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1. Introduction

Modern travel-behavior surveys have become quite complex;  they frequently include

multiple telephone contacts, travel diaries, and customized stated preference experiments.

The complexity and length of these surveys lead to pervasive problems with missing data

and non-random response biases.  Panel surveys, which are becoming common in

transportation research, also suffer from non-random attrition biases.  This paper shows

how Rubin’s (1987a) multiple imputation methodology provides a unified approach to

alleviating these problems.

Before discussing solutions to problems caused by missing data and selection, it is

important to recognize that their presence causes fundamental problems with identifying

models and even “simple” population estimates.  Section 2 reviews this work and stresses

the need to make generally untestable assumptions in order to carry out any inference with

missing data.

Once some identifying assumptions are made, the most common “method” for handling

missing data is to remove observations with any missing data.  This method, which Rubin

calls complete case analysis, is inefficient, but it is easy to implement with standard

statistical packages.  Complete case analysis will lead to biased estimates if the process

generating the missing data is correlated with the endogenous variables in the model.  For

example, suppose we estimate a mode choice model from a random sample of a

metropolitan area.  If respondents who never take the bus are more likely to not respond to

questions about bus travel times and costs, then complete case analysis on the original

random sample will yield inconsistent estimates.  In this example, the missing data

mechanism is equivalent to choice-based sampling.

One common solution for missing data is to impute missing values.  For the mode choice

example given above, this is usually done using zonal network data together with the

respondent’s reported home and work locations.  Unfortunately, most commonly used

imputation methods do not preserve the variance of the underlying variable and therefore
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produce inconsistent estimates when variables containing imputations are included in

models.  Even when this problem is avoided, inference is always conditional on the

imputed values and therefore ignores errors in the imputation process.  Section 3 provides

general methods for generating correct imputations

The non-random sample in the above mode choice example was caused by using complete

case analysis with a non-random missing data process.  Although they only discussed

deliberate non-random sampling (e.g. choice-based sampling), Manski and Lerman’s

(1977) Weighed Exogenous Sample Maximum Likelihood Estimator (WESMLE) provides

consistent and asymptotically normal estimates for any sampling procedure.  Unfortunately,

the WESMLE requires the sampling weights to be known constants.  In many cases

discussed in Sections 5 and 6 these weights need to be estimated, and it can be quite

difficult to modify the WESMLE to properly account for estimation error in the sampling

weights.  Ignoring this estimation error will lead to downward biased standard errors.

Multiple imputation creates multiple imputed values and weights, and then combines the

estimators using each set of values into a final consistent estimator that accounts for the

errors in the imputation process.  Although multiple imputation estimators are rarely

efficient, the method can be applied using standard statistical software packages.  Other

maximum-likelihood methods require extensive programming and/or computation time.

Section 3 reviews multiple imputation methodology, and the following sections discuss

applying multiple imputation to common applied transportation problems.

To simplify the exposition, Sections 2 - 4 consider only the case of missing data.

Formally, survey nonresponse is just a special case where all of the data for the missing

respondents are missing.  Similarly, erroneous data (or measurement error) is equivalent to

having all observations on the true values missing.  Sections 5 and 6 discuss survey

nonresponse and panel attrition.
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2. Identification with Missing Data

When data are missing, the only way to identify population statistics such as means and

variances is to make assumptions that determine the distribution of the missing data.  Since

by definition we don’t observe missing data, these identifying assumptions are typically

untestable.  If one is nonetheless willing to maintain these untestable identifying

assumptions, then sections 3-5 of this chapter describe a general methodology for

estimation and inference.  This section describes work primarily due to Manski (Manski,

1995 and the included references) which shows that even though population statistics are

unidentified, it is sometimes possible to bound them between estimable functions.

To illustrate the construction of these bounds, I will closely follow Horowitz and Manski

(1995).  Assume that each member of the population is characterized by a value of (y, x,

and z), where y ∈ Y is the outcome of interest, x ∈ X is a covariate vector, and z is a

binary variable indicating response to some or all survey questions.  Suppose that we are

interested in estimating conditional expectations, E[g(y)x], where g(⋅) is some specified

function.  If we observe y only when z=1, then:

(1) E[g(y)x] = E[g(y)x, z=1]⋅P(z=1x) + E[g(y)x, z=0]⋅P(z=0x)

The observed sample identifies the mean E[g(y)x, z=1] and the response probability

P(z=1x), but provides no information about the mean of the unobserved sample

E[g(y)x, z=0].  However, this unidentified part must lie between K0 ≡ infy∈Y g(y) and  K1

≡ supy∈Y g(y), which yields the following sharp bounds:

(2) E[g(y)x, z=1]⋅P(z=1x) + K0⋅P(z=0x) ≤  E[g(y)x]

≤  E[g(y)x, z=1]⋅P(z=1x) + K1⋅P(z=0x).

These bounds are equivalent to imputing all the missing data equal to the highest and

lowest possible values of y.  Note that the length of this bound is (K1 - K0) ⋅P(z=0x), so if

g(⋅) is bounded, then decreasing the nonresponse probability will sharpen the bound.  One
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important case where g(⋅) is bounded is when it is an indicator function.  Horowitz and

Manski (1995, Table 1) give an example trying to estimate the employment probability

from the 1979 U.S. National Longitudinal Survey of Youth.  The nonresponse rate is 18.4%

(P(z=0x)), and the employment probability in the observed sample is 78% (E[g(y)x,

z=1], where y is 1 if the respondent is employed and zero otherwise).  Since the

probability of employment in the missing observations is bounded between 0 and 1,

equation (2) shows that the desired overall employment probability lies between 63% and

82%.  The length of this bound is much larger than the sampling variation of the probability

estimators, and increasing the sample size with the same nonresponse probability will not

decrease the width of the interval.

Of course, many researchers are willing to make identifying assumptions about the

unobserved mean E[g(y)x, z=0].  A popular assumption, due to Heckman (1976), has

g(yx) follow a normal distribution.  The most common identifying assumption is that the

nonresponse process is ignorable (see Rubin ,1987a, for a formal definition), which here

means that the conditional distribution of yx is the same for both respondents and

nonrespondents.  As long as no x values for the unobserved sample are outside the range of

x values for the observed sample, the assumption of ignorability allows nonparametric

identification of E[g(y)x].  One reason why ignorability is so commonly invoked is that

without additional information there is no direct evidence to contradict the ignorability

assumption (Rubin ,1987a, Section 5.1).

Many other identifying assumptions are possible, but they must all yield estimates within

the bounds given by equation (2).  Horowitz and Manski (1995) show that weighted means

using standard poststratification (or ratio) nonresponse weights (which are estimates of the

inverse of the probability of response) may fall outside these bounds.  Weighted estimators

are only guaranteed to yield sensible estimates if the weights are constructed conditioning

on x.  However, imputation estimators which explicitly impute missing values and then

average over observed and imputed values will always lie inside the bounds given in

equation (2).
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From a Bayesian perspective, Horowitz and Manski’s bounds are similar to Leamer’s

(1983) “extreme bounds analysis.”  Leamer derives his bounds by looking at the envelope

of the Bayesian confidence regions over all possible prior distributions.  In many cases,

both Leamer’s and Horowitz and Manski’s bounds are infinite, and even when they are

bounded they are frequently quite wide.

The analysis reviewed in this section implies that we need to be much more humble about

our empirical results when there are missing data.  A more constructive implication is that

researchers involved in collecting data should concentrate more resources on reducing

missing data and non-response.  Another useful approach is to carry out separate

“validation” studies which use intensive interviewing techniques to survey a sample of

non-respondents.  These validation surveys provide direct evidence about non-respondents

to the main survey, so they can be used to identify and measure the unknown

E[g(y)x, z=0].  Brownstone and Valletta (1996) show how multiple imputation techniques

can be used to combine information from the validation and main surveys to estimate

econometric models.

3. Multiple Imputation

Rubin’s (1987a) multiple imputation methodology first requires a model for producing

proper imputed values.  These imputed values must be conditioned on all observed data,

and different sets of imputed values must be drawn independently so that they reflect all

sources of uncertainty in the imputation model.  Although Rubin developed the theoretical

properties of this methodology for Bayesian models, Chapter 4 in Rubin (1987a) and Rubin

(1996) show that these results apply asymptotically to classical statistical models.

Suppose we are interested in estimating an unknown parameter vector θ.  If no data are

missing, then we would use the estimator 
~
θ and its associated covariance estimator 

~
Ω .  If

we have a model for predicting the missing values conditional on all observed data, then

we can use this model to make independent simulated draws for the missing data.  If m

independent sets of missing data are drawn and m corresponding parameter and covariance
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estimators,  
~
θj  and  

~
Ω j , are computed, then Rubin's Multiple imputation estimators are

given by

(3) $ ~
θ θ= ∑ jj=1

m
m

(4) ( )$ ,Σ = U m B+ 1 + - 1

where

(5) ( ) ( ) ( )B m
m

= − −
′

−∑ ~ $ ~ $ 1
=1

θ θ θ θjj j

(6) U m
m

= ∑ ~
.Ω jj=1

Note that B is an estimate of the covariance among the m parameter estimates for

each independent simulated draw for the missing data, and U is an estimate of the

covariance of the estimated parameters given a particular draw.  B can also be interpreted

as a measure of the covariance caused by the nonresponse process.

Rubin (1987a) shows that for a fixed number of draws, m ≥ 2, $θ   is a consistent

estimator for θ and  $Σ   is a consistent estimator of the covariance of  $θ .  Of course B will

be better estimated if the number of draws is large, and the factor (1 + m-1) in equation (4)

compensates for the effects of small m.  Rubin (1987a) shows that as m gets large, then the

Wald test statistic for the null hypothesis that θ = θ0 ,

(7) ( ) ( )θ θ θ θ−
′

−−0 1 0$ ,Σ  

is asymptotically distributed according to an F distribution with K (the number of elements

in θ) and ν degrees of freedom.  The value of ν is given by:

(8) ν = (m - 1)(1 + rm
-1)2 and

rm = (1 + m-1) Trace(BU-1)/K .
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This suggests increasing m until ν is large enough (e.g. 100) so that the standard asymptotic

Chi-squared distribution of Wald test statistics applies.  Meng and Rubin (1992) show how

to perform likelihood ratio tests with multiply-imputed data.  Their procedures are useful

in high-dimensional problems where it may be impractical to compute and store the

complete covariance matrices required for the Wald test statistic (equation 7).

The key to successful implementation of multiple imputation is to use a proper imputation

procedure.  The full definition of a proper imputation procedure is given in Rubin (1987a,

pp. 118-119).  Loosely speaking, if the estimates computed with the true values of the

missing data (&&θ  and &&Ω ) are treated as fixed, then $θ  and U  must be approximately

unbiased estimators of &&θ  and &&Ω .  In addition B must be an approximately unbiased

estimator of the variation in $θ  caused by the non-response mechanism.  The safest way to

generate proper imputation procedures is to explicitly draw from the (Bayesian) posterior

predictive distribution of the missing values under a specific model.  Other proper multiple

imputation procedures also require no explicit Bayesian calculations, and some of these

methods are described in the following sections.   Any proper imputation procedure must

condition on all observed data, and different sets of imputed values must be drawn

independently so that they reflect all sources of uncertainty in the response process.

3.1 Linear Model

This section summarizes results from Brownstone (1991) on using multiple imputation

techniques with the linear regression model.  Suppose we are interested in estimating a K-

vector, θ,  in the standard linear model:

(9) y = Xθ  + ε,
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where, conditional on X, the components of ε are independent and identically distributed

random variables with mean 0 and variance σ2 .  In the absence of missing data, θ  would

be estimated by the ordinary least squares estimator, $θ , and inference would be based on:

(10) ( ) ( )( )$ ,θ θ− ≈ ′
−N X X0 2 1s , where ( )( ) ( )s N K2 1= ′ ′ ′ −−y yI - X X X X

and I is the K×K identity matrix.

Suppose further that the first N0 observations contain missing data in exogenous (X) and/or

endogenous (y) variables, but that there are no missing data in the remaining N N - N1 0=

observations.

A proper multiple imputation procedure for the linear model above must produce imputed

values for the missing observations, y0
*  and X0

* , which at least match the first two

asymptotic moments of the unobserved variables, y0  and X0 .  For any such set of proper

imputations, the completed data least squares estimator is given by:

(11) ( ) ( )[ ] [ ]~ *' * *' *' * 'θ = + ⋅ +
−

X X X X X y X y0 0 1 1

1

0 0 1 1

and the associated covariance estimator:

(12)
~
Ω  = s*2 ( ) ( )[ ]X X X X0 0 1 1

1
*' * *'

+
−

,

where s*2 is defined as in equation 10 with imputed values, y0
*  and X0

* , replacing the

unobserved variables.  Since the first two asymptotic moments match, it follows that the

probability limits of 
~
θ  and 

~
Ω  must equal the probability limits of the least squares

estimator with no missing data.  Note that 
~
Ω  is a downward biased estimate of the

variability of 
~
θ  since it does not account for the variation induced by the non-response
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process.  Drawing repeated independent sets of proper imputations allows consistent

estimation of this variance component (B in equation 5).

As discussed in Section 2, before we can construct a proper imputation procedure we need

to make some assumptions about the process generating the missing data.  To simplify the

notation, we will assume that only the exogenous variables, X0 , are missing.  If we further

assume that the missing data process is ignorable, then the most straightforward way to

generate proper imputations for the linear model is:

(13) X0
*  = E( X0 | y0 ) + η0

* ,

where η0
*  are independent draws from the distribution of the residuals, X0 - E( X0 | y0 ).

The ignorability assumption implies that E( X0 | y0 ) is identical to E( X1 | y1 ), and can

therefore be consistently estimated using parametric or nonparametric regression

techniques (see Manski, 1991) on the observed data.  Ignorability also implies that the

distribution of the residuals can also be estimated from the distribution of residuals on the

observed data.

If we further assume that the conditional distribution of X given y satisfies the standard

linear model assumptions, then the imputation equation (13) can be implemented by first

regressing the observed X1 on y1 to get the estimated normal sampling distributions of the

slope parameter(s) and the residual variance.  To draw one set of imputed values, first

draw one set of slope and residual variance parameters and then draw the imputed residual

vector, η0
* , from independent normal distributions with mean zero and variance equal to

the imputed residual variance parameter.  The imputed values are then computed by adding

this imputed residual to the predicted value from the regression using the imputed slope

parameters.  Additional sets of imputed values are drawn the same way beginning with

independent draws of the slope and residual variance parameters.  This imputation method,

which Schenker and Welsh (1988) call the “normal imputation” procedure, is equivalent to
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drawing from the Bayesian predictive posterior distribution when X and y follow a joint

normal distribution with standard uninformative priors.

The assumption of joint normality in the previous paragraph is convenient but not necessary

for producing proper imputations in this model.  Nonparametric regression estimators can

be used to estimate nonlinear conditional mean functions, E( X1 | y1 ), and bootstrapping

methods can be used to sample from residual distributions without assuming a normal

distribution.  However, the assumption of ignorability is crucial for the validity of these

methods.

The simple model analyzed above is not very interesting from a practical perspective since

the resulting multiple imputation estimator will have approximately the same distribution

as the least squares estimator calculated from the observed data, X1 and y1 .  However, if

there are additional fully observed variables, then these can be added to the conditioning

set in equation (13) to yield improved estimators.  The next section describes some

circumstances where these additional variables may be readily available to the data

collectors.  Conditioning on additional variables, even if they are not directly related to the

model in equation (9), can also make the crucial ignorability assumption more palatable.

3.2 Public Use Datasets

According to its developer (Rubin, 1996, page 473), “multiple imputation was designed to

handle the problem of missing data in public-use databases where the database constructor

and the ultimate user are distinct entities”.  The database constructor certainly has more

information about the sampling design and surveying process than the ultimate user, and she

may have access to confidential information (such as exact addresses) which cannot be

released in a public-use file.  The users of these data are assumed to have access to

standard statistical packages which typically estimate a wide variety of models assuming

random sampling and no missing data.

Multiple imputation methodology allows the database constructor to present her superior

knowledge about the nonresponse process so that the end user can easily incorporate this
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knowledge in his analysis.  The database constructor produces 5 - 10 multiple imputed

values for key variables (such as income) with substantial missing data.  The end user only

needs to repeat a standard complete-data analysis for each set of imputed values and then

combine the results according to equations (3) - (6).  These additional calculations can,

and have, been incorporated as macros in standard statistical packages.  The only other

practical problem may be the extra storage required for the multiply imputed values, but

this seems to be an increasingly small price to pay for statistically valid inference.  Finally,

Rubin (1996, section 4) points out that there are no general alternatives to multiple

imputation for public-use files.

In spite of multiple imputation’s obvious advantages for public-use files, there has been

considerable controversy about this use of multiple imputation methodology.  Fay (1991,

1992) provides several examples where the multiple imputation variance estimator, $Σ  in

equation (4), is an inconsistent estimator of the sampling variance of the multiple

imputation estimator, $θ , even when the imputation model is correctly specified.  Fay’s

examples do not violate Rubin’s (1987a) results because the end-user’s model conditions

on an irrelevant variable not included in the imputer’s model.  Meng (1994) shows that this

situation, which he calls “uncongeniality,” typically leads to conservative inference (actual

coverage probabilities higher than nominal coverage probabilities) from the standard

multiple imputation formulas.  In spite of this conservative bias, Meng shows that the

multiple imputation intervals are still sharper than the “standard” inference from only non-

missing observations.  A simple partial solution to these problems is to make sure that the

imputation models and assumptions used by the database constructor are fully documented.

Fay also criticizes practitioners of multiple imputation for not properly accounting for the

highly stratified multistage sampling techniques used in many large-scale surveys.  This is

not a criticism of multiple imputation methodology, which assumes that the complete data

covariance estimator, 
~
Ω , is consistent.  Rubin (1996) points out that multiple imputation

can easily be combined with modern jackknife and bootstrap techniques for estimating

variances in complex samples.  Fay’s criticism unfortunately applies to practically all end-
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users of complex public-use databases, and the biases in estimated standard errors and

inferences caused by ignoring complex sampling schemes may be larger than those caused

by ignoring missing data.

The case for using multiple imputation in public-use databases is especially strong when

the database creator has access to validation or non-response studies.  These studies allow

identification and imputation with nonignorable nonresponse.  In these cases inference from

non-missing observations will yield inconsistent point estimates in addition to inconsistent

variance estimates.  Unless these validation studies are also publicly available, the

imputations will be conditioned on more information than can be made available to end

users.  Providing multiply imputed public-use databases is currently the only general

method for giving the end-user the access to the database constructor’s crucial confidential

information about the nonresponse processes.

There are many opportunities for constructors of public-use transportation databases to

obtain information about nonresponse (or erroneous response) mechanisms.  Most large

transportation surveys ask questions about household’s vehicle holdings and vehicle miles

traveled.  Household reports of vehicle holdings can be checked against vehicle

registration files.  Household reports of vehicle miles traveled are known to be highly

inaccurate (Lave, 1996), but in many states annual vehicle miles traveled can be checked

against vehicle inspection records.  Although there are substantial legal problems in many

countries, household and personal income reports can sometimes be checked against tax

records. Collecting this information can be difficult and time-consuming, but the examples

described in the next section show large gains in statistical accuracy with relatively small

validation study samples.

Modern activity analysis also depends on large-scale travel diary surveys.  These surveys

are difficult and expensive to collect, and even the best self-reported diaries contain

substantial measurement error.  New technology using on-vehicle computers equipped with

global positioning system satellite receivers can almost totally automate collection of

automobile trip details.  While this technology is too expensive to deploy for a large-scale
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activity survey, recent work with electric vehicle trials show that it is feasible to use these

new accurate data collection techniques for a small validation sample (see Golob,

Swertnik, et. al. 1996).

4. Missing or Erroneous Data

This section describes some studies where the multiple imputation methodology described

in the previous section is used to compensate for missing and/or erroneous data.  The

studies are chosen to represent the wide range of applications that are possible, but this is

not intended to be a review of all known applications of multiple imputation.  Rubin

(1996) and Meng (1994) provide more complete references to applications of multiple

imputation.  Heitjan and Little (1991) also give an interesting example applying multiple

imputation to fill in missing blood alcohol content measures in  the U.S. Fatal Accident

Reporting System.  Glynn et. al. (1993) give another application to missing data on alcohol

drinking behavior in a study on the effects of drinking on retirement.  They use a follow-up

validation study to estimate a non-ignorable response model.  Brownstone and Valletta

(1996) use similar methodology in their study described in the next sub-section.

4.1 Linear Models

Wages (or labor earnings) are a key variable in labor economics, and they are also

important in many transportation models.  Wages and income are typically measured by

directly asking survey respondents, but there is considerable evidence that these reports

contain large errors.  In particular, both Bound et. al. (1990, 1994) and Bound and Krueger

(1991) find that measurement error in earnings is negatively correlated with true earnings

and positively autocorrelated over time.  These findings are based on two validation

surveys: the Panel Study of Income Dynamics Validation Survey (PSIDVS) and the 1978

Current Population Survey-Social Security Earnings Records Exact Match File.

Brownstone and Valletta (1996) use the PSIDVS together with the main Panel Study of

Income Dynamics (PSID) to examine the effects of wage measurement error on standard
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linear models used to explain and predict wages.  They use the PSIDVS to estimate an

imputation model which is then used to multiply impute “true” wages in the main PSID.

Accounting for measurement error in a PSID sample of approximately 2000 household

heads for the survey years 1983 and 1987 increases the estimated return to general labor

market experience, reduces the negative effect of blue-collar status, reduces the return to

union status, and may affect the returns to tenure and other variables, in both a cross-

section and longitudinal setting.

Since the PSID is a large panel study that has been running continuously since 1968, it was

infeasible to carry out the validation study on a subsample of the PSID respondents.

Therefore the PSIDVS consists of approximately 400 employees surveyed from a large

Detroit, Michigan area manufacturing firm.  An initial set of 534 interviews was attempted

in 1983, of which 418 were completed.  Reinterviews were successfully conducted with

341 individuals in 1987, of whom 275 were respondents in both 1983 and 1987.  An

additional sample of 151 hourly workers was interviewed in 1987.  The resulting data set

matches standard PSID survey responses with company personnel records on a variety of

employment variables, including earnings, fringe benefits, hours, unemployment spells, and

employment tenure.  The company records are highly accurate and were treated as

error-free.

The basic modeling assumption is that the true value of the logarithm of annual labor

earnings, y*, and the reported value, y, follow a bivariate normal distribution conditional

on exogenous variables X and Z.  Because y* is unobserved in the main sample but is

observed in the validation sample, while y is available in both the main and validation

samples, it is convenient to write the model as:

(14a) y* = Xβ + ε, ε ~ N(0, σε
2 I)

(14b) y* = yγ0 + Zγ1 + η, η ~ N(0, ση
2 I) ,
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where X has N rows and K columns and Z also has N rows.  The first equation (14a)

represents the conditional distribution of y* given X, which is the relationship we want to

estimate.  The second equation represents the conditional distribution of y* given y and Z,

and this is used to impute values for true earnings (y*) in the main sample.

Rubin (1987a, pp. 81-87) shows that the validation study data must be pooled with the

main study data to estimate equation (14a), since otherwise the completed data estimators

are not conditioned on all observed data.  Similarly, Z must contain all variables in X for

equation (14b) to generate proper multiple imputations.  To help satisfy these constraints,

Brownstone and Valletta used a subsample of the main PSID designed to more closely

match the PSIDVS sample, and they also included additional variables in X and Z to

facilitate pooling.  The PSID subsample includes 2504 male and female household heads

for 1983.  Ideally, the validation sample is a probability sample from the main study, in

which case pooling is not an issue.

The values of γ and ση
2  in equation (14b) can be estimated by $γ  and s2

η  , the least squares

estimates from regressing y* on y and Z using the validation study.  Therefore, $γ  follows a

N(γ, ση
2 ∆-1) distribution (where ∆ = [y Z]′[y Z]) and   ds2

η / ση
2  follows an independent

Chi-squared distribution with degrees of freedom d equal to the number of observations in

the validation data minus the number of columns in [y Z].  Brownstone and Valletta use the

following steps to create one set of valid imputations for the model in equations (14)

according to equation (13):

a) set ση
2 * =  s2

ηχ*/d , where χ* is drawn from a χ d

2  distribution.

b) draw γ* from a N( $γ ,ση
2 *∆-1) distribution.

(15) c) draw η* independently from a N(0,ση
2 *) distribution.

d) set  $y * = yγ 0
*  + Zγ1

*  + η* .
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Table 1 reproduces a subset of Brownstone and Valletta’s results.  The first column gives

the uncorrected results from regressing the reported values on the X variables.  In the

corrected regressions reported in the second column, the log of reported earnings for each

observation in the main PSID sample is replaced by multiple imputed values of the log of

true earnings, which are obtained through repeated application of algorithm (15) above.

The results in Table 1 show substantial changes from correcting for measurement error.

Error correction increases the coefficient on potential experience and the absolute value of

the coefficient on its square by about 33%.  The negative effect of blue-collar status on

earnings is almost halved due to error correction.  The return to union status in 1983 is

substantially reduced and becomes insignificant, the coefficients on tenure and tenure

squared are reduced by 20% and 33%, and the negative effects of being black are

substantially reduced.  Finally, although the magnitude and statistical significance for most

coefficients is reduced by error correction, this shrinkage is not uniform:  the coefficients

on blue-collar and black status remain relatively constant across the corrected and

uncorrected specifications.

Table 1 - Partial Earnings Models Using Pooled 1983 PSID and PSIDVS Sample

dependent variable = ln(interview earnings)
(coefficients; standard errors in parentheses)

Uncorrected Corrected
Schooling (in years, topcoded at 17)  .0646*  .0584*

(.0067) (.0108)

Potential  .0172*  .0230*
  Experience (= age-schooling-6) (.0047) (.0061)

(Potential -.0320* -.0413*
  Experience)2/100 (.0092) (.0121)

Company tenure  .0379*  .0300*
(.0043) (.0071)
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(Company -.0666* -.0452*
  tenure)2/100 (.0129) (.0167)

Black -.114* -.0707
(.052) (.0496)

Blue-collar -.166* -.0975*
(.032) (.0366)

Union coverage  .184*  .122
(.029) (.090)

Number of Observations  2848  2848

* - indicates significance at 5% level, two-tailed test

Brownstone and Valletta also estimate a longitudinal fixed-effects wage equation using the

1983 and 1987 matched observations in the PSIDVS to correct for measurement error. As

in the 1983 cross-section,  error correction increases the size and significance of the

coefficient on potential experience but decreases the negative effects of blue-collar and

union status, including their changes.  The measurement error process is highly

autocorrelated, so the differencing required to remove the fixed effects does not

significantly increase the relative measurement error variance from the cross-section case.

In addition to Brownstone and Valletta’s multiple imputation methodology, there are a

number of alternative approaches for estimating the model in equations (14).  The simplest

of these is complete case analysis, which is to estimate the earnings equation using the

validation sample only.  The simplicity gains of this alternative approach must be weighed

against two main benefits of the multiple imputation approach:  (1) combining information

from both samples increases estimation efficiency; (2) the ability to account for possible

differences across the two samples in the parameters of the earnings equation.  In

Brownstone and Valletta’s longitudinal equation the standard errors of the multiple

imputation parameter estimates are approximately 25%-50% lower than estimators just

using the validation sample.  Since validation samples are typically expensive to collect,
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their sample sizes are typically an order of magnitude smaller than the surveys they are

validating.

Another approach which yields asymptotically efficient estimates is proposed by  Lee and

Sepanski (1992).  They propose (but do not implement) an instrumental variables method

of moments estimators to combine validated and unvalidated data.  Their techniques

require more programming than multiple imputation and cannot easily be generalized to

more complicated models with discrete and limited variables.  The next subsection shows

how multiple imputation can be used with these models.

4.2 Discrete Choice Models

Although there are a number of feasible methods for estimating the linear models discussed

in the previous subsection, these more traditional methods become very difficult to

implement with discrete choice models.  Multiple imputation, on the other hand, can easily

be used in these cases, as shown by Clogg et. al. (1991).  They consider the problem of

changing industry and occupation codes between the 1970 and 1980 U.S. Census.  These

coding changes were so dramatic that it is impossible even to compare major occupation

groups across the coding schemes.   As a result, it would be very difficult to use Census

data to track changes in occupations across the 1970s.  Of course, similar problems occur

for transportation researchers when the census tract (or traffic analysis zone) boundaries

are changed for each decennial census.

To alleviate problems caused by the changed coding system, the U.S. Census bureau

randomly sampled about 125,000 individuals from the 1970 Census with known 1970

codes and recoded them using the new 1980 coding system. Clogg et. al. (1991) used this

double-coded sample to create five multiply imputed 1980 occupation codes for each

respondent in the 1970 Census Public Use Sample.  Researchers studying occupational

change could then estimate five models using these multiply imputed 1980 codes and  then

use the multiple imputation combining rules in equations 3 - 8 to carry out their analyses.  If
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the five multiply imputed codes are all different for most observations, then it will

obviously be very difficult to estimate any reasonable change models.  Conversely, if the

five multiply imputed codes are identical, then the coding system change will not affect the

analyses.

The hard part is modeling the variability in the double-coded sample so that proper

multiple imputations can be produced. Clogg et. al. (1991) use separate Bayesian

multinomial logit models for each of the approximately 500 three-digit 1970 occupational

codes.  The dependent variables in these models are the 1980 codes assigned to each

respondent in the double-coded sample with the same 1970 occupational code.  The

independent variables include sex, race, age, education, employment status, and region.

Due to the small sample sizes and skewness of the dependent variables for many 1970

occupational codes, maximum likelihood estimation of these models was infeasible.

Instead Clogg et. al. (1991) use an empirical Bayes procedure that shrinks the coefficients

of  the covariates towards a model with just alternative-specific constants.

Since they use a full Bayesian model, Clogg et. al. (1991) sample from the posterior

predictive distribution to draw the multiple imputations for the 800,000 Public Use Sample

respondents.  Recent advances in Bayesian computations have made direct sampling from

these posterior distributions feasible for very complex models. Clogg et. al. (1991) use

Rubin’s sampling-importance resampling algorithm (Rubin, 1987b). Clogg et. al. (1991)

report extensive Monte Carlo and other evaluations of this methodology which show that

the imputation method and the resulting multiple imputation inferences are valid for this

application.

This application highlights many of the strengths of the multiple imputation methodology.

Even if end-users had access to the double-coded sample, it is very unlikely that they

would have the statistical and computational resources to carry out the modeling and

imputations performed by Clogg et. al. (1991).  The multiple imputation combining

equations (3 - 6) only require the end-user to perform some simple matrix computations to

take advantage of all of this modeling and data collection effort.  Also, the presence of five
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different 1980 occupation codes makes it very difficult for even the most casual end-user to

ignore the errors in the recoding process.  The current practice of filling in missing data in

public use files by a single imputation makes it easy for end-users to ignore any potential

problems with the missing data process.  In addition, standard end-use analysis of singly-

imputed data always underestimates parameter standard errors.

Brownstone and Golob (1992) use multiple imputation to compensate for missing data in a

key variable explaining commute mode choice in Southern California.  The main commute

modes in this region are drive alone (about 80%) and carpool.  The number of employees

at the respondents work site is an important mode-choice predictor.  It is easier to find

suitable carpool partners from a larger set of employees, so larger worksites should have

more car-poolers.  Unfortunately Brownstone and Golob’s unusual sampling design caused

employer size information to be missing for 30% of the sample, and the remainder of the

sample were employed in a small geographic area near the city of Irvine.  This design

makes complete case analysis using only the respondents with employer-size information

very inefficient.

Since Brownstone and Golob’s mode choice model use only a dummy variable for whether

the employer had more than 200 employees at the respondent’s worksite, they use a

binomial probit model calibrated on the subsample where employer size is observed.  The

dependent variable for this imputation model is equal to one if the respondent’s employer

size is greater than 200, and zero otherwise.  Important explanatory variables include

respondent age, carpool status, household size and income, commuting distance, and the

presence of various employer-provided carpooling incentives.  These covariates improved

the prediction success rate of the model from 56% to 78%.  Brownstone and Golob’s

procedure assumes that the non-response process is ignorable, which is justified since the

non-response is due to sample design features.

Drawing proper multiple imputations from this probit model requires accounting for two

sources of errors: the error in the parameter estimates and the error in predicting the actual

value of the dummy variable from the estimated probit probability.  Brownstone and Golob
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created their imputations by first sampling from the asymptotic multivariate normal

approximation to the sampling distribution of the maximum likelihood probit estimators.

Conditional on a single draw from this distribution, they compute the probit probabilities

for each respondent with missing data.  The imputed values were then drawn from a

binomial distribution with probability of success given by the probit probabilities.  The

next set of multiple imputations then begin with a new independent draw from the

multivariate normal sampling distribution.

The specification of Brownstone and Golob’s imputation equation might be criticized by

econometricians unfamiliar with multiple imputation methodology since the dependent

variable from main model, mode choice, is being used to help impute an “exogenous”

variable in the main model.  In fact, the imputation model must condition on all observed

data, including the “endogenous” ones, for the multiple imputation method to yield

consistent estimates.  Inference for the main model is conditioned on the true values of the

missing data, so the completed data estimators need to be consistent for this conditional

model.  The econometrician’s “simultaneous equations bias” occurs when inference is not

conditioned on the true values of the missing data.

4.3 Panel Data

Panel studies, where a sample is followed over time with repeated interviews, are

becoming increasingly important in transportation demand analysis (Golob and Kitamura,

1996).  Even if the missing data process is completely random, the compounding of a 20%

nonresponse rate (which is common for income measures) over only three interviews can

leave very few respondents with complete data.  In addition, small amounts of completely

random measurement error can cause serious problems when using common panel data

models which are based on differences between panel waves.

These problems are balanced by the fact that since transportation decisions and most

human behavior exhibit inertia, observed data for the panel respondents provide excellent

information about the missing data.  For example, attempts to impute missing income data
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in cross-section studies using either standard methods or multiple imputation usually do not

produce substantial efficiency gains over complete case analysis.  The reason for this is

that models for predicting income in cross-sections typically have very poor fit, with R2

measures below .2.  However, if previous or future income values are available from other

waves of a panel study, then the fit of the imputation models greatly improves.  In an

unpublished study using the Swedish HUS panel, Brownstone’s (1990) models for

imputing missing income values had R2s around .7.  The key to this improved fit is that

previous and/or future income values for the same household are typically available in

panel studies. This suggests that multiple imputation of missing values may yield

substantial efficiency gains in panel studies.

The same inertia governing observed human behavior might also characterize measurement

error processes in panel data.  Brownstone and Valletta (1996) found that measurement

error in annual earnings reports were highly autocorrelated.  They found that this

autocorrelation was high enough so that fixed effects models were no more affected by

measurement error than cross section models.  Of course, the methods used by Brownstone

and Valletta crucially depend on the existence of a validation study, and these studies are

currently very rare.

Multiple imputation techniques are well-suited to panel data since they require very little

additional computation and programming beyond that required for a complete data

analysis.  Transportation models using panel data, such as dynamic models of mode choice

and dynamic vehicle type choice models, are based on complex dynamic discrete

econometric models.  Even without considering missing data and attrition problems, these

models are very difficult to estimate - frequently requiring simulation estimators

(McFadden and Ruud, 1994).  Although joint full-information maximum likelihood

estimation of linear models with missing data is feasible (see Fuller, 1987), these methods

are not computationally feasible with many panel data applications.
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5. Panel Attrition and Choice-Based Sampling

Panel studies are often plagued by the attrition of survey respondents.  Attrition can bias

the sample and limit the usefulness of the panel for long-term dynamic analysis.  If the

attrition process is correlated with the endogenous variables in the model (called

non-ignorable attrition), then standard estimation techniques ignoring attrition will yield

inconsistent inferences and estimators.  Even if the attrition process is independent of the

endogenous variables (called ignorable attrition), uncorrected attrition may bias forecasts

and policy simulations based on the remaining sample. Both of these problems occur in

transportation panels.  If survey questions are concentrated on the adoption of a new mode

or technology, then users of this new mode or technology may be less likely to attrite and

the attrition process will be correlated with the endogenous choice variable.  Since the

main purpose of many analyses of transportation panels is to produce forecasts of the

effects of proposed policy changes, it is important to account for the effects of attrition on

model forecasts and policy simulations.

This section, which is closely based on Brownstone and Chu (1996), describes a multiple

imputation methodology for obtaining consistent estimates and forecasts from panel models

where non-ignorable attrition is present.  If the non-attrition probabilities are known, then

their inverses can be used as weights in Manski and Lerman's (1977) Weighted Exogenous

Maximum Likelihood Estimator (WESMLE).  These weights make the weighted sample

look like the initial panel wave.

Manski and Lerman (1977) show that a simple modification of the standard Maximum

Likelihood estimator for discrete-choice models yields consistent and asymptotically

normal parameter estimates in the presence of choice-based sampling when the proportion

of the population choosing each discrete alternative is known.  If L ( , x )i iθ  is the log

likelihood function for the ith observation, then Manski and Lerman's WESMLE maximizes:

(16) i∑ ω θi i i L ( , x ) ,
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where θ is a vector of parameters to be estimated, xi is the vector of observed

characteristics for the ith observation, and the sampling weight, ω i , is the inverse of the

probability that the ith observation (individual) would be chosen from a completely random

sample of the population.  Of course, if the sampling scheme were completely random, then

all of the sampling weights would be equal and the WESMLE would simply be the usual

maximum likelihood estimator.  Manski and Lerman (1977) show that the WESMLE is

consistent and asymptotically normal, but not fully efficient (see Imbens, 1992 for fully

efficient alternative estimators).  Manski and Lerman's proof actually shows that the

WESMLE's properties hold for any regular maximum likelihood estimator as long as the

sampling weights are known with certainty.

A major advantage of the WESMLE is that it can be computed very easily by modifying

existing maximum likelihood programs.  The WESMLE for both the linear regression

model and the multinomial logit model can be computed by appropriately weighting the

variables and applying standard maximum likelihood programs.  Unfortunately, this

procedure yields downward biased standard error estimates, but the consistent estimates

given by Manski and Lerman are easy to compute (see DuMouchel and Duncan, 1983, for a

similar analysis of the linear model).  This downward bias can be substantial in common

applications.  Brownstone and Valletta (1996) find a 30% downward bias in their

weighted regressions from using the incorrect weighted regression covariance estimator.

A panel survey can always be viewed as the result of the original sampling process and the

attrition process.  Although in a well-designed panel study the properties of the sampling

process are known with certainty, the properties of the attrition process are typically

unknown.  If they were known, then the sampling weights could be easily computed as the

inverse of the product of the sampling and attrition probabilities and the WESMLE could

be applied to get consistent parameter estimates.  Fortunately, there is at least one wave of

information about panel attriters, and with some modeling assumptions this information can

be used to estimate a model of the attrition process.  Unfortunately, the resulting predicted

attrition probabilities cannot be used to generate weights for the WESMLE, since this

would violate the assumption that the weights are known with certainty.
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Suppose we have a procedure for making independent simulated draws from the sampling

distribution of the attrition probabilities (which are given from our estimated attrition

model).  Conditional on this set of simulated attrition probabilities, we can compute a

vector of sampling weights (as the inverse of the product of the attrition probabilities and

the sampling probabilities for the first wave of the panel).  This weight vector can in turn

be used to get a consistent (conditional on that particular set of weights) estimate of θ and

its covariance using the WESMLE.  After drawing a number of independent attrition

probabilities, equations (3-6) can be used to combine the resulting WESMLE estimators

for final inference.  This procedure appears to have been first proposed in Brownstone

(1991), but it is a simple modification of Rubin (1986).

If the attrition model is correctly specified, then the resulting multiple imputation

estimators, $θ   and  $∑ , are consistent whether the attrition process is ignorable or not.  The

standard unweighted maximum likelihood estimators, θ   and  ∑ , which ignore the

sampling and attrition weights, are efficient if both the sampling and attrition processes are

ignorable, but inconsistent otherwise.  Therefore the statistic:

(17) ( ) ( ) ( )T = −
′

− −
−$ $ $ ,θ θ θ θΣ Σ

1
 

is a valid Hausman (1978) test statistic for the null hypothesis that both the sampling and

attrition processes are ignorable.  Under the null hypothesis, T has a chi-squared

distribution with degrees of freedom equal to the rank of  ( )$∑− ∑ .

Relative to joint maximum likelihood estimation of the attrition and choice model, the

methodology described above is inefficient. However, this methodology is much easier to

calculate than joint maximum likelihood, which is frequently intractable in complex

models.  Simple Hausman (1978) tests can be applied to test for the non-ignorability of the

attrition (or missing data) process.  Since the WESMLE was originally designed to
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provide consistent estimates with choice (or response)-based sampling designs, the

methodology proposed here can be trivially modified to yield consistent estimates and

forecasts for choice-based panels with non-ignorable attrition.

Brownstone and Chu (1996) apply the above multiple imputation methodology using a

dynamic commute mode choice model calibrated from the University of California

Transportation Center’s Southern California Transportation Panel.  The study region and

survey methodology are more fully described in Uhlaner and Kim (1993).  The panel was

selected from respondents to a mail survey, and was initiated in February 1990.  The first

wave of data were drawn from the original sample and from a refreshment sample

introduced three months later.  The overall response rate for the first-wave mail survey

was approximately 50%.  The total sample size for the first wave was 2,189 commuters

(approximately 1,850 had complete data).  Almost all respondents were employed full-

time.  The fifth wave of the panel was collected beginning in July 1991.  The attrition rate

(from Wave 1) was 40%, leaving 1,107 respondents whose data were suitable for dynamic

analysis.

Since Brownstone and Golob (1992) found that the Wave 1 nonresponse process is

ignorable, Brownstone and Chu just model the attrition process.  Table 2 reproduces

Brownstone and Chu’s binomial logit attrition model results for attrition between Waves 1

and 5 of the panel.  The model is specified so that positive coefficients favor attrition.

Since at least some of the coefficients on the mode choice variables and their interactions

are significantly different from zero, the attrition process is not ignorable.  The many

interactions between mode choice and the demographic variables show the complexity of

the process.  These results imply that white, middle-aged homeowners with an annual

household income of less than $75,000, more education, and more than three vehicles are

less likely to attrite from the panel.  Those respondents who receive the survey at their

work sites (and presumably fill it out during their normal working hours) are also less

likely to attrite.
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The significant coefficients on the mode choice variables in Table 2 suggest that non-

ignorable attrition is a problem for this application.  However, the Hausman test given in

equation (16) does not reject the null hypothesis that the attrition process is ignorable for

Brownstone and Chu’s dynamic mode choice model.  Their model is quite large, so it is

easier to examine the effects of correcting for non-ignorable attrition in a policy experiment

simulated from their model.  Table 3 shows the results of giving all commuters



28

Table 2.  Binomial logit attrition model

Dependent Variable Count Percent
In Both Waves 1107 59.97
Attrited (dropped out before Wave 5) 739 40.03

Independent Variables* Estimated
Coefficient

t-Statistic

Annual household income<=$75,000 -0.20233 -1.81388
High school graduate -0.90640 -2.08486
Some college, but no degree -1.03234 -2.48198
College degree, including graduate -0.96502 -2.30214
Older than 24 and younger than 35 -0.40301 -1.95426
Older than 34 and younger than 45 -0.31492 -1.52823
Older than 44 and younger than 55 -0.46445 -2.08844
Older than 54 and younger than 65 -0.47694 -1.80652
Production/manufacturing 0.85561 3.86404
Sales 0.61101 2.83996
Other occupation 0.60538 2.30767
Survey received at work site -0.25986 -2.37420
Always lived in Southern Ca. 0.29458 2.77893
Considered moving next year 0.29522 2.52530
Non-white 0.47706 3.42080
Arrived at work between 7:00 and 9:00 -0.13672 -1.17095
Years lived at present address (years) -.01998 -2.20902
Reserved parking for rideshare 0.30232 2.54872
Household owned vehicles<=3 0.33727 2.00087
Home owner -0.17925 -1.50927
Always rideshare in last two weeks -0.69192 -1.71807
Always rideshare and household income<=$75,000 0.57605 1.44266
Always rideshare and moving next year 0.75718 1.80477
Always rideshare and having kids under 16 0.43372 1.20571
Sometime rideshare in last two weeks 1.12516 2.52191
Sometime rideshare and college degree -0.73210 -2.57659
Sometime rideshare and age>24and<35 -0.74236 -2.53687
Sometime rideshare and household vehicles<=3 -0.73703 -1.74108
Sometime rideshare and having kids under 16 0.49162 1.83682
Constant 0.65782 1.35897

Auxiliary statistics At Convergence Initial
Log likelihood -1164 -1279.5
Number of observations 1846
Percent correctly predicted 64.6

*All variables defined as dummies except for years lived at present address.
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in the sample an employer-paid guaranteed ride home in emergencies.  As expected, there

is an increase in the number of commuters remaining or switching to ridesharing and a

corresponding decrease in drive-alone commuting.  However, these results are not

significantly affected by correcting for non-ignorable attrition.

Table 3.  Estimated effects from giving everyone access to a guaranteed ride home

Ignoring Attrition Multiply Imputed WESMLE
% Change Std. Error % Change Std. Error

RS1 → RS 21.43712 8.08602 18.21683 8.79526
DA2 → RS 68.47014 12.81228 70.49838 14.19468
RS → DA -37.61644 6.00235 -44.80742 6.53906
DA → DA -16.15972 5.80547 -14.19958 6.56034

1  "RS" means ‘rideshare at least once in last 2 weeks’.
2  "DA" means ‘always drive alone’.

Non-ignorable attrition did not turn out to cause serious biases in Brownstone and Chu’s

application, but there is no reason to believe that this will be true in other transportation

applications.  The multiply imputed WESMLE estimator described in this section provides

a simple way of testing and correcting for biases caused by non-ignorable attrition.

6. Non-random Survey Response and Synthetic Sampling

Transportation analysts use surveys for two purposes: calibrating behavioral models and to

provide a representative sample for microsimulation forecasts.  Modern transportation

surveys place heavy burdens on respondents.  They frequently require multiple telephone

contacts as well as detailed travel and activity diaries.  Unless the survey response

mechanism is completely random, the resulting sample will not be representative.  If the

response mechanism is independent of the endogenous variables, then the response process

is ignorable and behavioral models can be efficiently estimated by standard unweighted

maximum likelihood techniques.  However, even if the response process is ignorable for
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estimation purposes, the sample will probably still need to be “adjusted” to make it

representative for forecasting purposes.

This section briefly reviews current methods for reweighting survey samples for

forecasting and estimation.  All of these methods ignore any estimation error in creating

these weights, and I will indicate how this can be remedied using multiple imputation

techniques similar to those discussed in Section 5.  A more important problem is that it is

impossible to make any progress on these problems without external data and/or untestable

assumptions (see Section 2).  Fortunately, in many cases external data from censuses and

administrative records such as vehicle registration files and tax records are useful for the

methods described here.  No method can test or correct for non-ignorable response caused

by variables that aren’t measured in external data.

There are frequently good external data for commute mode choice available from transit

meter counts and highway traffic counters.  These data have been used by transportation

demand analysts to implement choice-based sampling where the survey sample is stratified

by the mode choice variable.  Choice-based sampling is clearly a non-ignorable sampling

scheme for calibrating mode choice models.  However, choice-based samples are much

cheaper to collect when some modes have very small shares.  Manski and Lerman (1977)

show that the WESMLE yields consistent estimators when the sample strata are weighted

to match the known mode shares.

When external data are available, then some procedure is needed for estimating the

sampling weight for each sample respondent.  This sampling weight model can then be

used to multiply impute sampling weights, and the WESMLE can be used as in Section 5 to

get consistent inferences.  The Hasuman test in equation (17) can also be used to test the

null hypothesis that the response process is ignorable.  Of course, there is no point

implementing any of this unless the external data contain information on endogenous

variables for the models under consideration.
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There are a variety of statistical matching (or poststratification) methods available for

estimating sampling weights to match an external reference sample.  The simplest is to

discretize all variables common to both the survey and external datasets and use the

discrete values to define “bins.”  Respondents assigned to the same bin are assumed to be

identical, and the population in the bin is estimated by the sum of the weights of all of the

external sample respondents assigned to the bin.  The estimated weight for the survey

sample is estimated by the ratio of this estimated population and the number of survey

respondents assigned to the particular bin.  Brownstone and Golob (1992) used this method

to match their commute-choice sample to the U.S. Census Bureau’s Current Population

Survey (CPS).  Although the CPS contains excellent demographic and labor market data, it

has no information on vehicle holdings or travel time.  Therefore Brownstone and Golob

were only able to test for non-ignorability to the extent that the response process was

correlated with demographic and labor data.

As long as the response process only depends on exogenous variables which are included

in the behavioral model, standard unweighted maximum likelihood techniques will yield

efficient estimators and hypothesis tests.  Of course, any stratification variables included in

the sample design should normally be included in the model to control for design effects.

Even if the sample doesn’t need to be weighted for estimation purposes, consistent

forecasts require weights unless the response and sampling processes are totally random

(independent of all endogenous and exogenous variables).  Reweighting is also needed

when forecasts are needed for populations (or geographic regions) which are different

from the sampled populations.  For example, behavioral models may be estimated based on

a regional or national sample, but separate forecasts are required for smaller urban

regions.

As long as the survey sample has at least one respondent in each bin, the simple matching

procedure used in Brownstone and Golob (1992) will produce weights which make the

weighted survey sample exactly match the joint distribution of the discrete match variables

from the external sample.  The main source of error in this procedure is the estimation

error in the target joint distribution.  Using a standard multinomial model for this joint
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distribution it is straightforward to multiply impute estimates of these joint distributions,

and these imputed distributions can be used to generate multiply imputed weight vectors for

the survey sample.  In many cases the external sample is very large, in which case the

estimation error in the weights is likely to be small enough to ignore.

The simple bin matching procedure has a number of drawbacks in some applications.  If

there are many matching variables and/or many discrete values, then the size of the joint

distribution can become very large and some of the estimated cells (or bins) will be empty.

These empty cells cause no problems if the true population count for the cell is zero, but

this is rarely the case in practice.  Rubin (1986) proposes a predictive mean matching

algorithm which is also used by Heitjan and Little (1991).  This uses multivariate

regression models to predict match variables for both the main and external sample.  These

predicted variables are then combined to a univariate distance measure, and matches are

randomly chosen from the closest respondents using this metric.  Additional matching and

weighting methods are discussed in Little (1988) and Imbens and Hellerstein (1995).

If the target population is a small geographic area such as a traffic analysis zone or census

tract, then data privacy restrictions preclude direct access to census observations.  This

problem arises in generating synthetic samples for microsimulation models of detailed

travel behavior (Kitamura, 1996).  In this situation the external data typically consist of

univariate (occasionally bivariate) marginal distributions of census variables for the small

region as well as a public use sample for a larger region with a population of at least a few

million and containing the smaller region.  Beckman, Baggerly and McKay (1996) give a

procedure to use iterative proportional fitting to estimate the joint distributions for the

small regions given this external data.  If their method is applied to all subregions

comprising the larger region, then the estimated joint distributions for the subregions will

aggregate up to exactly match the joint distribution for the larger region.

Little and Wu (1991) give the sampling distribution of the iterative proportional fitting

estimators used by Beckman, et. al. (1996), and Gange (1995) shows how to draw values

from these sampling distributions.  These results can be used to implement a multiple
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imputation method to account for the estimation errors in these matching processes by

drawing multiple estimated joint distributions.  Little (1988) shows how other matching

algorithms can be modified to yield approximately proper multiple weights.

While the methods discussed in this section allow researchers to make the most use from

expensive transportation survey data, they are no substitute for obtaining a well-designed

survey sample to begin with.  For example, if the sample only contains a small number

(relative to the population proportion) of respondents corresponding to a particular

minority group, then the weighting schemes discussed here will yield very high weight

values for these minority respondents.  This means that weighted estimates and forecasts

will depend very heavily on these few respondents, especially if the results are stratified

by minority group status.  Researchers should therefore always examine the weights

resulting from these reweighting procedures.  Having a few sample members in a particular

“post-strata” is only slightly better than having no observations.  In either case, the only

practical solution is to further aggregate the match variables.

7. Conclusion

This chapter has shown how multiple imputation methods can be used to help alleviate

problems caused by survey non-response and missing data.  Multiple imputation is like an

adjustable wrench - it is rarely the ideal tool for any particular job, but it works well for a

wide variety of problems.  The examples given in this chapter show that multiple

imputation can be successfully implemented for real applied problems using existing

software packages.  Furthermore, Brownstone and Valletta’s (1996) application shows that

using this methodology can make a substantial difference in the qualitative conclusions.

Manski’s work reviewed in Section 2 shows that missing data causes serious problems

with identification and inference from even simple models.  The best way to circumvent

these problems is to put more resources into reducing response biases during survey

administration.  The next best solution is to collect external validation data which allow
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identification of the non-response process.  If these validation data become more widely

available, then the multiple imputation methods presented in this chapter provide an easy

and consistent way for transportation researchers to incorporate this information into their

modeling and forecasting efforts.
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