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V. CONCLUSIONS I. T H E  TLS-LP METHOD 
This correspondence presents the extension of bispectral analy- 

sis from one-dimensional random processes (e .g . .  time series) to 
two-dimensional random processes. Use of the symmetry proper- 
ties of the bispectrum reduces the number of computations consid- 
erably. Numerical simulations demonstrate the ability of 2-D bi- 
spectral estimation to detect quadratic phase coupling between 
waves traveling in different directions. By windowing the data. bi- 
coherence leakage can be reduced. 
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On the Total Least Squares Linear Prediction 
Method for Frequency Estimation 

YINGBO HUA A N D  TAPAN K. SARKAR 

Abstract-The total least squares (TLS) linear prediction (LP) 
method recently presented by Rahman and Yu and the equivalent im- 
proved Pisarenko’s (1P) method by Kumaresan are reviewed and gen- 
eralized by the whitening approach. The resulting whitened-TLS-LP 
method yields higher estimation accuracy than the TLS-LP. 
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The TLS-LP method was recently presented by Rahman and Yu 
[ I ]  for frequency estimation from a short data sequence. They de- 
rived this method along the line of linear prediction (LP) [SI and 
compared i t  to the modified Prony’s (MP)  method by Tufts and 
Kumaresan [6], [8], [ IO] .  In both the above methods, a set of pre- 
diction coefficients, denoted by the elements of the vector c = [ cg. 
. . . , cI. - , ] , IS chosen to predict a noisy vector -yo from a set 
of noisy vectors, denoted by the columns of Y = [ yL yL - I . . . 
y , ] .  ( T h e  superscript “T” denotes the transpose.) In  the M P  
method, Y is perturbed by E, such that rank [ Y + E, ] is equal to 
a given number, say M (  s L ) ,  and 1 1  E, / I  (Frobenius norm) is min- 
imum. The  prediction vector c is then obtained as the minimum- 
norm least square error solution to ( the  exact solution may not exist 
since the noisy vector yo may not be in the span [ Y + E, ] 1: 

T .  

( Y  + E , ) c  = -yo. ( 1 . 1 )  

( 1 . 2 )  

That solution is (analytically) 

c = - ( Y  + El)’yo. 

The superscript + ” denotes the Moore-Penrose pseudoinverse 
[ I l l .  

In the TLS-LP method, both Y and yo are perturbed by E? and 
e2 ,  respectively, such that rank [ Y  + E,, yo + e,] is equal to the 
given number M ( s L )  and I /  E,, e? 1 1  f‘ is minimum. Then, the pre- 
diction vector c is obtained as the minimum-norm solution to 
( the exact solutions always exist since yo + e2 is in  the span [ Y + 
E211 

( Y  + E , ) c  = - ( y o  + e?).  ( 1 . 3 )  

(1.4) 

That solution is (analytically) 

c = - ( Y  + E ~ ) +  ( y o  + e?). 

The term “TLS” in the TLS-LP is due to the fact that both Y and 
yo are perturbed in the minimum way ( a s  opposed to the fact that 
in the M P  method, only Y is perturbed in the minimum way) .  

The TLS approach has recently been applied to ESPRIT [ 121, 
[13] where two matrices, say Y ,  and Y?, are perturbed by E, and 
E4 such that rank [ Y ,  + E3, Y2 + E 4 ]  is equal to a given number 
and / I  E,, E411F is minimum. It should be noted that in [13], the 
term TLS was originally due  to a different formulation though the 
above interpretation of T L S  (as adopted in [ 1 11) yields the equiv- 
alent result [14]. 

As shown in [ 111, the T L S  approach can be implemented by 
using singular value decomposition (SVD).  Clearly, the vector c‘7 
= [ c T ,  I ]  given by (1.4) is the minimum norm vector (with the 
last element to be one) from the null space of [ Y + E,, yo + e 2 ] .  
This null space is simply [ 1 I ]  the span of all the right singular 
vectors, except the M principal ones,  of the noisy matrix Y’ defined 
by [ Y, yo] .  Let the right singular vectors of Y’ be U,. U,, . . . , 
UM, U M +  I, . . . , uL + ,, corresponding to the L + 1 singular values 
in decreasing order. Then, null space of [ Y + E 2 ,  yo + e , ]  = span 
[ U M +  I 3  . . . , uL + I 1. As shown in [ I ] .  the minimum norm vector 
c’  is 

where u,, ,  denotes the j t h  element of the vector U,, and the super- 
script ‘‘ * ’’ denotes the complex conjugation. Equation (1.5) re- 
quires the L + I - M right singular vectors of Y .  

11. T H E  L P  METHOD 
The L P  method was proposed by Kumaresan in [IO] a s  an im- 

provement of  Pisarenko’s method. Pisarenko’s method [IS] is based 
on the structure of the autocorrelation matrix of  a stationary data 
sequence. For the short data sequence problem, Kumaresan re- 
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placed the autocorrelation matrix by the self-product ( i . e . ,  the co- 
variance matrix Y H  y ’ ;  the superscript “H” denotes the conjugate 
transpose) of the data matrix Y ’ .  Then, he chose such a vector that 
has minimum norm (with its last element to be one) and is orthog- 
onal to the M principal eigenvectors of Y” Y’ ( i .e . ,  the M principal 
right singular vectors of Y ) .  This minimum norm vector is then 
used as linear prediction coefficients to retrieve the frequencies as 
in the TLS-LP and the M P .  

Since the span [U,, . . . , U,] is the orthogonal complement of 
the span [U,,,+ ,, . . . , U,-+ the minimum norm vector used in 
the L P  is equivalent to that used in the TLS-LP. But the difference 
is computational. In terms of the M principal singular vectors, u I .  
. . . , uM, the minimum norm vector c is given [ 101 by 

Equation (2.1) requires the M right singular vectors of Y and an 
M X M matrix inverse. (In the above equation, the pseudoinverse 
is the right inverse since the matrix has independent rows.) Com- 
paring (2.1) and (1.5) implies that if M is much smaller than L - 
M then the L P  is preferred, or otherwise the TLS-LP may be more 
efficient in computation. 

In  191, the L P  method is generalized for a multiple-measurement 
problem ( i .e . ,  using the multiple snapshots of an array output for 
wave direction finding). That method is often referred to a s  the 
Mini-Norm method. 

111. THE WHITENED TLS-LP METHOD 
To  present the W-TLS-LP, we write the measured data sequence 

as 
M 

Y L  = ,E b,zf + nL (3.1) 
, = I  

where k = 0, I ,  . . . , N - 1 and z ,  = exp (a, + j w , )  = exp (aI 
+ j27rf;). z,’s are called the signal poles, a,’s the damping factors, 

A’s the frequencies, and b,’s the amplitudes. nA is the noise. Ac- 
cording to the linear prediction approach, one tries to fit yA into a 
polynomial of degree L 2 M a s  follows: 

for k = L ,  L + I ,  . . . , N - 1. N - L 2 M is assumed. But due 
to the noise nL, (3.2) cannot be true in general. The prediction er- 
rors can be put into the matrix form 

or equivalently 

e = [ y L .  . . . , y o ]  c‘ = Yc’  (3.4) 

e = C y  (3.5) 

(3.3) and (3.4) can also be written as 

where 

(3.6) 

y = [yo, . V I .  . . . . V N - I I T .  (3.7) 

If the L-degree polynomial 

has the M roots at { z,; i = I ,  . . . , M } then e = C n  where n = 

[no.  n,, . . ’ , n N - ,  1 ‘. With the assumption that n1 is the white 
noise ( i . e . ,  E { n }  = 0 and cov { n ,  n }  = 20’1 where I is the 
identity matr ix) .  e is not white because cov { e ,  e }  = 2 a 2 C C H .  
Now it  is natural to whiten e by weighting e with ( C C H ) - I ”  to 
have 

It is understood that for any noise sequence of known covariances, 
the whitening approach can be similarly applied. Following the ap- 
proach of the TLS-LP or the LP,  we look for the minimum norm 
vector c’ in the “near” null space of R,,. = Y H ( C C H ) - I Y .  (The  
“near” null space of the matrix R,, is the null space of the per- 
turbed matrix R,<. + 6 R,, of rank M where ( 1  6R,, 11 is minimized. 
The number M of the complex poles can be estimated by the num- 
ber of the dominant singular values of Y or the eigenvalues of 
Y H  Y .  ) The W-TLS-LP method performs iteratively as follows. 

, 0. 11‘. (This is just a natural 
choice. Other initializations would also work. Intuitively, the closer 
to the true minimum norm vector is c ’ ,  the faster the iteration con- 
verges. Good initial vector c’ could be obtained from a priori in- 
formation about the signal frequencies. In the noiseless case, any 
initial c’ leads to the exact solution at the end of the first iteration.) 

2) By using (1.5) or (2.1) in terms of the L + 1 eigenvectors of 
R,,., find the minimum norm vector c: (with its last element equal 
to one) in the “near” null subspace (or called the noise subspace) 
of R,*,. For the undamped sinusoids, replace Rlc by the forward- 
backward version [6], [7] R,I.,FB = Y H ( C C H ) - I Y ’  + 
P Y “ ( C C H ) - ’  Y * P  to obtain higher accuracy. P is the permuta- 
tion matrix with ones on its antidiagonal axis and zeros in other 
places. 

3) If [IC,’ - c , ’ - ~  1 1  < E (a small number),  go  to (4). Otherwise, 

4) Find the M signal poles from the L roots of p ( z )  as in the 
TLS-LP, and take the angles of the signal poles as the estimates of 
27rA. ( I n  the noiseless case, p ( z )  has M roots exactly equal to the 
signal poles and L - M extraneous roots of magnitude larger than 
one 161, P I ,  [lo]. 1 

For the first iteration, R,$. = Y H Y  (o r  R,v,FB = Y H Y  + 
P Y T Y ’ * P  for the undamped signal) and hence the solution vector 
c’ from step 2 is the TLS-LP or the L P  solution vector. Also note 
that if L = M ,  this algorithm is the same as the iterative quadratic 
maximum likelihood (IQML) algorithm [2]-[4] without additional 
constraints on c‘. The constraints introduced in [2]-[4] d o  not ap- 
ply to the damped signals. Hence, the W-TLS-LP is a generalized 
algorithm of both the TLS-LP and the IQML.  

In Figs. 1-4, we compare the 200-run white noise simulation 
results of the TLS-LP and the W-TLS-LP. R,,.,tB was used. The 
signal parameters were chosen to be the same as those in [2], i .e . ,  
N = 25, n = 2 ,  b,  = I ,  bz = exp ( j7 r /4 ) ,  f l  = 0.52,  and fi = 

0.5. Note that in these figures, the performances of the W-TLS-LP 
using only two iterations are shown. W e  should point out that in 
this simulation the W-TLS-LP algorithm with the forward-and- 
backward weighted covariance matrix I?,,,, F B  converged for almost 
all runs within 20  iterations for all choices of L ,  and the converged 
results were found to be better than the nonconverged most of the 
time. Since the computation time is linearly proportional to the 
number of iterations, two iterations cases as shown in Figs. 1-4 
should be of more significance for comparison to the TLS-LP. One  
can see that the W-TLS-LP has higher frequency estimation accu- 
racy both in bias and variance than the TLS-LP over all prediction 
order L ,  and that the weighting (or whitening) has more effect on 
lower order prediction than higher order prediction. 

Compared to the IQML as in [2] where conjugate symmetry con- 
straint was applied on c’ at each iteration, the W-TLS-LP with any 
choice of L does not perform that well. ( T h e  conjugate symmetry 

I )  c’ is initialized as [ 0, 

go to (2). 
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Fig. 1 .  10 log,, ( I / v a r  ( f,)) versus L, where SNR = 10 log,, 
( 1 1  b ,  l12/2a’) = 30 dB. The stars are for the W-TLS-LP with two iter- 
ations, and the squares for the TLS-LP. 

-0 .  OODZ 
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Fig. 2. Bias ( f,) and bias ( f 2 )  versus L, where SNR = 30 dB. The stars 
are for the W-TLS-LP with two iterations, and the squares for the 
TLS-LP. The bias ( f, ) and bias ( fi) for the W-TLS-LP are overlapped 
in this plot. 
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Fig. 3. 10 log,, ( I /var ( fi ) )  versus L. where SNR = 10 dB which is in 
the threshold region for this example. The CRB would be drawn way 
above this plot. 

constraint cannot be applied to c’ with L > M .  ) For the damped 
sinusoids, the conjugate symmetry constraint [2] does not apply,  
and hence the W-TLS-LP method with L = M is the IQML method. 
Based on our  simulation results, the W-TLS-LP method (with L > 
M ) generally has close (or slightly poorer) estimation accuracy a s  
(or than) the IQML method (with L = M ) in the damped case. 
Table I shows the 200-run simulation results for the following 

2 5 B I ,  20 23 

Fig. 4. Bias ( f,) and bias ( fi) versus L, where SNR = I O  dB. 

TABLE I 
200-RUN SAMPLE BIASES A N D  DEVIATION FOR THE W-TLS-P APPLIED TO A 

DAMPED SIGNAL (WHERE CRB CORRESPONDS TO DEVIATION) 

L Bias(fl Biaslal Devlfl Devlal CRB(L) CRB(al 

L O . l l r 3 D - 3  0.536D-C 0 . 1 2 2 D - 2  0 . 7 1 6 D - 2  I I 
21IQMLl  0 . 1 9 1 D - 3  0 . 1 6 8 D - C  O . l l i r D - 2  0 . 7 0 3 D - 2  0 . 1 2 O D - 2  0 . 6 7 O D - 2  

6 
8 

0.llOD-3 0.16OD-3 0 . 1 3 1 D - 2  0 . 7 2 7 D - 2  
0.130D-3 - 0 . 1 2 O D - 3  0 . 1 2 7 D - 2  0 . 7 5 5 D - 2  

10  0 . 1 3 3 D - 3  0 . 1 1 6 D - 3  0 . 1 2 3 D - 2  0 . 7 8 2 D - 2  
1 2  0.587D-C 0.288D-3 0 . 1 3 2 D - 2  0 . 7 8 0 D - 2  
1 P  0.550D-B 0 . 3 8 3 D - 4  0 . 1 C 9 D - 2  0 . 8 3 6 D - 2  

~ ~ . . ~  ~ 

damped signal: 

yk = exp ( a k )  cos ( 2 r f k )  + onl (3.10) 

where k = 0, 1, . , 25 ,  CY = - O . O S , f =  0.2, and U = 0.1. nk 
is the pseudowhite Gaussian noise with unit deviation. E = 
was chosen and each run converged within 10 iterations. Note that 
this signal has M = 2 signal poles. So, for L = 2,  the results are 
actually for the IQML. It can be observed that the sample devia- 
tions for L 5 12 are quite robust to the variation of L.  The biases 
of the e s t ima ted fa re  smaller for L > 2 than for  L = 2 in this 
example. But overall, the I Q M L  is a better method (in noise sen- 
sitivity and computational) than the W-TLS-LP although the 
W-TLS-LP provides much higher accuracy than the TLS-LP ad- 
vocated in [ I ]. 

IV. FINAL REMARKS 
This correspondence has shown that a)  the TLS-LP recently pre- 

sented in [ 11 is (analytically) equivalent to the L P  earlier proposed 
in [ 101 and the only difference between the above two methods IS  

computational (either one of them may be preferred to the other, 
depending on whether M << L - M or not) ;  b) the TLS-LP pro- 
vides much better estimation accuracy after one simple step of 
whitening; and c) the W-TLS-LP is a generalized algorithm of the 
IQML but it fails to compete against the IQML in overall perfor- 
mance. 

Our simulation was carried out in double precision FOR- 
TRAN-77 on VAX-8810. The  IMSL routines were used to perform 
eigendecompositions, compute the polynomial roots, and to gen- 
erate the pseudo-Gaussian random numbers. 
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Elimination of Exponential Interference from Finite- 
Length Discrete Signals 

OMRY PAlSS 

Abstract-Discrete exponential (or modal) signals satisfy homoge- 
neous difference equations. We find matrices that when multiplied with 
a vector of samples of any given signal, completely eliminate from it 
an exponential interference that satisfies a given homogeneous 
difference equation (HDE). All other components of the given signal 
(which are  orthogonal to the solutions of that HDE) are  unaffected. 

I .  INTRODUCTION 
Discrete exponential (or modal) signals are discrete sequences 

that satisfy homogeneous difference equations (HDE)  and form an 
important class of signals often encountered in signal processing. 
Real exponentials, polynomials, sine waves, and their combina- 
tions are all exponential signals. 

In the elimination problem we are given an observed signal x ( n ) :  

x ( n )  = u(n) + e ( n )  ( 1 )  
where u ( n )  is the desired signal and ~ ( n )  is the interference. We 
are interested in the case where the signals are of finite extent, e ( n )  

Manuscript received July 2 2 ,  1989; revised December 7, 1989. 
The author was with the Department of Electrical Engineering. Tech- 
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is an exponential signal, and u ( n )  does not have any component 
that satisfies the HDE corresponding to  e ( n ) .  

The extraction problem is practically the same where the expo- 
nential signal e (  n )  is the desired signal. Those problems.are equiv- 
alent because after eliminating some interference, it can be re- 
trieved by subtracting the output vector from the input vector. 

The traditional filtering methods, such a s  notch filtering, have a 
considerable transient effect and therefore the elimination is good 
for only part of the resulting filtered sequence. Here we are looking 
for exact solutions having no transients. 

The  concept of eliminating signals appears in [ l] ,  where a func- 
tion elimination filter (FEF)  was used to eliminate a sine-wave in- 
terference from a given signal, but at the same time alter all of the 
other components of that signal. This was achieved by passing the 
observed signal through the appropriate second-order HDE whose 
solution is the sine wave. 

In [2], an interference that satisfies a homogeneous differential 
equation was separated from a signal, provided the signal (without 
interference) satisfied another homogeneous differential equation, 
when the coefficients of one of the equations were known. It was 
shown how the same method could be used for discrete signals with 
difference equations replacing differential equatiofis. 

Given the observed sequence x (  n )  n = 0, 1, * . . , N - 1 and 
the coefficients h, i = 1, . . . , M, our  aim is to eliminate from 
x ( n )  the interference e ( n )  that is known to be a solution of the 
following HDE:  

f(n) + h l f ( n  - 1 )  + . * .  + h w f ( n  - M )  = 0 ( 2 )  

without affecting the other components of the sequence U ( n )  and 
without any a priori information about these other components. 

W e  know that such e ( n  ) is a linear combination of  M indepen- 
dent solution sequences e, ( n  ), j = I ,  2 ,  . . . , M. These solutions 
are of the form of exponentials, polynomials, sine waves, or inter- 
multiplications of  them. 

The basic idea is to consider all finite sequences as vectors and 
find the projection matrix, A, onto the space orthogonal to the SO- 
lutions of the H D E .  Explicitly, 

Ae = 0 and Au = U so Ax = U ( 3 )  

where e = [ e ( O )  - - .  e ( N  - I)]‘ ,  U = [ u ( O )  . . . u ( N  - I)]‘, 
a n d x  = [ x ( O )  . . . x ( N  - I)]‘. 

An alternative method for constructing A will be given if we 
know any set of basis sequences e, ( n  ) for the interference signal. 
In this case there are numerical advantages in the construction pro- 
cess. 

11. CONSTRUCTING THE ELIMINATION MATRIX FROM THE 
DIFFERENCE EQUATION 

Referring to (2), we see that there are actually L = N - M 
equations ( n  = M, M + 1, . . . , N - 1 )  that can be written in 
matrix form 

Hf = 0 (4) 

where 

H i s  banded of dimensions L X N a n d  of  rank L. W e  denote e , ,  e?.  
. . .  , e,,, the M solution sequences for (2) put in vector form. 

Proposition 1 :  The null space of  H is spanned by e , ,  e2,  . . , 
e,,,. 




