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Abstract—The upcoming Connected Vehicles (CV) technology
shows great promise in effectively managing traffic congestion
and enhancing mobility for users along transportation corri-
dors. Data analysis powered by sensors in CVs allows us to
implement optimized traffic management strategies optimizing
the efficiency of transportation infrastructure resources. In this
study, we introduce a novel Integrated Corridor Management
(ICM) methodology, which integrates underutilized Park-And-
Ride (PAR) facilities into the global optimization strategy.

To achieve this, we use vehicle-to-infrastructure (V2I) com-
munication protocols, namely basic safety messages (BSM) and
traveler information messages (TIM) to help gather downstream
traffic information and share park and ride advisories with
upstream traffic, respectively. Next, we develop a model that
assesses potential delays experienced by vehicles in the corridor.
Based on this model, we employ a novel centralized deep
reinforcement learning (DRL) solution to control the timing and
content of these messages. The ultimate goal is to maximize
throughput, minimize carbon emissions, and reduce travel time
effectively.

To evaluate our ICM strategy, we conduct simulations on a
realistic model of Interstate 5 using the Veins simulation software.
The DRL agent converges to a strategy that marginally improves
throughput, travel speed, and freeway travel time, at the cost of
a slightly higher carbon footprint.

I. INTRODUCTION

With the continuous growth of metropolitan cities, traffic

congestion can become a concern. According to the latest

Urban Mobility Report [1], the annual person-hours delay of

2020 was 46, resulting in a total of $1.14 billion for congestion

cost. Freeways are known for experiencing a great deal of

traffic congestion [2] as more people travel on the freeway

simultaneously, resulting in slower speeds.

As a result, there have been works that focus on the

notion of integrated corridor management (ICM) [3], which

promotes the adoption of global traffic management strategies

by integrating various traffic components along a corridor (e.g.

ramp meter controllers) into a single interconnected system

that aims to minimize congestion. Furthermore, connected

vehicles (CV) can benefit from ICM through Dedicated Short-

Range Communications (DSRC), vehicle-to-vehicle (V2V),

and vehicle-to-infrastructure (V2I) standards [4]. ICM relies

primarily on V2I communication instead of V2V. CVs allow

for V2V communication, which is lower in latency because

∗ Both authors contributed equally to this work.

it is the exchange of information directly between vehicles.

Having a sweeping view of surrounding vehicles offers more

information about road conditions in addition to V2I commu-

nication. Therefore, this connectivity offers numerous advan-

tages, such as transmitting traffic information to commuters,

enabling priority requests for certain vehicles, and supporting

features like platooning and adaptive cruise control [4].
The combined potential of ICM strategies and CVs could be

enhanced using underutilized resources, such as park-and-ride

(PAR) facilities. These facilities offer affordable and accessible

public transport allowing individuals to park their vehicles

safely and then travel to their destination via a local bus transit,

carpool, etc [5]. PAR facilities are not being fully utilized

in California, with most facilities only 65% full on average

during peak hours [6, 7]. Integrating PAR supply and demand

dynamics within ICM optimization strategies can improve

traffic flow by encouraging greater usage of PAR structures.
This report presents a centralized learning-based approach

that uses traffic information from the corridor and parking

availability data from PAR facilities to formulate a corridor-

wide advertisement strategy. The deep reinforcement-learning

(DRL) approach processes the observed congestion state of

the corridor and uses that information to guide the message

advertisement strategies of the roadside units (RSUs) to vehi-

cles traversing the corridor. The RSUs broadcast PAR advisory

messages along the corridor. A DRL approach was specifically

chosen because we have no initial knowledge about the traffic

states of the corridor and corresponding message advertise-

ment strategies that could be provided by a training dataset. A

DRL model addresses this issue by gradually learning patterns

that maximize a reward function that depends on throughput,

travel time, and CO2 emissions. The goal is to increase PAR

usage and efficiency and to improve corridor flow. The main

contributions include:

• A realistic traffic model for a congested highway corridor

that depicts the characteristics and roles of different traffic

components

• Demonstration of how park-and-ride parking messages

can be incorporated within DSRC

• A novel Deep Reinforcement Learning methodology that

optimizes traffic flow and carbon emissions along a

corridor

• Experiments using SUMO and VEINS, which simulate

traffic conditions and our centralized ICM strategy on
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Interstate 5, indicating improvements in throughput, CO2

emissions, and travel time.

II. BACKGROUND

A. DSRC Technology

Dedicated short-range communication (DSRC) is a wireless

communication technology proposed by the United States Fed-

eral Communications Commission (FCC) that enables vehicle-

to-everything (V2X) communication in intelligent transporta-

tion systems (ITS). The FCC reserved 75 MHz of spec-

trum from the 5.9 GHz frequency band for transportation-

related communications [8]. DSRC uses IEEE 802.11p as

its communication standard for its PHY and MAC layers.

For the Security, Network and Transport, and Upper MAC

layers implement IEE 1609.2, IEEE 1609.3, and IEEE 1609.4

respectively as can be seen in Table I.

Network Layer Protocol

Application IEEE 1609.1
Messaging Sublayer SAE J2735 (V2X), SAE J2945.1 (V2V)

Security IEEE 1609.2
Network and Transport IEEE 1609.3

Upper MAC IEEE 1609.4
Lower MAC IEEE 802.11p

Physical IEEE 802.11p

TABLE I: Network layers and their corresponding protocols

DSRC packets contain data related to a vehicle’s speed and

position, for example. In traffic management applications the

packets could contain data relevant to traffic congestion or

road conditions. The system itself consists of On-Board Units

(OBUs) and Roadside Units (RSUs). An OBU is a transceiver

that is mounted on a vehicle, while an RSU is a transceiver

that is mounted on the road. The OBUs in various vehicles

exchange information with one another. RSUs communicate

with OBUs and send information back to a centralized hub [9].

Our work focuses on leveraging V2I communications between

OBUs and RSUs for our ICM strategy.

B. Related Work

1) Connected Vehicle Platoons: One common line of study

in CV research is to use V2V coordination to organize trav-

eling vehicles into groups or platoons [10, 11], but these tend

to focus on local algorithms and lack system-wide awareness.

One such study explored the benefits of utilizing three mobility

improvements called cooperative adaptive cruise control, speed

harmonization, and queue warning in a highway scenario

[11]. The study concluded that individual vehicle safety

was improved but at the cost of sacrificing overall highway

throughput.

2) Ramp Metering: A popular system-wide ICM approach

is to adjust ramp metering rates to control the flow of vehicles

entering the highway [12, 13, 14, 15]. Several ramp metering

algorithms such as ALINEA and SWARM have existed and

have been in use since the early 2000s [12]. SWARM in

particular can be found in Orange County; it calculates one

ramp metering rate based on local density and another based

on a predetermined global volume reduction, picking the most

restrictive metering rate from the two [12].

Many advancements in ramp-metering approaches have

been proposed since then. In 2014, Fares and Gomaa im-

plemented a deep reinforcement algorithm to adjust ramp

metering timings based on vehicle density that increased

highway flow and reduced total travel time [13]. In another

study in 2016, Hashemi and Abdelghany proposed a system

that dynamically searches for an optimal traffic control scheme

involving intersection timing plans, diversion messages, ramp

metering, and/or dynamic shoulder lanes [14]. They demon-

strated improvements to total travel time when more control

options are available. In a follow-up work, Hashemi and

Abdelghany trained a deep convolutional neural network to

recognize the highway state and pick an optimal traffic con-

trol scheme [15]. These strategies do not explicitly mention

CV technology, but the state vectors from Fares and Goma

[13] and Hashemi and Abdelghany [15] could potentially be

obtained through RSUs sampling data from nearby CVs.

An even more recent approach [16] involves a physics-

informed reinforcement learning-based strategy for coordi-

nated ramp metering. While the results are promising for

total time spent savings, the authors acknowledge that a larger

traffic network size should have been considered.

3) Dynamic Rerouting: Ramp metering seems to be a well-

explored approach, so the scope of our work focuses on

improving corridor traffic using dynamic rerouting to under-

utilized PAR structures. Liu et al. [17] set out to establish

a framework for evaluating ICM methods and conducted a

study on diverting upcoming traffic to side roads using variable

message signs on the freeway, using throughput and travel

time as evaluation criteria. They demonstrate that diverting

traffic reduces travel delay for freeway vehicles but degrades

side road performance, so careful evaluation of trade-offs is

required. Our ICM approach is similar to this study, so it

makes sense to use highway throughput and vehicle travel

time as our evaluation criteria as well.

A study conducted by Ortega et al. [18] demonstrated via

simulation that use of a park and ride is expected to increase

the total trip time compared to not using the resource. [19] also

note that park and ride increased total trip time presumably

because the mode of transportation for PAR is slower and the

diverted routes taken to arrive at a PAR increase delay. This

indicates that in our evaluation metrics, we must incorporate

criteria beyond travel time, such as emissions or highway

throughput.

4) Deep Reinforcement Learning in ICM Strategies: The

studies conducted by Fares and Goma [13] and Hashemi and

Abdelghany [15] utilize deep reinforcement learning to esti-

mate the state of the network with relative success. In addition,

Liu et al. [20] established a Markov decision process (MDP)

framework for a freeway scenario. These examples serve as

a foundation for establishing an MDP for our scenario and

using deep learning to optimize the ICM strategy. However,

our deep learning agent will differ from these studies in its

action space of diverting traffic to PAR systems.
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III. SCENARIO

A. Interstate 5

Fig. 1: Interstate 5 model

We conducted our study on Interstate 5, specifically the

northbound 10 mile stretch between Interstate 605 and Cal-

ifornia State Road 60 in LA County. Interstate 5 is known for

being one of the most congested corridors in California [21]

and the United States [22, 23]. We used SUMO’s OSMWeb-

Wizard tool to convert an OpenStreetMap rendering of I-5

into a SUMO road network 1. For this study, we considered

vehicles traveling northbound from I-605, the source, to SR

60, the sink.

1) Realistic Traffic Modeling: The corridor includes a di-

verse set of on-ramps and exits with regard to traffic volume.

Ramp volumes and average daily traffic data were collected

from the Caltrans Traffic Census Program’s [24] 2015 survey

to generate realistic traffic flows.

Vehicles were spawned at each on-ramp as a Poisson

process. The ramp volumes were recorded as daily averages

[24]; however, we converted them to Poisson rate with units
vehicles
second

as seen in equation 1.

λi =
Vi

veh
day

24 ∗ 60 ∗ 60 sec
day

=
Vi

86400
veh/sec (1)

where λi is the Poisson rate for on ramp i and Vi is its

average daily volume.

To model the exit behavior, each vehicle is assigned a

destination following a fixed probability distribution when it

spawns (referred to as a route distribution [25]). We computed

the probability of taking an exit according to equation 2.

Pi =
Li

∑i

n=1 Vn

(2)

where Pi is the probability of taking exit i, Li is the average

daily volume of exit i, and Vn is the average daily volumes

for on ramps before exit i. Each on ramp has a unique route

distribution table populated with Pi for the exits that are

accessible downstream. If none of the exits are taken, the

vehicle will route to the sink. For example, a vehicle at the

on ramp of S Downey Rd (see figure 1) will have:

1) Chance to exit at Ditman Ave = PDitmanAve

2) Chance to exit at Calzona St = PCalzonaSt

3) Chance to exit at the sink = 1.0 − (PDitmanAve +
PCalzonaSt) = Psink

NOTE: Indiana St does not have an exit, so it is omitted.

2) Park and Ride: The North Lakewood Park and Ride

facility is located near Lakewood Blvd. For this study, we

assumed the availability of a bus schedule, and these buses

spawn at a fixed rate in the simulation. The buses proceed

directly to the highway exit without any detours to other exits.

B. Preliminary Exploration - The Addition of a Park-and-Ride

Structure

From the simulation we noticed that diverting traffic to the

North Lakewood Park and Ride facility leads to improvements

in mainline flow, reduced CO2 emissions and overall speed

of traffic. However, this improvement came at the cost of

longer travel times for exiting vehicles. We started by using

SUMO’s traffic scaling parameter to adjust the spawn rates of

the vehicles until congestion became evident, which happened

when the spawn rates were doubled. We found that congestion

was heaviest at Interstate 605 and Interstate 710 junctions due

merging traffic.
In this scenario, we divert vehicles to the park and ride using

three different exits at a fixed probability, which we call the

compliance parameter. If the vehicle is compliant with being

rerouted, then it has an equal chance of taking any of the

three exits, namely I610, Lakewood Boulevard, and Paramount

Boulevard. For this scenario we set the park and ride to be just

off the Lakewood exit as shown in 1.
After running the simulation for a fixed amount of time, we

evaluate the average travel time, average carbon emissions,

and number of vehicles that reach the sink for the following

vehicles:

• cars that intend to travel from source to sink without

exiting

• cars that intend to travel from source to sink that are

diverted

• buses leaving park and ride structure that drive to sink

We use SUMO’s default HBEFA3 emissions model [25]. to

obtain emissions values for each vehicle. We use the average

speed of all vehicles to evaluate the overall congestion of the

scenario. The results are in Table II.

TABLE II: Fixed compliance experimental results

Compliance Travel Time (s) CO2 (kg) Speed (m
s

) Count ( veh
hr

)

0% 1063.18 5.33 15.77 1793
10% 1040.60 4.96 16.15 1899
25% 1034.60 4.37 16.53 1992
50% 969.07 3.51 17.48 2188

We can see that increasing the rerouting compliance yields

improvements in all categories in terms of average travel time,

average CO2 emissions, overall simulation vehicle speed, and

throughput. One limitation of this preliminary study is that it

cannot distinguish between buses with passengers and buses

without passengers, which may inflate the overall throughput

and emissions values. Additionally, we are always diverting

vehicles in this scenario when in practice we would prefer to

divert vehicles in response to downstream congestion.
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IV. V2I COMMUNICATION PROOF OF CONCEPT

We created a hardware test bed inspired by [26] to demon-

strate the V2I communication flow between a smart parking

structure, cloud server, RSU, and an OBU for the ICM

strategy. To perform wireless DSRC communications, we

used the USRP B210 board from Ettus Research, which is

a software-defined radio that can receive and transmit data at

any frequency between 70 MHz - 6GHz [27]. A diagram of

the setup is shown in figure 2.

Fig. 2: Block diagram of the hardware test bed

A Raspberry Pi 3 representing a smart parking structure

is connected via Ethernet cable to the desktop, which is

running a Python script representing a cloud server. These two

communicate over TCP. Additionally, in a separate process on

the desktop, another Python script is running and represents

an RSU. The RSU script communicates to the USRP B210,

which will broadcast or listen on the DSRC 5.9GHz band. A

picture of this half of the setup is shown in figure 3a. The

other half of the setup is a laptop connected to another USRP

B210, which can also broadcast or listen on the DSRC 5.9GHz

band. A picture of this half of the setup is shown in figure 3b.
To interface with the USRP B210, we used a WiFi tranceiver

module created by the open source Wime Project [28], which

provides a complete physical layer implementation of 802.11p

in GNU Radio. This was modified to send and receive UDP

packets from the local machine as shown in figure 4. To

send information to the USRP B210 for wireless transmis-

sion, the Python script simply writes to a UDP socket at

localhost:52001. To read information received from the USRP

B210, the Python script simply reads from a UDP socket at

localhost:52002.

A. DSRC Tests

The first test is a forward propagation of data from the

Raspberry Pi to the laptop which represents broadcasting park

and ride information to a connected vehicle. The Raspberry Pi

sends a dictionary of parking space info to the cloud server,

which forwards the data to the RSU. The RSU wirelessly

broadcasts the message to the awaiting laptop using DSRC.

Screenshots demonstrating this data propagation are shown in

figures 5a and 5b.
The second test is a backward propagation of data from the

laptop to the cloud server which represents collecting state

(a) A RPI 3 connected to the desktop via ethernet, and the B210
plugged into the desktop via USB

(b) The B210 plugged into the laptop via USB

Fig. 3: Hardware setup for testing DSRC communications

Fig. 4: Hardware blocks for 802.11p in GNU Radio, the same

interface from [26]

information from a connected vehicle. The laptop broadcasts

some basic vehicle information to the awaiting RSU using

DSRC. The RSU then forwards the message to the cloud

server.

B. Practical Implementation

This hardware proof of concept clarifies the ICM mecha-

nisms needed to read traffic state and alert drivers to reroute

to a PAR structure. In these tests, we send data directly from

one script to another, but in practice, standard DSRC message

types are needed in both cases. The SAE J2735 standard

[29] defines many message types for V2X communications;

none are designed specifically for our use case, but a couple

message types are flexible enough to be adapted. For an

RSU broadcasting an advisory message to reroute to a PAR,

one could use the traveler information message (TIM) [29],

which is used to broadcast various advisory or road sign

info messages. The TIM can be configured to be active on
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(a) Desktop screenshot showing interface for RPI (top-left), cloud
(top-right), and RSU (bottom). Parking info is generated by RPI and
propagates to RSU for broadcasting.

(b) Laptop screenshot showing interface for OBU (right).The OBU
receives and displays the parking info from the broadcast.

Fig. 5: Screenshots demonstrating forward flow of information

from parking structure to OBU

a minute-by-minute basis and even has limited support for

custom strings, which can be useful for informing drivers

about the nearest PAR. For collecting state information, an

RSU could collect a basic safety messages (BSM) [29] from

vehicles nearby and aggregate the data. Part 1 of the BSM

frame is mandatory and reports the vehicle’s position and

velocity. Part 2 of the BSM frame is optional but could be

customized with additional information that is of importance

to the RSU or ICM strategy, such as emissions information or

vehicle type.

The cloud server functions similarly to a Transportation

Management Center (TMC) [30] but with the additional role

of a park and ride management system. Communicating to the

TMC from an RSU or a smart parking structure can be done

over LTE; there are examples of RSUs being equipped with

bidirectional LTE radios such as one developed by Siemens

[31].

V. SYSTEM MODEL

In this section, we model the possible travel times expe-

rienced by vehicles when traversing the integrated corridor,

and we define the evaluation metrics and formulate the opti-

mization problem to effectively manage traffic along the ICM

supported by CV technology and PAR facilities.

A. Travel Delay

Assume a vehicle k enters the corridor through a link n with

the final destination being the corridor’s sink at link N . Given

PAR is supported, the time taken by vehicle k to traverse the

corridor can be given as follows:

Tk,N =

{

∑N−1
i=n τπi→πi+1

, if yk == 0

Texit + T total
PAR + Trem, if yk == 1

(3)

where yk ∈ {0, 1} describes the method by which vehicle k
traversed the corridor: yk=0 indicating the conventional direct

approach and yk=1 implying opting for a PAR option. For the

former, the time taken by vehicle k is estimated through the

accumulation of times, τπi→πi+1
1, representing the time taken

by the vehicle to traverse from one link i to the next i+1

until the final transition to the sink point, τπN−1→πN
. For the

latter case, we breakdown the time experienced by vehicle k
commuters opting for a PAR option into three components: (i)

Texit is the time taken to reach an exit ramp from the corridor

once yk values has turned to 1, (ii) T total
PAR representing the total

PAR service time, and (iii) Trem representing the remainder

time to be traversed by the returning vehicle until the sink.

B. Evaluation Criteria

Let the set VK = {v1, v2, ..., vK} be the total number of

vehicles on the corridor during a time window t, where every

vk ∈ VK has entered the corridor from its starting link, πn,

with a final destination at the sink, πN . Let also VK′ ⊂ VK

be the subset of vehicles that reach the corridor’s sink during

window t such that K ′ ≤ K. As such, we can define the

following key metrics to evaluate the overall congestion state

along the corridor:

FR = |VK′ | (4)

T =

∑K′

k=1 Tk,N

FR
∀ v′k ∈ VK′ (5)

CE = f(VK , efficiency, SPEED) (6)

in which FR represents the flow rate of the corridor during

window t, evaluated as the cardinality of VK′ ; T represents the

average travel time experienced by the vehicles reaching the

sink, πN , evaluated as the sum of individual travel times over

the flow rate; CE represents the carbon emissions exerted by

the VK set of vehicles traversing the corridor during window

t. The evaluation of CE depends on VK as well as their

corresponding fuel efficiency and travel speeds.

C. Problem Formulation

From here, we can formulate our problem in the following

manner: within an integrated corridor where RSUs have the

capability to broadcast PAR availability to CVs, our aim is

to determine the most effective advertising strategy, X∗(t),

during a specific time t. This strategy should inform upstream

traffic about the state of traffic conditions and provide suitable

alternatives regarding PAR usage. Thus, we can define the

global optimization objective at time t as follows:

X∗(t) = max
X(t)

F (T,FR,CE) (7)

1We omit the subscript k here for reading convenience
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where F represents a global optimization function to be

maximized with respect to the evaluation metrics defined in

equations 4, 5, and 6. One straightforward implementation of

F would be to employ a weighted sum formula with negative

weights assigned to the metrics that need to be minimized (i.e.,

CE and T). It should be noted that the global optimization

objective can be generalized to account for other objectives,

such as minimizing the costs of fuel and park and ride charges

for commuters.

VI. EXPERIMENTAL MODELING

The basic idea of the experiment is to train the DRL model

with the I5 Veins simulation in the loop until the model con-

verges to a policy. Figure 6 shows a high-level overview of the

Veins framework. We constructed the Veins simulation based

Fig. 6: Flow chart of simulation-in-the-loop training process

on the I5 corridor developed in section 3. For the simulation,

we chose to use SUMO’s default driving behavior and CO2

emissions model [25]. To reduce computation complexity, We

reduced the size of the scenario, setting the sink just after

Garfield Ave (see figure 1). SUMO’s extensive calculations

can only be executed on a single core, creating a bottleneck

for the training process. Below are some assumptions made

when designing the Veins simulation.

A. Simulation Assumptions

• There is only one PAR structure, the North Lakewood

Park and Ride.

• There is only one passenger per vehicle. When vehicles

update the accumulated rewards, they will only increase

the throughput by one. If HOVs have N passengers

onboard, they will increase the throughput by N .

• Commuters rerouted to the PAR structure can take the

next HOV leaving the PAR once they arrive. We elaborate

on how rerouting delay is computed below.

• Vehicles do not exit the PAR structure during the simu-

lation, the number of available spaces depends solely on

the DRL agent.

• HOVs do not encounter additional waiting times at enter-

ing ramp meters. We added a dedicated HOV lane at the

on ramp nearest to the North Lakewood Park and Ride.

• RSUs are positioned prior to every exit and on ramp along

the corridor. See figure 7 to see the full placement.

• DSRC broadcasts have no propagation delay. Simulating

broadcast delay would create simulation overhead and

does not add much value to the scope of this experiment.

• DSRC range is limited to 75m radius around RSU, which

is within the 250-300m effective range of DSRC [32].

Fig. 7: RSU placement for Veins simulation

B. Simulation Parameters

The following defines a list of Veins simulation parameters.

• S: traffic spawn scale factor

• λHOV : the frequency of the HOVs leaving the PAR

• t: the time window that constitutes one step in the

reinforcement learning algorithm

• α: compliance probability of vehicles with PAR messag-

ing

• γ: probability distribution function capturing additional

time for the vehicle to get to and find parking at the PAR

• fredirect: the frequency of PAR broadcasts during a time

window t
• P : number of parking spaces available at PAR

• r: fixed ramp metering rate for on ramps

We train the DRL agent using the simulation parameters

described in table III. The HOV frequency schedule λHOV

Parameter Value

S 2.0

λHOV
1

60sec

t 600 s
α 10%

fredirect 30 s
P 400
r 900 VPH

TABLE III: Parameter values for Veins simulation

is set to spawn every 60s so passengers will not have to wait

excessively compared to the time it takes to travel through the

corridor. The amount of time that constitutes a step size and

the action space t is set to 600s because it takes approximately

300s for a vehicle to reach the sink and contribute its rewards.

The compliance parameter α is deliberately set at a low value

of 10% since realistically the majority of drivers would ignore
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an advisory message to locate the nearest PAR. The ramp

metering rate is set to a fixed interval of 900 VPH or one

vehicle every four seconds, which is within range of typical

ramp meter rates in California [33].

C. Delay

As vehicles exit the simulation, the travel time cost to

reach the PAR is computed before its reward is transferred

to an HOV or continuing vehicle. The penalty incurred is

contingent on the specific exit the vehicle takes. Since we

used OpenStreetMap to generate our network as explained

in section 3, the simulation distance and speed limits are

based on real life values, so we can use Google Maps data

to approximate the travel time for exiting vehicles. Using

Google Maps, we estimated the travel time to reach the North

Lakewood Park and Ride structure from each exit along the

corridor. These values are summarized in table IV.

Exit Time to N Lakewood PAR (s)

I-605 300
Lakewood Blvd 30
Paramount Blvd 180

Slauson Ave 300
Garfield Ave 360

Washington Blvd 540
Atlantic Blvd 720

Atlantic and Triggs 840
Eastern Ave 900
Ditman Ave 1080
Calzona St 1200

TABLE IV: Approximate travel times to reach the North

Lakewood Park and Ride from various highway exits, taken

from Google Maps

Parameter γ is simply a normal distribution that models the

additional time for the vehicle to get to and find parking within

the PAR. We take the absolute value of the normal distribution

to avoid negative delay values. Thus, the additional travel time

penalty for a vehicle taking an exit is represented in equation

8.

γ = |normal(0, Texit/8)|+ (Tarrival mod
1

λHOV

) (8)

where Texit represents the corresponding exit time from table

IV, and (Tarrival mod 1
λHOV

) represents the additional delay

a driver would experience waiting for the next HOV to leave

the station. If the vehicle instead finds that there are no more

parking spots available, the delay is modeled more harshly.

This is shown in equation 9.

γ = |normal(0, Texit/4)| (9)

D. Deep RL Training

From table IV, exits to I-605, Lakewood, Paramount,

and Slauson have the smallest rerouting time penalty. Thus,

the action vector is restricted to RSU[0], RSU[3], RSU[4],

RSU[6], and RSU[7], marked in figure 7. Since each RSU is

represented as a bool in the action vector, this limits the action

space size to 25 = 32, which helps with exploration.

The DRL agent utilizes two hidden layers for its neural

network. Since the state vector involves {average speed, oc-

cupancy} for 12 RSUs and the available parking spaces, the

flattened input vector is 1+ 12 ∗ 2 = 25 floating point values.

These are fed into a hidden layer of 128 perceptrons using

the the ReLU activation function. The next hidden layer is

64 ReLU perceptrons. Finally, the output layer contains 32

perceptrons to approximate the Q values for each possible

combination of actions for the 5 RSUs.

In terms of reward function, we programmed the TMC to

perform equation 10 when the Veins simulation is running.

R = β1 ·(FR−targetFR)+β2 ·(T−targetT )+β3 ·CE (10)

The reward metric weights are:

• targetFR = 600. This is the fixed constant that is

subtracted from throughput before weighting. Typically

at least 600 vehicles can exit the simulation in one

simulation step.

• β1 = 10
target

FR

. This is the weight for throughput, making

it so an additional 60 vehicles will add an extra point of

reward.

• targetT = 400. This is the fixed constant that is sub-

tracted from travel delay before weighting. Typically it

takes at least 400s to reach the end of simulation.

• β2 = − 1
target

T

. This is the weight for travel delay, it is

negative so that it will be minimized.

• β3 = − 4
10000000 . This is the weight for the carbon

emissions, it is negative so that it will be minimized. The

emissions values are in the order of magnitude of 106.

We trained the deep learning agent on one fixed seed of the

simulation for 1000 episodes to obtain the DRL agent model.

Setting the seed to a fixed value makes the traffic behavior

(including route probabilities, Poisson process spawning, and

driver AI) deterministic within SUMO. Then, in the next sec-

tion, we evaluate the model’s performance on other simulation

seeds to test if the model generalizes to different permutations

of the defined traffic behavior.

VII. EXPERIMENTS

To test if the model generalizes to different permutations

of the defined traffic behavior, we evaluated the model on

several different seeds of the SUMO simulation and plotted the

throughput, average travel delay per passenger, and average

carbon emissions per passenger for each seed. First, we

introduce details of the Veins simulator and in the following

sections, we compare these metrics against the same seed

simulation without any ICM control agent. In the following

figures, we compare the evaluation metrics for our ICM ap-

proach against no control for SUMO simulation seeds 87670,

65643, 44435, and 27438. For each seed, we plot the driving

duration for mainline vehicles over departure time and the CO2

emissions for mainline vehicles and buses over departure time

without the DRL agent. We do the same thing for results with

the DRL agent, and in addition, we plot the driving departure

versus departure time for rerouted vehicles.
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A. VEINS Simulator

In order to simulate V2I communications, we use Veins,

an open-source vehicular network simulation framework that

is based on two preexisting simulators - OMNet++, an event-

based network simulator, and SUMO, a microscopic traffic

simulator [34]. Models in OMNeT++ are composed of in-

terconnected components that represent entities or processes

in the simulation. It is mainly used for the simulation of

communication networks, but it has also been applied to

transportation systems, queueing systems, etc [35]. The com-

ponents of OMNeT++ are reusable and can be combined to

create complex models. The modules in OMNeT++ exchange

messages, and this helps an individual realize their network

of choice. The SUMO simulator is specifically made to model

and simulate road traffic in urban regions. It consists of

elements such as vehicles, traffic lights, intersections., etc.

Veins is an OMNeT++ project that defines a dynamic

network topology from moving SUMO vehicles, models the

DSRC communication stack in OMNeT++, and provides an

API to control and read values from the underlying SUMO

traffic simulation via the Traffic Control Interface (TraCI) [34].

We chose Veins because it is open-source, flexible, and suitable

for simulating V2I communications and developing various

V2X simulation scenarios.

Finally, we ran one last experiment with large dataset (1000

datapoints in total) and achieved the results shown in Figures

??, ?? ??, and ??. Our DRL agent showed 3 extra vehicles

per minute, a reduction of 4 second of average travel time

for all vehicles, and a slightly higher average speed along the

corridor. However, more buses on the road leads to negligeably

higher CO2 emissions (Less than 100g per vehicle).

B. Discussion

We observe that our ICM approach provides marginal im-

provements to highway throughput, average delay, and average

CO2 emissions. Further investigation into the optimal policy

learned by the DRL agent shows that the agent primarily

redirects traffic to the PAR structure from Interstate 610 and

Lakewood Blvd. This makes sense because taking these two

exits result in the least amount of travel time to reach the

PAR (see table IV). Additionally, rerouting at I-610 may be

especially beneficial because as observed in section 3, the

merges at the I-610 junction are a heavy source of congestion.

We also find that average delay per passenger does not tell

the whole story. Although the travel time for drivers on the

corridor is improved, the travel time for drivers using the PAR

services is drastically increased in all cases. In other words,

by letting a few drivers suffer significantly greater travel delay

by taking public transport, the other drivers on the freeway

are allowed to get to the destination slightly faster. This is a

significant trade-off to keep in mind for this ICM strategy, one

which is consistent with the results of Ortega et al.’s study [18],

who found that travellers utilizing PAR systems experience

significantly increased travel time.

Our DRL agent slightly increase the CO2 emissions how-

ever, this is likely due to the fact that HOVs are not utilized

in the uncontrolled scenario but still contribute to the overall
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emissions of the corridor, wasting resources. When passengers

ride on an HOV, the CO2 cost for the vehicle per passenger

decreases at a rate of 1
N

, rapidly increasing the efficiency of

the HOV. Modifying some simulation parameters could result

in even greater HOV emission savings. For instance, a less

frequent HOV schedule λHOV,j would reflect more realistic

public transportation schedules and allow more passengers to

accumulate at the PAR before the next HOV leaves, but this

would further sacrifice the travelers’ delay during the extended

waiting period. Another possibility is to set a higher reroute

compliance probability α to reroute more vehicles to the PAR,

but too high a value would be unrealistic; not many drivers

are willing to reroute to a PAR. However, a higher α could be

made a realistic assumption if drivers are piloting autonomous

vehicles instead of just connected vehicles.

VIII. FUTURE WORK

In the Discussion section, we recommend some parameter

adjustments, such as decreasing the HOV schedule frequency

and increasing driver compliance with PAR messages, to

see if there are scenarios where rerouting vehicles to the

PAR structure can create even more emissions savings. These

changes could be translated into a study involving autonomous

vehicles, where the system could have more control over the

behavior of autonomous passenger vehicles and the timing of

autonomous HOVs.

More studies are needed to see how this approach can

be scaled up. The difficulty in this will be in observing

and assigning rewards to the ICM actions; with our current

experimental setup, a longer freeway means more time will

pass before a passenger reaches the sink in an HOV, i.e.

more time will pass before rewards reflect the new action.

This increases simulation complexity and overall training time.

One alternative could be to deploy multiple DRL agents for

small sections of the freeway and coordinate them into a larger

system.

Additionally, as with any system that aggregates data to

make decisions, there are security concerns. An automotive

security survey conducted in 2019 [36] explains that V2X

communications opens up multiple new attack surfaces for

vehicles in addition to the preexisting vulnerabilities in auto-

motive electronic components. In particular, the authors find

data spoofing to be a common attack method on V2I-based

systems such as our ICM approach, resulting in increased traf-

fic congestion. A 2022 study [37] develops an attack modeling

methodology for a V2X Advisory Speed Limit traffic control

scenario and establishes various metrics to assess the impact

of an attack. A future research direction could be to develop

a similar attack methodology and evaluation metrics for our

V2I-based ICM approach and to test its resilience.

One could also adopt a more general security framework to

analyze our ICM approach. In a previous study [38], the au-

thors present a security analysis framework for cyber-physical

systems (CPS). By modeling cyber domain information, such

as device firmware and application data, and physical domain

information, such as RF signals and other side channels, as

information flows, the authors show that applying data-driven
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algorithms can improve understanding of the cyber-physical

domain relationships and reveal new vulnerabilities in the

system. Moreover, our ICM approach can be classified as

a networked control system (NCS) that can be modeled as

generalized mathematical formula as demonstrated in [39].

Once the vulnerabilities and attacks of our ICM strategy are

understood, they can be modeled and fed as input to the NCS

model to study the system response to attacks over time.
Any proposed security solutions should focus on extensibil-

ity [40], i.e. solutions that are easily adapted to new use cases

to support the still-developing automotive technology scene.

Several previous works describe extensible security solutions

for V2X communications. For instance, the authors in [41] and

[42] propose novel methods for physical layer key generation

that result in faster key generation time and reduced code size

respectively; reduced computational resources means these

cryptography methods can be implemented in more devices.

In another study [43], the authors propose a blockchain-based

architecture to validate a connected vehicle’s location in V2I

contexts, preventing position spoofing. These solutions can be

incorporated into our ICM strategy.

IX. CONCLUSION

This work proposes a novel ICM strategy that redirects

vehicles to underutilized park and ride structures to maximize

freeway throughput and minimize CO2 emissions and travel

time. This approach leverages the V2I capabilities of RSUs

and OBUs to observe the state of connected vehicles on

the freeway and to broadcast advisory messages to drivers

to redirect them to the nearest park and ride structure. A

centralized cloud server hosted at a Transporation Manage-

ment Center communicates with the RSUs and uses deep

reinforcement learning to process the observed congestion

state of the corridor and choose where to broadcast PAR

advisory messages.
We created a realistic corridor simulation based on Interstate

5 in the Los Angeles area to test the ICM strategy. The

deep reinforcement learning agent converges to a strategy that

redirects vehicles to the I-605 and Lakewood Blvd junctions,

which can achieve marginal improvements in throughput,

average travel time, and average emissions at the cost of

significant travel delay for the few drivers taking an HOV.

Specifically, we observe up to 3.99% increase in throughput,

4.67% reduction in freeway travel time, and 3.09% savings

in CO2 emission savings, but with the cost of up to 52.56%

additional delay for diverted drivers.
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