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Comparing the inductive biases of simple neural networks and Bayesiamodels
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Abstract to be found by training neural networks by gradient descent
Understanding the relationship between connectionist and Comparable to those produced by Bayesian inference (that is
probabilistic models is important for evaluating the compati- are thenductive biases of these approaches related)? Finally,
bility of these approaches. We use mathematical analyses and how compatible are the inductive biases of neural networks
computer simulations to show that a linear neural network can . S > .
approximate the generalization performance of a probabilis- With those of structured probabilistic models? We provide
tic model of property induction, and that training this network  positive answers to the first two questions, showing that a
by gradient descent with early stopping results in similar per- - simple neural network can always approximate a probabilis-
formance to Bayesian inference with a particular prior. How- . - . . .
ever, this prior differs from distributions defined using discrete iC model of property induction, and that training this netk
structure, suggesting that neural networks have inductive bi- using a gradient descent algorithm is similar to Bayesian in
ases that can be differentiated from probabilistic models with  farence with a particular prior distribution. However, wsoa
structured representations. . L . ! .

show that there remains a significant difference between thi

§§g”s” ‘;{rdosr;e?;yiﬁﬁﬁ‘cnﬂg“n"de"”g' connectionism, inductive bi- prior and distributions based on discrete representations

Introduction Mathematical analysis

Cognitive scientists use different mathematical fornmais Our mathematical analysis focuses on comparing the model
to model human cognition. Understanding the relationship&f property induction used by Kemp and Tenenbaum (2009;
between these approaches is critical to resolving questiorie€nceforth KT09) with a linear neural network.

about the nature of the mind. Recently, researchers have d
bated whether probabilistic or connectionist models of-cog .
nition provide better prospects for making progress in ¢ogn '€ KT09 model assumes that we want to capture the joint
tive science (Griffiths, Chater, Kemp, Perfors, &Tenenbaumd's’t”bm'qn _Of the elements of co_ntlnuomst-dlmensmnal
2010: McClelland et al., 2010). One of the key issues in’eCtorsx indicating the value of a single property fisrob-

1o e g
this debate is that many probabilistic models are defined i#eCts- This distribution, p(x), results from a diffusion pro-

terms of structured, discrete representations, while eonn C€SS 0n a graph. The diffusion process induces a multieariat

tionist models use continuous, graded representationsaha Gaussian distribution omwith mean zero and covariance

mimic discrete structure when needed. A possible resalutio -1

would be to view probabilistic and connectionist models as Zgiscrete= <A+ ozl) 1)

lying at different levels of analysis (Marr, 1982), with mal

networks a continuous approximation to Bayesian inferencevhereA is the Laplacian of the graph, bei@jy— | for a graph

over discrete representations. However, this requirezbest with adjacency matrixz, andl is the identity matrix.

lishing whether such an approximation is possible. Now consider a linear neural network modeThis model
To explore this issue, we use the problem of property in+epresents an observétix M matrix (the values oM prop-

duction as a case study for investigating the relationship b erties forN objects) as the product

tween probabilistic models of cognition and neural network

Property induction — inferring the properties of a novel ob- X=YZ (2)

ject based on the properties of other objects — has played a,n . . . .
i L . whereX is theN x M matrix of observed objectsy is an
key role in the debate between probabilistic and connectlonN « K matrix, andZ is aK x M matrix. In this modelz is

ist models. An influential probabilistic model explains hu- . . )
P P }he representation of the set of properties on a hidden layer

man property induction in terms of Bayesian inference over . . . . .
discrete representations such as graphs and trees (Kempvéélth K units (as might be encoded in the weights from an

Tenenbaum, 2009), whereas a successful connectionist mode 1This formulation is a little counter-intuitive, as the set of objects
explains people’s inferences via continuous represemsti is fixed but the set of properties is left open (ie. new properties tend

: to be observed, rather than new objects). This differs from the most
learned by gradient descent (Rogers & McClelland, 2004). intuitive way of thinking about the problem for a neural network,

We use a combination of mathematical analysis and comin which the network is trained to predict the properties that objects
puter simulations to address three questions. First, casbap have, with the set of properties fixed and the set of objects left open.

abilistic model with a discrete representation for a setlof o -Neural network models typically use non-linear activation func-
tions at the hidden layer. This complicates the analysis, but we hope

jects be approximated by a neural network model with conyg expiore the consequences of such non-linearities in future work.
tinuous representations? Second, are the solutions tht te We return to this point in the Discussion.

Setting up the problem
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input layer to the hidden layer, with localist coding of peop  approximate this outcome, with the approximation improv-
ties at the input layer) and encodes the relation of properties ing as the number of samplésincreases. Thus, the answer
over objects on the hidden lay&A single property vector is  to our first question is that the probabilistic model can be ap
generated by multiplying the weight matriX, by the vector proximated arbitrarily well by a neural network.

representing the property, to obtainx = Yz. The model is Establishing that our simple neural network with continu-
trained by finding weight¥ and representatior’sthat min-  ous representations can potentially approximate the gener
imize the error in reconstructing. ization performance of a probabilistic model using a ditzre

i i L representation raises a different question: Will theseetsod
Approximating generalization also perform similarly when learning those representation
It should be clear that the linear neural network can pedsfect from data? That is, if we train a neural network model on a
reproduce any observed matdx providedK is greater than finite number of samples from(x), will it behave similarly
or equal to the rank oK. This follows simply by thinking to a probabilistic model that infers a discrete represantat
about Equation 2 as a set of equations for the entries in from the same data via Bayesian inference? This is a question
where the entries iV andZ are free parameters — we can re- about the inductive biases of these two different appraache
produceX if we have enough free parameters to construct itgo learning — those factors that lead a learning algorithm to
linearly independent columns. The more interesting gaesti favor one solution over another. In the context of the prop-
is thus how the network will generalize. That is, what does iterty induction problem, this question reduces to whether th
predict for a new property based on what it has learned fronpredictions produced by the neural network after trainiilty w
the observed properties? be similar to those resulting from Bayesian inference with a

Analyzing generalization requires making assumptiongarticular prior distribution.
about the nature of the vector for a novel property. If . L
we assume that follows a multivariate Gaussian distribu- Gradient descent and Bayesian inference
tion with mean zero and covariancél, we can obtain some Gradient descent is a standard approach to training a neural
results that provide connections between the neural nktwometwork, where the weights are assigned small random values
and Bayesian approaches. This is a reasonable assumpti@fid then modified in the direction indicated by the gradiént o
if the weights from the localist node from an unobservedthe error repeatedly for a fixed number of training iteragion
property to the hidden layer are assumed to be independentlf this section, we summarize results showing that thisilear
drawn from a Gaussian distribution. This will be true if the ing algorithm behaves similarly to Bayesian inference with
initial weights are drawn from a Gaussian, but as we showVishart prior on covariance matrices.
below it is also consistent with the implicit prior assumgd b~ For simplicity, we start by considering the problem of up-
gradient descent algorithms. datingz for a single property, keepiny fixed. In this case

We can determine the prediction the neural network willthe goal is to find the such thatYz minimizes the squared
make for a new property by asking howis distributed given ~ error in reconstructing the corresponding property vegtor
Y. Using standard Gaussian identitigsyill be multivariate ~ We can write the objective function 48 — Yz)T (x — Yz).
Gaussian with mean zero and covariance Differentiating, we obtain the weight update rule

_ T
2 continuous= 0'§YYT 3) Az=nY (x—Yz) (4)

wheren is a learning rate (assuming simultaneous updates).

For comparison with performing Bayesian inference, we
can derive the estimate far that we would obtain by as-
suming a Gaussian prior and finding the posterior mean (or
the maximum a posteriori value, as they are the same in this
case). The Bayesian estimate is

sincex is a linear function of a Gaussian random variable.
Characterizing the distribution onimplied by this model
makes it straightforward to construct a condition underolhi
the model produces the same joint distribution as a proisabil
tic model based on any discrete graph structure: This will oc
cur whenZgiscrete= Zcontinuous 1hiS can be used to establish
a direct connection between the neural network’s reprasent o2
tions for the objects and the graph Laplaciarin particular, z2=(YTY + 0%' )Y Tx (5)
Y can be obtained from the eigenvectorg\ofif the network z
is trained from a matrixX of property values sampled from wherea? is the assumed noise variancexin

p(x), then any learning algorithm that produces a represen- |nspecting these two equations, we can see that they use
tation corresponding to the principal componentsXowill  two different forms ofegularization — approaches to control-

T . . . . ling the complexity of the solution found by learning. Ndura
Since the model is linear, this interpretation can be “transposed L . . .

to give another interpretation, wheYeis the hidden layer represen- network training typically starts with weights close toagso

tation of the objects and the weights for the properties. This is a weights grow over successive passes through the data. Stop-

more intuitive way of formulating the model and is also more con-; g early keeps weights smaller. In the Bayesian solution
sistent with connectionist models of these phenomena, as advocatag_‘dq . 2 2 o . o '
by Rogers and McClelland (2004). However, this interpretation is a1'€ ratio ofay to o7 controls the size of the weights: o€ is

litle harder to use to get intuitions about the results shown below. small relative too? (i.e., we are more confident in our prior
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beliefs than the observed data), the corresponding term caach graph. The distributions on graphs we considered were
dominate the matrix that is inverted, reducing the weightsstochastic graph grammars that generate trees, chaids, gri
proportionally. Despite this difference in regularizatistyle, and partitions (Nagl, 1986; Kemp & Tenenbaum, 2008) and
there are cases where they will produce similar resulisidf  Erdos-Renyi random graphs (Eéd & Rényi, 1959).
close to zero an¥ TY is close tacl, thenz will equal z after Our analysis proceeded as follows. For each prior distri-
one pass of gradient descent with= 1/(c+ %g)_ bution over povariancg matrices, we generélfeshmplgs of
More generally, it is possible to show that the solution pro-'\I x N covariance matrices, .. ’.ZT' From gqch covanance
duced by a linear neural network trained by gradient descelﬂlamx’ we sampled &l x M matrix X containing the vaIiLines
with early stopping is equivalent to generating a Bayesgan e Of M features for each of the objects K =[xy, ..., Xm], Xi ~
timate with a Gaussian prior (Fleming, 1990; Santos, 1996)N(0,Z)). We then computed the marginal probability of these
When applied to Equation 4, these results indicate that folsSamples under a Wishart distribution, integrating ovepéts
|0wing this |earning ruleis equiva'ent to assuming a Gms| rameters. Th|S |et us determine hOW C|Ose|y diﬂerent |Sri0r
prior onz with mean zero and a covariance determinecyby relate to the Wishart distribution.
and the number of iterations of learning. To compare the different approaches to learning, we ap-
While the analysis presented so far has focused cife plied the neural network and Bayesian models to all of the
linearity of the network means that learniivgcan be ana- Samples ofX we had produced. We fourdY ™ at differ-
lyzed in the same way. A Gaussian priorvimplies thatthe €Nt stopping points and compared this to the true covariance
implicit prior onYY T assumed by a neural network trained by matrix for data generated from each of the different priors.
gradient descent with early stopping is a Wishart distidoyt The goal of this first analysis was to evaluate whether the
the distribution obtained by taking the product of two matri Neural network performed best with data whose covariance

also obtained an estimate of the covariance matrix from each

Summary of mathematical results sample using Bayesian inference with each of the different

The key results of the mathematical analyses presenteiin thPrior distributions and calc#llated. the distance betweeséh
section are that the generalization performance of the KTo§Ovariance matrices andy *. This allowed us to examine
model can be approximated by a linear neural network moddiow the distance betwgen_the solutions produced by the neu-
with continuous representations, and that the inductias bi ral network and Bayesian inference was related to the extent
induced by training the neural network by gradient descento Which the priors were similar to a Wishart distribution.

with early stopping should be similar to that of Bayesian in'CaIcuIating marginal Wishart probabilities
ference with a Wishart prior on covariance matrices. These

results make two clear predictions: Neural networks should© Perform our analysis, we must be able to calculate how
perform best when learning from data whose covariance me£/0S€ @ distribution is to a Wishart. We did this using the
trices are Wishart distributed, and we should expect them tg'arginal probability of a set of covariance matrices under a

perform more similarly to Bayesian models that use a WishartVishart, integrating over the parameters of the distrénuti
prior than to models with other priors. The result is a measure of the “Wishartiness” of the covari-

These results also raise a question: How similar is théNCce matrices, which can be applied to samples from differen

Wishart distribution to distributions that are based omrtie  diStributions in order to evaluate their similarity to a Wast.
representations? If the distributions are similar, thenith Assume we have a Wishart distribution with degrees of

ductive biases of neural networks and probabilistic modeldreéedomb and covariance cent& and thatSis drawn from
with discrete representations will also be similar, megnin &n inverse-Wishart distribution with parameterand‘¥. We

that these approaches need not be seen as lying in oppositigfW covariance matrices,, ..., 27 from this distribution.
to one another. If the distributions are different, therr¢he 1N€ marginal probability oFs,..., 2t givena, b, and¥is

are opportunities to empirically separate these accourds a T
we cannot view simple neural networks as a scheme for ap- p(Z1,...,27) = /dS p(Sja, W) rlp(zt|b7 S)
proximating the solutions identified by probabilistic mtde t=

Simulations which yields

We explored the issues raised by our mathematical analy-

ses through simulations comparing the performance of heuraps, . 51) =

networks and Bayesian models with different prior distribu rN(a/2)(rN(b/2))T|w+th:lth

tions. The set of priors that we used included the Wishart

distribution as well as several distributions based on diswherel'n(-) is the multivariate gamma function,

crete structures. Following the KT09 model, we included N

distributions on covariance matrices by defining a distribu MN(X) = AN(N-1)/4 I—l F(x+(1—)/2)
=1

MN(3(a+bT) W2, =N D72
a+bT)/2

tion on graphsG and then deriving a covariance matrix for
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Average distance of YY7 from the true covariance matrix and the probability of generating the proposed state fram th
‘ | | current state and vice versa (Metropolis, Rosenbluth, Rose
200 i bluth, Teller, & Teller, 1953). This probability was annedl
by raising the probability to the powey1, with t decreasing
according to a logarithmic schedule.

Graph grammar priors. We used four priors based on
graph grammars, defining distributions on graphs that eorre
pond to trees, grids, chains, and partitions (Nagl, 1986 Ke
& Tenenbaum, 2008). These random graph grammars are

‘ ‘ ‘ generative processes that start with a single node andé¢hen r
0 500 1000 1500 2000 . .

Training epochs place a random node in the current graph with two nales

times, wherel ~ Geo(8). Different graph structures result

Figure 1: Average distance between the true covariance ma&om using different rules for connecting the parents antl ch

trix and the covariance matrix learned by the neural networkdren of the old node to the new nodes (for the tree grammar,
there is also a latent node that cannot contain any objects),

and different rules for connecting the new nodes resultfin di
andT (x) is the generalized factorial function (Boas, 1983).ferent generated graph structufesifterwards, the objects
This is the ratio of the normalization constants for a Wishar are assigned to nodes uniform|y at random (except not to la-
and an inverse-Wishart distribution, due to conjugacy. tent nodes). For example, if the rule for node replacement
does not create any edges, then the random graph grammar
generates random partitions of the objects.

To convert the graph to a covariance matrix, we follow

250

Distance
—_
wn
(=]

—_
[=3
(=}

W
(=}
T

Neural network learning

The linear neural network is defined by two matricebt aK
matrix Y that maps the properties into the latent space and i ) o
K x M matrix Z that maps the latent space to the objects. Weﬁemp and Tenenbaum (2008) by first forming an “entity

trained the neural network by gradient descent on erroh wit graph contamlng\I +L nodes, wher_e the fir3d nodes rep-
resent each object and are only directly connected with an

Ay = n(x —yZ)ZT (6) edge to their assigned node. Second, we complete the “entity
graph by connecting the laktnodes to each other accord-

and Equation 4 as the weight update ruléswas set to one ing to the result of the previous graph replacement process.
more than the rank of the object matdx The weights were Next, we form aN + L x N + L adjacency matrixVV, where
initialized to normally distributed random values with mea 1/w;j ~ Exp(B) if there is an edge between nodesdj (rep-
0 and variance 0.05. We used a learning mt# 0.0025 and  resenting how close nodésind j are). Otherwisew;j = 0.
2000 training epochs (full passes through the data), whicfThis specifies & +L x N+ L covariance matrix for the mul-
were determined by pilot simulations. At each possiblestoptivariate Gaussian distribution over the latent and olberv

. . . -1
ping pomt.(epoch), we recoTrdédYT. Figure 1 s_hows the variables,(E —W + CT12| whereE is aN +K x N+K di-
average distance betwe#ty ' and the true covariance ma- agonal matrix withe; = ¥ ;wi; and is theN +K x N+ K

trix as & function of epoch, which initially decreases areith identity matrix. The hidden nodes can be marginalized out

rises again due to overfitting. analytically, resulting in théN objects being normally dis-
Priors and Bayesian inference tributed with covariance matrix given by the fifdtx N ele-
ments of the original covariance matf>Bayesian inference
was performed with code fromnt t p: // char | eskenp. com
which uses stochastic search to find an estimated maxienum
Wishart prior.  The first Bayesian model used a Wishart posteriori covariance matrix for a given set of d&ta.

prior with covariance center and degrees of freedom= " £rq5s-Renyi priors.  In addition to the four random graph
1000. Unfortunately the Wishart is not conjugate to the m“"generators from Kemp and Tenenbaum (2008), we used a
tivariate Gaussian, so we found an estimate of the cova&iancsiandard random graph generator: thet&rényi random
matrix under this prior using stochastic search with Sim“‘graph (Erds & Rényi, 1959). Each object is represented by

lated annealing. The state of the search (a covariancexpatriz node. Unlike the node replacement grammars, we gener-
was initialized to a random draw from the posterior distribu

tion using an inverse-Wishart prior (for details, see Gelma ___

Carlin, Stern, & Rubin, 1995). A new proposed state was 4For simplicity, we assumed the graph structures are undirected.
then drawn from a Wishart distribution centered at the aurre elefrlwteiﬁt?(ff(mg?rg\t/%rnsoet% g\‘/;tntgfcg r?%ﬁgmva'em tothe st N

state withb + N degrees of freedom. A Metropolis-Hastings 6The parameters were set o= 0.4 (edge length parameter),
acceptance rulg was used to decide whether to replace the _q 4 (covariance matrix regularization parameter), @rell —
current state with the proposed state, based on the produgts (simplicity bias), which are similar to the values used by Kemp
of two ratios of their (unnormalized) posterior probaib#t and Tenenbaum (2008). We used the “45" speed setting.

We considered eight different prior distributions, requdrus
to use three different algorithms for Bayesian inference.
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ate random graphs by directly connect pairs of objects with  Average distance YYT from Bayesian estimators with different priors
an edge with probabilityp. Once the graph is generated,
the implied covariance matrix is found by the same proce-
dure as before (except we do not need to perform the ad- S0 ®ER (p=0.1)
ditional marginalization step as the initial covariancetnma 45/ ®ER (p=09)

is alreadyN x N). We considered priors corresponding to
p € {0.1,05,0.9}. Covariance matrices with these priors = ,,|
were estimated using stochastic search by simulated anneal Partition Grid
ing. The covariance matrix was initialized to arandomd&d % 55| ®12® hain
Rényi covariance matrix and proposals were generated frorﬁ‘
the current state by removing or deleting a random number of 3¢}
edges (such that the number of edges in the proposals were
binomially distributed). The search procedure and anngali 25}
schedule were otherwise the same as for the Wishart prior.

®ER (p=0.9)

stance

@ Wishart

. . . 20 : : : : ‘
The distance between covariance matrices -3000 -2500 -2000 -1500 -1000 -500

Log Wishart marginal likelihood
To analyze the results produced by the neural network and

Bayesian models, we needed a measure of the S"m"am}'figure 2: Average (smallest possible) distanc&¥f' from

O.f two matrices. we usgd a dlst_ance metric betwegn POSie Bayesian estimates of the covariance matrix, plotted as
tive definite matrices (valid covariance matrices) defingd b function of the logarithm of the Wishart marginal likelifto

Forstner and Moonen (1999) for the corresponding prior.

n
d(Z1,%) = H_Zlnz)\i(zl,zzh (7)
= computed the distance betwe¥Y T and the Bayesian es-

whereA(Z1,2,) are the generalized eigenvalues2afand  timates for each object set, then averaged this quantigsacr
%, being the roots ofAZ; — 2| = 0. When computing these all object sets. The results are shown in the third row of
distances, we used the best stopping point for the neural netable 1. As predicted, we found a negative correlation be-
work (the one resulting in minimal distance). Looking asros tween the distance between estimates and the extent to which
epochs, we found the value ¥¥ T with the minimal distance the corresponding prior is consistent with a Wishart distri

to the true covariance matrix and to the eight covariance mabution (as reflected by the marginal probabilities in the firs
trices estimated by Bayesian models with different priors.  row of Table 1) withr = —0.92 andr = —0.83 for Pearson’s
product-moment and Spearman’s rank-order correlation, re

Simulation procedure and results spectively! A scatterplot showing the relationship between
For each prior, we generated 101 data sets that each COfhese two quantities is shown in Figure 2.

sisted of T = 100 covariance matrices. From each matrix, The variation in how well the neural network approximated

we sampled the values & = 100 features foN =10 ob- 0 pavegian estimates with different prior distributioss
jects. We then computed the marginal probability of the co-

. . X informative about the inductive biases of neural networks
variance matrices generated by each prior under the assUMpag structured probabilistic models. The neural network wa
tion they were drawn from a Wishart distribution, with the

. . closest in performance to Bayesian inference with a Wishart
median result shown in the top row of Table 1. As expected P 4

: . . : ) -~ prior, which is purely continuous. All priors based on dis-
the W|shart priorwas the most compatible with aW'Shartd'S'crete structure, in the form of an underlying graph, resulte
tribution. The discrete priors produced results that weee r

bl . ith the Wishart distributi hile th in statistically significantly worse performance. Withivese
SEOSE? l)!écor.mstentvt\.nt the Wishart 'Sctj” UIc'jon'Wlt' eth f discrete priors, those based on graph grammars were better
rdos-renyl generative processes produced resufts that we proximated than the Edd-Renyi priors. This pattern of

poorly characterized as Wishart. We used the data set wit sults is interesting from the perspective of the debate be

the median Wishart value for the subsequent analyses. tween probabilistic and connectionist accounts of prggart

Next, we trained neural networks on the objectseen- duction, which has focused on discriminating the predictio

erated f.rom each covariance ma.trix sampled from each of tth probabilistic models using representations based ophgra
telght priors, and COTPUI(_T_(:‘the dlslttance bimé‘éﬁ atr;]d the rammars from neural networks. Our results suggest that thi
rue covariance matrix. The resulls are shown in th€ secon ay be harder than discriminating probabilistic modeld tha

row of Table 1. Performance was statistically significantlyassume arbitrary discrete structure, as in theEi@ényi pri-
better when the true covariance matrices were drawn fron&rs from neural networks '

the Wishart, consistent with our mathematical analysis.

Finally, we found B ian estim fth variance ma=—=_._ . _ . . .
ally, we found Bayesian estimates of the covariance ma "We confirmed that this correlation could not be fully explained

trix for each object seX using all eight priors. Stochas- py the norm of the matrices, but plan on running further simulations
tic search was run for 20000 iterations in each case. Weo rule out other possible alternative explanations for our results.
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Table 1: Properties of different priors and comparison afiggnt descent and Bayesian learning

Graph grammar priors Eéd-Renyi priors

Wishart Grid Chain Tree Partition p=01 p=05 p=09

Marginal probability
under Wishart -567.87 -867.68 -884.95 -946.22 -1073.10 78ZB! -2940.98 -2919.44

Distance ofyY T from

true covariance 14.85 333 3419 323 33.97 3399 3179  33.3%
Distance ofYY T from

Bayesian estimate 2353  36.0# 36.07 36.09% 36.1¢ 50.2F  46.2¢ 53.2%

Note: In each row, different superscripts indicate stiatdlly significant differences in scores (Bonferrgni .05).

Discussion els may require going beyond simple neural networks that use
general-purpose learning algorithms.
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