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Monocarboxylate transporter 8 (MCT8) deficiency is a rare, X-linked disorder
arising from mutations in the SLC16A2 gene and resulting from dysfunctional
thyroid hormone transport. This disorder is characterized by profound
neurodevelopmental delay and motor disability due to a lack of thyroid hormone
in the brain, and coexisting endocrinological symptoms, due to chronic
thyrotoxicosis, resulting from elevated thyroid hormone outside the central
nervous system (CNS). In February 2024, we reviewed the published literature to
identify relevant articles reporting on the current unmet needs of patients with
MCT8 deficiency. There are several main challenges in the diagnosis and
treatment of MCT8 deficiency, with decreased awareness and recognition of
MCT8 deficiency among healthcare professionals (HCPs) associated with
misdiagnosis and delays in diagnosis. Diagnostic delay may also be attributed to
other factors, including the complex symptomology of MCT8 deficiency only
becoming apparent several months after birth and pathognomonic serum
triiodothyronine (T3) testing not being routinely performed. For patients with
MCT8 deficiency, multidisciplinary team care is vital to optimize the support
provided to patients and their caregivers. Although there are currently no approved
treatments specifically for MCT8 deficiency, earlier identification and diagnosis of
this disorder enables earlier access to supportive care and developing treatments
focused on improving outcomes and quality of life for both patients and caregivers.

KEYWORDS

MCT8 deficiency, MCT8, Allan-Herndon-Dudley syndrome, AHDS, developmental delay,

T3, rare diseases, thyroid hormone

Introduction

Monocarboxylate transporter 8 (MCT8) deficiency—also known as Allan-Herndon-

Dudley Syndrome (AHDS)—is a rare, X-linked genetic disorder that has a profound

effect on the lives of patients and their caregivers (1–4). This disorder is associated with
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neurodevelopmental disabilities, hypermetabolic malnutrition, and

tachycardia, with one in three affected individuals dying in

childhood (1, 5, 6). MCT8 deficiency arises from a pathogenic

mutation in the SLC16A2 gene located on the X-chromosome,

which encodes MCT8, a thyroid hormone transporter protein

widely expressed in human tissues (1, 2, 7, 8). MCT8 is

instrumental in the cellular uptake of the inactive prohormone

thyroxine (T4) and the bioactive triiodothyronine (T3), where T3

is critical to several important physiological processes (7, 9–11).

Pathogenic variants in the SLC16A2 gene cause reduced or

absent thyroid hormone uptake into the brain, resulting in

altered neural development and myelination (1, 9–11). However,

because thyroid hormone can enter cells in the rest of the body

independent of MCT8, affected individuals concomitantly present

with signs and symptoms of peripheral hyperthyroidism,

including tachycardia and altered metabolism (1, 2, 5–7, 9, 12–

14). As an X-linked disorder, the condition predominantly affects

males, although a few confirmed cases have been reported in

females (1, 5, 15). The estimated prevalence based on diagnosed

cases to date is fewer than one in a million (16).

Symptoms of this disorder usually present after the first 2–3

months of life, characterized by hypotonia (lack of head lift),

developmental delay, and failure to thrive (Figure 1). Patients

may initially be referred to a pediatric neurologist, pediatric

endocrinologist, or pediatric gastroenterologist, but over time,

their symptoms become progressively severe and include

cognitive issues, gross and fine motor delay, movement disorders

such as hypokinesia and dystonia, mixed hypotonia with axial

spasticity, limited ability to communicate, lack of weight gain,

lack of increase in muscle tone, sleep problems, thyroid hormone

abnormalities, and cardiac complications, alongside the

presenting symptoms (1, 2, 4–6, 8, 13, 14, 17, 18). Once a

diagnosis is established, a multidisciplinary team is best suited to

care for the patient (4, 5). This team can include a primary care

provider (PCP; general pediatrician or family physician), a

pediatric neurologist, physical, occupational, speech, and feeding

specialists, a pediatric gastroenterologist with a dietician,

geneticists and genetic counselors, and a family social worker

and/or case manager to help families and caregivers navigate the

daily, complex, life-impacting care needs of their child (1, 4, 5).

Currently, formal guidelines for the diagnosis and

management of MCT8 deficiency do not exist, with diagnosis

based on clinical signs and symptoms with a characteristic

pattern of thyroid hormone levels in the blood, and

confirmatory genetic testing (1). Current treatment options are

limited to supportive and symptomatic therapies. Preliminary

data suggest the importance of an early diagnosis to optimize

the potential benefit of treatment options currently under

development that target the complex underlying pathology of

the disorder (5, 6, 16, 19).

In this review, we aim to highlight the current challenges in

MCT8 deficiency diagnosis and management. We hope that raising

awareness of MCT8 deficiency will aid in the earlier identification

of the disorder and enable prompt intervention and access to

appropriate care, helping to improve the quality of life of the

patients and their caregivers.
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Methods

In February 2024, the published literature was reviewed to

identify relevant articles reporting on the evaluation and

management of patients with MCT8 deficiency. We included

publications from PubMed limited to the past five years and

only those published in English. Older publications were used

where appropriate for introductory or background information.

The initial search term string used in PubMed was: AHDS

OR Allan-Herndon-Dudley syndrome OR MCT8 deficiency OR

MCT8. Subsequent searches added the following additional

terms to confirm relevant articles had not been missed in the

initial search: T3, T4, rare, developmental delay, newborn

screening, pediatric, paediatric, resistance to thyroid hormone,

dystonia, hypotonia, hypokinesia, leukoencephalopathy, and failure

to thrive. A search in PubMed using the following MeSH terms

did not identify additional publications to the first search

string: MCT8[All Fields] AND [“deficiency"(Subheading) OR

deficiency(Text Word)] AND “Allan-Herndon-Dudley syndrome”

[Supplementary Concept].
Results

Pathogenesis of MCT8 deficiency

MCT8 is the only thyroid hormone transporter involved in the

transfer of T3 and T4 into and out of the human brain, and its

dysfunction results in reduced levels of T3 and T4 in the central

nervous system (CNS) (10, 20). Outside the CNS, other thyroid

hormone transporters are involved in the movement of T3 and T4

into and out of cells, although with less specificity (21). Loss of

MCT8 function is thought to affect thyroid hormone sensitivity in

the hypothalamus and pituitary gland, decrease T4 secretion from

the thyroid, and increase T4 “trapping” in the kidneys, a

combination thought to contribute to elevated serum T3 levels

(20). Therefore, MCT8 deficiency results in two co-existing sets of

symptoms of combined but opposing thyroid hormone

dysfunction: central hypothyroidism secondary to reduced T3 in

the brain during critical periods of neurodevelopment, and

peripheral hyperthyroidism secondary to elevated T3 in other

organs and body systems (Figure 1) (1, 20). With most

neurodevelopment occurring during gestation and through to

three years of age, the goal is to diagnose patients as early as

possible and develop treatments that could be used during this

critical window to attenuate the severity of neurodevelopmental

and neurocognitive deficits (1, 2, 5).
There is a lack of knowledge concerning
MCT8 deficiency

The first challenge in diagnosing patients with MCT8 deficiency

is the lack of awareness and clinical pattern recognition of the

disorder among healthcare professionals (HCPs). Pregnancy and

the first few months of life tend to progress uneventfully, so there
frontiersin.org
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FIGURE 1

The co-existing neurological and endocrinological symptoms indicative of MCT8 deficiency. (1, 2, 5, 6, 8, 13, 14).
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is no indication of MCT8 deficiency when these children are first seen

by PCPs (1). In the months that follow, symptoms such as failure to

thrive, global developmental delay, and hypotonia become more

prominent but are still non-specific (1). By 6 months of age, when

additional symptoms develop, e.g., dystonia and tachycardia, the

differential diagnosis is still broad (1, 2, 5). Data from the

International MCT8 Deficiency Registry—a prospective registry of

parents and physicians caring for patients with MCT8 deficiency—

showed that 58% (18/31) of parents reported knowledge of MCT8

deficiency among medical professionals they encountered to be

“bad” or “very bad”, illuminating the need for increased awareness

and education of HCPs (4).
Diagnosis of MCT8 deficiency is often
delayed

The lack of knowledge concerning the natural history, the

phenotypic spectrum, and the pathognomonic thyroid function

abnormalities of MCT8 deficiency all contribute to the delayed

diagnosis of affected individuals (6). The reported median age of

diagnosis is 24 months (IQR 12.0–60.0) (6). Some of this delay

may be unavoidable due to MCT8 deficiency being asymptomatic

until 2–3 months of age (Figure 1). However, the median time

from the onset of symptoms to a diagnosis has been reported as

18 months (IQR 7.8–63.0), associated with a frustrating and

stressful experience for families (6). Encouragingly, more

recent data from the International MCT8 Deficiency Registry

reported a shorter diagnostic delay in patients born in or after
Frontiers in Pediatrics 03
2017 compared with patients born before 2017 (8 months vs.

19 months, respectively; P < 0.0001) (4).

The diagnosis of MCT8 deficiency is based on a combination of

neurological and endocrinological clinical findings with a

characteristic thyroid hormone profile: elevated T3 with low FT4

and normal or slightly elevated TSH (Figure 2). Movement

disorders are a frequent feature of MCT8 deficiency (18). In a

study of twenty-seven male patients with genetically confirmed

MCT8 deficiency [mean age at evaluation: 9.3 years (range 0.9–

18.5)], hypokinesia, often associated with hypomimia and global

hypotonia, was present in twenty-five patients and was the

predominant movement disorder in nineteen of those patients

(18). Dystonia was also observed in twenty-five patients and the

predominant movement disorder in a minority of cases (5/27).

In eleven patients, exaggerated startle reactions and/or other

paroxysmal non-epileptic events were observed (18). Phenotypic

craniofacial features (including long narrow face, open mouth,

tented lip, and ear abnormalities), brain imaging abnormalities

(including delayed myelination), and cardiac arrhythmia or

tachycardia, support a potential diagnosis of MCT8 deficiency

(1, 5). A confirmed diagnosis of MCT8 deficiency follows the

identification of a pathogenic mutation in the SLC16A2 gene (1).
Differential diagnosis and MCT8 deficiency

In individuals with MCT8 deficiency, the broad differential

diagnoses include cerebral palsy, Pelizaeus-Merzbacher (like)

disease, MECP2 duplication syndrome, and mitochondrial
frontiersin.org
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TABLE 1 A summary of thyroid function disorders according to thyroid
hormone levels. (26, 28) Adapted from Kağizmanli et al. 2023. (28) TSH,
thyroid stimulating hormone; T4, thyroxine [as free T4 (FT4) or total T4
(TT4)]; T3, triiodothyronine [as free T3 (FT3) or total T3 (TT3)].

Thyroid function TSH T4 T3

FIGURE 2

The characteristic pattern of thyroid hormone levels in MCT8 deficiency. (1, 6) Adapted from Groeneweg et al. 2020. (6) FT4, free T4.
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disorders. Patients with these disorders also have developmental

delay and hypotonia, with either an X-linked or autosomal

recessive inheritance pattern, and many of these disorders are

more common than MCT8 deficiency (1, 4, 14, 22–24).
disorder
Euthyroid sick
syndrome

LOW NORMAL/LOW LOW

Graves’ Disease LOW HIGH HIGH

Neonatal thyrotoxicosis LOW HIGH HIGH

Hashitoxicosis LOW HIGH HIGH

Biotin interference LOW HIGH HIGH

Central
hypothyroidism

NORMAL/LOW LOW NORMAL/LOW

Resistance to thyroid
hormone α

NORMAL NORMAL/LOW NORMAL/HIGH

Resistance to thyroid
hormone β

NORMAL HIGH HIGH

MCT8 deficiency NORMAL/HIGH LOW HIGH

Hashimoto’s thyroiditis HIGH LOW N/A

Congenital/acquired
hypothyroidism

HIGH NORMAL/LOW NORMAL/LOW

Subclinical
hypothyroidism

HIGH NORMAL NORMAL

TSHoma HIGH HIGH HIGH
Diagnostic thyroid hormone testing for
MCT8 deficiency

Current newborn screening (NBS) was established to help

identify congenital hypothyroidism and does not include serum

T3 levels (23–26). This screening is usually performed in the first

few days after birth, and routinely in the first 24 h in the United

States (US) (23, 25, 26). Infants born with MCT8 deficiency have

normal TSH and T4 based on gestational age with the

pathognomonic rise in T3 levels not occurring until

approximately four months of age (6, 26). Therefore, simply

including T3 in the NBS protocol would not distinguish MCT8

deficiency from other thyroid hormone disorders (6). The only

characteristic MCT8-related thyroid hormone alteration that is

present within the newborn period is a low reverse T3 (rT3),

however, this test may not be readily available and is infrequently

performed (26).

After four months of age, serum thyroid hormone levels have a

characteristic “fingerprint” indicative of MCT8 deficiency as shown

in Figure 2 (1, 2):

• Low normal to decreased free T4 (unbound to thyroid hormone

transport proteins) or total T4 (bound and unbound)

• Elevated free or total T3

• Normal to slightly elevated thyroid stimulating hormone (TSH)

Outside of the newborn period, the most common obstacle

to diagnosis is the infrequent assessment of serum T3 in the
Frontiers in Pediatrics 04
evaluation of a child with signs and symptoms consistent with

MCT8 deficiency (1). In a review of the thyroid hormone

laboratory values associated with other thyroid disorders,

only resistance to thyroid hormone α (RTH-α) has a similar

pattern to MCT8 deficiency (Table 1) (27, 28). Both RTH-α

and MCT8 deficiency may be associated with neurocognitive

deficits and developmental delay, however, RTH-α is

associated with bradycardia and skeletal anomalies, while

MCT8 deficiency is associated with tachycardia and failure
frontiersin.org
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to thrive (1, 5, 28). Thus, the measurement of T3 is vital in

identifying the characteristic MCT8 deficiency thyroid

hormone “fingerprint”. If T3 is elevated, confirmatory

genetic testing should be performed (26).
Magnetic resonance imaging (MRI)

In addition to the characteristic thyroid hormone “fingerprint”,

neurological evaluation with MRI to assess brain myelination may

be informative (11). A lack of MCT8, and resultant T3 deprivation

in the brain, negatively affects oligodendrocyte maturation and

function (11). Brain MRIs in children under five years of age

with MCT8 deficiency have shown diffusely abnormal white

matter indicative of severely delayed myelination or

hypomyelination, particularly in the deep anterior white matter

(1, 11). Hypomyelination is reported to improve over time

(1, 11) and this may be accelerated by developing treatments that

can increase T3 concentration in the CNS (11, 29, 30).
Genetic testing

The diagnosis of MCT8 deficiency is confirmed by the presence

of a pathogenic mutation in the SLC16A2 gene (1). The

relationship between mutations in the gene, located at Xq13, and

the presentation of MCT8 deficiency symptoms was first reported

in 2004 (8, 31, 32). The relatively recent knowledge localizing the

gene may mean that some adult males with unexplained

neurodevelopmental or cognitive delays or impairment may have

undiagnosed MCT8 deficiency (33). As an X-linked disorder, there

is a 50% chance that male children will be affected if their mother

is a carrier of a pathogenic SLC16A2 mutation (5). The mutation

may also develop de novo during fetal development through

germline mosaicism (1, 5). Although most patients are male, a few

heterozygous females have been described with clinical symptoms

consistent with MCT8 deficiency resulting from chromosomal

translocations and non-random X-inactivation; these individuals

often have milder symptoms and less severe thyroid hormone test

abnormalities (1, 5, 15, 34).

The strategy for genetic testing can be gene-targeted (single-gene

testing or multigene panels, including custom-designed panels) or

comprehensive (whole exome sequencing, exome array, or whole
TABLE 2 SLC16A2 testing methodologies for MCT8 deficiency diagnosis. (1)

Methodology Utility

Gene-targeted sequencing
Single gene Known mutation testing in the family of a confirmed patient wit

HCP is confident of MCT8 deficiency diagnosis from symptomo

Multigene MCT8 deficiency diagnosis or differential diagnosis from custom

Comprehensive sequencing
Whole exome MCT8 deficiency diagnosis or differential diagnosis and copy nu

Prior knowledge of likely gene(s) involved is not required

Whole genome MCT8 deficiency diagnosis or differential diagnosis and copy nu
Prior knowledge of likely gene(s) involved is not required

Exome array MCT8 deficiency diagnosis by detection of multi-exon copy num

Frontiers in Pediatrics 05
genome sequencing) (Table 2) (1). If a gene panel of

comprehensive testing is ordered, it is important to verify that the

sequencing and analysis of the SLC16A2 gene is included.

A wide spectrum of pathogenic SLC16A2 mutations has been

characterized to date with an increasing number of new variants,

and previously described variants of unknown significance (VUS),

regularly added to this list, based on an improved understanding

of the clinical phenotype (13, 35–42). Therefore, sequencing test

results that previously did not lead to a diagnosis should be

periodically reanalyzed and updated to provide accurate diagnoses

(43). Genetic counseling is recommended for all families in which

a child is being tested for an SLC16A2 mutation to explain the

significance of an MCT8 deficiency diagnosis, to discuss and

coordinate the testing of parents and siblings of an affected child,

and to consider the risks and options for future pregnancies (1, 20).
A multidisciplinary care team is necessary
for patients with MCT8 deficiency

The need for multidisciplinary care is present from the start of the

patient’s journey, even before the diagnosis is confirmed. The initial

encounter with the health care system is most commonly when the

child presents to a PCP for routine wellness examinations during

the first year of life (1). Children with signs of MCT8 deficiency,

such as failure to thrive, tachycardia, hypotonia, and delayed

developmental milestones, may then be referred to a developmental

pediatrician, pediatric neurologist, cardiologist, endocrinologist,

gastroenterologist, or nutrition specialist, depending on the

individual patient’s specific symptoms and severity of presentation

(1, 4). One of these subspecialists may order thyroid function tests

and/or refer the patient to a clinical pediatric genetics team for

confirmatory SLC16A2 testing (1). Once diagnosed, children and

their caregivers will require assistance from multiple specialists for

symptomatic treatment and surveillance. The addition of a social

worker and/or case manager to the team is also critical to help the

family navigate the health care system (1, 4).

In the recent International Prospective Registry study of patients

with MCT8 deficiency, feeding problems were cited as a frequent

concern, with difficulty in gaining weight reported as a general

symptom (4). However, only 19% (6/32) of patients surveyed

reported a pediatric gastroenterologist as part of their care team,

and only 31% (11/36) of patients were provided with dietary
HCP, healthcare professional.

h MCT8 deficiency
logy and other tests

arrays or commercially available panels for similar disorders

mber variant detection

mber variant detection, including in regulatory/intergenic regions

ber variations
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advice from a dietician or nutrition expert (4). Only 12.5% (2/16) of

patients who reported feeding problems had a feeding tube (4).

Being severely underweight is a common symptom of MCT8

deficiency and is associated with a higher mortality risk compared

with patients of normal weight for their age so optimizing

nutritional care is vital (6, 10). In addition, children with MCT8

deficiency are at risk of aspiration pneumonia, so swallowing

function should be regularly assessed via speech therapy and

radiographic swallowing studies (1, 6). Sudden death, potentially

related to cardiac arrhythmia, associated with thyrotoxicosis, and

complicated by malnourishment and hypotonia, is a common

cause of death in individuals with MCT8 deficiency (6). Despite

the cardiac symptoms of this disorder, only 6% (2/32) of patients

in the International Prospective Registry study were referred to a

pediatric cardiologist (4). In addition, 1 in 5 affected children did

not receive regular physical therapy, despite profound

neuromuscular deficits (4).

Difficulties with sleeping are a commonly reported challenge,

particularly in children under five years of age, and this negatively

impacts the quality of life of patients and caregivers (4). Orthopedic

specialists should be consulted to assess for hip dysplasia, which

may cause discomfort, and patients should be evaluated for

scoliosis, which may impede respiratory function and sleep in

children with MCT8 deficiency (1). In a study investigating the

preferred therapeutic goals of caregivers, all the participants

surveyed (22/22; 100%) wished for improvement in development

(motor, verbal, or social skills), particularly the achievement of

gross motor milestones (12). Other goals listed include improved

head control (59%) and sitting ability (50%), weight gain (36%),

improvement of expressive language skills (32%), reduction of

reflux (27%), gastric tube independence (18%), and a reduction of

dystonia/spasticity (18%) and associated dysphagia (27%) (12).

The earlier a patient is diagnosed, the earlier an optimal

multidisciplinary team of specialists can address the everyday

challenges of caring for a patient with MCT8 deficiency (4). Despite

potential improvements in recognition and time to diagnosis, clinical

guidelines and the availability of an approved targeted treatment for

MCT8 deficiency are needed (1). Current treatment relies on the use

of supportive therapies to improve strength and mobility, delivered

by a cohesive, multidisciplinary team and focused on helping

affected individuals and their caregivers manage the day-to-day

challenges of this disorder (4, 13, 20).
Current therapies under investigation

There are no approved therapies for the treatment of MCT8

deficiency. Current thyroid hormone medications that are approved

for use in other thyroid conditions are not targeted or effective in

managing the dysregulation of thyroid hormone transport in MCT8

deficiency. The aim of managing MCT8 deficiency is to restore

adequate thyroid hormone signaling to the brain and treat the

peripheral thyrotoxic state caused by elevated serum T3 levels

outside the brain (2). Treatment with carbimazole, methimazole

(MMI), or propylthiouracil (PTU)—in combination with

levothyroxine (LT4)—has been tried in an attempt to reduce T3
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and replace thyroid hormone in a controlled manner (16, 19, 44).

Unfortunately, this approach does not address the inability of

thyroid hormone to access the brain, and to date, these medications

have proven ineffective, while at the same time exposing patients to

potentially serious side effects, including drug-induced neutropenia

and hepatotoxicity (19, 44). In the US, PTU carries an FDA black

box warning and is contraindicated for use in pediatric patients

secondary to a risk of drug-induced liver failure in 1 in 2000–4000

children, which may be fatal or require liver transplantation (44).

MMI is also associated with a risk of cholestatic hepatotoxicity,

agranulocytosis, pancytopenia, and aplastic anemia, although these

adverse reactions are not common (44).
Therapeutic agents in development

The optimal therapy for MCT8 deficiency would alleviate both

the neurological symptoms caused by decreased levels of T3 in the

brain, as well as the endocrinological symptoms associated with

elevated serum T3 levels in the rest of the body (19). Targeting

the symptoms associated with thyrotoxicosis is more

straightforward since thyroid hormone enters cells in tissues

outside the brain via non-MCT8 dependent mechanisms, and

lowering thyroid hormone in the serum leads to decreased signs

and symptoms of hyperthyroidism (17). Targeting CNS

hypothyroidism is more complicated as the opportunity to have

an impact on brain development is time-dependent, starting

during organogenesis (during the first trimester of pregnancy)

with decreasing impact over the first three years of life, and a

suitable drug needs to circumvent the defective MCT8

transporter, cross the blood-brain barrier and enter cells in the

CNS (2, 5). It is also thought a lack of thyroid hormone in brain

development and abnormal functioning of dopaminergic circuits

of the basal ganglia may be related to the movement disorders

frequently seen in MCT8 deficiency (18). Thyromimetics under

research investigation that can enter cells in the CNS

independent of MCT8 include DITPA (3,5-di-iodothyropropionic

acid, also known as SRW101) (45, 46) and triac (3,3′,5-tri-
iodothyroacetic acid, also known as tiratricol) (19).
DITPA

DITPA (diiodothyropropionic acid) is a synthetic T3 analog that

can enter the CNS independent of MCT8 and stimulate thyroid

hormone action by binding to the thyroid hormone receptors,

TRα and TRβ (45, 47). Outside the brain, DITPA reduces

circulating T3 by decreasing the activity of deiodinase type 1

(DIO1), which converts T4 to T3 (45). Mouse studies have shown

that DITPA can reduce serum T3 levels and elicit some

neurological effects, such as normalized myelination and cerebellar

development, if it is administered soon after birth (during the first

three post-natal weeks) (48, 49). However, despite its ability to

cross the blood-brain barrier, in vitro studies have shown that

DITPA binds to the TRβ thyroid hormone receptors with a 350-

fold weaker affinity than T3 (47). In a study of four children given
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compassionate-use DITPA, serum T3 and TSH were reduced to

normal levels, but the effect of long-term treatment has not been

reported (47). DITPA is currently undergoing further study,

including a clinical trial investigating its administration during

pregnancy (50). DITPA (SRW101) has received FDA Orphan

Drug Designation and Rare Pediatric Disease Designation (45).
Tiratricol (triac)

Tiratricol (tri-iodothyroacetic acid) is a naturally occurring

analog of T3 which can enter the brain via thyroid hormone

transporters other than MCT8 (51). In vitro studies have

demonstrated that the absence of an amino (NH2) group in the

structure of tiratricol compared with T3 is associated with

MCT8-independent uptake in human neuronal cells (20, 29). In

addition, although tiratricol and T3 bind to the TRα1 thyroid

hormone receptor with equal affinity, tiratricol binds thyroid

hormone receptors TRβ1 and TRβ2 with an almost 10-fold

higher affinity than T3, indicating that tiratricol can not only

enter cells where T3 cannot, but it may also elicit a biological

response at lower cellular concentrations (52).

Preclinical knockout mouse models have shown that tiratricol

can restore neural differentiation, improve white matter loss, and

promote dendritic growth and myelination in T3-depleted cells

when administered soon after birth (during the first three post-

natal weeks), showing promise in potentially mitigating the

neurological effects of MCT8 deficiency (29, 30, 52). In another

study, high doses of tiratricol were administered by

intracerebroventricular delivery in three-month-old knockout

mice (53). Here, the treatment could normalize the

endocrinological effects of thyrotoxicosis but, despite wide

cerebral tiratricol distribution, the treatment had minimal

thyromimetic activity in the brain (53). This may be due to the

non-neonate mice used in the study. Research comparing DITPA

and tiratricol in newborn knockout mice indicated that tiratricol

exerted a stronger thyromimetic effect than DITPA in promoting

CNS maturation and function (49).

Several clinical trials have been completed, or are underway, to

evaluate the use of tiratricol in individuals with MCT8 deficiency.

The Triac I trial was an international, single-arm, open-label, phase

II trial in which forty-five patients [median baseline age: 7.1 years

(range 0.8–66.8)] were treated with oral tiratricol and had at least

one follow-up measurement of thyroid function (19). Forty

patients completed the 12-month trial (19). All the study’s

primary endpoints were met, including the lowering of serum

total T3, with associated improvements in body weight for age,

blood pressure, and resting heart rate and rhythm, with minor

improvements in motor function for pediatric patients (19).

A subsequent follow-up retrospective cohort study was completed

to evaluate the long-term efficacy of tiratricol on clinical and

biochemical parameters (54). Patients from the Triac I trial (n =

27), together with individuals from a tiratricol compassionate use

program (n = 40), were enrolled [median baseline age: 4.6 years

(range 0.5–66.0)] (54). The decrease in mean serum T3, serum

TSH, and free and total serum T4 was maintained in all patients
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maintaining T3 concentrations within the target range (54). In

patients treated for more than 2 years, serum thyroid hormone

levels after 1 year of treatment did not differ significantly compared

to their last visit and remained significantly reduced compared to

baseline. This indicated a sustained benefit from tiratricol, an effect

seen in patients of different ages (54).

A real-world study of four patients assessed at Hospital

J. P. Garrahan in Argentina between January 2019 and December

2022 [median age at diagnosis: 1.38 years (range 0.58–7.16)];

median time from diagnosis to tiratricol initiation: 2.7 months

[±2.2 months]) found serum T3 levels decreased with treatment in

all four patients (55). Muscle tone and developmental delay also

improved, and two children with malnutrition gained weight,

highlighting that timely diagnosis and therapeutic intervention are

associated with positive clinical effects (55). In a recent case report,

early intervention with tiratricol in a boy diagnosed with MCT8

deficiency at twenty-one months found that, after a year of

treatment, there were significant improvements in both neuronal

and endocrinological symptoms, with improvement in head control,

increase in body weight, and normal heart rate and blood pressure

all recorded (56).

Two additional clinical trials are ongoing: the Triac II trial (57)

and ReTRIACt (58). Triac II is an open-label, phase II trial, which

enrolled twenty-two MCT8 patients ≤30 months of age at the onset

of treatment with tiratricol. The study aims to confirm the effect of

tiratricol on the biochemical changes giving rise to the

endocrinological symptoms of MCT8 deficiency seen in the Triac

I trial as well as investigating the potential positive impact on

neurodevelopment from initiation of tiratricol treatment earlier

in life (54). The ninety-six-week results are currently being

analyzed and there is an ongoing two-year extension of

treatment with assessment at years three and four underway (57).

The ReTRIACt trial launched recruitment in 2023 to enroll

patients in a double-blind, randomized, phase III, multicenter,

placebo-controlled study in approximately sixteen patients (≥4
years of age) (58). The trial aims to confirm that tiratricol

administration is responsible for reducing circulating serum T3

levels (58). Tiratricol has an Orphan Drug Designation for

MCT8 deficiency and resistance to thyroid hormone type beta

(RTH-β) in the US and the European Union (EU) (59).
Novel preclinical model systems

In addition to mouse models, the effect of DITPA and tiratricol

have been investigated in cerebral organoids generated from

induced pluripotent stem cells from MCT8-deficient patients,

providing a species-specific preclinical model (60). These cells

exhibited altered early neurogenesis, impaired T3 transport, and

altered gene expression of thyroid hormone transporters.

Administration of DITPA and tiratricol to these cerebral

organoids triggered normal activity in T3-responsive genes,

providing evidence that MCT8 is critical for early neurogenesis

and that both treatments can elicit thyroid hormone signaling

responses in human MCT8-deficient neural cells (60).
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Gene therapy

Gene therapy is being investigated to recover MCT8 function

by using viral expression vectors carrying the functional

SLC16A2 gene and relevant promoter sequences to deliver wild-

type MCT8 protein to MCT8-deficient cells (7). A preliminary

preclinical study examined whether the transfer of human MCT8

(hMCT8) cDNA in an adeno-associated virus 9 (AAV9) vector

could rescue neurological defects in Mct8 knockout mice.

Intravenous (IV) AAV9-hMCT8 increased the activity of MCT8,

with a significant increase in brain T3 content (61). More recent

gene therapy studies in mice have demonstrated the long-term

benefits of IV AAV9-hMCT8 and IV AAV-BR1-Mct8 on the

CNS of mice, with both increasing brain T3 content (62, 63).
Chemical chaperones

Chemical chaperones are also being investigated in the setting

of MCT8 deficiency. Preliminary preclinical data have

demonstrated that sodium phenylbutyrate (NaPB) can stabilize

the protein-folding defects of certain pathogenic SLC16A2

mutations, increase MCT8 expression in the cell membrane, and

improve T3 transport in cells with various SLC16A2 mutations

(2, 64). Although chaperones like NaPB show promise, it is likely

they will only work in a subset of patients with SLC16A2

mutations associated with misfolding and increased protein

degradation (64). Another potential treatment option is the CNS-

selective amide prodrug sobetirome (Sob-AM2) (65). Maternal

administration of Sob-AM2 can cross the placenta and access

fetal tissues, including the brain, in the absence of MCT8,

modulating the expression of T3-dependent genes (65). However,

in preclinical mouse trials, sobetirome treatment led to

spontaneous abortions. Further investigations are needed to

determine how this type of treatment could potentially help

prevent neurodevelopmental alterations in the MCT8-deficient

fetal brain with reduced toxicity (65).
Summary

The results of this narrative review highlight that MCT8

deficiency is a chronic condition for which there are several areas

of unmet need, with resultant delays in diagnosis and a shortfall

in access to multidisciplinary management. Parents and

caregivers continue to struggle with the complex patient journey,

which is compounded by the lack of an effective, approved

therapy, as well as the small window where treatment may have

the greatest impact on neurodevelopmental outcomes.

While there is evidence of increased awareness of MCT8

deficiency among HCPs, reflected by a decreased time to diagnosis,

there remains a need for improved early recognition and

therapeutic interventions that will have the most significant clinical

impact if initiated in pregnancy or as early in the patient’s life as

possible (4). The understanding of this disorder is improving with
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networks which provide vital caregiver information on the natural

history of a disorder to help supplement information gathered

from clinical trials (4, 12, 66, 67). Continued education of HCPs

from different specialties is needed to ensure MCT8 deficiency is

detected at the earliest opportunity and patients are not passed

from specialist to specialist to obtain a diagnosis.

An early diagnosis of MCT8 deficiency is essential to providing the

patient with supportive care which can greatly enhance the quality of

life of patients and caregivers (6). It is important that patients receive

the appropriate complement of thyroid hormone tests to aid a

diagnosis of MCT8 deficiency. The diagnostic thyroid hormone

“fingerprint” profile includes elevated serum T3 levels with low T4

and normal to mildly elevated TSH results. In the neonate, T3 is not

elevated; however, rT3 is low (26, 68). Earlier diagnosis of the

disorder in the future could allow for more prompt intervention with

newer therapies and the potential clinical benefits those provide.

As MCT8 deficiency is an inherited condition, carrier testing of

at-risk female relatives, prenatal testing for a pregnancy at

increased risk, and preimplantation genetic testing are possible,

but this is only practicable in families where an affected child has

already been born and there are the financial means to pursue

this approach (1, 4, 26). Preclinical studies have highlighted the

potential of prenatal molecular chaperone treatment (65), and a

trial is underway to evaluate DITPA treatment of affected

children in utero to determine if treating MCT8 deficiency before

birth has a positive impact on fetal neurodevelopment (51).

If individuals with suspected MCT8 deficiency are evaluated by

whole genome or whole exome sequencing, it is important to

ensure that the SLC16A2 gene is a locus that is analyzed and

reported. Similarly, panels developed to screen for developmental

delay or thyroid hormone-related disorders should include

SLC16A2 so a diagnosis of MCT8 deficiency is possible. As

access to genetic testing improves, there is an increased

understanding of the genotype-phenotype relationships in MCT8

deficiency, as well as the variance in the degree of clinical

expression of the disorder (6, 12, 21). To help with further

identification of cases, data should be regularly reanalyzed, and

databases reinterrogated to ensure up-to-date categorization of

any variants found (43).

With affected individuals largely dependent on caregivers

throughout their lives (4), it’s vital to understand what these

families need to improve their quality of life. Capturing patient-

reported outcomes can help meet the specific needs of each

family and their preferred therapeutic goals (4, 12, 69). The

needs of patients with complex disorders are dynamic and

change over time, and their supportive care team should adapt

and respond as the child grows into adulthood (69, 70). The

International Rare Diseases Research Consortium (IRDiRC) task

force is committed to developing patient-relevant outcomes,

stating patients and/or their representatives should be involved in

all relevant aspects of research, an essential step in the

development of more patient-focused research outcomes (71).

There remains a significant unmet need for new treatments

specifically evaluated in, and approved for, MCT8 deficiency.

To effectively and specifically treat MCT8 deficiency, a therapeutic
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molecule must be able to enter the brain independent of the MCT8

protein; have a high affinity for thyroid hormone receptors; be able

to elicit T3-like effects on genes downstream of the thyroid hormone

receptors; preserve or restore neural differentiation in the brain;

alleviate endocrinological symptoms due to MCT8 deficiency, and

demonstrate good long-term safety and tolerability (16, 19, 29, 44).

Tiratricol is furthest along its developmental pathway as a targeted

treatment for MCT8 deficiency. In October 2023, an EU marketing

authorization application (MAA) for tiratricol (Emcitate®) in the

treatment of MCT8 deficiency was submitted and an application to

the US FDA is anticipated soon (72).

There are multiple challenges in the diagnosis and management of

MCT8 deficiency. To improve patient outcomes, MCT8 deficiency

awareness must be increased across the clinical and scientific

communities involved in diagnosing and supporting these patients,

including general practitioners, pediatric neurology, pediatric

genetics, endocrinology, gastroenterology, nutritionists and dieticians,

nurse specialists, and supportive care therapists. A definitive

diagnosis can empower families and lead to clinical, practical,

emotional, and financial support. Earlier intervention and emerging

treatments offer hope for improved prognosis and better patient and

caregiver quality of life.
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