
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
The `Ah Ha!' Moment : When Possible, Answering the Currently Unanswerable using 
Focused Reasoning

Permalink
https://escholarship.org/uc/item/2z9930j2

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36)

ISSN
1069-7977

Authors
Schlegel, Daniel
Shapiro, Stuart

Publication Date
2014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2z9930j2
https://escholarship.org
http://www.cdlib.org/


The ‘Ah Ha!’ Moment : When Possible, Answering the Currently Unanswerable
using Focused Reasoning

Daniel R. Schlegel and Stuart C. Shapiro
Department of Computer Science and Engineering, and Center for Cognitive Science

University at Buffalo, Buffalo, NY 14260
<drschleg,shapiro>@buffalo.edu

Abstract

Focused reasoning is a method for continuing a specific in-
ference task as soon as rules or facts which may assist in the
reasoning are added to the knowledge base without repeat-
ing completed inference, re-posing queries, or performing un-
necessary inference. Determining if focused reasoning should
commence uses very few computational resources above those
used normally to add a term to a knowledge base. We have
developed three focused reasoning procedures – backward-in-
forward, forward, and forward-in-backward – built upon Infer-
ence Graphs, a graph-based concurrent reasoning mechanism.

1 Introduction
When an inference process has stopped before its natural con-
clusion because of a lack of information, any new assertion
which is relevant should immediately be used to continue that
inference, but not derive anything unrelated to the inference
task. Focused reasoning (FR) has been developed to do just
this. Methods for performing focused reasoning have been
developed for using forward, and bi-directional (Shapiro,
Martins, & McKay, 1982) inference. To accomplish this, In-
ference Graphs (IGs) (Schlegel & Shapiro, 2013b, 2014), a
concurrent graph-based method for natural deduction reason-
ing, are extended to recognize when new connections in the
graph are relevant to incomplete inference procedures.

Inference Graphs are propositional graphs with message-
passing channels added, allowing related terms to commu-
nicate about the results of inference, or to control inference.
IGs implement LA, a Logic of Arbitrary and Indefinite Ob-
jects (Shapiro, 2004), which uses structured quantified terms.

One type of FR using IGs was briefly proposed in (Schlegel
& Shapiro, 2013b), but unimplemented. Here we discuss the
issue in detail, including two other types of FR, in an imple-
mented system.

While our primary interest is in building a mind, any large
knowledge base (KB) which allows for interleaved assertions
and queries may benefit from FR. For example,1 web services
which perform frequent queries for users, such as eBay’s
saved searches (eBay, Inc., 2013) which email new match-
ing items to users daily, could use FR to send updates as soon
as they are available, avoiding batch processing. Diagnostic
tasks may also benefit: one may start with a problem they
wish to solve, and then do diagnostic tests. The results could
be added to the KB, where they are automatically applied to
only the focused problem, without deriving other, unrelated,
conclusions. Another application might be within event-

1We have not done significant study on these applications yet.

driven programs where events interact in complex ways, re-
quiring complex state management, such as spreadsheets.

In Section 2 we will discuss the issue of FR itself. In Sec-
tion 32 we will discuss IGs in only the required amount of de-
tail to further our discussion, and in Section 4 we will return
to the issue at hand to discuss the different types of FR with
examples, along with an algorithm to unify the three types of
FR discussed. Finally, we will conclude with Section 5.

2 Focused Reasoning
Humans often consider problems they may not yet have an-
swers for, and push those problems to the “back of their
mind.” In this state, a human is still looking for a solution
to a problem, but is doing so somewhat passively – allowing
the environment and new information to influence the prob-
lem solving process, and hopefully eventually reaching some
conclusion. That is, the examination of the problem persists
beyond the time when it is actively being worked on.3 We
wish to add a similar capability to a reasoning system.

There are three types of FR possible within a reasoning
system: forward FR, where all possible derivations are per-
formed only from some specific new piece of knowledge,
and continued upon the addition of relevant rules to the KB;
forward-in-backward FR, in which backward inference oc-
curs to try to answer a query, and as new facts or rules rel-
evant to the query are added to the KB, they are used in at-
tempting to answer the query; and backward-in-forward FR,
which combines the previous two FR mechanisms.

Forward FR can be thought of as a kind of full-forward
reasoning carried out only for a single asserted term. Full-
forward reasoning is used most notably in production sys-
tems, and especially RETE networks (Forgy, 1979, 1982). In
a RETE net, all new information is filtered through a graph
generated from a set of production rules. Nodes in the graph
perform comparisons against accepted values, and combine
pieces of compatible information together. When a piece of
information reaches some leaf node in the graph, the rule that
leaf node represents is said to have matched. Full-forward
inference produces the logical closure of a KB, but this is
horribly wasteful in both time and space, so we favor doing

2Portions of the material in Sections 2 and 3 are adapted from
(Schlegel & Shapiro, 2013a, 2014).

3Understanding this type of problem solving in humans is still
active research, what has been discussed is only an intuitive expla-
nation. It is distinct from the “Eureka effect” (Auble, Franks, &
Soraci, 1979) which deals with insight, and limitations of memory
recall in humans.

1371



this only when it’s explicitly asked for. RETE nets are also
limited in that no new rules can be added once the system is
started, which is not the case with IGs.

For reasoning systems capable of backward and bi-
directional inference (BDI), the issue of FR is seldom tack-
led. SNePS 2’s Active Connection Graph (ACG) (McKay &
Shapiro, 1981) has a concept of “activating” a path of nodes
when backward inference does not result in an answer. Later
assertions meant to use this path must be asserted with for-
ward inference (that is, the new term is asserted, and forward
inference is carried out for that term only), and that forward
inference process will use activated paths exclusively when-
ever they are available (Shapiro et al., 1982). The ACG is un-
able to later deactivate the path of nodes, so the conflation of
the specialized forward inference using activated paths with
the usual forward inference which ignores activated paths re-
sults in the need to occasionally throw the graph away as it
could interfere with future inference tasks. In addition, acti-
vated paths are not extended backward when rules relevant to
the reasoning task are added to the KB. John Pollock’s OS-
CAR system uses a different type of BDI (Pollock, 1990),4

and does not support FR.
The system we present here is capable of performing for-

ward, forward-in-backward, and backward-in-forward FR. It
also allows the addition of new rules once the system is run-
ning, extending the focused region of the graph. In addition,
it does not limit the functionality of the graph in other ways –
other inference tasks can be performed as usual. In effect, our
system has none of the limitations of RETE nets, or ACGs,
while being a more powerful FR tool.

3 Background: LA and Inference Graphs
LA is a first order logic designed for use as the logic of a
KR system for natural language understanding, and for com-
monsense reasoning (Shapiro, 2004). The logic is sound
and complete, using natural deduction and subsumption in-
ference. Throughout this paper we will assume the deduc-
tive rules implemented are the standard rules of inference for
FOL, though the actual implementation uses set-oriented con-
nectives (Shapiro, 2010), which subsume the standard rules.

The logic makes use of arbitrary and indefinite terms (col-
lectively, quantified terms) instead of the universally and ex-
istentially quantified formulas familiar in first order predicate
logic (FOPL).5 That is, instead of reasoning about all mem-
bers of a class, LA reasons about a single arbitrary member
of a class. There are no two arbitrary terms representing the
same arbitrary entity. For indefinite members, it need not be
known which member is being reasoned about, the indefinite

4Pollock’s BDI is distinct from that of (Shapiro et al., 1982). The
premise of Pollock’s BDI is that there are inference rules useful in
forward reasoning, and others for backward reasoning, and as such,
to reach some meeting point between premises and goals, you must
reason backward from the goals, and forward from the premises.
The BDI of Shapiro, et al. adopted here, assumes some procedure
which has linked related terms in a graph so that arbitrary forward
reasoning from premises is never necessary in backward inference.

5See (Shapiro, 2004) for a translation between FOPL and LA.

member itself can be reasoned about. Indefinite individuals
are essentially Skolem functions, replacing FOPL’s existen-
tial quantifier. We will only deal with arbitrary terms for the
remainder of this paper.

Quantified terms are structured – they consist of a quan-
tifier indicating whether they are arbitrary or indefinite, a
syntactic variable, and a set of restrictions. The range of
a quantified term is dictated by its set of restrictions, taken
conjunctively. A quantified term qi has a set of restrictions
R(qi) = {ri1 , . . . ,rik}, each of which make use of qi’s vari-
able, vi. The syntax used throughout this paper for LA will
be a version of CLIF (ISO/IEC, 2007). We will write an arbi-
trary term as (every vi R(qi)). Quantified terms take wide
scope, meaning within a logical expression vi may be used
instead of re-defining a quantified term. For example, the
arbitrary Person, written (every x (Isa x Person)), can
be referred to later within the same rule by using x, as in the
following LA expression, which is meant to mean that “if a
person is arrested, then that person is detained.”

(if (Arrested (every x (Isa x Person)))
(Detained x))

Inference Graphs extend propositional graphs. In the tradi-
tion of the SNePS family (Shapiro & Rapaport, 1992), propo-
sitional graphs are graphs in which every well-formed expres-
sion in the knowledge base, including individual constants,
functional terms, atomic formulas, or non-atomic formulas
(which we will refer to as “rules”), is represented by a node in
the graph. A rule is represented in the graph as a node for the
rule itself (henceforth, a rule node), nodes for the argument
formulas, and arcs emanating from the rule node, terminating
at the argument nodes. Arcs are labeled with an indication of
the role (e.g., antecedent or consequent) the argument plays in
the rule, itself. Every node is labeled with an identifier. Nodes
representing individual constants, proposition symbols, func-
tion symbols, or relation symbols are labeled with the symbol
itself. Nodes representing functional terms or non-atomic for-
mulas are labeled wfti, for some integer, i. Every SNePS
expression is a term, denoting a mental entity, hence wft
instead of wff. An exclamation mark, “!”, is appended to
the label if it represents a proposition that is asserted in the
KB. Nodes representing arbitrary terms are labeled arbj, for
some integer, j. No two nodes represent syntactically iden-
tical expressions; rather, if there are multiple occurrences of
one subexpression in one or more other expressions, the same
node is used in all cases. Propositional graphs are built incre-
mentally as terms are added to the knowledge base, which
can happen at any time.6

To propositional graphs, IGs add channels within rules,
within generic terms, and between terms which match each
other (that is, unify, and satisfy certain subsumption and type
relationships). Channels carry messages, and represent paths
inference might take through the graph.

A channel contains a valve, a filter, and a switch. Valves

6See (Schlegel & Shapiro, 2012) for the logic/graph mapping.

1372



control inference by allowing or preventing message flow
through the channels. When a valve is open, messages pass
to the filter and switch unimpeded, otherwise they wait in a
queue until the channel is opened. When a valve in a chan-
nel is open or closed, we call the channel open or closed ac-
cordingly. Messages carry substitutions. Filters discard mes-
sages with substitutions incompatible with the destination,
and switches adjust the variable context of message substi-
tutions which pass through them to ensure the substitutions
are able to be understood by the destination of the channel.

Messages of several types are transmitted through the IG’s
channels, serving two purposes: to relay newly derived in-
formation, and to control the inference process. We’ll con-
cern ourselves only with four types here: i-infer and
u-infer messages, which carry newly derived information
– i-infer messages relay substitutions found for the orig-
inator of the message which the destination may be inter-
ested in, and u-infer messages relay substitutions found for
the destination of the message; backward-infer messages,
which pass backward through the graph opening valves; and
cancel-infer messages, which pass backward through the
graph closing valves.

Inference operations take place primarily in the rule nodes.
When a message arrives at a rule node it is combined with
messages which have previously arrived if the messages are
compatible (i.e., have arrived from different antecedents, and
have compatible substitutions). By determining if a combined
message has been produced from the proper number of an-
tecedents, it can be determined if a rule node’s inference rules
can be applied.

An IG stores all results which it has derived, allowing later
queries to be answered without repeating already completed
derivations. What has been discussed is a simplified version
of IGs only complex enough to present FR, we leave many of
the details of IGs to other papers.

4 Types of Focused Reasoning
In the following three subsections, we will introduce three
types of FR: forward-in-backward, forward, and backward-
in-forward. For each type of FR, we will first describe what
the common use case is for that type, and provide a small ex-
ample which requires that type of FR. We will then describe
a more concrete example inspired by the counter-insurgence
(COIN) domain, complete with figures showing the associ-
ated IGs. These will each be described semi-formally for ease
of understanding. In a later subsection, we will provide an al-
gorithm which combines all the types of FR and makes their
operation more formal.

4.1 Forward-In-Backward Focused Reasoning
The most common use of FR is when wondering about some-
thing which cannot yet be answered by the system using
backward inference. For example, consider a knowledge base
containing only (if P R) and (if P Q). Then, the user asks
about R. Backward inference is set up (i.e., valves in the ap-
propriate channels through (if P R) are opened) but no an-

swer is forthcoming. Later, P is asserted (without forward
inference). Since the appropriate valves are already open, R
is derived immediately, without needing to pose the question
again. Note that Q is not derived, since valves involving (if
P Q) were not opened during backward inference.7

In a somewhat more complex example from the COIN do-
main, consider the following initial knowledge base:

;; Azam is a person
(Isa Azam Person)

;; If a person is arrested, they are detained.
(if (Arrested (every x (Isa x Person)))

(Detained x))

;; A person is either detained or free.
(xor (Detained (every x (Isa x Person)))

(Free x))

It is then asked by a user, “who are the detained persons?”:
(Detained (?x (Isa ?x Person)). The top graph in Fig-
ure 1 shows the IG for this KB. The query is shown as wft20,
using a qvar – a type of quantified term which acts much like
an arbitrary, but is only for answering “wh-” style questions.
The system recursively opens channels backward stemming
from the query, but is unable to produce an answer, since
none exists in the graph. The channels drawn with heavier
weight are those which have been opened during backward
inference. Notice that two routes are tried – A person might
be detained if they are not free, or a person might be detained
if they have been arrested. At some later time, it is added to
the KB that Azam was arrested: (Arrested Azam). The sys-
tem knows that backward inference was in progress,8 so upon
the addition of the channel from wft6! to wft1, backward
inference is continued back to wft6!, opening that channel.
Since wft6! is asserted, this information immediately flows
forward through the graph along open channels, and Azam
is produced as an answer to the previously added query au-
tomatically. This is shown in the bottom half of Figure 1,
where the heavier weight channels indicate the flow of mes-
sages from wft6! forward through the open channels. It’s
important to note that while this KB entails that Azam is not
free, it does not derive this fact in this case since the channels
from wft2 to wft5! and wft5! to wft4 were not opened by
the backward inference process. So, derivations which are ir-
relevant to reaching the desired conclusion are not performed
– we say inference is focused toward the query.

7Prolog with tabling can suspend paths of inference which can-
not complete, and resume them if useful facts are found via the ex-
ploration of other paths within the same inference procedure (Swift
& Warren, 2012). Focused reasoning is different, allowing auto-
matic continuation of inference at the time when related terms are
added to the KB, persisting beyond the run time of a single infer-
ence procedure.

8How does it know? In many cases, it is possible to tell by which
channels are open. But, there are cases where this doesn’t work
(such as initiating backward inference on a term with no incoming
channels) so it makes more sense to maintain a set of in-progress
processes or a flag as detailed later.

1373



arb1

wft1 wft3! wft2ant cq
arrested det

ain
ed

wft4

free

wft5!

xor

xor

qvar1

wft20

de
ta
in
ed

Person

wft8!

restrict
member

class

wft12!memberclass

restrict

Azam

wft6!
arrested

wft9!
member

class

arb1

wft1 wft3! wft2ant cq
arrested det

ain
ed

wft4

free

wft5!

xor

xor

qvar1Person

wft8!

restrict
member

class

wft12!memberclass

restrict

Azam

wft9!
member

class

wft20
de
ta
in
ed

Figure 1: The IGs for the forward-in-backward FR exam-
ple. Dashed lines represent channels. Restrictions have dot-
ted arcs labeled “restrict”. Channels drawn with a heavier
weight are involved in the illustrated inference process. In
the top graph, it has been asked “who are the detained per-
sons?” (wft20), and backward inference has commenced.
In the bottom graph, the fact that Azam has been arrested,
wft6!, is added to the KB, and flows through the already
open channels, deriving the result that Azam is detained.

4.2 Forward Focused Reasoning
A second type of FR can occur when a user wishes to perform
forward inference on a term, but the knowledge base is not yet
fully constructed. For example, consider an empty knowledge
base where the user asserts Q with forward inference. Nothing
new is derived, as the KB is otherwise empty. Later, (if Q
R) is asserted. Since Q was asserted with forward inference,
as soon as additional outgoing channels are connected to it,
its assertional status flows forward through the graph, and R
is derived. This derivation happens, again, without needing to
reassert Q. One can think about this as a limited form of full-
forward inference. Instead of adopting full-forward inference
for all terms which are added to the KB, only Q has this prop-
erty. Automatic inference in the graph is focused on what
can be derived from Q, while unrelated terms (e.g., (if S T)
and S) may be added but without resulting in any automatic
inference.

It’s worth recognizing that all our inference mechanisms
only follow existing channels, and do not create new terms
which are possibly irrelevant to the knowledge base. For ex-
ample, from the original KB with only Q asserted, there are
an infinite number of true disjunctions which could be intro-

duced, but are unhelpful for ongoing inference processes.
Consider our COIN example again with a slightly different

set of terms initially asserted:

;; A person is either detained or free.
(xor (Detained (every x (Isa x Person)))

(Free x))

It is then asserted with forward inference that Azam is a
person, and has been arrested: (Isa Azam Person), and
(Arrested Azam). The top of Figure 2 shows the result-
ing knowledge base. It is determined that Azam satisfies the
restriction of arb1 (that is, Azam is a Person, through the
channel from wft9! to wft8!), but no new knowledge is de-
rived. Later, as in the bottom of Figure 2, the rule that if a
person is arrested then they have been detained is added:

(if (Arrested (every x (Isa x Person)))
(Detained x))

Since wft6! was added with forward inference, when the
new outgoing channel to wft1 is added, forward inference
continues. This allows the derivations that Azam is de-
tained: (Detained Azam), and Azam is not free: (not
(Free Azam)).

arb1

wft2

det
ain

ed

wft4

free

wft5!

xor

xor

Azam

wft6!
arrested

Person

wft8!

restrict
member

class

wft9!
member

class

arb1

wft1 wft3! wft2ant cq
arrested det

ain
ed

wft4

free

wft5!

xor

xor

Azam

wft6!
arrested

Person

wft8!

restrict
member

class

wft9!
member

class

Figure 2: IGs for the forward FR example. In the top graph,
Azam is a person, and has been arrested, wft6! and wft9!,
are asserted with forward inference. In the bottom graph, the
rule that if a person is arrested, they have been detained is
added, allowing inference to continue, and for it to be derived
that Azam is detained and not free.

1374



4.3 Backward-In-Forward Focused Reasoning
A combination of the above two FR techniques is also pos-
sible. Consider a user who again asserts Q with forward in-
ference into an empty knowledge base. Later, (if P (if Q
R)) is asserted. As with forward FR, Q recognizes that it has
new outgoing channels, and sends its assertional status to (if
Q R). But, (if Q R) is not yet asserted, so backward infer-
ence attempts to derive (if Q R), but fails. Later again, P is
asserted (without forward inference). Inference then occurs
as in forward-in-backward FR, (if Q R) is derived, then R
is.

From the COIN domain again, consider the KB:

;; Ahmad is a person.
(Isa Ahmad Person)

;; If a person is a person of interest (POI),
;; they are either under surveillance, or
;; being sought out.
(if (POI (every x (Isa x Person)))

(xor (UnderSurveillance x)
(BeingSoughtOut x)))

;; If a person is a POI, they are of
;; interest to INSCOM
(if (POI (every x (Isa x Person)))

(ofInterestTo x INSCOM))

Now, it is asserted with forward inference that Ahmad is not
under surveillance: (not (UnderSurveillance Ahmad)),
shown in the top of Figure 3. If the xor (wft5) were asserted,
it could be derived that (BeingSoughtOut Ahmad) through
forward inference, but it is not. So, the system initiates back-
ward inference to attempt to derive the xor, by checking
whether Ahmad is a POI. Since the system has no answer
for that, inference halts. Sometime later, shown in the bottom
half of Figure 3, (POI Ahmad) is added to the KB. The xor
receives a message saying it is able to be used for the substi-
tution of Ahmad for arb1 (but not in general), and the initial
forward inference task resumes, deriving (BeingSoughtOut
Ahmad). Here again it’s worth noting that even though the
IG entails that Ahmad is of interest to INSCOM, that was
not derived since it was of no use to the backward inference
task attempting to derive wft5, and it does not follow directly
from the fact that Ahmad is not under surveillance, which was
the assertion made with forward inference.

4.4 A Unifying Algorithm
In order to perform FR using IGs, two requirements must be
fulfilled. Nodes must track whether they are part of a FR
task (which one, and in which direction(s)), and whenever a
channel is added to the graph it must be determined if forward
or backward inference must continue along that channel.

We start by augmenting each node with two sets, initially
empty, f BR and f FwR for focused inference tasks requiring
future backward reasoning at that node, and focused infer-
ence tasks requiring future forward reasoning at that node,

arb1

wft1 wft3! wft2ant
cq

sur
vei

llan
ce

wft4

sought

wft5

xor

xor

Ahmad

Person

wft8!re
st
ric

t

member

class

wft10!
class

member

POI

wft13

sur
vei

llan
ce

wft14!
not

arb1

wft1 wft3! wft2ant
cq

sur
vei

llan
ce

wft4

sought

wft5

xor

xor

Ahmad

Person

wft8!

re
st
ric

t

member

class

wft10!
class

member

POI

wft13

sur
vei

llan
ce

wft14!
not

wft15!
POI

wft16!

wft17

ant

cq

INSCOM

interested

ta
rg
et

wft16!

wft17

ant

cq

INSCOM

interested

ta
rg
et

Figure 3: The IGs for the backward-in-forward FR example.
In the top IG, it is asserted with forward inference that Azam
is not under surveillance, wft14!. Forward inference pro-
ceeds to the unasserted xor rule of wft5, then backward in-
ference tries to derive that rule, but is unable to at the present
time. In the bottom IG, Ahmad is a POI (wft15!) is added to
the KB, which allows the rule wft5 to be used, and the fact
that Ahmad is sought to be derived.

respectively. As backward-infer messages propagate back-
ward through the graph opening channels, they add the goal
of the backward reasoning task to the f BR set in each node.
When forward inference is initiated, nodes reached have their
f FwR set augmented with the origin of the forward infer-
ence task. Unlike IGs described in previous papers, we allow
backward-infer messages to travel backward along already
open channels if these sets need to be updated. Tracking
which nodes are involved in each type of focused inference
task allows one focused inference task to later be canceled
without affecting the others.9 To cancel these tasks, we use
cancel-infer messages, which will only close a channel if

9If one wanted to simply cancel all or no FR tasks, these sets
could be replaced with flags. Some book keeping is still required
since it is impossible to tell whether forward or backward infer-
ence has been initiated from a node otherwise disconnected from
the graph without some marker.

1375



it’s not needed for any more focused inference tasks, but can
travel backward though the graph removing an entry from the
nodes sets of future inference tasks.

When a new channel is added to the graph, the contents of
its origin’s f FwR or destination’s f BR set determine whether
or not to continue a FR task. If a new channel is created,
and it’s origin’s f FwR set is non-empty, forward inference is
continued along that new channel (and recursively forward),
and the contents of the f FwR set is propagated forward. If a
new channel has a destination with a non-empty f BR set, then
backward inference starts at the new channel (and continues
recursively), and the contents of the f BR set is propagated
backward. These routines combine to allow for forward-in-
backward FR, and forward FR.

The final aspect of the algorithm occurs when a rule is not
asserted, but receives an i-infer message via forward in-
ference, indicating an attempt to use that rule. In this case,
that node attempts to have itself derived in general or for a
specific substitution by beginning a backward reasoning task,
adding itself to it’s f BR set, and propagating that set back-
ward. Once the rule has been derived, it recursively sends
messages canceling the backward reasoning task backward
through the graph, since it’s purpose has been fulfilled. This
allows for backward-in-forward FR.

5 Conclusion
Focused reasoning is a useful method for continuing infer-
ence tasks as new information is added to a knowledge base.
We have presented three types of FR: forward-in-backward,
forward, and backward-in-forward, building upon Inference
Graphs – a concurrent graph-based inference mechanism al-
ready capable of forward, backward, and bi-directional infer-
ence. Each type of FR obviates the need to repeat completed
inference, re-pose queries, or perform unnecessary inference.
In addition, determining if FR should commence uses very
few computational resources above those used normally to
add a term to a knowledge base.

6 Acknowledgements
This work has been supported by a Multidisciplinary Univer-
sity Research Initiative (MURI) grant (Number W911NF-09-
1-0392) for “Unified Research on Network-based Hard/Soft
Information Fusion”, issued by the US Army Research Office
(ARO) under the program management of Dr. John Lavery.

References
Auble, P. M., Franks, J. J., & Soraci, S. A. (1979). Effort

toward comprehension: Elaboration or “aha”? Memory
& Cognition, 7(6), 426–434.

eBay, Inc. (2013). Saving your searches.
(http://pages.ebay.com/help/buy/searches-
follow.html)

Forgy, C. (1979). On the efficient implementation of pro-
duction systems. Unpublished doctoral dissertation,
Carnegie-Mellon University, Department of Computer
Science, Pittsburgh, PA, USA.

Forgy, C. (1982). Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. Artificial In-
telligence, 19, 17–37.

ISO/IEC. (2007, October). Information technol-
ogy — Common Logic (CL): a framework
for a family of logic-based languages, iso/iec
24707:2007(e) (First ed.) [Computer soft-
ware manual]. Switzerland. (available from
http://standards.iso/ittf/license.html)

McKay, D. P., & Shapiro, S. C. (1981). Using active con-
nection graphs for reasoning with recursive rules. In
Proceedings of the seventh IJCAI (pp. 368–374). Los
Altos, CA: Morgan Kaufmann.

Pollock, J. L. (1990). Interest driven suppositional reasoning.
Journal of Automated Reasoning, 6(4), 419–461.

Schlegel, D. R., & Shapiro, S. C. (2012). Visually interacting
with a knowledge base using frames, logic, and propo-
sitional graphs. In M. Croitoru, S. Rudolph, N. Wil-
son, J. Howse, & O. Corby (Eds.), Graph structures for
knowledge representation and reasoning, lecture notes
in artificial intelligence 7205 (p. 188-207). Berlin:
Springer-Verlag.

Schlegel, D. R., & Shapiro, S. C. (2013a). Concurrent rea-
soning with inference graphs (student abstract). In Pro-
ceedings of AAAI-13 (p. 1637-1638). Menlo Park, CA:
AAAI Press/The MIT Press.

Schlegel, D. R., & Shapiro, S. C. (2013b, December). In-
ference graphs: A roadmap. In Poster collection of
the second annual conference on advances in cognitive
systems (pp. 217–234).

Schlegel, D. R., & Shapiro, S. C. (2014). Concurrent reason-
ing with inference graphs. In M. Croitoru, S. Rudolph,
S. Woltran, & C. Gonzales (Eds.), Graph structures
for knowledge representation and reasoning, lecture
notes in artificial intelligence (Vol. 8323, p. 138-164).
Switzerland: Springer International Publishing.

Shapiro, S. C. (2004). A logic of arbitrary and indefinite
objects. In D. Dubois, C. Welty, & M. Williams (Eds.),
Proceedings of KR2004 (pp. 565–575). Menlo Park,
CA: AAAI Press.

Shapiro, S. C. (2010). Set-oriented logical connectives:
Syntax and semantics. In F. Lin, U. Sattler, &
M. Truszczynski (Eds.), Proceedings of KR2010 (pp.
593–595). AAAI Press.

Shapiro, S. C., Martins, J. P., & McKay, D. P. (1982). Bi-
directional inference. In Proceedings of the fourth
CogSci (pp. 90–93). Ann Arbor, MI: the Program in
Cognitive Science of The University of Chicago and
The University of Michigan.

Shapiro, S. C., & Rapaport, W. J. (1992, January–March).
The SNePS family. Computers & Mathematics with
Applications, 23(2–5), 243–275.

Swift, T., & Warren, D. S. (2012). XSB: Extending prolog
with tabled logic programming. Theory and Practice
of Logic Programming, 12(1-2), 157–187.

1376




