
UC San Diego
Technical Reports

Title
Automating Cross-Layer Diagnosis of Enterprise Wireless Networks

Permalink
https://escholarship.org/uc/item/2zd533c0

Authors
Cheng, Yu-Chung
Afanasyeve, Mikhail
Benko, Peter
et al.

Publication Date
2007-03-09

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zd533c0
https://escholarship.org/uc/item/2zd533c0#author
https://escholarship.org
http://www.cdlib.org/

Automating CrossLayer Diagnosis of Enterprise Wireless
Networks

YuChung Cheng, Mikhail Afanasyev, Péter Benkö†, Patrick Verkaik,
Jennifer Chiang, Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

ABSTRACT
Modern enterprise networks are of sufficient complexity that even

simple faults can be difficult to diagnose — let alone transient out-

ages or service degradations. Nowhere is this problem more appar-

ent than in the 802.11-based wireless access networks now ubiq-

uitous in the enterprise. In addition to the myriad complexities of

the wired network, wireless networks face the additional challenges

of shared spectrum, user mobility and authentication management.

Not surprisingly, few organizations have the expertise, data or tools

to decompose the underlying problems and interactions responsi-

ble for transient outages or performance degradations. In this pa-

per, we present a set of analysis techniques and models to precisely

determine all sources of data transfer delay due to media access

and mobility in 802.11 networks — from the physical layer to the

transport layer — as well as the interactions among them. While

some sources of delay can be directly measured, many of the delay

components, such as AP queuing, backoffs, contention, etc., must

be inferred. To infer these delays from measurements, we develop a

detailed model of MAC protocol behavior, both as it is described in

the 802.11 specification as well as how it is implemented in vendor

hardware. Combined with comprehensive traces of wireless activ-

ity taken from an enterprise network, we produce a complete de-

lay breakdown for packet transmissions and pinpoint problems that

constrain connectivity or limit performance.

1. Introduction
“Is your wireless working?” The familiarity of this refrain under-

scores both our increasing dependence on ubiquitous Internet con-

nectivity and the practical challenges in delivering on this promise.

The combination of unlicensed spectrum and cheap 802.11 silicon

have driven a massive deployment of wireless access capability –

which started in the home and was soon followed by the workplace.

Today over two-thirds of U.S. corporations provide WiFi-based un-

tethered Internet connectivity [9]. However, there is a significant

difference between installing a single wireless access point (AP) in

an isolated home – effectively a simple range extender for a wired

Ethernet interface – and wireless deployment throughout an enter-

prise. The latter may comprise hundreds of distinct APs, carefully

sited and configured in accordance with an RF (radio frequency)

†Benkö is a visiting researcher at UCSD from the Traffic Analy-
sis and Network Performance Laboratory (TrafficLab) at Ericsson
Research, Budapest, Hungary.

site survey and ideally managed to minimize contention, maximize

throughput and to provide the illusion of seamless coverage. More-

over, this intricate machinery is not managed by the 802.11 proto-

col family itself – which, in all fairness, was never designed for the

level of success is has experienced. Instead, the burden falls to the

network administrator who must manage the interactions between

the RF domain, link-layer dynamics, dynamic addressing and ad-

dress binding, VLAN setup, as well as the myriad complexities of

the wired network itself.

Given this complexity, it is not surprising that even simple faults

can be difficult to diagnose – let alone transient outages or ser-

vice degradations. Thus, when a network manager is asked, “Why

was the network flaky 10 minutes ago?” the answer is inevitably,

“I’m not sure. It looks fine now.” While this problem is not unique

to 802.11-based networks, these environments impose additional

complexities that are unique and qualitatively harder to diagnose.

Among these issues, wireless networks interact via shared spec-

trum in ways that may not be observable directly (contention and

interference) and yet can produce significant end-to-end delays or

packet losses. Further complicating such analysis, the 802.11 stan-

dards allow considerable “latitude” in the media access protocol

and consequently vendors have produced a wide range of “interpre-

tations” – many of which have significant impact on performance.

Finally, the promise of seamless coverage is not a property pro-

vided by 802.11 itself. Instead, most enterprise deployments imple-

ment this property using an undeclared “layer 2.5” patched together

from portions of the 802.11 protocol, combined with VLANs, ARP,

DHCP and often proprietary mobility management and authentica-

tion systems. Unsurprisingly, this Rube-Goldberg contraption has

its own unique failure modes.

In truth, even it is technically feasible to diagnose such systems,

this process is highly labor intensive and only cost effective for

the most severe problems. Even then, the range of interactions and

lack of visibility into their causes may stymie manual diagnosis.

In one recent episode in our organization, wireless users in a new

office building experienced transient, but debilitating, performance

problems lasting over a year, despite extensive troubleshooting by

local experts and vendor technicians.1

We believe that such diagnosis must be automated, and that net-

works must eventually address transient failure without human in-

volvement. Network administrators have neither the range of do-

main expertise, nor the visibility into underlying processes, nor the

data processing ability to understand why their networks are un-

reliable. As a first step in this direction, we have built an on-line

1We believe we have diagnosed their problem using our system –
a subtle bug in the AP vendor’s implementation – but it is easy to
understand in retrospect why its discovery was challenging to find
through trial and error.

analysis system that processes raw wireless trace data and can ac-

curately model the impact of protocol behavior from the physical

layer to the transport layer. In particular, we demonstrate techniques

to infer the causes of link-layer delays and the effect of mobility

management protocols. Using our system we investigate the causes

of transient performance problems from traces of wireless traffic

in a four-story office building. We find that no one anomaly, fail-

ure or interaction is singularly responsible for these issues and that

a holistic analysis may in fact be necessary to cover the range of

problems experienced in real networks.

The remainder of this paper is structured as follows. We first re-

view the literature we build upon and related efforts in Section 2.

We then outline the many potential sources of service disruption –

the gauntlet faced by each 802.11 packet – in Section 3. Sections 4

and 5 describe our techniques for modeling media access and mo-

bility management behavior respectively, including an analysis of

the problems identified at our location, followed by our conclu-

sions.

2. Related Work
Ever since wireless local-area networks such as 802.11 have been

deployed, researchers have sought to understand how these systems

behave and perform, based on empirical observations. The monitor-

ing systems used to make these observations have increasingly ex-

panded both in complexity and scope over time. Early systems used

existing infrastructure, such as the wired distribution network and

the APs, to record wireless traffic and network characteristics [3,

16]. Later systems deployed small numbers of dedicated monitor-

ing nodes, sometimes concentrated near the APs, other times dis-

tributed throughout the network, thereby pushing the frontier of ob-

servation into the link-layer domain [13, 18, 22]. Recent efforts

have substantially scaled monitoring platforms to observe large,

densely deployed networks in their entirety [1, 7], providing the

ability to observe every link-layer network transmission across lo-

cation, frequency, and time [7].

These monitoring systems have been used to directly measure a

number of interesting aspects of 802.11 behavior and performance,

ranging from application workloads and user mobility at the high

level to wireless loss, rate adaptation, and handoff delay at the link

layer [12, 14, 19] and even physical layer anamolies [21].

Not all interesting wireless performance and behavior, however,

can be directly measured. Thus, researchers have developed various

techniques to infer network characteristics. Perhaps the most com-

mon wireless network characteristic inferred is user location [2, 5,

8, 11]. Numerous techniques infer user location based upon AP as-

sociation, received signal strength, etc.

Other techniques infer more detailed network events and charac-

teristics, such as link-layer loss and the transmitters of packets lack-

ing MAC addresses [5, 7, 18], co-channel interference and overpro-

tective APs [7], misbehaving and heterogeneous devices [7, 10, 5],

root causes of physical-layer anomalies [21], and regions of poor

coverage [5]. We greatly expand upon these detailed efforts and

present techniques to infer critical path delays [4] of media access

for every packet, such as AP queuing delay and media contention

(mandatory and regular backoff), as well as techniques that infer

management delays for supporting intermittent and mobile devices

for every user.

To infer critical path delays for wireless transmissions, we de-

velop a detailed model of 802.11 media access (Section 4). Numer-

ous models have been developed previously to estimate various as-

pects of 802.11 performance, such as the overall network capacity

as governed by the 802.11 protocol [6], the maximum throughput of

a flow in an 802.11 network [15], and the saturation throughput and

expected access delay of contending nodes [17]. Such models are

typically analytic. To make analysis tractable, they explicitly make

simplifying assumptions such as absence of transmission errors,

uniform transmission rates and packet sizes, infinite node demand

and steady contention for media access, uniformly random proba-

bility of collisions and interference, etc. As a result, these models

may be useful for understanding the limits of 802.11 performance

under idealized conditions, but omit analysis of important aspects

of real networks that we infer with our model: the magnifying ef-

fects of bursty traffic that averages and expected values conceal;

the complexities of workload, protocol, and environment that lead

to correlated and unexpected interactions.

Three recent systems are closely related to the goals of this pa-

per. Jigsaw uses monitoring nodes distributed throughout a univer-

sity campus building to capture every wireless event in the building

across location, channels, and time [7]. Jigsaw combines and syn-

chronizes traces from all radios into a single, unified trace, but in

its original form provides little analysis for diagnosing problems.

We have downloaded the Jigsaw software for use in our environ-

ment, and extended it with our models and analyses for diagnosis.

DAIR uses wireless USB dongles attached to desktop machines in

an enterprise wireless network to measure wireless events through-

out the network [1]. DAIR applications install filters at the wireless

monitors to trace information of interest and store it in an central

database; applications (inference engines) then use this data to per-

form analyses. Very recent work on DAIR develops management

applications that take advantage of client location, such as identi-

fying regions in the network experiencing consistently poor cover-

age [5]. Our goals are similar in that we develop analyses to aid

network management, but our approach is to base analysis on a

global understanding of network behavior across all protocol lay-

ers. The MOJO system develops tools and techniques to identify

the root causes of physical-layer performance anomalies, such as

broadband interference and the capture effect [21]. While we are

interested in the effects of physical-layer issues, we identify them

as just one cause among many across the interacting protocol lay-

ers.

3. Problems in the life of a packet
There are numerous opportunities for disrupting or degrading a

user’s connectivity in an 802.11 network. To illustrate these chal-

lenges and motivate the analyses we perform subsequently, this sec-

tion provides a quick primer on the many and varied sources of

delay and packet loss.

3.0.0.1 Physical Layer.
The physical layer presents the first obstacle for an 802.11 frame

hoping to be delivered. Sharing the 2.4Ghz spectrum are a wide

range of non-802.11 devices, ranging from cordless phones to mi-

crowave ovens. An 802.11 packet in flight may be corrupted by

such signals or it may simply by overpowered at the receiver. Al-

ternatively, the sender may detect the presence of RF energy on the

channel and defer transmission — incurring delays until the inter-

fering source is silent.

For example, Figure 1 illustrates the impact of using a microwave

oven. The figure depicts the reception of physical error frames over

time (the y-axis depicts time in microseconds while the x-axis is

the time). The characteristic pattern results from the wave dou-

bler circuit used in consumer microwave ovens to convert AC line

power into microwave energy. In this design, a capacitor is alter-

nately charged and discharged according to the phase of the AC

line voltage — only generating output during the negative phase of

the input sine wave. Roughly speaking a U.S. oven will generate

Figure 1: Physical error frame pattern during microwave oven

use.

swept broadband interference for 8ms (half of the 60Hz cycle) fol-

lowed by a similar period of quiescence. This pattern is relatively

straightforward to detect although there can be considerable differ-

ences between manufacturers. In all cases, in-range 802.11 radios

will defer transmission until the medium is idle, building queues

and adding delay in the process. Frames in flight when the oven is

turned on may be corrupted, depending on the receiver power of

the microwave signal.

Such physical layer interactions are not restricted to non-802.11

devices. The 2.4Ghz ISM band combined with the nominal 22Mhz

channel bandwidth used by an 802.11 transmitter can easily over-

lap neighboring transmitters on different channels. Indeed, while it

is received wisdom that 802.11 has three “non-overlapping” chan-

nels, this statement is false in practice. While the spectral mask for

802.11b stipulates a power drop of 50dB at 22Mhz off the center

frequency, this is insufficient to prevent interference into adjacent

“non-overlapping” channels. For example, the Atheros AR5004 802.11

chipset offers an 802.11b power output of +18dBm and a receiver

sensitivity of -90dB at 11Mbps (-95dB at 1Mbps). Thus, while a

transmitted signal on 802.11 channel 1 will fall off to -32dBm, it

easily received by a radio tuned to 802.11 channel 6. This situation

is much worse for 802.11g since its OFDM modulation scheme

produces an even looser spectral mask — losing only 30dB at 22Mhz

off center. In practice, we observed such adjacent channel inter-

actions routinely and we have witnessed many successful packet

receptions between radios in which the transmitting and receiving

radios were separated by as much as 50 Mhz (i.e., channel 1 to

channel 11).

3.0.0.2 Link Layer.
The 802.11 link-layer presents another potential performance land-

mine for user packets. In particular each 802.11 access point man-

ages two critical functions: media access and bindings between in-

dividual stations (clients) and APs. Each of these functions can in-

duce additional and, at times, unnecessary delays. We consider each

in turn.

Transmission delays. Sources of link-layer transmission delay

include queuing at the AP, protocol delays such as mandatory back-

off on transmission, exponential backoff on loss, packet transmis-

sion time (a function of the encoded frame rate and the packet

size), and contention in the network when users and APs overlap

and share a contention domain (or due to interference as mentioned

above). A single packet may be delayed by all of these factors and,

due to retransmission, it may be impacted multiple times. More-

over, it is common for 802.11 drivers to code data at a slow rate af-

ter a loss, although this may have unintended negative effects since

it takes longer to transmit and excerbates channel utilization.

For example, consider a packet received by an AP at time t. It

may be delayed in a queue waiting for previous packets to be trans-

mitted (each experiencing their own media access delays and re-

transmission overheads). When it reaches the head of the queue it

must perform a mandatory backoff, waiting between 0 and 15 slot

times (a normal 802.11b slot is 20µs, although 802.11g permits the

use of a “short” 9µs slot time under certain circumstances). After

this it must sample the channel for the duration of a “DIFS” inter-

val (50 µs) before sending. If the AP detects a busy channel, it will

perform yet another backoff before commencing the transmission.

Finally, the packet is transmitted with a delay largely determined by

the sender’s choice of rate. However, if the sender does not receive

the acknowledgement from the receiver, the sender would perform

another backffoff before retransmission. Of course, even this expla-

nation is over simplified and any real analysis must also deal with

delays from interacting protocol features like power management

and vendor irregularities (some vendors allow certain packets to be

prioritized in between retransmissions of a frame exchange). Un-

fortunately, most of the delay components at this level cannot be

observed directly since they depend on the internal state of the AP

which is not exposed via any protocol feature.

Management delays Another important source of overhead in

wireless networks broadly falls into the category of wireless man-

agement. 802.11 clients and APs are in a constant dance trying

to determine the best pairing. To address the issues of mobility,

clients continually scan their environment looking for a better part-

ner. APs respond to these scans, and additionally broadcast beacons

to nearby clients. If a client switches APs another set of exchanges

takes place that authenticates the client to the network and binds

the two (a process called association).

Additionally, APs deal with significant heterogeneity in their client

base, which includes distinct capabilities and configurations. Con-

sequently, a negotiation takes place between clients and APs about

which features are needed — 802.11b transmission, power savings,

etc. Unintuitively, the choice of a single notebook computer to as-

sociate with an AP can transform that APs behavior as it tries to

accommodate the lowest common denominator among its clients.

For example, Cheng et al. report that a single 802.11b client — even

one that is not transmitting — will force an AP into 802.11g “pro-

tection” mode, thereby degrading service for all 802.11g users. [7]

3.0.0.3 Infrastructure support.
APs are fundamentally bridge devices. In order to obtain Internet

connectivity a client must in turn acquire an IP address — typically

via DHCP — and the MAC addresses of next-hops to destinations

— typically via ARP. These protocols exhibit complex dynamics

in themselves, and their failure may isolate a station for some time.

Their use with 802.11 exacerbates their complexity since they are

used in specialized ways, frequently tied together with VLANs us-

ing proprietary mobility management software that authenticates

stations via a single-sign on interface and allows IP addresses to re-

main consistent as a client moves. There is no standard for imple-

menting this functionality and unsurprisingly their failure modes

are not well understood.

3.0.0.4 Transport Layer.
Finally, any underlying delays or losses are ultimately delivered

to the transport layer, usually TCP, which may amplify their effects

believing these behaviors to be indicative of congestion.

While the process described usually works, when it doesn’t it

can fail spectacularly and expose the user to significant response

time delays. It is the goal of this paper to systematize the analysis

of these issues to better understand the source of such transient

problems.

4. Media access model
In this section we describe a media access model for measuring

and inferring the critical path delays of a monitored frame transmis-

sion. The model consists of a representation of the wired distribu-

tion network, queuing behavior in the AP, and frame transmission

using the 802.11 MAC protocol. The goal of the model is to de-

termine the various delays an actual monitored frame encountered

as it traversed through the stages of the wireless network path. At

a high level, the model first determines a series of timestamps of

a frame as it traversed this path and was finally transmitted by the

AP. From these timestamps we can then compute the delays. Ta-

ble 1 summarizes the definitions of the timestamps and delays in

our model, and Figure 2 illustrates where in the network path they

correspond.

The model uses measurements of the frame both on the wired

network and the wireless network to determine some of these times-

tamps. The challenge, however, lies in inferring the remaining times-

tamps and, hence, delays. The inference techniques we develop,

along with the representations of AP queuing and the transmission

behavior necessary to perform the inferences, represent a key con-

tribution of this paper.

In the following sections we describe in detail our model compo-

nents and how we measure and infer these timestamps and delays.

We then show how the critical path delays determined by the model

can provide valuable, detailed insight into the media access behav-

ior of wireless users. Finally, we show how we can use the model

to diagnose problems with TCP throughput.

4.1 Critical path timestamps
Our system directly measures the timestamp of the packet as it

leaves the router on the wired distribution network, tw. A SPAN

port on the router for the building distribution network forwards

all packets to a tracing machine. The router forwards copies of the

packet both when it enters and leaves the router, and we define the

time of the packet when it leaves as tw.

To calculate delays we use observations of the packet on the

wired network together with observations of the packet on the wire-

less network. As a result, our system must match the packet from

the wired trace with the packet as observed in the wireless traces.

It compares the wired packet contents with wireless packets within

a one second window by converting frame formats from 802.11 to

Ethernet II. The window size is determined by the maximum wire-

less forwarding delay of a wired packet. Under heavy load the AP

can queue a packet close to one second. Most matches are one-to-

one, meaning one wired packet corresponds to wireless packet, but

there are cases for one-to-many matches. For instance, for broad-

cast frames like ARP request, one wired frame might match mul-

tiple wireless frames because all APs will forward the broadcast

frame in the wireless. Further more, broadcast frames like ARP re-

quests or NetBios are often sent in short bursts (2-5 packets) with

identical contents within one second. We match these frames by

matching the frame ordering in addition to matching the packet

payload. Another one-to-many case is the broadcast frames from

the client like DHCP discover messages. Such a message is first

sent by the client to its AP; it then is forwarded through the wired

network to all APs, then all APs forward the packet into the wire-

less again.

The next step is to determine when the AP has received the frame

from its wired interface, ti. Since we do not have taps on the APs or

control the AP software, we cannot directly measure this time and

instead must infer it. ti is not a constant offset from tw because APs

Wireless

Gateway

Wired/Wireless

Monitor

ABroadcast Q

PowerSave Q

Tx Q

T_i T_q T_h T_s T_eTime

D_ps D_q D_acc D_mac

T_w

Access Point

Figure 2: Representation of wired distribution network, queu-

ing behavior in the AP, and frame transmission. The arrows in-

dicate where in the network we measure and infer timestamps

as frames traverse the network, and the corresponding delays

we calculate.

Timestamp Definitions

ti AP receives frame from wired interface

tq Frame enters radio transmit queue

th Frame reaches head of transmit queue

ts First bit of the frame transmitted

te End of last ACK or estimated ACK timeout

Delay Definitions

dps tq - ti: AP power-save buffering delay

dq th - tq: AP (transmission) queuing delay

dacc ts - th: Media access delay to transmit first bit

dmac te - ts: MAC delay

ddcf te - th: DCF delay (dacc + dmac)

Table 1: Summary of timestamps and delays determined by the

media access model.

have different propagation latency from the router and AP ethernet

I/O delays depend upon packet size. For each AP, we estimate ti

by first measuring the distribution of the interval (ts − tw), the

difference between the wireless transmission time and the wired

timestamp of the packet. The minimum value of this distribution,

minus DIFS, should be the sum of wired network delay and AP

input processing delay.

From here, we determines the transmit queue timestamps of the

packet inside the AP, both when the packet enters the transmit

queue (tq) and when it reaches the head of the queue (th). We

model the AP as having three FIFO packet queues, the transmit

ready queue and two waiting queues. If the packet is broadcast or

multicast, the AP schedules it onto the broadcast queue; the AP

flushes this queue into the transmit queue after the next beacon

transmission. In addition, the Avaya APs always prioritize broad-

casts frames once they are scheduled on to the transmission queue,

even the AP is in the middle of a frame exchange. We will discuss

this effect in detail later in this section. If the packet is destined to a

power-saving client, the AP buffers it on a power-save queue. The

AP flushes the appropriate packets from the power-save queue into

the transmit queue when the client wakes up (by receiving a PSM-

reset data or management frame, or a PsPoll frame from the client);

for example, Intel clients typically sleep for 50ms and wakeup for

50ms. Otherwise, the AP places the packet directly on the transmit

queue.

It is critical to model the queuing behavior precisely to estimate

further wireless delays. For example, if we did not model packets

sent to clients in power-save mode correctly, they would appear to

be sent out of order and delayed at the AP for tens of millisec-

onds. We track whether clients are in power-save mode when pack-

ets for them arrive at the AP, by tracking either the PSM bit of client

frames in the wireless trace, or when beacons indicate that the AP

has buffered packets for clients (TIM). For broadcast, the 802.11

specification says an AP should deliver broadcasts at DTIM inter-

vals if power-saving clients exist because these clients only wake

up at that time. The Avaya AP uses the same DTIM interval as its

beacon interval (102.4 ms). In addition, the Avaya APs always do

this even if they do not have any power-saving clients. This effect

could lead to performance problems, which we will discuss later.

Based on the frame destination and client power status, we tag

each frame with the appropriate queue type. Subsequently, we can

estimate the time when the AP places the frame on the transmission

queue, tq. For a broadcast/multicast frame, tq is the time of the

latest beacon prior to its transmission in the wireless. For frames

destined to power-saving clients, tq is the time the client notifies

the AP that it has woken up by sending a frame with the PSM bit

off such as a PsPoll control frame. For the remainder of the frames,

tq = ti because the AP schedules them immediately after it has

received them from the wired interface.

Next, we infer the time when the packet reaches the head of the

queue, th, and the AP is ready to transmit it using 802.11 DCF. We

determine th under three conditions based upon the end time of the

previous transmission attempt, tpe. First, if the AP places the frame

on the transmit queue before the previous transmission completes,

then the frame experiences head-of-line blocking. We conclude the

frame reaches the head of the queue after the previous transmission

finishes. Thus th = tpe, and we label this frame as “head-of-line

blocked.” According the 802.11 standard, the AP must perform a

mandatory backoff at the end of each frame exchange regardless of

the transmission result. We can not directly measure this backoff

window but we know the maximum of this window from the stan-

dard. Therefore, if the frame enters the queue beyond the maximum

mandatory backoff window after tpe, the frame must find the trans-

mit queue empty and the AP can transmit immediately. Hence, th =

tq, and the packet is labeled as “no head-of-line blocking.” Finally,

if the AP places the frame on the transmit queue during the maxi-

mum mandatory backoff window of the previous attempt, the frame

may or may not experience head-of-line blocking by the previous

frames. Since this backoff window is very small (300 µs), less than

1% of the frames fall into this category. We assume the transmit

queue was empty at tq and the frame does not encounter head of

line blocking. Thus th = tq as well.

We determine the starting and ending transmission times of the

frame exchange, ts and te, directly from the synchronized trace.

The start time ts is the start of the first transmission attempt, in-

cluding the control overhead of RTS/CTS and CTS-to-self. The

end time te is the end of the frame exchange: the end of the ACK

of the last transmission attempt, including all retransmissions and

contention. For unacked unicast frames, te should be the scheduled

end time of the transmission (end of the NAV). However, the Avaya

AP will start sending the retry 60 µs (50 µs + SIFS) after sending

the previous data frame if it has not hear the ACK. This behavior

occurs only with 11b data frames (because 11g ACK takes only

28us). Consequently, for unacked unicast frames te is end time of

the data frame plus 60 µs.

Frames internally generated in the AP represent a special case

because we cannot observe when the AP generates the frames. For

example, we do not know when the AP has scheduled a scan re-

 0

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

 0 200 400 600 800 1000

F
ra

c
ti
o
n
 o

f
F

ra
m

e
 E

x
c
h
a
n
g
e
s

Microsecond

Figure 3: Access delay (dacc) distribution of one hour of frame

exchanges from an AP to a client doing a bulk TCP download.

sponse because there is no external information to correlate from

our wired trace. Fortunately, typically these frames are manage-

ment responses to client requests, such as scan responses and asso-

ciation/authentication responses. We assume that the AP generates

these responses and places them on the transmit queue (tq) imme-

diately after it receives the requests.

4.2 Critical path delays
Finally, we calculate the critical path delays as intervals between

timestamps. In particular, the buffering delay for power-saving clients

and broadcast frames is dps = tq - ti, the time from when the frame

reaches the AP and when the AP places the frame on the transmit

queue. We label broadcast buffering delay as power saving delay

because they are buffered for power-saving clients who periodically

wake up at beacon intervals. The AP transmission queuing delay is

dq = th - tq, the time between when the AP places the frame on the

queue and the time when it reaches the head of the queue (i.e., the

AP is ready to transmit it). After the frame becomes the head of the

transmit queue, ddcf is the time the AP takes to perform all DCF

operations to transmit the data Thus, dps + dq + ddcf is the total

time the packet spent in the wireless distribution network.

We further categorize AP queuing delay dq into three compo-

nents. When an AP places a frame on the transmit queue, we ex-

amine what kinds of frames are already on the queue. But we can

not measure the AP queue directly, we exam the AP queue by ob-

serving the previous transmitted frames from the AP. Based upon

the wireless transmission delays ddcf of each of these frames, we

break down AP queuing delay dq into delay caused by background

management frames such as beacons, scan responses, etc. (dqb),

unicast frames to the same client (dqs), and unicast frames to other

clients (dqo); dq = dqb + dqs + dqo.

ddcf includes the access delay and MAC delay. The access delay

is dacc = ts - th, the time from the frame reaches the head of the

queue till the AP starts to transmit the first bit of the frame. The

MAC delay dmac = te - ts is the entire duration from the AP sends

first bit of the frame until it finishes trying, regardless of whether

the frame exchange succeeds or not. Thus dmac may include multi-

ple retransmission attempts. Moreover, dmac also includes the ex-

ponential back offs and channel busy periods in between retrans-

missions.

Even though we must infer the timing of some of the events

that determine critical path delays, our experience has been that

our analysis can be accurate even for very fine-grained phenomena.

For instance, Figure 3 shows the cumulative distribution of access

delays dacc in microseconds for one hour of frame exchanges from

an AP to a client doing a bulk TCP download. During this time, an-

other two clients of this AP are also actively doing TCP downloads.

Thus the three clients and the AP contend the channel to send TCP-

ACKs or TCP data packets. Non of the clients are in power saving

mode during that hour.

Remember the access delay dacc is the time from the frame

reaches the head of the transmit queue (th) till the AP starts trans-

mitting the frame for the first time as part of a frame exchange

(ts). For clarity, we focus on those frames that experience head-of-

line blocking in the transmit queue — in other words, the AP is

transmitting frames in succession as frames queue up, a common

situation with bulk downloads.

For frames sent in succession, the AP first waits a mandatory

backoff delay. The mandatory backoff delay is m∗20 µs, where the

AP randomly chooses the integer slot m between 0–15. After the

mandatory backoff, the AP will start a regular DCF operation. First

it listens on the channel for the DIFS interval (50 µs). If the channel

is idle, the AP transmits the frame right away. In this case, dacc is

the mandatory backoff delay plus the DIFS delay. If the channel is

busy, the AP further performs a regular backoff sequence. In this

case, dacc includes the initial mandatory backoff and DIFS, as well

as the regular backoff time plus the contention time due to the busy

channel (the backoff timer stalls while the channel is busy); this

additional delay will include all regular back-offs performed.

The distribution of access delays shown in Figure 3 reflects the

various components that comprise the overall access delay dacc.

Every frame will have to wait at least a DIFS interval during the

transmit process; hence, the distribution starts at a delay of 50 µs

marked by the first vertical line. The “steps” immediately follow-

ing correspond to the mandatory backoff delay. The frames have a

DIFS delay plus the mandatory backoff delay, a random multiple

of 20 µs slots from 0–15; each step in the graph corresponds to one

of the slots. The second vertical line marks the end of this category

of frames (about 60% of the frame transmitted). The next group of

frames (through 850 µs) are frames experiencing contention at the

end of the DIFS interval, and therefore incur additional contention

delay plus a regular backoff — hence the second set of “stairs.”

The remaining 10% of transmitted frames with the largest delays

are frames that experienced long contention delays.

The classification is not exact. For example, a frame that has 200

µs access delay might experience mandatory backoff, busy channel

in DIFS probe, and contention during the regular backoff. But the

AP picked small backoff slots by chance. The CDF in Figure 3

is an aggregate distribution of the above classes of frames, hence

the “steps” do not have same height because the line will be slanted

toward right by other classes of access delays. For frames sent with-

out head-of-line blocking (i.e., dq = 0, not shown in Figure 3), the

dacc = DIFS if no contention is detected during the DIFS chan-

nel probe interval. Otherwise, dacc = DIFS + contention + regular

back-offs.

4.3 Applying the model
The media access model makes it possible to measure the critical

path delays for every packet sent from APs to the client. As an

example, we focus on a particular AP in the building where three

clients (Xb, Yb, Zg) are using TCP to download different files from

the same Internet server, and the downloads overlap in time. The

clients compete with each other for both AP resources and airtime.

Two clients use 802.11b (Xb, Yb) and the third uses 802.11g (Zg).

We apply the media access model to Yb’s TCP flow to measure

the critical path delays for each of the packets sent from the AP

to the client. Figure 4 shows the delay breakdown for this client’s

packets over four minutes. Each spike in the graph corresponds to

the combined queuing and wireless transmission delays for trans-

mitting one frame. The wireless transmission delay (“DCF delay”)

includes both the initial access delay dacc and MAC delays dmac.

These delays are quite small (even with contention among three

clients) and are shown at the top tip of each spike. We break down

the queuing delay into three components: “other” is the delay dqo

waiting for frames to other clients to leave the queue; “self” is the

delay dqs waiting for frames to this client; and “bg” is the delay

dqb waiting for background management frames (beacons, scans,

etc.). Overlayed across the spikes is the TCP goodput achieved by

the client. Above the spikes we show points in time where a frame

was lost during wireless transmission (triangles) and on the Internet

(diamonds).

This detailed breakdown shows a number of interesting interac-

tions and behavior. First, queuing delay in the AP is the dominant

delay on the wireless path to the client. These delays are orders

of magnitude larger than the wireless transmission delay; although

this client was using 802.11b rates, using 802.11g rates would not

have improved client performance. Second, roughly half of the time

client Yb’s frames were queued for its own frames, and the other

half was caused by delay encountered by frames for the other two

clients. Examining the frame delays of the other clients, most of

those other frames were for client Xb and the minority were for Zg .

Third, Yb experiences occasional wireless loss, but wireless loss

does not have a substantial impact on achieved goodput. Fourth,

Yb experiences a burst of Internet loss at 14:39:38, substantially

impacting goodput. The AP queue drains as Yb times out and re-

covers. Finally, Yb’s download goes through a phase change just

after 14:40:00. The other clients finish downloading (the frames in

the AP queue are for Yb) and Yb no longer has to share the channel.

AP queue occupancies drop and goodput increases substantially be-

yond the level when it was contending with other clients.

4.4 TCP Throughput
Next we describe how we can use the media access model as

a basis for diagnosing problems with TCP throughput for wire-

less users, and show that there can be many causes that can limit

TCP throughput. Given a TCP flow using wireless, we first iden-

tify whether throughput is the critical bottleneck of a TCP flow. We

then examine the flow and determine whether throughput perfor-

mance appears to be limited by wireless network conditions. If so,

we then use the media access model to determine critical path de-

lays for packets in the flow, evaluate how those delays interact with

TCP, and assign a root cause for why the TCP flow was limited

when using the network.

The first step is to determine whether a TCP flow contained data

transfer periods whose throughput could be limited by wireless

conditions. Since a given TCP flow may have idle periods (e.g.,

think times during persistent HTTP connections), we identify pe-

riods of time during a TCP flow when it is performing a bulk data

transfer. We call such a period a TCP transaction. A TCP transac-

tion period starts when we observe new, unacknowledged TCP data

and ends when all outstanding data packets generate an acknowl-

edgment. Most of the packets in this period must also be MSS-sized

except for the last data packet, reflecting a period when a bulk of

data is being sent. We then calculate the amount of data transferred

during the flow to identify flows of sufficient size that they could

potentially take full advantage of the wireless channel; we currently

use a threshold of 150 KB.

We then take these flows and determine whether throughput per-

formance appears to be limited by wireless network conditions,

 0

 200

 400

 600

 800

 1000

 1200

14:37:00 14:37:30 14:38:00 14:38:30 14:39:00 14:39:30 14:40:00 14:40:30 14:41:00
 0

 100

 200

 300

 400

 500

 600

 700

m
s

K
B

p
s

time

Wireless Loss
Internet Loss

DCF delay
Q data(other)

Q data(self)
Q bg

Goodput

Figure 4: Time-series showing critical path delays, goodput, and losses for frame exchanges from an AP to a client doing a bulk TCP

download.

and, if so, why. In our approach, we assume that there is a sin-

gle root cause and that factors are largely independent (e.g., wire-

less loss is independent of Internet loss). We then analyze the flow

through a series of filters. First, if the flow is achieving near opti-

mal throughput for the rate used, we label it ideal and perform no

further analysis. If the flow announces a zero receiver window, we

label it as receiver window limited.

We then determine if the Internet part of the connection was the

bottleneck. To do this, we estimate what the TCP throughput for the

flow might have been if using the wireless network under ideal con-

ditions (no wireless loss, no contention, no wireless RTT, etc.). We

use Padhye’s TCP throughput estimation analysis [20] to perform

this estimation, calculating idealized throughput just using the mea-

sured Internet RTT, measured Internet loss rate, and an estimated

RTO. If the estimated Internet throughput is close to measured, we

label the flow as Internet limited.

We then examine wireless losses and add wireless loss rate into

the throughput estimation; if throughput drops substantially, we la-

bel the flow as wireless loss limited. At this point, remaining flows

are usually victims of high wireless RTTs. Using the media access

model, if the AP-to-client delay is larger than client-to-AP, we label

the flow as being either limited by queuing delays (dq) (background

traffic, frames to self, or frames to other clients), power-save delays

(dps), or DCF transmission (ddcf). If the primary delay is DCF, and

the transmission time only takes less than half of the DCF delay,

we label it as contention limited. Otherwise, we check whether the

client potentially could have used a higher rate; if so, we label it

as rate limited. If the client is using an 802.11g rate and the AP

is in protection mode, we estimate the potential benefits of remov-

ing the CTS-to-self overhead [7]; if this benefit is higher compared

with using protection mode at the highest 802.11g rate, we label

the flow as protection-mode limited.

What are the sources of wireless behavior that impact TCP through-

put in a production network? We apply the above analysis to all

measured TCP flows on the building wireless network for 24 hours

on a typical weekday. Figure 5 shows the breakdown of root causes

across flows identified as bulk data transfer flows.

The graph shows four interesting results. First, flows can be lim-

ited by a wide range of different causes; for a particular user expe-

riencing poor TCP throughput, we must model and check all such

causes to diagnose their particular problem. Second, over 25% of

the flows are limited by the faulty 802.11g link-level retry policy

used by the APs in the building. At 802.11g rates, the APs only

perform one link-level retry before giving up when the AP is in pro-

tection mode; not surprisingly, this policy limits TCP performance

when using those rates. Third, over 30% of the flows are limited

by the use of 802.11g protection mode. Fourth, nearly 30% of the

flows turn out to be limited by the receiver window size — indi-

 0

 5

 10

 15

 20

 25

 30

 35

Cont.
Backoff

Prot.
Mode

RateSame
User

Other
User

BGPSMIdeal
(g)

Ideal
(b)

Loss
(g)

Loss
(b)

InternetRecv
Window

%

Figure 5: Root wireless causes that limit TCP flow throughput.

cating that although wireless conditions may initially be suspect,

throughput can be limited simply by the TCP stack configuration.

Any diagnosis system must suspect causes outside of wireless as

well.

5. Mobility
The second class of overhead in the 802.11 environment is the

expense of the various types of mobility management, including

scanning for access points, association, ARP, DHCP, authentica-

tion, etc.

5.1 Overhead analysis
In order to determine how efficiently 802.11 clients are using

the network we categorize each packet into one of eight categories:

scanning, PSM sleep, association (including Auth, Assoc, ReAuth,

ReAssoc), DHCP, DNS, ARP, TCP, and other. In our environment,

other includes WEP/WPA (while none of our APs support encryp-

tion, clients may occasionally send such packets), IPv6, mDNS,

Windows networking, and miscellaneous other IP traffic; for the

purposes of our study, we do not consider these packets any further.

We then organize the categorized packets into contiguous spans;

we consider outgoing packets only and ignore packets in-bound to

the client (with the exception of DeAuth packets sent by the base-

station, which terminate the current span).

Figure 6 presents a time series of the average fraction of time

an active station spends in each type of span. The graph plots five-

second bins, averaged over one-minute intervals for clarity. Within

each five-second bin, we calculate the fraction time each active sta-

tion spends in each type of span, and normalize for the number of

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

11:00 11:10 11:20 11:30 11:40 11:50 12:00

F
ra

c
ti
o
n
 o

f
c
lie

n
t
ti
m

e
TCP

Power Saving
Scan
Other

Figure 6: Time series of different types of spans.

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
s
ta

ti
o
n
s

Time, seconds

Scans
PSM Sleep

Total

Figure 7: CDF of duration for scans and sleep periods that in-

terrupt active communication.

stations active in that bin. If a station sends no packets in a five-

second interval, it is not counted. While the absolute fraction of ac-

tive time in any interval depends on the bin size (stations are bursty;

the longer the sample period the less dense the activity), the relative

length of each type of span remains relatively constant. From the

graph we can conclude that roughly one third of a station’s active

time is spent scanning or in some other maintenance activity (ARP,

DHCP, association, etc.)—overhead due to mobility maintenance.

5.2 Impact of scanning
Figure 6 shows that 802.11 clients are constantly scanning for

other APs that may be better suited for them to associate to. If the

station is otherwise idle at the time, scanning is inconsequential—

at least from the point of view of the client. If the interface is busy,

on the other hand, this behavior results in observable delay. Here,

we attempt to quantify the delay observed by 802.11 clients due to

scanning.

Our goal is to isolate those scan events that occur while the sta-

tion was otherwise occupied. Because we do not know what a given

client is doing at any point in time, we have to make a conservative

estimate. For the purposes of this study, we consider a station busy

when actively sending TCP packets; in other words, during TCP

spans. Hence, we are interested in occasions when a TCP span is

0%

20%

40%

60%

80%

100%

 10 100 1000 10000 100000

F
ra

c
ti
o
n
 o

f
s
ta

ti
o
n
s

Avg inter-span time, seconds

Scans

Figure 8: CDF of periods between scans that interrupt active

communication on a client.

interrupted by another type of span. Specifically, we declare a sta-

tion to be busy during a non-TCP span if the non-TCP span starts

less than 100 milliseconds after a TCP packet and the TCP span re-

sumes less than 500 milliseconds after the interruption. In addition,

in an attempt to screen out occasions when the TCP spans on either

side are unrelated (meaning that the station was not actually busy

when the “interrupting” span occurred), we focus on interruptions

of less than a minute. Each of these timeouts were arrived at exper-

imentally, but are fairly arbitrary: the CDF of time before and after

TCP spans is quite smooth and has no obvious modalities.

About 40% of stations have no interruptions at all, possibly be-

cause our criteria is too strict, the cards are smart enough to avoid

interrupting, or the stations are just not active enough during our

monitoring period. For the remaining 60% of the stations, Figure 7

shows the CDF of the duration of the interruptions. The average

interruption lasts for roughly 250 ms, and over 20% of the inter-

ruptions last longer than one second. Most interruptions are caused

by scanning behavior, but we also observe a substantial number of

occasions where the station goes into power-save mode (i.e., sends

a NULL packet with power save on, followed eventually by NULL

packet with power save off). The “PSM Sleep” line in Figure 7

shows that while such interrupts can be much shorter, the average

duration is roughly comparable, and is very unlikely to take longer

than a second.

Short interruptions might be tolerable if they occurred infrequently,

but Figure 8 shows that, for hosts that experience interruptions, they

occur with wildly varying frequency. The average interrupted host

is interrupted only once every 10 minutes or so, but 5% of the in-

terrupted hosts are interrupted more than once a minute.

In addition to delaying traffic at the scanning station itself, probes

also tend to exacerbate the hidden terminal problem. Recall that the

hidden terminal problem occurs when two stations attempt to trans-

mit to the same third station simultaneously. A scan probe might be

received by multiple nearby APs which are hidden to each other.

Then hidden APs will attempt to respond simultaneously and cause

interference at the client. We are able to detect overlapping trans-

missions by comparing the start timestamp of every packet destined

for an AP with end timestamps of previous packets directed to the

same AP. If they overlap, we mark both packets as having collided

due to hidden terminal.

We compute the fraction of all packets from a given client that

result in a hidden terminal collision, and use that to plot CDF shown

0%

20%

40%

60%

80%

100%

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

c
ti
o
n
 o

f
s
ta

ti
o
n
s

Collisions/packet

All
Probe only

Figure 9: CDF of periods between scans that interrupt active

communication on a client.

in Figure 9. In general, roughly 40% of clients hardly ever see a col-

lision, while 10% of the clients have 5% of all their packets collid-

ing due to hidden terminal. Focusing on just probe traffic, however,

we observe that over half of the stations sent probes that collided

with another station’s packets, and, for the worst offenders, over

10% of their probes collided with other stations’ packets.

5.3 Startup
When a client first appears on the 802.11 network it must initiate

a sequence of steps to effectively join the network before it can

communicate at the IP level. The standard behavior of a host is as

follows:

• Scan. Determine a candidate AP to associate with.

• Associate. Attempt to associate with the chosen AP.

• DHCP. Once the host has successfully joined the 802.11 net-

work, it must obtain an IP address to begin communicat-

ing. In our environment, hosts obtain a dynamic IP address

through DHCP.

• ARP. Equipped with an IP address, the first thing a host must

do is determine the MAC address of the next-hop router in

order to route IP packets towards their destination. Hence,

the host will issue an ARP “who has” for the IP address of

the next-hop router indicated by the DHCP server.

• DNS. Finally, once IP routing is established, the host can

begin communicating with a non link-local IP address. Typ-

ically remote hosts are identified through domain names, so

the host must resolve the name using the domain name ser-

vice. Once DNS resolves the IP address of the destination,

the host can begin sending actual data.

We begin by considering the delay associated with end-system

startup. In an attempt to isolate those stations that are truly starting

up—as opposed to simply re-associating after a period of idleness—

we define a set of candidate selection rules. A station is deemed to

be starting up if the first packet we see from it is a scan request.

Because we are interested in the behavior of clients that should be

able to use the network, we only consider stations that eventually

succeed in associating with one of our access points and send at

least one TCP packet.

0%

20%

40%

60%

80%

100%

 0.1 1 10 100 1000 10000 100000

#
 o

f
s
ta

ti
o
n
s

Time, seconds

Good only
First to TCP

Without OS delay

Figure 10: CDF of the delay experienced on startup by 802.11

clients in our network.

Figure 10 shows the distribution of startup times for those clients

that do successfully connect to our network. There are three curves;

“First to TCP” is the total wall-clock time from the first probe re-

quest to the first TCP segment. Surprisingly, most hosts take more

than 10 seconds before they begin communicating on the network,

and the average host takes almost a minute. We conjecture, how-

ever, that the bulk of that time is spent idling—meaning the ma-

chine is not actively trying to make progress towards sending data.

In order to validate our conjecture, we attempt to determine if

each successive span was successful or not—if successful, time be-

tween spans is due to the Operating System. Time between failed

spans, however, is likely due to some sort of network timeout. We

define a scan to be successful if it is not followed by a subsequent

scan; association, DHCP, and DNS are successful if the last packet

in the span was outgoing from base station to client (i.e., an ACK).

The “without OS delay” line removes estimated OS delays from

the measured startup latency by subtracting idle time between suc-

cessful spans under the presumption that any delay in initiating the

subsequent span is due to the end host (i.e., the operating system

has not yet initialized the network stack).

The average host spends almost eight seconds idling, presumably

because the operating system is booting or resuming from power-

save mode. Interestingly, however, if we sum only the duration of

successful spans, we observe that the average host spends over 20

seconds during or after unsuccessful spans. The “good only” line

represents a best-case scenario, with no idle time between stages.

The question, then, is what’s going wrong—why the big gap be-

tween optimal and common case? In order to address this question,

we first examine the successful spans.

Even the successful spans take a non-trivial amount of time. Fig-

ure 11 shows the breakdown of the various stages in the startup pro-

cess. This uses span durations only, and ignores time after. (Sum-

ming all curves from this graph together yields the “Good only”

curve from above.) The vast majority of the time is spent scanning

for an appropriate access point with which to associate. Association

itself generally takes less than 10 ms, at which point network-level

communication can begin. The process of association is generally

quite quick (typically about 10 ms). DHCP, on the other hand, be-

cause it depends on a remote server, can take a variable amount of

time. We will expand on the performance of DHCP in our environ-

ment in the next section. For now, however, we note it generally

takes somewhere between 10 ms and five seconds to obtain an IP

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100 1000

#
 o

f
s
ta

ti
o
n
s

Total time (seconds)

Scan
Associate

ARP
DHCP

DNS

Figure 11: CDF of time spent in each successful phase of

startup.

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

#
 o

f
s
ta

ti
o
n
s

Total time, seconds

Scan
Associate

ARP
DHCP

DNS

Figure 12: CDF of delays experiences by 802.11 clients due to

timeouts.

address.

Surprisingly, ARP, while frequently fast, takes longer than one

second in more than half the cases. This is because most stations

issue an “ARP to self”—an ARP “who has” request for their own IP

address—to ensure no other station is using that IP address before

they begin communication. By design, such an ARP request must

timeout, hence the one-second delay. Note that some graphs start at

greater than 0%; this means some clients do not send those packets

during startup. For example, over 20% of the hosts do not issue a

DNS query before starting a TCP connection, presumably because

they are communicating with a manually specified IP address or

because the corresponding DNS entry was found in cache.

Returning to unsuccessful spans, we can observe that timeouts

can be quite expensive. Figure 12 shows that while some stages,

like DNS and association, frequently timeout in about 10 ms, they

can take 10s of seconds to complete in the worst case. The mini-

mum DHCP timeout appears to be 100 ms, and goes up from there.

Failed scans are extremely expensive (a minimum of 7 seconds)

because a failed scan probably means there are no desireable ac-

cess points in range. In this situation, it makes no sense to retry

after short timeout, and most stations would wait for at least 10

seconds before re-scanning the network. More interestingly, some

DHCP Transactions 611 (100%)

Client had no known current lease 204 (33.39%)

Client had used 25% of current lease 288 (47.14%)

Client newly associated shortly before 193 (31.59%)

Client re-associated shortly before 56 (9.17%)

No valid reason determined 76 (12.44%)

Table 2: Potential reasons why clients initiated DHCP transac-

tions over a day. For some DHCP transactions multiple poten-

tial reasons exist.

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100 1000 10000
F

ra
c
ti
o
n
 o

f
D

H
C

P
 t
ra

n
s
a
c
ti
o
n
s

Time (seconds)

all (611 trans.)
apple (140 trans.)

windows (393 trans.)

Figure 13: Distribution of DHCP transaction durations for an

entire day.

hosts continue to scan for extremely long periods of time, presum-

ably because they never find an AP they wish to join; i.e., they’re

looking for a non-existent SSID.

5.4 Dynamic address assignment
Dynamic address assignment using DHCP is an inherent aspect

of 802.11 wireless networks. It is convenient for both users and net-

work administrators, but the results above also indicate that DHCP

can potentially impose noticeable and annoying delays to wireless

users who desire and expect to be able to use the network quickly.

In this section, we look at DHCP delays more closely.

Clients initiate DHCP transactions for a variety of reasons: their

last least expired (or they had none), their existing lease starting to

expire (conservatively, 75% of lease time remaining), they newly

associate with an AP, or they reassociated with an AP. For instance,

Table 2 shows a breakdown of the reasons why clients in our build-

ing initiate DHCP transactions for an entire typical weekday of use.

The dominant reason for DHCP transactions are clients contacting

the server to start the lease renewal process. The vast majority of

leases in our network are for three hours, so stable clients, once

connected, initiate DHCP transactions throughout the day.

How long are DHCP transactions? Figure 13 shows the distribu-

tion of the duration of DHCP transactions for a typical weekday in

the building (“all”). These results show that the majority of transac-

tions complete in a reasonable amount of time: 75% of transactions

complete in under six seconds. From the perspective of diagnosing

problems, however, as long as there are users experiencing annoy-

ing delays, these delays are a problem that plague both users and

administrators. On this day, over 10% of transactions took over a

minute; for users connecting to the network for the first time that

day, such a delay is quite noticeable.

Based on well-known Ethernet vendor codes for MAC addresses

and the “Vendor Class” option in the DHCP protocol, we can de-

termine the manufacturer of the operating system and networking

hardware for most of the 186 stations in the trace. For compari-

son, we further group the various versions of Microsoft Windows

as “Windows” (118 stations) and hardware manufactured by Apple

as “Apple” (51 stations) and show distributions for these groups as

well. Apple clients consistently experience longer DHCP transac-

tions than other clients, in particular Windows. Apple clients use

the Zeroconf standard, which cause them to spend an additional 10

seconds on startup by optimistically requesting based on an invalid

lease.

6. Conclusion
Modern enterprise networks are of sufficient complexity that even

simple faults can be difficult to diagnose — let alone transient out-

ages or service degradations. Nowhere is this problem more appar-

ent than in the 802.11-based wireless access networks now ubiqui-

tous in the enterprise. We believe that such diagnosis must be au-

tomated, and that networks must eventually address transient fail-

ure without human involvement. As a first step in this direction,

we have built an on-line analysis system that processes raw wire-

less trace data and can accurately model the impact of protocol be-

havior from the physical layer to the transport layer. While some

sources of delay can be directly measured, many of the delay com-

ponents, such as AP queuing, backoffs, contention, etc., must be

inferred. To infer these delays from measurements, we develop a

detailed model of MAC protocol behavior, both as it is described in

the 802.11 specification as well as how it is implemented in vendor

hardware. We also explore an inherent class of overheads due to

mobility management in 802.11 networks, including scanning for

access points, association, ARP, DHCP, authentication, etc. Using

our system we investigate the causes of transient performance prob-

lems from traces of wireless traffic in a four-story office building.

We find that no one anomaly, failure or interaction is singularly re-

sponsible for these issues and that a holistic analysis may in fact

be necessary to cover the range of problems experienced in real

networks.

7. REFERENCES

[1] P. Bahl, J. Padhye, L. Ravindranath, M. Singh, A. Wolman,

and B. Zill. Dair: A framework for managing enterprise

wireless networks using desktop infrastructure. In

Proceedings of the Fourth Workshop on Hot Topics in

Networking (HotNets), Nov. 2005.

[2] P. Bahl and V. N. Padmanabhan. Radar: An in-building

rf-based user location and tracking system. In Proceedings of

IEEE Infocom Conference, Mar. 2000.

[3] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan.

Characterizing User Behavior and Network Performance in a

Public Wireless LAN. In Proceedings of ACM

SIGMETRICS, 2002.

[4] P. Barford and M. Crovella. Critical path analysis of TCP

transactions. In Proceedings of the ACM SIGCOMM

Conference, Stockholm, Sweden, Aug. 2000.

[5] R. Chan, J. Padhye, A. Wolman, and B. Zill. A

location-based management system for enterprise wireless

lans. In Proceedings of the 3rd ACM/USENIX Symposium on

Networked Systems Design and Implementation (NSDI),

Mar. 2006.

[6] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas.

Performance analysis of the ieee 802.11 mac protocol for

wireless lans. Wiley International Journal of Communication

Systems, 18(6):545–569, June 2005.

[7] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M.

Voelker, and S. Savage. Jigsaw: Solving the puzzle of

enterprise 802.11 analysis. In Proceedings of the ACM

SIGCOMM Conference, Pisa, Italy, Sept. 2006.

[8] Y.-C. Cheng, Y. Chawathe, A. Lamarca, and J. Krumm.

Accuracy characterization for metropolitan-scale wi-fi

localization. In Proceedings of the ACM/USENIX

Conference on Mobile Systems, Appliations and Services

(MobiSys), Seattle, WA, June 2005.

[9] E. Daley. Enterprise LAN Grows Up, 2005. http:

//www2.cio.com/analyst/report3401.html.

[10] K. N. Gopinath, P. Bhagwat, and K. Gopinath. An empirical

analysis of heterogeneity in ieee 802.11 mac protocol

implementations and its implications. In Proceedings of

WiNTECH 2006, 2006.

[11] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S.

Wallach, and L. E. Kavraki. Practical robust localization over

large-scale 802.11 wireless networks. In Proceedings of the

ACM MOBICOM Conference, pages 70–84, 2004.

[12] T. Henderson, D. Kotz, and I. Abyzov. The Changing Usage

of a Mature Campus-wide Wireless Network. In Proceedings

of ACM Mobicom, 2004.

[13] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and

E. M. Belding-Royer. Understanding Congestion in IEEE

802.11b Wireless Networks. In Proceedings of ACM IMC,

2005.

[14] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and

E. M. Belding-Royer. Understanding Link-Layer Behavior in

Highly Congested IEEE 802.11b Wireless Networks. In

Proceedings of ACM E-WIND, 2005.

[15] J. Jun, P. Peddabachagari, and M. Sichitiu. Theoretical

maximum throughput of ieee 802.11 and its applications. In

Proceedings of the 2nd IEEE International Symposium on

Network Computing and Applications, 2004.

[16] D. Kotz and K. Essien. Analysis of a Campus-wide Wireless

Network. In Proceedings of ACM Mobicom, 2002.

[17] B.-J. Kwak, N.-O. Song, and L. E. Miller. Performance

analysis of exponential backoff. IEEE/ACM Transactions on

Networking, 13(2), Apr. 2005.

[18] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.

Analyzing the MAC-level Behavior of Wireless Networks in

the Wild. In Proceedings of ACM SIGCOMM, 2006.

[19] A. Mishra, M. Shin, and W. Arbaugh. An Empirical Analysis

of the IEEE 802.11 MAC Layer Handoff Process. ACM

Computer Communications Review, 33(2), 2003.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling

tcp reno performance: A simple model and its empirical

validation. IEEE/ACM Transactions on Networking, Apr.

2000.

[21] A. Sheth, C. Doerr, D. Grunwald, R. Han, and D. Sicker.

Mojo: a distributed physical layer anomaly detection system

for 802.11 wlans. In Proceedings of MobiSys, pages

191–204, June 2006.

[22] J. Yeo, M. Youssef, and A. Agrawala. A Framework for

Wireless LAN Monitoring and its Applications. In

Proceedings of ACM WiSe, 2004.

