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BACKGROUND: Extreme heat poses current and future risks to human health. Heat vulnerability indices (HVIs), commonly developed using principal
components analysis (PCA), are mapped to identify populations vulnerable to extreme heat. Few studies critically assess implications of analytic
choices made when employing this methodology for fine-scale vulnerability mapping.

OBJECTIVE:We investigated sensitivity of HVIs created by applying PCA to input variables and whether training input variables on heat–health data
produced HVIs with similar spatial vulnerability patterns for Detroit, Michigan, USA.

METHODS: We acquired 2010 Census tract and block group level data, land cover data, daily ambient apparent temperature, and all-cause mortality
during May–September, 2000–2009. We used PCA to construct HVIs using: a) “unsupervised”—PCA applied to variables selected a priori as risk
factors for heat-related health outcomes; b) “supervised”—PCA applied only to variables significantly correlated with proportion of all-cause mortal-
ity occurring on extreme heat days (i.e., days with 2-d mean apparent temperature above month-specific 95th percentiles).
RESULTS: Unsupervised and supervised HVIs yielded differing spatial vulnerability patterns, depending on selected land cover input variables.
Supervised PCA explained 62% of variance in the input variables and was applied on half the variables used in the unsupervised method. Census
tract–level supervised HVI values were positively associated with increased proportion of mortality occurring on extreme heat days; supervised PCA
could not be applied to block group data. Unsupervised HVI values were not associated with extreme heat mortality for either tracts or block groups.
DISCUSSION: HVIs calculated using PCA are sensitive to input data and scale. Supervised HVIs may provide marginally more specific indicators of
heat vulnerability than unsupervised HVIs. PCA-derived HVIs address correlation among vulnerability indicators, although the resulting output
requires careful contextual interpretation beyond generating epidemiological research questions. Methods with reliably stable outputs should be lever-
aged for prioritizing heat interventions. https://doi.org/10.1289/EHP4030

Introduction
Extreme heat poses a current and future threat to human health
(Crimmins et al. 2016). In response to this threat, public health
practitioners and researchers are tasked with developing prepar-
edness, response, and mitigation plans and policies that protect
those who are experiencing and who will experience most of the
health burden related to extreme temperatures.

Considerable progress has been made in recent years to under-
stand the relationship between extreme heat and human health
(Anderson and Bell 2011; Anderson et al. 2013), and findings from
epidemiological studies have laid the groundwork for identifying
population characteristics associated with adverse effects of extreme
heat on human health (Basu and Samet 2002; Curriero et al. 2002;
Gronlund 2014; Ostro et al. 2009; Schwartz 2005). Socioeconomic
and demographic factors such as older age (Bouchama and Knochel
2002; Ostro et al. 2009), racial and ethnic minority status, low
income, having less than a high school education (Hajat et al. 2005;
Semenza et al. 1996; Stafoggia et al. 2006), being unmarried (Jones
et al. 1982), air conditioning prevalence (O’Neill et al. 2005), and

social factors such as living alone or having access to transportation
(Semenza et al. 1996) have been associated with increased risk of
mortality during extreme heat events. Measures of green space such
as the percent impervious surface (Barnett et al. 2006; Hass et al.
2016) and having access to green space (Dadvand et al. 2016;
Medina-Ramon and Schwartz 2007; Yeager et al. 2018) have gar-
nered attention as protective area-level characteristics. Further, there
is widespread agreement that the distribution of these heat-related
risks varies across populations and communities (Ebi et al. 2018).
With numerous variables to consider when determining a popula-
tion’s risk of health effects from extreme heat, public health practi-
tioners who are looking to translate research into actionable
preventive programs are challenged to simplify a complex
relationship.

A commonly used approach to assess human health risk dur-
ing hot weather is to characterize it in terms of measurable vul-
nerability. Vulnerability research grew in popularity in the
context of social vulnerability, a unitless measure of the extent to
which a population is resilient to natural disasters and hazards
(Cutter et al. 2003; Flanagan et al. 2011). Although vulnerability
can be defined in numerous ways (Cutter et al. 2003; Fussel
2007; Harlan et al. 2006; NRC 2010), it broadly consists of envi-
ronmental, demographic, and population-specific health and soci-
etal characteristics. One definition of vulnerability is presented
by Wilhelmi and Hayden (2010), who define vulnerability within
a multifaceted top-down and bottom-up framework that draws on
populations’ exposure, sensitivity, and adaptive capacity. The
dynamic interactions between exposure, sensitivity, and adaptive
capacity make characterizing vulnerability—a fluid, population-
and locale-specific concept—challenging.

In the United States, state and local public health practitioners
are identifying populations and locations most vulnerable to envi-
ronmental hazards such as extreme heat to design and implement
protective interventions (Manangan et al. 2014). Public health
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departments in Michigan (Seroka et al. 2011), Minnesota
(Minnesota Climate and Health Program 2012), New York State
(Nayak et al. 2018), and San Francisco, California (San Francisco
Department of Public Health 2013), for instance, have drawn from
and used the methods put forth in Reid et al. (2009) to develop heat
vulnerability indices and maps that consider current and future cli-
mate conditions. These methods have become the conventional
approaches for incorporating environmental, demographic, and
socioeconomic data to capture population-level heat vulnerability.
Individually, characteristics associated with vulnerability can be
quantitatively and qualitatively measured. Because of data limita-
tions, vulnerability is often represented via proxy indicators rather
than a direct measure. For example, a researcher may choose to
represent heat exposure indirectly through estimating prevalence
of impervious surfaces or lack of vegetation, both of which are
associated with the urban heat island, or more directly through
remotely sensed land surface temperatures (Bao et al. 2015; Wolf
and McGregor 2013). These measures are then aggregated to cre-
ate a single index of vulnerability. Characterizing vulnerability as a
single measure is either often discussed or actually used as a tool
for translating research into action via vulnerability maps (Harlan
et al. 2013; Johnson et al. 2012; Reid et al. 2009; Wolf and
McGregor 2013) that can inform policy and planning (Bradford
et al. 2015; Hoppe et al. 2018; Johnson et al. 2012; Nayak et al.
2018).

Principal components analysis (PCA) is a technique com-
monly used to construct heat vulnerability indices (Harlan et al.
2013; Reid et al. 2009). PCA is a dimension-reduction technique
that can distill multiple, potentially correlated variables into new,
independent constructs/factors; typically, the number of con-
structs is much smaller than the number of variables in the origi-
nal data set. This technique can be an appealing approach for
handling heat vulnerability data sets. The growing use of PCA to
construct vulnerability indices for heat could extend to other
climate-related exposures, such as floods, aeroallergens, and
wildfires. Despite the increasing trend in developing single meas-
ures of vulnerability via indices (Bao et al. 2015), there have
been few studies that have assessed the appropriateness of the
methods or reliability of the products themselves (Reid et al.
2012; Tate 2012).

Social vulnerability indices that have been constructed using
PCA and non-PCA methods (Cutter et al. 2003; Flanagan et al.
2011) have been assessed. Validation studies of social vulnerabil-
ity indices have indicated that the mapped products are sensitive
to input data, suggesting that they should be interpreted with cau-
tion (Schmidtlein et al. 2008; Tate 2012). Although different
methodologies for constructing vulnerability indices exist, here
we focus on a methodology that is commonly used to construct
HVIs—PCA—and conduct a critical assessment of indices pro-
duced with input data that were intended to capture similar con-
structs relevant to heat exposure (i.e., vegetated land cover or
lack thereof) but were derived from different publicly available
data sources.

In recognition of the growing interest in identifying intraur-
ban patterns of heat-related vulnerability, we explore three
questions regarding PCA-derived heat vulnerability indices,
using Detroit, Michigan, USA, as a case study. First, how and
to what extent are heat vulnerability indices sensitive to physi-
cal environment input variables, specifically land cover meas-
ures, when describing spatial patterns of heat vulnerability?
Second, what is the relationship between a heat vulnerability
index (HVI) and all-cause mortality (2000–2009) on extreme
heat days at both fine (i.e., block group) and neighborhood (i.e.,
tract) levels? Third, does screening for which variables are used
when creating a heat vulnerability index based on their

association with the health outcome (i.e., a supervised HVI)
produce the same spatial patterns?

Materials and Methods

Study Location
Detroit, which covers 142 square miles, is home to roughly
670,000 residents, more than 80% of whom are African American;
roughly 35% live below the poverty line; and about 14% are over
the age of 65 (www.census.gov/acs). Although located in the
northern United States, it is common for Detroit to experience pro-
longed periods of heat and high humidity during the summer
months. The City of Detroit and neighboring Southeast Michigan
municipalities have been planning for heat events via an estab-
lished network of cooling centers, outreach and education, utility
assistance programs, and community emergency response teams
(Sampson et al. 2013). The demographic and socioeconomic pro-
files of the resident population reflect a high level of sensitivity to
high temperatures, suggesting this population is particularly at risk
during extreme heat events (Gronlund et al. 2015).

Data Sources and Variable Selection
We created HVIs that represent the period between 2000 and 2009
in Detroit, Michigan. The Cities of Highland Park andHamtramck,
which are located within the boundaries of the City of Detroit,
were treated as part of the City of Detroit for this analysis.
Following the methodology established by Reid et al. (2009), we
determined a priori the variables to include in the calculation of the
HVI, with the addition of four different variables to represent non-
green space: nontree canopy, nonvegetation including water, non-
trees, and distance to water (Table 1). Variables were defined so
that an increase in value would correspond to a hypothesized
increase in heat vulnerability. Demographic variables were
extracted from the American Community Survey (ACS) 5-y esti-
mates for 2006–2010, for the census tract and block group geogra-
phies for the City of Detroit, Michigan (www.census.gov/acs). Our
analysis was conducted at both the census tract levels and the block
group levels given the interest in understanding intraurban patterns
of heat vulnerability (Christenson et al. 2017; Johnson et al. 2012).

Table 1. Descriptive statistics of tract (N =308) and block group (N =913)
variables used in calculating HVIs; Detroit, Michigan, USA (2000–2009).

Variable

Tract (N =308) Block group (N =913)

Mean (±SD) Min. Max. Mean (±SD) Min. Max.

Over age 65a 0.12 (0.06) 0.00 0.40 0.12 (0.08) 0.00 0.51
Living alonea 0.15 (0.11) 0.00 1.00 0.14 (0.11) 0.00 1.00
Over age 65, living

alonea
0.04 (0.03) 0.00 0.29 0.04 (0.05) 0.00 0.43

Minoritya 0.91 (0.13) 0.27 1.00 0.91 (0.14) 0.03 1.00
Less than HS

educationa
0.14 (0.07) 0.00 0.41 0.14 (0.09) 0.00 0.49

Under poverty
levela

0.35 (0.14) 0.00 0.73 0.35 (0.19) 0.00 0.88

Impervious surfaceb 0.60 (0.11) 0.00 0.88 0.60 (0.11) 0.00 0.92
Nontree canopyc 0.95 (0.08) 0.00 0.99 0.95 (0.07) 0.00 0.99
Nonvegetated,

including waterd
0.49 (0.14) 0.15 0.99 0.48 (0.14) 0.10 0.99

Nontreesd 0.68 (0.14) 0.27 1.00 0.67 (0.15) 0.18 1.00
Distance to watere 0.39 (0.23) 0.00 1.00 0.41 (0.23) 0.00 1.00

Note: HS, high school; HVIs, heat vulnerability indices; Max., maximum; Min., minimum.
aAmerican Community Survey (ACS), 5-y estimate (2006–2010).
bNational Land Cover Database (NLCD), Impervious layer, 30 m (2006).
cNational Land Cover Database (NLCD), Tree canopy layer, 30 m (2001).
dSoutheastern Michigan Council of Governments (SEMCOG) Aerial photograph, 1 m
(2005).
eESRI 10.4, River shapefile (2010).
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Variables included proportions of the following groups in each
tract or block group: over the age of 65, living alone, over the age
of 65 and living alone, less than a high school education, living at
or below the poverty level, and of race/ethnic minority status.
Minority status (in relation to the Metropolitan Statistical Area;
www.census.gov/acs) was defined as being not white and not
Hispanic.

Variables to represent heat exposure were obtained from differ-
ent sources and iteratively included in the calculation of the HVI to
assess the sensitivity of PCA to input variables. Land cover, includ-
ing the prevalence of impervious surface and nonvegetated land
cover, is highly associatedwith heterogeneous intraurban heat expo-
sure due to the urban heat island (Weng et al. 2004).We tested differ-
ent variables for inclusion in the HVI to represent the proportion of
nonvegetative land cover in each census tract or block group, specifi-
cally the proportion of impervious surfaces, nontree canopy, nonve-
getation, and nontree areas. Although correlated (Figure 1), these
variables estimate vegetative land cover differently. For instance,
nontree canopy coverage is not equivalent to a measure of percent-
age of nontrees; the tree canopy could cover more area than the per-
centage of trees. Tree canopy coverage, however, is not always
available for the geography and time period of interest. Vegetation
variables in heat–health analyses are not always represented using
the same metric (Yeager et al. 2018). Because vegetative land cover
can be modified within a city—it is possible to change the amount,
location, and type of vegetation—we consider vegetative land cover

an index variable amenable to intervention by a given municipality
(e.g., 10% increase in vegetation by geographic unit).

Land cover data was derived from three products. Each vari-
able was defined to reflect the hypothesis that less vegetated land
cover increases heat vulnerability. First, we extracted the imper-
vious surface layer from the 2006 National Land Cover Database
(NLCD) (http://www.mrlc.gov/nlcd06_leg.php). NLCD is avail-
able for the conterminous United States and is often used for
characterizing vegetative and impervious land cover (Pearsall
2017). The 30-m resolution product has been used in heat–health
studies to characterize nonvegetated land cover. In this analysis,
the impervious surface layer (“Impervious”), was calculated as a
proportion of tract and block group and represented the com-
monly used nongreen space characterization. Second, we used
the 30-m 2001 NLCD tree canopy layer (“Nontree canopy”) to
calculate the proportion of a tract or block group that is not cov-
ered by tree canopy. The 2001 NLCD data set was the only pub-
licly available tree canopy assessment for the City of Detroit for
the study period (Homer et al. 2007). The NLCD tree canopy
layer represents a snapshot of the tree canopy for the study area.

We developed HVIs using fine-scale land cover data to esti-
mate fine-scale vulnerability to heat, because some analyses indi-
cate that NLCD underestimates vegetation (Nowak and Greenfield
2010). To do this, we used 1-m resolution aerial photography of
the metropolitan Detroit area from late spring 2005, which we
acquired from the Southeast Michigan Council of Governments

1

0.38

0.67

0.24

0.15

−0.19

0.01

0.01

0.06

0.04

0.38

1

0.65

0.1

0.01

0.01

0.16

0.19

0.07

0.12

0.67

0.65

1

0.17

0.08

−0.06

0.1

0.12

0.08

0.08

0.24

0.1

0.17

1

−0.12

0.28

0.23

0.29

0.22

0.19

0.15

0.01

0.08

−0.12

1

−0.02

−0.24

−0.18

−0.02

−0.17

−0.19

0.01

−0.06

0.28

−0.02

1

0.1

0.19

0.1

0.09

0.01

0.16

0.1

0.23

−0.24

0.1

1

0.83

0.68

0.93

0.01

0.19

0.12

0.29

−0.18

0.19

0.83

1

0.79

0.67

0.06

0.07

0.08

0.22

−0.02

0.1

0.68

0.79

1

0.66

0.04

0.12

0.08

0.19

−0.17

0.09

0.93

0.67

0.66

1

Over.65

Live.Alone

Over.65.Live.Alone

High.School.Ed

Minority

Poverty

Non.Veg

Non.Tree

Non.Canopy

Impervious

O
ve
r.6
5

Li
ve
.A
lo
ne

O
ve
r.6
5.
Li
ve
.A
lo
ne

H
ig
h.
Sc
ho
ol
.E
d

M
in
or
ity

Po
ve
rty

N
on
.V
eg

N
on
.T
re
e

N
on
.C
an
op
y

Im
pe
rv
io
us

−1.0

−0.5

0.0

0.5

1.0
Correlation
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(SEMCOG) Imagery product (SEMCOG 2005). Land cover classi-
fications from this source included proportions of impervious sur-
face, bare earth, open space, trees, and water. We defined
“Nonvegetation” (Equation 1) at the block group and tract levels as:

1−
X

ðOpen Space+Trees +WaterÞ: (1)

We developed a final vegetative land cover variable, which
was aerial photograph–derived “nontrees” (Equation 2) to repre-
sent the sole contribution of vegetation that is not trees, calcu-
lated as:

1− ðTreesÞ: (2)

All land cover variables were averaged and assigned to census
tracts and block groups in ArcMap using the Zonal Statistics tool
on 2010 Census TIGER shapefiles.

Distance to water, which has been demonstrated to have a
cooling effect in urban microclimates (Steeneveld et al. 2014),
was calculated as a straight-line distance from the Detroit River
to the centroid of each tract and block group in ArcGIS (ArcMap,
version 10.6). The measurements were scaled by dividing the
largest distance to have a value between 0 and 1, so that 1 indi-
cated the furthest distance from the river, with further distances
hypothesized to confer higher vulnerability to heat exposure.

Characterizing Extreme Heat
It is well established that mortality increases significantly at higher
temperatures (Anderson and Bell 2009) and that apparent tempera-
ture on the day prior to and the day of death (AT01) captures the
acute effect of heat (Barnett and Åström 2012). Hourly daily mean
temperature and dew-point data were extracted from the National
Centers for Environmental Information for airport weather stations
in Detroit and were used to calculate apparent temperature (Global
Surface Summary of the Day 2012). The 2-d mean apparent tem-
perature (AT01) captures the acute effect of heat by averaging the
apparent temperature for the day of and day prior (Barnett and
Åström 2012). We defined extreme heat days as days during the
study period (2000–2009) on which AT01 exceeded the month-
specific 95th percentile for Detroit during the summer months
(May–September).

Unsupervised PCA and HVI Calculation
The first method for calculating the HVI applied PCA (PROC
FACTOR, SAS version 9.3; SAS Institute Inc.) to demographic
variables that have been associated with heat-related mortality
(proportion>65 years of age, living alone, >age 65 and living
alone, less than high school education, at or below poverty level,
and of race/ethnic minority status) [i.e., “unsupervised” (Bair et al.
2006)] plus one of the four measures of nonvegetative land cover.
Following Reid et al. (2009), we rotated the factor pattern, retained
factors whose eigenvalues >1, normalized factor scores, summed
the scores to calculate a final HVI value, and classified them by
standard deviation. A total of eight unsupervised HVIs—four at the
census tract level and four at the block group level, respectively—
were calculated andmapped.

Agreement Maps
In addition to mapping scores for each of the four individual HVIs
for each census tract and block group, we present maps that illus-
trate the agreement between each of the HVIs. Specifically, we
present maps that show, for each tract or block group, a) the differ-
ence between highest HVI value and the lowest HVI value
obtained for the given tract or block group; and b) the number of

individual HVIs with scores in the highest quartile for each census
tract or block group (range 0–4). The agreement maps offer an al-
ternative perspective that may be useful for determining areas with
higher vulnerability relative to other locations in a given area.

Supervised PCA and HVI calculation. We next applied a
supervised PCA (Bair et al. 2006) approach, with variables
selected based on associations with heat-related mortality. For
this purpose, we obtained daily, geocoded mortality data from
the Michigan Department of Community Health (MDCH) for
the years 2000–2009. Institutional Review Boards (IRBs)
for the University of Michigan (UM) and MDCH approved this
study (UM IRB: HUM00067448). Daily nonaccidental deaths
[International Classification of Diseases 10th revision (ICD-10):
A00-R99, T67, X30] were assigned a census tract identifier and a
block group identifier [in ArcGIS (ArcMap, version 10.6)], and
subsequently aggregated at the census tract level and block group
level. We limited the analysis data set to May–September, when
extreme heat days (two consecutive days with apparent tempera-
ture above the month-specific 95th percentile for Detroit) were
most likely to occur.

To determine which variables to use in the supervised HVI, we
first estimated the proportion of all-cause mortality that occurred
on extreme heat days vs. other days during the May–September
period. Then, we regressed the proportion of all-cause mortality
that occurred on an extreme heat day on each variable used in the
creation of the unsupervised HVI. We examined assumptions of
independence and normality, finding that the errors were approxi-
mately normally distributed. Variables that were moderately signif-
icantly associated (p<0:20) with all-cause deaths occurring on an
extreme heat day were selected and used to calculate the HVI. We
chose a conservative p-value in order to err on the side of including
potential variables for constructing the supervised HVI. Only two
variables (impervious surface and living below poverty) would
have been included had the p-value been set at 0.05; a third, living
alone, would have been added if set at 0.10.

We conducted an alternate calculation of the ratio of deaths on
extreme heat days vs. nonextreme heat days, adjusting for citywide
seasonal and long-term trends, as described in detail in Table S1.
However, we decided against using this approach because the ratio
of deaths on extreme heat days vs. nonextreme heat days was
almost perfectly correlated with the ratio derived using our default
model (>0:99, Table S1), and our primary interest was in examin-
ing how well HVI explained differences among census tracts.

Because the number of all-cause deaths on an extreme heat
day is a variable that is likely to be spatially correlated, we
assessed the assumption of independence of the residuals in the
linear regression models. Particularly, we wanted to evaluate
whether the residuals displayed spatial correlation. For this pur-
pose, we fitted simple linear regressions with the proportion of
all-cause deaths occurring on an extreme heat day per tract and
block group as the outcome and each individual variable as the
sole covariate. We used the OLS tool in ArcMap. We derived the
residuals of each linear regression model and computed Moran’s
I to assess the presence of residual spatial correlation and, thus, a
need to account for spatial correlation in the error terms of the
linear regression model. As the Moran’s I for the residuals corre-
sponding to each simple linear regression were nonsignificant
(data not shown), we did not perform spatial regression.

Comparison of Unsupervised and Supervised HVIs
To evaluate the robustness of our findings across the different
approaches used to derive HVI, we conducted simple OLS regres-
sion analyses, regressing the proportion of all-causemortality occur-
ring on extreme heat days on the tract- and block group-specific
HVI values obtained using both unsupervised and supervised PCA.
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In the regression analyses, we modeled HVI both in its continuous
form and categorized based on absolute scores (0–3, 4–6, 7–9, 10–
12, 13–15).We performed trend tests bymodeling ordinal variables
with integer scores (1, 2, . . ., 5) assigned to each category.

Results
During the period of our analysis, Detroit contained 913 populated
census block groups and 308 populated census tracts (Table 1).
Population characteristics were similar between census tract and
block group calculations. City residents were primarily African

American and lived in areas with low vegetated land cover. Land
cover measures differed from each other, with most of the city, on
average, having almost no tree canopy coverage and about half of
the city covered with nonvegetation, including water (Table 1).
Land cover measures were highly correlated with each other, as
were age and living alone status (Figure 1).

The first factor in all eight unsupervised HVIs, at both geo-
graphic scales, was composed of three variables: over the age of
65, living alone, and over the age of 65 and living alone (Table 2).
The first factor represents variables that describe age/isolation. The
remaining five variables loaded onto the second and third factors;

Table 2. Variance explained and factor loadings for PCA outputs for tract level and block group level unsupervised HVIs calculated by including impervious
surface (NLCD-derived), nontree canopy (NLCD-derived), nonvegetation including water (aerial-derived), and nontrees (aerial-derived), respectively, for
Detroit, Michigan, USA.

Tract Block group

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

With impervious surface (NLCD)
Factor loading
Over age 65 0.81 0.03 0.20 0.83 −0:04 0.10
Living alone 0.76 −0:11 −0:26 0.76 0.08 −0:11
Over age 65, living alone 0.91 −0:07 −0:02 0.91 0.06 0.01
Minority 0.30 0.08 0.72 0.15 0.11 0.79
Less than HS education −0:01 0.78 −0:26 0.23 0.66 −0:19
Living under poverty level −0:02 0.85 −0:04 −0:19 0.81 0.15
Distance to water −0:22 −0:34 0.67 −0:09 −0:56 0.45
Impervious coverage 0.11 0.20 −0:61 0.12 −0:28 −0:61

Variance explaineda

Eigenvalue 2.26 1.96 1.02 2.30 1.70 1.02
% Variance explained 28.2 24.6 12.7 28.8 21.2 12.0

With nontree canopy (NLCD)
Factor loading
Over age 65 0.80 −0:05 0.19 0.83 −0:05 0.14
Living alone 0.78 0.08 −0:03 0.77 0.08 −0:08
Over age 65, living alone 0.92 0.08 0.03 0.91 0.04 0.04
Minority 0.13 −0:11 0.92 0.07 −0:07 0.90
Less than HS education 0.02 0.68 −0:33 0.27 0.58 −0:30
Living under poverty level −0:07 0.67 0.00 −0:16 0.54 −0:14
Distance to water −0:20 −0:74 0.16 −0:07 −0:79 0.04
Nontree canopy 0.03 0.72 0.41 0.05 0.73 0.34

Variance explaineda

Eigenvalue 2.31 1.96 1.08 2.31 1.74 1.04
% Variance explained 28.9 24.5 13.5 28.9 21.7 13.0

With nonvegetation including water (aerial)
Factor loading
Over age 65 0.80 0.21 0.01 0.83 0.12 −0:03
Living alone 0.77 −0:23 −0:07 0.76 −0:13 0.07
Over age 65, living alone 0.91 −0:02 0.07 0.91 0.00 0.05
Minority 0.28 0.76 0.01 0.15 0.76 0.13
Less than HS education −0:01 −0:21 0.80 0.24 −0:19 0.67
Living under poverty level −0:03 0.01 0.85 −0:18 0.11 0.82
Distance to water −0:23 0.58 −0:42 −0:10 0.52 −0:52
Nonvegetation, including water 0.15 −0:81 0.12 0.12 −0:76 0.23

Variance explaineda

Eigenvalue 2.30 2.04 1.15 2.31 1.74 1.04
% Variance explained 28.8 25.5 14.4 28.9 21.7 13.0

With nontrees (aerial)
Factor loading
Over age 65 0.81 0.21 0.05 0.84 0.12 −0:02
Living alone 0.75 −0:30 −0:14 0.76 −0:16 0.04
Over age 65, living alone 0.91 −0:05 0.06 0.91 −0:01 0.04
Minority 0.34 0.67 0.06 0.16 0.69 0.30
Less than HS education −0:01 −0:22 0.81 0.24 −0:26 0.60
Living under poverty level −0:01 0.08 0.84 −0:18 0.01 0.82
Distance to water −0:20 0.74 −0:32 −0:09 0.69 −0:42
Nontrees 0.17 −0:82 0.24 0.13 −0:77 0.33

Variance explaineda

Eigenvalue 2.47 2.08 1.08 2.38 1.91 1.03
% Variance explained 30.8 26.0 13.6 29.8 23.8 12.8

Note: HS, high school; HVI, heat vulnerability index; NLCD, National Land Cover Database; PCA, principal components analysis.
aTotal variance explained: With impervious surface (NLCD), tract = 65:5, block group= 62:8; with nontree canopy (NLCD), tract = 66:9, block group= 63:6; with nonvegetation
including water (aerial), tract = 68:8, block group= 63:6; with nontrees (aerial), tract = 70:3, block group= 66:4.
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across all iterations, minority status loaded separately from educa-
tion and income variables, which consistently loaded together.
Variables that indicated lack of vegetation either loaded with mi-
nority status or onto the factor containing education/income. Land
cover variables did not indicate the same direction. Impervious sur-
face, nonvegetation, and nontrees all loaded in the negative direc-
tion with minority status, indicating that tracts and block groups
with higher percent minority populations had higher vegetated
land cover, whereas the nontree canopy coverage variable loaded
with education and income variables, indicating that locations with
higher proportions of residents with low income and low educa-
tional attainment occurred in areas where there was less tree can-
opy coverage. The directions of the factor loadings were consistent
between census tract and block group analyses. On average, the
three factors for tract HVIs accounted for 67% of the variance in
the data; the three factors for block groupHVIs accounted for about
64% of the variance (Table 2).

Unsupervised HVI Calculation
Simple pairwise correlations between each of the four unsuper-
vised HVI scores (based on the different measures of nonvegeta-
tive land cover) produced moderate to high correlations ranging
from 0.69 to 0.97 at the census tract level and 0.64 to 0.97 at the
block group level. Qualitative comparison across both census
tract and block group maps of the four individual unsupervised
HVI scores (Figures S1 and S2, respectively) indicated inconsis-
tent patterns of spatial heterogeneity. For example, Figure 2D
shows high vulnerability block groups appearing further to the
west and north than reflected by the high vulnerability tracts in
Figure 1D. These inconsistencies were not so substantial as to
completely alter the general spatial pattern, however.

Maps showing the agreement among the four different unsu-
pervised HVIs according to differences in the highest and lowest
HVI score for each tract or block (Figure 2) indicated spatial pat-
terns that were generally similar between both spatial scales.
Both sets of agreement maps suggest that inconsistencies among
scores for the four unsupervised HVIs were relatively high in the
northwest and southeastern portions of the city, and in a few loca-
tions in central and north central neighborhoods. However, the
block group map indicated variation within tracts. For example,
in the southwestern area of the city, unsupervised HVIs at the
tract level generally agreed, whereas the block group map sug-
gests that the unsupervised HVIs did not agree on the severity of
heat vulnerability in some smaller areas.

A map of the number of individual HVIs with scores in the
highest quartile for each census tract (Figure 3A) suggests that
tracts in the central and eastern part of the study area and two tracts
in the southwestern part of the city were the most vulnerable based
on multiple HVIs. On the other hand, areas that did not appear vul-
nerable based on this metric when mapped at the tract level did
indicate areas with multiple HVI scores in the highest quartile
when mapped at the block group level (Figure 3B), including sev-
eral southwestern block groups. Further, 585 block groups (64%)
had a score in the highest quartile for at least one of the four HVIs,
compared with 113 (37%) of census tracts. This finding suggests
that HVIs defined at the census tract level may provide a more sen-
sitivemeans of identifying the areas with the highest vulnerability.

The total number of deaths in Detroit during the 10-y study
period was 32,717. Neither tract nor block group unsupervised
HVI scores were associated with deaths on extreme heat days
(AT01) when HVI was modeled as a continuous variable
(Table 3). When unsupervised HVIs were modeled as categorical
variables (using approximately equal score intervals) using scores
of 0–3 as the reference category, the top four interval HVI cate-
gories were positively associated with mortality on extreme heat

days for all HVIs in both census tracts and block groups.
However, associations did not increase in magnitude with higher
scores in most cases, and trend tests were not statistically signifi-
cant (p>0:05), with the exception of the HVI constructed with
tree canopy at the tract level. Regressing the proportion of deaths
occurring on an extreme heat day against unsupervised HVIs
resulted in R2 values near 0.00 when the analysis is performed at
both the census tract and block group levels.

When unsupervised HVIs were categorized according to
quintiles at both the census tract level and block group level,
most associations with mortality on extreme heat days remained
positive but were closer to the null, without any consistent pat-
terns with increasing HVI scores (Table S2).

Supervised HVI
At the census tract level, the variables used to calculate a
supervised HVI (selected based on p<0:20 for associations
with mortality on extreme heat days, Table 4) were: age 65
and older, living alone, living below the poverty level, percent
nonvegetated, and percent nontree canopy. We did not derive
a supervised HVI at the block group level because only two
predictors—living alone and percent nontrees—met the crite-
rion for inclusion.

The tract-level supervised HVI resulted in two factors: The
first included living under the poverty level and vegetated land
cover variables, and the second factor combined age and living
alone (Table 5). The combined two factors account for 62% of
the variance in the variables included in the supervised PCA. The
two factors could be characterized as residential environment and
age/social isolation, respectively. More generally, these could be
considered representative of the exposure and sensitivity compo-
nents of vulnerability, although poverty may also be closely
related to health conditions increasing sensitivity to heat. The
mapped scores for the supervised HVI (Figure 4) suggest that
census tracts with the greatest heat vulnerability are located in
the central portion of the city.

Supervised HVI scores were positively associated with the
proportion of all-cause deaths occurring on an extreme heat day
(Table 6). However, the magnitude of the association was small
and did not increase monotonically with higher score categories.
The percent variance explained by the regression models against
the proportion of deaths occurring on an extreme heat day were
extremely low, ranging between 0.00 and 0.01, for both unsuper-
vised and supervised HVIs.

Discussion
The goals of these analyses were threefold: to determine the
influence of input variables representing nonvegetative land
cover on PCA-derived HVI mapping products; to evaluate how
changing the spatial scale of the analysis affects our interpretation
of where vulnerable populations are located; and to investigate
whether spatial patterns produced by unsupervised vs. supervised
HVI calculations differed. To do this, we constructed a super-
vised HVI and screened the variables used in the creation of the
index based on their marginal association with the health out-
come. Our findings suggest that PCA-derived HVI metrics are
sensitive to input variables. Specifically, substituting different
proxy measures for vegetated land cover resulted in differing spa-
tial distributions of vulnerability scores, with low agreement
between the unsupervised HVIs. Calculating and mapping the
index values at different geographic scales (census tracts and
block groups) also produced inconsistent patterns for locating the
most vulnerable areas.
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A number of studies have constructed unsupervised HVIs for
urban areas (Bao et al. 2015). In these studies, the factor loadings
are inconsistent between locations, the HVI results are inconsis-
tent between geographic resolutions, and the HVI results and fac-
tor loading are sometimes highly sensitive to choices of input

variables. The census tract level national HVI presented by Reid
et al. (2009) elucidated heat vulnerability across the United
States and within some urban areas, yet relied on relatively coarse
scale data (i.e., tract level) and in a validation study, generally
predicted overall population health rather than heat-related health

Figure 2.Maps of the range of HVI values between the four unsupervised HVIs (UHVI), in Detroit, Michigan, USA, by (A) census tract and (B) block group.
The Cities of Highland Park and Hamtramck, which are located within the boundaries of the City of Detroit, were treated as part of the City of Detroit for this
analysis. HVI values represent the difference between the maximum and minimum HVI scores across all unsupervised census tract level and block group level
HVIs. Locations where the agreement ranges between 0 and 1 are areas of high degree of agreement among the various unsupervised HVIs, whereas regions
where the agreement ranges between 5 and 6 indicate regions with high disagreement. Note: HVI, heat vulnerability index; HVIs, heat vulnerability indices.
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(Reid et al. 2012). Finer scale indices (i.e., block group level),
such as those done for Chicago, Illinois (Johnson et al. 2012),
and Phoenix, Arizona (Harlan et al. 2013), demonstrated finer
variation in intraurban heat vulnerability. Consistent with the
results presented here, the aforementioned studies observed

different resulting factors from their PCA calculations, despite
having similar data sources and variables. For instance, the
Phoenix socioeconomic and elderly/isolation characteristics
loaded separately and were distinct from the land cover factor.
By contrast, in Chicago, economic status and age were grouped

Figure 3.Maps of the number of times each (A) census tract and (B) block group fell into the top quartile of an unsupervised HVI calculation. Large HVI val-
ues represent agreement for the highest HVI scores. The top quartile represents the most vulnerable areas of the city. The Cities of Highland Park and
Hamtramck, which are located within the boundaries of the City of Detroit, were treated as part of the City of Detroit for this analysis. Note: HVI, heat vulner-
ability index.
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together, obscuring any distinction of age and socioeconomic sta-
tus in vulnerability. In Chicago, lower education and Hispanic
variables loaded together, and African-American race and land
surface temperature loaded together. In this Detroit study, unsu-
pervised and supervised HVI results consistently grouped el-
derly and isolation characteristics. In the unsupervised HVIs,
educational attainment and income consistently loaded together
but notably loaded separately from minority status. This

differed from the unsupervised HVI in Phoenix where minority
status loaded onto the same factor as land cover. A recent meta-
analysis determined that some of the strongest predictors of
heat-related mortality were elderly ages (65 and older and 75
and older) and low socioeconomic group status (Benmarhnia
et al. 2015). Other reviews have identified race and ethnicity as
characteristics of vulnerability (Gronlund 2014). In the HVIs
presented here, these characteristics were not identified as

Table 4. Linear regression estimate (b) and 95% confidence interval of the association of HVI variables and proportion of all-cause deaths occurring on an
extreme heat day, by geography for Detroit, Michigan, USA.

Variable

Tract (N =308) Block group (N =913)

b (95% CI) p-Value R2 b (95% CI) p-Value R2

Over age 65 0.06 (−0:01, 0.13) 0.10 0.01 0.01 (−0:03, 0.05) 0.54 0.00
Living alone −0:04 (−0:07, 0.00) 0.07 0.01 −0:02 (−0:05, 0.01) 0.12 0.00
Over age 65, living alone −0:01 (−0:12, 0.11) 0.93 0.00 −0:00 (−0:07, 0.07) 0.98 0.00
Minority 0.01 (−0:01, 0.03) 0.37 0.00 0.01 (−0:01, 0.03) 0.50 0.00
Less than HS education −0:03 (−0:09, 0.03) 0.32 0.00 −0:01 (−0:04, 0.03) 0.72 0.00
Living below poverty level −0:03 (0.06, 0.00) 0.06 0.02 −0:01 (−0:02, 0.01) 0.52 0.00
% Impervious (NLCD) 0.05 (0.02, 0.09) 0.00 0.03 0.01 (−0:02, 0.04) 0.51 0.00
% Nontree canopy (NLCD) 0.04 (−0:01, 0.09) 0.12 0.01 0.02 (−0:03, 0.07) 0.38 0.00
% Nonvegetation including water (aerial) 0.02 (−0:01, 0.05) 0.20 0.01 0.01 (−0:01, 0.03) 0.28 0.00
% Nontrees (aerial) 0.01 (−0:01, 0.04) 0.32 0.00 0.02 (0.00, 0.04) 0.11 0.00
Distance water −0:01 (−0:02, 0.01) 0.39 0.00 −0:01 (−0:02, 0.01) 0.34 0.00

Note: CI, confidence interval; HS, high school; HVI, heat vulnerability index; NLCD, National Land Cover Database. Simple linear regressions estimate the amount a one-unit
increase of each HVI variable is associated with an increase in the proportion of all-cause deaths occurring on an extreme heat day in Detroit, Michigan, USA.

Table 3. Linear regression estimates (b) and 95% confidence interval for the association of proportion of all-cause deaths on extreme heat days on unsupervised
HVI scores characterized by land cover type (continuous and equal interval categorizations), by geography for Detroit, Michigan, USA (2000–2009).

Unsupervised HVI type

Tract (N =308) Block group (N =913)

N b 95% CI R2 N b 95% CI R2

Impervious
Continuous 308 0.00 0.00, 0.00 0.00 913 0.00 0.00, 0.00 0.00
Categorical — — — 0.00 — — — 0.00
0–3 0 0.00 Ref — 0 0.00 Ref —
4–6 5 0.57 0.27, 0.77 — 8 0.38 −0:07, 0.69 —
7–9 76 0.44 0.31, 0.56 — 203 0.37 0.29, 0.44 —
10–12 191 0.50 0.38, 0.61 — 600 0.40 0.34, 0.46 —
≥13 36 0.45 0.30, 0.57 — 102 0.41 0.32, 0.48 —
Trend p-value 0.46 0.58
Nontree canopy
Continuous 308 0.00 0.00, 0.00 0.00 913 0.00 0.00, 0.00 0.00
Categorical — — — 0.01 — — — 0.00
0–3 0 0.00 Ref — 0 0.00 Ref —
4–6 3 0.35 −0:58, 0.88 — 17 0.46 0.23, 0.65 —
7–9 33 0.46 0.24, 0.64 — 76 0.37 0.27, 0.46 —
10–12 194 0.48 0.26, 0.66 — 584 0.40 0.35, 0.44 —
≥13 78 0.51 0.28, 0.68 — 236 0.41 0.35, 0.46 —
Trend p-value 0.05 0.75
Continuous 308 0.00 0.00, 0.00 0.00 913 0.00 0.00, 0.00 0.00
Categorical — — — 0.00 — — — 0.00
0–3 0 0.00 Ref — 0 0.00 Ref —
4–6 5 0.44 −0:43, 0.89 — 14 0.43 0.15, 0.65 —
7–9 74 0.42 0.30, 0.54 — 204 0.37 0.30, 0.43 —
10–12 198 0.48 0.36, 0.58 — 590 0.40 0.35, 0.46 —
≥13 31 0.43 0.29, 0.56 — 105 0.41 0.33, 0.49 —
Trend p-value 0.99 0.66
Nontrees
Continuous 308 0.00 0.00, 0.00 0.00 913 0.00 0.00, 0.00 0.00
Categorical — — — 0.00 — — — 0.00
0–3 0 0.00 Ref — 0 0.00 Ref —
4–6 6 0.32 −0:28, 0.74 — 28 0.39 0.18, 0.57 —
7–9 73 0.47 0.36, 0.56 — 182 0.39 0.32, 0.46 —
10–12 193 0.48 0.40, 0.56 — 608 0.41 0.36, 0.45 —
≥13 36 0.46 0.34, 0.56 — 95 0.41 0.32, 0.48 —
Trend p-value 0.42 0.91

Note: —, no data; CI, confidence interval; HS, high school; HVI, heat vulnerability index; NLCD, National Land Cover Database; Ref, reference. Regression estimates indicate how a
one-unit increase of an unsupervised HVI is associated with an increase in the proportion of all-cause deaths occurring on an extreme heat day in Detroit, Michigan. Categorical cut-
points were determined by creating approximately equal interval categories of HVI scores in ArcMap based on the number of census tracts and block groups, respectively. Tests for
trend were assessed based on the categorical model’s F statistic.
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stand-alone factors and often moved between factor loadings
when using different methods.

Modifying vegetated land cover, such as increasing tree can-
opy coverage, is a common climate and health adaptation strategy
(Stone et al. 2014) via reducing urban heat (Ziter et al. 2019),
ameliorating fine particulate air pollution (Nowak et al. 2013),
and improving psychosocial health (Ulmer et al. 2016). Mapping
an HVI that incorporates a health metric (e.g., mortality, as well as
other health end points and indicators of quality of life and thermal
comfort) could be important for decision-makers who are con-
cerned about health equity when choosing siting for tree-planting
campaigns or strategies to better maintain existing vegetation. Our

results did not identify a vegetated land cover variable that was
clearly superior to other variables for developing an HVI for
Detroit. However, these results do not suggest that vegetated land
cover wouldn’t provide protection to Detroit residents during
extreme heat days. These results do indicate that an HVI map may
not provide the information needed to determine either the location
or the type of vegetated land cover that would be needed to provide
protection during extreme heat.

Chuang and Gober (2015) found that a generic vulnerability
index, constructed at the tract level, was sensitive to scale and rela-
tively imprecise in predicting heat-related morbidity in Phoenix.
Comparisons within index groupings agree with results from
Maier et al. (2014) that adverse heat–health outcomes are posi-
tively associated with HVI scores, with the exception of the areas
with the lowest vulnerability scores. Locations of vulnerable popu-
lations, however, changed depending on both the scale and input
data used in the index creation. This calls into question the appro-
priateness of HVIs for use in decision-making given the lack of
consistency or robustness across differing approaches.

To our knowledge, this is the first study that constructs a super-
vised HVI using mortality data to select the variables used for the
index calculation. Identifying local characteristics known to con-
tribute to adverse heat-related health outcomes is considered best
practice for developing interventions or communication strategies
for reducing the impacts of heat on health (Bao et al. 2015). Based
on our screening to select only the variables that contributed to
heat-related mortality in Detroit, a supervised HVI provides some

Table 5. Variance explained and factor loadings for supervised PCA, by
tract.

Variable

Tract

Factor 1 Factor 2

Over age 65 −0:09 0.84
Living alone 0.17 0.76
Living under poverty level 0.37 −0:24
Impervious surface (NLCD) 0.94 0.06
Nontree canopy (NLCD) 0.78 0.05
Nonvegetated including water (aerial) 0.84 0.10
Variance explaineda

Eigenvalue 2.30 1.36
% Variance explained 39.8 22.3

Note: NLCD, National Land Cover Database; PCA, principal components analysis.

Figure 4. Supervised HVI scores for Detroit, Michigan, by tract. The Cities of Highland Park and Hamtramck, which are located within the boundaries of the
City of Detroit, were treated as part of the City of Detroit for this analysis. Large HVI scores represent areas identified as being the most vulnerable to extreme
heat. Note: HVI, heat vulnerability index.
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assurance that the index values reflect an indication of vulnerability
for this region. Heat-related morbidity and mortality can be spe-
cific to a place, with populations having geographically differential
responses to ambient conditions (Vaidyanathan et al. 2019).

PCA is a method used for dimension reduction and can be
very useful for identifying the principal modes of variations in
the data set. However, PCA was not developed as a method to
identify a subset of variables among many variables that are most
predictive of an outcome. There are a variety of methods, such as
the overlay approach (Manangan et al. 2014), a simple additive
strategy (Flanagan et al. 2011), or complex weighting schemes
that could be employed to construct HVIs that are tailored to a
specific use. Vulnerability maps that are used to convey a mes-
sage to decision-makers and the public may benefit from simple
methods that can be easily explained. For some HVIs, there is
arguably sufficient epidemiological evidence to extract weights
for use in an additive index that does not rely on factor loadings.

In our work, inconsistencies across unsupervised and super-
vised HVIs may reflect the lack of data that characterizes a popula-
tion’s adaptive capacity or ability to cope and adapt to extreme heat
(Morss et al. 2011). Air conditioning, a commonly used proxy for
adaptive capacity, is used in the index calculated in Reid et al.
(2009) but is excluded in the methods presented here due to lack of
reliable estimates of air conditioning prevalence data at tract or
block group scale. Behavioral measures, such as personal cooling
(e.g., swimming, taking showers), are arguably more indicative of
adaptation, but require survey data (Bélanger et al. 2015).
Adaptive capacity may affect the Detroit population in at least two
ways that are not captured in an HVI. First, adaptive capacity may
influence heat vulnerability differently in direction or magnitude
than exposure or sensitivity variables. Second, adaptive capacity is
not uniform across the Detroit population, further contributing to
spatial heterogeneity of vulnerability (Hayden et al. 2011). In ei-
ther case, omitting a measure of adaptive capacity in an HVI could
substantially alter the interpretation of vulnerability.

Inconsistencies among census tract and block group HVIs
exemplify the modifiable areal unit problem, whereby summaries
of spatial phenomena vary depending on the size and shape of the
geographic unit over which the data are aggregated (Schuurman
et al. 2007). Few heat vulnerability studies have considered the
impact that large margins of errors, especially for block group
level geographies, may have on identifying spatial patterns of
heat vulnerability (Spielman et al. 2014). Large margins of error
in block group estimates may systematically introduce bias into
the HVIs (Jung et al. 2019). Block group estimates are calculated

as 5-y averages, rather than as point-in-time estimates. In a loca-
tion that has experienced substantial demographic change, as
Detroit at the beginning of 2000 had, uncertainty in these esti-
mates could have implications for interpreting the spatial distri-
bution of population characteristics. Further, that we cannot point
to one unit as superior over the other in this study reflects a lack
of understanding of geographic and contextual units over which a
vulnerability characteristic primarily operates (Kwan 2012). For
instance, a characteristic such as poverty might operate at a cen-
sus tract level through resources readily available within a short
distance from an individual’s home, such as publicly available
cooled indoor locations. However, poverty might also operate
primarily at an individual level or for a household through other
means, such as whether a person possesses the financial resources
to own and operate an air conditioner. If an individual character-
istic is highly heterogeneous within a census tract, then aggrega-
tion over a smaller unit, such as a block group, might better
reflect spatial heterogeneity in vulnerability across a city. Further,
determining break points for mapping individual characteristics
or HVI values can also influence how spatial patterns are inter-
preted and communicated. Ultimately, selecting whether to create
an HVI at the census tract or block group level is at the develop-
er’s and end-user’s discretion. These tools should be interpreted
and applied with a full, contextual understanding of the intended
use.

Because the HVI is often promoted as a tool that can be used
to identify relative spatial priorities for heat-related interventions,
absolute HVI values have the potential to be misleading.
Constructing agreement maps, however, provides an opportunity
to communicate the sensitivity of maps to their input variables.
The top quartile HVI score designation represents the highest pri-
ority areas. These maps would be of greatest use to health practi-
tioners and policy makers if areas are consistently deemed
vulnerable to heat. They could provide reasonable rationale for
developing place-based interventions. The agreement maps sug-
gest that cities opting to use a particular set of variables to charac-
terize vulnerability in an HVI may allocate resources to
neighborhoods that another HVI may classify as relatively low
priority. Communicating the results of composite indices has
been successful when integrating end-user suggestions and
ground-truthing in the development stages (Weber et al. 2015).
As Wolf et al. (2015) found, the process of developing heat vul-
nerability indices can aid in communicating the need for policy
change but may not be sufficient for prioritizing interventions.
For planning purposes, end users must be aware of the inherent
subjectivity in HVI design and the influence variable selection
can have on mapped HVI products.

Future research could consider how other epidemiological,
environmental and more statistically robust approaches to identi-
fying intraurban heat vulnerability compare with HVIs in their
ability to predict heat-related health impacts (Bennett et al. 2014;
Heaton et al. 2015; Hondula et al. 2015; Klein Rosenthal et al.
2014; Uejio et al. 2011). Comparative analyses of temperature
patterns, health end points (e.g., cause-specific morbidity and
mortality, emergency service request calls), and their relationship
with HVIs would also contribute valuable insight into how HVIs
may detect spatial patterns of heat vulnerability and how these
patterns may differ across different health outcomes. Including
metrics to capture temperature patterns, which may characterize
differences in exposure, introduces additional complexities to HVI
interpretation. Inostroza et al. (2016) incorporated land surface
temperatures into an HVI for Santiago, Chile, and identified clear
spatial patterns of heat vulnerability for exposure variables, which
differed in complexity from sensitivity variables. The trade-offs in-
herent in the calculation of HVIs continue to emerge. Recent

Table 6. Linear regression estimate (b) and 95% CI of association of super-
vised HVI scores with proportion of all-cause deaths occurring on an
extreme heat (EH) day, by tract.

N

Tract (N =308)

b (95% CI) R2

Supervised, based on
mortality occurring
on EH day

Continuous HVI — 0.00 (0.00, 0.01) 0.00
Categorical HVI — — 0.01
0–2 0 0.00 (Ref) —
3–5 35 0.46 (0.28, 0.60) —
6–7 168 0.51 (0.40, 0.60) —
8–10 100 0.51 (0.39, 0.61) —
11–12 5 0.38 (−0:09, 0.71) —
Trend p-value 0.10

Note: —, no data; CI, confidence interval; EH, extreme heat; HVI, heat vulnerability
index; Ref, reference. Categorical cut-points were determined by creating approximately
equal interval categories of HVI scores in ArcMap based on the number of census tracts.
Test for trend was assessed based on the categorical model’s F statistic.
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research indicates that a single PCA-derived HVI score alone may
not be strongly associated with total heat-related mortality. Mallen
et al. (2019) constructed a PCA-derived HVI score using the Reid
et al. (2009) method at the census tract level in Dallas, Texas. A
simple spatial regression between this HVI score and statistically
attributed heat-related mortality resulted in an R2 of only 0.03.
However, in a multiple spatial regression keeping the indicators
used to construct the HVI score as separate variables, theR2 rose to
0.40. Additionally, only age, education, diabetes, and lack of cen-
tral air conditioning were significant predictors of heat-related
mortality. Mallen et al. (2019) recommended that vulnerability
indicators be modeled as individual variables, because this
approach vs. a combined index facilitates informing a unique pol-
icy or planning response strategy related to the individual variables
(e.g., lack of central air conditioning). Similarly, when regressed
with proportion of deaths occurring on an extreme heat day, the
unsupervised and supervised HVIs in this analysis resulted in very
low R2, potentially indicating that the indices were inadequately
capturing spatial variations in heat risk across the study area. We
also recommend modeling of individual vulnerability indicators in
a given city because the relationship between these indicators and
health outcomesmay vary by city and potentially may vary by time
period or heat event under differing conditions of duration or inten-
sity. Furthermore, epidemiological regressions of heat-related
health outcomes’ proximate mechanisms driving vulnerability,
such as lack of air conditioning and lack of green space, and their
relative importance would allow for the construction of vulnerabil-
ity maps using these individual variables to predict future vulner-
ability using future values (e.g., air conditioning, green space).

Limitations
As is common when constructing many types of composite indi-
ces, we assumed that all input variables were equally likely to
contribute to the overall measure of vulnerability. The intent of
the analysis presented here was to replicate the PCA method that
is commonly used for constructing HVIs. Population-level health
metrics (e.g., prevalence of cardiovascular disease or diabetes)
and air conditioning prevalence, although they may better reflect
heat vulnerability, were omitted from these indices because the
estimates were available only at coarse spatial resolutions (e.g.,
county level). Last, the comparative assessment presented here is
specific for Detroit, meaning that other locations may or may not
observe similar results. Demographic and environmental charac-
teristics vary from location to location. Although the PCA-
derived HVI—unsupervised or supervised—may yield products
that seemingly indicate areas of high heat vulnerability, limita-
tions in the data (e.g., missing observations, large confidence
intervals) and a lack of context about the study area could pro-
duce misleading or inaccurate representations of heat vulnerabil-
ity. Additionally, we focused on heat-associated mortality rather
than heat-associated hospitalizations or emergency department
visits. Potentially, an entirely different mapping of vulnerability
would have resulted using a different health outcome. Heat vul-
nerability map users should consider that these maps could poten-
tially differ not only by mapping method but also by the type of
heat vulnerability—mortality or various heat-related morbidities.

Conclusions
We demonstrated that PCA-derived HVIs for Detroit are sensitive
to input data and mapping choices when employing unsupervised
and supervised methodologies. The different approaches resulted
in spatial variability, although their construction employed similar,
but not identical, input variables. Both methodologies produced
positive associations between all-cause mortality occurring on

extreme heat days and higher vulnerability. The identified loca-
tions of highest vulnerability, however, were dependent on the
input data used in the index creation. The supervised HVI, because
it inherently captures health impact in comparison with the unsu-
pervised HVI, provides a more specific, although generic, indica-
tion of vulnerability to extreme heat exposure. HVIs calculated
using PCA are sensitive to input data and, when mapped, can indi-
cate patterns of heat vulnerability that may not capture the nuance
of the data used to construct the index. Other literature has shown
that PCA-derived HVIs did not always correlate well with the
actual heat-related health outcomes, and from statistical theory we
know that a PCA-based index does not always lead to an index that
is correlatedwith the health outcome.

We recommend that users carefully consider the contextual
appropriateness of using PCA-derived HVIs for decision-making
around policies for heat interventions. It is incumbent on end
users to interpret the resulting HVIs in the context of the study
population. Instead, PCA-derived HVIs may better serve as
screening tools (i.e., tools for generating research questions) that
can then be investigated in epidemiological studies, and different
types of HVIs that may be more intuitive and straightforward
could be used for prioritizing specific actions.
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