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Abstract

Explicit electromagnetic Particle-In-Cell (PIC) codes are typically limited by the Courant-
Friedrichs-Lewy (CFL) condition, which implies that the timestep multiplied by the speed of
light must be smaller than the smallest cell size. In the case of boosted-frame PIC simulations
of plasma-based acceleration, this limitation can be a major hinderance as the cells are often
very elongated along the longitudinal direction and the timestep is thus limited by the small,
transverse cell size. This entails many small-timestep PIC iterations, and can limit the potential
speed-up of the boosted-frame technique. Here, by using a CFL-free analytical spectral solver,
and by mitigating additional numerical instabilities that arise at large timestep, we show that
it is possible to overcome traditional limitations on the timestep and thereby realize the full
potential of the boosted-frame technique over a much wider range of parameters.

Particle-In-Cell (PIC) simulations [1, 2] are key to the development of plasma-based accelerators
and of their potential future applications [3]. However, these simulations can typically be very
computationally expensive. One way to reduce their computational cost is to use the boosted-frame
technique [4], whereby the simulation is performed in a Lorentz frame moving relativistically in the
same direction as the beam or laser driver. The boosted-frame technique is nowadays routinely
used in simulations of plasma-based accelerators, and can speed up simulations by several orders of
magnitude. To a large extent, this was made possible by the development of a number of algorithms
that mitigate the Numerical Cherenkov Instability (NCI) [5–20] – a numerical instability that would
otherwise rapidly grow in the boosted frame and irremediably corrupt the simulated physics.

The remarkable speedup afforded by the boosted-frame technique is due largely to the possibility
of increasing the timestep in the boosted frame, and thereby reducing the number of PIC iterations
to be performed compared to a corresponding laboratory-frame simulation. For example, in a
typical laboratory-frame simulation of laser-wakefield acceleration, both the longitudinal cell size
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∆zlab and timestep ∆tlab are constrained to resolve the small laser oscillations at wavelength λlab:
∆zlab � λlab for a laser propagating along z, with c∆tlab ≤ ∆zlab � λlab (while the transverse cell
size is usually much larger: ∆x,∆y � ∆zlab). By contrast, in a Lorentz boosted frame drifting
along z at relativistic velocity with a Lorentz factor γb � 1, the laser oscillations are dilated by a
factor of approximately 2γb (λ ≈ 2γbλlab), which greatly relaxes the constraints on the longitudinal
cell size and timestep: ∆z � 2γbλlab, with c∆t ≤ ∆z � 2γbλlab (where the quantities ∆z and ∆t
denote the longitudinal cell size and timestep in the boosted frame).

However, for large γb, as the constraints imposed by the laser are relaxed, the timestep often becomes
constrained instead by the transverse cell size: c∆t ≤ ∆x,∆y. (Note that the transverse cell size is
left unchanged in the boosted-frame simulation as compared to the corresponding laboratory-frame
simulation, since transverse physical length scales are unchanged by the Lorentz transform.) In the
case of Finite-Difference Time-Domain (FDTD) PIC algorithms, this constraint on the timestep
is due to the Courant-Friedrichs-Lewy (CFL) condition [21, 22]. Similarly, the Pseudo-Spectral
Time-Domain (PSTD) PIC algorithm [23] also has a CFL condition. As a consequence of the CFL
condition, the timestep of the boosted-frame simulation is relatively small and limits the potential
computational speedup, even though the physics at stake does not necessarily require such a high
temporal resolution.

On the other hand, unlike FDTD and PSTD PIC algorithms, Pseudo-Spectral Analytical Time-
Domain (PSATD) PIC algorithms [24, 25], which integrate analytically Maxwell’s equations over
one time step in Fourier space, do not have a similar CFL condition. It follows that boosted-frame
PIC simulations that use the PSATD Maxwell solver could use a larger timestep, as it is thus not
explicitly constrained by the transverse resolution. However, it turns out that PSATD boosted-
frame simulations are empirically unstable for c∆t > ∆x,∆y. More specifically, the Galilean
PSATD algorithm [16–18], which does efficiently mitigate the NCI for c∆t < ∆x,∆y, does not
seem to suppress the NCI anymore for c∆t > ∆x,∆y.

This paper examines the nature of this resurgent NCI and shows that this instability can be strongly
mitigated with a new algorithm, referred to as the averaged Galilean PSATD, whereby a key feature
of the PSATD algorithm is exploited to analytically average the electromagnetic fields in time before
gathering them onto the macroparticles. Hence, with this new algorithm, simulations can run with
a large timestep (c∆t ≤ ∆z � ∆x,∆y) and exhibit the corresponding computational speedup,
while preserving the integrity of the simulated physics. While this development was motivated here
with the example of laser-wakefield acceleration, it is generally applicable to any simulation where
the physics imposes a high transverse spatial resolution but does not impose such strong constraints
on the timestep, so that it would be advantageous to use a large timestep compared to the cell size.
For instance, this also includes the simulations of low-emittance pencil-like beams [26], in which
the space charge requires a high transverse resolution, but has a relatively slow time evolution.

The remainder of the paper is structured as follows. We first examine in more detail the NCI that
occurs for large timesteps in the case of the standard Galilean PSATD algorithm. Based on this
analysis, we introduce the averaged Galilean PSATD algorithm and describe the corresponding
modified PIC loop. We then demonstrate the stability of this new algorithm with large timesteps,
first for a uniform plasma, and then for 2D simulations of laser-wakefield acceleration (LWFA) and
3D simulations of plasma wakefield acceleration (PWFA).
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Results

Limitations of the standard Galilean PSATD algorithm for large timesteps

As mentioned in the introduction, boosted-frame simulations with the Galilean PSATD algorithm
are typically unstable when using a large timestep c∆t > ∆x,∆y. Here, we illustrate this by
examining the theoretical NCI growth rate of the Galilean PSATD algorithm for two-dimensional
simulations of a uniform plasma drifting at a relativistic velocity v0 = v0uz (where uz is the
unit vector along the z axis). As a reminder, the Galilean PSATD algorithm solves the Maxwell
equations on a moving grid, which drifts at a velocity vgal = vgaluz. This algorithm was shown to
suppress the NCI when vgal = v0 [16].

In this section, we in fact consider two cases: that of a matching velocity vgal = v0 and that of a
slightly detuned velocity vgal = 0.99 v0. Conceptually, these two cases represent – at a simplified
level – different areas of the simulation box, in the case of a realistic LWFA simulation. More
specifically, the matched case (vgal = v0) represents the background, quiescent plasma, far from
the driver and the wakefield, since the Galilean velocity is typically chosen to match its velocity
(i.e., vgal = −

√
1− 1/γ2

b c). On the other hand, the case of the detuned velocity represents the
perturbed plasma around the laser driver and in the wakefield, where the local velocity is different
than that of the background plasma, and thus different than the Galilean velocity.

In both of these cases, we choose ∆z � ∆x. This is typical for boosted-frame simulations with a
large γb, since the longitudinally Lorentz-dilated driver and wakefield relax the requirement on the
longitudinal resolution. We then further consider two cases: that of a small timestep c∆t = ∆x
and that of a large timestep c∆t = ∆z. Note that the latter case would not be allowed by the CFL
condition of an FDTD algorithm.

Fig. 1 displays the theoretical NCI growth rate for the four possible combinations (i.e., small/large
timestep and matched/detuned Galilean velocity). The growth rates are obtained by solving the
theoretical dispersion relation, namely equation (19) in [16]. In order to guide the interpretation
of this figure, we also plot the position of well-known NCI resonant modes [8], which are caused
by temporal and spatial aliasing. For the Galilean PSATD algorithm, the equation of these aliased
resonant modes is given by:

kx,res =

√(
kz
v0

c
+mz

2π

∆z

(v0 − vgal)
c

− 2πn

c∆t

)2

− k2
z , mz, n ∈ Z (1)

where mz is the spatial alias index and n is the temporal alias index [18]. As one can observe,
if vgal ≈ v0, the term proportional to mz almost cancels and the position of these lines mainly
depends on the time aliasing n.

As can be seen in Fig. 1 (a)-(b), in the matched-velocity case (vgal = v0), the Galilean PSATD
algorithm suppresses the NCI, both for c∆t = ∆x (upper left panel) and c∆t � ∆x (upper right
panel). By contrast, in the detuned case (vgal 6= v0, lower panels in Fig. 1), the NCI has a more
noticeable growth rate. This growth rate is relatively small for c∆t = ∆x, but is much larger for
c∆t � ∆x. In practice, this implies that the Galilean algorithm is relatively robust to velocity
perturbations (e.g. in the wakefield) in the case of a small timestep (c∆t ≤ ∆x), but it is much
less robust to those perturbations in the case of a large timestep (c∆t � ∆x). This explains the
empirical observation, mentioned in the introduction, that boosted-frame simulations of LWFA are
typically unstable with large timestep.
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Figure 1: NCI growth rate of the Galilean PSATD scheme. Normalized NCI growth rate
Im(ω)/ωp,r in spectral (kx,kz) space, calculated from the analytical stability analysis for different
Galilean velocities vgal = v0 (a)-(b) and vgal = 0.99 v0 (c)-(d), and for different timesteps c∆t = ∆x
(left) and c∆t = 6∆x (right). The solid colored lines correspond to well-known aliased NCI resonant
modes, with alias number (mz, n), as given by equation (1). In this simulation, a uniform plasma
drifts at a velocity v0 = c(1− 1/γ2

b )1/2 with γb = 130, and the transverse and longitudinal cell sizes
are ∆x = 6.4 × 10−2 k−1

p,r and ∆z = 6∆x, respectively (where k2
p,r = n0e

2/(meε0c
2γ0), and where

n0 is the plasma density).

Furthermore, in the case vgal 6= v0 and c∆t � ∆x (panels (c)-(d) in Fig. 1), we see that the large
NCI growth rate is concentrated near time-aliased resonances. Thus, the NCI arises here primarily
from the resonant interaction of particles with electromagnetic modes that are not resolved in time.
More specifically, the electromagnetic modes are in principle oscillating in time (as predicted by
the analytical formulas used in the derivation of the PSATD algorithm), and in most cases their
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net effect on particles averages to zero. Yet because these fields are sampled with a (large) discrete
timestep – which can be comparable to the period of their oscillations – particles may in certain
cases see an almost constant value (because of aliasing) instead of an oscillating one, and thus
experience a lasting, resonant effect.

Averaged Galilean PSATD algorithm

The above analysis suggests a natural remedy: when pushing the particles, instead of using the
value of the fields sampled at a specific time t = n∆t for some integer n, the particles should instead
be pushed with the fields averaged in time between t = (n−1/2)∆t and t = (n+1/2)∆t. Averaging
the fields over one timestep will barely affect the physics, provided that it is well-resolved in time
with the chosen timestep. On the other hand, this average will damp the under-resolved modes
that are spuriously resonant in Fig. 1. Since this is a temporal average, not a spatial one, it will not
affect the above-mentioned fine spatial details that typically impose a high transverse resolution
∆x, ∆y (for example, the space-charge field of a low-emittance beam), as long as they vary slowly
in time (in comparison to the time step used in the simulation).

We note that with most Maxwell solvers (for example, the FDTD and PSTD algorithms), the time
evolution of the electromagnetic fields within one time step is in general not known. However,
this evolution is indeed known in the case of the PSATD algorithm. More specifically, as part
of the derivation of the PSATD algorithm [16, 24, 25], the time evolution of the E and B fields
in Fourier space is calculated analytically. Here, we propose to average this analytical expression
over one timestep in Fourier space (see equations (10) and (11) in the Methods section), and
then to transform these averaged fields 〈E〉 and 〈B〉 to real space, where they are gathered onto
the macroparticles and then discarded. (However, the unaveraged E and B fields are still kept in
memory, and are updated by the standard Galilean PSATD equations [16,17] at each PIC iteration.)
The corresponding modified PIC loop is illustrated in Fig. 2 and described in more detail in the
Methods section.

In the rest of this article, we refer to this new scheme as the averaged Galilean PSATD algorithm,
since it combines the Galilean PSATD scheme [16–18] and the temporal average of the fields over one
timestep. By construction, the averaged Galilean PSATD algorithm inherits the main advantages
of the Galilean PSATD scheme: it has a low amount of spurious numerical dispersion (for high-
order spatial derivatives [27,28]) and does not have a CFL limit. In addition, as shown in the next
sections, the averaged Galilean PSATD algorithm efficiently mitigates the NCI for large timesteps.

Stability analysis for a uniform plasma drifting at relativistic velocity

In order to analyze the stability of the new averaged Galilean PSATD algorithm, we consider again
the case of a two-dimensional uniform plasma drifting with a relativistic velocity. We derived
the theoretical dispersion equation for this system, by using a similar method as for the standard
Galilean PSATD algorithm [16] – while taking into account the additional average in time. The
full derivation of this theoretical dispersion equation is given in the Supplementary Information.
By solving this dispersion equation numerically, we can extract the NCI growth rate Im(ω)/ωp,r
as a function of k. In addition, we also performed actual PIC simulations for the same system. We
used the PIC code WarpX, in which we implemented the averaged Galilean PSATD algorithm, and
we then extracted the NCI growth rate of the NCI in post-processing.
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Averaging interval

Time

Spectral grid (k)

Spatial grid (x)

Macroparticles

(n− 1)∆t n∆t

ρ̂n−1 Ên−1, B̂n−1 Ĵ
n−1/2

pn−1/2

ρ̂n Ê
n
, B̂

n 〈Ê〉n, 〈B̂〉n

〈E〉n, 〈B〉n

xn

〈E〉(xn), 〈B〉(xn)

pn+1/2

Particle momenta push

Field gathering

Inverse FFT

Galilean PSATD

Eqs. (10) and (11)

Figure 2: Illustration of the field push and particle momenta push, in the averaged
Galilean PSATD algorithm. The quantities represented in black are the ones that are known
just before the field and particle push. (Note that this includes the deposited charge and current ρ̂
and Ĵ .) The quantities in blue and purple are the ones that are being computed during the field
and particle push. As part of the field push (blue arrows), the regular fields Ê and B̂ are updated,
and the averaged fields 〈Ê〉 and 〈B̂〉 are calculated and transformed to the spatial grid. As part of
the particle push, the averaged fields 〈E〉 and 〈B〉 are gathered onto the macroparticles, in order to
update the macroparticles’ momenta. The rest of the PIC cycle (e.g. charge and current deposition,
particle position push) is not shown here but is identical to the standard Galilean PSATD [16,17].
See the Methods section for more details on the PIC loop and exact definitions of the notation.

The growth rates extracted from both the WarpX simulations and the theoretical dispersion equa-
tion are shown in Fig. 3 - both for standard Galilean PSATD (left panels) and for the averaged
Galilean PSATD (right panels). For this case, we used the same parameters as for the lower right
panel of Fig. 1, i.e., γb = 130, ∆x = 6.4 × 10−2 k−1

p,r , a large timestep c∆t = ∆z = 6∆x, and
a detuned velocity vgal = 0.99 v0. (Recall from the previous sections that the case of a detuned
velocity is the one for which using a large timestep presents a major issue.)

As can be seen in Fig. 3, the theoretical predictions (upper panels) and simulation results (lower
panels) are in good agreement, which confirms that the theoretical dispersion equation correctly
captures the nature of the instability. (Note that growth rate measured from simulations is typi-
cally noisy, which limits the comparison.) More importantly, both the theoretical predictions and
simulation results show that averaged Galilean PSATD (right panels) strongly reduces the growth
of the instability compared to the standard Galilean PSATD (left panels). This confirms that av-
eraging the fields in time inhibits spurious resonances with under-resolved electromagnetic modes,
and thereby enables stable simulations with large timesteps.
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Figure 3: NCI growth rate: Galilean PSATD vs. averaged Galilean PSATD schemes.
Normalized NCI growth rate Im(ω)/ωp,r in spectral (kx,kz) space, calculated from the analytical
stability analysis (a)-(b) and from WarpX simulation results (c)-(d), obtained using the Galilean
PSATD and averaged Galilean PSATD schemes, at infinite spectral order, with large time step
c∆t = ∆z = 6∆x and slightly detuned Galilean velocity vgal = 0.99 v0.

Application to simulations of plasma wakefield in a Lorentz-boosted frame

This section illustrates that the stability properties observed in the case of a uniform plasma also
apply to realistic simulations of plasma-based acceleration. To this end, we first perform two-
dimensional (2D) simulations of a laser-wakefield accelerator. In these simulations, an x-polarized
Gaussian laser pulse with amplitude a0 = 1, duration τ = 20 fs and waist w0 = 15µm propagates in
a matched parabolic plasma channel with a background density of 1.0× 1018 cm−3. The simulation
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runs in a Lorentz-boosted frame (γb = 30) with a nodal PSATD solver with finite order 16 along
the x direction and 32 along the z direction [18,27,28]. The longitudinal resolution (in the boosted
frame) is set to ∆z = 2γbλlab/32 = 1.52µm, while the transverse resolution is ∆x = 0.15µm, so that
∆z = 10∆x. We run the simulation with the standard and averaged Galilean PSATD, and with a
small timestep (c∆t = ∆x) as well as large timesteps (c∆t = 5∆x and c∆t = 10∆z). Fig. 4) displays
snapshots of the longitudinal electric field Ez and of the longitudinal current density Jz in the boosted
frame, for these different cases. In these colormaps, the rapid oscillations of Ez for z > 0 mm
correspond to the longitudinal component of the laser field, which undergoes significant non-linear
evolution and red-shifting, while the slow oscillations of Ez and Jz for z < 0 mm correspond to the
plasma wakefield.

As expected, the standard Galilean PSATD is stable for a small timestep (panel (a)), but unstable
for large timesteps (panels (c) and (e)). More specifically, in panels (c) and (e), spurious oscillations
rapidly grow in the wakefield and severely disrupt its structure. We also note that the results of the
averaged Galilean PSATD with a small timestep (panel (b)) are almost indistinguishable from those
of the standard Galilean PSATD (panel (a)) - thereby confirming that averaging the fields in time
preserves the essential physics. More importantly, for large timestep (panel (d) and panel (f)), the
averaged Galilean PSATD achieves stability while preserving the overall structure of the wakefield.
Indeed for c∆t = 5∆x (panel (d)) the Ez field is still almost indistinguishable from that of panel
(a). For c∆t = 10∆x (panel (f)), small differences become noticeable, especially in the red-shifted
laser oscillations - although they hardly affect the structure of the accelerating wakefield. This may
indicate that this value of ∆t starts to reach the limit for which the simulation is not well-resolved
in time anymore.

We also note that, both for c∆t = 5∆x (panel (d)) and c∆t = 10∆x (panel (f)), small transverse
oscillations become noticeable in Jz for z < −1.0 mm. These oscillations may be due to the
remaining non-zero growth rate of the averaged Galilean algorithm (see the growth rates represented
in panel (b) and (d) of Fig. 3). However, their magnitude is small enough that they do not lead to
a modulation of the electric field, hence they do not affect the dynamics. Again, this represents a
clear improvement compared to the standard Galilean algorithm (panel (b) and (e)).

We now go further and show that this algorithm is applicable to a full-scale three-dimensional
(3D) setting, by considering the 3D simulation of charged particle beam-driven wakefield. In this
simulation, a 1 nC Gaussian electron beam propagates in a plasma with a background density of
1.0 × 1017 cm−3, and experiences a typical evolution whereby the head of the beam erodes while
the tail of the beam performs betatron oscillations in the generated wakefield. The electron beam
initially has a mean Lorentz factor γ = 2000, with a relative RMS spread ∆γ/γ = 0.01, and a
transverse and longitudinal RMS size of 5µm and 20µm respectively. The simulation is run in a
Lorentz-boosted frame (γb = 5.6), with 5123 cells of size ∆x = ∆y = 0.78µm, ∆z = 5µm = 6.4 ∆x
(in the boosted frame), and a nodal PSATD solver with finite order 16 [18, 27, 28]. In order to
verify again that the averaged Galilean PSATD algorithm preserves the physics of interest, we run
the simulation both with the standard Galilean PSATD algorithm and a small timestep c∆t = ∆x
(fiducial case) and with the averaged Galilean PSATD algorithm and a large timestep c∆t = ∆z.
In both cases, we ran the WarpX code on the Summit supercomputer, using 24 GPUs with domain
decomposition along z.

The top panels of Figure 5 display colormaps of the wakefield in the laboratory frame, which were
reconstructed on-the-fly during the boosted-frame simulation. Again, the simulation with the large
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Figure 4: Instability mitigation in a 2D laser-wakefield simulation with large timestep.
The upper half of each subplot shows the Ez field seen by the macro-particles (i.e., the regular
Ez field for the standard Galilean PSATD, and the averaged 〈Ez〉 field for the averaged Galilean
PSATD). The lower half of each subplot shows the longitudinal current density Jz of the plasma. All
the fields are shown in the boosted frame. The different subplots correspond to the standard Galilean
PSATD (a,c,e) and averaged Galilean PSATD (b,d,f), with c∆t = ∆x (a-b), c∆t = 0.5∆z = 5∆x
(c-d) and c∆t = ∆z = 10∆x (e-f).

timestep and the averaged Galilean PSATD is stable (panel (b)) and the simulated wakefield is
almost indistinguishable from that produced from the fiducial small-timestep simulation (panel
(a)). In addition, panels (c) and (d) in Figure 5 show the evolution of the emittance and relative
energy spread of the driver beam in the laboratory frame, as it undergoes head erosion and betatron
oscillation. This is obtained from laboratory-frame particle data that is reconstructed on-the-fly
during the boosted-frame simulation. As can be seen, the evolution of these beam quantities show
excellent agreement between the fiducial small-timestep simulation and the large-timestep with the
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averaged Galilean PSATD.
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Thus, in the above example, the averaged Galilean PSATD allowed stable simulations to be run
with a large timestep while preserving the integrity of the physics at stake. We note that, as a
consequence of the large timestep, the simulation using the averaged Galilean PSATD exhibited a
5× overall speed-up compared to the small-timestep standard Galilean PSATD simulation, on the
Summit supercomputer.

Discussion

In this paper, we proposed a modified PIC algorithm that enables stable boosted-frame simulations
of plasma-based acceleration with a large timestep c∆t� ∆x, where ∆x represents the smallest cell
size. This was achieved by using a CFL-free Galilean PSATD solver and by averaging the E and B
fields in time, in order to inhibit spurious resonances with under-resolved, aliased electromagnetic
modes. We demonstrated this novel scheme in realistic 2D and 3D plasma-wakefield simulations.

We note that the proposed algorithm could certainly be further refined and improved upon in the
future. For instance, although the proposed algorithm strongly reduces the NCI growth rate for
large timesteps, it does not completely eliminate it. As a consequence, the NCI at large timesteps
could still be an issue for certain sets of parameters. Similarly, we observed in separate tests that
realistic 3D simulations of laser-driven wakefield could remain unstable in certain cases for large
timesteps, even with the proposed algorithm.

In conclusion, this work demonstrates that it is possible to run boosted-frame simulations with a
much larger timestep than the traditional CFL limit, while still accurately capturing the physics.
This new development enables potential speedups of an order of magnitude or more, opening up
a new area of investigation within the field of first-principles, Particle-In-Cell modeling of plasma-
wakefield particle accelerators, whereby the simulation timestep is chosen much more freely than
before.

Although the present work is focused on simulations of plasma accelerators and on a particu-
lar method (the averaged Galilean PSATD), it could have a wider impact. For instance, even
though the algorithm proposed here builds specifically upon the PSATD framework, the central
idea (namely averaging the fields in time) is fairly general and could thus also guide the future
development of similar solutions for FDTD-based methods. In addition, beyond the plasma accel-
erator community, this work may be of interest to the modeling of advanced light sources concepts,
coherent synchrotron radiation in particle accelerators, astrophysical shocks or beam-plasma insta-
bilities of astrophysical relativistic jets, which can also utilize the boosted-frame PIC method for
accurate modeling from first principles. We also envision that the method that is used in this paper
can be employed to overcome similar timestep limitations in PIC simulations that do not employ
the boosted-frame technique, with impact to a much wider range of applications.

Methods

While the main text gave a brief overview and discussed the main advantages of the averaged
Galilean PSATD algorithm, in this section we present the mathematical details of the proposed
scheme, including the derivation of the discretized averaged fields.
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Derivation of the averaged fields

Throughout the paper, we use the notation 〈F̂〉n to refer to the averaged field within the time
interval [(n− 1

2 )∆t, (n+ 1
2 )∆t], defined as

〈F̂〉n =
1

∆t

∫ (n+1/2)∆t

(n−1/2)∆t

F̂(k, τ)dτ , (2)

where F̂ = F̂(k, t) =
∫
F (x, t)e−ik·xd3x refers to the Fourier transform of the F (x, t) field.

In the Galilean coordinates drifting at vgal, the p-order discretized Maxwell equations transformed
to Fourier space read [18]:(

∂

∂t
− i[k] · vgal

)2

B̂ + c2[k]2B̂ =
1

ε0
i[k]× Ĵ , (3)(

∂

∂t
− i[k] · vgal

)2

Ê + c2[k]2Ê = − c
2

ε0
ρ̂i[k]− 1

ε0

(
∂

∂t
− i[k] · vgal

)
Ĵ , (4)

where [k] =
√

[k]2 =
√

[kx]2 + [ky]2 + [kz]2 and where [ku] with u = {x, y, z} is the Fourier

transform of the p-order discretized stencil ∇̂u (i.e., such that a p-order Taylor expansion yields
∇̂uF = ∂uF +O(∆up).) [27, 28].

As explained in [16], these equations can be integrated analytically under the assumption that the
current Ĵ is constant over one timestep, and that the fields Ê, B̂, Ĵ and ρ̂ satisfy the conservation
equations. More specifically, assuming that the E and B fields are known at t = (n − 1)∆t,

and under the assumption that Ĵ (k, t) is constant and equal to Ĵ
n−1/2

(k) over the time interval

[(n − 1)∆t, n∆t], we can obtain the expressions of Ê(k, t), B̂(k, t) as a function of Ê
n−1

, B̂
n−1

,

Ĵ
n−1/2

, ρ̂n−1, ρ̂n:

Ê(k, t) =

[
Ê
n−1
− α1

c2[k]2(1− ν2)
− β1

c2[k]2

]
cos [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t)

+
α1

c2[k]2(1− ν2)
+

β1

c2[k]2
eiνc[k](t−(n−1)∆t)

+
1

c[k]

[
c2i[k]× B̂

n−1
− 1

ε0
Ĵ
n−1/2

+ iν
α1

c[k](1− ν2)

]
sin [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t)

(5)

B̂(k, t) =

[
B̂
n−1
− α2

c2[k]2(1− ν2)

]
cos [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t) +

α2

c2[k]2(1− ν2)

+
1

c[k]

[
−i[k]× Ê

n−1
+ iν

α2

c[k](1− ν2)

]
sin [c[k](t− (n− 1)∆t)]eiνc[k](t−(n−1)∆t)

(6)
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where ν = [k] · vgal/c[k] and

α1 =
iνc[k]

ε0
Ĵ
n−1/2

− c2

ε0

ρ̂n − ρ̂n−1eiνc[k]∆t

1− eiνc[k]∆t
i[k] (7)

β1 =
c2

ε0

ρ̂n − ρ̂n−1

1− eiνc[k]∆t
i[k] (8)

α2 =
1

ε0
i[k]× Ĵ

n−1/2
(9)

Strictly speaking, these expressions of Ê(k, t), B̂(k, t) in Eqns. (5) and (6) are only valid for t in the

interval [(n − 1)∆t, n∆t] (because of the assumption Ĵ (k, t) = Ĵ
n−1/2

(k)). However, we assume
that there are also approximately valid on the interval [(n − 1/2)∆t, (n + 1/2)∆t] over which the
fields are averaged (see Fig. 2). This is valid if Ĵ varies slowly from one timestep to the next - i.e.,
if the plasma response is well-resolved in time.

Under these assumptions, we average Eqns. (5) and (6) in time as defined in Eq. (2), and obtain:

〈Ê〉n = Ψ1Ê
n−1
− icΨ2

[k]

[k]
× B̂

n−1
+
( iνc[k]

ε0
A1 +

Ψ2

c[k]ε0

)
Ĵ
n−1/2

+ Cρ(A2 −A1)ρ̂n
[k]

[k]
+ Cρ(θ

2A1 −A2)ρ̂n−1 [k]

[k]
,

(10)

〈B̂〉n = Ψ1B̂
n−1

+
i

c
Ψ2

[k]

[k]
× Ê

n−1
+
i[k]

ε0
A1

[k]

[k]
× Ĵ

n−1/2
. (11)

Here again, ν = [k] · vgal/c[k], θ = ei[k]·vgal∆t/2, and the other coefficients are given by:

Cρ =
ic2[k]

ε0(1− θ2)
, (12a)

A1 =
Ψ1 − 1 + iνΨ2

c2[k]2(ν2 − 1)
, (12b)

A2 =
Ψ3 −Ψ1

c2[k]2
, (12c)

Ψ1 = θ
(S1 + iνC1)− θ2(S3 + iνC3)

c[k]∆t(ν2 − 1)
, (12d)

Ψ2 = θ
(C1 − iνS1)− θ2(C3 − iνS3)

c[k]∆t(ν2 − 1)
, (12e)

Ψ3 =
iθ(1− θ2)

c[k]∆tν
, (12f)

with Cm = cos(mc[k] ∆t/2) and Sm = sin(mc[k] ∆t/2) for m = 1, 2, 3.

PIC cycle overview

Fig. 2 gives an overview of a key part of the PIC loop for the averaged Galilean PSATD algorithm.
Here we describe the exact PIC loop in more detail. Assuming that we originally know the particle
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positions and momenta xn at pn−1/2 and the fields En−1 and Bn−1, the loop consists of the
following steps:

1. Deposit the charge and current densities of the particles onto the spatial grid. In particular,
we deposit the charge density ρn at time t = n∆t from the particle positions xn and the
current density Jn−1/2 at time t = (n − 1

2 )∆t from the particle positions xn−1 and xn and

the particle velocities vn−1/2;

2. Transform all relevant physical quantities from physical space to Fourier space;

3. Compute the new electromagnetic fields in Fourier space Ê
n

and B̂
n
, from the charge and

current densities ρ̂n−1 (available from the previous PIC iteration), ρ̂n and Ĵ
n−1/2

;

4. Compute the averaged electromagnetic fields, 〈Ê〉n and 〈B̂〉n;

5. Transform all relevant physical quantities from Fourier space back to physical space;

6. Gather the averaged electromagnetic fields, in physical space, from the spatial grid onto the
particles;

7. Push the particles by updating their positions and momenta based on the current values of
the averaged electromagnetic fields, 〈E〉n and 〈B〉n, whose precise definition is given in the
next section. In particular, the momenta are updated from pn−1/2 to pn+1/2 and the positions
are then updated from xn to xn+1

WarpX code

We implemented the averaged Galilean PSATD algorithm of arbitrary spectral order in the code
WarpX [29] in Cartesian coordinates. WarpX is an open-source PIC code that combines advanced
algorithms with adaptive mesh refinement to allow challenging simulations of a multi-stage plasma-
based TeV acceleration relevant for future high-energy physics discoveries. WarpX relies on the ECP
AMReX co-design center for mesh refinement and runs on CPU and GPU-accelerated platforms,
and production simulations have run on Cori KNL at NERSC and on Summit at OLCF.

Code availability

WarpX code is available at https://github.com/ECP-WarpX/WarpX.
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The derivation of the dispersion relation for the averaged Galilean PSATD algorithm is given in
Supplementary Information.

Supplementary information: Derivation of the Dispersion Re-
lation for the Averaged Galilean PSATD Algorithm

Here we derive the 2D dispersion relation to study the NCI induced by a relativistic plasma flowing
through a periodic grid along the z-axis with velocity v0 = v0uz, where v0 = c(1− 1/γ2

b )1/2. This
is done by combining the discretized Maxwell equations in the Galilean frame and the discretized
Vlasov equation, and assuming small perturbations for the electromagnetic fields E,B and the
distribution function δf . Because the Vlasov equation involves the averaged fields 〈E〉, 〈B〉, we
include their expression as a function of the regular fields E, B in the system of equations. Hence,
when expressed in spectral space, the different equations of the system are:
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• the discretized Maxwell equations at n-th time step in time-symmetrical form [16]:

θ∗cB̂
n
− θcB̂

n−1
= −tck

ik × (θ∗Ê
n

+ θÊ
n−1

)

k
+ 2χ

′

4

T̂

ε0ck

k × Ĵ
n−1/2

d

k
, (13)

θ∗Ê
n
− θÊ

n−1
= tck

ik × (θ∗cB̂
n

+ θcB̂
n−1

)

k
− T̂ ik

ε0k2
(θ∗ρ̂n − θρ̂n−1)

− 2χ4
T̂

ε0ck

[
Ĵ
n−1/2

d − (k · Ĵ
n−1/2

d )k

k2

]
;

(14)

• the perturbed Vlasov equation [16]. Note that, here, we replaced the regular fields Ê, B̂ by
the averaged fields 〈Ê〉, 〈B̂〉 in order to take into account the changes associated with the
averaged Galilean PSATD.

δf̂n+1/2(km,p)eikm(v−vgal)∆t/2 − f̂n−1/2(km,p)e−ikm(v−vgal)∆t/2

+ q∆tŜ(km)
[
〈Ê

n
(k)〉+ v × 〈B̂

n
(k)〉

]
· ∂f0

∂p
= 0 ; (15)

• the expression of the averaged field for t ∈ [(n− 1/2)∆t, (n+ 1/2)∆t]:

〈B̂
n
(k, t)〉 = Ψ1B̂

n−1
+
i

c
Ψ2
k

k
× Ê

n−1
+
ik

ε0
A1
k

k
× Ĵ

n−1/2
, (16)

〈Ê
n
(k, t)〉 = Ψ1Ê

n−1
− icΨ2

k

k
× B̂

n−1
+

(
iνck

ε0
A1 +

Ψ2

ckε0

)
Ĵ
n−1/2

+ Cρ(A2 −A1)ρ̂n
k

k
+ Cρ(θ

2A1 −A2)ρ̂n−1k

k
.

(17)

Here, T̂ =
∏
i

[
1 − sin(ki∆i/2)

]
represents a one-pass binomial smoother, and Ŝ(km) is the

particle shape factor, with km = k +Km (Km = 2π
∑
i uimi/∆i) for i =

{
x, y, z

}
.

As follows from the discrete continuity equation, the corrected current Ĵ
n−1/2

satisfies

Ĵ
n−1/2

= Ĵ
n−1/2

d − (k · Ĵ
n−1/2

d )k

k2
+

(k · vgal)k
k2

ρ̂n − ρ̂n−1θ2

1− θ2
. (18)

As in [16], we use the following Ansatz for the electromagnetic modes:

Ê
n
(k) = Ê(k)e−i(ω−k·vgal)n∆t , (19a)

〈Ê
n
(k)〉 = 〈Ê(k)〉e−i(ω−k·vgal)n∆t , (19b)

δf̂n−1/2(km,p) = δf̂(km,p)e−i(ω−k·vgal)(n−1/2)∆t , (19c)

Ĵ
n−1/2

d (k) = Ĵ d(k)e−i(ω−k·vgal)(n−1/2)∆t , (19d)

ρ̂n(k) = ρ̂(k)e−i(ω−k·vgal)n∆t , (19e)
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and after some amount of algebra, we derive the following equations for Ĵ d(k) and ρ̂(k) from
the Vlasov equation (see a similar derivation in [16]):

Ĵ d = i
ckε0

T̂

(
ξ1〈F̂〉+ (ξ2 · 〈F̂〉)

v0
c

)
, (20)

ρ̂ =
ikε0

T̂
(ξ3 · 〈F̂〉) , (21)

where 〈F̂(k)〉 = 〈Ê(k)〉+ v0 × 〈B̂(k)〉 − (v0 · 〈Ê(k)〉)v0/c2.

In addition, by substituting the expressions (18) and (19) into (13), (14), (16), the problem
is reduced to the following set of equations to be solved:

sωcB̂ = tckcω
k × Ê
k

+ χ
′

4

T̂

ε0ck

ik × Ĵ d

k
, (22)

sωÊ = −cωtck
kcB̂
k
− isω

T̂k

ε0k2
ρ̂− iχ4

T̂

ε0ck

[
Ĵ d −

(k · Ĵ d)k

k2

]
, (23)

θ2c〈B̂〉 = Ψ1cB̂eiω∆t + iΨ2
k × Ê
k

eiω∆t +
ickA1T̂ θ

ε0

k × Ĵd
k

e
iω∆t

2 , (24)

θ2〈Ê〉 = Ψ1Êeiω∆t − icΨ2
k

k
× B̂eiω∆t +

iAν T̂

ckε0
θe

iω∆t
2

[
Ĵ d −

(k · Ĵ d)k

k2

]

+
ikρ̂T̂

ε0k2

c2k2A2(θ2 − eiω∆t) + θ2(c2k2A1 − νAν)(eiω∆t − 1)

(1− θ2)
.

(25)

Here, Aν = νc2k2A1 − iΨ2, and the ξ1, ξ2,3 coefficients represent the plasma response (for more
details see Appendix A in [16]):

ξ1 =
T̂ ω2

p

γ0ck

∑
m

Ŝ2(km)

s′ω
, ξ2 =

T̂ ω2
p

γ0k

∑
m

cω′ Ŝ2(km)

s2
ω′

km , ξ3 =
T̂ ω2

p

γ0k

∑
m

Ŝ2(km)

s2
ω′

km , (26)

where

cω′ = cos

(
ω − k · v0 −Km(v0 − vgal)

2∆t−1

)
, sω′ =

2

∆t
sin

(
ω − k · v0 −Km(v0 − vgal)

2∆t−1

)
. (27)

By projecting equations (23) and (25) along y and equations (20), (22) and (24) along x and z, the
final system of equations can be written in the matrix form

MavU = 0 , (28)
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where Mav is the block matrix

Mav =



−θ2 0 0
M 0 −θ2 0 N

0 0 −θ2

0 0 0 1 0 0
0 0 0 P 0 1 0
0 0 0 0 0 1

0 0 0
R 0 0 0 Q

0 0 0


(29)

and U is the vector

U =

(
cB̂y, Êz, Êx, c〈B̂y〉, 〈Êz〉, 〈Êx〉,

Ĵz
ckε0

,
Ĵx
ckε0

,
ρ̂

kε0

)T
. (30)

The resulting dispersion relation is given by the determinant equation

detMav = 0. (31)

Here, the individual matrices defining Mav read

M = eω

 Ψ1 −iΨ2kxn iΨ2kzn
−iΨ2kxn Ψ1 0
iΨ2kzn 0 Ψ1

 , (32a)

N = θ
√
eω T̂

 −iA1kxn iA1kzn 0
ik2
xnAν −ikxnkznAν ikznrων

−ikxnkznAν ik2
znAν ikxnrων

 , (32b)

P =
1

T̂

iβ2
0ξ2x −i(1− β2

0)(β0ξ2z + ξ1) −iβ0ξ2x
iβ0ξ1 0 −iξ1
iβ0ξ3x −i(1− β2

0)ξ3z −iξ3x

 , (32c)

R =

 sω cωkxntck −cωkzntck
cωkxntck sω 0
−cωkzntck 0 sω

 , (32d)

Q = T̂

 ikxnχ
′

4 −ikznχ
′

4 0
ik2
xnχ4 −ikxnkznχ4 ikznsω

−ikxnkznχ4 ik2
znχ4 ikxnsω

 , (32e)

with kxn = kx/k, kzn = kz/k, β0 = v0/c, cω = cos(ω∆t/2), sω = sin(ω∆t/2), and

rων =
θ∗
√
eω

A2(θ2 − eiω∆t) + θ2(A1 − νAν)(eiω∆t − 1)

(1− θ2)
. (33)
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Even though the matrix Mav has multiple zeros entries, it is difficult to find an analytical solution
of equation (31) for any pair (kx, kz). To solve it numerically, we used the secant method as a
root-finding algorithm, which allowed us to calculate the NCI growth rates across a wide range of
frequencies.

We remark that in the case of the standard Galilean PSATD scheme, Mav reduces to

Mav =

[
R Q
P I

]
, (34)

which is equivalent to equation (19) of [16].
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