
UC Berkeley
UC Berkeley Previously Published Works

Title
Global Gene Expression Profiling of a Population Exposed to a Range of Benzene Levels

Permalink
https://escholarship.org/uc/item/2zb936r7

Journal
Environmental Health Perspectives, 119(5)

ISSN
1542-4359

Authors
McHale, Cliona M
Zhang, Luoping
Lan, Qing
et al.

Publication Date
2011-05-01

DOI
10.1289/ehp.1002546
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zb936r7
https://escholarship.org/uc/item/2zb936r7#author
https://escholarship.org
http://www.cdlib.org/


628	 volume 119 | number 5 | May 2011  •  Environmental Health Perspectives

Research

Benzene is an established cause of acute myel-
oid leukemia (AML) and myelodysplastic syn-
dromes, and is a probable cause of lymphocytic 
malignancies (Baan et al. 2009; Vlaanderen 
et al. 2010), including non-Hodgkin lym-
phoma (NHL) in humans, as recently reviewed 
by Smith (2010). Benzene is also hematotoxic, 
even at relatively low levels of exposure (Lan 
et al. 2004). Possible mechanisms underlying 
these pathologies include the generation of free 
radicals leading to oxidative stress, immune sys-
tem dysfunction, and decreased immune sur-
veillance (Smith 2010). Studies of global gene 
expression in the bone marrow of very highly 
exposed mice have revealed additional potential 
mechanisms of benzene toxicity (Faiola et al. 
2004; Yoon et al. 2003), but their relevance 
to risk in occupationally exposed individuals is 
uncertain. Toxicogenomic studies of exposed 
human populations are an important alterna-
tive approach to the human health risk assess-
ment of environmental exposures. Such studies 
that have examined environmental exposures 
have identified potential biomarkers of early 
effects and revealed potential mechanisms 
underlying associated diseases (McHale et al. 
2010). However, these studies have been of 

limited size, have mainly addressed high levels  
of exposure, and have often lacked precise, 
individual estimates of exposure. Further, such 
studies are limited by confounding effects and 
laboratory variation, especially at low doses.

We previously compared global gene 
expression in the peripheral blood mononu-
clear cell (PBMC) fractions of six to eight pairs 
of unexposed controls and workers exposed to 
high levels of benzene (> 10 ppm) and iden-
tified potential biomarkers of exposure and 
mechanisms of toxicity (Forrest et al. 2005; 
McHale et  al. 2009). We chose PBMCs 
because they are widely used in human toxico
genomic studies. As an extension of these 
earlier studies, here we sought to identify 
potential gene expression biomarkers of expo-
sure and early effects, as well as mechanisms 
of toxicity, in 125 individuals occupationally 
exposed to a range of benzene levels, includ-
ing < 1 ppm, the current U.S. occupational 
standard (Occupational Safety and Health 
Administration 1987). In the cross-sectional 
molecular epidemiological study population, 
which includes the 125 individuals analyzed 
here, we previously found that white blood 
cell counts were decreased in workers exposed 

to < 1 ppm benzene compared with controls 
and that a highly significant dose–response 
relationship was present (Lan et al. 2004), with 
no apparent threshold within the occupational 
exposure range (0.2–75 ppm benzene) (Lan 
et al. 2006). We employed a rigorous study 
design that included randomization of samples 
across experimental variables, incorporation of 
precise individual measurements of exposure, 
and analysis with a mixed-effects model, with 
the aim of removing sources of biological and 
experimental variability (nuisance variability).

Materials and Methods
Study subjects and exposure assessment. All 
subjects were from a molecular epidemiology 
study of occupational exposure to benzene 
that comprised 250 benzene-exposed shoe 
manufacturing workers and 140 unexposed 
age- and sex-matched controls who worked 
in three clothes-manufacturing factories in 
the same region near Tianjin, China (Lan 
et al. 2004; Vermeulen et  al. 2004). This 
study complied with all applicable require-
ments of U.S. and Chinese regulations, 
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4Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; 5Environmental 
Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of 
Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA

Background: Benzene, an established cause of acute myeloid leukemia (AML), may also cause one 
or more lymphoid malignancies in humans. Previously, we identified genes and pathways associated 
with exposure to high (> 10 ppm) levels of benzene through transcriptomic analyses of blood cells 
from a small number of occupationally exposed workers.

Objectives: The goals of this study were to identify potential biomarkers of benzene exposure and/or 
early effects and to elucidate mechanisms relevant to risk of hematotoxicity, leukemia, and lymphoid 
malignancy in occupationally exposed individuals, many of whom were exposed to benzene levels 
< 1 ppm, the current U.S. occupational standard.

Methods: We analyzed global gene expression in the peripheral blood mononuclear cells of 
125 workers exposed to benzene levels ranging from < 1 ppm to > 10 ppm. Study design and analysis 
with a mixed-effects model minimized potential confounding and experimental variability.

Results: We observed highly significant widespread perturbation of gene expression at all exposure 
levels. The AML pathway was among the pathways most significantly associated with benzene expo-
sure. Immune response pathways were associated with most exposure levels, potentially providing 
biological plausibility for an association between lymphoma and benzene exposure. We identified a 
16-gene expression signature associated with all levels of benzene exposure.

Conclusions: Our findings suggest that chronic benzene exposure, even at levels below the current 
U.S. occupational standard, perturbs many genes, biological processes, and pathways. These findings 
expand our understanding of the mechanisms by which benzene may induce hematotoxicity, leuke-
mia, and lymphoma and reveal relevant potential biomarkers associated with a range of exposures.

Key words: benzene, biomarker, human, microarray, transcriptomics. Environ Health Perspect 
119:628–634 (2011).  doi:10.1289/ehp.1002546 [Online 13 December 2010]
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including institutional review board approval. 
Participation was voluntary, and written 
informed consent was obtained.

Exposure assessment to benzene was per-
formed as described previously (Vermeulen 
et al. 2004). For this study, we categorized 
exposure groups using mean individual air 
benzene measurements obtained during the 
3 months preceding phlebotomy. A subgroup 
of subjects was selected from each benzene 
exposure category as follows: 13 workers with 
very high exposure (> 10 ppm), 11 workers 
with high exposure (5–10 ppm), 30 work-
ers with low exposure (<  1  ppm; average 
< 1 ppm), and 29 workers with very low expo-
sure (<< 1 ppm; average < 1 ppm, with most 
individual measurements < 1 ppm) (Table 1). 
We previously reported that urinary benzene 
and mean individual air levels of benzene 
were strongly correlated (Spearman r = 0.88, 
p < 0.0001) in the epidemiological study popu-
lation (Lan et al. 2004). Among the individuals 
with occupational exposure to benzene in the 
present study for which urinary benzene levels 
were available (n = 82), a similar correlation 
was noted (Spearman r = 0.76, p < 0.0001). 
A group of 42 unexposed controls were fre-
quency matched to the exposed subjects on 
the basis of age and sex. Mean age (± SD) was 
29.5 ± 8.7 years for the 83 exposed workers 
and 29.5 ± 8.2 years for the controls. 

Biological sample collection was described 
previously (Forrest et al. 2005; Vermeulen 
et al. 2004). We transferred field-stabilized 
samples on dry ice. We isolated RNAs using 
the mirVana miRNA (microRNA) isolation 
kit (Applied Biosystems, Austin, TX, USA), 
stored them in aliquots at –80°C, and thawed 
them immediately before microarray analysis. 
All RNA samples analyzed had absorbance 
ratios for A260:A280 and A260:A230 between 1.7 
and 2.1, and we confirmed integrity by the 
presence of sharp 28S and 18S rRNA bands 
and a ratio of 28S:18S intensity of approxi-
mately 2:1 after denaturing gel electrophoresis.

Microarray study design and analysis. We 
randomized samples, and thus exposure groups, 
across labeling and hybridization reactions 
and across chips as uniformly as possible [see 
Supplemental Material, Table 1 (doi:10.​1289/
ehp.1002546)]. Technical replicates (n = 19), 
randomly chosen from among the 125 study 
subject samples, were included in the study to 
assess variability in the labeling, hybridization, 
and chip steps of the microarray procedure. 
We labeled samples (200 ng) in batches of 24 
using the Illumina RNA Amplification kit 
(Ambion, Austin, TX, USA) and hybridized 
them to Illumina HumanRef-8 V2 BeadChips 
in batches of 32 (four chips) following the 
manufacturer’s protocol. All sample processing 
was performed in a blinded manner.

Data analysis. We conducted variance com-
ponents analysis using a linear mixed model 

(Laird and Ware 1982) to assess the propor-
tion of total variation due to variation between 
subjects, hybridizations, labels, and chips, both 
before and after normalization [quantile nor-
malization in the affy package (Gautier et al. 
2004) in R (R  Development Core Team 
2010)]. For each probe, we estimated the asso-
ciation between exposure level and expression 
level using a mixed-effects model with random 
intercepts that accounted for clustering by sub-
ject, hybridization, and label. The fixed effects 
in our model, in addition to benzene exposure 
level, included sex (1 = male, 0 = female), cur-
rent smoking status (1 = yes, 0 = no), and age 
(in years, linear term) as potential confounders 
of associations between gene expression and 
benzene exposure. We fitted the mixed-effects 
model in R with the lmer function in the lme4 
package (Bates and Maechler 2010). We iden-
tified differentially expressed probes as those 
with a statistically significant log-fold change 
(based on likelihood ratio tests). We computed 
p‑values adjusted for multiple testing by con-
trolling the false discovery rate (FDR) with the 
Benjamini-Hochberg procedure (Benjamini and 
Hochberg 1995), using the multtest package in 
R. These values are FDR-adjusted p‑values and 
were considered significant if they were ≤ 0.05, 
the traditional experiment-wise type I error rate. 
The raw data discussed here have been depos-
ited in the National Center for Biotechnology 
Information (NCBI) Gene Expression 
Omnibus (GEO) (Edgar et al. 2002) and are 
accessible through the GEO database (accession 
number GSE21862; NCBI 2002).

Pathway analysis. We imported micro
array probe IDs into Pathway Studio software 
(Ariadne Genomics, Rockville, MD, USA), 
and queried the ResNet 7.0 database (Ariadne 
Genomics) for interactions among genes 
and gene products derived from the current 
literature (Nikitin et al. 2003). We also used 
a method known as “structurally enhanced 
pathway enrichment analysis” (SEPEA_NT3) 
(Thomas et al. 2009), which incorporates the 
associated network information of KEGG 
(Kyoto Encyclopedia of Genes and Genomes) 
biochemical pathways (Kanehisa and 
Goto 2000; Kyoto Encyclopedia of Genes 
and Genomes 2000). KEGG pathways are 

manually drawn pathway maps representing 
current knowledge on the molecular inter
action and reaction networks involved in cel-
lular processes such as metabolism and the 
cell cycle.

Gene Ontology (GO) analysis. The GO 
project (The Gene Ontology Consortium 
2000) provides an ontology of defined terms 
representing gene product properties in the 
domains, cellular components, molecular 
functions, and biological processes. GO has 
a hierarchical structure that forms a directed 
acyclic graph in which each term has defined 
relationships to one or more other terms in 
the same domain, which can be described as 
parent–child relationships. Every GO term is 
represented by a node in this graph, and the 
nodes are annotated with a set of genes. We 
used TopGO (topology-based GO scoring; 
Bioconductor 2010) to calculate the signifi-
cance of biological terms from gene expression 
data taking the GO structure into account 
(Alexa et al. 2006). We used the “elim” algo-
rithm, which differs from standard GO anal-
yses in that it eliminates genes from parent 
nodes that are members of “significant” child 
nodes. The elim score is the p‑value returned 
by Fisher’s exact test, and a node is marked 
as significant if the p-value is smaller than 
a previously defined threshold (Alexa et al. 
2006). Typically this threshold is set to be 
0.01 divided by the number of nodes in the 
GO graph with at least one annotated gene. 
This corresponds to a Bonferroni adjustment 
of the p-values. The most highly significant 
nodes thus derived are denoted as key nodes.

Both TopGO and SEPEA_NT3 have 
limitations (Barry et al. 2005; Nettleton et al. 
2008). They assume independence between 
expressions of the genes, violation of which 
can lead to greater false positives than allowed 
by the nominal threshold set. These meth-
ods were chosen over more computationally 
intensive permutation-based subject sampling 
approaches.

Hierarchical clustering. We performed 
simple supervised clustering based on com-
plete linkage (Murtagh 1985) in order to make 
heat maps [hierarchical agglomerative clus-
tering with complete linkage; implemented 

Table 1. Characteristics of study subjects.

Benzene exposure 
category (ppm)

Subjects 
(n)

Air 
benzene 
(ppm)a

WBC count 
(per μL blood) Age (years)

Sex [n (%)]
Currently 

smoking [n (%)]
Male Female Yes No

Control (—) 42 < 0.04b 6454.8 ± 1746.5 29.5 ± 8.2 17 (33) 25 (34) 9 (35) 33 (33)
Very low (<< 1)c 29 0.3 ± 0.9 5524.1 ± 1369.2 30.3 ± 9.2 8 (16) 21 (28) 6 (23) 23 (23)
Low (< 1)d 30 0.8 ± 0.8 5510.0 ± 1170.7 27.9 ± 7.2 19 (37) 11 (15) 5 (19) 25 (25)
High (5–10) 11 7.2 ± 1.3 5418.2 ± 1376.8 29.7 ± 9.1 1 (2) 10 (14) 1 (4) 10 (10)
Very high (> 10) 13 24.7 ± 15.7 5176.9 ± 1326.8 30.9 ± 10.5 6 (12) 7 (9) 5 (19) 8 (8)

WBC, white blood cell. Values for air benzene, WBC count, and age are mean ± SD.
aAir benzene level in the 3 months preceding phlebotomy. bThe limit of detection for benzene was 0.04 ppm (Lan et al. 
2004). cThe average level of benzene was < 1 ppm and dosimetry levels were < 1 ppm at most measurements in the 3 
months preceding phlebotomy and at all measurements in the prior month. dThe average level of benzene was < 1 ppm 
(in the 3 months preceding phlebotomy) but dosimetry levels were not always < 1 ppm in the previous 3 months. 



McHale et al.

630	 volume 119 | number 5 | May 2011  •  Environmental Health Perspectives

in the hclust function in R (R Development 
Core Team 2010), called by the heatmap.2 
function available with the gplots library in 
Bioconductor (Gentleman et al. 2004)]. Input 
data consisted of the four columns of log2-
adjusted ratios (the coefficients from the lin-
ear mixed-effects models adjusted for both 
random and fixed effects). This provides clus-
ters driven by average responses within dose 
groups rather than by potential confounding 
within groups.

Results
Application of a mixed-effects model to analyze 
gene expression. We applied a mixed model 
(variance components analysis) to assess the 
proportion of total variation due to variation 
among subjects, hybridizations, labels, and 
chips, among the randomly selected within-
subject replicates (n = 19). Plotting the distri-
bution of the contribution of variance across 
all probes after normalization revealed that 
the greatest source of variation was between 
subjects and was therefore consistent with 
biological causes (Figure 1). We also found 
substantial variation between labeling reac-
tions. Therefore, for each probe, we estimated 

the association between exposure level and 
expression level using a mixed-effects model 
with (crossed) random intercepts that account 
for clustering by subject and by label (Laird 
and Ware 1982). Because the study design 
included randomization of samples—and thus 
exposures—across labeling reactions, an infer-
ential procedure was necessary that allowed 
the existence of nonnested sources of corre-
lation (labeling and subject). Thus, we used 
mixed models with so-called crossed random 
effects (Fitzmaurice et  al. 2004), with the 
goal of providing more trustworthy inference 
than procedures that would have ignored, for 
instance, the variability caused by the labeling. 
(Many microarray studies are not designed 
to partition out the sources of variability and 
thus, if such sources are important, could 
provide misleading inference. In addition, 
it is often assumed that normalization will 
eliminate these sources of variability, but this 
assumption cannot be verified unless the study 
design allows for partitioning of the variance.) 
In the model, we also adjusted, as simple fixed 
effects, for biological variation in expression 
associated with differences in sex, age, and 
smoking status.

Effects of benzene exposure on gene expres­
sion, biological processes, and pathways. Analysis 
of the overall effect of benzene across the four 
exposure categories (very high, high, low, 
and very low) relative to unexposed controls 
(n = 42) revealed significantly altered expression 
(FDR-adjusted p-values ≤ 0.05) of 3,007 probes 
representing 2,846 genes [see Supplemental 
Material, Table 2 (doi:10.1289/ehp.1002546)]. 
Immune response (p = 3.78E‑07) was the most 
significant key node among the GO processes 
associated with exposure (see Supplemental 
Material, Table 3), as determined by TopGO 
analysis. Pathway analysis by SEPEA_NT3 
(Thomas et al. 2009) revealed highly significant 
(p < 0.001) impacts on the Toll-like receptor 
signaling pathway, oxidative phosphorylation, 
B‑cell receptor signaling pathway, apopto-
sis, AML, and T‑cell receptor signaling (see 
Supplemental Material, Table 4).

Large numbers of genes were signifi-
cantly differentially expressed (FDR-adjusted 
p-values ≤ 0.05) in samples from each of the 
four exposure categories relative to controls 
[see Supplemental Material, Figure 1 and 
Tables 5–8 (doi:10.1289/ehp.1002546)]. We 
identified several GO processes implicated in 

Figure 1. Distribution of the intraclass correlation coefficients (the proportion of variability estimated to come from each source on a probe-by-probe basis) calcu-
lated by variance components analysis based on a mixed-effects model allowing assessment of independent contributions of variability from chip, hybridization, 
label, and biological (subject), as well as residual variability. 
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Table 2. Summary of GO categories overrepresented at each benzene exposure category.

Total no. 
of genesb

Very low (n = 29) Low (n = 30) High (n = 11) Very high (n = 13)
GO IDa GO term No. genes p-Valuec No. genes p-Valuec No. genes p-Valuec No. genes p-Valuec

GO:0006412 translation 456 64 2.0E-06 93 1.2E-03
GO:0006512 ubiquitin cycle 480 48 7.5E-04 98 1.6E-05
GO:0006917 induction of apoptosis 216 27 4.1E-04 49 1.6E-04 19 1.5E-03d

GO:0006955 immune response 653 58 3.7E-03d 124 4.6E-05 54 4.9E-06 97 1.1E-04
GO:0015986 ATP synthesis coupled proton transport 40 11 2.2E-05 14 5.0E-04 11 1.8E-03
GO:0006915 apoptosis 804 80 5.6E-03 158 9.2E-04 107 2.7E-03
GO:0030301 cholesterol transport 8 5 4.4E-05 4 1.5E-02d 4 5.5E-03d

GO:0006954 inflammatory response 318 60 4.6E-03d 34 2.8E-05
aGO categories that are significant at ≥ 2 doses. bNumber of annotated genes included on the chip. cp-Values were determined using the elim method in TopGO, which computes the 
statistical significance of a parent node dependent on the significance of its children by Fisher’s exact test; nodes are significant if the p-value is smaller than a previously defined 
threshold (Alexa et al. 2006), 0.01 divided by the number of nodes in the GO graph with at least one annotated gene. dSignificantly enriched term in classic analysis (which does not take 
GO hierarchy into account) but not in elim analysis in TopGO. Complete GO data are available in Supplemental Material, Table 9 (doi:10.1289/ehp.1002546). 
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the overall analysis as key nodes across three 
to four dose categories, including immune 
response, apoptosis, and ATP synthesis– 
coupled proton transport [Table  2; for 
complete data, see Supplemental Material, 
Table 9).

Similarly, multiple pathways found 
to be highly significant in the overall analy
sis (p ≤ 0.005), including Toll-like receptor 
signaling, oxidative phosphorylation, B‑cell 
receptor signaling, apoptosis, AML, and T‑cell 
receptor signaling, were enriched among the 
differentially expressed genes associated with 
three (including the very low dose category) or 

four exposure categories [Table 3; for complete 
data, see Supplemental Material, Table 10 
(doi:10.1289/ehp.1002546)].

Twelve genes were up‑regulated ≥ 1.5‑fold 
at all four doses relative to unexposed controls, 
including five genes [PTX3 (pentraxin-related 
gene), CD44 (CD44 antigen), PTGS2 (pros-
taglandin-endoperoxide synthase 2), IL1A 
(interleukin 1, alpha), and SERPINB2 (ser-
pin peptidase inhibitor, clade B, member 2) 
with FDR-adjusted p-values ≤ 0.005. An addi-
tional four genes were up‑regulated > 1.5-fold 
at the top three doses, and > 1.3-fold at the 
lowest dose (Table 4). Expression of each of 

the 16 signature genes across the five expo-
sure categories shows a distinct pattern, with 
the highest expression in the < 1‑ppm (low) 
exposure group [see Supplemental Material, 
Figure 2 (doi:10.1289/ehp.1002546)]. The 
16 genes are involved in immune response, 
inflammatory response, cell adhesion, cell–
matrix adhesion, and blood coagulation (see 
Supplemental Material, Table 11). Ten of 
the 16 genes (or their products), 7 of which 
are involved in inflammatory response 
(p = 1.4E‑12), form a network (Figure 2) with 
central roles for IL1A and PTGS2.

Dose-specific effects. We used supervised 
hierarchical clustering to generate a heat map to 
allow visualization of patterns of gene expres-
sion across exposure categories. One group of 
genes (~ 100) exhibited reduced expression 
(ratios < 1) with increasing dose relative to con-
trols, whereas a second group (~ 100) appeared 
to be elevated at all doses but more so at low-
dose exposure (Figure 3).

We also observed dose-dependent 
effects on biological processes and pathways. 
For example, nucleosome assembly [see 
Supplemental Material, Table 9 (doi:10.1289/
ehp.1002546)] and the ATP-binding cassette 
(ABC) transporter pathway (see Supplemental 
Material, Table 10) appeared to be deregu-
lated only at the very high exposure level. 
Among 78 genes that were highly signifi-
cantly (FDR p-value ≤ 0.05) associated with 
a ≥ 1.5‑fold increase in expression in the very 
high exposure group, and not significantly 
altered at any of the other exposure catego-
ries relative to controls, a network involving 
19 genes (or their products) was apparent, in 
which v-src sarcoma viral oncogene homolog 
(SRC) and matrix metallopeptidase 9 (MMP9) 
play central roles (see Supplemental Material, 
Figure  3). Among 29  genes significantly 
altered only at low-dose benzene exposure, 

Table 3. p-Values for pathways altered at each benzene exposure category.
 Benzene exposure category

Pathway namea
Very low  
(n = 29)

Low  
(n = 30)

High  
(n = 11)

Very high  
(n = 13)

Chronic myeloid leukemia 0.034 0.033
Pancreatic cancer 0.023 0.007
Oxidative phosphorylationb < 0.001 0.003 0.001
Small-cell lung cancerb 0.004 0.002 0.027
B-cell receptor signaling pathwayb 0.008 0.003 0.004
Insulin signaling pathway 0.015 0.035 0.052
Adipocytokine signaling pathway 0.034 0.002 0.019
Circadian rhythm—mammal 0.04 0.045 0.004
RNA polymerase < 0.001 0.048
Toll-like receptor signaling pathwayb < 0.001 0.002 0.001 0.004
Epithelial cell signaling in Helicobacter pylori infectionb < 0.001 0.003 0.006 0.011
GPI-anchor biosynthesisb < 0.001 0.041 < 0.001 0.007
T-cell receptor signaling pathwayb 0.005 0.002 0.005 0.018
Apoptosisb 0.007 0.002 0.007 0.013
Cytokine–cytokine receptor interactionb 0.036 0.011 0.030 0.004
AMLb 0.037 0.002 0.045
Fatty acid metabolism 0.037 0.049 0.033
Nucleotide excision repair 0.001 0.008 0.005
Renal cell carcinoma 0.024 0.015
Protein export 0.053 0.024
Steroid biosynthesis 0.004 0.034
Fc epsilon RI signaling pathway 0.006 0.046
Jak-STAT signaling pathway 0.003 0.048
MAPK signaling pathway 0.009 0.023
aKEGG pathways that are significant at ≥ 2 doses. bFDR-adjusted p-value (Benjamini and Hochberg 1995) < 0.005 in over-
all analysis. Details of all KEGG pathways are available from Kyoto Encyclopedia of Genes and Genomes (2000). 

Table 4. Potential biomarkers of benzene exposure based on gene expression ratios relative to unexposed controls.

Benzene exposure category

Very low (n = 29) Low (n = 30) High (n = 11) Very high (n = 13)
Probe ID Symbol Definition Ratio p-Valuea Ratio p-Valuea Ratio p-Valuea Ratio p-Valuea

5090327 SERPINB2b serpin peptidase inhibitor, clade B, member 2 2.47 0.002 5.19 0.000 3.03 0.005 3.39 0.001
2370524 TNFAIP6 tumor necrosis factor, alpha-induced protein 6 2.26 0.000 2.94 0.000 1.72 0.030 2.13 0.000
6590338 IL1Ab interleukin 1, alpha 2.00 0.001 3.03 0.000 2.36 0.000 2.53 0.000
1260746 KCNJ2 potassium inwardly-rectifying channel, subfamily J 1.97 0.000 2.54 0.000 2.09 0.000 1.56 0.012
2230131 PTX3b pentraxin-related gene, rapidly induced by IL-1 beta 1.80 0.000 2.30 0.000 1.62 0.003 1.81 0.000
5860333 F3 coagulation factor III (thromboplastin, tissue factor) 1.73 0.003 2.83 0.000 1.78 0.034 2.41 0.001
1410189 CD44b CD44 antigen (Indian blood group) 1.64 0.000 1.76 0.000 1.64 0.005 1.78 0.000
2470100 CCL20 chemokine (C-C motif) ligand 20 1.63 0.005 2.30 0.000 1.59 0.041 2.11 0.000
4880717 ACSL1 acyl-CoA synthetase long-chain family member 1 1.63 0.001 1.79 0.000 1.59 0.010 1.68 0.002
1470682 PTGS2b prostaglandin-endoperoxide synthase 2 1.60 0.000 1.98 0.000 1.68 0.003 1.75 0.000
1770152 CLEC5A C-type lectin domain family 5, member A 1.57 0.009 2.26 0.000 1.78 0.014 2.26 0.000
4060674 IL1RN interleukin 1 receptor antagonist 1.55 0.003 2.26 0.000 1.54 0.020 1.61 0.004
7320646 PRG2 proteoglycan 2, bone marrow 1.37 0.011 1.83 0.000 1.5 0.007 1.69 0.000
650709 SLC2A6 solute carrier family 2, member 6 1.36 0.005 1.72 0.000 1.5 0.000 1.60 0.000
2900286 GPR132 G protein-coupled receptor 132 1.34 0.047 1.87 0.000 1.6 0.003 1.80 0.000
3710379 PLAUR plasminogen activator, urokinase receptor 1.29 0.035 1.80 0.000 1.6 0.002 1.58 0.001

Genes shown are up- or down-regulated ≥ 1.5-fold relative to unexposed controls at three or four doses. 
aFDR-adjusted p-value (Benjamini and Hochberg 1995). bGenes that have p-values ≤ 0.005 at all four doses.
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we identified a network of 15 genes involved 
in immune response (p = 4E-12), with central 
roles for interferon gamma (IFNG) and tumor 
necrosis factor (TNF) (see Supplemental 
Material, Figure  4). Together, these data 

suggest that benzene induces dose-dependent 
effects, with the caveat that differences in 
power among the different exposure categories 
may have influenced the resulting significant 
gene lists.

Discussion
Technical variation is often ignored in human 
toxicogenomic studies, leading to potential 
bias in differential expression arising from 
correlation with technical variation. In the 
present study, we applied a rigorous study 
design to assess sources of both potential con-
founding and experimental variability (nui-
sance variation) and analyzed the data using 
statistical techniques that incorporate non
nested sources of variation (i.e., those not 
eliminated by normalization) and that return 
estimates of least variability with accurate 
inference (linear mixed-effects models). This 
approach increased the power to detect asso-
ciations between benzene exposure and gene 
expression, even at low-dose exposure levels.

More genes remained significantly up- or 
down-regulated compared with controls after 
multiple test correction in the present study 
than in an earlier study examining samples 
from eight pairs of exposed workers and 
unexposed controls on the Illumina platform 
(McHale et al. 2009), likely because of the 
increased number of individuals and the rigor-
ous approach to study design. Nonetheless, 
we identified 247 genes in both study pop-
ulations using the Illumina platform. Of 
488 significant genes cross-validated on both 
Illumina and Affymetrix platforms (McHale 
et al. 2009), 147 genes were significant in the 
present study. ZNF331 (zinc finger protein 
331), significant after multiple test correc-
tion in individuals occupationally exposed to 
benzene at levels > 10 ppm compared with 
controls in two earlier studies (Forrest et al. 
2005; McHale et al. 2009), was significantly 
up‑regulated at both < 1 ppm and > 10 ppm 
in the present study.

The finding that genes in the AML path-
way were strongly associated with multiple 
exposure levels of benzene provides support 
for our approach because epidemiological stud-
ies have established that benzene causes AML 
(Baan et al. 2009; Smith 2010). However, such 
disease associations must be treated cautiously 
because the KEGG pathway information, on 
which the pathway analyses were based, is 
limited for AML, and a KEGG pathway for 
NHL has not been defined. Information about 
altered molecular and cellular processes can 
provide biological plausibility for probable dis-
ease associations. Immune response, previously 
found to be associated with > 10 ppm benzene 
exposure in our earlier transcriptomic study of 
eight high-exposed control pairs (McHale et al. 
2009), was one of the major processes signifi-
cantly altered across multiple exposure levels in 
the present study, involving both innate (Toll-
like receptor signaling) and adaptive (B‑cell 
receptor signaling and T‑cell receptor signaling 
pathway) responses. Additionally, we found 
central roles for the proinflammatory cytokines 
IFNG and TNF among genes uniquely altered 

Figure 2. Network interactions among biomarkers of benzene exposure associated with all exposure 
levels, illustrating a high degree of interrelatedness based on the literature, with central roles for IL1A 
and PTGS2. Pathway Studio software identified interactions among 10 of the 16 potential biomarkers of 
benzene exposure. The interactions are mainly expression, with some regulation (regulator changes the 
activity of the target) and one binding interaction. Red indicates up‑regulation. 
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is based on Euclidean distance. 

Elevated 
at all doses

Color key

–1 0 1 2

Very low Low High Very high

Lowered most 
at high doses



Transcriptomics of human benzene exposure

Environmental Health Perspectives  •  volume 119 | number 5 | May 2011	 633

at low-dose exposure in the present study. A 
single nucleotide polymorphism in TNF-α 
was previously associated with susceptibility to 
bone marrow dysplasia in chronic benzene poi-
soning (Lv et al. 2007). Further, genetic varia-
tion in TNF (Rothman et al. 2006), Toll-like 
receptor genes (Purdue et al. 2009), and IFNG 
(Colt et al. 2009) has previously been associ-
ated with NHL risk. Deregulation of path-
ways involving these genes through sustained 
alterations in expression provides biological 
plausibility for the association of benzene with 
lymphoid neoplasms.

Findings from the present study are con-
sistent with previous reports of adverse effects 
of benzene on oxidative stress (Kolachana et al. 
1993) and mitochondria (Inayat-Hussain and 
Ross 2005). Here, we found highly significant 
associations with ATP synthesis–coupled pro-
ton transport and oxidative phosphorylation at 
all levels of benzene exposure relative to unex-
posed controls. Expression of superoxide dis-
mutase (SOD), a mitochondrial defense against 
reactive oxygen species, was up‑regulated in the 
present study by 50–100% relative to controls. 
HMOX1 [heme oxygenase (decycling) 1], an 
antioxidant and suppressor of TNF-α signaling 
(Lee et al. 2009), was down-regulated in the 
low-dose benzene exposure group. Increased 
mitochondrial membrane permeability poten-
tial induced by benzene metabolites (Inayat-
Hussain and Ross 2005) can lead to the 
initiation of apoptosis. Indeed, apoptosis was 
associated with all benzene doses in the present 
study, consistent with our earlier observation of 
an association with high-dose benzene exposure 
(> 10 ppm) (McHale et al. 2009).

Previously, we found that chromatin 
assembly was significantly altered after high-
dose benzene exposure (McHale et al. 2009). 
The finding that nucleosome assembly (a GO 
category nested within chromatin assembly) 
was overrepresented in the highest exposure 
category in the present study confirms and 
clarifies this potential mechanism of benzene-
associated leukemia.

Although significant involvement of the 
p53 response pathway was previously found 
in mice exposed to very high levels of benzene 
(Faiola et al. 2004; Yoon et al. 2003), we did 
not find such involvement in the present study 
or in our earlier studies, and the immune and 
inflammatory effects we found here in humans 
were not recapitulated in the mouse micro
array studies (Faiola et al. 2004; Yoon et al. 
2003). These differences suggest that human 
toxicogenomic studies may be more relevant 
than animal studies, although differences in 
exposure levels, tissues examined, and uncon-
trolled confounding in the human study could 
also be contributing factors. 

Our findings suggest two novel hypothe
ses regarding benzene toxicity. Glycosyl
phosphatidylinositol (GPI)-anchor biosynthesis 

was associated with all doses of benzene expo-
sure in the present study. The GPI anchor is a 
C‑terminal posttranslational modification that 
anchors the modified protein in the outer leaf-
let of the cell membrane and putatively plays 
roles in lipid raft partitioning, signal transduc-
tion, and cellular communication (Paulick and 
Bertozzi 2008). Because epigenetic silencing 
of genes involved in GPI-anchor biosynthesis 
may be important in human disease, including 
lymphomas (Hu et al. 2009), further investi-
gation of its role in benzene-associated disease 
is warranted.

ABC transporters were associated highly 
significantly with only the highest (> 10 ppm) 
benzene dose. In addition to their capacity 
to extrude cytotoxic drugs, ABC transport-
ers are known to play important roles in the 
development, differentiation, and maturation 
of immune cells and are involved in migration 
of immune effector cells to sites of inflamma-
tion (van de Ven et al. 2009).

Our findings also suggest a potential gene 
expression signature of benzene exposure. In 
particular, IL1A and PTGS2 played central 
roles in the interaction network characterizing 
the gene expression signature associated 
with benzene in this study. Both molecules 
are produced by activated macrophages and 
other cells in inflammatory responses. A sin-
gle nucleotide polymorphism that increases 
IL1A mRNA expression has been inversely 
associated with granulocyte count in benzene- 
exposed individuals (Lan et  al. 2005). 
Overexpression of PTGS2, which occurs 
frequently in premalignant and malignant 
neoplasms, including hematological malig-
nancies (Bernard et al. 2008), together with 
overexpression of the prostaglandin cascade, 
leads to carcinogenesis through a progressive 
series of highly specific cellular and molecular 
changes (Harris 2009).

The expression pattern of the signature 
genes suggests a nonlinear response to benzene.  
Other biomarkers evaluated in popula-
tions exposed to benzene have shown simi-
lar patterns, including hematotoxicity (Lan 
et al. 2004), benzene metabolism (Kim et al. 
2006), and the generation of protein adducts 
(Rappaport et al. 2002, 2005). Further charac
terization of the expression levels of these 
genes across a range of benzene exposures in a 
larger, independent study is necessary to deter-
mine the applicability of the signature genes as 
biomarkers of early effects and to explore more 
formally the shape of the dose–response curve.

Conclusion
We have identified gene expression biomarkers 
of early effects across a range of benzene 
exposures. Our findings support previously 
reported mechanisms relevant to adverse effects 
of benzene and suggest potential novel mecha-
nisms for benzene toxicity. Future work should 

include validation of the potential biomarkers 
and determining whether the gene expression 
changes are effected through epigenetic pro-
cesses such as DNA methylation (Bollati et al. 
2007) and miRNA expression.
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