ref’ indicies are [277:6276] & [1915:7914].

ptc sb = Plot(tcal.sig.left[277:6276], color=pcolors.puke, thick=2, xrange=[0,6d3], $

xstyle=1, xminor=3, xmajor=7, yminor=1, title=’Sig Position’, ytitle=’T cal (K)’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,1], /current)

ptc sb = Plot(tcal.sig.right[277:6276], color=pcolors.pink, thick=2, layout=[1,2,1], $

/current, /overplot)

ax = ptc sb.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

ptc rb = Plot(tcal.ref.left[1915:7914], color=pcolors.puke, thick= 2, xrange=[0,6d3], $

xstyle=1, xminor=3, xmajor=7, yminor=1, title=’Ref Position’, ytitle=’T cal (K)’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,2], /current)

ptc rb = Plot(tcal.ref.right[1915:7914], color=pcolors.pink, thick= 2, layout=[1,2,2], $

/current, /overplot)

ax = ptc rb.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/tcal ’ + Strtrim(callsign, 2) + ’ run’ + $

Strtrim(kappa,2) + ’.png’

w.Save, Strtrim(pic name,2), resolution = 100

Endif

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

168

;SECTION 6: − Import Science Data

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;determine number of scans in the directory to be calibrated

com chk = File search(Strtrim(rootpath, 2) + ’/source/sigphase ∗’, count = numscans)

;Initialize structure(s) for use later in ’Master’ loop.

scan wtmb = Replicate(Create struct(name = ’redata s’), numscans)

scan wtsfit = Replicate(Create struct(name = ’redata s’), numscans)

scan twt = Replicate(Create struct(name = ’redata s’), numscans)

;Loop once for each 10 min scan.

;Use ’Master’ to count the number of loops

For master=0, (numscans−1) Do Begin

If master Eq 0 Then Begin

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’>>>>> source data import: initializing ...’

Print, ’’

Endif

Print, ’>>>>> message: importing file ’ + Strtrim(master+1, 2) + ’ of ’ + $

Strtrim(numscans,2) + ’ ...’

;Import data for the on−source scans as written by Gather.

;Repeat twice, once for the reference phase, and once for the signal phase.

Foreach phase, [’sig’, ’ref’] Do Begin

Openr, lun, Strtrim(rootpath, 2) + ’/source/’ + Strtrim(phase, 2) + $

’phase ’ + Strtrim(master, 2) + ’.dat.gzip’, /get lun, /compress

time = ’’

Readf, lun, time

numints = 0

Readf, lun, numints

numtags = 0

Readf, lun, numtags

header = Strarr(numtags)

Readf, lun, header

tnames = Strarr(4)

Readf, lun, tnames

data = Dblarr(4∗numints, rtype.med)

Readf, lun, data, format = ’(’ + Strtrim(4∗numints, 2) + rtype.format + ’)’

169

Close, lun

Free lun, lun

;Transpose data array

data = Transpose(data)

;Split the header into a string array

header = Strsplit(header, ’ ’, /extract)

;Make a structure for the scan data in this loop, and

;make another for the scan headers in this loop.

If phase Eq ’sig’ Then Begin

onsource = Replicate(Create struct(name = ’scdata m’), numints)

source head = Create struct(name = ’schead’)

Endif

;Put header into it’s structure & check for errors.

;Using EXECUTE is a little clunky, but i see no other option

;short of explicitly listing everything.

For i=0, (numtags−1) Do Begin

exe chk = Execute(’source head.’ + Strtrim(phase, 2) + ’.’ + $

Strtrim(header[i, 0],2) + ’ = header[i, 2]’)

If exe chk Ne 1 Then Message, ’>>>>> Error: Execution failure’

Endfor

;Put data into it’s structure array & check for errors.

;Using EXECUTE is a little clunky, but i see no other option

;short of explicitly listing everything.

For i=0, 3 Do Begin

exe chk = Execute(’onsource.’ + Strtrim(tnames[i],2) + $

’ = data[∗, (i∗numints):((i∗numints)+(numints−1))]’)

If exe chk Ne 1 Then Message, ’>>>>> Error: Execution failure’

Endfor

Endforeach

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 7: − Calculate Vectorized Tsys.

; − both frequency phases, LL pol.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

170

;Initialize structure(s) and/or array(s)

proxy = Replicate(Create struct(name = ’redata m’), numints)

tsys = Replicate(Create struct(name = ’redata m’), numints)

tsfit = Replicate(Create struct(name = ’redata s’), numints)

ta = Replicate(Create struct(name = ’redata s’), numints)

;Generate array of random RGB colors to use when plotting.

randomclrs = Randomcolors(numints−2)

;Initialize a graphics window w/ NONstandard dimensions.

w = Window(dimensions = pspex.windim ∗ [0.80,1.5], background color=pcolors.black)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

osleft = Replicate(Create struct(name = ’sigref m’), numints)

tcleft rb = Replicate(Create struct(name = ’sigref m’), numints)

;Rebin LL pol calibration temps.

tcleft rb.sig = Rebin(tcal.sig.left, rtype.med, numints, /sample)

tcleft rb.ref = Rebin(tcal.ref.left, rtype.med, numints, /sample)

;Calculate the tube on/off average for both phases

osleft.sig = (onsource.sig.left.tube on + onsource.sig.left.tube off) / 2.0d

osleft.ref = (onsource.ref.left.tube on + onsource.ref.left.tube off) / 2.0d

;Calculate vectorized & system temp for the on−source scans.

tsys.sig.left = (osleft.sig ∗ tcleft rb.sig) / $

(onsource.sig.left.tube on − onsource.sig.left.tube off)

tsys.ref.left = (osleft.ref ∗ tcleft rb.ref) / $

(onsource.ref.left.tube on − onsource.ref.left.tube off)

;Fit a low order polynomial to system temp for the on−source scans.

For ii=0, (numints−1) Do Begin

result = Poly fit(bigkeeper[200:−201], tsys[ii].sig.left[200:−201], fitorder, /double)

tsfit[ii].sig.left = Poly(bigkeeper[277:6276], result)

result = Poly fit(bigkeeper[200:−201], tsys[ii].ref.left[200:−201], fitorder, /double)

tsfit[ii].ref.left = Poly(bigkeeper[1915:7914], result)

171

Endfor

;Sig phase, LL pol:

;Calculate appropriate range for the ordinate & round to nearest integer.

center = Mean(Total(tsfit.sig.left ∗ (tsfit.sig.left ˆ (−2d)), 2, /double) / $

Total(tsfit.sig.left ˆ (−2d), 2, /double))

range = [Round(center)−2.0, Round(center)+2.0]

;Plot polynomial fit to T sys for ’sig’ phase, LL pol.

ptsf sl = Plot(keeper[200:−201], tsfit[0].sig.left[200:−201], xrange=[0,6d3], $

yrange=range, xstyle=1, xminor=3, xmajor=7, yminor=1, title=’Sig − LL Pol’, $

ytitle=’T sys (K)’, margin=[0.075,0.1,0.025,0.125], layout=[2,2,1], /current)

;Use FOR loop to plot all T sys fits beyond the first.

For ii=1, (numints−1) Do ptsf sl = Plot(keeper[200:−201], tsfit[ii].sig.left[200:−201], $

color=randomclrs[∗,ii−1], layout=[2,2,1], /current, /overplot)

ax = ptsf sl.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Ref phase, LL pol:

;Calculate appropriate range for the ordinate & round to nearest integer.

center = Mean(Total(tsfit.ref.left ∗ (tsfit.ref.left ˆ (−2d)), 2, /double) / $

Total(tsfit.ref.left ˆ (−2d), 2, /double))

range = [Round(center)−2.0, Round(center)+2.0]

;Plot polynomial fit to T sys for ’ref’ phase, LL pol.

ptsf rl = Plot(keeper[200:−201], tsfit[0].ref.left[200:−201], xrange=[0,6d3], $

yrange=range, xstyle=1, xminor=3, xmajor=7, yminor=1, title=’Ref − LL Pol’, $

ytitle= ’T sys (K)’, margin=[0.075,0.1,0.025,0.125], layout=[2,2,3], /current)

;Use FOR loop to plot all T sys fits beyond the first.

For ii=1, (numints−1) Do ptsf rl = Plot(keeper[200:−201], tsfit[ii].ref.left[200:−201], $

color=randomclrs[∗,ii−1], layout=[2,2,3], /current, /overplot)

ax = ptsf rl.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

172

ax[3].ticklen = ax[3].ticklen / 2.0d

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 8: − Calculate Vectorized Tsys.

; − Both frequency phases, RR pol.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

osright = Replicate(Create struct(name = ’sigref m’), numints)

tcright rb = Replicate(Create struct(name = ’sigref m’), numints)

;Rebin RR pol calibration temps.

tcright rb.sig = Rebin(tcal.sig.right, rtype.med, numints, /sample)

tcright rb.ref = Rebin(tcal.ref.right, rtype.med, numints, /sample)

;Calculate the tube on/off average for both phases

osright.sig = (onsource.sig.right.tube on + onsource.sig.right.tube off) / 2.0d

osright.ref = (onsource.ref.right.tube on + onsource.ref.right.tube off) / 2.0d

;Calculate vectorized system temp for the on−source scans.

tsys.sig.right = (osright.sig ∗ tcright rb.sig) / $

(onsource.sig.right.tube on − onsource.sig.right.tube off)

tsys.ref.right = (osright.ref ∗ tcright rb.ref) / $

(onsource.ref.right.tube on − onsource.ref.right.tube off)

;Fit a low order polynomial to system temp for the on−source scans.

For ii=0, (numints−1) Do Begin

result = Poly fit(bigkeeper[200:−201], tsys[ii].sig.right[200:−201], fitorder, /double)

tsfit[ii].sig.right = Poly(bigkeeper[277:6276], result)

result = Poly fit(bigkeeper[200:−201], tsys[ii].ref.right[200:−201], fitorder, /double)

tsfit[ii].ref.right = Poly(bigkeeper[1915:7914], result)

Endfor

;Sig phase, RR pol:

;Calculate appropriate range for the ordinate & round to nearest integer.

center = Mean(Total(tsfit.sig.right ∗ (tsfit.sig.right ˆ (−2d)), 2, /double) / $

Total(tsfit.sig.right ˆ (−2d), 2, /double))

range = [Round(center)−2.0, Round(center)+2.0]

173

;Plot polynomial fit to T sys for ’sig’ phase, RR pol.

ptsf sr = Plot(keeper[200:−201], tsfit[0].sig.right[200:−201], xrange=[0,6d3], $

yrange=range, xstyle=1, xminor=3, xmajor=7, yminor=1, title=’Sig − RR Pol’, $

ytitle=’T sys (K)’, margin=[0.075,0.1,0.025,0.125], layout=[2,2,2], /current)

;Use FOR loop to plot all T sys fits beyond the first.

For ii=1, (numints−1) Do ptsf sr = Plot(keeper[200:−201], tsfit[ii].sig.right[200:−201], $

color=randomclrs[∗,ii−1], layout=[2,2,2], /current, /overplot)

ax = ptsf sr.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Ref phase, RR pol:

;Calculate appropriate range for the ordinate & round to nearest integer.

center = Mean(Total(tsfit.ref.right ∗ (tsfit.ref.right ˆ (−2d)), 2, /double) / $

Total(tsfit.ref.right ˆ (−2d), 2, /double))

range = [Round(center)−2.0, Round(center)+2.0]

;Plot polynomial fit to T sys for ’ref’ phase, RR pol.

ptsf rr = Plot(keeper[200:−201], tsfit[0].ref.right[200:−201], xrange=[0,6d3], $

yrange=range, xstyle=1, xminor=3, xmajor=7, yminor=1, title=’Ref − RR Pol’, $

ytitle=’T sys (K)’, margin=[0.075,0.1,0.025,0.125], layout=[2,2,4], /current)

;Use FOR loop to plot all T sys fits beyond the first.

For ii=1, (numints−1) Do ptsf rr = Plot(keeper[200:−201], tsfit[ii].ref.right[200:−201], $

color=randomclrs[∗,ii−1], layout=[2,2,4], /current, /overplot)

ax = ptsf rr.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/Tsys ’ + Strtrim(callsign, 2) + ’ scan’ + $

Strtrim(master+1, 2) + ’ run’ + Strtrim(kappa,2) + ’.png’

W.Save, Strtrim(pic name,2), resolution = 100

174

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 9: − Calculate Vectorized Ta.

; − Both frequency phases, both polarizations.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;If the 100 mHz bandpass is a total of 8192 pixels, then the sig & ref peaks,

;being 20 mHz apart, must be separated by 8192 ∗ (2/10) = 1638.4 (1638)

;pixels, making them @ pixels (8192 +/− 1638) / 2, that is 3277 and 4915,

;respectively.

;The gain in the receiver gets all funky within ˜ 300 pixels of the end of

;the bandpass, so, centering the lines in the clipped data means a maximum

;window width of 6k pixels. [277:6276] & [1915:7914].

;I know it looks like I have SIG and REF mixed up here, but it’s right.

;It works out, notice below

;Calculate vectorized antenna temp for each integration in the scan:

;ll pol, sig phase.

proxy.sig.left = (osleft.sig − osleft.ref) / osleft.ref

ta.sig.left = proxy.sig.left[1915:7914] ∗ tsfit.ref.left

;ll pol, sig phase.

proxy.ref.left = (osleft.ref − osleft.sig) / osleft.sig

ta.ref.left = proxy.ref.left[277:6276] ∗ tsfit.sig.left

;rr pol, sig phase.

proxy.sig.right = (osright.sig − osright.ref) / osright.ref

ta.sig.right = proxy.sig.right[1915:7914] ∗ tsfit.ref.right

;rr pol, ref phase.

proxy.ref.right = (osright.ref − osright.sig) / osright.sig

ta.ref.right = proxy.ref.right[277:6276] ∗ tsfit.sig.right

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 10: − Convert Ta To Tmb & fold

; − Compile and store data for each scan

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Average lsrfreq values from the ’sig’ & ’ref’ position headers.

175

;these values should be the same anyway.

lsr freq = Mean([source head.sig.lsrfreq, source head.ref.lsrfreq])

;Calculate airmass & zenith opacity using the Ruze equation.

tau = 0.008d + Exp(Sqrt(lsr freq / 1d9)) / (8000.0d)

airmass = 1.0d / Sin(source head.sig.elevatio)

;calc. main beam efficiency, which is 1.37 ∗ aperture efficiency for the GBT,

;or so says the proposers guide. either way its a simple scalar, and is

;frequency independent.

eta mb = 0.973d ∗ Exp(−1d ∗ ((4d ∗ !Dpi ∗ (lsr freq) ∗ 3d−4) / (!Const.c)) ˆ 2d)

factor = Exp(tau ∗ airmass) / eta mb

;LL Pol

;Calculate the ’weighted’ antenna temp, weighting the phases of each

;integration by the inverse square of the corresponding system temp.

;This is done bin−by−bin, & results are saved to be averaged later

scan wtmb[master].sig.left = Total((factor ∗ ta.sig.left) ∗ $

(tsfit.ref.left ˆ (−2d)), 2, /double)

scan wtmb[master].ref.left = Total((factor ∗ ta.ref.left) ∗ $

(tsfit.sig.left ˆ (−2d)), 2, /double)

scan twt[master].sig.left = Total(tsfit.ref.left ˆ (−2d), 2, /double)

scan twt[master].ref.left = Total(tsfit.sig.left ˆ (−2d), 2, /double)

;Calculate the ’weighted’ system temp, weighting the phases of each

;integration by the inverse square of itsef?

;This is done bin−by−bin, & results are saved to be averaged later

;This is EXPERIMENTAL, as in it seems right, but I can’t prove it is.

; <<<Proceed with CAUTION>>>

scan wtsfit[master].sig.left = Total(tsfit.ref.left ∗ (tsfit.ref.left ˆ (−2d)), 2, /double)

scan wtsfit[master].ref.left = Total(tsfit.sig.left ∗ (tsfit.sig.left ˆ (−2d)), 2, /double)

;RR Pol

;Calculate the ’weighted’ antenna temp, weighting the phases of each

;integration by the inverse square of the corresponding system temp.

;This is done bin−by−bin, & results are saved to be averaged later

scan wtmb[master].sig.right = Total((factor ∗ ta.sig.right) ∗ $

(tsfit.ref.right ˆ (−2d)), 2, /double)

scan wtmb[master].ref.right = Total((factor ∗ ta.ref.right) ∗ $

176

(tsfit.sig.right ˆ (−2d)), 2, /double)

scan twt[master].sig.right = Total(tsfit.ref.right ˆ (−2d), 2, /double)

scan twt[master].ref.right = Total(tsfit.sig.right ˆ (−2d), 2, /double)

;Calculate the ’weighted’ system temp, weighting the phases of each

;integration by the inverse square of itsef?

;This is done bin−by−bin, & results are saved to be averaged later

;This is EXPERIMENTAL, as in it seems right, but I can’t prove it is.

; <<<Proceed with CAUTION>>>

scan wtsfit[master].sig.right = Total(tsfit.ref.right ∗ (tsfit.ref.right ˆ (−2d)), 2, /double)

scan wtsfit[master].ref.right = Total(tsfit.sig.right ∗ (tsfit.sig.right ˆ (−2d)), 2, /double)

;Print some stuff.

Print, ’’

Print, format = ’(”>>>>> weighted mean tsys (Sig − LL Pol) = ”, f−15.2)’, $

Mean(scan wtsfit[master].ref.left / scan twt[master].ref.left)

Print, format = ’(”>>>>> weighted mean tsys (Sig − RR Pol) = ”, f−15.2)’, $

Mean(scan wtsfit[master].ref.right / scan twt[master].ref.right)

Print, format = ’(”>>>>> weighted mean tsys (Ref − LL Pol) = ”, f−15.2)’, $

Mean(scan wtsfit[master].sig.left / scan twt[master].sig.left)

Print, format = ’(”>>>>> weighted mean tsys (Ref − RR Pol) = ”, f−15.2)’, $

Mean(scan wtsfit[master].sig.right / scan twt[master].sig.right)

Print, ’’

Print, ’>>>>> ...Done’

Print, ’’

Endfor

;Print some stuff.

Print, ’>>>>> source data import: ...Done’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 11: − Average data for all scans

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;LL Pol

;Sum the weight and weighted tmb values for each scan into a single array

obs wtmb[kappa].sig.left = Total(scan wtmb.sig.left, 2, /double)

obs wtmb[kappa].ref.left = Total(scan wtmb.ref.left, 2, /double)

177

obs wtsfit[kappa].sig.left = Total(scan wtsfit.sig.left, 2, /double)

obs wtsfit[kappa].ref.left = Total(scan wtsfit.ref.left, 2, /double)

obs twt[kappa].sig.left = Total(scan twt.sig.left, 2, /double)

obs twt[kappa].ref.left = Total(scan twt.ref.left, 2, /double)

;RR Pol

;Sum the weight and weighted tmb values for each scan into a single array

obs wtmb[kappa].sig.right = Total(scan wtmb.sig.right, 2, /double)

obs wtmb[kappa].ref.right = Total(scan wtmb.ref.right, 2, /double)

obs wtsfit[kappa].sig.right = Total(scan wtsfit.sig.right, 2, /double)

obs wtsfit[kappa].ref.right = Total(scan wtsfit.ref.right, 2, /double)

obs twt[kappa].sig.right = Total(scan twt.sig.right, 2, /double)

obs twt[kappa].ref.right = Total(scan twt.ref.right, 2, /double)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 12: − Plot the results for each observation

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize array(s)

ptsys = Create struct(name = ’lrpol s’)

;Calculate system temps for both polarizations.

ptsys.left = Total([[obs wtsfit[kappa].sig.left],[obs wtsfit[kappa].ref.left]], 2, /double) $

/ Total([[obs twt[kappa].sig.left],[obs twt[kappa].ref.left]],2, /double)

ptsys.right = Total([[obs wtsfit[kappa].sig.right],[obs wtsfit[kappa].ref.right]], 2, /double) $

/ Total([[obs twt[kappa].sig.right],[obs twt[kappa].ref.right]],2, /double)

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot the system temps for both polarizations & save as a .png. This is

;purely for reference later on & to provide visual confirmation nothing went haywire.

pts l = Plot(keeper[200:−201], ptsys.left[200:−201], color=pcolors.puke, xrange=[0,6d3], $

xstyle=1, xminor=3, xmajor=7, yminor=1, ytitle=’T sys (K)’, title=’LL Pol’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,1], /current)

178

ax = pts l.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2.0d

pts r = Plot(keeper[200:−201], ptsys.right[200:−201], color=pcolors.pink, xrange=[0,6d3], $

xstyle=1, xminor=3, xmajor=7, yminor=1, ytitle=’T sys (K)’, title=’RR Pol’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,2], /current)

ax = pts r.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/tsys ’ + Strtrim(callsign, 2) + ’ obs’ + $

Strtrim(kappa,2) + ’.png’

w.Save, Strtrim(pic name,2), resolution = 100

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize array(s)

pta = Create struct(name = ’lrpol s’)

;Calculate main beam temps for both polarizations.

pta.left = Total([[obs wtmb[kappa].sig.left],[obs wtmb[kappa].ref.left]], 2, /double) $

/ Total([[obs twt[kappa].sig.left],[obs twt[kappa].ref.left]],2, /double)

pta.right = Total([[obs wtmb[kappa].sig.right],[obs wtmb[kappa].ref.right]], 2, /double) $

/ Total([[obs twt[kappa].sig.right],[obs twt[kappa].ref.right]],2, /double)

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot the main beam temps for both polarizations & save as a .png. This is

;purely for reference later on & to provide visual confirmation nothing went haywire.

ptmb l = Plot(keeper[200:−201], pta.left[200:−201], color=pcolors.puke, xrange=[0,6d3], $

xstyle=1, xminor=3, xmajor=7, yminor=1, ytitle=’T sys (K)’, title=’LL Pol’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,1], /current)

179

ax = ptmb l.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2.0d

ptmb r = Plot(keeper[200:−201], pta.right[200:−201], color=pcolors.pink, xrange=[0,6d3], $

xstyle=1, xminor=3, xmajor=7, yminor=1, ytitle=’T sys (K)’, title=’RR Pol’, $

margin=[0.075,0.1,0.025,0.125], layout=[1,2,2], /current)

ax = ptmb r.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/tmb ’ + Strtrim(callsign, 2) + ’ obs’ + $

Strtrim(kappa,2) + ’.png’

w.Save, Strtrim(pic name,2), resolution = 100

;As of version 5.1, the old infrastructure has been remved, in an attempt to clean things

;up and prepare the code for publication. A version of the code retaining the old

;infrastructure was retained, and named dreamcatcher unaltered.pro.

;I think it is worth averaging things together by ’ref’ and ’sig’ values, whereas you are

;currently doing to via the polarization. It SHOULD be exactly the same, but it might look

;nicer, or reveal somthing interesting that might otherwise be lost

Endfor

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 13: − Average data for all observations

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize array(s)

spinal tmb = Dblarr(rtype.sml, /nozero)

smoo spinal = Dblarr(rtype.sml, /nozero)

;Average all observations together. the main beam temperature is already weighted

;by the inverse square of the system temperature, so the sum must be normalized by the

;sum of the weights (the inverse square of the system temperature) which is carried

180

;out of the loops as the structure ’obs twt’

spinal tmb = Total([[obs wtmb.sig.left],[obs wtmb.sig.right], $

[obs wtmb.ref.left],[obs wtmb.ref.right]], 2, /double) / $

Total([[obs twt.sig.left],[obs twt.sig.right],$

[obs twt.ref.left],[obs twt.ref.right]], 2, /double)

smoo spinal = Convol(spinal tmb, Savgol(40,40,0,3))

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot the final spectrum.

ptspin a = Plot(keeper[49:−50], spinal tmb[49:−50], color=pcolors.pink, xrange=[0,6d3], $

xmajor=7, xminor=1, yminor=3, font size=11, ytitle=’T mb (K)’, $

margin=[0.045,0.05,0.015,0.03], /current)

ptspin a = Plot(keeper[49:−50], smoo spinal[49:−50], color=pcolors.puke, $

thick=2, /current, /overplot)

ax = ptspin a.axes

ax[2].minor = 0.0d

ax[2].ticklen = ax[2].ticklen / 2.0d

ax[3].minor = 0.0d

ax[3].ticklen = ax[3].ticklen / 2.0d

;Save graphic as .png file.

pic name = Strtrim(newdir,2) + ’/finalline ’ + Strtrim(callsign, 2) + ’.png’

w.Save, Strtrim(pic name,2), resolution = 100

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 14: − Save data to .dat.gzip file

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize array(s)

tvlsr = Dblarr(rtype.med, /nozero)

vlsr = Dblarr(rtype.sml, /nozero)

;Convert the abscissa values from frequency to velocity

tvlsr = [source head.sig.lsrfreq − (source head.sig.bandwid ∗ 0.6d) : $

source head.sig.lsrfreq+ (source head.sig.bandwid ∗ 0.4d) : $

(source head.sig.bandwid) / rtype.med]

181

tvlsr = !Const.c ∗ (1d − (Temporary(tvlsr)) / (source head.sig.lsrfreq))

vlsr = tvlsr[1915:7914] / 1d3

;Export data to ASCII files. Build & insert standard size header Repeat

;only once, writing all ’ref’ phase and ’sig’ phase data into a single file.

Openw, lun, Strtrim(newdir,2) + ’/calibrated ’ + Strtrim(callsign, 2) + $

’.dat.gzip’, /get lun, /compress

Printf, lun, Strtrim(Systime(), 2)

Printf, lun, [[nsessions], [N tags(source head.sig)]]

Help, source head.sig, output = pshead

pphead = Strsplit(pshead[1:−1], ” ’”, /extract)

Printf, lun, Transpose(pphead)

Printf, lun, [[’vlsr’], [’t mb’]]

Printf, lun, Transpose([[vlsr], [spinal tmb]]), format = ’(2’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Print some jazz and end.

Print, ’’

Print, ’>>>>> ...Done’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

182

14.7 Outerlimits.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Event handler used by the outerlimits.pro GUI.

;−

Function Olmd uv, owin, x, y, ibutton, keymods, nclicks

Compile opt IDL2, hidden

Common lspex

Common pspex

On error, 2

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 9 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 22 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 27 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 13 January, 2019

;Set STATE variables.

state = owin.uvalue

State.mouse = ibutton

;Set a few proxy variables, to ensure they aren’t unwittingly alterd

;in the common variable block

numlims = State.numlims

last = State.last

pline = State.pline

;Keymod 2 is the control key, and 8 is the alt/command key.

Case keymods Of

;If the CTRL key and left mouse button are down...

2:Begin

If State.mouse Eq 1 Then Begin

183

;Check if the mouse position along the abscissa is less than the

;last time (if there was a last time).

If x Gt last Then Begin

;If it is, save the current mouse position (in device coordinates) for reuse.

State.last = x

;Get the coordinates of the current and last mouse positions and

;convert the coordinates to data values.

new = pline.Convertcoord(x,y, /device, /to data)

new = new[0]

old = pline.Convertcoord(last,y, /device, /to data)

old = old[0]

;Set the window created by Outerlimits.pro as the current window,

;and plot a vertical line at the current mouse position.

owin.Setcurrent

fpfive = Plot([new, new], [State.ymin − Abs(20 ∗ State.ymin), $

State.ymax + Abs(20 ∗ State.ymax)], color=pcolors.teal, linestyle=2, $

thick=1.5, /current, /overplot)

owin.Refresh

;Add the current mouse position to the list of previous positions

;and increment the loop counter by one.

State.xarr.Add, new[0], /extract

++ State.numlims

;Plot each new bounded region as a different color.

If (numlims Mod 2) Eq 0 Then Begin

owin.Setcurrent

fpsix = Plot(State.indep[old:new], State.dep[old:new], color=pcolors.teal, $

thick=1.5, /overplot, /current)

owin.Refresh

Endif

Endif Else Begin

;Otherwise, discard it and start over.

Print, ’>>>>> Warning: Entry out of range’

Print, ’>>>>> Discarding last entry...’

Endelse

184

Endif

End

;If the ALT/CMD key and left mouse button are down...

8:Begin

;Check to see if at least one region has been selected.

If numlims Gt 1 Then Begin

;If there are an odd number of limits, then discard the last

;one and decrement the loop counter by one.

If (numlims Mod 2) Eq 1 Then Begin

Print, ’>>>>> Warning: Odd number of limits detected’

Print, ’>>>>> Discarding last entry...’

State.xarr.Remove, −1

−− numlims

Endif

;If so, set STATE.done variable to ’y’ to exit the fitting GUI.

Print, ’>>>>> Alert: Fitting regions set...’

State.done = ’y’

Endif Else Begin

;Otherwise, Complain because no regions have been set.

Print, ’>>>>> Error: No fitting regions set’

Endelse

End

;if any keymod other than 8 or 2 is down, then complain.

Else: Print, ’>>>>> Error: Invalid keymod’

Endcase

;After selecting the fitting regions, save data to lspex,

;so it is available to Polybase.pro and Dreamweaver.pro.

If State.done Eq ’y’ Then Begin

;Remove any existing items from the .xlims list in lspex,

;then store new fit data in the now empty .xlims list

exe2 = Execute(’lspex.’+Strtrim(State.sign,2) + ’.xlims.remove, /all’)

exe3 = Execute(’lspex.’+Strtrim(State.sign,2) + ’.xlims.add, STATE.xarr, /extract’)

;Copy the total number of limits to the lspex structure.

exc4 = Execute(’lspex.’+Strtrim(State.sign,2) + ’.numlims = numlims’)

If ˜ Array equal(1, [exc2, exc3, exc4]) Then Message, ’>>>>> Error: execution failure’

185

;Close the window and print some stuff.

owin.Close

Print, ’’

Print, ’>>>>> ...Done’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

;If state.done isn’t set to ’y’, then save all the state variables back to

;the OWIN structure for reuse.

Endif Else owin.uvalue = state

Return, 0

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME

; Outerlimits

; HYDRA Version 5.1

;

; PURPOSE

; −> Define the regions used to be used by Polybase.pro when fitting and

; subtracting structure in the spectra.

;

; CALLING SEQUENCE

; −> Outerlimits, Iso=value, Dtype=string [, /Rrl, /Lowsnr, /Crapshoot, /Zoom]

;

; ARGUMENT(S)

; −> None.

;

; KEYWORD(S)

; −> Iso: The mass number of the isotope for which data will be loaded and plotted.

; ∗ Acceptable values: ’28’, ’29’, ’30’.

;

; −> Dtype: A string specifying the type of data to be loaded and plotted.

; ∗ Acceptable values: ’calibrated’, ’baselined’, ’rectified’

;

186

; OPTIONAL KEYWORD(S)

; −> Rrl (binary): Set to load and plot rrl data. Overrides ISO keyword.

;

; −> Zoom (binary): Set to restrict the range of the ordinate when plotting.

;

; −> Lowsnr (binary): Set to increase the degree to which the spectum is smoothed

; before it is plotted. Useful when fitting rare isotopologues or weak sources.

;

; −> Crapshoot (binary): Set to drastically increase the degree to which the

; spectum is smoothed before it is plotted. Overrides LOWSNR keyword.

; NOTE: This much smoothing should be avoided whenever possible.

;

; −> Printcolor (binary): Changes the color scheme of the plots produced.

;

; EXAMPLE(S)

; −> Outerlimits, Iso=29, Dtype=’calibrated’, /Lowsnr

;

; OUTPUT(S)

; −> None. Stores all data in LSPEX common variable.

;

; COMMENTS

; −> Operates only within the HYDRA 5.1 RTE.

; −> Filepath for the input/output directory is stored in OVERLORD

; and must be set using setdir.pro

;

; PROCEDURES/FUNCTIONS CALLED

; −> Olmd Uv.pro

; −> Datatool s define.pro

;−

Pro Outerlimits, Iso=iso, Dtype=dtype, Rrl=rrl, Zoom=zoom, $

Lowsnr=lowsnr, Crapshoot=crapshoot, Printcolor=printcolor

Compile opt IDL2

Common overlord

Common rtype

Common lspex

Common pspex

On error, 0

!Except = 1

187

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;The /ZOOM keyword should be used whenever previously baselined data is

;being plotted, as the the edges of the spectrum often have extreme values.

;If /ZOOM is not set, the default range on the ordinate will be too large

;for the emission features to be seen.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Inialize structure(s) and/or array(s).

keymaster = 0

188

callsign = ’’

scsign = ’’

;Ensure input/output filepath had been set, and is in stored

;in OVERLORD. If not, then throw an error.

If Array equal(’’, overlord.dirloc) Then Begin

Print, ’>>>>> Error: Common directory not set’

Print, ’>>>>> Set common directory using Setdir.pro’

Print, ’’ & ++ keymaster

Endif

;Check if the /RRL keyword is set

If Keyword set(RRL) Then Begin

;If it is, check to see if the /RRL keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If rrl Ne 1 Then Begin

Print, ’>>>>> Alert: Rrl is a binary keyword’

Print, ’>>>>> Setting rrl accordingly ...’

Print, ’’ & RRL = 1

Endif

;Ignore iso keyword if RRL keyword is set

If Keyword set(iso) Then Begin

Print, ’>>>>> Alert: Rrl keyword set, ignoring iso keyword’

Print, ’’

Endif

;set callsign(s)

callsign = ’rrl’

scsign = ’rrl’

Endif Else Begin

;Otherwise, check if the ISO keyword is set

If Keyword set(iso) Then Begin

;If it is, Ensure the ISO keyword is a scalar and

;is a longword integer, or can be converted to one.

;If ISO is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(iso, /scalar)) || $

189

Array equal(1, rtype.adtypes.Contains(Typename(iso)), /not equal) Then Begin

Print, ’>>>>> Alert: Iso keyword dimension = ’+Strtrim(iso.length,2)

Print, ’>>>>> Alert: Iso keyword type = ’+Strtrim(Typename(iso),2)

Print, ’>>>>> Error: Iso Keyword must be an integer or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert ISO to a longword

iso = Long(iso)

;And check to see if ISO is in range. If not, then throw an error.

If Array equal(iso, rtype.aivals, /not equal) Then Begin

Print, ’>>>>> Error: Iso keyword out of range’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, set callsign(s)

callsign = Strtrim(iso,2) + ’sio’

scsign = ’s’ + Strtrim(iso,2)

Endelse

Endelse

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Iso keyword not set’

Print, ’’ & ++ keymaster

Endelse

Endelse

;Check if the DTYPE keyword is set.

If Keyword set(dtype) Then Begin

;Ensure DTYPE is a string and is is an acceptable value.

;If not, then throw an error.

Case dtype Of

’cal’: dtype = ’calibrated’

’base’: dtype = ’baselined’

’rec’: dtype = ’rectified’

Else: Begin

If Isa(dtype, /string) Then Begin

Print, ’>>>>> Error: Dtype keyword invalid’

Endif Else Print, ’>>>>> Error: Dtype keyword must be a string’

190

Print, ’’ & ++ keymaster

End

Endcase

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Dtype keyword not set’

Print, ’’ & ++ keymaster

Endelse

;Check if the /CRAPSHOOT keyword is set.

If Keyword set(crapshoot) Then Begin

;If it is, check to see if the /CRAPSHOOT keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If crapshoot Ne 1 Then Begin

Print, ’>>>>> Alert: Crapshoot is a binary keyword’

Print, ’>>>>> Setting crapshoot accordingly ...’

Print, ’’ & crapshoot = 1

Endif

;Set /LOWSNR. /CRAPSHOOT requires /LOWSNR to be set concurrently.

lowsnr = 1

Endif Else Begin

;Check if the /LOWSNR keyword is set.

If Keyword set(lowsnr) Then Begin

;If it is, check to see if the /LOWSNR keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If lowsnr Ne 1 Then Begin

Print, ’>>>>> Alert: Lowsnr is a binary keyword’

Print, ’>>>>> Setting lowsnr accordingly ...’

Print, ’’ & lowsnr = 1

Endif

Endif

Endelse

;Check if the /ZOOM keyword is set.

If Keyword set(zoom) Then Begin

191

;If it is, check to see if the /ZOOM keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If Zoom Ne 1 Then Begin

Print, ’>>>>> Alert: Zoom is a binary keyword’

Print, ’>>>>> Setting zoom accordingly ...’

Print, ’’ & zoom = 1

Endif

Endif

;Set colors to use when plotting. Inverted colors used by default.

If Keyword set(printcolor) Then Begin

pcolors = pspex.rcolors

Endif Else pcolors = pspex.icolors

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise, close all open graphics windows and continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Purge

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Load data

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

raw = Create struct(name = ’datatool s’)

;Define path to the folder to load data from.

rootpath = Strtrim(Overlord.dirloc,2) + ’/’ + Strtrim(callsign,2)

192

;Print some stuff.

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’>>>>> Loading ’ + Strtrim(callsign,2) + ’ data...’

;Load data for the target spectrum.

Openr, lun, Strtrim(rootpath,2) + ’/’ + Strtrim(dtype,2) + ’ ’ + $

Strtrim(callsign,2) + ’.dat.gzip’, /get lun, /compress

time = ’’

Readf, lun, time

nessions = 0

Readf, lun, nsessions

numtags = 0

Readf, lun, numtags

header = Strarr(numtags)

Readf, lun, header

names = Strarr(2)

Readf, lun, names

data = Dblarr(2, rtype.sml, /nozero)

Readf, lun, data, format = ’(2’ + rtype.format +’)’

Close, lun

Free lun, lun

;Put the unbaselined tmb data into it’s structure.

raw.wild = Transpose(data[1,∗])

;Print some stuff

Print, ’>>>>> ...Done’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Smooth data

; − Calculate plotting range of the ordinate

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

keeper = Dindgen(rtype.sml)

;Smooth the spectrum, and place it in it’s structure w/ the unsmoothed data.

;Use keywords to determine how much to smooth the spectrum.

193

;Savitzy−Golay smoothing is used, as it preserves peak shapes the best.

If Keyword set(lowsnr) Then Begin

If Keyword set(crapshoot) Then Begin

;If /CRAPSHOOT is set, smooth as much as you can get away with.

;This much smoothing should be avoided if possible.

Case callsign Of

’28sio’:slevel = Savgol(45,45,0,3)

’29sio’:slevel = Savgol(65,65,0,3)

’30sio’:slevel = Savgol(75,75,0,3)

’rrl’:slevel = Savgol(100,100,0,3)

Endcase

Endif Else Begin

;If only /LOWSNR is set, smooth by quite a bit,

;but less than if /CRAPSHOOT was set.

Case callsign Of

’28sio’:slevel = Savgol(40,40,0,4)

’29sio’:slevel = Savgol(60,60,0,4)

’30sio’:slevel = Savgol(70,70,0,4)

’rrl’:slevel = Savgol(100,100,0,3)

Endcase

Endelse

;Smooth the spectrum.

raw.tame = Convol(raw.wild, slevel)

Endif Else Begin

;If neither keywords are set, smooth by a moderate ammount.

;The spectra are always smoothed by at least this much,

;even if the SNR is good, it helps with setting the fitting limits.

Case callsign Of

’28sio’:slevel = Savgol(30,30,0,4)

’29sio’:slevel = Savgol(50,50,0,4)

’30sio’:slevel = Savgol(60,60,0,4)

’rrl’:slevel = Savgol(100,100,0,3)

Endcase

;Smooth the spectrum.

raw.tame = Convol(raw.wild, slevel)

Endelse

194

;Try and calculate some good limits for the ordinate when plotting.

;This technique is a little bit crude, and doesn’t always work well.

;Check if the /Zoom keyword is set

If Keyword set(zoom) Then Begin

;If it is, Ignore a large section on each edge of the spectrum and

;calculate the limits of the ordinate based on the center of the spectrum.

m = Mean(raw.tame[1000:−1001])

ylo = m − (1.2 ∗ (m − Min(raw.tame[1000:−1001])))

yhi = m + (1.2 ∗ (Max(raw.tame[1000:−1001]) − m))

Endif Else Begin

;Otherwise, Adopt a more conservative approach.

m = Mean(raw.tame[500:−501])

ylo = m − (2.0 ∗ (m − Min(raw.tame[500:−501])))

yhi = m + (2.0 ∗ (Max(raw.tame[500:−501]) − m))

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Plot data

; − Initialize fitting GUI

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some stuff.

Print, ”>>>>> Launching fitting GUI...”

Print, ’’

Print, ”>>>>> Alert: ’ctrl’ + left click to set regions”

Print, ”>>>>> Alert: ’alt/cmd’ + left click to finsh”

Print, ’’

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions = pspex.windim, background color = pcolors.black)

;Plot a dotted line at 0K, just for visual reference.

fpzero = Plot(keeper, Replicate(0d, rtype.sml), color=pcolors.white, thick=1, $

linestyle=1, /current , /overplot)

;Plot the smoothed spectrum

fpone = Plot(keeper[100:−101], raw.tame[100:−101], color=pcolors.puke, $

xrange=[0,rtype.sml], yrange=[ylo,yhi], xstyle=1, xmajor=7, xminor=3, ystyle=1, $

195

yminor=3, ytitle=’Tmb (K)’, font size=11, margin = [0.04,0.05,0.015,0.03], /current)

ax = fpone.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2d

;set olmd uv as the event handler for the graphics window,

;and set initial vaues for variables.

w.window.mouse down handler = ’olmd uv’

w.window.uvalue={ dep: stmb, $

indep: keeper, $

last: 0d, $

index: 0, $

mouse: 1, $

xarr: List(), $

ymin: ylo, $

ymax: yhi, $

pline: fpone, $

sign: scsign, $

done: ’n’ }

;Check LSPEX and see if there is any limit data stored there.

exe chk = Execute(’limits = lspex.’ + scsign + ’.xlims.toarray()’)

If exe chk Ne 1 Then Message, ’>>>>> Error: execution failure’

;If there is limit data in LSPEX, then plot it for reference when re−fitting data.

If ˜ Isa(limits, /null) Then Begin

For ii=0, limits.length−1 Do Begin

;Dont plot anything if it is out of range. This was an issue in previous versions,

;but is largely vestigal at this point. Ill leave it, just in case.

If limits[ii] Lt stmb.length Then Begin

;Plot the limits of the previous fit.

fptwo = Plot([limits[ii], limits[ii]], [ylo−Abs(20∗ylo), yhi+Abs(20∗yhi)], $

color=pcolors.orange, linestyle=1, thick=2, /current, /overplot)

;Plot each new bounded region as a different color, just to make things look nice.

If (ii Mod 2) Eq 1 Then Begin

196

fpthree = Plot(keeper[limits[ii−1]:limits[ii]], raw.tame[limits[ii−1]:limits[ii]], $

color=pcolors.pink, linestyle=0, thick=1.5, /current, /overplot)

Endif

Endif

Endfor

Endif

End

197

14.8 Polybase.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME

; Polybase

; HYDRA Version 5.1

;

; PURPOSE

; −> Fit a polynomial to the regions selected using Outerlimits.pro, and use this

; fit to remove baseline structure from the spectrum.

;

; CALLING SEQUENCE

; −> Polybase, Iso=value, Dtype=string [, /Rrl, /Lowsnr, /Crapshoot, /Zoom]

;

; ARGUMENT(S)

; −> None.

;

; KEYWORD(S)

; −> Iso: The mass number of the isotope for which data will be loaded and plotted.

; ∗ Acceptable values: ’28’, ’29’, ’30’.

;

; −> Dtype: A string specifying the type of data to be loaded and plotted.

; ∗ Acceptable values: ’calibrated’, ’baselined’, ’rectified’

;

; OPTIONAL KEYWORD(S)

; −> Rrl (binary): Set to load and plot rrl data. Overrides ISO keyword.

;

; −> Zoom (binary): Set to restrict the range of the ordinate when plotting.

;

; −> Lowsnr (binary): Set to increase the degree to which the spectum is smoothed

; before it is plotted. Useful when fitting rare isotopologues or weak sources.

;

198

; −> Crapshoot (binary): Set to drastically increase the degree to which the

; spectum is smoothed before it is plotted. Overrides LOWSNR keyword.

; NOTE: This much smoothing should be avoided whenever possible.

;

; −> Printcolor (binary): Changes the color scheme of the plots produced.

;

; EXAMPLE(S)

; −> Polybase, Iso=29, Dtype=’calibrated’, /Lowsnr

;

; OUTPUT(S)

; −> A single compressed data file named ”Baselined ∗∗∗.dat.gzip” containing

; the baseline subtracted spectrum.

;

; COMMENTS

; −> Operates only within the HYDRA 5.1 RTE.

; −> Filepath for the input/output directory is stored in OVERLORD

; and must be set using setdir.pro

;

; PROCEDURES/FUNCTIONS CALLED

; −> None

;−

Pro Polybase, Iso=iso, Dtype=dtype, Rrl=rrl, Zoom=zoom, $

Lowsnr=lowsnr, Crapshoot=crapshoot, Printcolor=printcolor

Compile opt IDL2

Common overlord

Common rtype

Common lspex

Common pspex

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

199

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;The /ZOOM keyword should be used whenever previously baselined data is

;being plotted, as the the edges of the spectrum often have extreme values.

;If /ZOOM is not set, the default range on the ordinate will be too large

;for the emission features to be seen.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Inialize structure(s) and/or array(s).

keymaster = 0

callsign = ’’

scsign = ’’

;Ensure input/output filepath had been set, and is in stored

;in OVERLORD. If not, then throw an error.

If Array equal(’’, overlord.dirloc) Then Begin

Print, ’>>>>> Error: Common directory not set’

Print, ’>>>>> Set common directory using Setdir.pro’

200

Print, ’’ & ++ keymaster

Endif

;Check if the /RRL keyword is set

If Keyword set(RRL) Then Begin

;If it is, check to see if the /RRL keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If rrl Ne 1 Then Begin

Print, ’>>>>> Alert: Rrl is a binary keyword’

Print, ’>>>>> Setting rrl accordingly ...’

Print, ’’ & RRL = 1

Endif

;Ignore iso keyword if RRL keyword is set

If Keyword set(iso) Then Begin

Print, ’>>>>> Alert: Rrl keyword set, ignoring iso keyword’

Print, ’’

Endif

;set callsign(s)

callsign = ’rrl’

scsign = ’rrl’

Endif Else Begin

;Otherwise, check if the ISO keyword is set

If Keyword set(iso) Then Begin

;If it is, Ensure the ISO keyword is a scalar and

;is a longword integer, or can be converted to one.

;If ISO is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(iso, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(iso)), /not equal) Then Begin

Print, ’>>>>> Alert: Iso keyword dimension = ’+Strtrim(iso.length,2)

Print, ’>>>>> Alert: Iso keyword type = ’+Strtrim(Typename(iso),2)

Print, ’>>>>> Error: Iso Keyword must be an integer or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, convert ISO to a longword

iso = Long(iso)

201

;And check to see if ISO is in range. If not, then throw an error.

If Array equal(iso, rtype.aivals, /not equal) Then Begin

Print, ’>>>>> Error: Iso keyword out of range’

Print, ’’ & ++ keymaster

Endif Else Begin

;Otherwise, set callsign(s)

callsign = Strtrim(iso,2) + ’sio’

scsign = ’s’ + Strtrim(iso,2)

Endelse

Endelse

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Iso keyword not set’

Print, ’’ & ++ keymaster

Endelse

Endelse

;Ensure fit region limits have been set, and are stored in LSPEX.

test = Execute(’limits = lspex.’ + scsign + ’.xlims.toarray()’)

If Isa(limits, /null) Then Begin

Print, ’>>>>> Error: No fit limits found in memory’

Print, ’>>>>> Set fit limits using Outerlimits.pro’

Print, ’’ & ++ keymaster

Endif

;Check if the DTYPE keyword is set.

If Keyword set(dtype) Then Begin

;Ensure DTYPE is a string and is is an acceptable value.

;If not, then throw an error.

Case dtype Of

’cal’: dtype = ’calibrated’

’base’: dtype = ’baselined’

’rec’: dtype = ’rectified’

Else: Begin

If Isa(dtype, /string) Then Begin

Print, ’>>>>> Error: Dtype keyword invalid’

Endif Else Print, ’>>>>> Error: Dtype keyword must be a string’

202

Print, ’’ & ++ keymaster

End

Endcase

Endif Else Begin

;Otherwise, throw an error.

Print, ’>>>>> Error: Dtype keyword not set’

Print, ’’ & ++ keymaster

Endelse

;Check if the /CRAPSHOOT keyword is set.

If Keyword set(crapshoot) Then Begin

;If it is, check to see if the /CRAPSHOOT keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If crapshoot Ne 1 Then Begin

Print, ’>>>>> Alert: Crapshoot is a binary keyword’

Print, ’>>>>> Setting crapshoot accordingly ...’

Print, ’’ & crapshoot = 1

Endif

;Set /LOWSNR. /CRAPSHOOT requires /LOWSNR to be set concurrently.

lowsnr = 1

Endif Else Begin

;Check if the /LOWSNR keyword is set.

If Keyword set(lowsnr) Then Begin

;If it is, check to see if the /LOWSNR keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If lowsnr Ne 1 Then Begin

Print, ’>>>>> Alert: Lowsnr is a binary keyword’

Print, ’>>>>> Setting lowsnr accordingly ...’

Print, ’’ & lowsnr = 1

Endif

Endif

Endelse

;Check if the /ZOOM keyword is set.

If Keyword set(zoom) Then Begin

203

;If it is, check to see if the /ZOOM keyword is set to anything other than 1.

;If necessary, change it to 1 to ensure compatibility with logical operators.

If Zoom Ne 1 Then Begin

Print, ’>>>>> Alert: Zoom is a binary keyword’

Print, ’>>>>> Setting zoom accordingly ...’

Print, ’’ & zoom = 1

Endif

Endif

;Set colors to use when plotting. Inverted colors used by default.

If Keyword set(printcolor) Then Begin

pcolors = pspex.rcolors

Endif Else pcolors = pspex.icolors

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: Status Red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise, close all open graphics windows and continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Purge

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Load data

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

raw = Create struct(name = ’datatool s’)

bled = Create struct(name = ’datatool s’)

;Define path to the folder to load data from.

rootpath = Strtrim(Overlord.dirloc,2) + ’/’ + Strtrim(callsign,2)

204

;Print some stuff.

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’>>>>> Loading ’ + Strtrim(callsign,2) + ’ data...’

;Load data for the target spectrum.

Openr, lun, Strtrim(rootpath,2) + ’/’ + Strtrim(dtype,2) + ’ ’ + $

Strtrim(callsign,2) + ’.dat.gzip’, /get lun, /compress

time = ’’

Readf, lun, time

nessions = 0

Readf, lun, nsessions

numtags = 0

Readf, lun, numtags

header = Strarr(numtags)

Readf, lun, header

names = Strarr(2)

Readf, lun, names

data = Dblarr(2, rtype.sml, /nozero)

Readf, lun, data, format = ’(2’ + rtype.format + ’)’

Close, lun

Free lun, lun

;Put the unbaselined tmb data into it’s structure.

raw.wild = Transpose(data[1,∗])

;Print some stuff

Print, ’>>>>> ...Done’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Smooth data

; − Calculate plotting range of the ordinate

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

keeper = Lindgen(rtype.sml)

;Smooth the spectrum, and place it in it’s structure w/ the unsmoothed data.

205

;Use keywords to determine how much to smooth the spectrum.

;Savitzy−Golay smoothing is used, as it preserves peak shapes the best.

If Keyword set(lowsnr) Then Begin

If Keyword set(crapshoot) Then Begin

;If /CRAPSHOOT is set, smooth as much as you can get away with.

;This much smoothing should be avoided if possible.

Case callsign Of

’28sio’:slevel = Savgol(45,45,0,3)

’29sio’:slevel = Savgol(65,65,0,3)

’30sio’:slevel = Savgol(75,75,0,3)

’rrl’:slevel = Savgol(100,100,0,3)

Endcase

Endif Else Begin

;If /LOWSNR is set, smooth by quite a bit,

;but less than if /CRAPSHOOT was set.

Case callsign Of

’28sio’:slevel = Savgol(40,40,0,4)

’29sio’:slevel = Savgol(60,60,0,4)

’30sio’:slevel = Savgol(70,70,0,4)

’rrl’:slevel = Savgol(100,100,0,3)

Endcase

Endelse

;Smooth the spectrum.

raw.tame = Convol(raw.wild, slevel)

Endif Else Begin

;If neither keywords are set, smooth by a moderate ammount.

;The spectra are always smoothed by at least this much,

;even if the SNR is good, it helps with setting the fitting limits.

Case callsign Of

’28sio’:slevel = Savgol(30,30,0,4)

’29sio’:slevel = Savgol(50,50,0,4)

’30sio’:slevel = Savgol(60,60,0,4)

’rrl’:slevel = Savgol(100,100,0,3)

Endcase

;Smooth the spectrum.

raw.tame = Convol(raw.wild, slevel)

Endelse

206

;Try and calculate some good limits for the ordinate when plotting.

;This technique is a little bit crude, and doesn’t always work well.

;Check if the /Zoom keyword is set

If Keyword set(zoom) Then Begin

;If it is, Ignore a large section on each edge of the spectrum and

;calculate the limits of the ordinate based on the center of the spectrum.

m = Mean(raw.tame[1000:−1001])

ylo = m − (1.2 ∗ (m − Min(raw.tame[1000:−1001])))

yhi = m + (1.2 ∗ (Max(raw.tame[1000:−1001]) − m))

Endif Else Begin

;Otherwise, Adopt a more conservative approach.

m = Mean(raw.tame[500:−501])

ylo = m − (2.0 ∗ (m − Min(raw.tame[500:−501])))

yhi = m + (2.0 ∗ (Max(raw.tame[500:−501]) − m))

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Plot data

; − Initialize fitting GUI

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize variable(s)

;Inialize structure(s) and/or array(s).

limits = List()

nlimits = 0

fit = { indep: List(), $

dep: List(), $

order: 0d, $

poly: List() }
chkpt = { alpha: 0, $

bravo: 0, $

charlie: 0 }

;copy limit data out of lspex.

exc1 = Execute(’limits = lspex.’ + scsign + ’.xlims.toarray()’)

exc2 = Execute(’nlimits = lspex.’+ scsign + ’.numlims’)

If ˜ Array equal(1, [exc1, exc2]) Then Message, ’>>>>> Error: Execution failure’

207

;Use limit data to express limits in terms of dependent and independent variables.

For ii=1, nlimits−1, 2 Do Begin

fit.indep.Add, keeper[limits[ii−1]:limits[ii]], /extract

fit.dep.Add, raw.tame[limits[ii−1]:limits[ii]], /extract

Endfor

;Loop over the GUI section until all conditions are met.

;i.e. the fit is within reason, and the user is happy with how everything looks.

While chkpt.alpha Ne 1 Do Begin

;Reset values for bravo and charlie for new loop.

chkpt.bravo = 0

chkpt.charlie = 0

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot a dotted line at 0K, just for visual reference.

fpzero = Plot(keeper, Replicate(0.0, rtype.sml), color=pcolors.white, thick=1, $

linestyle=1, /current , /overplot)

;Plot the smoothed spectrum

fpone = Plot(keeper[100:−101], raw.tame[100:−101], color=pcolors.puke, $

xrange=[0,rtype.sml], yrange=[ylo,yhi], xstyle=1, xmajor=7, xminor=3, ystyle=1, $

yminor=3, ytitle=’Tmb (K)’, font size=11, margin = [0.04,0.05,0.015,0.03], /current)

ax = fpone.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2d

;Plot a vertical line at each of the limits set using Outerlimits.

For ii=0, nlimits−1 Do Begin

fptwo = Plot([limits[ii], limits[ii]], [ylo−Abs(20∗ylo), yhi+Abs(20∗yhi)], $

color=pcolors.teal, linestyle=1, thick=2, /current, /overplot)

;Plot each new bounded region as a different color, just to make things look nice.

If (ii Mod 2) Eq 1 Then Begin

fpthree = Plot(keeper[limits[ii−1]:limits[ii]], raw.tame[limits[ii−1]:limits[ii]], $

208

color=pcolors.pink, linestyle=0, thick=1.5, /current, /overplot)

Endif

Endfor

;If this isn’t the first loop, re−plot the last fit attempt. This helps a lot

;when trying to decide between two different fits.

If Keyword set(last) Then Begin

fplast = Plot(Poly(keeper, fit.poly), color=pcolors.white, thick=0.5, $

linestyle=1, /current , /overplot)

Endif

While chkpt.bravo Ne 1 Do Begin

;Initialize variable(s) & query user for polynomial order to use for the fit.

forder = 0

Print, ’’

Read, forder, prompt = ’>>>>> Enter polynomial order to use (integer): ’

;Ensure forder is a longword integer, or can be converted to one.

;If forder is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(forder, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(forder)), /not equal) Then Begin

Print, ’>>>>> Warning: Invalid response’

;change chkpt value to restart while loop.

chkpt.bravo = 0

Endif Else Begin

fit.order = Long(forder)

;If the value of forder is less than zero or greater than 11, reject it.

If (fit.order Gt 0) And (fit.order Le 11) Then Begin

chkpt.bravo = 1

Endif Else Begin

;print some stuff & change chkpt value to restart while loop.

Print, ’>>>>> Warning: Polynomial order out of range’

chkpt.bravo = 0

fit.order = 0

Endelse

Endelse

Endwhile

209

;Calculate a polynomial fit to the data, of the order specified above.

fit.poly.Add, Poly fit(fit.indep.Toarray(), fit.dep.Toarray(), fit.order), /extract

;Overplot the new fit in the existing graphics window

fpnew = Plot(Poly(keeper, fit.poly), color=pcolors.orange, /current, /overplot)

;Set ’last’ to one, so that this fit will be replotted if the loop runs again.

last = 1

;Make sure the fit looks good...

While chkpt.charlie Ne 1 Do Begin

;Initialize variable(s) & Query user if fit is satisfactory.

answer = ’’

Print, ’’

Read, answer, prompt = ’>>>>> satisfied? y/n/quit: ’

;Respond accordingly...

Case 1 Of

Strmatch(answer, ’y’, /FOLD CASE):Begin

Print, ’’

Print, ’>>>>> Message: Polynomial order accepted’

Print, ’>>>>> Message: Fit accepted’

;change chkpt values to exit both while loops.

chkpt.alpha = 1

chkpt.charlie = 1

;store the fit order in LSPEX

exe chk = Execute(’lspex.’ + scsign + ’.order = fit.order’)

If exe chk Ne 1 Then Message, ’>>>>> Error: execution failure’

End

Strmatch(answer, ’n’, /FOLD CASE): Begin

Print, ’’

Print, ’>>>>> Message: Restarting GUI...’

;delete the fit parameters out of the ’FIT’ structure

fit.poly.Remove, /ALL

;close the graphics window

210

w.Close

;change chkpt values to restart while loops from the top.

chkpt.alpha = 0

chkpt.charlie = 1

End

Strmatch(answer, ’quit’, /FOLD CASE): Begin

Print, ’>>>>> Alert: Exiting...’

Print, ’’

;close the graphics window & return.

w.Close

Return

End

Else: Begin

Print, ’’

Print, ’>>>>> Warning: Invalid response’

;change chkpt values to restart current while loop.

chkpt.charlie = 0

End

Endcase

Endwhile

Endwhile

;Save the current graphics window as a .png file & close the window.

pic name = Strtrim(rootpath,2) + ’/’ + Strtrim(callsign, 2) + ’ fit.png’

w.Save, Strtrim(pic name,2), resolution = 100

w.Close

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Subtract the baseline

; − Replot the data

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print some stuff.

Print, ’’

Print, ’>>>>> Message: subtracting baseline...’

;Subtract the polynomial fit to the baseline from the unsmoothed data &

211

;smooth the baselined data.

bled.wild = raw.wild − Poly(keeper, fit.poly)

bled.tame = Convol(bled.wild, slevel)

;Try and calculate some good limits for the ordinate when plotting.

;This technique is a little bit crude, and doesn’t always work well.

m = Mean(bled.tame[1999:−2000])

ylo = m − (2.0 ∗ (m − Min(bled.tame[1999:−2000])))

yhi = m + (2.0 ∗ (Max(bled.tame[1999:−2000]) − m))

;Initialize a graphics window w/ standard dimensions.

w = Window(dimensions=pspex.windim, background color=pcolors.black)

;Plot a dotted line at 0K, just for visual reference.

bpzero = Plot(keeper, Replicate(0.0, rtype.sml), color=pcolors.white, thick=1, $

linestyle=1, /current , /overplot)

;Plot the baselined and smoothed spectrum.

bpone = Plot(keeper[100:−101], bled.tame[100:−101], color=pcolors.puke, $

xrange=[0,rtype.sml], yrange=[ylo,yhi], xstyle=1, xmajor=5, xminor=3, ystyle=1, $

yminor=3, ytitle=’Tmb (K)’, font size=11, margin = [0.04,0.05,0.015,0.03], /current)

ax = bpone.axes

ax[2].minor = 0

ax[2].ticklen = ax[2].ticklen / 2d

ax[3].minor = 0

ax[3].ticklen = ax[3].ticklen / 2d

;Plot a vertical line at each of the limits set using Outerlimits.

For ii=0, nlimits−1 Do Begin

bptwo = Plot([limits[ii], limits[ii]], [ylo−Abs(20∗ylo), yhi+Abs(20∗yhi)], $

color=pcolors.teal, linestyle=1, thick=2, /current, /overplot)

;Plot each new bounded region as a different color, just to make things look nice.

If (ii Mod 2) Eq 1 Then Begin

bpthree = Plot(keeper[limits[ii−1]:limits[ii]], raw.tame[limits[ii−1]:limits[ii]], $

color=pcolors.pink, linestyle=0, thick=1.5, /current, /overplot)

Endif

Endfor

;Save the current graphics window as a .png file & close the window.

212

pic name = Strtrim(rootpath,2) + ’/’ + Strtrim(callsing,2) + ’ newspec.png’

w.Save, Strtrim(pic name,2), resolution = 100

w.Close

;Print some stuff & end.

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

213

14.9 Dreamweaver.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Dreamweaver

; HYDRA Version 5.1

;

; PURPOSE:

; −>
;

; CALLING SEQUENCE:

; −> Dreamweaver,

;

; ARGUMENT(S):

; −> None

;

; KEYWORD(S):

; −> None

;

; OPTIONAL KEYWORD(S):

; −> Nloops: number of loops of the outer MC simulation

;

; −> Nslopps: number of loops of the inner MC simulation

;

; −> Nsigma: The distance from line center, in standard deviations, that

; will be integrated when computing the total area line ratios.

;

; −> Lowsnr (binary): Set to increase the degree to which the spectum is smoothed

; before it is plotted. Useful when fitting rare isotopologues or weak sources.

;

; −> Crapshoot (binary): Set to drastically increase the degree to which the

; spectum is smoothed before it is plotted. Overrides LOWSNR keyword.

214

; NOTE: This much smoothing should be avoided whenever possible.

; −>
;

;

; EXAMPLES:

; −> Dreamweaver

;

; OUTPUTS:

; −>
;

; COMMENTS:

; −> Only operates within the HYDRA 5.1 RTE.

; −> Filepath for the output directory is stored in OVERLORD and must

; be set using setdir.pro.

; −> Kill rrl functionality is not currently supported.

;

; PROCEDURES/FUNCTIONS CALLED:

; −> looper.pro

; −> sloopstruct define.pro

; −> timer define.pro

;−
Pro Dreamweaver, Nloops=nloops, nsubloops=nsubloops, Nsigma=nsigma, $

lowsnr=lowsnr, Crapshoot=crapshoot, Kill rrl=kill rrl

Compile opt IDL2

Common overlord

Common lspex

Common mcspex

On error, 0

!Except=1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 11 February, 2014

;>>>>> Version 2.1 written by: N.N. Monson (UCLA). 15 June, 2014

;>>>>> Version 2.2 written by: N.N. Monson (UCLA). 17 October, 2014

;>>>>> Version 2.3 written by: N.N. Monson (UCLA). 21 June, 2015

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 25 July, 2016

;>>>>> Version 3.1 written by: N.N. Monson (UCLA). 10 December, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 4.1 (V−spec) written by: N.N. Monson (UCLA). 19 September, 2017

215

;>>>>> Version 4.2 (V−spec) written by: N.N. Monson (UCLA). 31 May, 2018

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 25 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 17 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Added automated optical depth estimation and error calculation.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Issues <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

If dirloc Eq ’’ Then Begin

Message, ’>>>>> error: common directory not set’

Endif

If Not Keyword set(nloops) Then $

nloops = 200 $

Else nloops = Long(nloops)

If Not Keyword set(nsubloops) Then $

216

nsubloops = 200 $

Else nsubloops = Long(nsubloops)

If Not Keyword set(nsigma) Then $

nsigma = 3.0 $

Else nsigma = Float(nsigma)

If Keyword set(crapshoot) Then lowsnr=1

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: −INITIALIZE ’README’ FILE

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Count numer of existing monte−carlo run results,

;and name current run accordingly.

com chk = File search(Strtrim(Overlord.dirloc,2) + ’/mcrun ∗’, count = n)

If n Lt 9 Then Begin

runpath = Strtrim(Overlord.dirloc,2) + ’/mcrun 0’ + Strtrim(n+1, 2)

Endif Else runpath = Strtrim(Overlord.dirloc,2) + ’/mcrun ’ + Strtrim(n+1, 2)

;Create new directories for this run.

File mkdir, runpath, /noexpand path

File mkdir, runpath + ’/ref’, /noexpand path

;Open a new ascii file to print stuff to.

;This file will contain everyting that is printed to the command line,

;This way, one can go back later and see what was done to

;produce any given set of results.

Openw, lun2, runpath + ’/results.txt’, /get lun

Printf, lun2, ’Run: ’ + Strtrim(Systime(),2)

Printf, lun2, ’ −> Baseline Orders (28,29,30): ’ + Strtrim(lspex.order.s28,2) + $

’, ’ + Strtrim(lspex.order.s29,2) + ’, ’ + Strtrim(lspex.order.s30,2)

Printf, lun2, format = ”(’ −> Integration Width (sigma): +/− ’, f−10.2)”, nsigma

If Keyword set(lowsnr) Then answer1 = ’Yes’ Else answer1 = ’No’

Printf, lun2, format = ”(’ −> Low SNR?: ’, A0)”, answer1

If Keyword set(crapshoot) Then answer2 = ’Yes’ Else answer2 = ’No’

Printf, lun2, format = ”(’ −> Crapshoot?: ’, A0)”, answer2

217

;Open a new ascii file to print stuff to.

;This file will contain a ’readers digest’ version of the

;information in the results.txt file.

;This way, one can go back later and see what was done to

;produce any given set of results.

Openw, lun3, runpath + ’/summary.txt’, /get lun

Printf, lun3, ’Run: ’ + Strtrim(Systime(),2)

Printf, lun3, ’ −> Baseline Orders (28,29,30): ’ + Strtrim(lspex.order.s28,2) + $

’, ’ + Strtrim(lspex.order.s29,2) + ’, ’ + Strtrim(lspex.order.s30,2)

Printf, lun3, format = ”(’ −> Integration Width (sigma): +/− ’, f−10.2)”, nsigma

Printf, lun3, format = ”(’ −> Low SNR?: ’, A0)”, answer1

Printf, lun3, format = ”(’ −> Crapshoot?: ’, A0)”, answer2

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Read in data

; − Pull info out of headers

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

keeper = Dindgen(rtype.sml)

;Loop once for each isotope of SiO.

Foreach iso, [28,29,30] Do Begin

;Define path to the firectory to load isotope data from.

;Define the filename too.

rootpath = Strtrim(Overlord.dirloc,2) + ’/’ + Strtrim(iso,2) + ’sio’

rfname = Strtrim(dtype,2) + ’ ’ + Strtrim(iso,2) + ’sio.dat.gzip’

;copy the data file to the ’ref’ folder created in section 1.

;This is so it will be accessable for reference purposes in the future.

File copy, Strtrim(rootpath,2) + Strtrim(rfname,2), $

Strtrim(runpath,2) + ’/ref/’ + Strtrim(rfname,2)

;Identify all the various .png images created by HYDRA in overlord.dirloc

pics = File search(Strtrim(rootpath, 2), ’∗.png’, /fully qualify path)

;Copy all found images to the ’ref’ folder too.

;Again, this is for reference purposes in the future.

If ˜ Array equal(’’, pics) Then Begin

218

For ii=0, pics.length−1 Do Begin

;split up the path so the image name can be reused.

cpname = Strsplit(Strtrim(pics[ii],2), ’/’, /extract)

File copy, pics[ii], Strtrim(runpath,2) + ’/ref/’ + Strtrim(cpname[−1],2)

Endfor

Endif

;Print some stuff

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’>>>>> Loading ’ + Strtrim(iso, 2) + ’sio data...’

;Open data file.

Openr, lun, Strtrim(rootpath,2) + Strtrim(rfname,2), /get lun, /compress

;Load data for the target spectrum.

time = ’’

Readf, lun, time

numsessions = 0

Readf, lun, numsessions

ntags = 0

Readf, lun, ntags

header = Strarr(ntags)

Readf, lun, header

names = Strarr(2)

Readf, lun, names

data = Dblarr(2, 6000, /nozero)

Readf, lun, data, format = ’(2e17.9)’

Close, lun

Free lun, lun

;Put the tmb and vslr data into the appropriate mcspex structures &

;calculate the bin size of each pixel as mean the ’distance’ to the pixel

;to the left and the pixel to the right.

Case iso Of

28:Begin

mcspex.s28.wild = Transpose(data[1,∗])
mcspex.s28.vlsr = Transpose(data[0,∗])
mcspex.s28.vbin = (Shift(mcspex.s28.vlsr,1)−Shift(mcspex.s28.vlsr,−1)) / 2d

End

219

29:Begin

mcspex.s29.wild = Transpose(data[1,∗])
mcspex.s29.vlsr = Transpose(data[0,∗])
mcspex.s29.vbin = (Shift(mcspex.s29.vlsr,1)−Shift(mcspex.s29.vlsr,−1)) / 2d

End

30:Begin

mcspex.s30.wild = Transpose(data[1,∗])
mcspex.s30.vlsr = Transpose(data[0,∗])
mcspex.s30.vbin = (Shift(mcspex.s30.vlsr,1)−Shift(mcspex.s30.vlsr,−1)) / 2d

End

Endcase

;Print some stuff

Print, ’>>>>> ...Done’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Endforeach

;Set the bins for the first and last last two pixels

;set equal to the neighboring bins.

mcspex.s28.vbin[0] = mcspex.s28.vbin[1]

mcspex.s28.vbin[−1] = mcspex.s28.vbin[−2]

mcspex.s29.vbin[0] = mcspex.s29.vbin[1]

mcspex.s29.vbin[−1] = mcspex.s29.vbin[−2]

mcspex.s30.vbin[0] = mcspex.s30.vbin[1]

mcspex.s30.vbin[−1] = mcspex.s30.vbin[−2]

If Keyword set(kill rrl) Then Begin

;Define path to the firectory to load the RRL data from. Define the filename too.

rootpath = Strtrim(Overlord.dirloc,2) + ’/rrl’

rfname = Strtrim(dtype,2) + ’ rrl.dat.gzip’

;copy the data file to the ’ref’ folder created in section 1.

;This is so it will be accessable for reference purposes in the future.

File copy, Strtrim(rootpath,2) + Strtrim(rfname,2), $

Strtrim(runpath,2) + ’/ref/’ + Strtrim(rfname,2)

220

;Identify all the various .png images created by HYDRA in overlord.dirloc

pics = File search(Strtrim(rootpath, 2), ’∗.png’, /fully qualify path)

;Copy all found images to the ’ref’ folder too.

;Again, this is for reference purposes in the future.

If ˜ Array equal(’’, pics) Then Begin

For ii=0, pics.length−1 Do Begin

;split up the path so the image name can be reused.

cpname = Strsplit(Strtrim(pics[ii],2), ’/’, /extract)

File copy, pics[ii], Strtrim(runpath,2) + ’/ref/’ + Strtrim(cpname[−1],2)

Endfor

Endif

;Print some stuff

Print, ’>>>>> Alert: Kill rrl keyword set...’

Print, ’>>>>> Loading RRL data...’

;Open data file.

Openr, lun, Strtrim(rootpath,2) + Strtrim(rfname,2), /get lun, /compress

;Load data for the target spectrum.

time = ’’

Readf, lun, time

numsessions = 0

Readf, lun, numsessions

ntags = 0

Readf, lun, ntags

header = Strarr(ntags)

Readf, lun, header

names = Strarr(2)

Readf, lun, names

data = Dblarr(2, 6000, /nozero)

Readf, lun, data, format = ’(2e17.9)’

Close, lun

Free lun, lun

;Put the tmb and vslr data into the appropriate mcspex structures.

mcspex.rrl.wild = Transpose(data[1,∗])
mcspex.rrl.vlsr = Transpose(data[0,∗])

221

;Bin size of each pixel is calculated as mean the ’distance’ to the pixel

;to the left and the pixel to the right. Also, set the bins for the first

;and last last two pixels set equal to the neighboring bins.

mcspex.rrl.vbin = (Shift(mcspex.rrl.vlsr,1)−Shift(mcspex.rrl.vlsr,−1)) / 2d

mcspex.rrl.vbin[0] = mcspex.rrl.vbin[1]

mcspex.rrl.vbin[−1] = mcspex.rrl.vbin[−2]

;Print some stuff

Print, ’>>>>> ...Done’

Print, ’’

Print, ’>>>>> Fitting RRL data...’

;Initialize structure(s) and/or array(s)

rrl = { indep: List(), $

dep: List(), $

poly: Dblarr(1, lspex.rrl.order) }

;Use limit data to express limits in terms of dependent and independent variables.

For ii=1, lspex.rrl.nlimits−1, 2 Do Begin

rrl.indep.Add, keeper[limits[ii−1]:limits[ii]], /extract

rrl.dep.Add, mcspex.rrl.wild[limits[ii−1]:limits[ii]], /extract

Endfor

;Calculate a polynomial fit to the data, of the order specified using polybase.pro

rrl.poly = Poly fit(rrl.indep.Toarray(), rrl.dep.Toarray(), lspex.rrl.order)

;Subtract the polynomial fit to the baseline from the unsmoothed data &

;smooth the baselined data.

mcspex.rrl.tame = mcspex.rrl.wild − Poly(keeper, rrl.poly, /double)

mcspex.rrl.tame = Convol(Temporary(mcspex.rrl.tame), Savgol(100,100,0,3))

;Print some stuff.

Print, ’>>>>> ...Done’

Print, ’’

Print, ’>>>>> WARNING: This functionality is not currently supported’

Print, ’>>>>> WARNING: Nothing has been subtracted from the 29−SiO spectrum’

Print, ’’

Endif

222

;Calculate the total number of limits

tlims = lspex.s28.numlims + lspex.s29.numlims + lspex.s30.numlims

;Initialize arrays/structures

randarr = Dblarr(nloops, tlims, /no zero)

rnoise = { mcutility, s28: Dblarr(nloops, lspex.s28.numlims, /no zero), $

s29: Dblarr(nloops, lspex.s29.numlims, /no zero), $

s30: Dblarr(nloops, lspex.s30.numlims, /no zero) }
tweaker = Create struct(name = ’mcutility’)

modlims = Create struct(name = ’mcutility’)

;Copy limit data to modlims structure

modlims.s28 = Rebin(Transpose(lspex.s28.xlims.Toarray()), nloops, lspex.s28.numlims)

modlims.s29 = Rebin(Transpose(lspex.s29.xlims.Toarray()), nloops, lspex.s29.numlims)

modlims.s30 = Rebin(Transpose(lspex.s30.xlims.Toarray()), nloops, lspex.s30.numlims)

;Generate random number arrays and assign the correct nunmber for

;each isotopologue (number required dependent on number of limits).

randarr = Randomn(Superseed(5), [nloops, tlims], /double)

rnoise.s28 = randarr[∗, 0:lspex.s28.numlims−1]

rnoise.s29 = randarr[∗, lspex.s28.numlims:lspex.s28.numlims+lspex.s29.numlims−1]

rnoise.s30 = randarr[∗, lspex.s28.numlims+lspex.s29.numlims:−1]

;Determine how much each limit will move, using an array of random numbers,

;the width of each window, and a constant, 0.025 in this case.

;(i.e. the width of fit windows vary by a normally distributed random

;variable, with sigma = 5% of the window width).

;For the 28−sio line:

For ii=1, lspex.s28.numlims−1, 2 Do Begin

tweaker.s28[∗, ii−1:ii] = rnoise.s28[∗, ii−1:ii] ∗ 0.025d ∗ $

(lspex.s28.xlims[ii] − lspex.s28.xlims[ii−1])

Endfor

;For the 29−sio line:

For ii=1, lspex.s29.numlims−1, 2 Do Begin

tweaker.s29[∗, ii−1:ii] = rnoise.s29[∗, ii−1:ii] ∗ 0.025d ∗ $

(lspex.s29.xlims[ii] − lspex.s29.xlims[ii−1])

Endfor

223

;For the 30−sio line:

For ii=1, lspex.s30.numlims−1, 2 Do Begin

tweaker.s30[∗, ii−1:ii] = rnoise.s30[∗, ii−1:ii] ∗ 0.025d ∗ $

(lspex.s30.xlims[ii] − lspex.s30.xlims[ii−1])

Endfor

;Move the limits by the ammount calculated above.

modlims.s28 = Temporary(modlims.s28) + tweaker.s28

modlims.s29 = Temporary(modlims.s29) + tweaker.s29

modlims.s30 = Temporary(modlims.s30) + tweaker.s30

;Check to ensure none of the limits have beem moved beyond the range of the data.

;If any instances are detected, reset the values to the edge of the data.

;For the 28−sio line:

llimchk = Where(modlims.s28[∗,0] Lt 1)

If llimchk Ne −1 Then Foreach jj, llimchk Do modlims.s28[jj,0] = 1

ulimchk = Where(modlims.s28[∗,−1] Gt rtype.sml−1)

If ulimchk Ne −1 Then Foreach jj, ulimchk Do modlims.s28[jj,−1] = rtype.sml−1

;For the 29−sio line:

llimchk = Where(modlims.s29[∗,0] Lt 1)

If llimchk Ne −1 Then Foreach jj, llimchk Do modlims.s29[jj,0] = 1

ulimchk = Where(modlims.s29[∗,−1] Gt rtype.sml−1)

If ulimchk Ne −1 Then Foreach jj, ulimchk Do modlims.s29[jj,−1] = rtype.sml−1

;For the 30−sio line:

llimchk = Where(modlims.s30[∗,0] Lt 1)

If llimchk Ne −1 Then Foreach jj, llimchk Do modlims.s30[jj,0] = 1

ulimchk = Where(modlims.s30[∗,−1] Gt rtype.sml−1)

If ulimchk Ne −1 Then Foreach jj, ulimchk Do modlims.s30[jj,−1] = rtype.sml−1

Print, ’’

Print, ’ −> Sampling from gaussian distribution’

Print, ’ −> Random number generation complete’

Print, ’’

Print, ’ −> Array initialization complete’

Print, ’’

224

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’ Commencing simulation...’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

result = Dblarr(nloops∗nsubloops, 22, /nozero)

proxy result = Dblarr(nsubloops, 22, /nozero)

fit = { s28: { indep: List(), $

dep: List(), $

poly: Dblarr(1, lspex.s28.order) } , $

s29: { indep: List(), $

dep: List(), $

poly: Dblarr(1, lspex.s29.order) } , $

s30: { indep: List(), $

dep: List(), $

poly: Dblarr(1, lspex.s30.order) } }

;Initialize structure(s) and/or array(s)

time = { loop: { start: 0l, $

stop: 0l, $

avg: 0l }, $

subloop: { start: 0l, $

stop: 0l, $

avg: 0l }, $

rem: 0l, $

tot: 0l }

;Initialize structure(s) and/or array(s)

result = Replicate(Create struct(name = ’slstruct’), nsubloops, nloops)

slnoise = Randomn(Superseed(7), [2000, 3, nsubloops, nloops], /double)

time.loop.start = Systime(/seconds)

For loop = 0, nloops−1 Do Begin

;Reset all fitting data at the start of the new loop.

Foreach jj, [’.s28’, ’.s29’, ’.s30’] Do Begin

Foreach ii, [’.dep’, ’.indep’]Do Begin

exe1 = Execute(’fit’+jj+ii+’.remove, /all’)

225

Endforeach

Endforeach

;For the 28−SiO line, Use limit data in lspex to express limits

;in terms of dependent and independent variables.

For ii=1, lspex.s28.numlims−1, 2 Do Begin

fit.s28.indep.Add, keeper[modlims.s28[ii−1]:modlims.s28[ii]], /extract

fit.s28.dep.Add, mcspex.s28.wild[modlims.s28[ii−1]:modlims.s28[ii]], /extract

Endfor

;Fit a new baseline to the 28−SiO spectra.

;Save baselined spectrum to the mcspex structure to pass to dreamweaver

fit.s28.poly = Poly fit(fit.s28.indep.Toarray(), $

fit.s28.dep.Toarray(), lspex.s28.order)

mcspex.s28.tame = mcspex.s28.wild − Poly(keeper, fit.s28.poly)

;Calculate the per−pixel rms noise for the spectrum.

nfit = Poly fit(keeper[500:999], mcspex.s28.tame[500:999], 5, /double)

mcspex.s28.rmsnt = Stddev(mcspex.s28.tame[500:999] − $

Poly(keeper[500:999],fnit), /double)

;For the 29−SiO line, Use limit data in lspex to express limits

;in terms of dependent and independent variables.

For ii=1, lspex.s29.numlims−1, 2 Do Begin

fit.s29.indep.Add, keeper[modlims.s29[ii−1]:modlims.s29[ii]], /extract

fit.s29.dep.Add, mcspex.s29.wild[modlims.s29[ii−1]:modlims.s29[ii]], /extract

Endfor

;Fit a new baseline to the 29−SiO spectra.

;Save baselined spectrum to the mcspex structure to pass to dreamweaver

fit.s29.poly = Poly fit(fit.s29.indep.Toarray(), $

fit.s29.dep.Toarray(), lspex.s29.order)

mcspex.s29.tame = mcspex.s29.wild − Poly(keeper, fit.s29.poly)

;Calculate the per−pixel rms noise for the spectrum.

nfit = Poly fit(keeper[500:999], mcspex.s29.tame[500:999], 5, /double)

mcspex.s29.rmsnt = Stddev(mcspex.s29.tame[500:999] − $

Poly(keeper[500:999],fnit), /double)

;For the 30−SiO line, Use limit data in lspex to express limits

226

;in terms of dependent and independent variables.

For ii=1, lspex.s30.numlims−1, 2 Do Begin

fit.s30.indep.Add, keeper[modlims.s30[ii−1]:modlims.s30[ii]], /extract

fit.s30.dep.Add, mcspex.s30.wild[modlims.s30[ii−1]:modlims.s30[ii]], /extract

Endfor

;Fit a new baseline to the 30−SiO spectra.

;Save baselined spectrum to the mcspex structure to pass to dreamweaver

fit.s30.poly = Poly fit(fit.s30.indep.Toarray(), $

fit.s30.dep.Toarray(), lspex.s30.order)

mcspex.s30.tame = mcspex.s30.wild − Poly(keeper, fit.s30.poly)

;Calculate the per−pixel rms noise for the spectrum.

nfit = Poly fit(keeper[500:999], mcspex.s30.tame[500:999], 5, /double)

mcspex.s30.rmsnt = Stddev(mcspex.s30.tame[500:999] − $

Poly(keeper[500:999],fnit), /double)

;This feature is not currently supported... sorry!

;If Keyword set(kill rrl) Then LK FMJ

;Start timing the subloops.

time.subloop.start = Systime(/seconds)

;Run subloops

result[∗,loop] = Looper(slnoise=slnoise[∗,∗,∗,loop], nsloops=nsubloops, $

sig width=nsigma, pix shift=pixshift, low snr=lowsnr, crap shoot=crapshoot)

;Stop timing the loop and subloop.

time.subloop.stop = Systime(/seconds)

time.loop.stop = time.subloop.stop

;Store results from subloops into a common structure.

result[loop∗nsubloops:((loop+1)∗nsubloops)−1,∗] = proxy result

;Print a status update every 10 loops

If ((loop+1l) Mod (nloops/10l) Eq 0l) And (loop Ne (nloops−1l)) Then Begin

;Calculate loop, subloop, total, and total remaining times.

time.tot = time.loop.stop − time.loop.start

227

time.loop.avg = time.tot / Double(loop+1)

time.rem = time.loop.avg ∗ Double(nloops−loop+1)

time.subloop.avg = (time.subloop.stop − time.subloop.start) / Double(nsubloops)

;Print some stuff

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’ Loop no. ’ + Strtrim(loop+1l,2) + ’ of ’ + Strtrim(nloops,2) $

+ ’ complete’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, Format = ”(’ −> Total time elapsed (m): ’, d−10.2)”, time.tot / 60d

Print, Format = ”(’ −> Mean time per loop (s): ’, d−10.2)”, time.loop.avg

Print, Format = ”(’ −> Mean time per subloop (ms): ’, d−10.2)”, $

1d3 ∗ time.subloop.avg

Print, ’’

Print, Format = ”(’ −> Estimated time to completion (m): ’, d−10.2)”, $

time.rem / 60d

Print, ’’

Endif

Endfor

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Calculate the net loop, subloop and total times.

time.tot = time.loop.stop − time.loop.start

time.loop.avg = time.tot / Double(nloops)

time.subloop.avg = time.tot / Double(nloops ∗ nsubloops)

;Print some stuff

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’ Completed ’ + Strtrim(nloops,2) + ’ loops, each with ’ $

+ Strtrim(nsubloops,2) + ’ subloops’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, Format = ”(’ −> Total time elapsed (m): ’, f−10.2)”, time.tot / 60d

Print, Format = ”(’ −> Mean time per loop (s): ’, f−10.2)”, time.loop.avg

228

Print, Format = ”(’ −> Net time per subloop (ms): ’, f−10.2)”, $

1d3 ∗ time.subloop.avg

;Calculate the correlation coefficients and the covariance matrix

;for the tau corrected data.

pca 29 = result[∗,18] − Mean(result[∗,18], /double)

pca 30 = result[∗,19] − Mean(result[∗,19], /double)

cor coeff = Correlate(pca 30, pca 29)

matrix = Transpose([[pca 30], [pca 29]])

covmatrix = Correlate(matrix, /covariance, /double)

evals = Eigenql(covmatrix, eigenvectors=evecs, /double)

evals = Sqrt(evals)

theta = Atan(evecs[1,0]/evecs[0,0]) ∗ (360d / (2d ∗ !Dpi))

;Print some stuff

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Print, ’’

Print, ’ −> Tau−corrected Error Ellipse properties: ’

Print, ’’

Print, Format = ”(’ −> Correlation Coefficient = ’, f−7.3)”, cor coeff

Print, ’’

Print, Format = ”(’ −> Major Axis (1 sigma) = ’, d−9.4)”, evals[0]

Print, Format = ”(’ −> Minor Axis (1 sigma) = ’, d−9.4)”, evals[1]

Print, Format = ”(’ −> Vector Angle (deg) = ’, d−9.4)”, theta

;Calculate the correlation coefficients and the covariance matrix

;for the uncorrected data.

upca 29 = result[∗,16] − Mean(result[∗,16], /double)

upca 30 = result[∗,17] − Mean(result[∗,17], /double)

ucor coeff = Correlate(upca 30, upca 29)

umatrix = Transpose([[upca 30], [upca 29]])

ucovmatrix = Correlate(umatrix, /covariance, /double)

uevals = Eigenql(ucovmatrix, eigenvectors=uevecs, /double)

uevals = Sqrt(uevals)

utheta = Atan(uevecs[1,0]/uevecs[0,0]) ∗ (360d / (2d ∗ !Dpi))

;Print more stuff.

Print, ’’

Print, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

229

Print, ’’

Print, ’ −> Uncorrected Error Ellipse properties: ’

Print, ’’

Print, Format = ”(’ −> Correlation Coefficient = ’, f−7.3)”, ucor coeff

Print, ’’

Print, Format = ”(’ −> Major Axis (1 sigma) = ’, d−9.4)”, uevals[0]

Print, Format = ”(’ −> Minor Axis (1 sigma) = ’, d−9.4)”, uevals[1]

Print, Format = ”(’ −> Vector Angle (deg) = ’, d−9.4)”, utheta

;Make and plot a histogram of the corrected delta−29 data.

ch29 = Histogram(result[∗,18], locations=ch29locs, binsize=4.0d)

w1 = Window(dimensions = [600, 600], background color = !Color.white)

p1 = Barplot(ch29locs, ch29, title=”τ Corrected δ’29”, /current)

;Make and plot a histogram of the corrected delta−30 data.

ch30 = Histogram(result[∗,19], locations=ch30locs, binsize=4.0d)

w2 = Window(dimensions = [600, 600], background color = !Color.white)

p2 = Barplot(ch30locs, ch30, title=”τ Corrected δ’30”, /current)

;Make and plot a histogram of the estimated optica depths

th = Histogram(result[∗,20], locations=taulocs, binsize=.02d)

w3 = Window(dimensions = [600, 600], background color = !Color.white)

p3 = Barplot(taulocs, th, title=’Line Center Optical Depth’, /current)

;Plot the delta values in triple isotope space.

w4 = Window(dimensions = [1200, 1200], background color = !Color.white)

p4 = Plot(Findgen(1000)−200, Findgen(1000)−200, color = !Color.black, $

xrange=[−199.9,799.9], yrange=[−199.9,799.9], xstyle=1, ystyle=1, $

xminor=1, yminor=1, linestyle = 5, font size = 30, thick = 2, $

margin = [0.15, 0.15, 0.05, 0.05], ytitle = ”δ’ 29”, $

xtitle = ”δ’ 30”, /current)

p4 = Plot(Findgen(1000)−200, Fltarr(1000), color = !Color.black, $

linestyle = 1, thick = 1, /current, /overplot)

p4 = Plot(Fltarr(1000), Findgen(1000)−200, color = !Color.black, $

linestyle = 1, thick = 1, /current, /overplot)

ax = p4.axes

ax[2].minor = 0.0

ax[2].ticklen = ax[2].ticklen / 2.0

ax[3].minor = 0.0

ax[3].ticklen = ax[3].ticklen / 2.0

230

;Plot the actual results of each simulation

p5 = Plot(result[∗,19], result[∗,18], color = !Color.black, $

linestyle = 6, symbol = ’circle’, sym filled = 1, sym size = 0.2, $

sym transparency = 70, sym thick = 0.7, /current, /overplot)

;Plot the 1 sigma error ellipse.

p6 = Ellipse(Mean(result[∗,19]), Mean(result[∗,18]), /data, color=!Color.red, $

major=evals[0], minor=evals[1], theta=theta, $

thick=2.5, fill background=0, /current, /overplot)

;Save each of the above plots as a .png file.

;Set !Except=0 so no exceptions are reported.

!Except=0

pic name1 = Strtrim(name,2) + ’/d29 histogram.png’

w1.Save, Strtrim(pic name1,2), resolution = 150

pic name2 = Strtrim(name,2) + ’/d30 histogram.png’

w2.Save, Strtrim(pic name2,2), resolution = 150

pic name3 = Strtrim(name,2) + ’/tau histogram.png’

w3.Save, Strtrim(pic name3,2), resolution = 150

pic name4 = Strtrim(name,2) + ’/results tip.png’

w4.Save, Strtrim(pic name4,2), resolution = 150

!Except=1

;Print a whole mess of stuff to both files.

Foreach ii, [lun2, lun3] Do Begin

Printf, ii, ’’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’ Completed ’ + Strtrim(nloops,2) + ’ loops, each with ’ $

+ Strtrim(nsubloops,2) + ’ subloops’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’’

Printf, ii, Format = ”(’ −> Total time elapsed (m): ’, f−10.3)”, mtime

Printf, ii, Format = ”(’ −> Mean time per loop (s): ’, f−10.3)”, ltime

Printf, ii, Format = ”(’ −> Net time per subloop (ms): ’, f−10.3)”, sltime

Printf, ii, ’’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’’

231

Printf, ii, ’ −> Tau−corrected Error Ellipse properties: ’

Printf, ii, ’’

Printf, ii, ’ −> Correlation Coefficient = ’ + Strtrim(cor coeff,2)

Printf, ii, ’’

Printf, ii, Format = ”(’ −> Major Axis (1 sigma) = ’, d−9.4)”, evals[0]

Printf, ii, Format = ”(’ −> Minor Axis (1 sigma) = ’, d−9.4)”, evals[1]

Printf, ii, Format = ”(’ −> Vector Angle (deg) = ’, d−9.4)”, theta

Printf, ii, ’’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’’

Printf, ii, ’ −> Uncorrected Error Ellipse properties: ’

Printf, ii, ’’

Printf, ii, ’ −> Correlation Coefficient = ’ + Strtrim(ucor coeff,2)

Printf, ii, ’’

Printf, ii, Format = ”(’ −> Major Axis (1 sigma) = ’, d−9.4)”, uevals[0]

Printf, ii, Format = ”(’ −> Minor Axis (1 sigma) = ’, d−9.4)”, uevals[1]

Printf, ii, Format = ”(’ −> Vector Angle (deg) = ’, d−9.4)”, utheta

Printf, ii, ’’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’’

Printf, ii, [[’Column Key & Stats (mean and stddev)’], [’’], $

[’00 : tmb 28 − ’ + Strtrim(Mean(result[∗,0], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,0], /double))], $

[’01 : tmb 29 − ’ + Strtrim(Mean(result[∗,1], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,1], /double))], $

[’02 : tmb 30 − ’ + Strtrim(Mean(result[∗,2], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,2], /double))], $

[’03 : fwhm 28 − ’ + Strtrim(Mean(result[∗,3], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,3], /double))], $

[’04 : fwhm 29 − ’ + Strtrim(Mean(result[∗,4], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,4], /double))], $

[’05 : fwhm 30 − ’ + Strtrim(Mean(result[∗,5], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,5], /double))], $

[’−− : rmsnt 28 − ’ + Strtrim(Mean(result[∗,6], /double))], $

[’−− : rmsnt 29 − ’ + Strtrim(Mean(result[∗,7], /double))], $

[’−− : rmsnt 30 − ’ + Strtrim(Mean(result[∗,8], /double))], $

[’06 : area 28 − ’ + Strtrim(Mean(result[∗,9], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,9], /double))], $

[’07 : area 29 − ’ + Strtrim(Mean(result[∗,10], /double))+’+/− ’+ $

232

Strtrim(Stddev(result[∗,10], /double))], $

[’08 : area 30 − ’ + Strtrim(Mean(result[∗,11], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,11], /double))], $

[’09 : ratio 2829 − ’ + Strtrim(Mean(result[∗,12], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,12], /double))], $

[’10 : ratio 2830 − ’ + Strtrim(Mean(result[∗,13], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,13], /double))], $

[’11 : tcratio 2829 − ’ + Strtrim(Mean(result[∗,14], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,14], /double))], $

[’12 : tcratio 2830 − ’ + Strtrim(Mean(result[∗,15], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,15], /double))], $

[’13 : d29 solar − ’ + Strtrim(Mean(result[∗,16], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,16], /double))], $

[’14 : d30 solar − ’ + Strtrim(Mean(result[∗,17], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,17], /double))], $

[’15 : tcd29 solar − ’ + Strtrim(Mean(result[∗,18], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,18], /double))], $

[’16 : tcd30 solar − ’ + Strtrim(Mean(result[∗,19], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,19], /double))], $

[’17 : mtau − ’ + Strtrim(Mean(result[∗,20], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,20], /double))], $

[’18 : corrfac − ’ + Strtrim(Mean(result[∗,21], /double))+’+/− ’+ $

Strtrim(Stddev(result[∗,21], /double))]]

Printf, ii, ’’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+’

Printf, ii, ’’

Endforeach

;Print the actual data to one of the files.

;Then close both and relese the lun numbers.

Printf, lun2, Transpose([[result[∗,0:5]],[result[∗,9:21]]]), format = ’(19d13.7)’

Close, lun2

Free lun, lun2

Close, lun3

Free lun, lun3

;Compress the file with the actual data.

Spawn, ’gzip −f ’ + Strtrim(runpath, 2) + ’/results.txt’

233

;Print some jazz and end.

Print, ’’

Print, ’ −> Summary & Results files written to:’

Print, Strtrim(runpath, 2)

Print, ’’

Print, ’>>>>> Alert: Data reduction complete.’

Print, ’’

Print, ’’

Print, ’>>>>> End of Line <<<<<’

Print, ’’

End

234

14.10 Looper.pro

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Computes isotopic ratios from the supplied ascii datafiles.

;−

Function Looper, Slnoise=slnoise, Nsloops=nsloops, Fit pix=fit pix, $

Sig width=sig width, Low snr=low snr, Crap shoot=crap shoot

Compile opt IDL2

Common overlord

Common mcspex

Common pspex

Common rtype

On error, 0

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 11 February, 2014

;>>>>> Version 2.1 written by: N.N. Monson (UCLA). 15 June, 2014

;>>>>> Version 2.2 written by: N.N. Monson (UCLA). 17 October, 2014

;>>>>> Version 2.3 written by: N.N. Monson (UCLA). 21 June, 2015

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 25 July, 2016

;>>>>> Version 3.1 written by: N.N. Monson (UCLA). 10 December, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 4.1 (V−spec) written by: N.N. Monson (UCLA). 19 September, 2017

;>>>>> Version 4.2 (V−spec) written by: N.N. Monson (UCLA). 31 May, 2018

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 25 November, 2018

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 17 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

235

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Issues <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;

If Keyword set(fit pix) Then Begin

If (fit pix Lt 50l) Or (fit pix Gt 1000l) Then Begin

Message, ’>>>>> error: keyword fit pix set out of range’

Endif Else fit pix = fit pix

Endif Else fit pix = 300l

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Copy data out of mcspex

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

kurtz = { s28: { tmb: Dblarr(rtype.sml/3, /nozero), $

vlsr: Dblarr(rtype.sml/3, /nozero), $

vbin: Dblarr(rtype.sml/3, /nozero), $

rmsnt: 0d }, $

s29: { tmb: Dblarr(rtype.sml/3, /nozero), $

vlsr: Dblarr(rtype.sml/3, /nozero), $

vbin: Dblarr(rtype.sml/3, /nozero), $

rmsnt: 0d }, $

s30: { tmb: Dblarr(rtype.sml/3, /nozero), $

236

vlsr: Dblarr(rtype.sml/3, /nozero), $

vbin: Dblarr(rtype.sml/3, /nozero), $

rmsnt: 0d } }

;Copy tmb data out of mcspex to kurtz.

kurtz.s28.tmb = mcspex.s28.tame[2000:3999]

kurtz.s29.tmb = mcspex.s29.tame[2000:3999]

kurtz.s30.tmb = mcspex.s30.tame[2000:3999]

;Copy the rms noise temp data out of mcspex

kurtz.s28.rmsnt = mcspex.s28.rmsnt

kurtz.s29.rmsnt = mcspex.s29.rmsnt

kurtz.s30.rmsnt = mcspex.s30.rmsnt

;Copy the velocity and velocity bin data out of mcspex

kurtz.s28.vlsr = mcspex.s28.vlsr[2000:3999]

kurtz.s29.vlsr = mcspex.s29.vlsr[2000:3999]

kurtz.s30.vlsr = mcspex.s30.vlsr[2000:3999]

kurtz.s28.vbin = mcspex.s28.vbin[2000:3999]

kurtz.s29.vbin = mcspex.s29.vbin[2000:3999]

kurtz.s30.vbin = mcspex.s30.vbin[2000:3999]

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 2: − Loop MC simulation

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize structure(s) and/or array(s)

pix space = Dindgen(rtype.sml/3)

sldata = Replicate(Create struct(name = ’slstruct’), nsloops)

For ii = 0l, nsloops−1l Do Begin

;Loop this section 3 times, once for each isotopologue!

Foreach iso, [28,29,30] Do Begin

Case iso Of

28:Begin

;Resample the 28−SiO spectrum, using the RMS noise temp

sldata[ii].s28.tmb = kurtz.s28.tmb + (slnoise[∗,0,ii] ∗ kurtz.s28.rmsnt)

237

;Determine level of smoothing, based on keywords.

If Keyword set(low snr) Then Begin

slevel = Savgol(30,30,0,4, /double)

Endif Else slevel = Savgol(20,20,0,4, /double)

;Apply smoothing to the resampled spectrum.

sldata[ii].s28.stmb = Convol(sldata[ii].s28.tmb, slevel)

;Convert the antenna temperature to velocity space

sldata[ii].s28.rstmb = sldata[ii].s28.tmb ∗ kurtz.s28.vbin

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Locate the point in the spectrum w/ the greatest magnitude

;(I assume this point corresponds to the SiO peak) & Establish the

;region over which to fit a gaussian to the peak.

;This is done to help parameterize the main isotope line in velocity space.

;WARNING: This section may need revising to get a proper

;sampling of the peak for fitting and plotting i.e. to ensure

;the whole peak is included, but neighboring peaks/noise are omitted.

sldata[ii].s28.tbeam = Max(sldata[ii].s28.stmb[1000−fit pix:1000+fit pix], $

sldata[ii].s28.ploc)

peak 28 = Max(sldata[ii].s28.stmb[500 − fit pix : 500 + fit pix], pix loc 28)

;Set fit boundaries

sldata[ii].s28.lfit = sldata[ii].s28.ploc + 1000 − (2 ∗ fit pix)

sldata[ii].s28.hfit = sldata[ii].s28.ploc + 1000

;Calculate sigma width

result = Gaussfit(sldata[ii].s28.vlsr[sldata[ii].s28.lfit:sldata[ii].s28.hfit], $

sldata[ii].s28.tmb[sldata[ii].s28.lfit:sldata[ii].s28.hfit], f terms, nterms = 3)

sigma = f terms[2]

;Establish boundaries (in terms of sigma widths) for the integration window.

sldata[ii].s28.wxmin = f terms[1] − (losig ∗ sigma)

sldata[ii].s28.wxmax = f terms[1] + (hisig ∗ sigma)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Redundant steps, to make sure all is done equally between isotopologues

238

;Find 28si peak center & equivalent boundaries (in terms of 28sio sigma widths)

;for the integration window & get temperature at the identified peak center.

sldata[ii].s28.bound = Where((sldata[ii].s28.vlsr Gt sldata[ii].s28.wxmin) $

And (sldata[ii].s28.vlsr Lt sldata[ii].s28.wxmax))

sldata[ii].s28.tbeam = Max(sldata[ii].s28.stmb[sldata[ii].s28.bound], $

sldata[ii].s28.ploc)

sldata[ii].s28.ploc = sldata[ii].s28.ploc + sldata[ii].s28.bound.Min()

sldata[ii].s28.lcenter = sldata[ii].s28.vlsr[sldata[ii].s28.ploc]

;Establish boundaries (in terms of sigma widths) for the integration window.

sldata[ii].s28.wxmin = sldata[ii].s28.lcenter − (sig width ∗ sigma)

sldata[ii].s28.wxmax = sldata[ii].s28.lcenter + (sig width ∗ sigma)

;calculate the FWHM width of the line

sldata[ii].s28.hml = Min(Where(sldata[ii].s28.stmb[sldata[ii].s28.bound] $

Gt sldata[ii].s28.tbeam/2d) + sldata[ii].s28.bound.Min())

sldata[ii].s28.hmh = Max(Where(sldata[ii].s28.stmb[sldata[ii].s28.bound] $

Gt sldata[ii].s28.tbeam/2d) + sldata[ii].s28.bound.Min())

;calculate the FWHM width of the line in velocity−space

sldata[ii].s28.vsfwhm = sldata[ii].s28.vlsr[sldata[ii].s28.hml] − $

sldata[ii].s28.vlsr[sldata[ii].s28.hmh]

;Convert the integration window bounds to velocity space &

;calculate the area under the re−binned line

junk = Min(Abs(sldata[ii].s28.vlsr − sldata[ii].s28.wxmin), sldata[ii].s28.wblo)

junk = Min(Abs(sldata[ii].s28.vlsr − sldata[ii].s28.wxmax), sldata[ii].s28.wbhi)

sldata[ii].s28.area = Total(sldata[ii].s28.rstmb[sldata[ii].s28.wbhi:$

sldata[ii].s28.wblo], /double)

End

29:Begin

;Resample the 29−SiO spectrum, using the RMS noise temp

sldata[ii].s29.tmb = kurtz.s29.tmb + (slnoise[∗,1,ii] ∗ kurtz.s29.rmsnt)

;Determine level of smoothing, based on keywords.

If Keyword set(low snr) Then Begin

If Keyword set(crap shoot) Then Begin

239

slevel = Savgol(40,40,0,3, /double)

Endif Else slevel = Savgol(40,40,0,4, /double)

Endif Else slevel = Savgol(30,30,0,4, /double)

;Apply smoothing to the resampled spectrum.

sldata[ii].s29.stmb = Convol(sldata[ii].s29.tmb, slevel)

;Convert the antenna temperature to velocity space

sldata[ii].s29.rstmb = sldata[ii].s29.tmb ∗ kurtz.s29.vbin

;Find 29si peak center & equivalent boundaries (in terms of 28sio sigma widths)

;for the integration window & get temperature at the identified peak center.

sldata[ii].s29.bound = Where((sldata[ii].s29.vlsr Gt sldata[ii].s28.wxmin) $

And (sldata[ii].s29.vlsr Lt sldata[ii].s28.wxmax))

sldata[ii].s29.tbeam = Max(sldata[ii].s29.stmb[sldata[ii].s29.bound], $

sldata[ii].s29.ploc)

sldata[ii].s29.ploc = sldata[ii].s29.ploc + sldata[ii].s29.bound.Min()

sldata[ii].s29.lcenter = sldata[ii].s29.vlsr[sldata[ii].s29.ploc]

;Establish boundaries (in terms of sigma widths) for the integration window.

sldata[ii].s29.wxmin = sldata[ii].s29.lcenter − (sig width ∗ sigma)

sldata[ii].s29.wxmax = sldata[ii].s29.lcenter + (sig width ∗ sigma)

;calculate the FWHM width of the line

sldata[ii].s29.hml = Min(Where(sldata[ii].s29.stmb[sldata[ii].s29.bound] $

Gt sldata[ii].s29.tbeam/2d) + sldata[ii].s29.bound.Min())

sldata[ii].s29.hmh = Max(Where(sldata[ii].s29.stmb[sldata[ii].s29.bound] $

Gt sldata[ii].s29.tbeam/2d) + sldata[ii].s29.bound.Min())

;calculate the FWHM width of the line in velocity−space

sldata[ii].s29.vsfwhm = sldata[ii].s29.vlsr[sldata[ii].s29.hml] − $

sldata[ii].s29.vlsr[sldata[ii].s28.hmh]

;Convert the integration window bounds to velocity space &

;calculate the area under the re−binned line

junk = Min(Abs(sldata[ii].s29.vlsr − sldata[ii].s29.wxmin), sldata[ii].s29.wblo)

junk = Min(Abs(sldata[ii].s29.vlsr − sldata[ii].s29.wxmax), sldata[ii].s29.wbhi)

sldata[ii].s29.area = Total(sldata[ii].s29.rstmb[sldata[ii].s29.wbhi:$

240

sldata[ii].s29.wblo], /double)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Set fit boundaries

sldata[ii].s29.lfit = sldata[ii].s29.ploc − fit pix

sldata[ii].s29.hfit = sldata[ii].s29.ploc + fit pix

;Fit and re−fit the profile in velocity space

junk = Gaussfit(sldata[ii].s29.vlsr[sldata[ii].s29.lfit:sldata[ii].s29.hfit], $

sldata[ii].s29.stmb[sldata[ii].s29.lfit:sldata[ii].s29.hfit], guess terms, nterms = 3)

junk = Gaussfit(sldata[ii].s29.vlsr[sldata[ii].s29.lfit:sldata[ii].s29.hfit], $

sldata[ii].s29.tmb[sldata[ii].s29.lfit:sldata[ii].s29.hfit], vs terms, $

estimates = guess terms, nterms = 3)

;Fit and re−fit the profile in pixel space

junk = Gaussfit(pix space[sldata[ii].s29.lfit:sldata[ii].s29.hfit], $

sldata[ii].s29.stmb[sldata[ii].s29.lfit:sldata[ii].s29.hfit], guess terms, nterms = 3)

junk = Gaussfit(pix space[sldata[ii].s29.lfit:sldata[ii].s29.hfit], $

sldata[ii].s29.tmb[sldata[ii].s29.lfit:sldata[ii].s29.hfit], pix terms, $

estimates = guess terms, nterms = 3)

End

30:Begin

;Resample the 30−SiO spectrum, using the RMS noise temp

sldata[ii].s30.tmb = kurtz.s30.tmb + (slnoise[∗,2,ii] ∗ kurtz.s30.rmsnt)

;Determine level of smoothing, based on keywords.

If Keyword set(low snr) Then Begin

If Keyword set(crap shoot) Then Begin

slevel = Savgol(50,50,0,3, /double)

Endif Else slevel = Savgol(50,50,0,4, /double)

Endif Else slevel = Savgol(40,40,0,4, /double)

;Apply smoothing to the resampled spectrum.

sldata[ii].s30.stmb = Convol(sldata[ii].s30.tmb, slevel)

;Convert the antenna temperature to velocity space

sldata[ii].s30.rstmb = sldata[ii].s30.tmb ∗ kurtz.s30.vbin

241

;Find 30si peak center & equivalent boundaries (in terms of 30sio sigma widths)

;for the integration window & get temperature at the identified peak center.

sldata[ii].s30.bound = Where((sldata[ii].s30.vlsr Gt sldata[ii].s28.wxmin) $

And (sldata[ii].s30.vlsr Lt sldata[ii].s28.wxmax))

sldata[ii].s30.tbeam = Max(sldata[ii].s30.stmb[sldata[ii].s30.bound], $

sldata[ii].s30.ploc)

sldata[ii].s30.ploc = sldata[ii].s30.ploc + sldata[ii].s30.bound.Min()

sldata[ii].s30.lcenter = sldata[ii].s30.vlsr[sldata[ii].s30.ploc]

;Establish boundaries (in terms of sigma widths) for the integration window.

sldata[ii].s30.wxmin = sldata[ii].s30.lcenter − (sig width ∗ sigma)

sldata[ii].s30.wxmax = sldata[ii].s30.lcenter + (sig width ∗ sigma)

;calculate the FWHM width of the line

sldata[ii].s30.hml = Min(Where(sldata[ii].s30.stmb[sldata[ii].s30.bound] $

Gt sldata[ii].s30.tbeam/2d) + sldata[ii].s30.bound.Min())

sldata[ii].s30.hmh = Max(Where(sldata[ii].s30.stmb[sldata[ii].s30.bound] $

Gt sldata[ii].s30.tbeam/2d) + sldata[ii].s30.bound.Min())

;calculate the FWHM width of the line in velocity−space

sldata[ii].s30.vsfwhm = sldata[ii].s30.vlsr[sldata[ii].s30.hml] − $

sldata[ii].s30.vlsr[sldata[ii].s28.hmh]

;Convert the integration window bounds to velocity space &

;calculate the area under the re−binned line

junk = Min(Abs(sldata[ii].s30.vlsr − sldata[ii].s30.wxmin), sldata[ii].s30.wblo)

junk = Min(Abs(sldata[ii].s30.vlsr − sldata[ii].s30.wxmax), sldata[ii].s30.wbhi)

sldata[ii].s30.area = Total(sldata[ii].s30.rstmb[sldata[ii].s30.wbhi:$

sldata[ii].s30.wblo], /double)

End

Endcase

Endforeach

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 4: − Calculate integrated area ratios.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Calculate the 28Si/29Si and 28Si/30Si ratios using the velocity−space areas.

242

sldata[ii].s29.pratio = sldata[ii].s28.area / sldata[ii].s29.area

sldata[ii].s30.pratio = sldata[ii].s28.area / sldata[ii].s30.area

;Impose frequency correction factor (GHz).

sldata[ii].s29.ratio = ((4.287982d / 4.342385d) ˆ 3d) ∗ sldata[ii].s29.pratio

sldata[ii].s30.ratio = ((4.237334d / 4.342385d) ˆ 3d) ∗ sldata[ii].s30.pratio

;Convert the corrected area ratio to delta values.

;solar Si values from Lodders (2003)

sldata[ii].s29.delta = 1000.0d ∗ Alog(19.6939d / sldata[ii].s29.ratio)

sldata[ii].s30.delta = 1000.0d ∗ Alog(29.8753d/ sldata[ii].s30.ratio)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 5: − Estimate line profile and tau values

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Calculate line profile, using gaussian fit to 29−SiO line

pixgauss = Gaussian function(pix terms[2], maximum=pix terms[0], width=1000, /double)

vs gphi = pixgauss / Total(pixgauss ∗ kurtz.s29.vbin, /double)

;Scale lines by the area ratios

sldata[ii].s28.scaled = sldata[ii].s28.stmb

sldata[ii].s29.scaled = sldata[ii].s29.stmb ∗ sldata[ii].s29.pratio

sldata[ii].s30.scaled = sldata[ii].s30.stmb ∗ sldata[ii].s29.pratio

;Calculate gamma values using scaled lines

sldata[ii].s29.gamma = Mean(sldata[ii].s29.scaled[sldata[ii].s29.ploc−15: $

sldata[ii].s29.ploc+15] / sldata[ii].s28.scaled[sldata[ii].s28.ploc−15: $

sldata[ii].s28.ploc+15], /double)

sldata[ii].s30.gamma = Mean(sldata[ii].s30.scaled[sldata[ii].s30.ploc−15: $

sldata[ii].s30.ploc+15] / sldata[ii].s28.scaled[sldata[ii].s28.ploc−15: $

sldata[ii].s28.ploc+15], /double)

;Calculate tau using both thin line profiles.

sldata[ii].s29.tau = 5d ∗ (4.342376d10 / (100.0d ∗!Const.c)) ∗ $

(sldata[ii].s29.gamma − 1d)

sldata[ii].s30.tau = 5d ∗ (4.342376d10 / (100.0d ∗!Const.c)) ∗ $

(sldata[ii].s30.gamma − 1d)

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

243

;SECTION 6: − Calculate correction for tau and apply.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

sldata[ii].s29.weight = (sldata[ii].s29.tbeam/kurtz.s29.rmsnt)ˆ2d

sldata[ii].s30.weight = (sldata[ii].s30.tbeam/kurtz.s30.rmsnt)ˆ2d

;Calculate the mean value of tau.

sldata[ii].mtau = ((sldata[ii].s29.weight ∗ tau29) + (sldata[ii].s30.weight ∗ tau30)) / $

(sldata[ii].s29.weight + sldata[ii].s30.weight)

;Estimate tau v using phi

tau v = sldata[ii].mtau ∗ Sqrt(2d ∗ !Dpi) ∗ vs terms[2] ∗ vs gphi

;Calculate correction factor

sldata[ii].cfactor = Total(tau v ∗ kurtz.s28.vbin, /double) / $

Total((1d − Exp(−1d ∗ tau v)) ∗ kurtz.s28.vbin, /double)

;Correct the 28Si/29Si ratio for optical depth

sldata[ii].s29.tcratio = sldata[ii].s29.ratio ∗ sldata[ii].cfactor

;Convert the corrected area ratio to delta values.

;solar Si values from Lodders (2003)

sldata[ii].s29.tcdelta = 1000.0d ∗ Alog(19.6939d / sldata[ii].s29.tcratio)

;Correct the 28Si/30Si ratio for optical depth

sldata[ii].s30.tcratio = sldata[ii].s30.ratio ∗ sldata[ii].cfactor

;Convert the corrected area ratio to delta values.

;solar Si values from Lodders (2003)

sldata[ii].s30.tcdelta = 1000.0d ∗ Alog(29.8753d / sldata[ii].s30.tcratio)

Endfor

Return, sldata

End

244

14.11 Accessory Programs And Definitions

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Superseed

; HYDRA Version 3.1

;

; PURPOSE:

; −> Generate a quasi−random longword vector usingthe SYSTIME

; function. Allows multiple seed vectors to be generated

; quickly and ensures a high degree of statistical

; independence between repeated calls of RANDOMN or

; RANDOMU during Monte−Carlo simulations.

;

; CALLING SEQUENCE:

; −> output = Superseed(seedsize)

;

; ARGUMENT(S):

; −> Seedsize: The length of the quasi−random longword

; seed vector to be generated and returned.

;

; KEYWORD(S):

; −> None

;

; OPTIONAL KEYWORD(S):

; −> None

;

; EXAMPLES:

; −> output = Superseed(5)

;

; OUTPUTS:

; −> A single quasi−random, longword vector

245

; containing ’seedsize’ entries.

;

; COMMENTS:

; −> Do not use SUPERSEED to pass a seed to RANDOMN or RANDOMU

; that is the same type and dimension as the output array.

; IDL will assume that this is a previous seed and will

; corrupt the random sequence.

;

; PROCEDURES/FUNCTIONS CALLED:

; −> None

;−

Function Superseed, seedsize

Compile opt IDL2

Common rtype

On error, 1

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA). 5 May, 2018.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

246

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Ensure the seedsize argument is a scalar and

;is a longword integer, or can be converted to one.

;If seedsize is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(seedsize, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(seedsize)), /not equal) Then Begin

Print, ’>>>>> Alert: Seedsize argument dimension = ’+Strtrim(seedsize.length,2)

Print, ’>>>>> Alert: Seedsize argument type = ’+Strtrim(Typename(seedsize),2)

Print, ’>>>>> Error: Seedsize argument must be an integer or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

seedsize = Long(seedsize)

;Make sure SUPERSEED is nonzero.

If ˜(seedsize Gt 0) Then Begin

Print, ’>>>>> Error: Seedsize argument must be non−zero’

Print, ’’ & ++ keymaster

Endif

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: status red’

Print, ’>>>>> Returning...’

Print, ’’

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise, continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

247

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Generate seed(s).

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Generate the seed vector, with nelements given by the value of ’seedsize’

;the system time (in seconds) is used to try and ensure the seed is different

;every time SUPERSEED is called.

seed = Long(((Systime(/seconds)ˆ2d) ∗ ((Dindgen(seedsize)+2d)ˆ2d)) $

Mod (2dˆ(31d) − 1d))

;Return the seed.

Return, seed

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Randomcolors

; HYDRA Version 5.1

;

; PURPOSE:

; −> Generate random 8−bit RGB color vectors.

;

; CALLING SEQUENCE:

; −> output = Randomcolors(ncolors)

;

; ARGUMENT(S):

; −> Ncolors: The integer number of random, 8−bit

; RGB color vectors to be returned.

;

248

; KEYWORD(S):

; −> None

;

; OPTIONAL KEYWORD(S):

; −> None

;

; EXAMPLES:

; −> output = Randomcolors(20)

;

; OUTPUTS:

; −> A single longword integer matrix with one 8−bit,

; 3 element RGB vector in each row.

;

; COMMENTS:

; −> None

;

; PROCEDURES/FUNCTIONS CALLED:

; −> Superseed.pro

;−

Function Randomcolors, ncolors

Compile opt IDL2

Common rtype

On error, 1

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA). 18 May, 2018.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

249

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Ensure the NCOLORS argument is a scalar and

;is a longword integer, or can be converted to one.

;If ncolors is a funky type, e.g. unsigned, then throw an error.

If Array equal(0, Isa(ncolors, /scalar)) || $
Array equal(1, rtype.adtypes.Contains(Typename(ncolors)), /not equal) Then Begin

Print, ’>>>>> Alert: Ncolors argument dimension = ’+Strtrim(ncolors.length,2)

Print, ’>>>>> Alert: Ncolors argument type = ’+Strtrim(Typename(ncolors),2)

Print, ’>>>>> Error: Ncolors argument must be an integer or floating−point scalar’

Print, ’’ & ++ keymaster

Endif Else Begin

ncolors = Long(ncolors)

;Make sure NCOLORS is nonzero.

If ˜(ncolors Gt 0) Then Begin

Print, ’>>>>> Error: Ncolors argument must be non−zero’

Print, ’’ & ++ keymaster

Endif

Endelse

;Print error message and return if anything went wrong.

If keymaster Ne 0 Then Begin

Print, ’>>>>> Alert: status red’

Print, ’>>>>> Returning...’

Print, ’’

250

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

Retall

Endif Else Begin

;Otherwise, continue.

Print, ’>>>>> Alert: Status Green’

Print, ’>>>>> Continuing...’

Print, ’’

Endelse

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Generate 3 by N array of random 8−bit integers.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Initialize array.

rcolors = Fltarr(3, ncolors−1, /nozero)

;Generate a 3 x NCOLORS array of uniformly distributed

;random numbers and convert to 8−bit integer RGB values.

rcolors = Randomu(Superseed(5), 3, ncolors−1)

rcolors = Long(255.0 ∗ Temporary(rcolors))

;Return color array.

Return, rcolors

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Ancillary Program(s) <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

; NAME:

; Purge

; HYDRA Version 5.1

;

251

; PURPOSE:

; −> Closes all open IDL graphics windows.

;

; CALLING SEQUENCE:

; −> Purge

;

; ARGUMENT(S):

; −> None

;

; KEYWORD(S):

; −> None

;

; OPTIONAL KEYWORD(S):

; −> None

;

; EXAMPLE(S):

; −> Purge

;

; OUTPUT(S):

; −> None

;

; COMMENTS:

; −> Closes all open graphics windows.

; Thats it! Short & sweet.

;

; PROCEDURES/FUNCTIONS CALLED:

; −> None

;−

Pro Purge

Compile opt IDL2

On error, 1

!Except = 1

;Hydra version 5.1

;>>>>> Written by: N.N. Monson (UCLA) 14 August, 2013

;>>>>> Version 2.0 written by: N.N. Monson (UCLA). 7 February, 2014

;>>>>> Version 3.0 written by: N.N. Monson (UCLA). 21 July, 2016

;>>>>> Version 4.0 (V−spec) written by: N.N. Monson (UCLA). 30 April, 2017

;>>>>> Version 5.0 (V−spec) written by: N.N. Monson (UCLA). 23 November, 2018

252

;>>>>> Version 5.1 (V−spec) written by: N.N. Monson (UCLA). 11 January, 2019

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Usage Agreement <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Copyright (C) 2019, N.N. Monson

;Usage Agreement omitted for brevity.

;See HYDRA User’s Guide.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Developer’s Notes <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Limitations & Known Bugs <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;None known.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 0: − Check argument(s).

; − Set keyword defaults.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;SECTION 1: − Close all open graphics windows.

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;Print an empty line below the program call on the command line.

Print, ’’

;Print some stuff

Print, ’>>>>> Alert: purging graphics buffers’

Print, ’’

W = Getwindows()

Foreach I, W Do I.close

253

Print, ’>>>>> End Of Line <<<<<’

Print, ’’

End

Definitions

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’Slstruct’ structure.

;−
Pro Slstruct define

Compile opt idl2

structure = { slstruct, $;begin tags

mtau: 0d, $

cfactor: 0d, $

s28: $

{ tmb: Dblarr(rtype.sml/3, /nozero), $

stmb: Dblarr(rtype.sml/3, /nozero), $

rstmb: Dblarr(rtype.sml/3, /nozero), $

scaled: Dblarr(rtype.sml/3, /nozero), $

tbeam: 0d, $

fwhm: 0d, $

bound: List(), $

ploc: 0d, $

lfit: 0d, $

hfit: 0d, $

wxmin: 0d, $

wxmax: 0d, $

wblo: 0d, $

wbhi: 0d, $

area: 0d }, $

s29: $

{ tmb: Dblarr(rtype.sml/3, /nozero), $

stmb: Dblarr(rtype.sml/3, /nozero), $

rstmb: Dblarr(rtype.sml/3, /nozero), $

tbeam: 0d, $

254

fwhm: 0d, $

bound: List(), $

ploc: 0d, $

lfit: 0d, $

hfit: 0d, $

wxmin: 0d, $

wxmax: 0d, $

wblo: 0d, $

wbhi: 0d, $

area: 0d, $

scaled: Dblarr(rtype.sml/3, /nozero), $

gamma: 0d, $

tau: 0d, $

weight: 0d, $

delta: 0d, $

tcdelta: 0d, $

pratio: 0d, $

ratio: 0d, $

tcratio: 0d }, $

s30: $

{ tmb: Dblarr(rtype.sml/3, /nozero), $

stmb: Dblarr(rtype.sml/3, /nozero), $

rstmb: Dblarr(rtype.sml/3, /nozero), $

scaled: Dblarr(rtype.sml/3, /nozero), $

gamma: 0d, $

tbeam: 0d, $

fwhm: 0d, $

bound: List(), $

ploc: 0d, $

lfit: 0d, $

hfit: 0d, $

wxmin: 0d, $

wxmax: 0d, $

wblo: 0d, $

wbhi: 0d, $

area: 0d, $

scaled: Dblarr(rtype.sml/3, /nozero), $

gamma: 0d, $

tau: 0d, $

weight: 0d, $

255

delta: 0d, $

tcdelta: 0d, $

pratio: 0d, $

ratio: 0d, $

tcratio: 0d } }

End

w

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’scdata l’ structure.

;−
Pro Scdata l define

Compile opt IDL2

Common rtype

noise tube = { $;begin tags

tube on: Dblarr(rtype.lrg, /nozero), $

tube off: Dblarr(rtype.lrg, /nozero) }

polarization = { $;begin tags

left: noise tube, $

right: noise tube }

structure = { scdata l, $;begin tags

sig: polarization, $

ref: polarization }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’scdata m’ structure.

;−
Pro Scdata m define

256

Compile opt IDL2

Common rtype

noise tube = { $;begin tags

tube on: Dblarr(rtype.med, /nozero), $

tube off: Dblarr(rtype.med, /nozero) }

polarization = { $;begin tags

left: noise tube, $

right: noise tube }

structure = { scdata m, $;begin tags

sig: polarization, $

ref: polarization }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’schead’ structure.

;−
Pro Schead define

Compile opt IDL2

headtags = { $;begin sdfits tags

object: ’’, $

bandwid: 0d, $

date obs: ’’, $

duration: 0d, $

exposure: 0d, $

tsys: 0d, $

tdim7: ’’, $

tunit7: ’’, $

ctype1: ’’, $

crval1: 0d, $

crpix1: 0d, $

cdelt1: 0d, $

257

ctype2: ’’, $

crval2: 0d, $

ctype3: ’’, $

crval3: 0d, $

crval4: Fix(0), $

observer: ’’, $

obsid: ’’, $

scan: 0, $

obsmode: ’’, $

frontend: ’’, $

tcal: 0.0, $

veldef: ’’, $

vframe: 0d, $

rvsys: 0d, $

obsfreq: 0d, $

lsrfreq:0d, $

lst: 0d, $

azimuth: 0d, $

elevatio: 0d, $

tambient: 0d, $

pressure: 0d, $

humidity: 0d, $

restfreq: 0d, $

freqres: 0d, $

equinox: 0d, $

radesys: ’’, $

trgtlong: 0d, $

trgtlat: 0d, $

sampler: ’’, $

feed: Fix(0), $

srfeed: Fix(0), $

feedxoff: 0d, $

feedeoff: 0d, $

subref state: Fix(0), $

sideband: ’’, $

procseqn: Fix(0), $

procsize: Fix(0), $

laston: 0, $

lastoff: 0, $

timestamp: ’’, $

258

velocity: 0d, $

zerochan: 0.0, $

caltype: ’’, $

ifnum: Fix(0), $

plnum: Fix(0) }

structure = { schead, $;begin tags

sig: headtags, $

ref: headtags }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’redata m’ structure.

;−
Pro Redata m define

Compile opt IDL2

Common rtype

polarization = { $;begin tags

left: Dblarr(rtype.med, /nozero), $

right: Dblarr(rtype.med, /nozero) }

structure = { redata m, $;begin tags

sig: polarization, $

ref: polarization }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’redata s’ structure.

;−
Pro Redata s define

259

Compile opt IDL2

Common rtype

polarization = { $;begin tags

left: Dblarr(rtype.sml, /nozero), $

right: Dblarr(rtype.sml, /nozero) }

structure = { redata s, $;begin tags

sig: polarization, $

ref: polarization }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’lrpol m’ structure.

;−
Pro Lrpol m define

Compile opt IDL2

Common rtype

polarization = { lrpol m, $;begin tags

left: Dblarr(rtype.med, /nozero), $

right: Dblarr(rtype.med, /nozero) }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’lrpol s’ structure.

;−
Pro Lrpol s define

Compile opt IDL2

Common rtype

260

polarization = { lrpol s, $;begin tags

left: Dblarr(rtype.sml, /nozero), $

right: Dblarr(rtype.sml, /nozero) }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’sigref m’ structure.

;−
Pro Sigref m define

Compile opt IDL2

Common rtype

fposition = { sigref m, $;begin tags

sig: Dblarr(rtype.med, /nozero), $

ref: Dblarr(rtype.med, /nozero) }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’sigref s’ structure.

;−
Pro Sigref s define

Compile opt IDL2

Common rtype

fposition = { sigref s, $;begin tags

sig: Dblarr(rtype.sml, /nozero), $

ref: Dblarr(rtype.sml, /nozero) }

End

261

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’datatool s’ structure.

;−
Pro Datatool s define

Compile opt IDL2

Common rtype

structure = { datatool s,$;begin tags

wild: Dblarr(rtype.sml, /nozero), $

tame: Dblarr(rtype.sml, /nozero), $

vlsr: Dblarr(rtype.sml, /nozero) }

End

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;>>>>> Primary Program <<<<<

;+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

;+

;Defines the ’Summary’ structure.

;−
Pro Summary define

Compile opt idl2

structure = { summary, $;begin tags

scan: 0l, $

object: ’’, $

nrec: 0l, $

mode: ’’ }

End

262

Bibliography

Adande, G. R. and Ziurys, L. M. Millimeter-wave Observations of CN and HNC and Their
15N Isotopologues: A New Evaluation of the 14N/15N Ratio across the Galaxy. The
Astrophysical Journal, 744:194, January 2012. doi:10.1088/0004-637X/744/2/194.

Alexander, C. M. O. and Nittler, L. R. The Galactic Evolution of Si, Ti, and O Isotopic
Ratios. The Astrophysical Journal, 519:222–235, July 1999. doi:10.1086/307340.

Amo-Baladrón, M. A., Mart́ın-Pintado, J., Morris, M. R., Muno, M. P., and Rodŕıguez-
Fernández, N. J. SiO Emission as a Tracer of X-Ray Dominated Chemistry in the
Galactic Center. The Astrophysical Journal, 694:943–950, April 2009. doi:10.1088/0004-
637X/694/2/943.

Andrievsky, S. M., Bersier, D., Kovtyukh, V. V., Luck, R. E., Maciel, W. J., Lépine, J. R. D.,
and Beletsky, Y. V. Using Cepheids to determine the galactic abundance gradient. II.
Towards the galactic center. Astronomy and Astrophysics, 384:140–144, March 2002a.
doi:10.1051/0004-6361:20020016.

Andrievsky, S. M., Kovtyukh, V. V., Luck, R. E., Lépine, J. R. D., Bersier, D., Maciel, W. J.,
Barbuy, B., Klochkova, V. G., Panchuk, V. E., and Karpischek, R. U. Using Cepheids to
determine the galactic abundance gradient. I. The solar neighbourhood. Astronomy and
Astrophysics, 381:32–50, January 2002b. doi:10.1051/0004-6361:20011488.

Andrievsky, S. M., Kovtyukh, V. V., Luck, R. E., Lépine, J. R. D., Maciel, W. J., and
Beletsky, Y. V. Using Cepheids to determine the galactic abundance gradient. III. First
results for the outer disc. Astronomy and Astrophysics, 392:491–499, September 2002c.
doi:10.1051/0004-6361:20021035.

Araya, E. D., Kurtz, S., Hofner, P., and Linz, H. Radio Continuum and Methanol
Observations of DR21(OH). The Astrophysical Journal, 698:1321–1329, June 2009.
doi:10.1088/0004-637X/698/2/1321.

Baars, J. W. M. The Paraboloidal Reflector Antenna in Radio Astronomy and Communica-
tion, volume 348 of Astrophysics and Space Science Library. Springer-Verlag, 1st edition,
2007. ISBN 978-0-387-69733-8. doi:10.1007/978-0-387-69734-5.

Balser, D. S., Rood, R. T., Bania, T. M., and Anderson, L. D. H II Region Metallicity
Distribution in the Milky Way Disk. The Astrophysical Journal, 738:27, September 2011.
doi:10.1088/0004-637X/738/1/27.

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. Synthesis of the Elements
in Stars. Reviews of Modern Physics, 29:547–650, 1957. doi:10.1103/RevModPhys.29.547.

Caselli, P., Hartquist, T. W., and Havnes, O. Grain-grain collisions and sputtering in oblique
C-type shocks. Astronomy and Astrophysics, 322:296–301, June 1997.

263

http://dx.doi.org/10.1088/0004-637X/744/2/194
http://dx.doi.org/10.1086/307340
http://dx.doi.org/10.1088/0004-637X/694/2/943
http://dx.doi.org/10.1088/0004-637X/694/2/943
http://dx.doi.org/10.1051/0004-6361:20020016
http://dx.doi.org/10.1051/0004-6361:20011488
http://dx.doi.org/10.1051/0004-6361:20021035
http://dx.doi.org/10.1088/0004-637X/698/2/1321
http://dx.doi.org/10.1007/978-0-387-69734-5
http://dx.doi.org/10.1088/0004-637X/738/1/27
http://dx.doi.org/10.1103/RevModPhys.29.547

Cavichia, O., Mollá, M., Costa, R. D. D., and Maciel, W. J. The role of the Galactic bar
in the chemical evolution of the Milky Way. Monthly Notices of the Royal Astronomical
Society, 437:3688–3701, February 2014. doi:10.1093/mnras/stt2164.

Clayton, D. D. Galactic chemical evolution and nucleocosmochronology - Standard
model with terminated infall. The Astrophysical Journal, 285:411–425, October 1984.
doi:10.1086/162518.

Clayton, D. D. Handbook of Isotopes in the Cosmos. Cambridge University Press, September
2003. ISBN 0521823811.

Clayton, D. D. and Pantelaki, I. Secondary metallicity in analytic models of chem-
ical evolution of galaxies. The Astrophysical Journal, 307:441–448, August 1986.
doi:10.1086/164433.

Cunha, K., Sellgren, K., Smith, V. V., Ramirez, S. V., Blum, R. D., and Terndrup,
D. M. Chemical Abundances of Luminous Cool Stars in the Galactic Center from High-
Resolution Infrared Spectroscopy. The Astrophysical Journal, 669:1011–1023, November
2007. doi:10.1086/521813.

Davies, B., Origlia, L., Kudritzki, R.-P., Figer, D. F., Rich, R. M., and Najarro, F. The
Chemical Abundances in the Galactic Center from the Atmospheres of Red Supergiants.
The Astrophysical Journal, 694:46–55, March 2009. doi:10.1088/0004-637X/694/1/46.

Draine, B. T. Physics of the Interstellar and Intergalactic Medium. Princeton Series in
Astrophysics. Princeton Univ. Press, 1st edition, 2011. ISBN 978-0-691-12214-4.

Duarte-Cabral, A., Bontemps, S., Motte, F., Gusdorf, A., Csengeri, T., Schneider, N.,
and Louvet, F. SiO emission from low- and high-velocity shocks in Cygnus-X massive
dense clumps. Astronomy and Astrophysics, 570:A1, October 2014. doi:10.1051/0004-
6361/201423677.

Frerking, M. A., Wilson, R. W., Linke, R. A., and Wannier, P. G. Isotopic abundance ratios
in interstellar carbon monosulfide. The Astrophysical Journal, 240:65–73, August 1980.
doi:10.1086/158207.

Gallino, R., Raiteri, C. M., Busso, M., and Matteucci, F. The puzzle of silicon, titanium,
and magnesium anomalies in meteoritic silicon carbide grains. The Astrophysical Journal,
430:858–869, August 1994. doi:10.1086/174457.

Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A.,
and Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch
Stars. II. Neutron Capture and the S-Process. The Astrophysical Journal, 497:388–403,
April 1998. doi:10.1086/305437.

Goldsmith, P. F. Collisional Excitation of Carbon Monoxide in Interstellar Clouds. The
Astrophysical Journal, 176:597, September 1972. doi:10.1086/151661.

264

http://dx.doi.org/10.1093/mnras/stt2164
http://dx.doi.org/10.1086/162518
http://dx.doi.org/10.1086/164433
http://dx.doi.org/10.1086/521813
http://dx.doi.org/10.1088/0004-637X/694/1/46
http://dx.doi.org/10.1051/0004-6361/201423677
http://dx.doi.org/10.1051/0004-6361/201423677
http://dx.doi.org/10.1086/158207
http://dx.doi.org/10.1086/174457
http://dx.doi.org/10.1086/305437
http://dx.doi.org/10.1086/151661

Goldsmith, P. F. and Langer, W. D. Population Diagram Analysis of Molecular Line Emis-
sion. The Astrophysical Journal, 517:209–225, May 1999. doi:10.1086/307195.

Gusdorf, A., Cabrit, S., Flower, D. R., and Pineau Des Forêts, G. SiO line emission from
C-type shock waves: interstellar jets and outflows. Astronomy and Astrophysics, 482:
809–829, May 2008. doi:10.1051/0004-6361:20078900.

Handa, T., Sakano, M., Naito, S., Hiramatsu, M., and Tsuboi, M. Thermal SiO and H13CO+

Line Observations of the Dense Molecular Cloud G0.11-0.11 in the Galactic Center Region.
The Astrophysical Journal, 636:261–266, January 2006. doi:10.1086/497881.

Harju, J., Lehtinen, K., Booth, R. S., and Zinchenko, I. A survey of SiO emission towards
interstellar masers. I. SiO line characteristics. Astronomy and Astrophysics Supplement
Series, 132:211–231, October 1998. doi:10.1051/aas:1998448.

Henkel, C., Asiri, H., Ao, Y., Aalto, S., Danielson, A. L. R., Papadopoulos, P. P., Garćıa-
Burillo, S., Aladro, R., Impellizzeri, C. M. V., Mauersberger, R., Mart́ın, S., and Harada,
N. Carbon and oxygen isotope ratios in starburst galaxies: New data from NGC 253
and Mrk 231 and their implications. Astronomy and Astrophysics, 565:A3, May 2014.
doi:10.1051/0004-6361/201322962.

Heyer, M. and Dame, T. M. Molecular Clouds in the Milky Way. Annual Review of As-
tronomy and Astrophysics, 53:583–629, August 2015. doi:10.1146/annurev-astro-082214-
122324.

Hunter, T. R., Testi, L., Zhang, Q., and Sridharan, T. K. Molecular Jets and H 2O
Masers in the AFGL 5142 Hot Core. The Astronomical Journal, 118:477–487, July 1999.
doi:10.1086/300936.

Kennicutt, R. C. and Evans, N. J. Star Formation in the Milky Way and Nearby
Galaxies. Annual Review of Astronomy and Astrophysics, 50:531–608, September 2012.
doi:10.1146/annurev-astro-081811-125610.

Kennicutt, R. C. Jr. The Global Schmidt Law in Star-forming Galaxies. The Astrophysical
Journal, 498:541–552, May 1998. doi:10.1086/305588.

Kent, S. M., Dame, T. M., and Fazio, G. Galactic structure from the Spacelab infrared
telescope. II - Luminosity models of the Milky Way. The Astrophysical Journal, 378:
131–138, September 1991. doi:10.1086/170413.

Knight, K. B., Kita, N. T., Mendybaev, R. A., Richter, F. M., Davis, A. M., and Valley,
J. W. Silicon isotopic fractionation of CAI-like vacuum evaporation residues. Geochimica
et Cosmochimica Acta, 73:6390–6401, October 2009. doi:10.1016/j.gca.2009.07.008.

Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., and Ohkubo, T. Galactic Chemical
Evolution: Carbon through Zinc. The Astrophysical Journal, 653:1145–1171, December
2006. doi:10.1086/508914.

265

http://dx.doi.org/10.1086/307195
http://dx.doi.org/10.1051/0004-6361:20078900
http://dx.doi.org/10.1086/497881
http://dx.doi.org/10.1051/aas:1998448
http://dx.doi.org/10.1051/0004-6361/201322962
http://dx.doi.org/10.1146/annurev-astro-082214-122324
http://dx.doi.org/10.1146/annurev-astro-082214-122324
http://dx.doi.org/10.1086/300936
http://dx.doi.org/10.1146/annurev-astro-081811-125610
http://dx.doi.org/10.1086/305588
http://dx.doi.org/10.1086/170413
http://dx.doi.org/10.1016/j.gca.2009.07.008
http://dx.doi.org/10.1086/508914

Kobayashi, C., Karakas, A. I., and Umeda, H. The evolution of isotope ratios in the Milky
Way Galaxy. Monthly Notices of the Royal Astronomical Society, 414:3231–3250, July
2011. doi:10.1111/j.1365-2966.2011.18621.x.

Langer, W. D. and Penzias, A. A. C-12/C-13 isotope ratio across the Galaxy from obser-
vations of C-13/O-18 in molecular clouds. The Astrophysical Journal, 357:477–492, July
1990. doi:10.1086/168935.

Langer, W. D. and Penzias, A. A. (C-12)/(C-13) isotope ratio in the local interstellar medium
from observations of (C-13)(O-18) in molecular clouds. The Astrophysical Journal, 408:
539–547, May 1993. doi:10.1086/172611.

Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., and
Thornley, M. D. The Star Formation Efficiency in Nearby Galaxies: Measuring Where
Gas Forms Stars Effectively. The Astronomical Journal, 136:2782–2845, December 2008.
doi:10.1088/0004-6256/136/6/2782.

Lewis, K. M., Lugaro, M., Gibson, B. K., and Pilkington, K. Decoding the Message from
Meteoritic Stardust Silicon Carbide Grains. The Astrophysical Journal Letters, 768:L19,
May 2013. doi:10.1088/2041-8205/768/1/L19.

Linke, R. A., Goldsmith, P. F., Wannier, P. G., Wilson, R. W., and Penzias, A. A. Isotopic
abundance variations in interstellar HCN. The Astrophysical Journal, 214:50–59, May
1977. doi:10.1086/155229.

Luck, R. E., Kovtyukh, V. V., and Andrievsky, S. M. The Distribution of the Elements in the
Galactic Disk. The Astronomical Journal, 132:902–918, August 2006. doi:10.1086/505687.

Lugaro, M., Zinner, E., Gallino, R., and Amari, S. Si Isotopic Ratios in Mainstream
Presolar SIC Grains Revisited. The Astrophysical Journal, 527:369–394, December 1999.
doi:10.1086/308078.

Lugaro, M., Gallino, R., Amari, S., Zinner, E., and Nittler, L. R. The effect of heterogeneities
in the interstellar medium on the CNO isotopic ratios of presolar SiC and corundum grains.
Nuclear Physics A, 718:419–421, May 2003. doi:10.1016/S0375-9474(03)00819-4.

Luisi, M., Anderson, L. D., Balser, D. S., Bania, T. M., and Wenger, T. V. HII Region
Ionization of the Interstellar Medium: A Case Study of NGC 7538. ArXiv e-prints, May
2016.

Mangum, J. G. and Shirley, Y. L. How to Calculate Molecular Column Density. Publications
of the Astronomical Society of the Pacific, 127:266, March 2015. doi:10.1086/680323.

Mart́ın, S., Mart́ın-Pintado, J., and Mauersberger, R. HNCO Abundances in Galaxies:
Tracing the Evolutionary State of Starbursts. The Astrophysical Journal, 694:610–617,
March 2009. doi:10.1088/0004-637X/694/1/610.

Mart́ın, S., Aladro, R., Mart́ın-Pintado, J., and Mauersberger, R. A large 12C/13C isotopic
ratio in M 82 and NGC 253. Astronomy and Astrophysics, 522:A62, November 2010.
doi:10.1051/0004-6361/201014972.

266

http://dx.doi.org/10.1111/j.1365-2966.2011.18621.x
http://dx.doi.org/10.1086/168935
http://dx.doi.org/10.1086/172611
http://dx.doi.org/10.1088/0004-6256/136/6/2782
http://dx.doi.org/10.1088/2041-8205/768/1/L19
http://dx.doi.org/10.1086/155229
http://dx.doi.org/10.1086/505687
http://dx.doi.org/10.1086/308078
http://dx.doi.org/10.1016/S0375-9474(03)00819-4
http://dx.doi.org/10.1086/680323
http://dx.doi.org/10.1088/0004-637X/694/1/610
http://dx.doi.org/10.1051/0004-6361/201014972

Matteucci, F., Panagia, N., Pipino, A., Mannucci, F., Recchi, S., and Della Valle, M. A
new formulation of the Type Ia supernova rate and its consequences on galactic chemical
evolution. Monthly Notices of the Royal Astronomical Society, 372:265–275, October 2006.
doi:10.1111/j.1365-2966.2006.10848.x.

Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M., and Wyckoff, S. The 12C/13C
Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galac-
tic Chemical Evolution. The Astrophysical Journal, 634:1126–1132, December 2005.
doi:10.1086/497123.

Minchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., and Wozniak,
H. Radial migration in galactic disks caused by resonance overlap of multiple pat-
terns: Self-consistent simulations. Astronomy and Astrophysics, 527:A147, March 2011.
doi:10.1051/0004-6361/201015139.

Monson, N. N., Morris, M. R., and Young, E. D. Uniform Silicon Isotope Ratios Across the
Milky Way Galaxy. The Astrophysical Journal, 839:123, April 2017. doi:10.3847/1538-
4357/aa67e6.

Najarro, F., Figer, D. F., Hillier, D. J., Geballe, T. R., and Kudritzki, R. P. Metallicity in
the Galactic Center: The Quintuplet Cluster. The Astrophysical Journal, 691:1816–1827,
February 2009. doi:10.1088/0004-637X/691/2/1816.

Naranjo-Romero, R., Zapata, L. A., Vázquez-Semadeni, E., Takahashi, S., Palau, A., and
Schilke, P. From Dusty Filaments to Massive Stars: The Case of NGC 7538 S. The
Astrophysical Journal, 757:58, September 2012. doi:10.1088/0004-637X/757/1/58.

Nichols, R. H. Jr., Wasserburg, G. J., and Grimley, R. T. Evaporation of Forsterite: Identifi-
cation of Gas-phase Species Via Knudsen Cell Mass Spectrometry. In Lunar and Planetary
Science Conference, volume 26 of Lunar and Planetary Science Conference, March 1995.

Nisini, B., Codella, C., Giannini, T., Santiago Garcia, J., Richer, J. S., Bachiller, R., and
Tafalla, M. Warm SiO gas in molecular bullets associated with protostellar outflows. As-
tronomy and Astrophysics, 462:163–172, January 2007. doi:10.1051/0004-6361:20065621.

Nittler, L. R. Constraints on Heterogeneous Galactic Chemical Evolution from Meteoritic
Stardust. The Astrophysical Journal, 618:281–296, January 2005. doi:10.1086/425892.

Nittler, L. R. and Gaidos, E. Galactic chemical evolution and the oxygen isotopic composition
of the solar system. Meteoritics and Planetary Science, 47:2031–2048, December 2012.
doi:10.1111/j.1945-5100.2012.01410.x.

Pedicelli, S., Bono, G., Lemasle, B., François, P., Groenewegen, M., Lub, J., Pel, J. W.,
Laney, D., Piersimoni, A., Romaniello, M., Buonanno, R., Caputo, F., Cassisi, S., Castelli,
F., Leurini, S., Pietrinferni, A., Primas, F., and Pritchard, J. On the metallicity gra-
dient of the Galactic disk. Astronomy and Astrophysics, 504:81–86, September 2009.
doi:10.1051/0004-6361/200912504.

267

http://dx.doi.org/10.1111/j.1365-2966.2006.10848.x
http://dx.doi.org/10.1086/497123
http://dx.doi.org/10.1051/0004-6361/201015139
http://dx.doi.org/10.3847/1538-4357/aa67e6
http://dx.doi.org/10.3847/1538-4357/aa67e6
http://dx.doi.org/10.1088/0004-637X/691/2/1816
http://dx.doi.org/10.1088/0004-637X/757/1/58
http://dx.doi.org/10.1051/0004-6361:20065621
http://dx.doi.org/10.1086/425892
http://dx.doi.org/10.1111/j.1945-5100.2012.01410.x
http://dx.doi.org/10.1051/0004-6361/200912504

Penzias, A. A. On the relative abundances of silicon isotopes in the interstellar medium.
The Astrophysical Journal, 249:513–517, October 1981a. doi:10.1086/159310.

Penzias, A. A. The isotopic abundances of interstellar oxygen. The Astrophysical Journal,
249:518–523, October 1981b. doi:10.1086/159311.

Perley, R. A. and Butler, B. J. An Accurate Flux Density Scale from 1 to 50 GHz.
The Astrophysical Journal Supplement Series, 204(2):19, Feb 2013. doi:10.1088/0067-
0049/204/2/19.

Perley, R. A. and Butler, B. J. An Accurate Flux Density Scale from 50 MHz to 50 GHz.
The Astrophysical Journal Supplement Series, 230(1):7, May 2017. doi:10.3847/1538-
4365/aa6df9.

Prantzos, N. An Introduction to Galactic Chemical Evolution. In Charbonnel, C. and Zahn,
J.-P., editors, EAS Publications Series, volume 32 of EAS Publications Series, pages 311–
356, November 2008. doi:10.1051/eas:0832009.

Prantzos, N., Aubert, O., and Audouze, J. Evolution of the carbon and oxygen isotopes in
the Galaxy. Astronomy and Astrophysics, 309:760–774, May 1996.

Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M., and Wadhwa, M. Elemental
and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochimica et
Cosmochimica Acta, 71:5544–5564, November 2007. doi:10.1016/j.gca.2007.09.005.

Riquelme, D., Amo-Baladrón, M. A., Mart́ın-Pintado, J., Mauersberger, R., Mart́ın, S., and
Bronfman, L. Tracing gas accretion in the Galactic center using isotopic ratios. Astronomy
and Astrophysics, 523:A51, November 2010a. doi:10.1051/0004-6361/201015008.

Riquelme, D., Bronfman, L., Mauersberger, R., May, J., and Wilson, T. L. A survey of the
Galactic center region in HCO+, H13CO+, and SiO. Astronomy and Astrophysics, 523:
A45, November 2010b. doi:10.1051/0004-6361/200913359.

Romano, D. and Matteucci, F. Nova nucleosynthesis and Galactic evolution of the CNO
isotopes. Monthly Notices of the Royal Astronomical Society, 342:185–198, June 2003.
doi:10.1046/j.1365-8711.2003.06526.x.

Savage, C., Apponi, A. J., Ziurys, L. M., and Wyckoff, S. Galactic 12C/13C Ratios from
Millimeter-Wave Observations of Interstellar CN. The Astrophysical Journal, 578:211–
223, October 2002. doi:10.1086/342468.

Scannapieco, E. and Bildsten, L. The Type Ia Supernova Rate. The Astrophysical Journal
Letters, 629:L85–L88, August 2005. doi:10.1086/452632.

Schilke, P., Walmsley, C. M., Pineau des Forets, G., and Flower, D. R. SiO production in
interstellar shocks. Astronomy and Astrophysics, 321:293–304, May 1997.

Searle, L. and Sargent, W. L. W. Inferences from the Composition of Two Dwarf Blue
Galaxies. The Astrophysical Journal, 173:25, April 1972. doi:10.1086/151398.

268

http://dx.doi.org/10.1086/159310
http://dx.doi.org/10.1086/159311
http://dx.doi.org/10.1088/0067-0049/204/2/19
http://dx.doi.org/10.1088/0067-0049/204/2/19
http://dx.doi.org/10.3847/1538-4365/aa6df9
http://dx.doi.org/10.3847/1538-4365/aa6df9
http://dx.doi.org/10.1051/eas:0832009
http://dx.doi.org/10.1016/j.gca.2007.09.005
http://dx.doi.org/10.1051/0004-6361/201015008
http://dx.doi.org/10.1051/0004-6361/200913359
http://dx.doi.org/10.1046/j.1365-8711.2003.06526.x
http://dx.doi.org/10.1086/342468
http://dx.doi.org/10.1086/452632
http://dx.doi.org/10.1086/151398

Shahar, A. and Young, E. D. Astrophysics of CAI formation as revealed by silicon isotope
LA-MC-ICPMS of an igneous CAI. Earth and Planetary Science Letters, 257:497–510,
May 2007. doi:10.1016/j.epsl.2007.03.012.

Shi, H., Zhao, J.-H., and Han, J. L. Nature of W51e2: Massive Cores at Different
Phases of Star Formation. The Astrophysical Journal, 710:843–852, February 2010.
doi:10.1088/0004-637X/710/1/843.

Shirley, Y. L. The Critical Density and the Effective Excitation Density of Commonly
Observed Molecular Dense Gas Tracers. Publications of the Astronomical Society of the
Pacific, 127:299, March 2015. doi:10.1086/680342.

Spite, M., Cayrel, R., Hill, V., Spite, F., François, P., Plez, B., Bonifacio, P., Molaro,
P., Depagne, E., Andersen, J., Barbuy, B., Beers, T. C., Nordström, B., and Primas,
F. First stars IX - Mixing in extremely metal-poor giants. Variation of the 12C/13C,
[Na/Mg] and [Al/Mg] ratios. Astronomy and Astrophysics, 455:291–301, August 2006.
doi:10.1051/0004-6361:20065209.

Straniero, O., Chieffi, A., Limongi, M., Busso, M., Gallino, R., and Arlandini, C. Evolu-
tion and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. I. Formation of
Population I Carbon Stars. The Astrophysical Journal, 478:332–339, March 1997.

Timmes, F. X. and Clayton, D. D. Galactic Evolution of Silicon Isotopes: Application to
Presolar SiC Grains from Meteorites. The Astrophysical Journal, 472:723, December 1996.
doi:10.1086/178102.

Timmes, F. X., Woosley, S. E., and Weaver, T. A. Galactic chemical evolution: Hydro-
gen through zinc. The Astrophysical Journal Supplement Series, 98:617–658, June 1995.
doi:10.1086/192172.

Tinsley, B. M. Nucleochronology and Chemical Evolution. The Astrophysical Journal, 198:
145–150, May 1975. doi:10.1086/153586.

Tinsley, B. M. and Cameron, A. G. W. Possible influence of comets on the chemical
evolution of the galaxy. Astrophysics and Space Science, 31:31–35, November 1974.
doi:10.1007/BF00642598.

Tinsley, B. M. and Larson, R. B. Chemical evolution and the formation of galactic disks.
The Astrophysical Journal, 221:554–561, April 1978. doi:10.1086/156056.

Tsuboi, M., Tadaki, K.-I., Miyazaki, A., and Handa, T. Sagittarius A Molecular Cloud
Complex in H13CO+ and Thermal SiO Emission Lines. Publications of the Astronomical
Society of Japan, 63:763–794, August 2011. doi:10.1093/pasj/63.4.763.

Tsujimoto, T., Nomoto, K., Yoshii, Y., Hashimoto, M., Yanagida, S., and Thielemann, F.-K.
Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the
Galaxy, LMC and SMC. Monthly Notices of the Royal Astronomical Society, 277:945–958,
December 1995. doi:10.1093/mnras/277.3.945.

269

http://dx.doi.org/10.1016/j.epsl.2007.03.012
http://dx.doi.org/10.1088/0004-637X/710/1/843
http://dx.doi.org/10.1086/680342
http://dx.doi.org/10.1051/0004-6361:20065209
http://dx.doi.org/10.1086/178102
http://dx.doi.org/10.1086/192172
http://dx.doi.org/10.1086/153586
http://dx.doi.org/10.1007/BF00642598
http://dx.doi.org/10.1086/156056
http://dx.doi.org/10.1093/pasj/63.4.763
http://dx.doi.org/10.1093/mnras/277.3.945

van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., and van Dishoeck, E. F. A
computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic
plots to interpret observed line intensity ratios. Astronomy and Astrophysics, 468:627–635,
June 2007. doi:10.1051/0004-6361:20066820.

Wilson, R. W., Langer, W. D., and Goldsmith, P. F. A determination of the carbon and
oxygen isotopic ratios in the local interstellar medium. The Astrophysical Journal Letters,
243:L47–L52, January 1981. doi:10.1086/183440.

Wilson, T. L. Isotopes in the interstellar medium and circumstellar envelopes. Reports on
Progress in Physics, 62:143–185, February 1999. doi:10.1088/0034-4885/62/2/002.

Wilson, T. L. and Rood, R. Abundances in the Interstellar Medium. Annual Review of
Astronomy and Astrophysics, 32:191–226, 1994. doi:10.1146/annurev.aa.32.090194.001203.

Wilson, T. L., Rohlfs, K., and Hüttemeister, S. Tools of Radio Astronomy. Astronomy
and Astrophysics Library. Springer-Verlag, 5th edition, 2009. ISBN 78-3-540-85121-9.
doi:10.1007/978-3-540-85122-6.

Wolff, R. S. The relative abundances of Si-28, Si-29, and Si-30 in the interstellar medium.
The Astrophysical Journal, 242:1005–1012, December 1980. doi:10.1086/158531.

Wouterloot, J. G. A., Henkel, C., Brand, J., and Davis, G. R. Galactic interstellar
18O/{ˆ17}O ratios - a radial gradient? Astronomy and Astrophysics, 487:237–246, August
2008. doi:10.1051/0004-6361:20078156.

Young, E. D., Gounelle, M., Smith, R. L., Morris, M. R., and Pontoppidan, K. M. Astro-
nomical Oxygen Isotopic Evidence for Supernova Enrichment of the Solar System Birth
Environment by Propagating Star Formation. The Astrophysical Journal, 729:43, March
2011. doi:10.1088/0004-637X/729/1/43.

Zapata, L. A., Menten, K., Reid, M., and Beuther, H. An Extensive, Sensitive Search for
SiO Masers in High- and Intermediate-Mass Star-Forming Regions. The Astrophysical
Journal, 691:332–341, January 2009. doi:10.1088/0004-637X/691/1/332.

Zhang, Q., Hunter, T. R., Beuther, H., Sridharan, T. K., Liu, S.-Y., Su, Y.-N., Chen, H.-R.,
and Chen, Y. Multiple Jets from the High-Mass (Proto)stellar Cluster AFGL 5142. The
Astrophysical Journal, 658:1152–1163, April 2007. doi:10.1086/511381.

Zinner, E., Nittler, L. R., Gallino, R., Karakas, A. I., Lugaro, M., Straniero, O., and Lat-
tanzio, J. C. Silicon and Carbon Isotopic Ratios in AGB Stars: SiC Grain Data, Models,
and the Galactic Evolution of the Si Isotopes. The Astrophysical Journal, 650:350–373,
October 2006. doi:10.1086/506957.

Ziurys, L. M., Friberg, P., and Irvine, W. M. Interstellar SiO as a tracer of high-temperature
chemistry. The Astrophysical Journal, 343:201–207, August 1989. doi:10.1086/167696.

270

http://dx.doi.org/10.1051/0004-6361:20066820
http://dx.doi.org/10.1086/183440
http://dx.doi.org/10.1088/0034-4885/62/2/002
http://dx.doi.org/10.1146/annurev.aa.32.090194.001203
http://dx.doi.org/10.1007/978-3-540-85122-6
http://dx.doi.org/10.1086/158531
http://dx.doi.org/10.1051/0004-6361:20078156
http://dx.doi.org/10.1088/0004-637X/729/1/43
http://dx.doi.org/10.1088/0004-637X/691/1/332
http://dx.doi.org/10.1086/511381
http://dx.doi.org/10.1086/506957
http://dx.doi.org/10.1086/167696

	Introduction
	Previous Work
	Stellar Metallicity
	Galactic Chemical Evolution of Light Stable Isotopes
	Primary Nuclides
	Secondary Nuclides

	Previous Observations

	Testing GCE using Silicon
	Observations
	Calibration and Data Reduction
	Flux Calibration
	Baselines
	Interfering Lines

	Optical Depth Effects
	The Shape Parameter

	Extracting Column Densities from Line Intensities
	Correcting for Finite Optical Depth
	Excitation Effects

	Evaluation of Uncertainties

	Results
	Discussion
	Secondary/Primary Si Isotope Ratios
	Secondary/Secondary Si Isotope Ratios

	Future Work
	Conclusions
	Appendix
	Preface
	Calculating Abundance Ratios
	Accounting for Beam-Weighting
	Correcting for Optical Depth

	The Principle of Detailed Balance
	The Excitation Temperature
	The Critical Density

	HYDRA User's Guide & Cookbook
	User Agreement

	The HYDRA Program Suite
	Preface

	HYDRA Cookbook
	Installing HYDRA
	Setting Up HYDRA
	Setdir.pro
	Getfits.pro

	Managing Data With HYDRA
	Gather.pro

	Calibrating Data With HYDRA
	Dreamcatcher.pro

	Reducing Data With HYDRA
	Outerlimits.pro
	Polybase.pro
	Dreamweaver.pro

	How HYDRA Calibrates Data
	Calibration Sources
	The Noise Diodes
	Calibrating Science Data

	HYDRA Source Code
	Hydra.pro
	Getfits.pro
	Setdir.pro
	Gather.pro
	Extract.pro
	Dreamcatcher.pro
	Outerlimits.pro
	Polybase.pro
	Dreamweaver.pro
	Looper.pro
	Accessory Programs And Definitions

