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Erythrocyte aldose reductase activity and sorbitol levels in diabetic
retinopathy

G. Bhanuprakash Reddy,1 A. Satyanarayana,1 N. Balakrishna,1 Radha Ayyagari,2 M. Padma,3 K. Viswanath,3

J. Mark Petrash4

1National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India; 2Department of Ophthalmology and Visual
Sciences, University of Michigan, Ann Arbor, Michigan; 3Sarojinin Devi Eye Hospital and Institute of Ophthalmology, Hyderabad,
India; 4Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri

Purpose: Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the
development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the
relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We
investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol,
in erythrocytes.
Methods: We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical
case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol
levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined.
Results: T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without
DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the
increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly
associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects.
Conclusions: Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be
included among other markers to establish a risk profile for development of DR.

About 200 million people across the globe are estimated
to have diabetes of which Southeast Asia alone is home to 46.9
million diabetics and India has 41 million diabetics [1,2]. Type
2 diabetes (T2D) accounts for roughly 90 percent of all
diagnosed cases of diabetes [2]. The prevalence of diabetes in
India is estimated to be between 5.9%–24.2% (average of
12.1%) [3,4]. It is higher in developed countries compared to
developing countries. While in developing countries the
average age of people with diabetes is between 45 and 64 years
of age, in developed nations it is 65 years and older. These
statistics indicate that the world, particularly India, is facing
a growing diabetes epidemic of potentially devastating
proportions. Prolonged exposure to chronic hyperglycemia,
without proper management, can lead to various short-term
and long-term secondary complications, both of macro and
microvascular nature, which represent the main cause of
morbidity and mortality in diabetic patients [5].
Hyperglycemia is the major determinant of microvascular
complications in diabetes [6,7].

Diabetic retinopathy (DR), a vascular disorder affecting
the microvasculature of the retina, is a leading cause of adult
blindness and is the most common complication of diabetes
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[8]. It is estimated that DR develops in more than 75% of
diabetics who have had diabetes for 15–20 years. It is
projected that by 2005, diabetes will affect 300 million people
worldwide, of whom 10% will develop visual impairment
secondary to DR [9]. While a study reported the prevalence
of DR among diabetic subjects (both rural and urban) in India
was 10% [10], another study reported the prevalence of DR
about 17% among urban diabetic subjects in India [11]. In a
clinical study the prevalence of DR was 34% among T2D
patients [12]. The prevalence of DR was 0.5% in the general
rural populations of Southern India (this in total population
but not among diabetics) and 10.5% among diabetic patients
[13].

Although the exact mechanism involved in the
pathogenesis is not known, many biochemical pathways
associated with hyperglycemia have been implicated in the
development of diabetic complications including DR. These
include glucose autoxidation, polyol pathway, prostanoid
synthesis, protein glycation, protein kinase C activation, and
the hexosamine pathway [5]. Among these, the polyol
pathway has been extensively studied. Aldose reductase
(ALR2; EC: 1.1.1.21), the first and rate-limiting enzyme in
the polyol pathway, reduces glucose to sorbitol using
nicotinamide adenine dinucleotide phosphate (NADPH) as a
cofactor. Sorbitol is then metabolized to fructose by sorbitol
dehydrogenase [14]. Studies on animal models of diabetes and
galactosemia suggest increased polyol pathway activity in the
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pathogenesis of DR [15]. Further, several studies based on
specific inhibitors of ALR2 support the role of polyol pathway
in the pathology of DR [16-18]. Retinal capillary pericytes
contain ALR2, and the accumulation of polyols in pericytes
has been linked to their degeneration and selective death
[19]. Pericyte loss, the major event of early DR, has been
observed in galactose-fed dogs that developed retinopathy
[20]. In addition, the involvement of ALR2 in DR has been
recently supported by the findings that ALR2 inhibitor
prevented a spectrum of neural, glial, and vascular
abnormalities associated with development of DR in rat and
humans [17,18]. Furthermore, evidence for the involvement
of ALR2 as a risk factor for DR and other diabetic
complications comes from genetic polymorphism studies
[21,22]. Several studies indicate that the Z-2 allele and a
putative protective allele, Z+2, of ALR2 are significantly
associated with DR [21-24]. Although, most animal studies
with ALR2 inhibitors (ARI) have yielded encouraging results
(considering some inconsistent data), on the whole, clinical
trials of ARI have failed to shown efficacy against various
diabetic complications. This may be due, in part, to
differences in tissue levels of ALR2 in rodents as compared
with humans. In addition, development of diabetic
complications in humans may be influenced by metabolic and
signaling pathways that have a less significant impact on the
pathogenesis of complications in animal models. In principle,
all diabetic patients might be expected to develop diabetic
microvascular complications if hyperglycemia alone were the
triggering factor for activation of the polyol pathway. Multiple
factors are likely to be involved in predisposing diabetic
subjects to DR, as evidenced by the fact that many, but not all,
diabetic patients develop one or more microvascular
complications. It has been reported that the prevalence of DR
is associated with increased erythrocyte ALR2 protein levels
[25]. This observation is based on previous studies that
revealed that erythrocyte ALR2 protein levels correlates with
ALR2 protein levels in retinal cells, particularly pericytes
[25,26]. However, it was shown that ALR2 in human
erythrocytes exists in activated and unactivated forms, and in
hyperglycemia the total activity of ALR2 increases [15,27].
Hence, correlating total ALR2 activity with DR prevalence
may provide an important link between an easily measurable
marker in peripheral blood and risk of progression toward eye
disease. In this study, we examined the activity of ALR2 in
erythrocytes obtained from diabetic patients with and without
retinopathy. Further, we also measured the levels of sorbitol
as a surrogate marker for ALR2 activity levels in erythrocytes.
These data demonstrate that erythrocyte ALR2 activity and
sorbitol levels are significantly elevated in diabetic patients
with retinopathy as compared with diabetics without
retinopathy or patients without diabetes.

METHODS
Subjects and study design: A hospital-based prospective case
control study was conducted. The study protocols were

approved by the Institutional Ethics Committees of the
institutes involved. Subjects were recruited from the patients
who visited the Sarojini Devi Eye Hospitals and Institute of
Ophthalmology, Hyderabad, India and Department of
Endocrinology, Osmania General Hospital, Hyderabad, India.
A total of 362 T2D subjects (198 with DR, 164 without ocular
complications) and 66 normal subjects were investigated.
Written consent was obtained from the participants after they
were given an explanation of the study details. A complete
history of each participant, with respect to age, gender, clinical
symptoms, diabetes type and duration, medication, and
socioeconomic background, was collected using a well
designed questionnaire. None of the diabetics in this study
were on insulin treatment. The fundus of each subject was
evaluated by both direct and indirect ophthalmoscopy, and DR
was defined and classified according to Viswanath and
McGavin [28]. The presence of retinal microaneurysm, dot
and slot hemorrhages, intraretinal microvascular
abnormalities, and cotton wool spots were defined as
nonproliferative DR (NPDR), which was then categorized as
mild, moderate, severe, and diabetic maculopathy. Formation
of new vessels with and without bleeding and production of
vitreous hemorrhage was defined as proliferative DR (PDR).
Sample collection and processing: Blood was drawn from the
subjects into anticoagulant tubes and immediately transported
to the laboratory on ice. Red blood cells (RBC) were separated
by centrifugation, washed thrice with saline, and stored at –
85 °C until further analysis.
Glucose estimation: Glucose was estimated in plasma by the
GOD-POD method using a kit (BioSystems, Barcelona,
Spain). Ten µl of serum or standard (100 mg/dl glucose) was
added to reagent A (100 mM phosphate buffer, pH 7.5 with 5
mM phenol, 10 U/ml glucose oxidase, 1 U/ml peroxidase, and
0.4 mM 4-aminoantipyrine) and incubated for 5 min at 37 oC.
Absorbance was measured at 505 nm in a spectrophotometer.
Glycosylated hemoglobin: HbA1C was estimated by ion-
exchange chromatography using a kit (BioSystems). Fifty µl
of blood was added to reagent 1 (50 mM potassium phosphate,
pH 5.0 with 5 g/l detergent and 0.95g/l sodium azide) and
mixed thoroughly to prepare the hemolysate. From this 50 µl
of hemolysate was added to the ion-exchange resin and
washed with 2.2 ml of reagent 2 (30 mM potassium phosphate,
pH 6.5 containing 0.95 g/l sodium azide). HbA1C was eluted
using reagent 3 (72 mM potassium phosphate, pH 6.5
containing 0.95 g/l sodium azide). Absorbance of the eluted
HbA1C was read at 415 nm in a spectrophotometer.
Aldose reductase activity: A 10% erythrocyte suspension was
made by adding 50 mM sodium phosphate buffer, pH 7.4,
containing 150 mM NaCl. The suspension was lysed by
repeated freezing and thawing (three cycles) and centrifuged
to remove insoluble material, if any. ALR2 activity was
measured spectrophotometrically using an appropriately
diluted hemolysate according to a previously described
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method [29] using a SpectraMax spectrophotometer
(Molecular Devices, Sunnyvale, CA). One unit was defined
as micromoles NADPH oxidized/g Hb/ min. The assay
mixture in 1 ml contained 50 µmol potassium phosphate
buffer pH 6.2, 0.4 mmol lithium sulfate, 5 µmol 2-mercapto
ethanol, 10 µmol DL-glyceraldehyde, 0.1 µmol NADPH and
enzyme preparation (hemolysate). The assay mixture was
incubated at 37 oC and initiated by the addition of NADPH at
37 oC. The change in the absorbance at 340 nm due to NADPH
oxidation was followed.
Estimation of sorbitol: Sorbitol was extracted by
homogenizing RBC in nine volumes of 0.8 M perchloric acid.
The homogenate was centrifuged at 5,000g at 4 °C for 10 min,
and the pH of the supernatant was adjusted to 3.5 with 0.5 M
potassium carbonate. The sorbitol content of the supernatant
was measured by fluorometric method as described
previously [30] using a fluorometer (Jasco-FP-6500, Tokyo,
Japan). One ml reaction mixture, consisted of 50 µmol glycine
buffer, pH 9.4, 2 µmol magnesium chloride, 0.2 µmol
nicotinamide adenine dinucleotide (NAD) and protein-free
supernatant, was incubated for 5 min at 37 oC and reaction was
initiated by the addition of 0.6 U of sorbitol dehydrogenase.

The relative fluorescence due to NADH formation was
measured in a fluorometer with an excitation wavelength at
360 nm and an emission wavelength of 452 nm. Sorbitol
standards, ranging from 0.2-9.0 µg/ml, were analyzed by the
same to generate a standard curve.
Statistical analysis: The data were expressed as mean ±
standard deviation. Mean values were compared by one-way
ANOVA with post hoc tests of least significant difference
method. Differences between comparison groups were
considered to be significant where p<0.05. Correlations were
calculated to study relationship of ALR2 and sorbitol with
other variables. P values were also calculated for ALR2 in
these groups.

RESULTS
Data on mean age, duration of diabetes, levels of glucose,
glycosylated hemoglobin, ALR2 activity, and sorbitol with
respect to gender distribution for nondiabetic control,
diabetics without retinopathy (DNR) and diabetics with
retinopathy (DR) groups are summarized in Table 1. There
was no significant difference (p>0.05) between male and
female subjects in all three groups with respect to the

TABLE 1. CLINICAL AND BIOCHEMICAL FEATURES OF THE STUDY SUBJECTS

Group/
parameter

Nondiabetic Diabetes without retinopathy Diabetic retinopathy

Male Female Male Female Male Female
Age (Years)
Mean
n
S.D.

54.37
43
12.925

56.00
23
12.803

50.91
64
11.394

49.09
100
9.242

53.09
122
10.188

54.49
76
7.431

Glucose (mg/dL)
Mean
n
S.D.

110.50
43
25.060

104.22
23
17.9

210.92
64
111.06

217.91
100
101.50

244.15
115
97.70

251.22
76
106.73

Duration (Years)
Mean
n
S.D.

0.00
43
0.000

0.00
23
0.000

5.26
64
4.200

6.79
100
4.850

9.43
115
6.073

11.04
76
6.673

HbA1C (%)
Mean
n
S.D.

5.20
20
1.77

5.11
13
1.27

7.90
14
1.95

7.48
26
2.26

8.40
42
2.64

8.24
24
1.68

ALR2 (units/g Hb)
Mean
n
S.D.

2.49
43
1.60

3.6
23
2.3

3.60
64
2.23

3.5
100
2.36

4.62
122
3.05

4.67
76
2.69

Sorbitol (μg/mL)
Mean
n
S.D.

2.9
14
0.99

3.0
10
1.4

3.4
10
1.4

3.8
27
1.0

4.5
26
1.7

5.3
17
2.3

The distribution of age, random glucose, duration of diabetes, glycosylated hemoglobin (HbA1C), ALR2 activity and sorbitol
levels between male and females in nondiabetic control, diabetes without retinopathy (DNR) and diabetes with retinopathy (DR)
groups. The data (mean ± standard deviation (SD)) indicate no significant difference between the genders. (n = number).
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measured parameters. Therefore, the pooled data for men and
women in respective groups were considered for subsequent
analysis.

As can be seen from Figure 1, erythrocyte ALR2 activity
in the DNR group was not significantly different from
nondiabetic control (p>0.05). Interestingly, ALR2 activity in

the DR group was significantly different not only from the
control group but also from the DNR group (p<0.05) (Figure
1). However, the ALR2 activity ranged from 0.2 units/g Hb
in the control group to 18.6 units/g Hb in the DR group with
considerable overlap between the groups. Therefore, we
examined the data after distribution of individuals into one of

Figure 1. Erythrocyte aldose reductase
activity. Data represent mean ± standard
deviation of aldose reducatase (ALR2)
activity in nondiabetic control (n=66)
and diabetics without diabetic
retinopathy (DNR; n=164) and those
with diabetic retinopathy (DR; n=182).
Asterisk (*) designates statistical
significance (p<0.05) in comparison to
the other groups.

Figure 2. Percentage distribution of
aldose reductase activity levels. Aldose
reductase (ALR2) activity is distributed
into <3, 3–6, 6–9, and >9 units/g Hb
subgroups in nondiabetic control, and
diabetics without diabetic retinopathy
(DNR), and diabetics with diabetic
retinopathy (DR). Percentage
distribution of ARL2 activity with <3
units is significantly (p<0.05) different
between the groups. Percentage
distribution of ARL2 activity with >9
units is significantly (p<0.05) different
between DNR and DR groups.
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four subgroups defined according to level of ALR2 activity
(Figure 2). Percentage distributions of ALR2 activity
indicated that most subjects in the control group had <3.0 units
(58%), about 33% had 3–6 units, and only 9% had activity in
the category of 6–9 units. Approximately 43% of the subjects
in DNR group had <3.0 units, 35% had 3–6 units, and about
18% had ALR2 activity in the category 6–9 units. Whereas
most of the DR subjects (46%) had 3–6 units of ALR2 activity,
a substantial proportion (20%) had 6–9 units activity, and
those with >9.0 units of ALR2 activity were found
predominantly in this group (6%). These results suggest that
prevalence of DR is associated with higher ALR2 activity.
However, there was no significant difference in ALR2 activity
between NPDR and PDR (4.36 units; n=114 vs 4.78; n=84).

We further measured the levels of sorbitol, the product of
ALR2-mediated reduction of glucose, in a subset of subjects
in all three groups. While the levels of sorbitol were found to
be higher in the DNR group as compared to control group, the
difference was not statistically significant (p>0.05). However,
sorbitol levels were significantly (p<0.05) higher in the DR
group as compared to both the DNR and the control groups
(Figure 3). Increased levels of sorbitol in DR patients were
consistent with the higher ALR2 activity in DR patients.
Activity of ALR2 was not correlated with age, glucose,
diabetes duration, and HbA1C levels in all three groups
(control, DNR, and DR; see Table 2) as well as with pooled
data. Similarly, levels of sorbitol did not correlate with age,
glucose, diabetes duration, and HbA1C levels in all three
groups (Table 3) as well as with pooled data. However, as
Figure 4 demonstrates, ALR2 activity was correlated with
sorbitol levels (r=0.188; p<0.05) . As with ALR2 activity,

there was no significant difference in sorbitol levels between
NPDR and PDR subjects (4.80 mg/mL; n=41 vs 5.02; n=27).

DISCUSSION
Although uncontrolled hyperglycemia is the major factor, the
link between diabetes and susceptibility to various secondary
complications has not been unraveled. The polyol pathway of
glucose metabolism is activated when intracellular glucose
levels are high [31]. The activation is immediately linked to
hyperglycemia and occurs prominently in tissues that develop
complications [31,32]. In addition, polymorphisms associated
with regions flanking the ALR2 gene have been implicated in
human susceptibility to DR and other diabetic complications
[21,22]. There is also a strong evidence to show that diabetic
complications including DR are associated with increased
oxidative stress [5], and activation of polyol pathway is known
to contribute to oxidative stress [33]. Evidence for the
involvement of ALR2 in DR comes from studies that
demonstrated ALR2 was present in different cell types of

TABLE 2. CORRELATION OF ALDOSE REDUCTASE ACTIVITY WITH OTHER CLINICAL VARIABLES

Variables Correlation coefficient values
Nondiabetic Diabetes without

retinopathy
Diabetic retinopathy

Age −0.181 −0.015 0.047
Glucose 0.030 −0.021 0.001
Duration — −0.049 0.016
HbA1C 0.092 −0.177 0.051

Correlation of aldose reductase (ALR2) activity with age,
glucose, diabetes duration, and glycosylated hemoglobin
(HbA1C) in different groups indicate all these correlates are
not significant with ALR2 activity at p>0.05.

Figure 3. Erythrocyte sorbitol levels.
Data represent mean ± standard
deviation in nondiabetic control (n=31)
and diabetics without diabetic
retinopathy (DNR; n=44) and those with
diabetic retinopathy (DR; n=52).
Asterisk (*) designates statistical
significance (p<0.05) in comparison to
the other groups.
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retina [17-20]. In addition, disruption of the ALR2 gene leads
to a reduction in lesions associated with DR in a diabetic
mouse model [34]. However, studies with ARI have yielded
inconsistent results against DR or diabetic-like retinopathy in
experimental animals [14,35] and in clinical trials to assess
efficacy against various diabetic complications [36].
Nevertheless, ALR2 remains an intriguing candidate/target
for the treatment of secondary complications. Hence, the role
of the polyol pathway vis á vis ALR2 in the pathogenesis of
diabetic complications, particularly DR, requires further
investigations from various angles.

The present study investigated the functional state of
erythrocyte ALR2 in DR patients in comparison with DNR.
The results demonstrated that the activity of ALR2 is
significantly higher in DR patients as compared to DNR
patients. Earlier studies had focused on enzyme activity and
protein levels of ALR2 in diabetic complications in humans
[reviewed in 22]. In type 1 diabetes, patients with the highest
ALR2 activity were found to be four times more likely to
develop diabetic microvascular complications than those
whose activity was similar to normal. Oishi et al. suggested
that increased prevalence of DR is correlated with increased
erythrocyte AR protein levels, particularly the prevalence of
DR in patients who have diabetes for fewer than 10 years
[25]. A correlation between erythrocyte ALR2 protein levels
and diabetic cataract, particularly posterior subcapsular
cataract, has also been reported [37]. However, in these
studies ALR2 levels were determined by ELISA and not by
catalytic activity. The underlying assumption behind these

studies was that erythrocyte ALR2 might reflect ALR2 in
pericytes and lens, the vulnerable cell types in DR and
cataract, respectively. The best way to assess the functional
role of ALR2 in DR is to determine ALR2 in retinal pericytes
and capillaries. However, a noninvasive procedure is not
currently available to make such measurements. Therefore,
we and others used erythrocytes as a surrogate tissue for
enzyme measurements.

Increased oxidative stress has been linked to the
development of diabetic complications [5] and altered redox
homeostasis is known to affect ALR2 activity. For example,
oxidation of cysteine residue under oxidative conditions
modulates ALR2 activity [38]. Thus the specific activity of
the protein may also be critical for the development of diabetic
complications. The results of the present study show that
higher activity of ALR2 is associated with prevalence of DR.
On the other hand, we found no significant difference in ALR2
activity between NPDR and PDR, indicating higher ALR2
might be involved in the initiation of disease, but not in the
progression, which needs further investigation. However,
there was a large variation in ALR2 activity, and there was
considerable overlap of activity between nondiabetic control,
DNR, and DR groups. Nevertheless, percentage distributions
of ALR2 activity indicate that a substantial number of subjects
in the DR group had activity in the category of 6–9 units, and,
most important, >9.0 units of ALR2 activity was found almost
exclusively in this group.

Development of DR and other microvascular
complications are generally linked to diabetes duration and

Figure 4. Correlation between
erythrocyte sorbitol levels and aldose
reductase activity. Correlation
(r=0.188) between erythrocyte sorbitol
levels and aldose reductase (ALR2)
activity in control, diabetics without
diabetic retinopathy (DNR), and
diabetics with retinopathy (DR) was
found to be significant at p<0.05.
Correlation was done for those samples
in which sorbitol was determined.
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patient age [25,39-41]. It is estimated that DR develops in
more than 75% of diabetics who have had diabetes for 15–20
years. Interestingly, the higher ALR2 activity in the DR group
in the present study was not associated with diabetes duration
and patient age. This observation suggests that ALR2 activity
might serve as an independent risk identification factor for
DR, irrespective of duration of diabetes and age of the patient.
In this study, we found a substantial number of DR patients
whose duration of diabetes was less than 15 years: Of 198 DR
patients in our study, 28% had been diabetic for <5 years, 35%
for <10 years, and 35% for >15 years. This may have
implications in the development of DR in Indian context. Even
though the prevalence of microvascular complications of
diabetes-like retinopathy is comparatively lower in the Indian
populations, the age of onset of diabetes in this part of the
world is much earlier [2,42]. The impact of early onset
diabetes and development of complications with shorter
duration of diabetes needs to be addressed. We also note that,
in contrast to studies [41,43,44], we did not observe an
association between HbA1C and prevalence of DR in our
study population. Furthermore, the increase in ALR2 activity
in DR group was not associated with HbA1C levels. A
previous study also reported that while the protein level of
ALR2 in erythrocyte was associated with DR, there was no
correlation between enzyme levels and age, duration of
diabetes, fasting blood glucose, and HbA1C in patients with
T2D [45]. The interindividual variability of ALR2 protein
content has been shown to be associated with variation in
polyol pathway metabolites [46], which could be associated,
at least in part, to the prevalence of diabetic complications. A
significant proportion (30%) of DR patients in our study were
shown to have >6 units of ALR2 activity, whereas most of the
DNR patients and nondiabetics had <6.0 units activity.
Although relatively few of our study participants had ALR2
activity above 9.0 units, the strong association of these high
enzyme levels with the DR group suggests that elevated
erythrocyte ALR2 activity may represent a significant risk
factor for the susceptibility of diabetic subjects to develop DR.
Further, the possibility that patients in DNR group with 6–9
units activity might eventually develop DR needs further
investigation.

TABLE 3. CORRELATION OF SORBITOL LEVELS WITH OTHER CLINICAL VARIABLES

Variables Correlation coefficient values
Nondiabetic Diabetes without

retinopathy
Diabetic retinopathy

Age 0.067 −0.033 −0.146
Glucose 0.087 0.012 −0.047
Duration — −0.208 −0.015
HbA1C 0.047 0.297 0.130

Correlation of sorbitol levels with age, glucose, diabetes
duration, and glycosylated hemoglobin (HbA1C) in different
groups indicate that all these correlates are not significant with
sorbitol levels at p>0.05.

Measurement of ALR2 activity by the
spectrophotometric method using DL-glyceraldehyde as the
aldehyde substrate could lead to confusing results because
other aldo-keto reductases are active with this substrate [47].
Thus, we measured sorbitol level in a subset of samples as an
index of ALR2 activity since ALR2 is unique among human
aldo-kedo reductases in its ability to catalyze the NADPH-
dependent conversion of glucose to sorbitol [48]. As with
ALR2 activity, the sorbitol levels were significantly higher in
the DR group as compared to the control and DNR groups
(Figure 3). It should be noted that there was linear correlation
between sorbitol levels and ALR2 activity irrespective of the
group to which they belonged (Figure 4). Moreover, the
contribution of other aldo-keto reductases to the apparent
ALR2 activity is likely to be minimal because of the good
correlation between apparent ALR2 activity levels and
sorbitol levels in RBC. In addition, sorbitol levels were not
associated with diabetes duration, age, glucose, and HbA1c
levels of the subjects. As with ALR2 activity, we observed
that sorbitol levels were also not related to the severity of DR,
as there was no significant difference between NPDR and
PDR subjects.

Based on the results of the current study, it is reasonable
to hypothesize that some diabetics with ALR2 activity levels
above a certain “threshold” level might be predisposed to
develop DR. However, validation of this hypothesis will
require additional longitudinal studies. Additional studies are
needed to determine whether ALR2 activity and sorbitol
levels in erythrocytes may have value as quantitative traits that
need to be considered, along with other known risk factors
(including genetic susceptibility), to assess risk for
development of DR.

Although the beneficial impact of strict glycemic control
on prevention of diabetic complications has been well
established, most individuals with diabetes rarely achieve
consistent euglycemia. Hence, agents that can substantially
delay or prevent the onset and development of diabetic
complications, irrespective of glycemic control, would offer
many advantages. In principle, ARI can be included in this
category. Although clinical trials of ARI have failed to
demonstrate efficacy against various diabetic complications,
trials of other compounds such a protein kinase Cβ inhibitor
have also failed to show efficacy against progression of DR
[49]. Thus, intensive research continues to identify and test
both synthetic as well as natural products for their therapeutic
value to prevent the onset as well as progression of diabetic
complications [29,50-52].
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