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Abstract

Temporal feature binding in vision refers to the process by
which features of objects presented one after the other at the
same spatial location are correctly bound together. In this
paper, we describe a computational model of putative neural
mechanisms that would produce this behaviour. These simula-
tions highlight the role of transient attentional enhancement in
mediating the temporal binding of features into working mem-
ory. This model builds upon previous approaches, and explains
a range of behavioural findings relating to the patterns of illu-
sory conjunctions observed in experiments. Further, it pro-
vides a parsimonious account of a counter-intuitive pattern of
reaction time data.
Keywords: Binding Problem, Temporal Feature Binding,
Neural Modelling

Introduction
We generally see the world as containing coherent bound ob-
jects. We might perceive the coincidence of the colour red
and a rapidly moving form as a speeding red Ferrari. Such
feature binding is effectively pre-conscious, and as such, we
would not notice it as a task to be performed. However, the
brain has to conjoin features in the environment in order that
we can perceive bound objects. In other words, the brain has
to solve the “binding problem”. This refers to the cognitive
and neural mechanisms by which feature binding is accom-
plished (Treisman, 1996). In experiments that impede the fo-
cusing of attention on specific visual objects, participants can
be induced to produce errors in binding, generally referred to
as conjunction errors. Under such circumstances, they often
consciously perceive illusory conjunctions of visual features,
which are defined as ‘miscombination of features actually
presented in a single display’ (Treisman & Gelade, 1980).
Since the pioneering work by Treisman and Gelade, the vari-
ous aspects of feature binding in space have been extensively
explored in numerous experiments.

Temporal Feature Binding Although largely unnoticed
by us, the brain also has an impressive capacity to correctly
bind features through time. For example, when we are driv-
ing along a busy road, it does a good job of tracking a large
number of moving objects. However, such dynamic visual
environments also cause us to make occasional errors. These
errors in temporal binding occur when a feature from one ob-
ject is mistakenly bound to a temporally neighbouring ob-
ject. The pattern of these errors is revealing of the means by
which the brain binds through time. Temporal binding errors

can be generated in experiments using rapidly presented se-
quential stimuli, but have received relatively little theoretical
attention. In response, this paper focuses on a theoretical ex-
ploration of temporal feature binding in vision. In particular,
we build upon previous research to propose the 2f-ST2 model
of temporal feature binding (see Figure 1a). This neural net-
work model emphasises the role of transient attentional en-
hancement as a mediator between two stages of visual infor-
mation processing, enabling the binding of stimulus features
into working memory (see Figure 1b).

Experiments involving feature binding in time usually em-
ploy the Rapid Serial Visual Presentation (RSVP) paradigm
(see Figure 1b for an example), where a stream of stimuli is
presented, with each rapidly replacing the previous one, at
the rate of approximately 10/sec. The task-defining feature,
present only in the target, is called the key feature. The feature
of the target that is to be identified and reported is termed the
response feature. For example, in Figure 1b, each RSVP trial
consists of a stream of coloured letters, and participants are
asked to detect the identity (the response feature) of the letter
presented in red (the key feature). In such situations, mul-
tiple stimuli may be simultaneously processed in the visual
system, leading to the possibility of the formation of illusory
conjunctions. In this context, the visual system has the task
of solving the binding problem in time: it must pick out the
features of targets amongst multiple, temporally overlapping
features of distractors. This process is referred to as temporal
feature binding.

The BBS Model The BBS model (Botella, Barriopedro, &
Suero, 2001) is currently the dominant account of temporal
feature binding in vision, and indeed, it provides an accurate
fit to available data. This model assumes that such binding
occurs either through an attentional focusing (AF) route or
through a sophisticated guessing (SG) route. These two bind-
ing routes are additional to the two parallel pathways posited
for processing key and response features. The AF route is
taken when attention has enough time to correctly pick out
the target’s key and response features. SG, on the other hand,
comes into play when there is temporal uncertainty about the
target’s response feature. Importantly, AF leads to a distinct
(always correct) outcome, requiring a binding route function-
ally different from that which produces conjunction errors. To
justify this dual-route approach, the authors point to reaction
time (RT) data from Botella (1992), which suggests that most

2598



correct reports are processed earlier than conjunction errors,
and hence are not ‘fortunate conjunctions’. They suggest that
most correct reports are produced by the fast and determin-
istic AF route. Conjunction errors, on the other hand, are
produced by the slow and probabilistic SG route. However,
the model leaves unexplained the mechanistic basis for the
choice of binding route. Specifically, the BBS model incor-
porates a probability of taking the AF or the SG route, which
is determined by the data being modelled; but it does not elab-
orate on how this probability might emerge from the nature of
the stimuli being processed. Our model (2f-ST2) avoids this
limitation, since it describes how qualitatively different be-
havioural outcomes (correct reports vs. conjunction errors)
might be realised by a single binding mechanism under the
influence of variation in stimulus latency and strength.

The 2f-ST2 Model
The 2-feature simultaneous type serial token (2f-ST2) model
has been designed to simulate temporal feature bind-
ing in RSVP experiments. It draws upon a previous
model (Bowman & Wyble, 2007), and is, we argue, more
functionally complete than the BBS model (Botella et al.,
2001).

Broadly speaking, the architecture of the 2f-ST2 model
can be divided into two stages of processing (see Figure 1a).
A parallel Stage 1 is responsible for extracting informa-
tion (called types (Bowman & Wyble, 2007)) from RSVP
items along multiple feature dimensions (e.g., item colour
and shape). These dimensions are processed separately and
concurrently, within two distinct, parallel pathways: the key
and response pathways. Stage 2 consists of the binding pool
and a set of tokens (Bowman & Wyble, 2007). The bind-
ing pool stores an association between a pair of type nodes
(one from each of the two pathways) and a working memory
token. Temporal coordination of these three nodes is orches-
trated by a temporal attention mechanism, the blaster, which
is triggered by activation in the key pathway.

Key Pathway The constituent key features of items are ex-
tracted in the key pathway. At the key Type layer, task de-
mand (depicted in Figure 1a as a dashed circle around the
target type node) enhances type representations of target key
features (the colour red in Figure 1b), and suppresses distrac-
tor key features. Hence, distractors are RSVP items that lack
the target-defining key feature.

Blaster The blaster is triggered by activation from key tar-
get type nodes, via the connection labelled (a) in Figure 1a.
Once activated, the blaster produces its characteristic ballis-
tic response: it provides a non-specific, short-lived burst of
transient attentional enhancement (TAE) to late layers in both
key and response pathways. This is mediated by the connec-
tions marked (b) and (c) in Figure 1a. This boost provides the
maximally active key and response types enough activation
to initiate a combined binding process in the binding pool.

Response Pathway All response features, including that
of the target, are treated equally in the response pathway.
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Figure 1: The 2f-ST2 model

At the response Type layer, distractors presented in tempo-
rally proximal (i.e., -2, -1, +1 and +2) positions relative to
the target can be co-active with the target response type. In
order to generate a binding, the conflict between co-active
response type nodes is resolved by weak lateral inhibition.
Thus, only strongly active response types can initiate feature
binding. Depending on relative timing of blaster firing and
strengths of co-active response types, the target response type
or a temporally proximal distractor can win this competition.
This competitive interaction produces different possible bind-
ing outcomes, and thus the possibility of conjunction errors.

The Binding Pool The binding pool consists of two dis-
joint node subsets. The first subset maintains associations
between key types and tokens. It receives activation from key
type nodes via the connection labelled (d) in Figure 1a. Sim-
ilarly, the second subset maintains associations between re-
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sponse types and tokens. Thus, a successful binding involves
two binding pool nodes, one in each subset. Activation from
the two pathways drives the corresponding nodes in the bind-
ing pool subsets above threshold. These nodes consequently
associate one token with two type nodes, one in the key path-
way and the other in the response pathway.

Tokens The 2f-ST2 model uses tokens to store episodic,
temporally ordered representations of targets. During encod-
ing, the currently active token inhibits all binding pool nodes
of other tokens via the connection labelled (g) in Figure 1a.
During binding, a token receives activation from a pair of
binding pool nodes, via the connection labelled (h) in Fig-
ure 1a. As previously discussed, these binding pool nodes
are in turn excited by a pair of (key-response) type nodes.
The successful completion of binding yields an association
between the active token, a key type and a response type,
through sustained activation in the binding pool.

Summary In a trial, the relative time taken to process key
and response features of items determines which response
feature benefits most from the blaster’s enhancement. Thus,
it determines the bindings produced. Across simulated trials
encompassing a variety of feature strengths, the model pro-
duces a range of binding outcomes, making up a response
distribution (see bottom of Figure 1b). In most trials with the
default model configuration (see below), the target response
feature is the maximally active node in its pathway at the time
of blaster firing. Hence, it wins the competition, and is suc-
cessfully bound into a token, thereby producing a correct re-
port. On some trials, response features of items before (-1
or -2 positions) or after (+1 or +2) the target are more ac-
tive when the blaster fires, and get encoded instead. Such
errors occur because of variation in the strength of key and
response features, in addition to variation in processing delay
in the pathways (see below). Of course, the relative proba-
bility and temporal position of conjunction errors depends on
the model’s specific configuration.

Configuration For all simulations, model configuration
and parameters are kept unchanged (cf. Computational Meth-
ods section), except for the following three.

τD is a random, varying gaussian (mean = 0; s.d. = 15ms)
delay. It is repeatedly sampled, once per item in the stream.
For a particular RSVP item, τD is the same in the key and re-
sponse pathways, but the bottom-up input strengths in these
pathways vary independently. Consequently, the parallel pro-
cessing of these features in Stage 1 is not perfectly syn-
chronous. τD introduces temporal noise, generating conjunc-
tion errors and broadening response distributions.

τK and τR add a fixed positive or negative delay to the pro-
cessing of all features in the key and response pathway, re-
spectively. They are fixed within a complete simulation run.
Either τK or τR is varied across a pair of runs, to model a key
or a response feature manipulation. In the ‘default’ configu-
ration, both τK and τR are set to 0. To simulate an isolated
change in processing time within a pathway, τK or τR is ad-
justed.

Behavioural Predictions of the 2f-ST2 Model
Isolated behavioural manipulations of the key and response
pathways have been investigated by Botella et al. (2001).
These manipulations change the correct report rate, and shift
the loci of response distributions. Such shifts can be quan-
tified using metrics like the Average Position of Intrusions
(API) (Botella et al., 2001).

Key Feature Manipulation According to the 2f-ST2

model, increasing key pathway processing delay will increase
the proportion of post-target errors. This is because such an
increase causes activation to reach the key Type layer later,
in turn delaying blaster firing to a time at which post-target
response items are most active. They consequently benefit
more from its enhancement and get bound.

Exp. 1A from (Botella et al., 2001) provides an isolated
manipulation of key feature processing time. Participants
viewed an RSVP sequence of coloured words, and were asked
to identify the colour of the only animal word (see Figure 2A).
The frequency of the word in language use was manipulated:
high-frequency (HF) words corresponded to key features that
could be processed quicker than low-frequency (LF) words.
Accordingly, a significant post-target shift and later API was
found for LF compared to HF words (see top panel in Fig-
ure 2C). In addition, correct reports reduced from the HF to
LF conditions.

Figure 2B illustrates how the 2f-ST2 model simulates this
data. The τK parameter is set to 0ms and 40ms for the HF and
LF conditions, respectively, reflecting increased key feature
processing delay in the latter. This manipulation delays aver-
age blaster firing latency for the LF condition, increasing the
probability that it enhances post-target response features. The
lower panel in Figure 2C shows the resulting post-target shift,
and is mirrored by the corresponding simulated API values of
-0.11 and 0.78 for the HF and LF conditions, respectively. In
addition, the model generates more correct reports in the HF
condition (62% vs. 55%). This post-target shift and reduc-
tion in correct reports replicate Exp. 1A from (Botella et al.,
2001).

The BBS model also predicts a post-target shift with an iso-
lated increase in mean key feature processing time. However,
an important distinction between the two models relates to
correct reports. The BBS model predicts that correct reports
will always decrease along with an API increase. In contrast,
2f-ST2 does not mandate a reduction in correct reports along-
side a post-target shift. Whether the number of correct reports
increases, decreases or remains unchanged along with a post-
target shift depends on the pair of conditions being compared.
Shortly, we present new behavioural data supporting 2f-ST2

in this respect.
Response Feature Manipulation An isolated increase in

response pathway processing delay means that, when the tar-
get key feature reaches the key type layer, pre-target response
features are more likely to be active at the response type layer.
Consequently, they benefit more often from the blaster’s en-
hancement, increasing their likelihood of binding to a token,
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producing a pre-ward shift in the response distribution.
Exp. 2 from (Botella et al., 2001) describes an isolated

response feature manipulation, where target words were pre-
sented in uppercase, in a stream of lowercase distractor words
(see Figure 3A). Response feature processing delay was ma-
nipulated using LF or HF words. Presumably, since LF words
produced an increase in response pathway processing delay,
a pre-target (HF to LF) shift was found (Figure 3C upper
panel). Accordingly, LF words had a more negative API.
However, there was no significant change in the number of
correct reports.

To simulate this data in 2f-ST2, τR (the fixed response path-
way processing delay) is set higher (10ms) for LF than for HF
words (0ms). Thus, LF item response features reach the Type
layer later, and pre-target distractors have highest activation
when the blaster fires (see Figure 3B), producing a more neg-
ative API for LF words. 2f-ST2 replicates this pattern (Fig-

ure 3C lower panel), simulating API values of -0.11 and -0.31
for the HF and LF conditions, respectively. In addition, cor-
rect reports are the same (62%) in the two conditions. Thus,
2f-ST2 replicates the findings in Exp. 2 from (Botella et al.,
2001).

Again, the 2f-ST2 and BBS models simulate response fea-
ture manipulations similarly. However, the BBS model pre-
dicts that correct reports are unchanged when the response
pathway is manipulated. This is because the relative propor-
tion of trials processed by the AF or SG routes remains un-
changed. In contrast, 2f-ST2 predicts that sufficiently large
response pathway manipulations will change correct report
rates.

Reaction Times for Response Positions We show that 2f-
ST2 replicates existing RT data (Botella, 1992) using a single
binding mechanism, weakening the need for the BBS model’s
dual-route approach. Botella (1992) showed that correct re-
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port RTs are fastest, followed by pre- and then post-target
errors (see Figure 4). This is a counter-intuitive finding, as at
first sight, one would expect pre-target errors to be earliest,
followed by correct reports and then post-target errors. Fur-
thermore, one might expect that a parallel model like 2f-ST2

would generate this pattern. Consequently, this RT data is a
crucial test of 2f-ST2.

In 2f-ST2, RTs are modelled by the time at which the token
completes binding to a pair of key and response type nodes.
This event is indexed by the trace neuron (Bowman & Wyble,
2007) of the active token reaching 75% of its maximal acti-
vation. To generate RTs, trials are grouped by response po-
sition and separately averaged. As seen in Figure 4, 2f-ST2

replicates the qualitative pattern of data reported by Botella
(1992).

2f-ST2 produces this pattern because, for correct reports,
the blaster fires temporally close to the activation peak of
a strongly active target response type node. In this situa-
tion, this node quickly wins the competition with co-active
response type nodes. In contrast, conjunction errors arise
when the target’s key and response features are relatively
weak. Because of a weak target key feature, the blaster fires
later. When a pre-target item’s response feature is relatively
stronger, the corresponding type node benefits more from the
blaster, wins the competition and produces a pre-target er-
ror. A corresponding pattern arises for post-target errors. For
pre- and post-target errors, the blaster fires temporally further
from the peak activation of the response type that gets bound.
Hence, these types take longer to overcome the response type
layer’s lateral inhibition. This increases mean RTs for con-
junction errors. Naturally, post-target error means are later
than pre-target error means, as the blaster fires later.
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The Temporal Feature Binding Experiment
We present new data that refutes a prediction from the BBS
model. We presented coloured letter or symbol targets within
RSVP streams of digit distractors (SOA 94ms). The key fea-
ture was target category (letter or symbol), and the response
feature was colour (cf. Experimental Methods). Figure 5A
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depicts the resulting response distributions. The APIs for let-
ter (0.18) and symbol (0.31) targets are significantly different
(F(1,13) = 9.7, MSE = 0.01, p < 0.01). Hence, this experi-
ment manipulates key feature processing delay. In addition,
correct report rates vary across the conditions: 29% for letter
and 35% for symbols, with a marginally significant differ-
ence (F(1,13) = 3.24, MSE = 65.9, p = 0.09). This marginal
increase in correct reports accompanying the letter to symbol
post-target shift contradicts the BBS model, which mandates
a decrease in correct reports.

To simulate this with 2f-ST2, we manipulate key pathway
delay, producing the early key (EK) and late key (LK) con-
ditions, with τK values of -40ms and 0ms, respectively (see
Figure 5B). Going from the EK to the LK condition, API in-
creases from -0.86 to -0.11, and correct reports increase from
54% to 62%. That is, the post-target shift is associated with
an increase in correct reports. Hence, the pattern of changes
between the EK and LK conditions are qualitatively equiv-
alent to those observed in the human data, although the in-
crease in correct reports did not quite reach significance.

Conclusions
The 2f-ST2 model provides a detailed neural explanation of
attentional enhancement in temporal feature binding. The
theoretical framework underlying this explanation (Bowman
& Wyble, 2007) already elucidates a broad profile of tem-
poral cognitive phenomena, including the attentional blink,
repetition blindness, episodic perception, etc. This level of
description in 2f-ST2 extends beyond that afforded by the
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BBS model. The latter leaves unspecified neural realisation
of the AF and SG routes, and indeed, the mechanistic basis
for choosing between them. In comparison, 2f-ST2’s imple-
mentation forces us to elaborate on how cognitive processes
might be neurally realised. It explains how a single neural
construct can produce different behavioural outcomes. Im-
portantly, the process of temporal feature binding in 2f-ST2

does not have any knowledge of the ‘correct’ response fea-
ture. Rather, correct responses and conjunction errors are all
generated by the same underlying architecture. Importantly,
this architecture explains counter-intuitive RT data (Botella,
1992), which motivated the dual-route approach of the BBS
model. In this respect, 2f-ST2 harks back to earlier, informal,
parallel models of selective attention (Keele & Neill, 1978),
which were seen as incompatible with the RT data. Thus, we
argue that 2f-ST2 is more parsimonious in mechanism, and
rejuvenates the adage that correct reports are indeed nothing
more than fortunate conjunctions.

Computational Methods
2f-ST2 extends the ST2 model (Bowman & Wyble, 2007), with the
minor parameter modifications described below.

Stage 1 ST2’s Stage 1 was replicated to generate 2f-ST2’s key and
response pathways. The following changes were made to 2f-ST2’s
key pathway, in comparison to ST2’s Stage 1. Firstly, to decrease
Type layer activation strengths, the Item to Type layer weights were
reduced from 0.015 to 0.013. In addition, the Type layer leak current
was increased from 0.07 to 0.0715. Secondly, to ensure that Type
layer on neurons were suppressed at the correct times, weights from
Type layer off neurons to on neurons were decreased from -0.12 to
-0.15. Finally, to activate the blaster more strongly from the target
type node, the Type layer to blaster Input weight was increased from
0.02003 to 0.02803.

Leak current and connection weight settings for the layers in
Stage 1 of the response pathway are presented in Tables 2 and 3
of Chennu (2009). Weak lateral inhibition was added between Type
layer on neurons (connection weight -0.05) in the response pathway.
In addition, Item and Type layers did not influence the blaster, but
were enhanced by it. Task demand was absent at the response path-
way Type layer.

Stage 2 The Stage 2 binding pool was expanded to represent asso-
ciations between response pathway types and tokens (one per com-
bination of 4 tokens and 25 response types). To compensate for the
altered activation dynamics at the token level, Stage 2 weights were
adjusted as in Table 3 of Chennu (2009).

Dynamics Across simulation runs, target key feature strength was
varied across a range, while distractor strengths remained constant.
However, to simulate the generation of correct reports and conjunc-
tion errors with feasible simulation times, response feature strengths
of the target and proximal distractors (positions -1, -2, +1 and +2)
were varied. Other distractor response feature strengths were con-
stant across all trials. For further details see Chennu (2009).

General Configuration A delay τD was added to the processing
of all features in both pathways. Within each run, τD was sampled
once per item in the stream, from a gaussian distribution (mean = 0;
s.d. = 15ms). Key/response pathway processing time manipulations
involved adding a constant delay (τK /τR) to feature processing in the
relevant pathway. In the default configuration, τK and τR were set to
0 (cf. (Chennu, 2009)).

Key and Response Feature Manipulations To simulate the HF
condition in Exp. 1A from Botella et al. (2001), 2f-ST2 was run in
its default configuration (τK = 0ms; τR = 0ms). The LF condition
was simulated by introducing a fixed delay of 40ms (τK = 40ms;
τR = 0ms) in key feature processing. Similarly, the HF condition of
Exp. 2 in Botella et al. (2001) was simulated by running 2f-ST2 in
its default configuration, and the LF condition by introducing a fixed

delay of 10ms (τK = 0ms; τR = 10ms) in response feature processing.

Experimental Methods
Participants 14 students undertook the experiment. They were free
from neurological disorders and had normal or corrected-to-normal
vision. The study was approved by the local ethics committee.

Stimuli and Apparatus We presented dark grey alphanumeric
characters and symbols surrounded by coloured squares. The char-
acters/symbols and coloured squares subtended maximal visual an-
gles of 1.2◦ x 1.2◦ and 1.36◦ x 1.36◦, respectively.

Procedure Participants viewed two blocks of 180 trials each,
which began with a task instruction indicating whether a letter or
a symbol would be the target. A trial began with a central, white
fixation cross, which after 500ms, turned into a white arrow indicat-
ing the side to monitor for targets. After 200ms, two 16-item streams
were presented at equal distances (2.7◦ visual angle) to left and right
of fixation, at a rate of 94ms per item with no inter-stimulus inter-
val. Colours for the squares surrounding items were sampled from
red, green, blue, yellow and cyan. Distractors were digits randomly
sampled from 2, 3, 4, 5, 6, 7, 8, 9. The target was presented on
one side of fixation, at a random position between 6 and 12 in the
stream. Targets were letters or symbols (depending on the block),
randomly chosen from D, E, G, K, L, T, U, V or #, %, £, ¥, �, ×,
Þ, ÷. Colours for the target and proximal distractors (positions -1,
-2, +1, +2) were assigned using a random permutation of the above
five colours. Participants were told to direct their covert attention
towards the stream indicated by the arrow, search for the target item,
note both its identity, and the colour of the surrounding square. At
trial end, they were asked to select the identity of the target item
from a 6-option menu. The first 5 consisted of the target plus 4 other
items, randomly chosen from the block’s target set. The menu’s final
option was ‘None of the above’. A further response menu required
selection of the colour of the square surrounding the target, and again
contained 6 options. The first 5 were a random permutation of the 5
colours used in the experiment, and the last option was ‘None of the
above’.

Computational Modelling The early key (EK) condition from
the temporal feature binding experiment was simulated by introduc-
ing a key feature processing delay of -40ms (τK = -40ms; τR = 0ms).
The late key (LK) condition was simulated by running 2f-ST2 in its
default configuration (τK = 0ms; τR = 0ms).
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